1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_solaris.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "mutex_solaris.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_share_solaris.hpp"
  41 #include "os_solaris.inline.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm.h"
  44 #include "prims/jvm_misc.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/atomic.inline.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "runtime/vm_version.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/decoder.hpp"
  69 #include "utilities/defaultStream.hpp"
  70 #include "utilities/events.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <dlfcn.h>
  77 # include <errno.h>
  78 # include <exception>
  79 # include <link.h>
  80 # include <poll.h>
  81 # include <pthread.h>
  82 # include <pwd.h>
  83 # include <schedctl.h>
  84 # include <setjmp.h>
  85 # include <signal.h>
  86 # include <stdio.h>
  87 # include <alloca.h>
  88 # include <sys/filio.h>
  89 # include <sys/ipc.h>
  90 # include <sys/lwp.h>
  91 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
  92 # include <sys/mman.h>
  93 # include <sys/processor.h>
  94 # include <sys/procset.h>
  95 # include <sys/pset.h>
  96 # include <sys/resource.h>
  97 # include <sys/shm.h>
  98 # include <sys/socket.h>
  99 # include <sys/stat.h>
 100 # include <sys/systeminfo.h>
 101 # include <sys/time.h>
 102 # include <sys/times.h>
 103 # include <sys/types.h>
 104 # include <sys/wait.h>
 105 # include <sys/utsname.h>
 106 # include <thread.h>
 107 # include <unistd.h>
 108 # include <sys/priocntl.h>
 109 # include <sys/rtpriocntl.h>
 110 # include <sys/tspriocntl.h>
 111 # include <sys/iapriocntl.h>
 112 # include <sys/fxpriocntl.h>
 113 # include <sys/loadavg.h>
 114 # include <string.h>
 115 # include <stdio.h>
 116 
 117 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
 118 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
 119 
 120 #define MAX_PATH (2 * K)
 121 
 122 // for timer info max values which include all bits
 123 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 124 
 125 
 126 // Here are some liblgrp types from sys/lgrp_user.h to be able to
 127 // compile on older systems without this header file.
 128 
 129 #ifndef MADV_ACCESS_LWP
 130   #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
 131 #endif
 132 #ifndef MADV_ACCESS_MANY
 133   #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
 134 #endif
 135 
 136 #ifndef LGRP_RSRC_CPU
 137   #define LGRP_RSRC_CPU      0       /* CPU resources */
 138 #endif
 139 #ifndef LGRP_RSRC_MEM
 140   #define LGRP_RSRC_MEM      1       /* memory resources */
 141 #endif
 142 
 143 // Values for ThreadPriorityPolicy == 1
 144 int prio_policy1[CriticalPriority+1] = {
 145   -99999,  0, 16,  32,  48,  64,
 146           80, 96, 112, 124, 127, 127 };
 147 
 148 // System parameters used internally
 149 static clock_t clock_tics_per_sec = 100;
 150 
 151 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
 152 static bool enabled_extended_FILE_stdio = false;
 153 
 154 // For diagnostics to print a message once. see run_periodic_checks
 155 static bool check_addr0_done = false;
 156 static sigset_t check_signal_done;
 157 static bool check_signals = true;
 158 
 159 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
 160 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
 161 
 162 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
 163 
 164 os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
 165 
 166 // "default" initializers for missing libc APIs
 167 extern "C" {
 168   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 169   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
 170 
 171   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 172   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
 173 }
 174 
 175 // "default" initializers for pthread-based synchronization
 176 extern "C" {
 177   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 178   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 179 }
 180 
 181 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 182 
 183 static inline size_t adjust_stack_size(address base, size_t size) {
 184   if ((ssize_t)size < 0) {
 185     // 4759953: Compensate for ridiculous stack size.
 186     size = max_intx;
 187   }
 188   if (size > (size_t)base) {
 189     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
 190     size = (size_t)base;
 191   }
 192   return size;
 193 }
 194 
 195 static inline stack_t get_stack_info() {
 196   stack_t st;
 197   int retval = thr_stksegment(&st);
 198   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
 199   assert(retval == 0, "incorrect return value from thr_stksegment");
 200   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
 201   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
 202   return st;
 203 }
 204 
 205 address os::current_stack_base() {
 206   int r = thr_main();
 207   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 208   bool is_primordial_thread = r;
 209 
 210   // Workaround 4352906, avoid calls to thr_stksegment by
 211   // thr_main after the first one (it looks like we trash
 212   // some data, causing the value for ss_sp to be incorrect).
 213   if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
 214     stack_t st = get_stack_info();
 215     if (is_primordial_thread) {
 216       // cache initial value of stack base
 217       os::Solaris::_main_stack_base = (address)st.ss_sp;
 218     }
 219     return (address)st.ss_sp;
 220   } else {
 221     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
 222     return os::Solaris::_main_stack_base;
 223   }
 224 }
 225 
 226 size_t os::current_stack_size() {
 227   size_t size;
 228 
 229   int r = thr_main();
 230   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 231   if (!r) {
 232     size = get_stack_info().ss_size;
 233   } else {
 234     struct rlimit limits;
 235     getrlimit(RLIMIT_STACK, &limits);
 236     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
 237   }
 238   // base may not be page aligned
 239   address base = current_stack_base();
 240   address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
 241   return (size_t)(base - bottom);
 242 }
 243 
 244 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
 245   return localtime_r(clock, res);
 246 }
 247 
 248 void os::Solaris::try_enable_extended_io() {
 249   typedef int (*enable_extended_FILE_stdio_t)(int, int);
 250 
 251   if (!UseExtendedFileIO) {
 252     return;
 253   }
 254 
 255   enable_extended_FILE_stdio_t enabler =
 256     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
 257                                          "enable_extended_FILE_stdio");
 258   if (enabler) {
 259     enabler(-1, -1);
 260   }
 261 }
 262 
 263 static int _processors_online = 0;
 264 
 265 jint os::Solaris::_os_thread_limit = 0;
 266 volatile jint os::Solaris::_os_thread_count = 0;
 267 
 268 julong os::available_memory() {
 269   return Solaris::available_memory();
 270 }
 271 
 272 julong os::Solaris::available_memory() {
 273   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
 274 }
 275 
 276 julong os::Solaris::_physical_memory = 0;
 277 
 278 julong os::physical_memory() {
 279   return Solaris::physical_memory();
 280 }
 281 
 282 static hrtime_t first_hrtime = 0;
 283 static const hrtime_t hrtime_hz = 1000*1000*1000;
 284 static volatile hrtime_t max_hrtime = 0;
 285 
 286 
 287 void os::Solaris::initialize_system_info() {
 288   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 289   _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
 290   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
 291                                      (julong)sysconf(_SC_PAGESIZE);
 292 }
 293 
 294 int os::active_processor_count() {
 295   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
 296   pid_t pid = getpid();
 297   psetid_t pset = PS_NONE;
 298   // Are we running in a processor set or is there any processor set around?
 299   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
 300     uint_t pset_cpus;
 301     // Query the number of cpus available to us.
 302     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
 303       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
 304       _processors_online = pset_cpus;
 305       return pset_cpus;
 306     }
 307   }
 308   // Otherwise return number of online cpus
 309   return online_cpus;
 310 }
 311 
 312 static bool find_processors_in_pset(psetid_t        pset,
 313                                     processorid_t** id_array,
 314                                     uint_t*         id_length) {
 315   bool result = false;
 316   // Find the number of processors in the processor set.
 317   if (pset_info(pset, NULL, id_length, NULL) == 0) {
 318     // Make up an array to hold their ids.
 319     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 320     // Fill in the array with their processor ids.
 321     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
 322       result = true;
 323     }
 324   }
 325   return result;
 326 }
 327 
 328 // Callers of find_processors_online() must tolerate imprecise results --
 329 // the system configuration can change asynchronously because of DR
 330 // or explicit psradm operations.
 331 //
 332 // We also need to take care that the loop (below) terminates as the
 333 // number of processors online can change between the _SC_NPROCESSORS_ONLN
 334 // request and the loop that builds the list of processor ids.   Unfortunately
 335 // there's no reliable way to determine the maximum valid processor id,
 336 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
 337 // man pages, which claim the processor id set is "sparse, but
 338 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
 339 // exit the loop.
 340 //
 341 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
 342 // not available on S8.0.
 343 
 344 static bool find_processors_online(processorid_t** id_array,
 345                                    uint*           id_length) {
 346   const processorid_t MAX_PROCESSOR_ID = 100000;
 347   // Find the number of processors online.
 348   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
 349   // Make up an array to hold their ids.
 350   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 351   // Processors need not be numbered consecutively.
 352   long found = 0;
 353   processorid_t next = 0;
 354   while (found < *id_length && next < MAX_PROCESSOR_ID) {
 355     processor_info_t info;
 356     if (processor_info(next, &info) == 0) {
 357       // NB, PI_NOINTR processors are effectively online ...
 358       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
 359         (*id_array)[found] = next;
 360         found += 1;
 361       }
 362     }
 363     next += 1;
 364   }
 365   if (found < *id_length) {
 366     // The loop above didn't identify the expected number of processors.
 367     // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
 368     // and re-running the loop, above, but there's no guarantee of progress
 369     // if the system configuration is in flux.  Instead, we just return what
 370     // we've got.  Note that in the worst case find_processors_online() could
 371     // return an empty set.  (As a fall-back in the case of the empty set we
 372     // could just return the ID of the current processor).
 373     *id_length = found;
 374   }
 375 
 376   return true;
 377 }
 378 
 379 static bool assign_distribution(processorid_t* id_array,
 380                                 uint           id_length,
 381                                 uint*          distribution,
 382                                 uint           distribution_length) {
 383   // We assume we can assign processorid_t's to uint's.
 384   assert(sizeof(processorid_t) == sizeof(uint),
 385          "can't convert processorid_t to uint");
 386   // Quick check to see if we won't succeed.
 387   if (id_length < distribution_length) {
 388     return false;
 389   }
 390   // Assign processor ids to the distribution.
 391   // Try to shuffle processors to distribute work across boards,
 392   // assuming 4 processors per board.
 393   const uint processors_per_board = ProcessDistributionStride;
 394   // Find the maximum processor id.
 395   processorid_t max_id = 0;
 396   for (uint m = 0; m < id_length; m += 1) {
 397     max_id = MAX2(max_id, id_array[m]);
 398   }
 399   // The next id, to limit loops.
 400   const processorid_t limit_id = max_id + 1;
 401   // Make up markers for available processors.
 402   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
 403   for (uint c = 0; c < limit_id; c += 1) {
 404     available_id[c] = false;
 405   }
 406   for (uint a = 0; a < id_length; a += 1) {
 407     available_id[id_array[a]] = true;
 408   }
 409   // Step by "boards", then by "slot", copying to "assigned".
 410   // NEEDS_CLEANUP: The assignment of processors should be stateful,
 411   //                remembering which processors have been assigned by
 412   //                previous calls, etc., so as to distribute several
 413   //                independent calls of this method.  What we'd like is
 414   //                It would be nice to have an API that let us ask
 415   //                how many processes are bound to a processor,
 416   //                but we don't have that, either.
 417   //                In the short term, "board" is static so that
 418   //                subsequent distributions don't all start at board 0.
 419   static uint board = 0;
 420   uint assigned = 0;
 421   // Until we've found enough processors ....
 422   while (assigned < distribution_length) {
 423     // ... find the next available processor in the board.
 424     for (uint slot = 0; slot < processors_per_board; slot += 1) {
 425       uint try_id = board * processors_per_board + slot;
 426       if ((try_id < limit_id) && (available_id[try_id] == true)) {
 427         distribution[assigned] = try_id;
 428         available_id[try_id] = false;
 429         assigned += 1;
 430         break;
 431       }
 432     }
 433     board += 1;
 434     if (board * processors_per_board + 0 >= limit_id) {
 435       board = 0;
 436     }
 437   }
 438   if (available_id != NULL) {
 439     FREE_C_HEAP_ARRAY(bool, available_id);
 440   }
 441   return true;
 442 }
 443 
 444 void os::set_native_thread_name(const char *name) {
 445   if (Solaris::_pthread_setname_np != NULL) {
 446     // Only the first 31 bytes of 'name' are processed by pthread_setname_np
 447     // but we explicitly copy into a size-limited buffer to avoid any
 448     // possible overflow.
 449     char buf[32];
 450     snprintf(buf, sizeof(buf), "%s", name);
 451     buf[sizeof(buf) - 1] = '\0';
 452     Solaris::_pthread_setname_np(pthread_self(), buf);
 453   }
 454 }
 455 
 456 bool os::distribute_processes(uint length, uint* distribution) {
 457   bool result = false;
 458   // Find the processor id's of all the available CPUs.
 459   processorid_t* id_array  = NULL;
 460   uint           id_length = 0;
 461   // There are some races between querying information and using it,
 462   // since processor sets can change dynamically.
 463   psetid_t pset = PS_NONE;
 464   // Are we running in a processor set?
 465   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
 466     result = find_processors_in_pset(pset, &id_array, &id_length);
 467   } else {
 468     result = find_processors_online(&id_array, &id_length);
 469   }
 470   if (result == true) {
 471     if (id_length >= length) {
 472       result = assign_distribution(id_array, id_length, distribution, length);
 473     } else {
 474       result = false;
 475     }
 476   }
 477   if (id_array != NULL) {
 478     FREE_C_HEAP_ARRAY(processorid_t, id_array);
 479   }
 480   return result;
 481 }
 482 
 483 bool os::bind_to_processor(uint processor_id) {
 484   // We assume that a processorid_t can be stored in a uint.
 485   assert(sizeof(uint) == sizeof(processorid_t),
 486          "can't convert uint to processorid_t");
 487   int bind_result =
 488     processor_bind(P_LWPID,                       // bind LWP.
 489                    P_MYID,                        // bind current LWP.
 490                    (processorid_t) processor_id,  // id.
 491                    NULL);                         // don't return old binding.
 492   return (bind_result == 0);
 493 }
 494 
 495 // Return true if user is running as root.
 496 
 497 bool os::have_special_privileges() {
 498   static bool init = false;
 499   static bool privileges = false;
 500   if (!init) {
 501     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 502     init = true;
 503   }
 504   return privileges;
 505 }
 506 
 507 
 508 void os::init_system_properties_values() {
 509   // The next steps are taken in the product version:
 510   //
 511   // Obtain the JAVA_HOME value from the location of libjvm.so.
 512   // This library should be located at:
 513   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 514   //
 515   // If "/jre/lib/" appears at the right place in the path, then we
 516   // assume libjvm.so is installed in a JDK and we use this path.
 517   //
 518   // Otherwise exit with message: "Could not create the Java virtual machine."
 519   //
 520   // The following extra steps are taken in the debugging version:
 521   //
 522   // If "/jre/lib/" does NOT appear at the right place in the path
 523   // instead of exit check for $JAVA_HOME environment variable.
 524   //
 525   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 526   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 527   // it looks like libjvm.so is installed there
 528   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 529   //
 530   // Otherwise exit.
 531   //
 532   // Important note: if the location of libjvm.so changes this
 533   // code needs to be changed accordingly.
 534 
 535 // Base path of extensions installed on the system.
 536 #define SYS_EXT_DIR     "/usr/jdk/packages"
 537 #define EXTENSIONS_DIR  "/lib/ext"
 538 
 539   char cpu_arch[12];
 540   // Buffer that fits several sprintfs.
 541   // Note that the space for the colon and the trailing null are provided
 542   // by the nulls included by the sizeof operator.
 543   const size_t bufsize =
 544     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 545          sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch), // invariant ld_library_path
 546          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 547   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 548 
 549   // sysclasspath, java_home, dll_dir
 550   {
 551     char *pslash;
 552     os::jvm_path(buf, bufsize);
 553 
 554     // Found the full path to libjvm.so.
 555     // Now cut the path to <java_home>/jre if we can.
 556     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 557     pslash = strrchr(buf, '/');
 558     if (pslash != NULL) {
 559       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 560     }
 561     Arguments::set_dll_dir(buf);
 562 
 563     if (pslash != NULL) {
 564       pslash = strrchr(buf, '/');
 565       if (pslash != NULL) {
 566         *pslash = '\0';          // Get rid of /<arch>.
 567         pslash = strrchr(buf, '/');
 568         if (pslash != NULL) {
 569           *pslash = '\0';        // Get rid of /lib.
 570         }
 571       }
 572     }
 573     Arguments::set_java_home(buf);
 574     set_boot_path('/', ':');
 575   }
 576 
 577   // Where to look for native libraries.
 578   {
 579     // Use dlinfo() to determine the correct java.library.path.
 580     //
 581     // If we're launched by the Java launcher, and the user
 582     // does not set java.library.path explicitly on the commandline,
 583     // the Java launcher sets LD_LIBRARY_PATH for us and unsets
 584     // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
 585     // dlinfo returns LD_LIBRARY_PATH + crle settings (including
 586     // /usr/lib), which is exactly what we want.
 587     //
 588     // If the user does set java.library.path, it completely
 589     // overwrites this setting, and always has.
 590     //
 591     // If we're not launched by the Java launcher, we may
 592     // get here with any/all of the LD_LIBRARY_PATH[_32|64]
 593     // settings.  Again, dlinfo does exactly what we want.
 594 
 595     Dl_serinfo     info_sz, *info = &info_sz;
 596     Dl_serpath     *path;
 597     char           *library_path;
 598     char           *common_path = buf;
 599 
 600     // Determine search path count and required buffer size.
 601     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
 602       FREE_C_HEAP_ARRAY(char, buf);
 603       vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
 604     }
 605 
 606     // Allocate new buffer and initialize.
 607     info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
 608     info->dls_size = info_sz.dls_size;
 609     info->dls_cnt = info_sz.dls_cnt;
 610 
 611     // Obtain search path information.
 612     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
 613       FREE_C_HEAP_ARRAY(char, buf);
 614       FREE_C_HEAP_ARRAY(char, info);
 615       vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
 616     }
 617 
 618     path = &info->dls_serpath[0];
 619 
 620     // Note: Due to a legacy implementation, most of the library path
 621     // is set in the launcher. This was to accomodate linking restrictions
 622     // on legacy Solaris implementations (which are no longer supported).
 623     // Eventually, all the library path setting will be done here.
 624     //
 625     // However, to prevent the proliferation of improperly built native
 626     // libraries, the new path component /usr/jdk/packages is added here.
 627 
 628     // Determine the actual CPU architecture.
 629     sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
 630 #ifdef _LP64
 631     // If we are a 64-bit vm, perform the following translations:
 632     //   sparc   -> sparcv9
 633     //   i386    -> amd64
 634     if (strcmp(cpu_arch, "sparc") == 0) {
 635       strcat(cpu_arch, "v9");
 636     } else if (strcmp(cpu_arch, "i386") == 0) {
 637       strcpy(cpu_arch, "amd64");
 638     }
 639 #endif
 640 
 641     // Construct the invariant part of ld_library_path.
 642     sprintf(common_path, SYS_EXT_DIR "/lib/%s", cpu_arch);
 643 
 644     // Struct size is more than sufficient for the path components obtained
 645     // through the dlinfo() call, so only add additional space for the path
 646     // components explicitly added here.
 647     size_t library_path_size = info->dls_size + strlen(common_path);
 648     library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
 649     library_path[0] = '\0';
 650 
 651     // Construct the desired Java library path from the linker's library
 652     // search path.
 653     //
 654     // For compatibility, it is optimal that we insert the additional path
 655     // components specific to the Java VM after those components specified
 656     // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
 657     // infrastructure.
 658     if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
 659       strcpy(library_path, common_path);
 660     } else {
 661       int inserted = 0;
 662       int i;
 663       for (i = 0; i < info->dls_cnt; i++, path++) {
 664         uint_t flags = path->dls_flags & LA_SER_MASK;
 665         if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
 666           strcat(library_path, common_path);
 667           strcat(library_path, os::path_separator());
 668           inserted = 1;
 669         }
 670         strcat(library_path, path->dls_name);
 671         strcat(library_path, os::path_separator());
 672       }
 673       // Eliminate trailing path separator.
 674       library_path[strlen(library_path)-1] = '\0';
 675     }
 676 
 677     // happens before argument parsing - can't use a trace flag
 678     // tty->print_raw("init_system_properties_values: native lib path: ");
 679     // tty->print_raw_cr(library_path);
 680 
 681     // Callee copies into its own buffer.
 682     Arguments::set_library_path(library_path);
 683 
 684     FREE_C_HEAP_ARRAY(char, library_path);
 685     FREE_C_HEAP_ARRAY(char, info);
 686   }
 687 
 688   // Extensions directories.
 689   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 690   Arguments::set_ext_dirs(buf);
 691 
 692   FREE_C_HEAP_ARRAY(char, buf);
 693 
 694 #undef SYS_EXT_DIR
 695 #undef EXTENSIONS_DIR
 696 }
 697 
 698 void os::breakpoint() {
 699   BREAKPOINT;
 700 }
 701 
 702 bool os::obsolete_option(const JavaVMOption *option) {
 703   if (!strncmp(option->optionString, "-Xt", 3)) {
 704     return true;
 705   } else if (!strncmp(option->optionString, "-Xtm", 4)) {
 706     return true;
 707   } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
 708     return true;
 709   } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
 710     return true;
 711   }
 712   return false;
 713 }
 714 
 715 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
 716   address  stackStart  = (address)thread->stack_base();
 717   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
 718   if (sp < stackStart && sp >= stackEnd) return true;
 719   return false;
 720 }
 721 
 722 extern "C" void breakpoint() {
 723   // use debugger to set breakpoint here
 724 }
 725 
 726 static thread_t main_thread;
 727 
 728 // Thread start routine for all new Java threads
 729 extern "C" void* java_start(void* thread_addr) {
 730   // Try to randomize the cache line index of hot stack frames.
 731   // This helps when threads of the same stack traces evict each other's
 732   // cache lines. The threads can be either from the same JVM instance, or
 733   // from different JVM instances. The benefit is especially true for
 734   // processors with hyperthreading technology.
 735   static int counter = 0;
 736   int pid = os::current_process_id();
 737   alloca(((pid ^ counter++) & 7) * 128);
 738 
 739   int prio;
 740   Thread* thread = (Thread*)thread_addr;
 741 
 742   thread->initialize_thread_current();
 743 
 744   OSThread* osthr = thread->osthread();
 745 
 746   osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
 747   thread->_schedctl = (void *) schedctl_init();
 748 
 749   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
 750     os::current_thread_id());
 751 
 752   if (UseNUMA) {
 753     int lgrp_id = os::numa_get_group_id();
 754     if (lgrp_id != -1) {
 755       thread->set_lgrp_id(lgrp_id);
 756     }
 757   }
 758 
 759   // If the creator called set priority before we started,
 760   // we need to call set_native_priority now that we have an lwp.
 761   // We used to get the priority from thr_getprio (we called
 762   // thr_setprio way back in create_thread) and pass it to
 763   // set_native_priority, but Solaris scales the priority
 764   // in java_to_os_priority, so when we read it back here,
 765   // we pass trash to set_native_priority instead of what's
 766   // in java_to_os_priority. So we save the native priority
 767   // in the osThread and recall it here.
 768 
 769   if (osthr->thread_id() != -1) {
 770     if (UseThreadPriorities) {
 771       int prio = osthr->native_priority();
 772       if (ThreadPriorityVerbose) {
 773         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
 774                       INTPTR_FORMAT ", setting priority: %d\n",
 775                       osthr->thread_id(), osthr->lwp_id(), prio);
 776       }
 777       os::set_native_priority(thread, prio);
 778     }
 779   } else if (ThreadPriorityVerbose) {
 780     warning("Can't set priority in _start routine, thread id hasn't been set\n");
 781   }
 782 
 783   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 784 
 785   // initialize signal mask for this thread
 786   os::Solaris::hotspot_sigmask(thread);
 787 
 788   thread->run();
 789 
 790   // One less thread is executing
 791   // When the VMThread gets here, the main thread may have already exited
 792   // which frees the CodeHeap containing the Atomic::dec code
 793   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 794     Atomic::dec(&os::Solaris::_os_thread_count);
 795   }
 796 
 797   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 798 
 799   if (UseDetachedThreads) {
 800     thr_exit(NULL);
 801     ShouldNotReachHere();
 802   }
 803   return NULL;
 804 }
 805 
 806 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
 807   // Allocate the OSThread object
 808   OSThread* osthread = new OSThread(NULL, NULL);
 809   if (osthread == NULL) return NULL;
 810 
 811   // Store info on the Solaris thread into the OSThread
 812   osthread->set_thread_id(thread_id);
 813   osthread->set_lwp_id(_lwp_self());
 814   thread->_schedctl = (void *) schedctl_init();
 815 
 816   if (UseNUMA) {
 817     int lgrp_id = os::numa_get_group_id();
 818     if (lgrp_id != -1) {
 819       thread->set_lgrp_id(lgrp_id);
 820     }
 821   }
 822 
 823   if (ThreadPriorityVerbose) {
 824     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
 825                   osthread->thread_id(), osthread->lwp_id());
 826   }
 827 
 828   // Initial thread state is INITIALIZED, not SUSPENDED
 829   osthread->set_state(INITIALIZED);
 830 
 831   return osthread;
 832 }
 833 
 834 void os::Solaris::hotspot_sigmask(Thread* thread) {
 835   //Save caller's signal mask
 836   sigset_t sigmask;
 837   pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
 838   OSThread *osthread = thread->osthread();
 839   osthread->set_caller_sigmask(sigmask);
 840 
 841   pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
 842   if (!ReduceSignalUsage) {
 843     if (thread->is_VM_thread()) {
 844       // Only the VM thread handles BREAK_SIGNAL ...
 845       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 846     } else {
 847       // ... all other threads block BREAK_SIGNAL
 848       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
 849       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 850     }
 851   }
 852 }
 853 
 854 bool os::create_attached_thread(JavaThread* thread) {
 855 #ifdef ASSERT
 856   thread->verify_not_published();
 857 #endif
 858   OSThread* osthread = create_os_thread(thread, thr_self());
 859   if (osthread == NULL) {
 860     return false;
 861   }
 862 
 863   // Initial thread state is RUNNABLE
 864   osthread->set_state(RUNNABLE);
 865   thread->set_osthread(osthread);
 866 
 867   // initialize signal mask for this thread
 868   // and save the caller's signal mask
 869   os::Solaris::hotspot_sigmask(thread);
 870 
 871   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 872     os::current_thread_id());
 873 
 874   return true;
 875 }
 876 
 877 bool os::create_main_thread(JavaThread* thread) {
 878 #ifdef ASSERT
 879   thread->verify_not_published();
 880 #endif
 881   if (_starting_thread == NULL) {
 882     _starting_thread = create_os_thread(thread, main_thread);
 883     if (_starting_thread == NULL) {
 884       return false;
 885     }
 886   }
 887 
 888   // The primodial thread is runnable from the start
 889   _starting_thread->set_state(RUNNABLE);
 890 
 891   thread->set_osthread(_starting_thread);
 892 
 893   // initialize signal mask for this thread
 894   // and save the caller's signal mask
 895   os::Solaris::hotspot_sigmask(thread);
 896 
 897   return true;
 898 }
 899 
 900 // Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
 901 static char* describe_thr_create_attributes(char* buf, size_t buflen,
 902                                             size_t stacksize, long flags) {
 903   stringStream ss(buf, buflen);
 904   ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 905   ss.print("flags: ");
 906   #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
 907   #define ALL(X) \
 908     X(THR_SUSPENDED) \
 909     X(THR_DETACHED) \
 910     X(THR_BOUND) \
 911     X(THR_NEW_LWP) \
 912     X(THR_DAEMON)
 913   ALL(PRINT_FLAG)
 914   #undef ALL
 915   #undef PRINT_FLAG
 916   return buf;
 917 }
 918 
 919 bool os::create_thread(Thread* thread, ThreadType thr_type,
 920                        size_t stack_size) {
 921   // Allocate the OSThread object
 922   OSThread* osthread = new OSThread(NULL, NULL);
 923   if (osthread == NULL) {
 924     return false;
 925   }
 926 
 927   if (ThreadPriorityVerbose) {
 928     char *thrtyp;
 929     switch (thr_type) {
 930     case vm_thread:
 931       thrtyp = (char *)"vm";
 932       break;
 933     case cgc_thread:
 934       thrtyp = (char *)"cgc";
 935       break;
 936     case pgc_thread:
 937       thrtyp = (char *)"pgc";
 938       break;
 939     case java_thread:
 940       thrtyp = (char *)"java";
 941       break;
 942     case compiler_thread:
 943       thrtyp = (char *)"compiler";
 944       break;
 945     case watcher_thread:
 946       thrtyp = (char *)"watcher";
 947       break;
 948     default:
 949       thrtyp = (char *)"unknown";
 950       break;
 951     }
 952     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
 953   }
 954 
 955   // Calculate stack size if it's not specified by caller.
 956   if (stack_size == 0) {
 957     // The default stack size 1M (2M for LP64).
 958     stack_size = (BytesPerWord >> 2) * K * K;
 959 
 960     switch (thr_type) {
 961     case os::java_thread:
 962       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 963       if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
 964       break;
 965     case os::compiler_thread:
 966       if (CompilerThreadStackSize > 0) {
 967         stack_size = (size_t)(CompilerThreadStackSize * K);
 968         break;
 969       } // else fall through:
 970         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 971     case os::vm_thread:
 972     case os::pgc_thread:
 973     case os::cgc_thread:
 974     case os::watcher_thread:
 975       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 976       break;
 977     }
 978   }
 979   stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
 980 
 981   // Initial state is ALLOCATED but not INITIALIZED
 982   osthread->set_state(ALLOCATED);
 983 
 984   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
 985     // We got lots of threads. Check if we still have some address space left.
 986     // Need to be at least 5Mb of unreserved address space. We do check by
 987     // trying to reserve some.
 988     const size_t VirtualMemoryBangSize = 20*K*K;
 989     char* mem = os::reserve_memory(VirtualMemoryBangSize);
 990     if (mem == NULL) {
 991       delete osthread;
 992       return false;
 993     } else {
 994       // Release the memory again
 995       os::release_memory(mem, VirtualMemoryBangSize);
 996     }
 997   }
 998 
 999   // Setup osthread because the child thread may need it.
1000   thread->set_osthread(osthread);
1001 
1002   // Create the Solaris thread
1003   thread_t tid = 0;
1004   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
1005   int      status;
1006 
1007   // Mark that we don't have an lwp or thread id yet.
1008   // In case we attempt to set the priority before the thread starts.
1009   osthread->set_lwp_id(-1);
1010   osthread->set_thread_id(-1);
1011 
1012   status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
1013 
1014   char buf[64];
1015   if (status == 0) {
1016     log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
1017       (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
1018   } else {
1019     log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
1020       os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
1021   }
1022 
1023   if (status != 0) {
1024     thread->set_osthread(NULL);
1025     // Need to clean up stuff we've allocated so far
1026     delete osthread;
1027     return false;
1028   }
1029 
1030   Atomic::inc(&os::Solaris::_os_thread_count);
1031 
1032   // Store info on the Solaris thread into the OSThread
1033   osthread->set_thread_id(tid);
1034 
1035   // Remember that we created this thread so we can set priority on it
1036   osthread->set_vm_created();
1037 
1038   // Initial thread state is INITIALIZED, not SUSPENDED
1039   osthread->set_state(INITIALIZED);
1040 
1041   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1042   return true;
1043 }
1044 
1045 // defined for >= Solaris 10. This allows builds on earlier versions
1046 // of Solaris to take advantage of the newly reserved Solaris JVM signals.
1047 // With SIGJVM1, SIGJVM2, ASYNC_SIGNAL is SIGJVM2. Previously INTERRUPT_SIGNAL
1048 // was SIGJVM1.
1049 //
1050 #if !defined(SIGJVM1)
1051   #define SIGJVM1 39
1052   #define SIGJVM2 40
1053 #endif
1054 
1055 debug_only(static bool signal_sets_initialized = false);
1056 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1057 
1058 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1059 
1060 bool os::Solaris::is_sig_ignored(int sig) {
1061   struct sigaction oact;
1062   sigaction(sig, (struct sigaction*)NULL, &oact);
1063   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1064                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1065   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1066     return true;
1067   } else {
1068     return false;
1069   }
1070 }
1071 
1072 // Note: SIGRTMIN is a macro that calls sysconf() so it will
1073 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1074 static bool isJVM1available() {
1075   return SIGJVM1 < SIGRTMIN;
1076 }
1077 
1078 void os::Solaris::signal_sets_init() {
1079   // Should also have an assertion stating we are still single-threaded.
1080   assert(!signal_sets_initialized, "Already initialized");
1081   // Fill in signals that are necessarily unblocked for all threads in
1082   // the VM. Currently, we unblock the following signals:
1083   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1084   //                         by -Xrs (=ReduceSignalUsage));
1085   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1086   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1087   // the dispositions or masks wrt these signals.
1088   // Programs embedding the VM that want to use the above signals for their
1089   // own purposes must, at this time, use the "-Xrs" option to prevent
1090   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1091   // (See bug 4345157, and other related bugs).
1092   // In reality, though, unblocking these signals is really a nop, since
1093   // these signals are not blocked by default.
1094   sigemptyset(&unblocked_sigs);
1095   sigemptyset(&allowdebug_blocked_sigs);
1096   sigaddset(&unblocked_sigs, SIGILL);
1097   sigaddset(&unblocked_sigs, SIGSEGV);
1098   sigaddset(&unblocked_sigs, SIGBUS);
1099   sigaddset(&unblocked_sigs, SIGFPE);
1100 
1101   // Always true on Solaris 10+
1102   guarantee(isJVM1available(), "SIGJVM1/2 missing!");
1103   os::Solaris::set_SIGasync(SIGJVM2);
1104 
1105   sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1106 
1107   if (!ReduceSignalUsage) {
1108     if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1109       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1110       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1111     }
1112     if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1113       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1114       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1115     }
1116     if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1117       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1118       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1119     }
1120   }
1121   // Fill in signals that are blocked by all but the VM thread.
1122   sigemptyset(&vm_sigs);
1123   if (!ReduceSignalUsage) {
1124     sigaddset(&vm_sigs, BREAK_SIGNAL);
1125   }
1126   debug_only(signal_sets_initialized = true);
1127 
1128   // For diagnostics only used in run_periodic_checks
1129   sigemptyset(&check_signal_done);
1130 }
1131 
1132 // These are signals that are unblocked while a thread is running Java.
1133 // (For some reason, they get blocked by default.)
1134 sigset_t* os::Solaris::unblocked_signals() {
1135   assert(signal_sets_initialized, "Not initialized");
1136   return &unblocked_sigs;
1137 }
1138 
1139 // These are the signals that are blocked while a (non-VM) thread is
1140 // running Java. Only the VM thread handles these signals.
1141 sigset_t* os::Solaris::vm_signals() {
1142   assert(signal_sets_initialized, "Not initialized");
1143   return &vm_sigs;
1144 }
1145 
1146 // These are signals that are blocked during cond_wait to allow debugger in
1147 sigset_t* os::Solaris::allowdebug_blocked_signals() {
1148   assert(signal_sets_initialized, "Not initialized");
1149   return &allowdebug_blocked_sigs;
1150 }
1151 
1152 
1153 void _handle_uncaught_cxx_exception() {
1154   VMError::report_and_die("An uncaught C++ exception");
1155 }
1156 
1157 
1158 // First crack at OS-specific initialization, from inside the new thread.
1159 void os::initialize_thread(Thread* thr) {
1160   int r = thr_main();
1161   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1162   if (r) {
1163     JavaThread* jt = (JavaThread *)thr;
1164     assert(jt != NULL, "Sanity check");
1165     size_t stack_size;
1166     address base = jt->stack_base();
1167     if (Arguments::created_by_java_launcher()) {
1168       // Use 2MB to allow for Solaris 7 64 bit mode.
1169       stack_size = JavaThread::stack_size_at_create() == 0
1170         ? 2048*K : JavaThread::stack_size_at_create();
1171 
1172       // There are rare cases when we may have already used more than
1173       // the basic stack size allotment before this method is invoked.
1174       // Attempt to allow for a normally sized java_stack.
1175       size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1176       stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1177     } else {
1178       // 6269555: If we were not created by a Java launcher, i.e. if we are
1179       // running embedded in a native application, treat the primordial thread
1180       // as much like a native attached thread as possible.  This means using
1181       // the current stack size from thr_stksegment(), unless it is too large
1182       // to reliably setup guard pages.  A reasonable max size is 8MB.
1183       size_t current_size = current_stack_size();
1184       // This should never happen, but just in case....
1185       if (current_size == 0) current_size = 2 * K * K;
1186       stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1187     }
1188     address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1189     stack_size = (size_t)(base - bottom);
1190 
1191     assert(stack_size > 0, "Stack size calculation problem");
1192 
1193     if (stack_size > jt->stack_size()) {
1194 #ifndef PRODUCT
1195       struct rlimit limits;
1196       getrlimit(RLIMIT_STACK, &limits);
1197       size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1198       assert(size >= jt->stack_size(), "Stack size problem in main thread");
1199 #endif
1200       tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1201                     "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1202                     "See limit(1) to increase the stack size limit.",
1203                     stack_size / K, jt->stack_size() / K);
1204       vm_exit(1);
1205     }
1206     assert(jt->stack_size() >= stack_size,
1207            "Attempt to map more stack than was allocated");
1208     jt->set_stack_size(stack_size);
1209   }
1210 
1211   // With the T2 libthread (T1 is no longer supported) threads are always bound
1212   // and we use stackbanging in all cases.
1213 
1214   os::Solaris::init_thread_fpu_state();
1215   std::set_terminate(_handle_uncaught_cxx_exception);
1216 }
1217 
1218 
1219 
1220 // Free Solaris resources related to the OSThread
1221 void os::free_thread(OSThread* osthread) {
1222   assert(osthread != NULL, "os::free_thread but osthread not set");
1223 
1224   // Usually osthread will be the current thread, but during VM termination
1225   // it might be the VMThread or (what was) the WatcherThread
1226 
1227   if (Thread::current()->osthread() == osthread) {
1228     // Restore caller's signal mask
1229     sigset_t sigmask = osthread->caller_sigmask();
1230     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1231   }
1232   delete osthread;
1233 }
1234 
1235 void os::pd_start_thread(Thread* thread) {
1236   int status = thr_continue(thread->osthread()->thread_id());
1237   assert_status(status == 0, status, "thr_continue failed");
1238 }
1239 
1240 
1241 intx os::current_thread_id() {
1242   return (intx)thr_self();
1243 }
1244 
1245 static pid_t _initial_pid = 0;
1246 
1247 int os::current_process_id() {
1248   return (int)(_initial_pid ? _initial_pid : getpid());
1249 }
1250 
1251 // gethrtime() should be monotonic according to the documentation,
1252 // but some virtualized platforms are known to break this guarantee.
1253 // getTimeNanos() must be guaranteed not to move backwards, so we
1254 // are forced to add a check here.
1255 inline hrtime_t getTimeNanos() {
1256   const hrtime_t now = gethrtime();
1257   const hrtime_t prev = max_hrtime;
1258   if (now <= prev) {
1259     return prev;   // same or retrograde time;
1260   }
1261   const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1262   assert(obsv >= prev, "invariant");   // Monotonicity
1263   // If the CAS succeeded then we're done and return "now".
1264   // If the CAS failed and the observed value "obsv" is >= now then
1265   // we should return "obsv".  If the CAS failed and now > obsv > prv then
1266   // some other thread raced this thread and installed a new value, in which case
1267   // we could either (a) retry the entire operation, (b) retry trying to install now
1268   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1269   // we might discard a higher "now" value in deference to a slightly lower but freshly
1270   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1271   // to (a) or (b) -- and greatly reduces coherence traffic.
1272   // We might also condition (c) on the magnitude of the delta between obsv and now.
1273   // Avoiding excessive CAS operations to hot RW locations is critical.
1274   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1275   return (prev == obsv) ? now : obsv;
1276 }
1277 
1278 // Time since start-up in seconds to a fine granularity.
1279 // Used by VMSelfDestructTimer and the MemProfiler.
1280 double os::elapsedTime() {
1281   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1282 }
1283 
1284 jlong os::elapsed_counter() {
1285   return (jlong)(getTimeNanos() - first_hrtime);
1286 }
1287 
1288 jlong os::elapsed_frequency() {
1289   return hrtime_hz;
1290 }
1291 
1292 // Return the real, user, and system times in seconds from an
1293 // arbitrary fixed point in the past.
1294 bool os::getTimesSecs(double* process_real_time,
1295                       double* process_user_time,
1296                       double* process_system_time) {
1297   struct tms ticks;
1298   clock_t real_ticks = times(&ticks);
1299 
1300   if (real_ticks == (clock_t) (-1)) {
1301     return false;
1302   } else {
1303     double ticks_per_second = (double) clock_tics_per_sec;
1304     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1305     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1306     // For consistency return the real time from getTimeNanos()
1307     // converted to seconds.
1308     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1309 
1310     return true;
1311   }
1312 }
1313 
1314 bool os::supports_vtime() { return true; }
1315 
1316 bool os::enable_vtime() {
1317   int fd = ::open("/proc/self/ctl", O_WRONLY);
1318   if (fd == -1) {
1319     return false;
1320   }
1321 
1322   long cmd[] = { PCSET, PR_MSACCT };
1323   int res = ::write(fd, cmd, sizeof(long) * 2);
1324   ::close(fd);
1325   if (res != sizeof(long) * 2) {
1326     return false;
1327   }
1328   return true;
1329 }
1330 
1331 bool os::vtime_enabled() {
1332   int fd = ::open("/proc/self/status", O_RDONLY);
1333   if (fd == -1) {
1334     return false;
1335   }
1336 
1337   pstatus_t status;
1338   int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
1339   ::close(fd);
1340   if (res != sizeof(pstatus_t)) {
1341     return false;
1342   }
1343   return status.pr_flags & PR_MSACCT;
1344 }
1345 
1346 double os::elapsedVTime() {
1347   return (double)gethrvtime() / (double)hrtime_hz;
1348 }
1349 
1350 // Used internally for comparisons only
1351 // getTimeMillis guaranteed to not move backwards on Solaris
1352 jlong getTimeMillis() {
1353   jlong nanotime = getTimeNanos();
1354   return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
1355 }
1356 
1357 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1358 jlong os::javaTimeMillis() {
1359   timeval t;
1360   if (gettimeofday(&t, NULL) == -1) {
1361     fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1362   }
1363   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1364 }
1365 
1366 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1367   timeval t;
1368   if (gettimeofday(&t, NULL) == -1) {
1369     fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1370   }
1371   seconds = jlong(t.tv_sec);
1372   nanos = jlong(t.tv_usec) * 1000;
1373 }
1374 
1375 
1376 jlong os::javaTimeNanos() {
1377   return (jlong)getTimeNanos();
1378 }
1379 
1380 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1381   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1382   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1383   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1384   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1385 }
1386 
1387 char * os::local_time_string(char *buf, size_t buflen) {
1388   struct tm t;
1389   time_t long_time;
1390   time(&long_time);
1391   localtime_r(&long_time, &t);
1392   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1393                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1394                t.tm_hour, t.tm_min, t.tm_sec);
1395   return buf;
1396 }
1397 
1398 // Note: os::shutdown() might be called very early during initialization, or
1399 // called from signal handler. Before adding something to os::shutdown(), make
1400 // sure it is async-safe and can handle partially initialized VM.
1401 void os::shutdown() {
1402 
1403   // allow PerfMemory to attempt cleanup of any persistent resources
1404   perfMemory_exit();
1405 
1406   // needs to remove object in file system
1407   AttachListener::abort();
1408 
1409   // flush buffered output, finish log files
1410   ostream_abort();
1411 
1412   // Check for abort hook
1413   abort_hook_t abort_hook = Arguments::abort_hook();
1414   if (abort_hook != NULL) {
1415     abort_hook();
1416   }
1417 }
1418 
1419 // Note: os::abort() might be called very early during initialization, or
1420 // called from signal handler. Before adding something to os::abort(), make
1421 // sure it is async-safe and can handle partially initialized VM.
1422 void os::abort(bool dump_core, void* siginfo, const void* context) {
1423   os::shutdown();
1424   if (dump_core) {
1425 #ifndef PRODUCT
1426     fdStream out(defaultStream::output_fd());
1427     out.print_raw("Current thread is ");
1428     char buf[16];
1429     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1430     out.print_raw_cr(buf);
1431     out.print_raw_cr("Dumping core ...");
1432 #endif
1433     ::abort(); // dump core (for debugging)
1434   }
1435 
1436   ::exit(1);
1437 }
1438 
1439 // Die immediately, no exit hook, no abort hook, no cleanup.
1440 void os::die() {
1441   ::abort(); // dump core (for debugging)
1442 }
1443 
1444 // DLL functions
1445 
1446 const char* os::dll_file_extension() { return ".so"; }
1447 
1448 // This must be hard coded because it's the system's temporary
1449 // directory not the java application's temp directory, ala java.io.tmpdir.
1450 const char* os::get_temp_directory() { return "/tmp"; }
1451 
1452 static bool file_exists(const char* filename) {
1453   struct stat statbuf;
1454   if (filename == NULL || strlen(filename) == 0) {
1455     return false;
1456   }
1457   return os::stat(filename, &statbuf) == 0;
1458 }
1459 
1460 bool os::dll_build_name(char* buffer, size_t buflen,
1461                         const char* pname, const char* fname) {
1462   bool retval = false;
1463   const size_t pnamelen = pname ? strlen(pname) : 0;
1464 
1465   // Return error on buffer overflow.
1466   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1467     return retval;
1468   }
1469 
1470   if (pnamelen == 0) {
1471     snprintf(buffer, buflen, "lib%s.so", fname);
1472     retval = true;
1473   } else if (strchr(pname, *os::path_separator()) != NULL) {
1474     int n;
1475     char** pelements = split_path(pname, &n);
1476     if (pelements == NULL) {
1477       return false;
1478     }
1479     for (int i = 0; i < n; i++) {
1480       // really shouldn't be NULL but what the heck, check can't hurt
1481       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1482         continue; // skip the empty path values
1483       }
1484       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1485       if (file_exists(buffer)) {
1486         retval = true;
1487         break;
1488       }
1489     }
1490     // release the storage
1491     for (int i = 0; i < n; i++) {
1492       if (pelements[i] != NULL) {
1493         FREE_C_HEAP_ARRAY(char, pelements[i]);
1494       }
1495     }
1496     if (pelements != NULL) {
1497       FREE_C_HEAP_ARRAY(char*, pelements);
1498     }
1499   } else {
1500     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1501     retval = true;
1502   }
1503   return retval;
1504 }
1505 
1506 // check if addr is inside libjvm.so
1507 bool os::address_is_in_vm(address addr) {
1508   static address libjvm_base_addr;
1509   Dl_info dlinfo;
1510 
1511   if (libjvm_base_addr == NULL) {
1512     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1513       libjvm_base_addr = (address)dlinfo.dli_fbase;
1514     }
1515     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1516   }
1517 
1518   if (dladdr((void *)addr, &dlinfo) != 0) {
1519     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1520   }
1521 
1522   return false;
1523 }
1524 
1525 typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1526 static dladdr1_func_type dladdr1_func = NULL;
1527 
1528 bool os::dll_address_to_function_name(address addr, char *buf,
1529                                       int buflen, int * offset,
1530                                       bool demangle) {
1531   // buf is not optional, but offset is optional
1532   assert(buf != NULL, "sanity check");
1533 
1534   Dl_info dlinfo;
1535 
1536   // dladdr1_func was initialized in os::init()
1537   if (dladdr1_func != NULL) {
1538     // yes, we have dladdr1
1539 
1540     // Support for dladdr1 is checked at runtime; it may be
1541     // available even if the vm is built on a machine that does
1542     // not have dladdr1 support.  Make sure there is a value for
1543     // RTLD_DL_SYMENT.
1544 #ifndef RTLD_DL_SYMENT
1545   #define RTLD_DL_SYMENT 1
1546 #endif
1547 #ifdef _LP64
1548     Elf64_Sym * info;
1549 #else
1550     Elf32_Sym * info;
1551 #endif
1552     if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1553                      RTLD_DL_SYMENT) != 0) {
1554       // see if we have a matching symbol that covers our address
1555       if (dlinfo.dli_saddr != NULL &&
1556           (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1557         if (dlinfo.dli_sname != NULL) {
1558           if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1559             jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1560           }
1561           if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1562           return true;
1563         }
1564       }
1565       // no matching symbol so try for just file info
1566       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1567         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1568                             buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1569           return true;
1570         }
1571       }
1572     }
1573     buf[0] = '\0';
1574     if (offset != NULL) *offset  = -1;
1575     return false;
1576   }
1577 
1578   // no, only dladdr is available
1579   if (dladdr((void *)addr, &dlinfo) != 0) {
1580     // see if we have a matching symbol
1581     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1582       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1583         jio_snprintf(buf, buflen, dlinfo.dli_sname);
1584       }
1585       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1586       return true;
1587     }
1588     // no matching symbol so try for just file info
1589     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1590       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1591                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1592         return true;
1593       }
1594     }
1595   }
1596   buf[0] = '\0';
1597   if (offset != NULL) *offset  = -1;
1598   return false;
1599 }
1600 
1601 bool os::dll_address_to_library_name(address addr, char* buf,
1602                                      int buflen, int* offset) {
1603   // buf is not optional, but offset is optional
1604   assert(buf != NULL, "sanity check");
1605 
1606   Dl_info dlinfo;
1607 
1608   if (dladdr((void*)addr, &dlinfo) != 0) {
1609     if (dlinfo.dli_fname != NULL) {
1610       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1611     }
1612     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1613       *offset = addr - (address)dlinfo.dli_fbase;
1614     }
1615     return true;
1616   }
1617 
1618   buf[0] = '\0';
1619   if (offset) *offset = -1;
1620   return false;
1621 }
1622 
1623 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1624   Dl_info dli;
1625   // Sanity check?
1626   if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1627       dli.dli_fname == NULL) {
1628     return 1;
1629   }
1630 
1631   void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1632   if (handle == NULL) {
1633     return 1;
1634   }
1635 
1636   Link_map *map;
1637   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1638   if (map == NULL) {
1639     dlclose(handle);
1640     return 1;
1641   }
1642 
1643   while (map->l_prev != NULL) {
1644     map = map->l_prev;
1645   }
1646 
1647   while (map != NULL) {
1648     // Iterate through all map entries and call callback with fields of interest
1649     if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1650       dlclose(handle);
1651       return 1;
1652     }
1653     map = map->l_next;
1654   }
1655 
1656   dlclose(handle);
1657   return 0;
1658 }
1659 
1660 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1661   outputStream * out = (outputStream *) param;
1662   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1663   return 0;
1664 }
1665 
1666 void os::print_dll_info(outputStream * st) {
1667   st->print_cr("Dynamic libraries:"); st->flush();
1668   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1669     st->print_cr("Error: Cannot print dynamic libraries.");
1670   }
1671 }
1672 
1673 // Loads .dll/.so and
1674 // in case of error it checks if .dll/.so was built for the
1675 // same architecture as Hotspot is running on
1676 
1677 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1678   void * result= ::dlopen(filename, RTLD_LAZY);
1679   if (result != NULL) {
1680     // Successful loading
1681     return result;
1682   }
1683 
1684   Elf32_Ehdr elf_head;
1685 
1686   // Read system error message into ebuf
1687   // It may or may not be overwritten below
1688   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1689   ebuf[ebuflen-1]='\0';
1690   int diag_msg_max_length=ebuflen-strlen(ebuf);
1691   char* diag_msg_buf=ebuf+strlen(ebuf);
1692 
1693   if (diag_msg_max_length==0) {
1694     // No more space in ebuf for additional diagnostics message
1695     return NULL;
1696   }
1697 
1698 
1699   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1700 
1701   if (file_descriptor < 0) {
1702     // Can't open library, report dlerror() message
1703     return NULL;
1704   }
1705 
1706   bool failed_to_read_elf_head=
1707     (sizeof(elf_head)!=
1708      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1709 
1710   ::close(file_descriptor);
1711   if (failed_to_read_elf_head) {
1712     // file i/o error - report dlerror() msg
1713     return NULL;
1714   }
1715 
1716   typedef struct {
1717     Elf32_Half  code;         // Actual value as defined in elf.h
1718     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1719     char        elf_class;    // 32 or 64 bit
1720     char        endianess;    // MSB or LSB
1721     char*       name;         // String representation
1722   } arch_t;
1723 
1724   static const arch_t arch_array[]={
1725     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1726     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1727     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1728     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1729     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1730     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1731     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1732     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1733     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1734     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1735   };
1736 
1737 #if  (defined IA32)
1738   static  Elf32_Half running_arch_code=EM_386;
1739 #elif   (defined AMD64)
1740   static  Elf32_Half running_arch_code=EM_X86_64;
1741 #elif  (defined IA64)
1742   static  Elf32_Half running_arch_code=EM_IA_64;
1743 #elif  (defined __sparc) && (defined _LP64)
1744   static  Elf32_Half running_arch_code=EM_SPARCV9;
1745 #elif  (defined __sparc) && (!defined _LP64)
1746   static  Elf32_Half running_arch_code=EM_SPARC;
1747 #elif  (defined __powerpc64__)
1748   static  Elf32_Half running_arch_code=EM_PPC64;
1749 #elif  (defined __powerpc__)
1750   static  Elf32_Half running_arch_code=EM_PPC;
1751 #elif (defined ARM)
1752   static  Elf32_Half running_arch_code=EM_ARM;
1753 #else
1754   #error Method os::dll_load requires that one of following is defined:\
1755        IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1756 #endif
1757 
1758   // Identify compatability class for VM's architecture and library's architecture
1759   // Obtain string descriptions for architectures
1760 
1761   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1762   int running_arch_index=-1;
1763 
1764   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1765     if (running_arch_code == arch_array[i].code) {
1766       running_arch_index    = i;
1767     }
1768     if (lib_arch.code == arch_array[i].code) {
1769       lib_arch.compat_class = arch_array[i].compat_class;
1770       lib_arch.name         = arch_array[i].name;
1771     }
1772   }
1773 
1774   assert(running_arch_index != -1,
1775          "Didn't find running architecture code (running_arch_code) in arch_array");
1776   if (running_arch_index == -1) {
1777     // Even though running architecture detection failed
1778     // we may still continue with reporting dlerror() message
1779     return NULL;
1780   }
1781 
1782   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1783     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1784     return NULL;
1785   }
1786 
1787   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1788     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1789     return NULL;
1790   }
1791 
1792   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1793     if (lib_arch.name!=NULL) {
1794       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1795                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1796                  lib_arch.name, arch_array[running_arch_index].name);
1797     } else {
1798       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1799                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1800                  lib_arch.code,
1801                  arch_array[running_arch_index].name);
1802     }
1803   }
1804 
1805   return NULL;
1806 }
1807 
1808 void* os::dll_lookup(void* handle, const char* name) {
1809   return dlsym(handle, name);
1810 }
1811 
1812 void* os::get_default_process_handle() {
1813   return (void*)::dlopen(NULL, RTLD_LAZY);
1814 }
1815 
1816 int os::stat(const char *path, struct stat *sbuf) {
1817   char pathbuf[MAX_PATH];
1818   if (strlen(path) > MAX_PATH - 1) {
1819     errno = ENAMETOOLONG;
1820     return -1;
1821   }
1822   os::native_path(strcpy(pathbuf, path));
1823   return ::stat(pathbuf, sbuf);
1824 }
1825 
1826 static inline time_t get_mtime(const char* filename) {
1827   struct stat st;
1828   int ret = os::stat(filename, &st);
1829   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1830   return st.st_mtime;
1831 }
1832 
1833 int os::compare_file_modified_times(const char* file1, const char* file2) {
1834   time_t t1 = get_mtime(file1);
1835   time_t t2 = get_mtime(file2);
1836   return t1 - t2;
1837 }
1838 
1839 static bool _print_ascii_file(const char* filename, outputStream* st) {
1840   int fd = ::open(filename, O_RDONLY);
1841   if (fd == -1) {
1842     return false;
1843   }
1844 
1845   char buf[32];
1846   int bytes;
1847   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1848     st->print_raw(buf, bytes);
1849   }
1850 
1851   ::close(fd);
1852 
1853   return true;
1854 }
1855 
1856 void os::print_os_info_brief(outputStream* st) {
1857   os::Solaris::print_distro_info(st);
1858 
1859   os::Posix::print_uname_info(st);
1860 
1861   os::Solaris::print_libversion_info(st);
1862 }
1863 
1864 void os::print_os_info(outputStream* st) {
1865   st->print("OS:");
1866 
1867   os::Solaris::print_distro_info(st);
1868 
1869   os::Posix::print_uname_info(st);
1870 
1871   os::Solaris::print_libversion_info(st);
1872 
1873   os::Posix::print_rlimit_info(st);
1874 
1875   os::Posix::print_load_average(st);
1876 }
1877 
1878 void os::Solaris::print_distro_info(outputStream* st) {
1879   if (!_print_ascii_file("/etc/release", st)) {
1880     st->print("Solaris");
1881   }
1882   st->cr();
1883 }
1884 
1885 void os::get_summary_os_info(char* buf, size_t buflen) {
1886   strncpy(buf, "Solaris", buflen);  // default to plain solaris
1887   FILE* fp = fopen("/etc/release", "r");
1888   if (fp != NULL) {
1889     char tmp[256];
1890     // Only get the first line and chop out everything but the os name.
1891     if (fgets(tmp, sizeof(tmp), fp)) {
1892       char* ptr = tmp;
1893       // skip past whitespace characters
1894       while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1895       if (*ptr != '\0') {
1896         char* nl = strchr(ptr, '\n');
1897         if (nl != NULL) *nl = '\0';
1898         strncpy(buf, ptr, buflen);
1899       }
1900     }
1901     fclose(fp);
1902   }
1903 }
1904 
1905 void os::Solaris::print_libversion_info(outputStream* st) {
1906   st->print("  (T2 libthread)");
1907   st->cr();
1908 }
1909 
1910 static bool check_addr0(outputStream* st) {
1911   jboolean status = false;
1912   const int read_chunk = 200;
1913   int ret = 0;
1914   int nmap = 0;
1915   int fd = ::open("/proc/self/map",O_RDONLY);
1916   if (fd >= 0) {
1917     prmap_t *p = NULL;
1918     char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1919     if (NULL == mbuff) {
1920       ::close(fd);
1921       return status;
1922     }
1923     while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1924       //check if read() has not read partial data
1925       if( 0 != ret % sizeof(prmap_t)){
1926         break;
1927       }
1928       nmap = ret / sizeof(prmap_t);
1929       p = (prmap_t *)mbuff;
1930       for(int i = 0; i < nmap; i++){
1931         if (p->pr_vaddr == 0x0) {
1932           st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1933           st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1934           st->print("Access: ");
1935           st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
1936           st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1937           st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
1938           st->cr();
1939           status = true;
1940         }
1941         p++;
1942       }
1943     }
1944     free(mbuff);
1945     ::close(fd);
1946   }
1947   return status;
1948 }
1949 
1950 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1951   // Get MHz with system call. We don't seem to already have this.
1952   processor_info_t stats;
1953   processorid_t id = getcpuid();
1954   int clock = 0;
1955   if (processor_info(id, &stats) != -1) {
1956     clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1957   }
1958 #ifdef AMD64
1959   snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1960 #else
1961   // must be sparc
1962   snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1963 #endif
1964 }
1965 
1966 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1967   // Nothing to do for now.
1968 }
1969 
1970 void os::print_memory_info(outputStream* st) {
1971   st->print("Memory:");
1972   st->print(" %dk page", os::vm_page_size()>>10);
1973   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1974   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1975   st->cr();
1976   (void) check_addr0(st);
1977 }
1978 
1979 // Moved from whole group, because we need them here for diagnostic
1980 // prints.
1981 #define OLDMAXSIGNUM 32
1982 static int Maxsignum = 0;
1983 static int *ourSigFlags = NULL;
1984 
1985 int os::Solaris::get_our_sigflags(int sig) {
1986   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1987   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1988   return ourSigFlags[sig];
1989 }
1990 
1991 void os::Solaris::set_our_sigflags(int sig, int flags) {
1992   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1993   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1994   ourSigFlags[sig] = flags;
1995 }
1996 
1997 
1998 static const char* get_signal_handler_name(address handler,
1999                                            char* buf, int buflen) {
2000   int offset;
2001   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
2002   if (found) {
2003     // skip directory names
2004     const char *p1, *p2;
2005     p1 = buf;
2006     size_t len = strlen(os::file_separator());
2007     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
2008     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
2009   } else {
2010     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
2011   }
2012   return buf;
2013 }
2014 
2015 static void print_signal_handler(outputStream* st, int sig,
2016                                  char* buf, size_t buflen) {
2017   struct sigaction sa;
2018 
2019   sigaction(sig, NULL, &sa);
2020 
2021   st->print("%s: ", os::exception_name(sig, buf, buflen));
2022 
2023   address handler = (sa.sa_flags & SA_SIGINFO)
2024                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
2025                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
2026 
2027   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
2028     st->print("SIG_DFL");
2029   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
2030     st->print("SIG_IGN");
2031   } else {
2032     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
2033   }
2034 
2035   st->print(", sa_mask[0]=");
2036   os::Posix::print_signal_set_short(st, &sa.sa_mask);
2037 
2038   address rh = VMError::get_resetted_sighandler(sig);
2039   // May be, handler was resetted by VMError?
2040   if (rh != NULL) {
2041     handler = rh;
2042     sa.sa_flags = VMError::get_resetted_sigflags(sig);
2043   }
2044 
2045   st->print(", sa_flags=");
2046   os::Posix::print_sa_flags(st, sa.sa_flags);
2047 
2048   // Check: is it our handler?
2049   if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
2050     // It is our signal handler
2051     // check for flags
2052     if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
2053       st->print(
2054                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
2055                 os::Solaris::get_our_sigflags(sig));
2056     }
2057   }
2058   st->cr();
2059 }
2060 
2061 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2062   st->print_cr("Signal Handlers:");
2063   print_signal_handler(st, SIGSEGV, buf, buflen);
2064   print_signal_handler(st, SIGBUS , buf, buflen);
2065   print_signal_handler(st, SIGFPE , buf, buflen);
2066   print_signal_handler(st, SIGPIPE, buf, buflen);
2067   print_signal_handler(st, SIGXFSZ, buf, buflen);
2068   print_signal_handler(st, SIGILL , buf, buflen);
2069   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2070   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2071   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2072   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2073   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2074   print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2075 }
2076 
2077 static char saved_jvm_path[MAXPATHLEN] = { 0 };
2078 
2079 // Find the full path to the current module, libjvm.so
2080 void os::jvm_path(char *buf, jint buflen) {
2081   // Error checking.
2082   if (buflen < MAXPATHLEN) {
2083     assert(false, "must use a large-enough buffer");
2084     buf[0] = '\0';
2085     return;
2086   }
2087   // Lazy resolve the path to current module.
2088   if (saved_jvm_path[0] != 0) {
2089     strcpy(buf, saved_jvm_path);
2090     return;
2091   }
2092 
2093   Dl_info dlinfo;
2094   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2095   assert(ret != 0, "cannot locate libjvm");
2096   if (ret != 0 && dlinfo.dli_fname != NULL) {
2097     realpath((char *)dlinfo.dli_fname, buf);
2098   } else {
2099     buf[0] = '\0';
2100     return;
2101   }
2102 
2103   if (Arguments::sun_java_launcher_is_altjvm()) {
2104     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2105     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2106     // If "/jre/lib/" appears at the right place in the string, then
2107     // assume we are installed in a JDK and we're done.  Otherwise, check
2108     // for a JAVA_HOME environment variable and fix up the path so it
2109     // looks like libjvm.so is installed there (append a fake suffix
2110     // hotspot/libjvm.so).
2111     const char *p = buf + strlen(buf) - 1;
2112     for (int count = 0; p > buf && count < 5; ++count) {
2113       for (--p; p > buf && *p != '/'; --p)
2114         /* empty */ ;
2115     }
2116 
2117     if (strncmp(p, "/jre/lib/", 9) != 0) {
2118       // Look for JAVA_HOME in the environment.
2119       char* java_home_var = ::getenv("JAVA_HOME");
2120       if (java_home_var != NULL && java_home_var[0] != 0) {
2121         char cpu_arch[12];
2122         char* jrelib_p;
2123         int   len;
2124         sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2125 #ifdef _LP64
2126         // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2127         if (strcmp(cpu_arch, "sparc") == 0) {
2128           strcat(cpu_arch, "v9");
2129         } else if (strcmp(cpu_arch, "i386") == 0) {
2130           strcpy(cpu_arch, "amd64");
2131         }
2132 #endif
2133         // Check the current module name "libjvm.so".
2134         p = strrchr(buf, '/');
2135         assert(strstr(p, "/libjvm") == p, "invalid library name");
2136 
2137         realpath(java_home_var, buf);
2138         // determine if this is a legacy image or modules image
2139         // modules image doesn't have "jre" subdirectory
2140         len = strlen(buf);
2141         assert(len < buflen, "Ran out of buffer space");
2142         jrelib_p = buf + len;
2143         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2144         if (0 != access(buf, F_OK)) {
2145           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2146         }
2147 
2148         if (0 == access(buf, F_OK)) {
2149           // Use current module name "libjvm.so"
2150           len = strlen(buf);
2151           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2152         } else {
2153           // Go back to path of .so
2154           realpath((char *)dlinfo.dli_fname, buf);
2155         }
2156       }
2157     }
2158   }
2159 
2160   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2161   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2162 }
2163 
2164 
2165 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2166   // no prefix required, not even "_"
2167 }
2168 
2169 
2170 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2171   // no suffix required
2172 }
2173 
2174 // This method is a copy of JDK's sysGetLastErrorString
2175 // from src/solaris/hpi/src/system_md.c
2176 
2177 size_t os::lasterror(char *buf, size_t len) {
2178   if (errno == 0)  return 0;
2179 
2180   const char *s = os::strerror(errno);
2181   size_t n = ::strlen(s);
2182   if (n >= len) {
2183     n = len - 1;
2184   }
2185   ::strncpy(buf, s, n);
2186   buf[n] = '\0';
2187   return n;
2188 }
2189 
2190 
2191 // sun.misc.Signal
2192 
2193 extern "C" {
2194   static void UserHandler(int sig, void *siginfo, void *context) {
2195     // Ctrl-C is pressed during error reporting, likely because the error
2196     // handler fails to abort. Let VM die immediately.
2197     if (sig == SIGINT && is_error_reported()) {
2198       os::die();
2199     }
2200 
2201     os::signal_notify(sig);
2202     // We do not need to reinstate the signal handler each time...
2203   }
2204 }
2205 
2206 void* os::user_handler() {
2207   return CAST_FROM_FN_PTR(void*, UserHandler);
2208 }
2209 
2210 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2211   struct timespec ts;
2212   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2213 
2214   return ts;
2215 }
2216 
2217 extern "C" {
2218   typedef void (*sa_handler_t)(int);
2219   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2220 }
2221 
2222 void* os::signal(int signal_number, void* handler) {
2223   struct sigaction sigAct, oldSigAct;
2224   sigfillset(&(sigAct.sa_mask));
2225   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2226   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2227 
2228   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2229     // -1 means registration failed
2230     return (void *)-1;
2231   }
2232 
2233   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2234 }
2235 
2236 void os::signal_raise(int signal_number) {
2237   raise(signal_number);
2238 }
2239 
2240 // The following code is moved from os.cpp for making this
2241 // code platform specific, which it is by its very nature.
2242 
2243 // a counter for each possible signal value
2244 static int Sigexit = 0;
2245 static int Maxlibjsigsigs;
2246 static jint *pending_signals = NULL;
2247 static int *preinstalled_sigs = NULL;
2248 static struct sigaction *chainedsigactions = NULL;
2249 static sema_t sig_sem;
2250 typedef int (*version_getting_t)();
2251 version_getting_t os::Solaris::get_libjsig_version = NULL;
2252 static int libjsigversion = NULL;
2253 
2254 int os::sigexitnum_pd() {
2255   assert(Sigexit > 0, "signal memory not yet initialized");
2256   return Sigexit;
2257 }
2258 
2259 void os::Solaris::init_signal_mem() {
2260   // Initialize signal structures
2261   Maxsignum = SIGRTMAX;
2262   Sigexit = Maxsignum+1;
2263   assert(Maxsignum >0, "Unable to obtain max signal number");
2264 
2265   Maxlibjsigsigs = Maxsignum;
2266 
2267   // pending_signals has one int per signal
2268   // The additional signal is for SIGEXIT - exit signal to signal_thread
2269   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2270   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2271 
2272   if (UseSignalChaining) {
2273     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2274                                                    * (Maxsignum + 1), mtInternal);
2275     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2276     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2277     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2278   }
2279   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2280   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2281 }
2282 
2283 void os::signal_init_pd() {
2284   int ret;
2285 
2286   ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2287   assert(ret == 0, "sema_init() failed");
2288 }
2289 
2290 void os::signal_notify(int signal_number) {
2291   int ret;
2292 
2293   Atomic::inc(&pending_signals[signal_number]);
2294   ret = ::sema_post(&sig_sem);
2295   assert(ret == 0, "sema_post() failed");
2296 }
2297 
2298 static int check_pending_signals(bool wait_for_signal) {
2299   int ret;
2300   while (true) {
2301     for (int i = 0; i < Sigexit + 1; i++) {
2302       jint n = pending_signals[i];
2303       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2304         return i;
2305       }
2306     }
2307     if (!wait_for_signal) {
2308       return -1;
2309     }
2310     JavaThread *thread = JavaThread::current();
2311     ThreadBlockInVM tbivm(thread);
2312 
2313     bool threadIsSuspended;
2314     do {
2315       thread->set_suspend_equivalent();
2316       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2317       while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2318         ;
2319       assert(ret == 0, "sema_wait() failed");
2320 
2321       // were we externally suspended while we were waiting?
2322       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2323       if (threadIsSuspended) {
2324         // The semaphore has been incremented, but while we were waiting
2325         // another thread suspended us. We don't want to continue running
2326         // while suspended because that would surprise the thread that
2327         // suspended us.
2328         ret = ::sema_post(&sig_sem);
2329         assert(ret == 0, "sema_post() failed");
2330 
2331         thread->java_suspend_self();
2332       }
2333     } while (threadIsSuspended);
2334   }
2335 }
2336 
2337 int os::signal_lookup() {
2338   return check_pending_signals(false);
2339 }
2340 
2341 int os::signal_wait() {
2342   return check_pending_signals(true);
2343 }
2344 
2345 ////////////////////////////////////////////////////////////////////////////////
2346 // Virtual Memory
2347 
2348 static int page_size = -1;
2349 
2350 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2351 // clear this var if support is not available.
2352 static bool has_map_align = true;
2353 
2354 int os::vm_page_size() {
2355   assert(page_size != -1, "must call os::init");
2356   return page_size;
2357 }
2358 
2359 // Solaris allocates memory by pages.
2360 int os::vm_allocation_granularity() {
2361   assert(page_size != -1, "must call os::init");
2362   return page_size;
2363 }
2364 
2365 static bool recoverable_mmap_error(int err) {
2366   // See if the error is one we can let the caller handle. This
2367   // list of errno values comes from the Solaris mmap(2) man page.
2368   switch (err) {
2369   case EBADF:
2370   case EINVAL:
2371   case ENOTSUP:
2372     // let the caller deal with these errors
2373     return true;
2374 
2375   default:
2376     // Any remaining errors on this OS can cause our reserved mapping
2377     // to be lost. That can cause confusion where different data
2378     // structures think they have the same memory mapped. The worst
2379     // scenario is if both the VM and a library think they have the
2380     // same memory mapped.
2381     return false;
2382   }
2383 }
2384 
2385 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2386                                     int err) {
2387   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2388           ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2389           os::strerror(err), err);
2390 }
2391 
2392 static void warn_fail_commit_memory(char* addr, size_t bytes,
2393                                     size_t alignment_hint, bool exec,
2394                                     int err) {
2395   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2396           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2397           alignment_hint, exec, os::strerror(err), err);
2398 }
2399 
2400 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2401   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2402   size_t size = bytes;
2403   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2404   if (res != NULL) {
2405     if (UseNUMAInterleaving) {
2406       numa_make_global(addr, bytes);
2407     }
2408     return 0;
2409   }
2410 
2411   int err = errno;  // save errno from mmap() call in mmap_chunk()
2412 
2413   if (!recoverable_mmap_error(err)) {
2414     warn_fail_commit_memory(addr, bytes, exec, err);
2415     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2416   }
2417 
2418   return err;
2419 }
2420 
2421 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2422   return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2423 }
2424 
2425 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2426                                   const char* mesg) {
2427   assert(mesg != NULL, "mesg must be specified");
2428   int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2429   if (err != 0) {
2430     // the caller wants all commit errors to exit with the specified mesg:
2431     warn_fail_commit_memory(addr, bytes, exec, err);
2432     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2433   }
2434 }
2435 
2436 size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2437   assert(is_size_aligned(alignment, (size_t) vm_page_size()),
2438          SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2439          alignment, (size_t) vm_page_size());
2440 
2441   for (int i = 0; _page_sizes[i] != 0; i++) {
2442     if (is_size_aligned(alignment, _page_sizes[i])) {
2443       return _page_sizes[i];
2444     }
2445   }
2446 
2447   return (size_t) vm_page_size();
2448 }
2449 
2450 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2451                                     size_t alignment_hint, bool exec) {
2452   int err = Solaris::commit_memory_impl(addr, bytes, exec);
2453   if (err == 0 && UseLargePages && alignment_hint > 0) {
2454     assert(is_size_aligned(bytes, alignment_hint),
2455            SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2456 
2457     // The syscall memcntl requires an exact page size (see man memcntl for details).
2458     size_t page_size = page_size_for_alignment(alignment_hint);
2459     if (page_size > (size_t) vm_page_size()) {
2460       (void)Solaris::setup_large_pages(addr, bytes, page_size);
2461     }
2462   }
2463   return err;
2464 }
2465 
2466 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2467                           bool exec) {
2468   return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2469 }
2470 
2471 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2472                                   size_t alignment_hint, bool exec,
2473                                   const char* mesg) {
2474   assert(mesg != NULL, "mesg must be specified");
2475   int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2476   if (err != 0) {
2477     // the caller wants all commit errors to exit with the specified mesg:
2478     warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2479     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2480   }
2481 }
2482 
2483 // Uncommit the pages in a specified region.
2484 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2485   if (madvise(addr, bytes, MADV_FREE) < 0) {
2486     debug_only(warning("MADV_FREE failed."));
2487     return;
2488   }
2489 }
2490 
2491 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2492   return os::commit_memory(addr, size, !ExecMem);
2493 }
2494 
2495 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2496   return os::uncommit_memory(addr, size);
2497 }
2498 
2499 // Change the page size in a given range.
2500 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2501   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2502   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2503   if (UseLargePages) {
2504     size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2505     if (page_size > (size_t) vm_page_size()) {
2506       Solaris::setup_large_pages(addr, bytes, page_size);
2507     }
2508   }
2509 }
2510 
2511 // Tell the OS to make the range local to the first-touching LWP
2512 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2513   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2514   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2515     debug_only(warning("MADV_ACCESS_LWP failed."));
2516   }
2517 }
2518 
2519 // Tell the OS that this range would be accessed from different LWPs.
2520 void os::numa_make_global(char *addr, size_t bytes) {
2521   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2522   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2523     debug_only(warning("MADV_ACCESS_MANY failed."));
2524   }
2525 }
2526 
2527 // Get the number of the locality groups.
2528 size_t os::numa_get_groups_num() {
2529   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2530   return n != -1 ? n : 1;
2531 }
2532 
2533 // Get a list of leaf locality groups. A leaf lgroup is group that
2534 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2535 // board. An LWP is assigned to one of these groups upon creation.
2536 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2537   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2538     ids[0] = 0;
2539     return 1;
2540   }
2541   int result_size = 0, top = 1, bottom = 0, cur = 0;
2542   for (int k = 0; k < size; k++) {
2543     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2544                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2545     if (r == -1) {
2546       ids[0] = 0;
2547       return 1;
2548     }
2549     if (!r) {
2550       // That's a leaf node.
2551       assert(bottom <= cur, "Sanity check");
2552       // Check if the node has memory
2553       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2554                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2555         ids[bottom++] = ids[cur];
2556       }
2557     }
2558     top += r;
2559     cur++;
2560   }
2561   if (bottom == 0) {
2562     // Handle a situation, when the OS reports no memory available.
2563     // Assume UMA architecture.
2564     ids[0] = 0;
2565     return 1;
2566   }
2567   return bottom;
2568 }
2569 
2570 // Detect the topology change. Typically happens during CPU plugging-unplugging.
2571 bool os::numa_topology_changed() {
2572   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2573   if (is_stale != -1 && is_stale) {
2574     Solaris::lgrp_fini(Solaris::lgrp_cookie());
2575     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2576     assert(c != 0, "Failure to initialize LGRP API");
2577     Solaris::set_lgrp_cookie(c);
2578     return true;
2579   }
2580   return false;
2581 }
2582 
2583 // Get the group id of the current LWP.
2584 int os::numa_get_group_id() {
2585   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2586   if (lgrp_id == -1) {
2587     return 0;
2588   }
2589   const int size = os::numa_get_groups_num();
2590   int *ids = (int*)alloca(size * sizeof(int));
2591 
2592   // Get the ids of all lgroups with memory; r is the count.
2593   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2594                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2595   if (r <= 0) {
2596     return 0;
2597   }
2598   return ids[os::random() % r];
2599 }
2600 
2601 // Request information about the page.
2602 bool os::get_page_info(char *start, page_info* info) {
2603   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2604   uint64_t addr = (uintptr_t)start;
2605   uint64_t outdata[2];
2606   uint_t validity = 0;
2607 
2608   if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2609     return false;
2610   }
2611 
2612   info->size = 0;
2613   info->lgrp_id = -1;
2614 
2615   if ((validity & 1) != 0) {
2616     if ((validity & 2) != 0) {
2617       info->lgrp_id = outdata[0];
2618     }
2619     if ((validity & 4) != 0) {
2620       info->size = outdata[1];
2621     }
2622     return true;
2623   }
2624   return false;
2625 }
2626 
2627 // Scan the pages from start to end until a page different than
2628 // the one described in the info parameter is encountered.
2629 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2630                      page_info* page_found) {
2631   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2632   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2633   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2634   uint_t validity[MAX_MEMINFO_CNT];
2635 
2636   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2637   uint64_t p = (uint64_t)start;
2638   while (p < (uint64_t)end) {
2639     addrs[0] = p;
2640     size_t addrs_count = 1;
2641     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2642       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2643       addrs_count++;
2644     }
2645 
2646     if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2647       return NULL;
2648     }
2649 
2650     size_t i = 0;
2651     for (; i < addrs_count; i++) {
2652       if ((validity[i] & 1) != 0) {
2653         if ((validity[i] & 4) != 0) {
2654           if (outdata[types * i + 1] != page_expected->size) {
2655             break;
2656           }
2657         } else if (page_expected->size != 0) {
2658           break;
2659         }
2660 
2661         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2662           if (outdata[types * i] != page_expected->lgrp_id) {
2663             break;
2664           }
2665         }
2666       } else {
2667         return NULL;
2668       }
2669     }
2670 
2671     if (i < addrs_count) {
2672       if ((validity[i] & 2) != 0) {
2673         page_found->lgrp_id = outdata[types * i];
2674       } else {
2675         page_found->lgrp_id = -1;
2676       }
2677       if ((validity[i] & 4) != 0) {
2678         page_found->size = outdata[types * i + 1];
2679       } else {
2680         page_found->size = 0;
2681       }
2682       return (char*)addrs[i];
2683     }
2684 
2685     p = addrs[addrs_count - 1] + page_size;
2686   }
2687   return end;
2688 }
2689 
2690 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2691   size_t size = bytes;
2692   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2693   // uncommitted page. Otherwise, the read/write might succeed if we
2694   // have enough swap space to back the physical page.
2695   return
2696     NULL != Solaris::mmap_chunk(addr, size,
2697                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2698                                 PROT_NONE);
2699 }
2700 
2701 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2702   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2703 
2704   if (b == MAP_FAILED) {
2705     return NULL;
2706   }
2707   return b;
2708 }
2709 
2710 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2711                              size_t alignment_hint, bool fixed) {
2712   char* addr = requested_addr;
2713   int flags = MAP_PRIVATE | MAP_NORESERVE;
2714 
2715   assert(!(fixed && (alignment_hint > 0)),
2716          "alignment hint meaningless with fixed mmap");
2717 
2718   if (fixed) {
2719     flags |= MAP_FIXED;
2720   } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2721     flags |= MAP_ALIGN;
2722     addr = (char*) alignment_hint;
2723   }
2724 
2725   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2726   // uncommitted page. Otherwise, the read/write might succeed if we
2727   // have enough swap space to back the physical page.
2728   return mmap_chunk(addr, bytes, flags, PROT_NONE);
2729 }
2730 
2731 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2732                             size_t alignment_hint) {
2733   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2734                                   (requested_addr != NULL));
2735 
2736   guarantee(requested_addr == NULL || requested_addr == addr,
2737             "OS failed to return requested mmap address.");
2738   return addr;
2739 }
2740 
2741 // Reserve memory at an arbitrary address, only if that area is
2742 // available (and not reserved for something else).
2743 
2744 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2745   const int max_tries = 10;
2746   char* base[max_tries];
2747   size_t size[max_tries];
2748 
2749   // Solaris adds a gap between mmap'ed regions.  The size of the gap
2750   // is dependent on the requested size and the MMU.  Our initial gap
2751   // value here is just a guess and will be corrected later.
2752   bool had_top_overlap = false;
2753   bool have_adjusted_gap = false;
2754   size_t gap = 0x400000;
2755 
2756   // Assert only that the size is a multiple of the page size, since
2757   // that's all that mmap requires, and since that's all we really know
2758   // about at this low abstraction level.  If we need higher alignment,
2759   // we can either pass an alignment to this method or verify alignment
2760   // in one of the methods further up the call chain.  See bug 5044738.
2761   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2762 
2763   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2764   // Give it a try, if the kernel honors the hint we can return immediately.
2765   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2766 
2767   volatile int err = errno;
2768   if (addr == requested_addr) {
2769     return addr;
2770   } else if (addr != NULL) {
2771     pd_unmap_memory(addr, bytes);
2772   }
2773 
2774   if (log_is_enabled(Warning, os)) {
2775     char buf[256];
2776     buf[0] = '\0';
2777     if (addr == NULL) {
2778       jio_snprintf(buf, sizeof(buf), ": %s", os::strerror(err));
2779     }
2780     log_info(os)("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2781             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2782             "%s", bytes, requested_addr, addr, buf);
2783   }
2784 
2785   // Address hint method didn't work.  Fall back to the old method.
2786   // In theory, once SNV becomes our oldest supported platform, this
2787   // code will no longer be needed.
2788   //
2789   // Repeatedly allocate blocks until the block is allocated at the
2790   // right spot. Give up after max_tries.
2791   int i;
2792   for (i = 0; i < max_tries; ++i) {
2793     base[i] = reserve_memory(bytes);
2794 
2795     if (base[i] != NULL) {
2796       // Is this the block we wanted?
2797       if (base[i] == requested_addr) {
2798         size[i] = bytes;
2799         break;
2800       }
2801 
2802       // check that the gap value is right
2803       if (had_top_overlap && !have_adjusted_gap) {
2804         size_t actual_gap = base[i-1] - base[i] - bytes;
2805         if (gap != actual_gap) {
2806           // adjust the gap value and retry the last 2 allocations
2807           assert(i > 0, "gap adjustment code problem");
2808           have_adjusted_gap = true;  // adjust the gap only once, just in case
2809           gap = actual_gap;
2810           log_info(os)("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2811           unmap_memory(base[i], bytes);
2812           unmap_memory(base[i-1], size[i-1]);
2813           i-=2;
2814           continue;
2815         }
2816       }
2817 
2818       // Does this overlap the block we wanted? Give back the overlapped
2819       // parts and try again.
2820       //
2821       // There is still a bug in this code: if top_overlap == bytes,
2822       // the overlap is offset from requested region by the value of gap.
2823       // In this case giving back the overlapped part will not work,
2824       // because we'll give back the entire block at base[i] and
2825       // therefore the subsequent allocation will not generate a new gap.
2826       // This could be fixed with a new algorithm that used larger
2827       // or variable size chunks to find the requested region -
2828       // but such a change would introduce additional complications.
2829       // It's rare enough that the planets align for this bug,
2830       // so we'll just wait for a fix for 6204603/5003415 which
2831       // will provide a mmap flag to allow us to avoid this business.
2832 
2833       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2834       if (top_overlap >= 0 && top_overlap < bytes) {
2835         had_top_overlap = true;
2836         unmap_memory(base[i], top_overlap);
2837         base[i] += top_overlap;
2838         size[i] = bytes - top_overlap;
2839       } else {
2840         size_t bottom_overlap = base[i] + bytes - requested_addr;
2841         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2842           if (bottom_overlap == 0) {
2843             log_info(os)("attempt_reserve_memory_at: possible alignment bug");
2844           }
2845           unmap_memory(requested_addr, bottom_overlap);
2846           size[i] = bytes - bottom_overlap;
2847         } else {
2848           size[i] = bytes;
2849         }
2850       }
2851     }
2852   }
2853 
2854   // Give back the unused reserved pieces.
2855 
2856   for (int j = 0; j < i; ++j) {
2857     if (base[j] != NULL) {
2858       unmap_memory(base[j], size[j]);
2859     }
2860   }
2861 
2862   return (i < max_tries) ? requested_addr : NULL;
2863 }
2864 
2865 bool os::pd_release_memory(char* addr, size_t bytes) {
2866   size_t size = bytes;
2867   return munmap(addr, size) == 0;
2868 }
2869 
2870 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2871   assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2872          "addr must be page aligned");
2873   int retVal = mprotect(addr, bytes, prot);
2874   return retVal == 0;
2875 }
2876 
2877 // Protect memory (Used to pass readonly pages through
2878 // JNI GetArray<type>Elements with empty arrays.)
2879 // Also, used for serialization page and for compressed oops null pointer
2880 // checking.
2881 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2882                         bool is_committed) {
2883   unsigned int p = 0;
2884   switch (prot) {
2885   case MEM_PROT_NONE: p = PROT_NONE; break;
2886   case MEM_PROT_READ: p = PROT_READ; break;
2887   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2888   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2889   default:
2890     ShouldNotReachHere();
2891   }
2892   // is_committed is unused.
2893   return solaris_mprotect(addr, bytes, p);
2894 }
2895 
2896 // guard_memory and unguard_memory only happens within stack guard pages.
2897 // Since ISM pertains only to the heap, guard and unguard memory should not
2898 /// happen with an ISM region.
2899 bool os::guard_memory(char* addr, size_t bytes) {
2900   return solaris_mprotect(addr, bytes, PROT_NONE);
2901 }
2902 
2903 bool os::unguard_memory(char* addr, size_t bytes) {
2904   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2905 }
2906 
2907 // Large page support
2908 static size_t _large_page_size = 0;
2909 
2910 // Insertion sort for small arrays (descending order).
2911 static void insertion_sort_descending(size_t* array, int len) {
2912   for (int i = 0; i < len; i++) {
2913     size_t val = array[i];
2914     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2915       size_t tmp = array[key];
2916       array[key] = array[key - 1];
2917       array[key - 1] = tmp;
2918     }
2919   }
2920 }
2921 
2922 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2923   const unsigned int usable_count = VM_Version::page_size_count();
2924   if (usable_count == 1) {
2925     return false;
2926   }
2927 
2928   // Find the right getpagesizes interface.  When solaris 11 is the minimum
2929   // build platform, getpagesizes() (without the '2') can be called directly.
2930   typedef int (*gps_t)(size_t[], int);
2931   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2932   if (gps_func == NULL) {
2933     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2934     if (gps_func == NULL) {
2935       if (warn) {
2936         warning("MPSS is not supported by the operating system.");
2937       }
2938       return false;
2939     }
2940   }
2941 
2942   // Fill the array of page sizes.
2943   int n = (*gps_func)(_page_sizes, page_sizes_max);
2944   assert(n > 0, "Solaris bug?");
2945 
2946   if (n == page_sizes_max) {
2947     // Add a sentinel value (necessary only if the array was completely filled
2948     // since it is static (zeroed at initialization)).
2949     _page_sizes[--n] = 0;
2950     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2951   }
2952   assert(_page_sizes[n] == 0, "missing sentinel");
2953   trace_page_sizes("available page sizes", _page_sizes, n);
2954 
2955   if (n == 1) return false;     // Only one page size available.
2956 
2957   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2958   // select up to usable_count elements.  First sort the array, find the first
2959   // acceptable value, then copy the usable sizes to the top of the array and
2960   // trim the rest.  Make sure to include the default page size :-).
2961   //
2962   // A better policy could get rid of the 4M limit by taking the sizes of the
2963   // important VM memory regions (java heap and possibly the code cache) into
2964   // account.
2965   insertion_sort_descending(_page_sizes, n);
2966   const size_t size_limit =
2967     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2968   int beg;
2969   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2970   const int end = MIN2((int)usable_count, n) - 1;
2971   for (int cur = 0; cur < end; ++cur, ++beg) {
2972     _page_sizes[cur] = _page_sizes[beg];
2973   }
2974   _page_sizes[end] = vm_page_size();
2975   _page_sizes[end + 1] = 0;
2976 
2977   if (_page_sizes[end] > _page_sizes[end - 1]) {
2978     // Default page size is not the smallest; sort again.
2979     insertion_sort_descending(_page_sizes, end + 1);
2980   }
2981   *page_size = _page_sizes[0];
2982 
2983   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2984   return true;
2985 }
2986 
2987 void os::large_page_init() {
2988   if (UseLargePages) {
2989     // print a warning if any large page related flag is specified on command line
2990     bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2991                            !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2992 
2993     UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2994   }
2995 }
2996 
2997 bool os::Solaris::is_valid_page_size(size_t bytes) {
2998   for (int i = 0; _page_sizes[i] != 0; i++) {
2999     if (_page_sizes[i] == bytes) {
3000       return true;
3001     }
3002   }
3003   return false;
3004 }
3005 
3006 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
3007   assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
3008   assert(is_ptr_aligned((void*) start, align),
3009          PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
3010   assert(is_size_aligned(bytes, align),
3011          SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
3012 
3013   // Signal to OS that we want large pages for addresses
3014   // from addr, addr + bytes
3015   struct memcntl_mha mpss_struct;
3016   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
3017   mpss_struct.mha_pagesize = align;
3018   mpss_struct.mha_flags = 0;
3019   // Upon successful completion, memcntl() returns 0
3020   if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
3021     debug_only(warning("Attempt to use MPSS failed."));
3022     return false;
3023   }
3024   return true;
3025 }
3026 
3027 char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
3028   fatal("os::reserve_memory_special should not be called on Solaris.");
3029   return NULL;
3030 }
3031 
3032 bool os::release_memory_special(char* base, size_t bytes) {
3033   fatal("os::release_memory_special should not be called on Solaris.");
3034   return false;
3035 }
3036 
3037 size_t os::large_page_size() {
3038   return _large_page_size;
3039 }
3040 
3041 // MPSS allows application to commit large page memory on demand; with ISM
3042 // the entire memory region must be allocated as shared memory.
3043 bool os::can_commit_large_page_memory() {
3044   return true;
3045 }
3046 
3047 bool os::can_execute_large_page_memory() {
3048   return true;
3049 }
3050 
3051 // Read calls from inside the vm need to perform state transitions
3052 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3053   size_t res;
3054   JavaThread* thread = (JavaThread*)Thread::current();
3055   assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3056   ThreadBlockInVM tbiv(thread);
3057   RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3058   return res;
3059 }
3060 
3061 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3062   size_t res;
3063   JavaThread* thread = (JavaThread*)Thread::current();
3064   assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3065   ThreadBlockInVM tbiv(thread);
3066   RESTARTABLE(::pread(fd, buf, (size_t) nBytes, offset), res);
3067   return res;
3068 }
3069 
3070 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3071   size_t res;
3072   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
3073          "Assumed _thread_in_native");
3074   RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3075   return res;
3076 }
3077 
3078 void os::naked_short_sleep(jlong ms) {
3079   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3080 
3081   // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
3082   // Solaris requires -lrt for this.
3083   usleep((ms * 1000));
3084 
3085   return;
3086 }
3087 
3088 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3089 void os::infinite_sleep() {
3090   while (true) {    // sleep forever ...
3091     ::sleep(100);   // ... 100 seconds at a time
3092   }
3093 }
3094 
3095 // Used to convert frequent JVM_Yield() to nops
3096 bool os::dont_yield() {
3097   if (DontYieldALot) {
3098     static hrtime_t last_time = 0;
3099     hrtime_t diff = getTimeNanos() - last_time;
3100 
3101     if (diff < DontYieldALotInterval * 1000000) {
3102       return true;
3103     }
3104 
3105     last_time += diff;
3106 
3107     return false;
3108   } else {
3109     return false;
3110   }
3111 }
3112 
3113 // Note that yield semantics are defined by the scheduling class to which
3114 // the thread currently belongs.  Typically, yield will _not yield to
3115 // other equal or higher priority threads that reside on the dispatch queues
3116 // of other CPUs.
3117 
3118 void os::naked_yield() {
3119   thr_yield();
3120 }
3121 
3122 // Interface for setting lwp priorities.  If we are using T2 libthread,
3123 // which forces the use of BoundThreads or we manually set UseBoundThreads,
3124 // all of our threads will be assigned to real lwp's.  Using the thr_setprio
3125 // function is meaningless in this mode so we must adjust the real lwp's priority
3126 // The routines below implement the getting and setting of lwp priorities.
3127 //
3128 // Note: T2 is now the only supported libthread. UseBoundThreads flag is
3129 //       being deprecated and all threads are now BoundThreads
3130 //
3131 // Note: There are three priority scales used on Solaris.  Java priotities
3132 //       which range from 1 to 10, libthread "thr_setprio" scale which range
3133 //       from 0 to 127, and the current scheduling class of the process we
3134 //       are running in.  This is typically from -60 to +60.
3135 //       The setting of the lwp priorities in done after a call to thr_setprio
3136 //       so Java priorities are mapped to libthread priorities and we map from
3137 //       the latter to lwp priorities.  We don't keep priorities stored in
3138 //       Java priorities since some of our worker threads want to set priorities
3139 //       higher than all Java threads.
3140 //
3141 // For related information:
3142 // (1)  man -s 2 priocntl
3143 // (2)  man -s 4 priocntl
3144 // (3)  man dispadmin
3145 // =    librt.so
3146 // =    libthread/common/rtsched.c - thrp_setlwpprio().
3147 // =    ps -cL <pid> ... to validate priority.
3148 // =    sched_get_priority_min and _max
3149 //              pthread_create
3150 //              sched_setparam
3151 //              pthread_setschedparam
3152 //
3153 // Assumptions:
3154 // +    We assume that all threads in the process belong to the same
3155 //              scheduling class.   IE. an homogenous process.
3156 // +    Must be root or in IA group to change change "interactive" attribute.
3157 //              Priocntl() will fail silently.  The only indication of failure is when
3158 //              we read-back the value and notice that it hasn't changed.
3159 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
3160 // +    For RT, change timeslice as well.  Invariant:
3161 //              constant "priority integral"
3162 //              Konst == TimeSlice * (60-Priority)
3163 //              Given a priority, compute appropriate timeslice.
3164 // +    Higher numerical values have higher priority.
3165 
3166 // sched class attributes
3167 typedef struct {
3168   int   schedPolicy;              // classID
3169   int   maxPrio;
3170   int   minPrio;
3171 } SchedInfo;
3172 
3173 
3174 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3175 
3176 #ifdef ASSERT
3177 static int  ReadBackValidate = 1;
3178 #endif
3179 static int  myClass     = 0;
3180 static int  myMin       = 0;
3181 static int  myMax       = 0;
3182 static int  myCur       = 0;
3183 static bool priocntl_enable = false;
3184 
3185 static const int criticalPrio = FXCriticalPriority;
3186 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3187 
3188 
3189 // lwp_priocntl_init
3190 //
3191 // Try to determine the priority scale for our process.
3192 //
3193 // Return errno or 0 if OK.
3194 //
3195 static int lwp_priocntl_init() {
3196   int rslt;
3197   pcinfo_t ClassInfo;
3198   pcparms_t ParmInfo;
3199   int i;
3200 
3201   if (!UseThreadPriorities) return 0;
3202 
3203   // If ThreadPriorityPolicy is 1, switch tables
3204   if (ThreadPriorityPolicy == 1) {
3205     for (i = 0; i < CriticalPriority+1; i++)
3206       os::java_to_os_priority[i] = prio_policy1[i];
3207   }
3208   if (UseCriticalJavaThreadPriority) {
3209     // MaxPriority always maps to the FX scheduling class and criticalPrio.
3210     // See set_native_priority() and set_lwp_class_and_priority().
3211     // Save original MaxPriority mapping in case attempt to
3212     // use critical priority fails.
3213     java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3214     // Set negative to distinguish from other priorities
3215     os::java_to_os_priority[MaxPriority] = -criticalPrio;
3216   }
3217 
3218   // Get IDs for a set of well-known scheduling classes.
3219   // TODO-FIXME: GETCLINFO returns the current # of classes in the
3220   // the system.  We should have a loop that iterates over the
3221   // classID values, which are known to be "small" integers.
3222 
3223   strcpy(ClassInfo.pc_clname, "TS");
3224   ClassInfo.pc_cid = -1;
3225   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3226   if (rslt < 0) return errno;
3227   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3228   tsLimits.schedPolicy = ClassInfo.pc_cid;
3229   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3230   tsLimits.minPrio = -tsLimits.maxPrio;
3231 
3232   strcpy(ClassInfo.pc_clname, "IA");
3233   ClassInfo.pc_cid = -1;
3234   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3235   if (rslt < 0) return errno;
3236   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3237   iaLimits.schedPolicy = ClassInfo.pc_cid;
3238   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3239   iaLimits.minPrio = -iaLimits.maxPrio;
3240 
3241   strcpy(ClassInfo.pc_clname, "RT");
3242   ClassInfo.pc_cid = -1;
3243   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3244   if (rslt < 0) return errno;
3245   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3246   rtLimits.schedPolicy = ClassInfo.pc_cid;
3247   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3248   rtLimits.minPrio = 0;
3249 
3250   strcpy(ClassInfo.pc_clname, "FX");
3251   ClassInfo.pc_cid = -1;
3252   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3253   if (rslt < 0) return errno;
3254   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3255   fxLimits.schedPolicy = ClassInfo.pc_cid;
3256   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3257   fxLimits.minPrio = 0;
3258 
3259   // Query our "current" scheduling class.
3260   // This will normally be IA, TS or, rarely, FX or RT.
3261   memset(&ParmInfo, 0, sizeof(ParmInfo));
3262   ParmInfo.pc_cid = PC_CLNULL;
3263   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3264   if (rslt < 0) return errno;
3265   myClass = ParmInfo.pc_cid;
3266 
3267   // We now know our scheduling classId, get specific information
3268   // about the class.
3269   ClassInfo.pc_cid = myClass;
3270   ClassInfo.pc_clname[0] = 0;
3271   rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3272   if (rslt < 0) return errno;
3273 
3274   if (ThreadPriorityVerbose) {
3275     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3276   }
3277 
3278   memset(&ParmInfo, 0, sizeof(pcparms_t));
3279   ParmInfo.pc_cid = PC_CLNULL;
3280   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3281   if (rslt < 0) return errno;
3282 
3283   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3284     myMin = rtLimits.minPrio;
3285     myMax = rtLimits.maxPrio;
3286   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3287     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3288     myMin = iaLimits.minPrio;
3289     myMax = iaLimits.maxPrio;
3290     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3291   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3292     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3293     myMin = tsLimits.minPrio;
3294     myMax = tsLimits.maxPrio;
3295     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3296   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3297     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3298     myMin = fxLimits.minPrio;
3299     myMax = fxLimits.maxPrio;
3300     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3301   } else {
3302     // No clue - punt
3303     if (ThreadPriorityVerbose) {
3304       tty->print_cr("Unknown scheduling class: %s ... \n",
3305                     ClassInfo.pc_clname);
3306     }
3307     return EINVAL;      // no clue, punt
3308   }
3309 
3310   if (ThreadPriorityVerbose) {
3311     tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3312   }
3313 
3314   priocntl_enable = true;  // Enable changing priorities
3315   return 0;
3316 }
3317 
3318 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3319 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3320 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3321 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3322 
3323 
3324 // scale_to_lwp_priority
3325 //
3326 // Convert from the libthread "thr_setprio" scale to our current
3327 // lwp scheduling class scale.
3328 //
3329 static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3330   int v;
3331 
3332   if (x == 127) return rMax;            // avoid round-down
3333   v = (((x*(rMax-rMin)))/128)+rMin;
3334   return v;
3335 }
3336 
3337 
3338 // set_lwp_class_and_priority
3339 int set_lwp_class_and_priority(int ThreadID, int lwpid,
3340                                int newPrio, int new_class, bool scale) {
3341   int rslt;
3342   int Actual, Expected, prv;
3343   pcparms_t ParmInfo;                   // for GET-SET
3344 #ifdef ASSERT
3345   pcparms_t ReadBack;                   // for readback
3346 #endif
3347 
3348   // Set priority via PC_GETPARMS, update, PC_SETPARMS
3349   // Query current values.
3350   // TODO: accelerate this by eliminating the PC_GETPARMS call.
3351   // Cache "pcparms_t" in global ParmCache.
3352   // TODO: elide set-to-same-value
3353 
3354   // If something went wrong on init, don't change priorities.
3355   if (!priocntl_enable) {
3356     if (ThreadPriorityVerbose) {
3357       tty->print_cr("Trying to set priority but init failed, ignoring");
3358     }
3359     return EINVAL;
3360   }
3361 
3362   // If lwp hasn't started yet, just return
3363   // the _start routine will call us again.
3364   if (lwpid <= 0) {
3365     if (ThreadPriorityVerbose) {
3366       tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3367                     INTPTR_FORMAT " to %d, lwpid not set",
3368                     ThreadID, newPrio);
3369     }
3370     return 0;
3371   }
3372 
3373   if (ThreadPriorityVerbose) {
3374     tty->print_cr ("set_lwp_class_and_priority("
3375                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3376                    ThreadID, lwpid, newPrio);
3377   }
3378 
3379   memset(&ParmInfo, 0, sizeof(pcparms_t));
3380   ParmInfo.pc_cid = PC_CLNULL;
3381   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3382   if (rslt < 0) return errno;
3383 
3384   int cur_class = ParmInfo.pc_cid;
3385   ParmInfo.pc_cid = (id_t)new_class;
3386 
3387   if (new_class == rtLimits.schedPolicy) {
3388     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3389     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3390                                                        rtLimits.maxPrio, newPrio)
3391                                : newPrio;
3392     rtInfo->rt_tqsecs  = RT_NOCHANGE;
3393     rtInfo->rt_tqnsecs = RT_NOCHANGE;
3394     if (ThreadPriorityVerbose) {
3395       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3396     }
3397   } else if (new_class == iaLimits.schedPolicy) {
3398     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3399     int maxClamped     = MIN2(iaLimits.maxPrio,
3400                               cur_class == new_class
3401                               ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3402     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3403                                                        maxClamped, newPrio)
3404                                : newPrio;
3405     iaInfo->ia_uprilim = cur_class == new_class
3406                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3407     iaInfo->ia_mode    = IA_NOCHANGE;
3408     if (ThreadPriorityVerbose) {
3409       tty->print_cr("IA: [%d...%d] %d->%d\n",
3410                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3411     }
3412   } else if (new_class == tsLimits.schedPolicy) {
3413     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3414     int maxClamped     = MIN2(tsLimits.maxPrio,
3415                               cur_class == new_class
3416                               ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3417     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3418                                                        maxClamped, newPrio)
3419                                : newPrio;
3420     tsInfo->ts_uprilim = cur_class == new_class
3421                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3422     if (ThreadPriorityVerbose) {
3423       tty->print_cr("TS: [%d...%d] %d->%d\n",
3424                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3425     }
3426   } else if (new_class == fxLimits.schedPolicy) {
3427     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3428     int maxClamped     = MIN2(fxLimits.maxPrio,
3429                               cur_class == new_class
3430                               ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3431     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3432                                                        maxClamped, newPrio)
3433                                : newPrio;
3434     fxInfo->fx_uprilim = cur_class == new_class
3435                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3436     fxInfo->fx_tqsecs  = FX_NOCHANGE;
3437     fxInfo->fx_tqnsecs = FX_NOCHANGE;
3438     if (ThreadPriorityVerbose) {
3439       tty->print_cr("FX: [%d...%d] %d->%d\n",
3440                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3441     }
3442   } else {
3443     if (ThreadPriorityVerbose) {
3444       tty->print_cr("Unknown new scheduling class %d\n", new_class);
3445     }
3446     return EINVAL;    // no clue, punt
3447   }
3448 
3449   rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3450   if (ThreadPriorityVerbose && rslt) {
3451     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3452   }
3453   if (rslt < 0) return errno;
3454 
3455 #ifdef ASSERT
3456   // Sanity check: read back what we just attempted to set.
3457   // In theory it could have changed in the interim ...
3458   //
3459   // The priocntl system call is tricky.
3460   // Sometimes it'll validate the priority value argument and
3461   // return EINVAL if unhappy.  At other times it fails silently.
3462   // Readbacks are prudent.
3463 
3464   if (!ReadBackValidate) return 0;
3465 
3466   memset(&ReadBack, 0, sizeof(pcparms_t));
3467   ReadBack.pc_cid = PC_CLNULL;
3468   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3469   assert(rslt >= 0, "priocntl failed");
3470   Actual = Expected = 0xBAD;
3471   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3472   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3473     Actual   = RTPRI(ReadBack)->rt_pri;
3474     Expected = RTPRI(ParmInfo)->rt_pri;
3475   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3476     Actual   = IAPRI(ReadBack)->ia_upri;
3477     Expected = IAPRI(ParmInfo)->ia_upri;
3478   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3479     Actual   = TSPRI(ReadBack)->ts_upri;
3480     Expected = TSPRI(ParmInfo)->ts_upri;
3481   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3482     Actual   = FXPRI(ReadBack)->fx_upri;
3483     Expected = FXPRI(ParmInfo)->fx_upri;
3484   } else {
3485     if (ThreadPriorityVerbose) {
3486       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3487                     ParmInfo.pc_cid);
3488     }
3489   }
3490 
3491   if (Actual != Expected) {
3492     if (ThreadPriorityVerbose) {
3493       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3494                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3495     }
3496   }
3497 #endif
3498 
3499   return 0;
3500 }
3501 
3502 // Solaris only gives access to 128 real priorities at a time,
3503 // so we expand Java's ten to fill this range.  This would be better
3504 // if we dynamically adjusted relative priorities.
3505 //
3506 // The ThreadPriorityPolicy option allows us to select 2 different
3507 // priority scales.
3508 //
3509 // ThreadPriorityPolicy=0
3510 // Since the Solaris' default priority is MaximumPriority, we do not
3511 // set a priority lower than Max unless a priority lower than
3512 // NormPriority is requested.
3513 //
3514 // ThreadPriorityPolicy=1
3515 // This mode causes the priority table to get filled with
3516 // linear values.  NormPriority get's mapped to 50% of the
3517 // Maximum priority an so on.  This will cause VM threads
3518 // to get unfair treatment against other Solaris processes
3519 // which do not explicitly alter their thread priorities.
3520 
3521 int os::java_to_os_priority[CriticalPriority + 1] = {
3522   -99999,         // 0 Entry should never be used
3523 
3524   0,              // 1 MinPriority
3525   32,             // 2
3526   64,             // 3
3527 
3528   96,             // 4
3529   127,            // 5 NormPriority
3530   127,            // 6
3531 
3532   127,            // 7
3533   127,            // 8
3534   127,            // 9 NearMaxPriority
3535 
3536   127,            // 10 MaxPriority
3537 
3538   -criticalPrio   // 11 CriticalPriority
3539 };
3540 
3541 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3542   OSThread* osthread = thread->osthread();
3543 
3544   // Save requested priority in case the thread hasn't been started
3545   osthread->set_native_priority(newpri);
3546 
3547   // Check for critical priority request
3548   bool fxcritical = false;
3549   if (newpri == -criticalPrio) {
3550     fxcritical = true;
3551     newpri = criticalPrio;
3552   }
3553 
3554   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3555   if (!UseThreadPriorities) return OS_OK;
3556 
3557   int status = 0;
3558 
3559   if (!fxcritical) {
3560     // Use thr_setprio only if we have a priority that thr_setprio understands
3561     status = thr_setprio(thread->osthread()->thread_id(), newpri);
3562   }
3563 
3564   int lwp_status =
3565           set_lwp_class_and_priority(osthread->thread_id(),
3566                                      osthread->lwp_id(),
3567                                      newpri,
3568                                      fxcritical ? fxLimits.schedPolicy : myClass,
3569                                      !fxcritical);
3570   if (lwp_status != 0 && fxcritical) {
3571     // Try again, this time without changing the scheduling class
3572     newpri = java_MaxPriority_to_os_priority;
3573     lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3574                                             osthread->lwp_id(),
3575                                             newpri, myClass, false);
3576   }
3577   status |= lwp_status;
3578   return (status == 0) ? OS_OK : OS_ERR;
3579 }
3580 
3581 
3582 OSReturn os::get_native_priority(const Thread* const thread,
3583                                  int *priority_ptr) {
3584   int p;
3585   if (!UseThreadPriorities) {
3586     *priority_ptr = NormalPriority;
3587     return OS_OK;
3588   }
3589   int status = thr_getprio(thread->osthread()->thread_id(), &p);
3590   if (status != 0) {
3591     return OS_ERR;
3592   }
3593   *priority_ptr = p;
3594   return OS_OK;
3595 }
3596 
3597 
3598 // Hint to the underlying OS that a task switch would not be good.
3599 // Void return because it's a hint and can fail.
3600 void os::hint_no_preempt() {
3601   schedctl_start(schedctl_init());
3602 }
3603 
3604 static void resume_clear_context(OSThread *osthread) {
3605   osthread->set_ucontext(NULL);
3606 }
3607 
3608 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3609   osthread->set_ucontext(context);
3610 }
3611 
3612 static PosixSemaphore sr_semaphore;
3613 
3614 void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3615   // Save and restore errno to avoid confusing native code with EINTR
3616   // after sigsuspend.
3617   int old_errno = errno;
3618 
3619   OSThread* osthread = thread->osthread();
3620   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3621 
3622   os::SuspendResume::State current = osthread->sr.state();
3623   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3624     suspend_save_context(osthread, uc);
3625 
3626     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3627     os::SuspendResume::State state = osthread->sr.suspended();
3628     if (state == os::SuspendResume::SR_SUSPENDED) {
3629       sigset_t suspend_set;  // signals for sigsuspend()
3630 
3631       // get current set of blocked signals and unblock resume signal
3632       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3633       sigdelset(&suspend_set, os::Solaris::SIGasync());
3634 
3635       sr_semaphore.signal();
3636       // wait here until we are resumed
3637       while (1) {
3638         sigsuspend(&suspend_set);
3639 
3640         os::SuspendResume::State result = osthread->sr.running();
3641         if (result == os::SuspendResume::SR_RUNNING) {
3642           sr_semaphore.signal();
3643           break;
3644         }
3645       }
3646 
3647     } else if (state == os::SuspendResume::SR_RUNNING) {
3648       // request was cancelled, continue
3649     } else {
3650       ShouldNotReachHere();
3651     }
3652 
3653     resume_clear_context(osthread);
3654   } else if (current == os::SuspendResume::SR_RUNNING) {
3655     // request was cancelled, continue
3656   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3657     // ignore
3658   } else {
3659     // ignore
3660   }
3661 
3662   errno = old_errno;
3663 }
3664 
3665 void os::print_statistics() {
3666 }
3667 
3668 bool os::message_box(const char* title, const char* message) {
3669   int i;
3670   fdStream err(defaultStream::error_fd());
3671   for (i = 0; i < 78; i++) err.print_raw("=");
3672   err.cr();
3673   err.print_raw_cr(title);
3674   for (i = 0; i < 78; i++) err.print_raw("-");
3675   err.cr();
3676   err.print_raw_cr(message);
3677   for (i = 0; i < 78; i++) err.print_raw("=");
3678   err.cr();
3679 
3680   char buf[16];
3681   // Prevent process from exiting upon "read error" without consuming all CPU
3682   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3683 
3684   return buf[0] == 'y' || buf[0] == 'Y';
3685 }
3686 
3687 static int sr_notify(OSThread* osthread) {
3688   int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
3689   assert_status(status == 0, status, "thr_kill");
3690   return status;
3691 }
3692 
3693 // "Randomly" selected value for how long we want to spin
3694 // before bailing out on suspending a thread, also how often
3695 // we send a signal to a thread we want to resume
3696 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3697 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3698 
3699 static bool do_suspend(OSThread* osthread) {
3700   assert(osthread->sr.is_running(), "thread should be running");
3701   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3702 
3703   // mark as suspended and send signal
3704   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3705     // failed to switch, state wasn't running?
3706     ShouldNotReachHere();
3707     return false;
3708   }
3709 
3710   if (sr_notify(osthread) != 0) {
3711     ShouldNotReachHere();
3712   }
3713 
3714   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3715   while (true) {
3716     if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3717       break;
3718     } else {
3719       // timeout
3720       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3721       if (cancelled == os::SuspendResume::SR_RUNNING) {
3722         return false;
3723       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3724         // make sure that we consume the signal on the semaphore as well
3725         sr_semaphore.wait();
3726         break;
3727       } else {
3728         ShouldNotReachHere();
3729         return false;
3730       }
3731     }
3732   }
3733 
3734   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3735   return true;
3736 }
3737 
3738 static void do_resume(OSThread* osthread) {
3739   assert(osthread->sr.is_suspended(), "thread should be suspended");
3740   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3741 
3742   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3743     // failed to switch to WAKEUP_REQUEST
3744     ShouldNotReachHere();
3745     return;
3746   }
3747 
3748   while (true) {
3749     if (sr_notify(osthread) == 0) {
3750       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3751         if (osthread->sr.is_running()) {
3752           return;
3753         }
3754       }
3755     } else {
3756       ShouldNotReachHere();
3757     }
3758   }
3759 
3760   guarantee(osthread->sr.is_running(), "Must be running!");
3761 }
3762 
3763 void os::SuspendedThreadTask::internal_do_task() {
3764   if (do_suspend(_thread->osthread())) {
3765     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3766     do_task(context);
3767     do_resume(_thread->osthread());
3768   }
3769 }
3770 
3771 class PcFetcher : public os::SuspendedThreadTask {
3772  public:
3773   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3774   ExtendedPC result();
3775  protected:
3776   void do_task(const os::SuspendedThreadTaskContext& context);
3777  private:
3778   ExtendedPC _epc;
3779 };
3780 
3781 ExtendedPC PcFetcher::result() {
3782   guarantee(is_done(), "task is not done yet.");
3783   return _epc;
3784 }
3785 
3786 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3787   Thread* thread = context.thread();
3788   OSThread* osthread = thread->osthread();
3789   if (osthread->ucontext() != NULL) {
3790     _epc = os::Solaris::ucontext_get_pc((const ucontext_t *) context.ucontext());
3791   } else {
3792     // NULL context is unexpected, double-check this is the VMThread
3793     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3794   }
3795 }
3796 
3797 // A lightweight implementation that does not suspend the target thread and
3798 // thus returns only a hint. Used for profiling only!
3799 ExtendedPC os::get_thread_pc(Thread* thread) {
3800   // Make sure that it is called by the watcher and the Threads lock is owned.
3801   assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3802   // For now, is only used to profile the VM Thread
3803   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3804   PcFetcher fetcher(thread);
3805   fetcher.run();
3806   return fetcher.result();
3807 }
3808 
3809 
3810 // This does not do anything on Solaris. This is basically a hook for being
3811 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3812 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3813                               const methodHandle& method, JavaCallArguments* args,
3814                               Thread* thread) {
3815   f(value, method, args, thread);
3816 }
3817 
3818 // This routine may be used by user applications as a "hook" to catch signals.
3819 // The user-defined signal handler must pass unrecognized signals to this
3820 // routine, and if it returns true (non-zero), then the signal handler must
3821 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3822 // routine will never retun false (zero), but instead will execute a VM panic
3823 // routine kill the process.
3824 //
3825 // If this routine returns false, it is OK to call it again.  This allows
3826 // the user-defined signal handler to perform checks either before or after
3827 // the VM performs its own checks.  Naturally, the user code would be making
3828 // a serious error if it tried to handle an exception (such as a null check
3829 // or breakpoint) that the VM was generating for its own correct operation.
3830 //
3831 // This routine may recognize any of the following kinds of signals:
3832 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3833 // os::Solaris::SIGasync
3834 // It should be consulted by handlers for any of those signals.
3835 //
3836 // The caller of this routine must pass in the three arguments supplied
3837 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3838 // field of the structure passed to sigaction().  This routine assumes that
3839 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3840 //
3841 // Note that the VM will print warnings if it detects conflicting signal
3842 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3843 //
3844 extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3845                                                    siginfo_t* siginfo,
3846                                                    void* ucontext,
3847                                                    int abort_if_unrecognized);
3848 
3849 
3850 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3851   int orig_errno = errno;  // Preserve errno value over signal handler.
3852   JVM_handle_solaris_signal(sig, info, ucVoid, true);
3853   errno = orig_errno;
3854 }
3855 
3856 // This boolean allows users to forward their own non-matching signals
3857 // to JVM_handle_solaris_signal, harmlessly.
3858 bool os::Solaris::signal_handlers_are_installed = false;
3859 
3860 // For signal-chaining
3861 bool os::Solaris::libjsig_is_loaded = false;
3862 typedef struct sigaction *(*get_signal_t)(int);
3863 get_signal_t os::Solaris::get_signal_action = NULL;
3864 
3865 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3866   struct sigaction *actp = NULL;
3867 
3868   if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
3869     // Retrieve the old signal handler from libjsig
3870     actp = (*get_signal_action)(sig);
3871   }
3872   if (actp == NULL) {
3873     // Retrieve the preinstalled signal handler from jvm
3874     actp = get_preinstalled_handler(sig);
3875   }
3876 
3877   return actp;
3878 }
3879 
3880 static bool call_chained_handler(struct sigaction *actp, int sig,
3881                                  siginfo_t *siginfo, void *context) {
3882   // Call the old signal handler
3883   if (actp->sa_handler == SIG_DFL) {
3884     // It's more reasonable to let jvm treat it as an unexpected exception
3885     // instead of taking the default action.
3886     return false;
3887   } else if (actp->sa_handler != SIG_IGN) {
3888     if ((actp->sa_flags & SA_NODEFER) == 0) {
3889       // automaticlly block the signal
3890       sigaddset(&(actp->sa_mask), sig);
3891     }
3892 
3893     sa_handler_t hand;
3894     sa_sigaction_t sa;
3895     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3896     // retrieve the chained handler
3897     if (siginfo_flag_set) {
3898       sa = actp->sa_sigaction;
3899     } else {
3900       hand = actp->sa_handler;
3901     }
3902 
3903     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3904       actp->sa_handler = SIG_DFL;
3905     }
3906 
3907     // try to honor the signal mask
3908     sigset_t oset;
3909     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3910 
3911     // call into the chained handler
3912     if (siginfo_flag_set) {
3913       (*sa)(sig, siginfo, context);
3914     } else {
3915       (*hand)(sig);
3916     }
3917 
3918     // restore the signal mask
3919     pthread_sigmask(SIG_SETMASK, &oset, 0);
3920   }
3921   // Tell jvm's signal handler the signal is taken care of.
3922   return true;
3923 }
3924 
3925 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3926   bool chained = false;
3927   // signal-chaining
3928   if (UseSignalChaining) {
3929     struct sigaction *actp = get_chained_signal_action(sig);
3930     if (actp != NULL) {
3931       chained = call_chained_handler(actp, sig, siginfo, context);
3932     }
3933   }
3934   return chained;
3935 }
3936 
3937 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3938   assert((chainedsigactions != (struct sigaction *)NULL) &&
3939          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3940   if (preinstalled_sigs[sig] != 0) {
3941     return &chainedsigactions[sig];
3942   }
3943   return NULL;
3944 }
3945 
3946 void os::Solaris::save_preinstalled_handler(int sig,
3947                                             struct sigaction& oldAct) {
3948   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3949   assert((chainedsigactions != (struct sigaction *)NULL) &&
3950          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3951   chainedsigactions[sig] = oldAct;
3952   preinstalled_sigs[sig] = 1;
3953 }
3954 
3955 void os::Solaris::set_signal_handler(int sig, bool set_installed,
3956                                      bool oktochain) {
3957   // Check for overwrite.
3958   struct sigaction oldAct;
3959   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3960   void* oldhand =
3961       oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3962                           : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3963   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3964       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3965       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3966     if (AllowUserSignalHandlers || !set_installed) {
3967       // Do not overwrite; user takes responsibility to forward to us.
3968       return;
3969     } else if (UseSignalChaining) {
3970       if (oktochain) {
3971         // save the old handler in jvm
3972         save_preinstalled_handler(sig, oldAct);
3973       } else {
3974         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3975       }
3976       // libjsig also interposes the sigaction() call below and saves the
3977       // old sigaction on it own.
3978     } else {
3979       fatal("Encountered unexpected pre-existing sigaction handler "
3980             "%#lx for signal %d.", (long)oldhand, sig);
3981     }
3982   }
3983 
3984   struct sigaction sigAct;
3985   sigfillset(&(sigAct.sa_mask));
3986   sigAct.sa_handler = SIG_DFL;
3987 
3988   sigAct.sa_sigaction = signalHandler;
3989   // Handle SIGSEGV on alternate signal stack if
3990   // not using stack banging
3991   if (!UseStackBanging && sig == SIGSEGV) {
3992     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3993   } else {
3994     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3995   }
3996   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3997 
3998   sigaction(sig, &sigAct, &oldAct);
3999 
4000   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4001                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4002   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4003 }
4004 
4005 
4006 #define DO_SIGNAL_CHECK(sig)                      \
4007   do {                                            \
4008     if (!sigismember(&check_signal_done, sig)) {  \
4009       os::Solaris::check_signal_handler(sig);     \
4010     }                                             \
4011   } while (0)
4012 
4013 // This method is a periodic task to check for misbehaving JNI applications
4014 // under CheckJNI, we can add any periodic checks here
4015 
4016 void os::run_periodic_checks() {
4017   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
4018   // thereby preventing a NULL checks.
4019   if (!check_addr0_done) check_addr0_done = check_addr0(tty);
4020 
4021   if (check_signals == false) return;
4022 
4023   // SEGV and BUS if overridden could potentially prevent
4024   // generation of hs*.log in the event of a crash, debugging
4025   // such a case can be very challenging, so we absolutely
4026   // check for the following for a good measure:
4027   DO_SIGNAL_CHECK(SIGSEGV);
4028   DO_SIGNAL_CHECK(SIGILL);
4029   DO_SIGNAL_CHECK(SIGFPE);
4030   DO_SIGNAL_CHECK(SIGBUS);
4031   DO_SIGNAL_CHECK(SIGPIPE);
4032   DO_SIGNAL_CHECK(SIGXFSZ);
4033 
4034   // ReduceSignalUsage allows the user to override these handlers
4035   // see comments at the very top and jvm_solaris.h
4036   if (!ReduceSignalUsage) {
4037     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4038     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4039     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4040     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4041   }
4042 
4043   // See comments above for using JVM1/JVM2
4044   DO_SIGNAL_CHECK(os::Solaris::SIGasync());
4045 
4046 }
4047 
4048 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4049 
4050 static os_sigaction_t os_sigaction = NULL;
4051 
4052 void os::Solaris::check_signal_handler(int sig) {
4053   char buf[O_BUFLEN];
4054   address jvmHandler = NULL;
4055 
4056   struct sigaction act;
4057   if (os_sigaction == NULL) {
4058     // only trust the default sigaction, in case it has been interposed
4059     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4060     if (os_sigaction == NULL) return;
4061   }
4062 
4063   os_sigaction(sig, (struct sigaction*)NULL, &act);
4064 
4065   address thisHandler = (act.sa_flags & SA_SIGINFO)
4066     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4067     : CAST_FROM_FN_PTR(address, act.sa_handler);
4068 
4069 
4070   switch (sig) {
4071   case SIGSEGV:
4072   case SIGBUS:
4073   case SIGFPE:
4074   case SIGPIPE:
4075   case SIGXFSZ:
4076   case SIGILL:
4077     jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4078     break;
4079 
4080   case SHUTDOWN1_SIGNAL:
4081   case SHUTDOWN2_SIGNAL:
4082   case SHUTDOWN3_SIGNAL:
4083   case BREAK_SIGNAL:
4084     jvmHandler = (address)user_handler();
4085     break;
4086 
4087   default:
4088     int asynsig = os::Solaris::SIGasync();
4089 
4090     if (sig == asynsig) {
4091       jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4092     } else {
4093       return;
4094     }
4095     break;
4096   }
4097 
4098 
4099   if (thisHandler != jvmHandler) {
4100     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4101     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4102     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4103     // No need to check this sig any longer
4104     sigaddset(&check_signal_done, sig);
4105     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4106     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4107       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4108                     exception_name(sig, buf, O_BUFLEN));
4109     }
4110   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4111     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4112     tty->print("expected:");
4113     os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
4114     tty->cr();
4115     tty->print("  found:");
4116     os::Posix::print_sa_flags(tty, act.sa_flags);
4117     tty->cr();
4118     // No need to check this sig any longer
4119     sigaddset(&check_signal_done, sig);
4120   }
4121 
4122   // Print all the signal handler state
4123   if (sigismember(&check_signal_done, sig)) {
4124     print_signal_handlers(tty, buf, O_BUFLEN);
4125   }
4126 
4127 }
4128 
4129 void os::Solaris::install_signal_handlers() {
4130   bool libjsigdone = false;
4131   signal_handlers_are_installed = true;
4132 
4133   // signal-chaining
4134   typedef void (*signal_setting_t)();
4135   signal_setting_t begin_signal_setting = NULL;
4136   signal_setting_t end_signal_setting = NULL;
4137   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4138                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4139   if (begin_signal_setting != NULL) {
4140     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4141                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4142     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4143                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4144     get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4145                                          dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4146     libjsig_is_loaded = true;
4147     if (os::Solaris::get_libjsig_version != NULL) {
4148       libjsigversion =  (*os::Solaris::get_libjsig_version)();
4149     }
4150     assert(UseSignalChaining, "should enable signal-chaining");
4151   }
4152   if (libjsig_is_loaded) {
4153     // Tell libjsig jvm is setting signal handlers
4154     (*begin_signal_setting)();
4155   }
4156 
4157   set_signal_handler(SIGSEGV, true, true);
4158   set_signal_handler(SIGPIPE, true, true);
4159   set_signal_handler(SIGXFSZ, true, true);
4160   set_signal_handler(SIGBUS, true, true);
4161   set_signal_handler(SIGILL, true, true);
4162   set_signal_handler(SIGFPE, true, true);
4163 
4164 
4165   if (os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4166     // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4167     // can not register overridable signals which might be > 32
4168     if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4169       // Tell libjsig jvm has finished setting signal handlers
4170       (*end_signal_setting)();
4171       libjsigdone = true;
4172     }
4173   }
4174 
4175   set_signal_handler(os::Solaris::SIGasync(), true, true);
4176 
4177   if (libjsig_is_loaded && !libjsigdone) {
4178     // Tell libjsig jvm finishes setting signal handlers
4179     (*end_signal_setting)();
4180   }
4181 
4182   // We don't activate signal checker if libjsig is in place, we trust ourselves
4183   // and if UserSignalHandler is installed all bets are off.
4184   // Log that signal checking is off only if -verbose:jni is specified.
4185   if (CheckJNICalls) {
4186     if (libjsig_is_loaded) {
4187       if (PrintJNIResolving) {
4188         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4189       }
4190       check_signals = false;
4191     }
4192     if (AllowUserSignalHandlers) {
4193       if (PrintJNIResolving) {
4194         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4195       }
4196       check_signals = false;
4197     }
4198   }
4199 }
4200 
4201 
4202 void report_error(const char* file_name, int line_no, const char* title,
4203                   const char* format, ...);
4204 
4205 // (Static) wrapper for getisax(2) call.
4206 os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
4207 
4208 // (Static) wrappers for the liblgrp API
4209 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4210 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4211 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4212 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4213 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4214 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4215 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4216 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4217 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4218 
4219 // (Static) wrapper for meminfo() call.
4220 os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4221 
4222 static address resolve_symbol_lazy(const char* name) {
4223   address addr = (address) dlsym(RTLD_DEFAULT, name);
4224   if (addr == NULL) {
4225     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4226     addr = (address) dlsym(RTLD_NEXT, name);
4227   }
4228   return addr;
4229 }
4230 
4231 static address resolve_symbol(const char* name) {
4232   address addr = resolve_symbol_lazy(name);
4233   if (addr == NULL) {
4234     fatal(dlerror());
4235   }
4236   return addr;
4237 }
4238 
4239 void os::Solaris::libthread_init() {
4240   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4241 
4242   lwp_priocntl_init();
4243 
4244   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4245   if (func == NULL) {
4246     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4247     // Guarantee that this VM is running on an new enough OS (5.6 or
4248     // later) that it will have a new enough libthread.so.
4249     guarantee(func != NULL, "libthread.so is too old.");
4250   }
4251 
4252   int size;
4253   void (*handler_info_func)(address *, int *);
4254   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4255   handler_info_func(&handler_start, &size);
4256   handler_end = handler_start + size;
4257 }
4258 
4259 
4260 int_fnP_mutex_tP os::Solaris::_mutex_lock;
4261 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4262 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4263 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4264 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4265 int os::Solaris::_mutex_scope = USYNC_THREAD;
4266 
4267 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4268 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4269 int_fnP_cond_tP os::Solaris::_cond_signal;
4270 int_fnP_cond_tP os::Solaris::_cond_broadcast;
4271 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4272 int_fnP_cond_tP os::Solaris::_cond_destroy;
4273 int os::Solaris::_cond_scope = USYNC_THREAD;
4274 
4275 void os::Solaris::synchronization_init() {
4276   if (UseLWPSynchronization) {
4277     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4278     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4279     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4280     os::Solaris::set_mutex_init(lwp_mutex_init);
4281     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4282     os::Solaris::set_mutex_scope(USYNC_THREAD);
4283 
4284     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4285     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4286     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4287     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4288     os::Solaris::set_cond_init(lwp_cond_init);
4289     os::Solaris::set_cond_destroy(lwp_cond_destroy);
4290     os::Solaris::set_cond_scope(USYNC_THREAD);
4291   } else {
4292     os::Solaris::set_mutex_scope(USYNC_THREAD);
4293     os::Solaris::set_cond_scope(USYNC_THREAD);
4294 
4295     if (UsePthreads) {
4296       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4297       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4298       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4299       os::Solaris::set_mutex_init(pthread_mutex_default_init);
4300       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4301 
4302       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4303       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4304       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4305       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4306       os::Solaris::set_cond_init(pthread_cond_default_init);
4307       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4308     } else {
4309       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4310       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4311       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4312       os::Solaris::set_mutex_init(::mutex_init);
4313       os::Solaris::set_mutex_destroy(::mutex_destroy);
4314 
4315       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4316       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4317       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4318       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4319       os::Solaris::set_cond_init(::cond_init);
4320       os::Solaris::set_cond_destroy(::cond_destroy);
4321     }
4322   }
4323 }
4324 
4325 bool os::Solaris::liblgrp_init() {
4326   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4327   if (handle != NULL) {
4328     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4329     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4330     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4331     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4332     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4333     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4334     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4335     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4336                                                       dlsym(handle, "lgrp_cookie_stale")));
4337 
4338     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4339     set_lgrp_cookie(c);
4340     return true;
4341   }
4342   return false;
4343 }
4344 
4345 void os::Solaris::misc_sym_init() {
4346   address func;
4347 
4348   // getisax
4349   func = resolve_symbol_lazy("getisax");
4350   if (func != NULL) {
4351     os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
4352   }
4353 
4354   // meminfo
4355   func = resolve_symbol_lazy("meminfo");
4356   if (func != NULL) {
4357     os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
4358   }
4359 }
4360 
4361 uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
4362   assert(_getisax != NULL, "_getisax not set");
4363   return _getisax(array, n);
4364 }
4365 
4366 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4367 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4368 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4369 
4370 void init_pset_getloadavg_ptr(void) {
4371   pset_getloadavg_ptr =
4372     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4373   if (pset_getloadavg_ptr == NULL) {
4374     log_warning(os)("pset_getloadavg function not found");
4375   }
4376 }
4377 
4378 int os::Solaris::_dev_zero_fd = -1;
4379 
4380 // this is called _before_ the global arguments have been parsed
4381 void os::init(void) {
4382   _initial_pid = getpid();
4383 
4384   max_hrtime = first_hrtime = gethrtime();
4385 
4386   init_random(1234567);
4387 
4388   page_size = sysconf(_SC_PAGESIZE);
4389   if (page_size == -1) {
4390     fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
4391   }
4392   init_page_sizes((size_t) page_size);
4393 
4394   Solaris::initialize_system_info();
4395 
4396   // Initialize misc. symbols as soon as possible, so we can use them
4397   // if we need them.
4398   Solaris::misc_sym_init();
4399 
4400   int fd = ::open("/dev/zero", O_RDWR);
4401   if (fd < 0) {
4402     fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
4403   } else {
4404     Solaris::set_dev_zero_fd(fd);
4405 
4406     // Close on exec, child won't inherit.
4407     fcntl(fd, F_SETFD, FD_CLOEXEC);
4408   }
4409 
4410   clock_tics_per_sec = CLK_TCK;
4411 
4412   // check if dladdr1() exists; dladdr1 can provide more information than
4413   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4414   // and is available on linker patches for 5.7 and 5.8.
4415   // libdl.so must have been loaded, this call is just an entry lookup
4416   void * hdl = dlopen("libdl.so", RTLD_NOW);
4417   if (hdl) {
4418     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4419   }
4420 
4421   // (Solaris only) this switches to calls that actually do locking.
4422   ThreadCritical::initialize();
4423 
4424   main_thread = thr_self();
4425 
4426   // Constant minimum stack size allowed. It must be at least
4427   // the minimum of what the OS supports (thr_min_stack()), and
4428   // enough to allow the thread to get to user bytecode execution.
4429   Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
4430 
4431   // retrieve entry point for pthread_setname_np
4432   void * handle = dlopen("libc.so.1", RTLD_LAZY);
4433   if (handle != NULL) {
4434     Solaris::_pthread_setname_np =
4435         (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
4436   }
4437 }
4438 
4439 // To install functions for atexit system call
4440 extern "C" {
4441   static void perfMemory_exit_helper() {
4442     perfMemory_exit();
4443   }
4444 }
4445 
4446 // this is called _after_ the global arguments have been parsed
4447 jint os::init_2(void) {
4448   // try to enable extended file IO ASAP, see 6431278
4449   os::Solaris::try_enable_extended_io();
4450 
4451   // Allocate a single page and mark it as readable for safepoint polling.  Also
4452   // use this first mmap call to check support for MAP_ALIGN.
4453   address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4454                                                       page_size,
4455                                                       MAP_PRIVATE | MAP_ALIGN,
4456                                                       PROT_READ);
4457   if (polling_page == NULL) {
4458     has_map_align = false;
4459     polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4460                                                 PROT_READ);
4461   }
4462 
4463   os::set_polling_page(polling_page);
4464   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4465 
4466   if (!UseMembar) {
4467     address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4468     guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4469     os::set_memory_serialize_page(mem_serialize_page);
4470     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4471   }
4472 
4473   // Check minimum allowable stack size for thread creation and to initialize
4474   // the java system classes, including StackOverflowError - depends on page
4475   // size.  Add a page for compiler2 recursion in main thread.
4476   // Add in 2*BytesPerWord times page size to account for VM stack during
4477   // class initialization depending on 32 or 64 bit VM.
4478   os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
4479                                         JavaThread::stack_guard_zone_size() +
4480                                         JavaThread::stack_shadow_zone_size() +
4481                                         (2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
4482 
4483   size_t threadStackSizeInBytes = ThreadStackSize * K;
4484   if (threadStackSizeInBytes != 0 &&
4485       threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
4486     tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
4487                   os::Solaris::min_stack_allowed/K);
4488     return JNI_ERR;
4489   }
4490 
4491   // For 64kbps there will be a 64kb page size, which makes
4492   // the usable default stack size quite a bit less.  Increase the
4493   // stack for 64kb (or any > than 8kb) pages, this increases
4494   // virtual memory fragmentation (since we're not creating the
4495   // stack on a power of 2 boundary.  The real fix for this
4496   // should be to fix the guard page mechanism.
4497 
4498   if (vm_page_size() > 8*K) {
4499     threadStackSizeInBytes = (threadStackSizeInBytes != 0)
4500        ? threadStackSizeInBytes +
4501          JavaThread::stack_red_zone_size() +
4502          JavaThread::stack_yellow_zone_size()
4503        : 0;
4504     ThreadStackSize = threadStackSizeInBytes/K;
4505   }
4506 
4507   // Make the stack size a multiple of the page size so that
4508   // the yellow/red zones can be guarded.
4509   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4510                                                 vm_page_size()));
4511 
4512   Solaris::libthread_init();
4513 
4514   if (UseNUMA) {
4515     if (!Solaris::liblgrp_init()) {
4516       UseNUMA = false;
4517     } else {
4518       size_t lgrp_limit = os::numa_get_groups_num();
4519       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4520       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4521       FREE_C_HEAP_ARRAY(int, lgrp_ids);
4522       if (lgrp_num < 2) {
4523         // There's only one locality group, disable NUMA.
4524         UseNUMA = false;
4525       }
4526     }
4527     if (!UseNUMA && ForceNUMA) {
4528       UseNUMA = true;
4529     }
4530   }
4531 
4532   Solaris::signal_sets_init();
4533   Solaris::init_signal_mem();
4534   Solaris::install_signal_handlers();
4535 
4536   if (libjsigversion < JSIG_VERSION_1_4_1) {
4537     Maxlibjsigsigs = OLDMAXSIGNUM;
4538   }
4539 
4540   // initialize synchronization primitives to use either thread or
4541   // lwp synchronization (controlled by UseLWPSynchronization)
4542   Solaris::synchronization_init();
4543 
4544   if (MaxFDLimit) {
4545     // set the number of file descriptors to max. print out error
4546     // if getrlimit/setrlimit fails but continue regardless.
4547     struct rlimit nbr_files;
4548     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4549     if (status != 0) {
4550       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4551     } else {
4552       nbr_files.rlim_cur = nbr_files.rlim_max;
4553       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4554       if (status != 0) {
4555         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4556       }
4557     }
4558   }
4559 
4560   // Calculate theoretical max. size of Threads to guard gainst
4561   // artifical out-of-memory situations, where all available address-
4562   // space has been reserved by thread stacks. Default stack size is 1Mb.
4563   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4564     JavaThread::stack_size_at_create() : (1*K*K);
4565   assert(pre_thread_stack_size != 0, "Must have a stack");
4566   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4567   // we should start doing Virtual Memory banging. Currently when the threads will
4568   // have used all but 200Mb of space.
4569   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4570   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4571 
4572   // at-exit methods are called in the reverse order of their registration.
4573   // In Solaris 7 and earlier, atexit functions are called on return from
4574   // main or as a result of a call to exit(3C). There can be only 32 of
4575   // these functions registered and atexit() does not set errno. In Solaris
4576   // 8 and later, there is no limit to the number of functions registered
4577   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4578   // functions are called upon dlclose(3DL) in addition to return from main
4579   // and exit(3C).
4580 
4581   if (PerfAllowAtExitRegistration) {
4582     // only register atexit functions if PerfAllowAtExitRegistration is set.
4583     // atexit functions can be delayed until process exit time, which
4584     // can be problematic for embedded VM situations. Embedded VMs should
4585     // call DestroyJavaVM() to assure that VM resources are released.
4586 
4587     // note: perfMemory_exit_helper atexit function may be removed in
4588     // the future if the appropriate cleanup code can be added to the
4589     // VM_Exit VMOperation's doit method.
4590     if (atexit(perfMemory_exit_helper) != 0) {
4591       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4592     }
4593   }
4594 
4595   // Init pset_loadavg function pointer
4596   init_pset_getloadavg_ptr();
4597 
4598   return JNI_OK;
4599 }
4600 
4601 // Mark the polling page as unreadable
4602 void os::make_polling_page_unreadable(void) {
4603   if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4604     fatal("Could not disable polling page");
4605   }
4606 }
4607 
4608 // Mark the polling page as readable
4609 void os::make_polling_page_readable(void) {
4610   if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4611     fatal("Could not enable polling page");
4612   }
4613 }
4614 
4615 // OS interface.
4616 
4617 bool os::check_heap(bool force) { return true; }
4618 
4619 // Is a (classpath) directory empty?
4620 bool os::dir_is_empty(const char* path) {
4621   DIR *dir = NULL;
4622   struct dirent *ptr;
4623 
4624   dir = opendir(path);
4625   if (dir == NULL) return true;
4626 
4627   // Scan the directory
4628   bool result = true;
4629   char buf[sizeof(struct dirent) + MAX_PATH];
4630   struct dirent *dbuf = (struct dirent *) buf;
4631   while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4632     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4633       result = false;
4634     }
4635   }
4636   closedir(dir);
4637   return result;
4638 }
4639 
4640 // This code originates from JDK's sysOpen and open64_w
4641 // from src/solaris/hpi/src/system_md.c
4642 
4643 int os::open(const char *path, int oflag, int mode) {
4644   if (strlen(path) > MAX_PATH - 1) {
4645     errno = ENAMETOOLONG;
4646     return -1;
4647   }
4648   int fd;
4649 
4650   fd = ::open64(path, oflag, mode);
4651   if (fd == -1) return -1;
4652 
4653   // If the open succeeded, the file might still be a directory
4654   {
4655     struct stat64 buf64;
4656     int ret = ::fstat64(fd, &buf64);
4657     int st_mode = buf64.st_mode;
4658 
4659     if (ret != -1) {
4660       if ((st_mode & S_IFMT) == S_IFDIR) {
4661         errno = EISDIR;
4662         ::close(fd);
4663         return -1;
4664       }
4665     } else {
4666       ::close(fd);
4667       return -1;
4668     }
4669   }
4670 
4671   // 32-bit Solaris systems suffer from:
4672   //
4673   // - an historical default soft limit of 256 per-process file
4674   //   descriptors that is too low for many Java programs.
4675   //
4676   // - a design flaw where file descriptors created using stdio
4677   //   fopen must be less than 256, _even_ when the first limit above
4678   //   has been raised.  This can cause calls to fopen (but not calls to
4679   //   open, for example) to fail mysteriously, perhaps in 3rd party
4680   //   native code (although the JDK itself uses fopen).  One can hardly
4681   //   criticize them for using this most standard of all functions.
4682   //
4683   // We attempt to make everything work anyways by:
4684   //
4685   // - raising the soft limit on per-process file descriptors beyond
4686   //   256
4687   //
4688   // - As of Solaris 10u4, we can request that Solaris raise the 256
4689   //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4690   //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4691   //
4692   // - If we are stuck on an old (pre 10u4) Solaris system, we can
4693   //   workaround the bug by remapping non-stdio file descriptors below
4694   //   256 to ones beyond 256, which is done below.
4695   //
4696   // See:
4697   // 1085341: 32-bit stdio routines should support file descriptors >255
4698   // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4699   // 6431278: Netbeans crash on 32 bit Solaris: need to call
4700   //          enable_extended_FILE_stdio() in VM initialisation
4701   // Giri Mandalika's blog
4702   // http://technopark02.blogspot.com/2005_05_01_archive.html
4703   //
4704 #ifndef  _LP64
4705   if ((!enabled_extended_FILE_stdio) && fd < 256) {
4706     int newfd = ::fcntl(fd, F_DUPFD, 256);
4707     if (newfd != -1) {
4708       ::close(fd);
4709       fd = newfd;
4710     }
4711   }
4712 #endif // 32-bit Solaris
4713 
4714   // All file descriptors that are opened in the JVM and not
4715   // specifically destined for a subprocess should have the
4716   // close-on-exec flag set.  If we don't set it, then careless 3rd
4717   // party native code might fork and exec without closing all
4718   // appropriate file descriptors (e.g. as we do in closeDescriptors in
4719   // UNIXProcess.c), and this in turn might:
4720   //
4721   // - cause end-of-file to fail to be detected on some file
4722   //   descriptors, resulting in mysterious hangs, or
4723   //
4724   // - might cause an fopen in the subprocess to fail on a system
4725   //   suffering from bug 1085341.
4726   //
4727   // (Yes, the default setting of the close-on-exec flag is a Unix
4728   // design flaw)
4729   //
4730   // See:
4731   // 1085341: 32-bit stdio routines should support file descriptors >255
4732   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4733   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4734   //
4735 #ifdef FD_CLOEXEC
4736   {
4737     int flags = ::fcntl(fd, F_GETFD);
4738     if (flags != -1) {
4739       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4740     }
4741   }
4742 #endif
4743 
4744   return fd;
4745 }
4746 
4747 // create binary file, rewriting existing file if required
4748 int os::create_binary_file(const char* path, bool rewrite_existing) {
4749   int oflags = O_WRONLY | O_CREAT;
4750   if (!rewrite_existing) {
4751     oflags |= O_EXCL;
4752   }
4753   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4754 }
4755 
4756 // return current position of file pointer
4757 jlong os::current_file_offset(int fd) {
4758   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4759 }
4760 
4761 // move file pointer to the specified offset
4762 jlong os::seek_to_file_offset(int fd, jlong offset) {
4763   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4764 }
4765 
4766 jlong os::lseek(int fd, jlong offset, int whence) {
4767   return (jlong) ::lseek64(fd, offset, whence);
4768 }
4769 
4770 char * os::native_path(char *path) {
4771   return path;
4772 }
4773 
4774 int os::ftruncate(int fd, jlong length) {
4775   return ::ftruncate64(fd, length);
4776 }
4777 
4778 int os::fsync(int fd)  {
4779   RESTARTABLE_RETURN_INT(::fsync(fd));
4780 }
4781 
4782 int os::available(int fd, jlong *bytes) {
4783   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4784          "Assumed _thread_in_native");
4785   jlong cur, end;
4786   int mode;
4787   struct stat64 buf64;
4788 
4789   if (::fstat64(fd, &buf64) >= 0) {
4790     mode = buf64.st_mode;
4791     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4792       int n,ioctl_return;
4793 
4794       RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4795       if (ioctl_return>= 0) {
4796         *bytes = n;
4797         return 1;
4798       }
4799     }
4800   }
4801   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4802     return 0;
4803   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4804     return 0;
4805   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4806     return 0;
4807   }
4808   *bytes = end - cur;
4809   return 1;
4810 }
4811 
4812 // Map a block of memory.
4813 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4814                         char *addr, size_t bytes, bool read_only,
4815                         bool allow_exec) {
4816   int prot;
4817   int flags;
4818 
4819   if (read_only) {
4820     prot = PROT_READ;
4821     flags = MAP_SHARED;
4822   } else {
4823     prot = PROT_READ | PROT_WRITE;
4824     flags = MAP_PRIVATE;
4825   }
4826 
4827   if (allow_exec) {
4828     prot |= PROT_EXEC;
4829   }
4830 
4831   if (addr != NULL) {
4832     flags |= MAP_FIXED;
4833   }
4834 
4835   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4836                                      fd, file_offset);
4837   if (mapped_address == MAP_FAILED) {
4838     return NULL;
4839   }
4840   return mapped_address;
4841 }
4842 
4843 
4844 // Remap a block of memory.
4845 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4846                           char *addr, size_t bytes, bool read_only,
4847                           bool allow_exec) {
4848   // same as map_memory() on this OS
4849   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4850                         allow_exec);
4851 }
4852 
4853 
4854 // Unmap a block of memory.
4855 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4856   return munmap(addr, bytes) == 0;
4857 }
4858 
4859 void os::pause() {
4860   char filename[MAX_PATH];
4861   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4862     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4863   } else {
4864     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4865   }
4866 
4867   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4868   if (fd != -1) {
4869     struct stat buf;
4870     ::close(fd);
4871     while (::stat(filename, &buf) == 0) {
4872       (void)::poll(NULL, 0, 100);
4873     }
4874   } else {
4875     jio_fprintf(stderr,
4876                 "Could not open pause file '%s', continuing immediately.\n", filename);
4877   }
4878 }
4879 
4880 #ifndef PRODUCT
4881 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4882 // Turn this on if you need to trace synch operations.
4883 // Set RECORD_SYNCH_LIMIT to a large-enough value,
4884 // and call record_synch_enable and record_synch_disable
4885 // around the computation of interest.
4886 
4887 void record_synch(char* name, bool returning);  // defined below
4888 
4889 class RecordSynch {
4890   char* _name;
4891  public:
4892   RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4893   ~RecordSynch()                       { record_synch(_name, true); }
4894 };
4895 
4896 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4897 extern "C" ret name params {                                    \
4898   typedef ret name##_t params;                                  \
4899   static name##_t* implem = NULL;                               \
4900   static int callcount = 0;                                     \
4901   if (implem == NULL) {                                         \
4902     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4903     if (implem == NULL)  fatal(dlerror());                      \
4904   }                                                             \
4905   ++callcount;                                                  \
4906   RecordSynch _rs(#name);                                       \
4907   inner;                                                        \
4908   return implem args;                                           \
4909 }
4910 // in dbx, examine callcounts this way:
4911 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4912 
4913 #define CHECK_POINTER_OK(p) \
4914   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4915 #define CHECK_MU \
4916   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4917 #define CHECK_CV \
4918   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4919 #define CHECK_P(p) \
4920   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4921 
4922 #define CHECK_MUTEX(mutex_op) \
4923   CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4924 
4925 CHECK_MUTEX(   mutex_lock)
4926 CHECK_MUTEX(  _mutex_lock)
4927 CHECK_MUTEX( mutex_unlock)
4928 CHECK_MUTEX(_mutex_unlock)
4929 CHECK_MUTEX( mutex_trylock)
4930 CHECK_MUTEX(_mutex_trylock)
4931 
4932 #define CHECK_COND(cond_op) \
4933   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4934 
4935 CHECK_COND( cond_wait);
4936 CHECK_COND(_cond_wait);
4937 CHECK_COND(_cond_wait_cancel);
4938 
4939 #define CHECK_COND2(cond_op) \
4940   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4941 
4942 CHECK_COND2( cond_timedwait);
4943 CHECK_COND2(_cond_timedwait);
4944 CHECK_COND2(_cond_timedwait_cancel);
4945 
4946 // do the _lwp_* versions too
4947 #define mutex_t lwp_mutex_t
4948 #define cond_t  lwp_cond_t
4949 CHECK_MUTEX(  _lwp_mutex_lock)
4950 CHECK_MUTEX(  _lwp_mutex_unlock)
4951 CHECK_MUTEX(  _lwp_mutex_trylock)
4952 CHECK_MUTEX( __lwp_mutex_lock)
4953 CHECK_MUTEX( __lwp_mutex_unlock)
4954 CHECK_MUTEX( __lwp_mutex_trylock)
4955 CHECK_MUTEX(___lwp_mutex_lock)
4956 CHECK_MUTEX(___lwp_mutex_unlock)
4957 
4958 CHECK_COND(  _lwp_cond_wait);
4959 CHECK_COND( __lwp_cond_wait);
4960 CHECK_COND(___lwp_cond_wait);
4961 
4962 CHECK_COND2(  _lwp_cond_timedwait);
4963 CHECK_COND2( __lwp_cond_timedwait);
4964 #undef mutex_t
4965 #undef cond_t
4966 
4967 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4968 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4969 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4970 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4971 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4972 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4973 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4974 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4975 
4976 
4977 // recording machinery:
4978 
4979 enum { RECORD_SYNCH_LIMIT = 200 };
4980 char* record_synch_name[RECORD_SYNCH_LIMIT];
4981 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4982 bool record_synch_returning[RECORD_SYNCH_LIMIT];
4983 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4984 int record_synch_count = 0;
4985 bool record_synch_enabled = false;
4986 
4987 // in dbx, examine recorded data this way:
4988 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4989 
4990 void record_synch(char* name, bool returning) {
4991   if (record_synch_enabled) {
4992     if (record_synch_count < RECORD_SYNCH_LIMIT) {
4993       record_synch_name[record_synch_count] = name;
4994       record_synch_returning[record_synch_count] = returning;
4995       record_synch_thread[record_synch_count] = thr_self();
4996       record_synch_arg0ptr[record_synch_count] = &name;
4997       record_synch_count++;
4998     }
4999     // put more checking code here:
5000     // ...
5001   }
5002 }
5003 
5004 void record_synch_enable() {
5005   // start collecting trace data, if not already doing so
5006   if (!record_synch_enabled)  record_synch_count = 0;
5007   record_synch_enabled = true;
5008 }
5009 
5010 void record_synch_disable() {
5011   // stop collecting trace data
5012   record_synch_enabled = false;
5013 }
5014 
5015 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5016 #endif // PRODUCT
5017 
5018 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5019 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
5020                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5021 
5022 
5023 // JVMTI & JVM monitoring and management support
5024 // The thread_cpu_time() and current_thread_cpu_time() are only
5025 // supported if is_thread_cpu_time_supported() returns true.
5026 // They are not supported on Solaris T1.
5027 
5028 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5029 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5030 // of a thread.
5031 //
5032 // current_thread_cpu_time() and thread_cpu_time(Thread *)
5033 // returns the fast estimate available on the platform.
5034 
5035 // hrtime_t gethrvtime() return value includes
5036 // user time but does not include system time
5037 jlong os::current_thread_cpu_time() {
5038   return (jlong) gethrvtime();
5039 }
5040 
5041 jlong os::thread_cpu_time(Thread *thread) {
5042   // return user level CPU time only to be consistent with
5043   // what current_thread_cpu_time returns.
5044   // thread_cpu_time_info() must be changed if this changes
5045   return os::thread_cpu_time(thread, false /* user time only */);
5046 }
5047 
5048 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5049   if (user_sys_cpu_time) {
5050     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5051   } else {
5052     return os::current_thread_cpu_time();
5053   }
5054 }
5055 
5056 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5057   char proc_name[64];
5058   int count;
5059   prusage_t prusage;
5060   jlong lwp_time;
5061   int fd;
5062 
5063   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5064           getpid(),
5065           thread->osthread()->lwp_id());
5066   fd = ::open(proc_name, O_RDONLY);
5067   if (fd == -1) return -1;
5068 
5069   do {
5070     count = ::pread(fd,
5071                     (void *)&prusage.pr_utime,
5072                     thr_time_size,
5073                     thr_time_off);
5074   } while (count < 0 && errno == EINTR);
5075   ::close(fd);
5076   if (count < 0) return -1;
5077 
5078   if (user_sys_cpu_time) {
5079     // user + system CPU time
5080     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5081                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5082                  (jlong)prusage.pr_stime.tv_nsec +
5083                  (jlong)prusage.pr_utime.tv_nsec;
5084   } else {
5085     // user level CPU time only
5086     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5087                 (jlong)prusage.pr_utime.tv_nsec;
5088   }
5089 
5090   return (lwp_time);
5091 }
5092 
5093 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5094   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5095   info_ptr->may_skip_backward = false;    // elapsed time not wall time
5096   info_ptr->may_skip_forward = false;     // elapsed time not wall time
5097   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5098 }
5099 
5100 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5101   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5102   info_ptr->may_skip_backward = false;    // elapsed time not wall time
5103   info_ptr->may_skip_forward = false;     // elapsed time not wall time
5104   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5105 }
5106 
5107 bool os::is_thread_cpu_time_supported() {
5108   return true;
5109 }
5110 
5111 // System loadavg support.  Returns -1 if load average cannot be obtained.
5112 // Return the load average for our processor set if the primitive exists
5113 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
5114 int os::loadavg(double loadavg[], int nelem) {
5115   if (pset_getloadavg_ptr != NULL) {
5116     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5117   } else {
5118     return ::getloadavg(loadavg, nelem);
5119   }
5120 }
5121 
5122 //---------------------------------------------------------------------------------
5123 
5124 bool os::find(address addr, outputStream* st) {
5125   Dl_info dlinfo;
5126   memset(&dlinfo, 0, sizeof(dlinfo));
5127   if (dladdr(addr, &dlinfo) != 0) {
5128     st->print(PTR_FORMAT ": ", addr);
5129     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5130       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5131     } else if (dlinfo.dli_fbase != NULL) {
5132       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5133     } else {
5134       st->print("<absolute address>");
5135     }
5136     if (dlinfo.dli_fname != NULL) {
5137       st->print(" in %s", dlinfo.dli_fname);
5138     }
5139     if (dlinfo.dli_fbase != NULL) {
5140       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5141     }
5142     st->cr();
5143 
5144     if (Verbose) {
5145       // decode some bytes around the PC
5146       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5147       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5148       address       lowest = (address) dlinfo.dli_sname;
5149       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5150       if (begin < lowest)  begin = lowest;
5151       Dl_info dlinfo2;
5152       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5153           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5154         end = (address) dlinfo2.dli_saddr;
5155       }
5156       Disassembler::decode(begin, end, st);
5157     }
5158     return true;
5159   }
5160   return false;
5161 }
5162 
5163 // Following function has been added to support HotSparc's libjvm.so running
5164 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5165 // src/solaris/hpi/native_threads in the EVM codebase.
5166 //
5167 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5168 // libraries and should thus be removed. We will leave it behind for a while
5169 // until we no longer want to able to run on top of 1.3.0 Solaris production
5170 // JDK. See 4341971.
5171 
5172 #define STACK_SLACK 0x800
5173 
5174 extern "C" {
5175   intptr_t sysThreadAvailableStackWithSlack() {
5176     stack_t st;
5177     intptr_t retval, stack_top;
5178     retval = thr_stksegment(&st);
5179     assert(retval == 0, "incorrect return value from thr_stksegment");
5180     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5181     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5182     stack_top=(intptr_t)st.ss_sp-st.ss_size;
5183     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5184   }
5185 }
5186 
5187 // ObjectMonitor park-unpark infrastructure ...
5188 //
5189 // We implement Solaris and Linux PlatformEvents with the
5190 // obvious condvar-mutex-flag triple.
5191 // Another alternative that works quite well is pipes:
5192 // Each PlatformEvent consists of a pipe-pair.
5193 // The thread associated with the PlatformEvent
5194 // calls park(), which reads from the input end of the pipe.
5195 // Unpark() writes into the other end of the pipe.
5196 // The write-side of the pipe must be set NDELAY.
5197 // Unfortunately pipes consume a large # of handles.
5198 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
5199 // Using pipes for the 1st few threads might be workable, however.
5200 //
5201 // park() is permitted to return spuriously.
5202 // Callers of park() should wrap the call to park() in
5203 // an appropriate loop.  A litmus test for the correct
5204 // usage of park is the following: if park() were modified
5205 // to immediately return 0 your code should still work,
5206 // albeit degenerating to a spin loop.
5207 //
5208 // In a sense, park()-unpark() just provides more polite spinning
5209 // and polling with the key difference over naive spinning being
5210 // that a parked thread needs to be explicitly unparked() in order
5211 // to wake up and to poll the underlying condition.
5212 //
5213 // Assumption:
5214 //    Only one parker can exist on an event, which is why we allocate
5215 //    them per-thread. Multiple unparkers can coexist.
5216 //
5217 // _Event transitions in park()
5218 //   -1 => -1 : illegal
5219 //    1 =>  0 : pass - return immediately
5220 //    0 => -1 : block; then set _Event to 0 before returning
5221 //
5222 // _Event transitions in unpark()
5223 //    0 => 1 : just return
5224 //    1 => 1 : just return
5225 //   -1 => either 0 or 1; must signal target thread
5226 //         That is, we can safely transition _Event from -1 to either
5227 //         0 or 1.
5228 //
5229 // _Event serves as a restricted-range semaphore.
5230 //   -1 : thread is blocked, i.e. there is a waiter
5231 //    0 : neutral: thread is running or ready,
5232 //        could have been signaled after a wait started
5233 //    1 : signaled - thread is running or ready
5234 //
5235 // Another possible encoding of _Event would be with
5236 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5237 //
5238 // TODO-FIXME: add DTRACE probes for:
5239 // 1.   Tx parks
5240 // 2.   Ty unparks Tx
5241 // 3.   Tx resumes from park
5242 
5243 
5244 // value determined through experimentation
5245 #define ROUNDINGFIX 11
5246 
5247 // utility to compute the abstime argument to timedwait.
5248 // TODO-FIXME: switch from compute_abstime() to unpackTime().
5249 
5250 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5251   // millis is the relative timeout time
5252   // abstime will be the absolute timeout time
5253   if (millis < 0)  millis = 0;
5254   struct timeval now;
5255   int status = gettimeofday(&now, NULL);
5256   assert(status == 0, "gettimeofday");
5257   jlong seconds = millis / 1000;
5258   jlong max_wait_period;
5259 
5260   if (UseLWPSynchronization) {
5261     // forward port of fix for 4275818 (not sleeping long enough)
5262     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5263     // _lwp_cond_timedwait() used a round_down algorithm rather
5264     // than a round_up. For millis less than our roundfactor
5265     // it rounded down to 0 which doesn't meet the spec.
5266     // For millis > roundfactor we may return a bit sooner, but
5267     // since we can not accurately identify the patch level and
5268     // this has already been fixed in Solaris 9 and 8 we will
5269     // leave it alone rather than always rounding down.
5270 
5271     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5272     // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5273     // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5274     max_wait_period = 21000000;
5275   } else {
5276     max_wait_period = 50000000;
5277   }
5278   millis %= 1000;
5279   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5280     seconds = max_wait_period;
5281   }
5282   abstime->tv_sec = now.tv_sec  + seconds;
5283   long       usec = now.tv_usec + millis * 1000;
5284   if (usec >= 1000000) {
5285     abstime->tv_sec += 1;
5286     usec -= 1000000;
5287   }
5288   abstime->tv_nsec = usec * 1000;
5289   return abstime;
5290 }
5291 
5292 void os::PlatformEvent::park() {           // AKA: down()
5293   // Transitions for _Event:
5294   //   -1 => -1 : illegal
5295   //    1 =>  0 : pass - return immediately
5296   //    0 => -1 : block; then set _Event to 0 before returning
5297 
5298   // Invariant: Only the thread associated with the Event/PlatformEvent
5299   // may call park().
5300   assert(_nParked == 0, "invariant");
5301 
5302   int v;
5303   for (;;) {
5304     v = _Event;
5305     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5306   }
5307   guarantee(v >= 0, "invariant");
5308   if (v == 0) {
5309     // Do this the hard way by blocking ...
5310     // See http://monaco.sfbay/detail.jsf?cr=5094058.
5311     // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5312     // Only for SPARC >= V8PlusA
5313 #if defined(__sparc) && defined(COMPILER2)
5314     if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5315 #endif
5316     int status = os::Solaris::mutex_lock(_mutex);
5317     assert_status(status == 0, status, "mutex_lock");
5318     guarantee(_nParked == 0, "invariant");
5319     ++_nParked;
5320     while (_Event < 0) {
5321       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5322       // Treat this the same as if the wait was interrupted
5323       // With usr/lib/lwp going to kernel, always handle ETIME
5324       status = os::Solaris::cond_wait(_cond, _mutex);
5325       if (status == ETIME) status = EINTR;
5326       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5327     }
5328     --_nParked;
5329     _Event = 0;
5330     status = os::Solaris::mutex_unlock(_mutex);
5331     assert_status(status == 0, status, "mutex_unlock");
5332     // Paranoia to ensure our locked and lock-free paths interact
5333     // correctly with each other.
5334     OrderAccess::fence();
5335   }
5336 }
5337 
5338 int os::PlatformEvent::park(jlong millis) {
5339   // Transitions for _Event:
5340   //   -1 => -1 : illegal
5341   //    1 =>  0 : pass - return immediately
5342   //    0 => -1 : block; then set _Event to 0 before returning
5343 
5344   guarantee(_nParked == 0, "invariant");
5345   int v;
5346   for (;;) {
5347     v = _Event;
5348     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5349   }
5350   guarantee(v >= 0, "invariant");
5351   if (v != 0) return OS_OK;
5352 
5353   int ret = OS_TIMEOUT;
5354   timestruc_t abst;
5355   compute_abstime(&abst, millis);
5356 
5357   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5358   // For Solaris SPARC set fprs.FEF=0 prior to parking.
5359   // Only for SPARC >= V8PlusA
5360 #if defined(__sparc) && defined(COMPILER2)
5361   if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5362 #endif
5363   int status = os::Solaris::mutex_lock(_mutex);
5364   assert_status(status == 0, status, "mutex_lock");
5365   guarantee(_nParked == 0, "invariant");
5366   ++_nParked;
5367   while (_Event < 0) {
5368     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5369     assert_status(status == 0 || status == EINTR ||
5370                   status == ETIME || status == ETIMEDOUT,
5371                   status, "cond_timedwait");
5372     if (!FilterSpuriousWakeups) break;                // previous semantics
5373     if (status == ETIME || status == ETIMEDOUT) break;
5374     // We consume and ignore EINTR and spurious wakeups.
5375   }
5376   --_nParked;
5377   if (_Event >= 0) ret = OS_OK;
5378   _Event = 0;
5379   status = os::Solaris::mutex_unlock(_mutex);
5380   assert_status(status == 0, status, "mutex_unlock");
5381   // Paranoia to ensure our locked and lock-free paths interact
5382   // correctly with each other.
5383   OrderAccess::fence();
5384   return ret;
5385 }
5386 
5387 void os::PlatformEvent::unpark() {
5388   // Transitions for _Event:
5389   //    0 => 1 : just return
5390   //    1 => 1 : just return
5391   //   -1 => either 0 or 1; must signal target thread
5392   //         That is, we can safely transition _Event from -1 to either
5393   //         0 or 1.
5394   // See also: "Semaphores in Plan 9" by Mullender & Cox
5395   //
5396   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5397   // that it will take two back-to-back park() calls for the owning
5398   // thread to block. This has the benefit of forcing a spurious return
5399   // from the first park() call after an unpark() call which will help
5400   // shake out uses of park() and unpark() without condition variables.
5401 
5402   if (Atomic::xchg(1, &_Event) >= 0) return;
5403 
5404   // If the thread associated with the event was parked, wake it.
5405   // Wait for the thread assoc with the PlatformEvent to vacate.
5406   int status = os::Solaris::mutex_lock(_mutex);
5407   assert_status(status == 0, status, "mutex_lock");
5408   int AnyWaiters = _nParked;
5409   status = os::Solaris::mutex_unlock(_mutex);
5410   assert_status(status == 0, status, "mutex_unlock");
5411   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5412   if (AnyWaiters != 0) {
5413     // Note that we signal() *after* dropping the lock for "immortal" Events.
5414     // This is safe and avoids a common class of  futile wakeups.  In rare
5415     // circumstances this can cause a thread to return prematurely from
5416     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5417     // will simply re-test the condition and re-park itself.
5418     // This provides particular benefit if the underlying platform does not
5419     // provide wait morphing.
5420     status = os::Solaris::cond_signal(_cond);
5421     assert_status(status == 0, status, "cond_signal");
5422   }
5423 }
5424 
5425 // JSR166
5426 // -------------------------------------------------------
5427 
5428 // The solaris and linux implementations of park/unpark are fairly
5429 // conservative for now, but can be improved. They currently use a
5430 // mutex/condvar pair, plus _counter.
5431 // Park decrements _counter if > 0, else does a condvar wait.  Unpark
5432 // sets count to 1 and signals condvar.  Only one thread ever waits
5433 // on the condvar. Contention seen when trying to park implies that someone
5434 // is unparking you, so don't wait. And spurious returns are fine, so there
5435 // is no need to track notifications.
5436 
5437 #define MAX_SECS 100000000
5438 
5439 // This code is common to linux and solaris and will be moved to a
5440 // common place in dolphin.
5441 //
5442 // The passed in time value is either a relative time in nanoseconds
5443 // or an absolute time in milliseconds. Either way it has to be unpacked
5444 // into suitable seconds and nanoseconds components and stored in the
5445 // given timespec structure.
5446 // Given time is a 64-bit value and the time_t used in the timespec is only
5447 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5448 // overflow if times way in the future are given. Further on Solaris versions
5449 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5450 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5451 // As it will be 28 years before "now + 100000000" will overflow we can
5452 // ignore overflow and just impose a hard-limit on seconds using the value
5453 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5454 // years from "now".
5455 //
5456 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5457   assert(time > 0, "convertTime");
5458 
5459   struct timeval now;
5460   int status = gettimeofday(&now, NULL);
5461   assert(status == 0, "gettimeofday");
5462 
5463   time_t max_secs = now.tv_sec + MAX_SECS;
5464 
5465   if (isAbsolute) {
5466     jlong secs = time / 1000;
5467     if (secs > max_secs) {
5468       absTime->tv_sec = max_secs;
5469     } else {
5470       absTime->tv_sec = secs;
5471     }
5472     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5473   } else {
5474     jlong secs = time / NANOSECS_PER_SEC;
5475     if (secs >= MAX_SECS) {
5476       absTime->tv_sec = max_secs;
5477       absTime->tv_nsec = 0;
5478     } else {
5479       absTime->tv_sec = now.tv_sec + secs;
5480       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5481       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5482         absTime->tv_nsec -= NANOSECS_PER_SEC;
5483         ++absTime->tv_sec; // note: this must be <= max_secs
5484       }
5485     }
5486   }
5487   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5488   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5489   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5490   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5491 }
5492 
5493 void Parker::park(bool isAbsolute, jlong time) {
5494   // Ideally we'd do something useful while spinning, such
5495   // as calling unpackTime().
5496 
5497   // Optional fast-path check:
5498   // Return immediately if a permit is available.
5499   // We depend on Atomic::xchg() having full barrier semantics
5500   // since we are doing a lock-free update to _counter.
5501   if (Atomic::xchg(0, &_counter) > 0) return;
5502 
5503   // Optional fast-exit: Check interrupt before trying to wait
5504   Thread* thread = Thread::current();
5505   assert(thread->is_Java_thread(), "Must be JavaThread");
5506   JavaThread *jt = (JavaThread *)thread;
5507   if (Thread::is_interrupted(thread, false)) {
5508     return;
5509   }
5510 
5511   // First, demultiplex/decode time arguments
5512   timespec absTime;
5513   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5514     return;
5515   }
5516   if (time > 0) {
5517     // Warning: this code might be exposed to the old Solaris time
5518     // round-down bugs.  Grep "roundingFix" for details.
5519     unpackTime(&absTime, isAbsolute, time);
5520   }
5521 
5522   // Enter safepoint region
5523   // Beware of deadlocks such as 6317397.
5524   // The per-thread Parker:: _mutex is a classic leaf-lock.
5525   // In particular a thread must never block on the Threads_lock while
5526   // holding the Parker:: mutex.  If safepoints are pending both the
5527   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5528   ThreadBlockInVM tbivm(jt);
5529 
5530   // Don't wait if cannot get lock since interference arises from
5531   // unblocking.  Also. check interrupt before trying wait
5532   if (Thread::is_interrupted(thread, false) ||
5533       os::Solaris::mutex_trylock(_mutex) != 0) {
5534     return;
5535   }
5536 
5537   int status;
5538 
5539   if (_counter > 0)  { // no wait needed
5540     _counter = 0;
5541     status = os::Solaris::mutex_unlock(_mutex);
5542     assert(status == 0, "invariant");
5543     // Paranoia to ensure our locked and lock-free paths interact
5544     // correctly with each other and Java-level accesses.
5545     OrderAccess::fence();
5546     return;
5547   }
5548 
5549 #ifdef ASSERT
5550   // Don't catch signals while blocked; let the running threads have the signals.
5551   // (This allows a debugger to break into the running thread.)
5552   sigset_t oldsigs;
5553   sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
5554   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5555 #endif
5556 
5557   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5558   jt->set_suspend_equivalent();
5559   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5560 
5561   // Do this the hard way by blocking ...
5562   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5563   // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5564   // Only for SPARC >= V8PlusA
5565 #if defined(__sparc) && defined(COMPILER2)
5566   if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5567 #endif
5568 
5569   if (time == 0) {
5570     status = os::Solaris::cond_wait(_cond, _mutex);
5571   } else {
5572     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5573   }
5574   // Note that an untimed cond_wait() can sometimes return ETIME on older
5575   // versions of the Solaris.
5576   assert_status(status == 0 || status == EINTR ||
5577                 status == ETIME || status == ETIMEDOUT,
5578                 status, "cond_timedwait");
5579 
5580 #ifdef ASSERT
5581   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5582 #endif
5583   _counter = 0;
5584   status = os::Solaris::mutex_unlock(_mutex);
5585   assert_status(status == 0, status, "mutex_unlock");
5586   // Paranoia to ensure our locked and lock-free paths interact
5587   // correctly with each other and Java-level accesses.
5588   OrderAccess::fence();
5589 
5590   // If externally suspended while waiting, re-suspend
5591   if (jt->handle_special_suspend_equivalent_condition()) {
5592     jt->java_suspend_self();
5593   }
5594 }
5595 
5596 void Parker::unpark() {
5597   int status = os::Solaris::mutex_lock(_mutex);
5598   assert(status == 0, "invariant");
5599   const int s = _counter;
5600   _counter = 1;
5601   status = os::Solaris::mutex_unlock(_mutex);
5602   assert(status == 0, "invariant");
5603 
5604   if (s < 1) {
5605     status = os::Solaris::cond_signal(_cond);
5606     assert(status == 0, "invariant");
5607   }
5608 }
5609 
5610 extern char** environ;
5611 
5612 // Run the specified command in a separate process. Return its exit value,
5613 // or -1 on failure (e.g. can't fork a new process).
5614 // Unlike system(), this function can be called from signal handler. It
5615 // doesn't block SIGINT et al.
5616 int os::fork_and_exec(char* cmd) {
5617   char * argv[4];
5618   argv[0] = (char *)"sh";
5619   argv[1] = (char *)"-c";
5620   argv[2] = cmd;
5621   argv[3] = NULL;
5622 
5623   // fork is async-safe, fork1 is not so can't use in signal handler
5624   pid_t pid;
5625   Thread* t = Thread::current_or_null_safe();
5626   if (t != NULL && t->is_inside_signal_handler()) {
5627     pid = fork();
5628   } else {
5629     pid = fork1();
5630   }
5631 
5632   if (pid < 0) {
5633     // fork failed
5634     warning("fork failed: %s", os::strerror(errno));
5635     return -1;
5636 
5637   } else if (pid == 0) {
5638     // child process
5639 
5640     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5641     execve("/usr/bin/sh", argv, environ);
5642 
5643     // execve failed
5644     _exit(-1);
5645 
5646   } else  {
5647     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5648     // care about the actual exit code, for now.
5649 
5650     int status;
5651 
5652     // Wait for the child process to exit.  This returns immediately if
5653     // the child has already exited. */
5654     while (waitpid(pid, &status, 0) < 0) {
5655       switch (errno) {
5656       case ECHILD: return 0;
5657       case EINTR: break;
5658       default: return -1;
5659       }
5660     }
5661 
5662     if (WIFEXITED(status)) {
5663       // The child exited normally; get its exit code.
5664       return WEXITSTATUS(status);
5665     } else if (WIFSIGNALED(status)) {
5666       // The child exited because of a signal
5667       // The best value to return is 0x80 + signal number,
5668       // because that is what all Unix shells do, and because
5669       // it allows callers to distinguish between process exit and
5670       // process death by signal.
5671       return 0x80 + WTERMSIG(status);
5672     } else {
5673       // Unknown exit code; pass it through
5674       return status;
5675     }
5676   }
5677 }
5678 
5679 // is_headless_jre()
5680 //
5681 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5682 // in order to report if we are running in a headless jre
5683 //
5684 // Since JDK8 xawt/libmawt.so was moved into the same directory
5685 // as libawt.so, and renamed libawt_xawt.so
5686 //
5687 bool os::is_headless_jre() {
5688   struct stat statbuf;
5689   char buf[MAXPATHLEN];
5690   char libmawtpath[MAXPATHLEN];
5691   const char *xawtstr  = "/xawt/libmawt.so";
5692   const char *new_xawtstr = "/libawt_xawt.so";
5693   char *p;
5694 
5695   // Get path to libjvm.so
5696   os::jvm_path(buf, sizeof(buf));
5697 
5698   // Get rid of libjvm.so
5699   p = strrchr(buf, '/');
5700   if (p == NULL) {
5701     return false;
5702   } else {
5703     *p = '\0';
5704   }
5705 
5706   // Get rid of client or server
5707   p = strrchr(buf, '/');
5708   if (p == NULL) {
5709     return false;
5710   } else {
5711     *p = '\0';
5712   }
5713 
5714   // check xawt/libmawt.so
5715   strcpy(libmawtpath, buf);
5716   strcat(libmawtpath, xawtstr);
5717   if (::stat(libmawtpath, &statbuf) == 0) return false;
5718 
5719   // check libawt_xawt.so
5720   strcpy(libmawtpath, buf);
5721   strcat(libmawtpath, new_xawtstr);
5722   if (::stat(libmawtpath, &statbuf) == 0) return false;
5723 
5724   return true;
5725 }
5726 
5727 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5728   size_t res;
5729   RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5730   return res;
5731 }
5732 
5733 int os::close(int fd) {
5734   return ::close(fd);
5735 }
5736 
5737 int os::socket_close(int fd) {
5738   return ::close(fd);
5739 }
5740 
5741 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5742   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5743          "Assumed _thread_in_native");
5744   RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5745 }
5746 
5747 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5748   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5749          "Assumed _thread_in_native");
5750   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5751 }
5752 
5753 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5754   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5755 }
5756 
5757 // As both poll and select can be interrupted by signals, we have to be
5758 // prepared to restart the system call after updating the timeout, unless
5759 // a poll() is done with timeout == -1, in which case we repeat with this
5760 // "wait forever" value.
5761 
5762 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5763   int _result;
5764   _result = ::connect(fd, him, len);
5765 
5766   // On Solaris, when a connect() call is interrupted, the connection
5767   // can be established asynchronously (see 6343810). Subsequent calls
5768   // to connect() must check the errno value which has the semantic
5769   // described below (copied from the connect() man page). Handling
5770   // of asynchronously established connections is required for both
5771   // blocking and non-blocking sockets.
5772   //     EINTR            The  connection  attempt  was   interrupted
5773   //                      before  any data arrived by the delivery of
5774   //                      a signal. The connection, however, will  be
5775   //                      established asynchronously.
5776   //
5777   //     EINPROGRESS      The socket is non-blocking, and the connec-
5778   //                      tion  cannot  be completed immediately.
5779   //
5780   //     EALREADY         The socket is non-blocking,  and a previous
5781   //                      connection  attempt  has  not yet been com-
5782   //                      pleted.
5783   //
5784   //     EISCONN          The socket is already connected.
5785   if (_result == OS_ERR && errno == EINTR) {
5786     // restarting a connect() changes its errno semantics
5787     RESTARTABLE(::connect(fd, him, len), _result);
5788     // undo these changes
5789     if (_result == OS_ERR) {
5790       if (errno == EALREADY) {
5791         errno = EINPROGRESS; // fall through
5792       } else if (errno == EISCONN) {
5793         errno = 0;
5794         return OS_OK;
5795       }
5796     }
5797   }
5798   return _result;
5799 }
5800 
5801 // Get the default path to the core file
5802 // Returns the length of the string
5803 int os::get_core_path(char* buffer, size_t bufferSize) {
5804   const char* p = get_current_directory(buffer, bufferSize);
5805 
5806   if (p == NULL) {
5807     assert(p != NULL, "failed to get current directory");
5808     return 0;
5809   }
5810 
5811   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5812                                               p, current_process_id());
5813 
5814   return strlen(buffer);
5815 }
5816 
5817 #ifndef PRODUCT
5818 void TestReserveMemorySpecial_test() {
5819   // No tests available for this platform
5820 }
5821 #endif
5822 
5823 bool os::start_debugging(char *buf, int buflen) {
5824   int len = (int)strlen(buf);
5825   char *p = &buf[len];
5826 
5827   jio_snprintf(p, buflen-len,
5828                "\n\n"
5829                "Do you want to debug the problem?\n\n"
5830                "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5831                "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5832                "Otherwise, press RETURN to abort...",
5833                os::current_process_id(), os::current_thread_id());
5834 
5835   bool yes = os::message_box("Unexpected Error", buf);
5836 
5837   if (yes) {
5838     // yes, user asked VM to launch debugger
5839     jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5840 
5841     os::fork_and_exec(buf);
5842     yes = false;
5843   }
5844   return yes;
5845 }