1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/codeCacheExtensions.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "gc/shared/referencePendingListLocker.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jvmtifiles/jvmtiEnv.hpp"
  44 #include "logging/log.hpp"
  45 #include "logging/logConfiguration.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.inline.hpp"
  50 #include "oops/instanceKlass.hpp"
  51 #include "oops/objArrayOop.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "oops/symbol.hpp"
  54 #include "oops/verifyOopClosure.hpp"
  55 #include "prims/jvm_misc.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/privilegedStack.hpp"
  59 #include "runtime/arguments.hpp"
  60 #include "runtime/atomic.inline.hpp"
  61 #include "runtime/biasedLocking.hpp"
  62 #include "runtime/commandLineFlagConstraintList.hpp"
  63 #include "runtime/commandLineFlagRangeList.hpp"
  64 #include "runtime/deoptimization.hpp"
  65 #include "runtime/fprofiler.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/globals.hpp"
  68 #include "runtime/init.hpp"
  69 #include "runtime/interfaceSupport.hpp"
  70 #include "runtime/java.hpp"
  71 #include "runtime/javaCalls.hpp"
  72 #include "runtime/jniPeriodicChecker.hpp"
  73 #include "runtime/timerTrace.hpp"
  74 #include "runtime/memprofiler.hpp"
  75 #include "runtime/mutexLocker.hpp"
  76 #include "runtime/objectMonitor.hpp"
  77 #include "runtime/orderAccess.inline.hpp"
  78 #include "runtime/osThread.hpp"
  79 #include "runtime/safepoint.hpp"
  80 #include "runtime/sharedRuntime.hpp"
  81 #include "runtime/statSampler.hpp"
  82 #include "runtime/stubRoutines.hpp"
  83 #include "runtime/sweeper.hpp"
  84 #include "runtime/task.hpp"
  85 #include "runtime/thread.inline.hpp"
  86 #include "runtime/threadCritical.hpp"
  87 #include "runtime/vframe.hpp"
  88 #include "runtime/vframeArray.hpp"
  89 #include "runtime/vframe_hp.hpp"
  90 #include "runtime/vmThread.hpp"
  91 #include "runtime/vm_operations.hpp"
  92 #include "runtime/vm_version.hpp"
  93 #include "services/attachListener.hpp"
  94 #include "services/management.hpp"
  95 #include "services/memTracker.hpp"
  96 #include "services/threadService.hpp"
  97 #include "trace/traceMacros.hpp"
  98 #include "trace/tracing.hpp"
  99 #include "utilities/defaultStream.hpp"
 100 #include "utilities/dtrace.hpp"
 101 #include "utilities/events.hpp"
 102 #include "utilities/macros.hpp"
 103 #include "utilities/preserveException.hpp"
 104 #if INCLUDE_ALL_GCS
 105 #include "gc/cms/concurrentMarkSweepThread.hpp"
 106 #include "gc/g1/concurrentMarkThread.inline.hpp"
 107 #include "gc/parallel/pcTasks.hpp"
 108 #endif // INCLUDE_ALL_GCS
 109 #if INCLUDE_JVMCI
 110 #include "jvmci/jvmciCompiler.hpp"
 111 #include "jvmci/jvmciRuntime.hpp"
 112 #endif
 113 #ifdef COMPILER1
 114 #include "c1/c1_Compiler.hpp"
 115 #endif
 116 #ifdef COMPILER2
 117 #include "opto/c2compiler.hpp"
 118 #include "opto/idealGraphPrinter.hpp"
 119 #endif
 120 #if INCLUDE_RTM_OPT
 121 #include "runtime/rtmLocking.hpp"
 122 #endif
 123 
 124 // Initialization after module runtime initialization
 125 void universe_post_module_init();  // must happen after call_initPhase2
 126 
 127 #ifdef DTRACE_ENABLED
 128 
 129 // Only bother with this argument setup if dtrace is available
 130 
 131   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 132   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 133 
 134   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 135     {                                                                      \
 136       ResourceMark rm(this);                                               \
 137       int len = 0;                                                         \
 138       const char* name = (javathread)->get_thread_name();                  \
 139       len = strlen(name);                                                  \
 140       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 141         (char *) name, len,                                                \
 142         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 143         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 144         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 145     }
 146 
 147 #else //  ndef DTRACE_ENABLED
 148 
 149   #define DTRACE_THREAD_PROBE(probe, javathread)
 150 
 151 #endif // ndef DTRACE_ENABLED
 152 
 153 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 154 // Current thread is maintained as a thread-local variable
 155 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 156 #endif
 157 // Class hierarchy
 158 // - Thread
 159 //   - VMThread
 160 //   - WatcherThread
 161 //   - ConcurrentMarkSweepThread
 162 //   - JavaThread
 163 //     - CompilerThread
 164 
 165 // ======= Thread ========
 166 // Support for forcing alignment of thread objects for biased locking
 167 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 168   if (UseBiasedLocking) {
 169     const int alignment = markOopDesc::biased_lock_alignment;
 170     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 171     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 172                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 173                                                          AllocFailStrategy::RETURN_NULL);
 174     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 175     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 176            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 177            "JavaThread alignment code overflowed allocated storage");
 178     if (aligned_addr != real_malloc_addr) {
 179       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 180                               p2i(real_malloc_addr),
 181                               p2i(aligned_addr));
 182     }
 183     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 184     return aligned_addr;
 185   } else {
 186     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 187                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 188   }
 189 }
 190 
 191 void Thread::operator delete(void* p) {
 192   if (UseBiasedLocking) {
 193     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 194     FreeHeap(real_malloc_addr);
 195   } else {
 196     FreeHeap(p);
 197   }
 198 }
 199 
 200 
 201 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 202 // JavaThread
 203 
 204 
 205 Thread::Thread() {
 206   // stack and get_thread
 207   set_stack_base(NULL);
 208   set_stack_size(0);
 209   set_self_raw_id(0);
 210   set_lgrp_id(-1);
 211   DEBUG_ONLY(clear_suspendible_thread();)
 212 
 213   // allocated data structures
 214   set_osthread(NULL);
 215   set_resource_area(new (mtThread)ResourceArea());
 216   DEBUG_ONLY(_current_resource_mark = NULL;)
 217   set_handle_area(new (mtThread) HandleArea(NULL));
 218   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 219   set_active_handles(NULL);
 220   set_free_handle_block(NULL);
 221   set_last_handle_mark(NULL);
 222 
 223   // This initial value ==> never claimed.
 224   _oops_do_parity = 0;
 225 
 226   // the handle mark links itself to last_handle_mark
 227   new HandleMark(this);
 228 
 229   // plain initialization
 230   debug_only(_owned_locks = NULL;)
 231   debug_only(_allow_allocation_count = 0;)
 232   NOT_PRODUCT(_allow_safepoint_count = 0;)
 233   NOT_PRODUCT(_skip_gcalot = false;)
 234   _jvmti_env_iteration_count = 0;
 235   set_allocated_bytes(0);
 236   _vm_operation_started_count = 0;
 237   _vm_operation_completed_count = 0;
 238   _current_pending_monitor = NULL;
 239   _current_pending_monitor_is_from_java = true;
 240   _current_waiting_monitor = NULL;
 241   _num_nested_signal = 0;
 242   omFreeList = NULL;
 243   omFreeCount = 0;
 244   omFreeProvision = 32;
 245   omInUseList = NULL;
 246   omInUseCount = 0;
 247 
 248 #ifdef ASSERT
 249   _visited_for_critical_count = false;
 250 #endif
 251 
 252   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 253                          Monitor::_safepoint_check_sometimes);
 254   _suspend_flags = 0;
 255 
 256   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 257   _hashStateX = os::random();
 258   _hashStateY = 842502087;
 259   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 260   _hashStateW = 273326509;
 261 
 262   _OnTrap   = 0;
 263   _schedctl = NULL;
 264   _Stalled  = 0;
 265   _TypeTag  = 0x2BAD;
 266 
 267   // Many of the following fields are effectively final - immutable
 268   // Note that nascent threads can't use the Native Monitor-Mutex
 269   // construct until the _MutexEvent is initialized ...
 270   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 271   // we might instead use a stack of ParkEvents that we could provision on-demand.
 272   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 273   // and ::Release()
 274   _ParkEvent   = ParkEvent::Allocate(this);
 275   _SleepEvent  = ParkEvent::Allocate(this);
 276   _MutexEvent  = ParkEvent::Allocate(this);
 277   _MuxEvent    = ParkEvent::Allocate(this);
 278 
 279 #ifdef CHECK_UNHANDLED_OOPS
 280   if (CheckUnhandledOops) {
 281     _unhandled_oops = new UnhandledOops(this);
 282   }
 283 #endif // CHECK_UNHANDLED_OOPS
 284 #ifdef ASSERT
 285   if (UseBiasedLocking) {
 286     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 287     assert(this == _real_malloc_address ||
 288            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 289            "bug in forced alignment of thread objects");
 290   }
 291 #endif // ASSERT
 292 }
 293 
 294 void Thread::initialize_thread_current() {
 295 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 296   assert(_thr_current == NULL, "Thread::current already initialized");
 297   _thr_current = this;
 298 #endif
 299   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 300   ThreadLocalStorage::set_thread(this);
 301   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 302 }
 303 
 304 void Thread::clear_thread_current() {
 305   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 306 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 307   _thr_current = NULL;
 308 #endif
 309   ThreadLocalStorage::set_thread(NULL);
 310 }
 311 
 312 void Thread::record_stack_base_and_size() {
 313   set_stack_base(os::current_stack_base());
 314   set_stack_size(os::current_stack_size());
 315   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 316   // in initialize_thread(). Without the adjustment, stack size is
 317   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 318   // So far, only Solaris has real implementation of initialize_thread().
 319   //
 320   // set up any platform-specific state.
 321   os::initialize_thread(this);
 322 
 323   // Set stack limits after thread is initialized.
 324   if (is_Java_thread()) {
 325     ((JavaThread*) this)->set_stack_overflow_limit();
 326     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 327   }
 328 #if INCLUDE_NMT
 329   // record thread's native stack, stack grows downward
 330   MemTracker::record_thread_stack(stack_end(), stack_size());
 331 #endif // INCLUDE_NMT
 332   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 333     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 334     os::current_thread_id(), p2i(stack_base() - stack_size()),
 335     p2i(stack_base()), stack_size()/1024);
 336 }
 337 
 338 
 339 Thread::~Thread() {
 340   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 341   ObjectSynchronizer::omFlush(this);
 342 
 343   EVENT_THREAD_DESTRUCT(this);
 344 
 345   // stack_base can be NULL if the thread is never started or exited before
 346   // record_stack_base_and_size called. Although, we would like to ensure
 347   // that all started threads do call record_stack_base_and_size(), there is
 348   // not proper way to enforce that.
 349 #if INCLUDE_NMT
 350   if (_stack_base != NULL) {
 351     MemTracker::release_thread_stack(stack_end(), stack_size());
 352 #ifdef ASSERT
 353     set_stack_base(NULL);
 354 #endif
 355   }
 356 #endif // INCLUDE_NMT
 357 
 358   // deallocate data structures
 359   delete resource_area();
 360   // since the handle marks are using the handle area, we have to deallocated the root
 361   // handle mark before deallocating the thread's handle area,
 362   assert(last_handle_mark() != NULL, "check we have an element");
 363   delete last_handle_mark();
 364   assert(last_handle_mark() == NULL, "check we have reached the end");
 365 
 366   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 367   // We NULL out the fields for good hygiene.
 368   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 369   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 370   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 371   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 372 
 373   delete handle_area();
 374   delete metadata_handles();
 375 
 376   // osthread() can be NULL, if creation of thread failed.
 377   if (osthread() != NULL) os::free_thread(osthread());
 378 
 379   delete _SR_lock;
 380 
 381   // clear Thread::current if thread is deleting itself.
 382   // Needed to ensure JNI correctly detects non-attached threads.
 383   if (this == Thread::current()) {
 384     clear_thread_current();
 385   }
 386 
 387   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 388 }
 389 
 390 // NOTE: dummy function for assertion purpose.
 391 void Thread::run() {
 392   ShouldNotReachHere();
 393 }
 394 
 395 #ifdef ASSERT
 396 // Private method to check for dangling thread pointer
 397 void check_for_dangling_thread_pointer(Thread *thread) {
 398   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 399          "possibility of dangling Thread pointer");
 400 }
 401 #endif
 402 
 403 ThreadPriority Thread::get_priority(const Thread* const thread) {
 404   ThreadPriority priority;
 405   // Can return an error!
 406   (void)os::get_priority(thread, priority);
 407   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 408   return priority;
 409 }
 410 
 411 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 412   debug_only(check_for_dangling_thread_pointer(thread);)
 413   // Can return an error!
 414   (void)os::set_priority(thread, priority);
 415 }
 416 
 417 
 418 void Thread::start(Thread* thread) {
 419   // Start is different from resume in that its safety is guaranteed by context or
 420   // being called from a Java method synchronized on the Thread object.
 421   if (!DisableStartThread) {
 422     if (thread->is_Java_thread()) {
 423       // Initialize the thread state to RUNNABLE before starting this thread.
 424       // Can not set it after the thread started because we do not know the
 425       // exact thread state at that time. It could be in MONITOR_WAIT or
 426       // in SLEEPING or some other state.
 427       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 428                                           java_lang_Thread::RUNNABLE);
 429     }
 430     os::start_thread(thread);
 431   }
 432 }
 433 
 434 // Enqueue a VM_Operation to do the job for us - sometime later
 435 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 436   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 437   VMThread::execute(vm_stop);
 438 }
 439 
 440 
 441 // Check if an external suspend request has completed (or has been
 442 // cancelled). Returns true if the thread is externally suspended and
 443 // false otherwise.
 444 //
 445 // The bits parameter returns information about the code path through
 446 // the routine. Useful for debugging:
 447 //
 448 // set in is_ext_suspend_completed():
 449 // 0x00000001 - routine was entered
 450 // 0x00000010 - routine return false at end
 451 // 0x00000100 - thread exited (return false)
 452 // 0x00000200 - suspend request cancelled (return false)
 453 // 0x00000400 - thread suspended (return true)
 454 // 0x00001000 - thread is in a suspend equivalent state (return true)
 455 // 0x00002000 - thread is native and walkable (return true)
 456 // 0x00004000 - thread is native_trans and walkable (needed retry)
 457 //
 458 // set in wait_for_ext_suspend_completion():
 459 // 0x00010000 - routine was entered
 460 // 0x00020000 - suspend request cancelled before loop (return false)
 461 // 0x00040000 - thread suspended before loop (return true)
 462 // 0x00080000 - suspend request cancelled in loop (return false)
 463 // 0x00100000 - thread suspended in loop (return true)
 464 // 0x00200000 - suspend not completed during retry loop (return false)
 465 
 466 // Helper class for tracing suspend wait debug bits.
 467 //
 468 // 0x00000100 indicates that the target thread exited before it could
 469 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 470 // 0x00080000 each indicate a cancelled suspend request so they don't
 471 // count as wait failures either.
 472 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 473 
 474 class TraceSuspendDebugBits : public StackObj {
 475  private:
 476   JavaThread * jt;
 477   bool         is_wait;
 478   bool         called_by_wait;  // meaningful when !is_wait
 479   uint32_t *   bits;
 480 
 481  public:
 482   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 483                         uint32_t *_bits) {
 484     jt             = _jt;
 485     is_wait        = _is_wait;
 486     called_by_wait = _called_by_wait;
 487     bits           = _bits;
 488   }
 489 
 490   ~TraceSuspendDebugBits() {
 491     if (!is_wait) {
 492 #if 1
 493       // By default, don't trace bits for is_ext_suspend_completed() calls.
 494       // That trace is very chatty.
 495       return;
 496 #else
 497       if (!called_by_wait) {
 498         // If tracing for is_ext_suspend_completed() is enabled, then only
 499         // trace calls to it from wait_for_ext_suspend_completion()
 500         return;
 501       }
 502 #endif
 503     }
 504 
 505     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 506       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 507         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 508         ResourceMark rm;
 509 
 510         tty->print_cr(
 511                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 512                       jt->get_thread_name(), *bits);
 513 
 514         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 515       }
 516     }
 517   }
 518 };
 519 #undef DEBUG_FALSE_BITS
 520 
 521 
 522 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 523                                           uint32_t *bits) {
 524   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 525 
 526   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 527   bool do_trans_retry;           // flag to force the retry
 528 
 529   *bits |= 0x00000001;
 530 
 531   do {
 532     do_trans_retry = false;
 533 
 534     if (is_exiting()) {
 535       // Thread is in the process of exiting. This is always checked
 536       // first to reduce the risk of dereferencing a freed JavaThread.
 537       *bits |= 0x00000100;
 538       return false;
 539     }
 540 
 541     if (!is_external_suspend()) {
 542       // Suspend request is cancelled. This is always checked before
 543       // is_ext_suspended() to reduce the risk of a rogue resume
 544       // confusing the thread that made the suspend request.
 545       *bits |= 0x00000200;
 546       return false;
 547     }
 548 
 549     if (is_ext_suspended()) {
 550       // thread is suspended
 551       *bits |= 0x00000400;
 552       return true;
 553     }
 554 
 555     // Now that we no longer do hard suspends of threads running
 556     // native code, the target thread can be changing thread state
 557     // while we are in this routine:
 558     //
 559     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 560     //
 561     // We save a copy of the thread state as observed at this moment
 562     // and make our decision about suspend completeness based on the
 563     // copy. This closes the race where the thread state is seen as
 564     // _thread_in_native_trans in the if-thread_blocked check, but is
 565     // seen as _thread_blocked in if-thread_in_native_trans check.
 566     JavaThreadState save_state = thread_state();
 567 
 568     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 569       // If the thread's state is _thread_blocked and this blocking
 570       // condition is known to be equivalent to a suspend, then we can
 571       // consider the thread to be externally suspended. This means that
 572       // the code that sets _thread_blocked has been modified to do
 573       // self-suspension if the blocking condition releases. We also
 574       // used to check for CONDVAR_WAIT here, but that is now covered by
 575       // the _thread_blocked with self-suspension check.
 576       //
 577       // Return true since we wouldn't be here unless there was still an
 578       // external suspend request.
 579       *bits |= 0x00001000;
 580       return true;
 581     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 582       // Threads running native code will self-suspend on native==>VM/Java
 583       // transitions. If its stack is walkable (should always be the case
 584       // unless this function is called before the actual java_suspend()
 585       // call), then the wait is done.
 586       *bits |= 0x00002000;
 587       return true;
 588     } else if (!called_by_wait && !did_trans_retry &&
 589                save_state == _thread_in_native_trans &&
 590                frame_anchor()->walkable()) {
 591       // The thread is transitioning from thread_in_native to another
 592       // thread state. check_safepoint_and_suspend_for_native_trans()
 593       // will force the thread to self-suspend. If it hasn't gotten
 594       // there yet we may have caught the thread in-between the native
 595       // code check above and the self-suspend. Lucky us. If we were
 596       // called by wait_for_ext_suspend_completion(), then it
 597       // will be doing the retries so we don't have to.
 598       //
 599       // Since we use the saved thread state in the if-statement above,
 600       // there is a chance that the thread has already transitioned to
 601       // _thread_blocked by the time we get here. In that case, we will
 602       // make a single unnecessary pass through the logic below. This
 603       // doesn't hurt anything since we still do the trans retry.
 604 
 605       *bits |= 0x00004000;
 606 
 607       // Once the thread leaves thread_in_native_trans for another
 608       // thread state, we break out of this retry loop. We shouldn't
 609       // need this flag to prevent us from getting back here, but
 610       // sometimes paranoia is good.
 611       did_trans_retry = true;
 612 
 613       // We wait for the thread to transition to a more usable state.
 614       for (int i = 1; i <= SuspendRetryCount; i++) {
 615         // We used to do an "os::yield_all(i)" call here with the intention
 616         // that yielding would increase on each retry. However, the parameter
 617         // is ignored on Linux which means the yield didn't scale up. Waiting
 618         // on the SR_lock below provides a much more predictable scale up for
 619         // the delay. It also provides a simple/direct point to check for any
 620         // safepoint requests from the VMThread
 621 
 622         // temporarily drops SR_lock while doing wait with safepoint check
 623         // (if we're a JavaThread - the WatcherThread can also call this)
 624         // and increase delay with each retry
 625         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 626 
 627         // check the actual thread state instead of what we saved above
 628         if (thread_state() != _thread_in_native_trans) {
 629           // the thread has transitioned to another thread state so
 630           // try all the checks (except this one) one more time.
 631           do_trans_retry = true;
 632           break;
 633         }
 634       } // end retry loop
 635 
 636 
 637     }
 638   } while (do_trans_retry);
 639 
 640   *bits |= 0x00000010;
 641   return false;
 642 }
 643 
 644 // Wait for an external suspend request to complete (or be cancelled).
 645 // Returns true if the thread is externally suspended and false otherwise.
 646 //
 647 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 648                                                  uint32_t *bits) {
 649   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 650                              false /* !called_by_wait */, bits);
 651 
 652   // local flag copies to minimize SR_lock hold time
 653   bool is_suspended;
 654   bool pending;
 655   uint32_t reset_bits;
 656 
 657   // set a marker so is_ext_suspend_completed() knows we are the caller
 658   *bits |= 0x00010000;
 659 
 660   // We use reset_bits to reinitialize the bits value at the top of
 661   // each retry loop. This allows the caller to make use of any
 662   // unused bits for their own marking purposes.
 663   reset_bits = *bits;
 664 
 665   {
 666     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 667     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 668                                             delay, bits);
 669     pending = is_external_suspend();
 670   }
 671   // must release SR_lock to allow suspension to complete
 672 
 673   if (!pending) {
 674     // A cancelled suspend request is the only false return from
 675     // is_ext_suspend_completed() that keeps us from entering the
 676     // retry loop.
 677     *bits |= 0x00020000;
 678     return false;
 679   }
 680 
 681   if (is_suspended) {
 682     *bits |= 0x00040000;
 683     return true;
 684   }
 685 
 686   for (int i = 1; i <= retries; i++) {
 687     *bits = reset_bits;  // reinit to only track last retry
 688 
 689     // We used to do an "os::yield_all(i)" call here with the intention
 690     // that yielding would increase on each retry. However, the parameter
 691     // is ignored on Linux which means the yield didn't scale up. Waiting
 692     // on the SR_lock below provides a much more predictable scale up for
 693     // the delay. It also provides a simple/direct point to check for any
 694     // safepoint requests from the VMThread
 695 
 696     {
 697       MutexLocker ml(SR_lock());
 698       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 699       // can also call this)  and increase delay with each retry
 700       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 701 
 702       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 703                                               delay, bits);
 704 
 705       // It is possible for the external suspend request to be cancelled
 706       // (by a resume) before the actual suspend operation is completed.
 707       // Refresh our local copy to see if we still need to wait.
 708       pending = is_external_suspend();
 709     }
 710 
 711     if (!pending) {
 712       // A cancelled suspend request is the only false return from
 713       // is_ext_suspend_completed() that keeps us from staying in the
 714       // retry loop.
 715       *bits |= 0x00080000;
 716       return false;
 717     }
 718 
 719     if (is_suspended) {
 720       *bits |= 0x00100000;
 721       return true;
 722     }
 723   } // end retry loop
 724 
 725   // thread did not suspend after all our retries
 726   *bits |= 0x00200000;
 727   return false;
 728 }
 729 
 730 #ifndef PRODUCT
 731 void JavaThread::record_jump(address target, address instr, const char* file,
 732                              int line) {
 733 
 734   // This should not need to be atomic as the only way for simultaneous
 735   // updates is via interrupts. Even then this should be rare or non-existent
 736   // and we don't care that much anyway.
 737 
 738   int index = _jmp_ring_index;
 739   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 740   _jmp_ring[index]._target = (intptr_t) target;
 741   _jmp_ring[index]._instruction = (intptr_t) instr;
 742   _jmp_ring[index]._file = file;
 743   _jmp_ring[index]._line = line;
 744 }
 745 #endif // PRODUCT
 746 
 747 // Called by flat profiler
 748 // Callers have already called wait_for_ext_suspend_completion
 749 // The assertion for that is currently too complex to put here:
 750 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 751   bool gotframe = false;
 752   // self suspension saves needed state.
 753   if (has_last_Java_frame() && _anchor.walkable()) {
 754     *_fr = pd_last_frame();
 755     gotframe = true;
 756   }
 757   return gotframe;
 758 }
 759 
 760 void Thread::interrupt(Thread* thread) {
 761   debug_only(check_for_dangling_thread_pointer(thread);)
 762   os::interrupt(thread);
 763 }
 764 
 765 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 766   debug_only(check_for_dangling_thread_pointer(thread);)
 767   // Note:  If clear_interrupted==false, this simply fetches and
 768   // returns the value of the field osthread()->interrupted().
 769   return os::is_interrupted(thread, clear_interrupted);
 770 }
 771 
 772 
 773 // GC Support
 774 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 775   jint thread_parity = _oops_do_parity;
 776   if (thread_parity != strong_roots_parity) {
 777     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 778     if (res == thread_parity) {
 779       return true;
 780     } else {
 781       guarantee(res == strong_roots_parity, "Or else what?");
 782       return false;
 783     }
 784   }
 785   return false;
 786 }
 787 
 788 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 789   active_handles()->oops_do(f);
 790   // Do oop for ThreadShadow
 791   f->do_oop((oop*)&_pending_exception);
 792   handle_area()->oops_do(f);
 793 }
 794 
 795 void Thread::metadata_handles_do(void f(Metadata*)) {
 796   // Only walk the Handles in Thread.
 797   if (metadata_handles() != NULL) {
 798     for (int i = 0; i< metadata_handles()->length(); i++) {
 799       f(metadata_handles()->at(i));
 800     }
 801   }
 802 }
 803 
 804 void Thread::print_on(outputStream* st) const {
 805   // get_priority assumes osthread initialized
 806   if (osthread() != NULL) {
 807     int os_prio;
 808     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 809       st->print("os_prio=%d ", os_prio);
 810     }
 811     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 812     ext().print_on(st);
 813     osthread()->print_on(st);
 814   }
 815   debug_only(if (WizardMode) print_owned_locks_on(st);)
 816 }
 817 
 818 // Thread::print_on_error() is called by fatal error handler. Don't use
 819 // any lock or allocate memory.
 820 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 821   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 822 
 823   if (is_VM_thread())                 { st->print("VMThread"); }
 824   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 825   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 826   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 827   else                                { st->print("Thread"); }
 828 
 829   if (is_Named_thread()) {
 830     st->print(" \"%s\"", name());
 831   }
 832 
 833   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 834             p2i(stack_end()), p2i(stack_base()));
 835 
 836   if (osthread()) {
 837     st->print(" [id=%d]", osthread()->thread_id());
 838   }
 839 }
 840 
 841 #ifdef ASSERT
 842 void Thread::print_owned_locks_on(outputStream* st) const {
 843   Monitor *cur = _owned_locks;
 844   if (cur == NULL) {
 845     st->print(" (no locks) ");
 846   } else {
 847     st->print_cr(" Locks owned:");
 848     while (cur) {
 849       cur->print_on(st);
 850       cur = cur->next();
 851     }
 852   }
 853 }
 854 
 855 static int ref_use_count  = 0;
 856 
 857 bool Thread::owns_locks_but_compiled_lock() const {
 858   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 859     if (cur != Compile_lock) return true;
 860   }
 861   return false;
 862 }
 863 
 864 
 865 #endif
 866 
 867 #ifndef PRODUCT
 868 
 869 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 870 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 871 // no threads which allow_vm_block's are held
 872 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 873   // Check if current thread is allowed to block at a safepoint
 874   if (!(_allow_safepoint_count == 0)) {
 875     fatal("Possible safepoint reached by thread that does not allow it");
 876   }
 877   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 878     fatal("LEAF method calling lock?");
 879   }
 880 
 881 #ifdef ASSERT
 882   if (potential_vm_operation && is_Java_thread()
 883       && !Universe::is_bootstrapping()) {
 884     // Make sure we do not hold any locks that the VM thread also uses.
 885     // This could potentially lead to deadlocks
 886     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 887       // Threads_lock is special, since the safepoint synchronization will not start before this is
 888       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 889       // since it is used to transfer control between JavaThreads and the VMThread
 890       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 891       if ((cur->allow_vm_block() &&
 892            cur != Threads_lock &&
 893            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 894            cur != VMOperationRequest_lock &&
 895            cur != VMOperationQueue_lock) ||
 896            cur->rank() == Mutex::special) {
 897         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 898       }
 899     }
 900   }
 901 
 902   if (GCALotAtAllSafepoints) {
 903     // We could enter a safepoint here and thus have a gc
 904     InterfaceSupport::check_gc_alot();
 905   }
 906 #endif
 907 }
 908 #endif
 909 
 910 bool Thread::is_in_stack(address adr) const {
 911   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 912   address end = os::current_stack_pointer();
 913   // Allow non Java threads to call this without stack_base
 914   if (_stack_base == NULL) return true;
 915   if (stack_base() >= adr && adr >= end) return true;
 916 
 917   return false;
 918 }
 919 
 920 bool Thread::is_in_usable_stack(address adr) const {
 921   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 922   size_t usable_stack_size = _stack_size - stack_guard_size;
 923 
 924   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 925 }
 926 
 927 
 928 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 929 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 930 // used for compilation in the future. If that change is made, the need for these methods
 931 // should be revisited, and they should be removed if possible.
 932 
 933 bool Thread::is_lock_owned(address adr) const {
 934   return on_local_stack(adr);
 935 }
 936 
 937 bool Thread::set_as_starting_thread() {
 938   // NOTE: this must be called inside the main thread.
 939   return os::create_main_thread((JavaThread*)this);
 940 }
 941 
 942 static void initialize_class(Symbol* class_name, TRAPS) {
 943   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 944   InstanceKlass::cast(klass)->initialize(CHECK);
 945 }
 946 
 947 
 948 // Creates the initial ThreadGroup
 949 static Handle create_initial_thread_group(TRAPS) {
 950   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 951   instanceKlassHandle klass (THREAD, k);
 952 
 953   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 954   {
 955     JavaValue result(T_VOID);
 956     JavaCalls::call_special(&result,
 957                             system_instance,
 958                             klass,
 959                             vmSymbols::object_initializer_name(),
 960                             vmSymbols::void_method_signature(),
 961                             CHECK_NH);
 962   }
 963   Universe::set_system_thread_group(system_instance());
 964 
 965   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 966   {
 967     JavaValue result(T_VOID);
 968     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 969     JavaCalls::call_special(&result,
 970                             main_instance,
 971                             klass,
 972                             vmSymbols::object_initializer_name(),
 973                             vmSymbols::threadgroup_string_void_signature(),
 974                             system_instance,
 975                             string,
 976                             CHECK_NH);
 977   }
 978   return main_instance;
 979 }
 980 
 981 // Creates the initial Thread
 982 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 983                                  TRAPS) {
 984   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 985   instanceKlassHandle klass (THREAD, k);
 986   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 987 
 988   java_lang_Thread::set_thread(thread_oop(), thread);
 989   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 990   thread->set_threadObj(thread_oop());
 991 
 992   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 993 
 994   JavaValue result(T_VOID);
 995   JavaCalls::call_special(&result, thread_oop,
 996                           klass,
 997                           vmSymbols::object_initializer_name(),
 998                           vmSymbols::threadgroup_string_void_signature(),
 999                           thread_group,
1000                           string,
1001                           CHECK_NULL);
1002   return thread_oop();
1003 }
1004 
1005 char java_runtime_name[128] = "";
1006 char java_runtime_version[128] = "";
1007 
1008 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1009 static const char* get_java_runtime_name(TRAPS) {
1010   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1011                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1012   fieldDescriptor fd;
1013   bool found = k != NULL &&
1014                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1015                                                         vmSymbols::string_signature(), &fd);
1016   if (found) {
1017     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1018     if (name_oop == NULL) {
1019       return NULL;
1020     }
1021     const char* name = java_lang_String::as_utf8_string(name_oop,
1022                                                         java_runtime_name,
1023                                                         sizeof(java_runtime_name));
1024     return name;
1025   } else {
1026     return NULL;
1027   }
1028 }
1029 
1030 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1031 static const char* get_java_runtime_version(TRAPS) {
1032   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1033                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1034   fieldDescriptor fd;
1035   bool found = k != NULL &&
1036                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1037                                                         vmSymbols::string_signature(), &fd);
1038   if (found) {
1039     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1040     if (name_oop == NULL) {
1041       return NULL;
1042     }
1043     const char* name = java_lang_String::as_utf8_string(name_oop,
1044                                                         java_runtime_version,
1045                                                         sizeof(java_runtime_version));
1046     return name;
1047   } else {
1048     return NULL;
1049   }
1050 }
1051 
1052 // General purpose hook into Java code, run once when the VM is initialized.
1053 // The Java library method itself may be changed independently from the VM.
1054 static void call_postVMInitHook(TRAPS) {
1055   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1056   instanceKlassHandle klass (THREAD, k);
1057   if (klass.not_null()) {
1058     JavaValue result(T_VOID);
1059     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1060                            vmSymbols::void_method_signature(),
1061                            CHECK);
1062   }
1063 }
1064 
1065 static void reset_vm_info_property(TRAPS) {
1066   // the vm info string
1067   ResourceMark rm(THREAD);
1068   const char *vm_info = VM_Version::vm_info_string();
1069 
1070   // java.lang.System class
1071   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1072   instanceKlassHandle klass (THREAD, k);
1073 
1074   // setProperty arguments
1075   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1076   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1077 
1078   // return value
1079   JavaValue r(T_OBJECT);
1080 
1081   // public static String setProperty(String key, String value);
1082   JavaCalls::call_static(&r,
1083                          klass,
1084                          vmSymbols::setProperty_name(),
1085                          vmSymbols::string_string_string_signature(),
1086                          key_str,
1087                          value_str,
1088                          CHECK);
1089 }
1090 
1091 
1092 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1093                                     bool daemon, TRAPS) {
1094   assert(thread_group.not_null(), "thread group should be specified");
1095   assert(threadObj() == NULL, "should only create Java thread object once");
1096 
1097   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1098   instanceKlassHandle klass (THREAD, k);
1099   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1100 
1101   java_lang_Thread::set_thread(thread_oop(), this);
1102   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1103   set_threadObj(thread_oop());
1104 
1105   JavaValue result(T_VOID);
1106   if (thread_name != NULL) {
1107     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1108     // Thread gets assigned specified name and null target
1109     JavaCalls::call_special(&result,
1110                             thread_oop,
1111                             klass,
1112                             vmSymbols::object_initializer_name(),
1113                             vmSymbols::threadgroup_string_void_signature(),
1114                             thread_group, // Argument 1
1115                             name,         // Argument 2
1116                             THREAD);
1117   } else {
1118     // Thread gets assigned name "Thread-nnn" and null target
1119     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1120     JavaCalls::call_special(&result,
1121                             thread_oop,
1122                             klass,
1123                             vmSymbols::object_initializer_name(),
1124                             vmSymbols::threadgroup_runnable_void_signature(),
1125                             thread_group, // Argument 1
1126                             Handle(),     // Argument 2
1127                             THREAD);
1128   }
1129 
1130 
1131   if (daemon) {
1132     java_lang_Thread::set_daemon(thread_oop());
1133   }
1134 
1135   if (HAS_PENDING_EXCEPTION) {
1136     return;
1137   }
1138 
1139   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1140   Handle threadObj(THREAD, this->threadObj());
1141 
1142   JavaCalls::call_special(&result,
1143                           thread_group,
1144                           group,
1145                           vmSymbols::add_method_name(),
1146                           vmSymbols::thread_void_signature(),
1147                           threadObj,          // Arg 1
1148                           THREAD);
1149 }
1150 
1151 // NamedThread --  non-JavaThread subclasses with multiple
1152 // uniquely named instances should derive from this.
1153 NamedThread::NamedThread() : Thread() {
1154   _name = NULL;
1155   _processed_thread = NULL;
1156   _gc_id = GCId::undefined();
1157 }
1158 
1159 NamedThread::~NamedThread() {
1160   if (_name != NULL) {
1161     FREE_C_HEAP_ARRAY(char, _name);
1162     _name = NULL;
1163   }
1164 }
1165 
1166 void NamedThread::set_name(const char* format, ...) {
1167   guarantee(_name == NULL, "Only get to set name once.");
1168   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1169   guarantee(_name != NULL, "alloc failure");
1170   va_list ap;
1171   va_start(ap, format);
1172   jio_vsnprintf(_name, max_name_len, format, ap);
1173   va_end(ap);
1174 }
1175 
1176 void NamedThread::initialize_named_thread() {
1177   set_native_thread_name(name());
1178 }
1179 
1180 void NamedThread::print_on(outputStream* st) const {
1181   st->print("\"%s\" ", name());
1182   Thread::print_on(st);
1183   st->cr();
1184 }
1185 
1186 
1187 // ======= WatcherThread ========
1188 
1189 // The watcher thread exists to simulate timer interrupts.  It should
1190 // be replaced by an abstraction over whatever native support for
1191 // timer interrupts exists on the platform.
1192 
1193 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1194 bool WatcherThread::_startable = false;
1195 volatile bool  WatcherThread::_should_terminate = false;
1196 
1197 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1198   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1199   if (os::create_thread(this, os::watcher_thread)) {
1200     _watcher_thread = this;
1201 
1202     // Set the watcher thread to the highest OS priority which should not be
1203     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1204     // is created. The only normal thread using this priority is the reference
1205     // handler thread, which runs for very short intervals only.
1206     // If the VMThread's priority is not lower than the WatcherThread profiling
1207     // will be inaccurate.
1208     os::set_priority(this, MaxPriority);
1209     if (!DisableStartThread) {
1210       os::start_thread(this);
1211     }
1212   }
1213 }
1214 
1215 int WatcherThread::sleep() const {
1216   // The WatcherThread does not participate in the safepoint protocol
1217   // for the PeriodicTask_lock because it is not a JavaThread.
1218   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1219 
1220   if (_should_terminate) {
1221     // check for termination before we do any housekeeping or wait
1222     return 0;  // we did not sleep.
1223   }
1224 
1225   // remaining will be zero if there are no tasks,
1226   // causing the WatcherThread to sleep until a task is
1227   // enrolled
1228   int remaining = PeriodicTask::time_to_wait();
1229   int time_slept = 0;
1230 
1231   // we expect this to timeout - we only ever get unparked when
1232   // we should terminate or when a new task has been enrolled
1233   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1234 
1235   jlong time_before_loop = os::javaTimeNanos();
1236 
1237   while (true) {
1238     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1239                                             remaining);
1240     jlong now = os::javaTimeNanos();
1241 
1242     if (remaining == 0) {
1243       // if we didn't have any tasks we could have waited for a long time
1244       // consider the time_slept zero and reset time_before_loop
1245       time_slept = 0;
1246       time_before_loop = now;
1247     } else {
1248       // need to recalculate since we might have new tasks in _tasks
1249       time_slept = (int) ((now - time_before_loop) / 1000000);
1250     }
1251 
1252     // Change to task list or spurious wakeup of some kind
1253     if (timedout || _should_terminate) {
1254       break;
1255     }
1256 
1257     remaining = PeriodicTask::time_to_wait();
1258     if (remaining == 0) {
1259       // Last task was just disenrolled so loop around and wait until
1260       // another task gets enrolled
1261       continue;
1262     }
1263 
1264     remaining -= time_slept;
1265     if (remaining <= 0) {
1266       break;
1267     }
1268   }
1269 
1270   return time_slept;
1271 }
1272 
1273 void WatcherThread::run() {
1274   assert(this == watcher_thread(), "just checking");
1275 
1276   this->record_stack_base_and_size();
1277   this->set_native_thread_name(this->name());
1278   this->set_active_handles(JNIHandleBlock::allocate_block());
1279   while (true) {
1280     assert(watcher_thread() == Thread::current(), "thread consistency check");
1281     assert(watcher_thread() == this, "thread consistency check");
1282 
1283     // Calculate how long it'll be until the next PeriodicTask work
1284     // should be done, and sleep that amount of time.
1285     int time_waited = sleep();
1286 
1287     if (is_error_reported()) {
1288       // A fatal error has happened, the error handler(VMError::report_and_die)
1289       // should abort JVM after creating an error log file. However in some
1290       // rare cases, the error handler itself might deadlock. Here we try to
1291       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1292       //
1293       // This code is in WatcherThread because WatcherThread wakes up
1294       // periodically so the fatal error handler doesn't need to do anything;
1295       // also because the WatcherThread is less likely to crash than other
1296       // threads.
1297 
1298       for (;;) {
1299         if (!ShowMessageBoxOnError
1300             && (OnError == NULL || OnError[0] == '\0')
1301             && Arguments::abort_hook() == NULL) {
1302           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1303           fdStream err(defaultStream::output_fd());
1304           err.print_raw_cr("# [ timer expired, abort... ]");
1305           // skip atexit/vm_exit/vm_abort hooks
1306           os::die();
1307         }
1308 
1309         // Wake up 5 seconds later, the fatal handler may reset OnError or
1310         // ShowMessageBoxOnError when it is ready to abort.
1311         os::sleep(this, 5 * 1000, false);
1312       }
1313     }
1314 
1315     if (_should_terminate) {
1316       // check for termination before posting the next tick
1317       break;
1318     }
1319 
1320     PeriodicTask::real_time_tick(time_waited);
1321   }
1322 
1323   // Signal that it is terminated
1324   {
1325     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1326     _watcher_thread = NULL;
1327     Terminator_lock->notify();
1328   }
1329 
1330   // Deletion is done synchronously by the thread terminating the VM
1331   // so that the WatcherThread deletion doesn't race with that thread as it
1332   // tears down VM resources. That means 'this' may already have been
1333   // deallocated so we can't reference it. However we must do some cleanup 
1334   // ourselves before allowing the native thread to terminate
1335 
1336   ThreadLocalStorage::set_thread(NULL);
1337 
1338 }
1339 
1340 void WatcherThread::start() {
1341   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1342 
1343   if (watcher_thread() == NULL && _startable) {
1344     _should_terminate = false;
1345     // Create the single instance of WatcherThread
1346     new WatcherThread();
1347   }
1348 }
1349 
1350 void WatcherThread::make_startable() {
1351   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1352   _startable = true;
1353 }
1354 
1355 void WatcherThread::stop() {
1356   WatcherThread* watcher = NULL;
1357   {
1358     // Follow normal safepoint aware lock enter protocol since the
1359     // WatcherThread is stopped by another JavaThread.
1360     MutexLocker ml(PeriodicTask_lock);
1361     _should_terminate = true;
1362 
1363     watcher = watcher_thread();
1364     if (watcher != NULL) {
1365       // unpark the WatcherThread so it can see that it should terminate
1366       watcher->unpark();
1367     }
1368   }
1369 
1370   MutexLocker mu(Terminator_lock);
1371 
1372   while (watcher_thread() != NULL) {
1373     // This wait should make safepoint checks, wait without a timeout,
1374     // and wait as a suspend-equivalent condition.
1375     //
1376     // Note: If the FlatProfiler is running, then this thread is waiting
1377     // for the WatcherThread to terminate and the WatcherThread, via the
1378     // FlatProfiler task, is waiting for the external suspend request on
1379     // this thread to complete. wait_for_ext_suspend_completion() will
1380     // eventually timeout, but that takes time. Making this wait a
1381     // suspend-equivalent condition solves that timeout problem.
1382     //
1383     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1384                           Mutex::_as_suspend_equivalent_flag);
1385   }
1386 
1387   // can't get here till the WatcherThread has indicated it is terminating
1388   if (watcher != NULL)
1389     delete watcher;
1390 }
1391 
1392 void WatcherThread::unpark() {
1393   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1394   PeriodicTask_lock->notify();
1395 }
1396 
1397 void WatcherThread::print_on(outputStream* st) const {
1398   st->print("\"%s\" ", name());
1399   Thread::print_on(st);
1400   st->cr();
1401 }
1402 
1403 // ======= JavaThread ========
1404 
1405 #if INCLUDE_JVMCI
1406 
1407 jlong* JavaThread::_jvmci_old_thread_counters;
1408 
1409 bool jvmci_counters_include(JavaThread* thread) {
1410   oop threadObj = thread->threadObj();
1411   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1412 }
1413 
1414 void JavaThread::collect_counters(typeArrayOop array) {
1415   if (JVMCICounterSize > 0) {
1416     MutexLocker tl(Threads_lock);
1417     for (int i = 0; i < array->length(); i++) {
1418       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1419     }
1420     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1421       if (jvmci_counters_include(tp)) {
1422         for (int i = 0; i < array->length(); i++) {
1423           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1424         }
1425       }
1426     }
1427   }
1428 }
1429 
1430 #endif // INCLUDE_JVMCI
1431 
1432 // A JavaThread is a normal Java thread
1433 
1434 void JavaThread::initialize() {
1435   // Initialize fields
1436 
1437   set_saved_exception_pc(NULL);
1438   set_threadObj(NULL);
1439   _anchor.clear();
1440   set_entry_point(NULL);
1441   set_jni_functions(jni_functions());
1442   set_callee_target(NULL);
1443   set_vm_result(NULL);
1444   set_vm_result_2(NULL);
1445   set_vframe_array_head(NULL);
1446   set_vframe_array_last(NULL);
1447   set_deferred_locals(NULL);
1448   set_deopt_mark(NULL);
1449   set_deopt_nmethod(NULL);
1450   clear_must_deopt_id();
1451   set_monitor_chunks(NULL);
1452   set_next(NULL);
1453   set_thread_state(_thread_new);
1454   _terminated = _not_terminated;
1455   _privileged_stack_top = NULL;
1456   _array_for_gc = NULL;
1457   _suspend_equivalent = false;
1458   _in_deopt_handler = 0;
1459   _doing_unsafe_access = false;
1460   _stack_guard_state = stack_guard_unused;
1461 #if INCLUDE_JVMCI
1462   _pending_monitorenter = false;
1463   _pending_deoptimization = -1;
1464   _pending_failed_speculation = NULL;
1465   _pending_transfer_to_interpreter = false;
1466   _jvmci._alternate_call_target = NULL;
1467   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1468   if (JVMCICounterSize > 0) {
1469     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1470     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1471   } else {
1472     _jvmci_counters = NULL;
1473   }
1474 #endif // INCLUDE_JVMCI
1475   _reserved_stack_activation = NULL;  // stack base not known yet
1476   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1477   _exception_pc  = 0;
1478   _exception_handler_pc = 0;
1479   _is_method_handle_return = 0;
1480   _jvmti_thread_state= NULL;
1481   _should_post_on_exceptions_flag = JNI_FALSE;
1482   _jvmti_get_loaded_classes_closure = NULL;
1483   _interp_only_mode    = 0;
1484   _special_runtime_exit_condition = _no_async_condition;
1485   _pending_async_exception = NULL;
1486   _thread_stat = NULL;
1487   _thread_stat = new ThreadStatistics();
1488   _blocked_on_compilation = false;
1489   _jni_active_critical = 0;
1490   _pending_jni_exception_check_fn = NULL;
1491   _do_not_unlock_if_synchronized = false;
1492   _cached_monitor_info = NULL;
1493   _parker = Parker::Allocate(this);
1494 
1495 #ifndef PRODUCT
1496   _jmp_ring_index = 0;
1497   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1498     record_jump(NULL, NULL, NULL, 0);
1499   }
1500 #endif // PRODUCT
1501 
1502   set_thread_profiler(NULL);
1503   if (FlatProfiler::is_active()) {
1504     // This is where we would decide to either give each thread it's own profiler
1505     // or use one global one from FlatProfiler,
1506     // or up to some count of the number of profiled threads, etc.
1507     ThreadProfiler* pp = new ThreadProfiler();
1508     pp->engage();
1509     set_thread_profiler(pp);
1510   }
1511 
1512   // Setup safepoint state info for this thread
1513   ThreadSafepointState::create(this);
1514 
1515   debug_only(_java_call_counter = 0);
1516 
1517   // JVMTI PopFrame support
1518   _popframe_condition = popframe_inactive;
1519   _popframe_preserved_args = NULL;
1520   _popframe_preserved_args_size = 0;
1521   _frames_to_pop_failed_realloc = 0;
1522 
1523   pd_initialize();
1524 }
1525 
1526 #if INCLUDE_ALL_GCS
1527 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1528 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1529 #endif // INCLUDE_ALL_GCS
1530 
1531 JavaThread::JavaThread(bool is_attaching_via_jni) :
1532                        Thread()
1533 #if INCLUDE_ALL_GCS
1534                        , _satb_mark_queue(&_satb_mark_queue_set),
1535                        _dirty_card_queue(&_dirty_card_queue_set)
1536 #endif // INCLUDE_ALL_GCS
1537 {
1538   initialize();
1539   if (is_attaching_via_jni) {
1540     _jni_attach_state = _attaching_via_jni;
1541   } else {
1542     _jni_attach_state = _not_attaching_via_jni;
1543   }
1544   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1545 }
1546 
1547 bool JavaThread::reguard_stack(address cur_sp) {
1548   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1549       && _stack_guard_state != stack_guard_reserved_disabled) {
1550     return true; // Stack already guarded or guard pages not needed.
1551   }
1552 
1553   if (register_stack_overflow()) {
1554     // For those architectures which have separate register and
1555     // memory stacks, we must check the register stack to see if
1556     // it has overflowed.
1557     return false;
1558   }
1559 
1560   // Java code never executes within the yellow zone: the latter is only
1561   // there to provoke an exception during stack banging.  If java code
1562   // is executing there, either StackShadowPages should be larger, or
1563   // some exception code in c1, c2 or the interpreter isn't unwinding
1564   // when it should.
1565   guarantee(cur_sp > stack_reserved_zone_base(),
1566             "not enough space to reguard - increase StackShadowPages");
1567   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1568     enable_stack_yellow_reserved_zone();
1569     if (reserved_stack_activation() != stack_base()) {
1570       set_reserved_stack_activation(stack_base());
1571     }
1572   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1573     set_reserved_stack_activation(stack_base());
1574     enable_stack_reserved_zone();
1575   }
1576   return true;
1577 }
1578 
1579 bool JavaThread::reguard_stack(void) {
1580   return reguard_stack(os::current_stack_pointer());
1581 }
1582 
1583 
1584 void JavaThread::block_if_vm_exited() {
1585   if (_terminated == _vm_exited) {
1586     // _vm_exited is set at safepoint, and Threads_lock is never released
1587     // we will block here forever
1588     Threads_lock->lock_without_safepoint_check();
1589     ShouldNotReachHere();
1590   }
1591 }
1592 
1593 
1594 // Remove this ifdef when C1 is ported to the compiler interface.
1595 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1596 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1597 
1598 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1599                        Thread()
1600 #if INCLUDE_ALL_GCS
1601                        , _satb_mark_queue(&_satb_mark_queue_set),
1602                        _dirty_card_queue(&_dirty_card_queue_set)
1603 #endif // INCLUDE_ALL_GCS
1604 {
1605   initialize();
1606   _jni_attach_state = _not_attaching_via_jni;
1607   set_entry_point(entry_point);
1608   // Create the native thread itself.
1609   // %note runtime_23
1610   os::ThreadType thr_type = os::java_thread;
1611   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1612                                                      os::java_thread;
1613   os::create_thread(this, thr_type, stack_sz);
1614   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1615   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1616   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1617   // the exception consists of creating the exception object & initializing it, initialization
1618   // will leave the VM via a JavaCall and then all locks must be unlocked).
1619   //
1620   // The thread is still suspended when we reach here. Thread must be explicit started
1621   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1622   // by calling Threads:add. The reason why this is not done here, is because the thread
1623   // object must be fully initialized (take a look at JVM_Start)
1624 }
1625 
1626 JavaThread::~JavaThread() {
1627 
1628   // JSR166 -- return the parker to the free list
1629   Parker::Release(_parker);
1630   _parker = NULL;
1631 
1632   // Free any remaining  previous UnrollBlock
1633   vframeArray* old_array = vframe_array_last();
1634 
1635   if (old_array != NULL) {
1636     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1637     old_array->set_unroll_block(NULL);
1638     delete old_info;
1639     delete old_array;
1640   }
1641 
1642   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1643   if (deferred != NULL) {
1644     // This can only happen if thread is destroyed before deoptimization occurs.
1645     assert(deferred->length() != 0, "empty array!");
1646     do {
1647       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1648       deferred->remove_at(0);
1649       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1650       delete dlv;
1651     } while (deferred->length() != 0);
1652     delete deferred;
1653   }
1654 
1655   // All Java related clean up happens in exit
1656   ThreadSafepointState::destroy(this);
1657   if (_thread_profiler != NULL) delete _thread_profiler;
1658   if (_thread_stat != NULL) delete _thread_stat;
1659 
1660 #if INCLUDE_JVMCI
1661   if (JVMCICounterSize > 0) {
1662     if (jvmci_counters_include(this)) {
1663       for (int i = 0; i < JVMCICounterSize; i++) {
1664         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1665       }
1666     }
1667     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1668   }
1669 #endif // INCLUDE_JVMCI
1670 }
1671 
1672 
1673 // The first routine called by a new Java thread
1674 void JavaThread::run() {
1675   // initialize thread-local alloc buffer related fields
1676   this->initialize_tlab();
1677 
1678   // used to test validity of stack trace backs
1679   this->record_base_of_stack_pointer();
1680 
1681   // Record real stack base and size.
1682   this->record_stack_base_and_size();
1683 
1684   this->create_stack_guard_pages();
1685 
1686   this->cache_global_variables();
1687 
1688   // Thread is now sufficient initialized to be handled by the safepoint code as being
1689   // in the VM. Change thread state from _thread_new to _thread_in_vm
1690   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1691 
1692   assert(JavaThread::current() == this, "sanity check");
1693   assert(!Thread::current()->owns_locks(), "sanity check");
1694 
1695   DTRACE_THREAD_PROBE(start, this);
1696 
1697   // This operation might block. We call that after all safepoint checks for a new thread has
1698   // been completed.
1699   this->set_active_handles(JNIHandleBlock::allocate_block());
1700 
1701   if (JvmtiExport::should_post_thread_life()) {
1702     JvmtiExport::post_thread_start(this);
1703   }
1704 
1705   EventThreadStart event;
1706   if (event.should_commit()) {
1707     event.set_thread(THREAD_TRACE_ID(this));
1708     event.commit();
1709   }
1710 
1711   // We call another function to do the rest so we are sure that the stack addresses used
1712   // from there will be lower than the stack base just computed
1713   thread_main_inner();
1714 
1715   // Note, thread is no longer valid at this point!
1716 }
1717 
1718 
1719 void JavaThread::thread_main_inner() {
1720   assert(JavaThread::current() == this, "sanity check");
1721   assert(this->threadObj() != NULL, "just checking");
1722 
1723   // Execute thread entry point unless this thread has a pending exception
1724   // or has been stopped before starting.
1725   // Note: Due to JVM_StopThread we can have pending exceptions already!
1726   if (!this->has_pending_exception() &&
1727       !java_lang_Thread::is_stillborn(this->threadObj())) {
1728     {
1729       ResourceMark rm(this);
1730       this->set_native_thread_name(this->get_thread_name());
1731     }
1732     HandleMark hm(this);
1733     this->entry_point()(this, this);
1734   }
1735 
1736   DTRACE_THREAD_PROBE(stop, this);
1737 
1738   this->exit(false);
1739   delete this;
1740 }
1741 
1742 
1743 static void ensure_join(JavaThread* thread) {
1744   // We do not need to grap the Threads_lock, since we are operating on ourself.
1745   Handle threadObj(thread, thread->threadObj());
1746   assert(threadObj.not_null(), "java thread object must exist");
1747   ObjectLocker lock(threadObj, thread);
1748   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1749   thread->clear_pending_exception();
1750   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1751   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1752   // Clear the native thread instance - this makes isAlive return false and allows the join()
1753   // to complete once we've done the notify_all below
1754   java_lang_Thread::set_thread(threadObj(), NULL);
1755   lock.notify_all(thread);
1756   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1757   thread->clear_pending_exception();
1758 }
1759 
1760 
1761 // For any new cleanup additions, please check to see if they need to be applied to
1762 // cleanup_failed_attach_current_thread as well.
1763 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1764   assert(this == JavaThread::current(), "thread consistency check");
1765 
1766   HandleMark hm(this);
1767   Handle uncaught_exception(this, this->pending_exception());
1768   this->clear_pending_exception();
1769   Handle threadObj(this, this->threadObj());
1770   assert(threadObj.not_null(), "Java thread object should be created");
1771 
1772   if (get_thread_profiler() != NULL) {
1773     get_thread_profiler()->disengage();
1774     ResourceMark rm;
1775     get_thread_profiler()->print(get_thread_name());
1776   }
1777 
1778 
1779   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1780   {
1781     EXCEPTION_MARK;
1782 
1783     CLEAR_PENDING_EXCEPTION;
1784   }
1785   if (!destroy_vm) {
1786     if (uncaught_exception.not_null()) {
1787       EXCEPTION_MARK;
1788       // Call method Thread.dispatchUncaughtException().
1789       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1790       JavaValue result(T_VOID);
1791       JavaCalls::call_virtual(&result,
1792                               threadObj, thread_klass,
1793                               vmSymbols::dispatchUncaughtException_name(),
1794                               vmSymbols::throwable_void_signature(),
1795                               uncaught_exception,
1796                               THREAD);
1797       if (HAS_PENDING_EXCEPTION) {
1798         ResourceMark rm(this);
1799         jio_fprintf(defaultStream::error_stream(),
1800                     "\nException: %s thrown from the UncaughtExceptionHandler"
1801                     " in thread \"%s\"\n",
1802                     pending_exception()->klass()->external_name(),
1803                     get_thread_name());
1804         CLEAR_PENDING_EXCEPTION;
1805       }
1806     }
1807 
1808     // Called before the java thread exit since we want to read info
1809     // from java_lang_Thread object
1810     EventThreadEnd event;
1811     if (event.should_commit()) {
1812       event.set_thread(THREAD_TRACE_ID(this));
1813       event.commit();
1814     }
1815 
1816     // Call after last event on thread
1817     EVENT_THREAD_EXIT(this);
1818 
1819     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1820     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1821     // is deprecated anyhow.
1822     if (!is_Compiler_thread()) {
1823       int count = 3;
1824       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1825         EXCEPTION_MARK;
1826         JavaValue result(T_VOID);
1827         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1828         JavaCalls::call_virtual(&result,
1829                                 threadObj, thread_klass,
1830                                 vmSymbols::exit_method_name(),
1831                                 vmSymbols::void_method_signature(),
1832                                 THREAD);
1833         CLEAR_PENDING_EXCEPTION;
1834       }
1835     }
1836     // notify JVMTI
1837     if (JvmtiExport::should_post_thread_life()) {
1838       JvmtiExport::post_thread_end(this);
1839     }
1840 
1841     // We have notified the agents that we are exiting, before we go on,
1842     // we must check for a pending external suspend request and honor it
1843     // in order to not surprise the thread that made the suspend request.
1844     while (true) {
1845       {
1846         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1847         if (!is_external_suspend()) {
1848           set_terminated(_thread_exiting);
1849           ThreadService::current_thread_exiting(this);
1850           break;
1851         }
1852         // Implied else:
1853         // Things get a little tricky here. We have a pending external
1854         // suspend request, but we are holding the SR_lock so we
1855         // can't just self-suspend. So we temporarily drop the lock
1856         // and then self-suspend.
1857       }
1858 
1859       ThreadBlockInVM tbivm(this);
1860       java_suspend_self();
1861 
1862       // We're done with this suspend request, but we have to loop around
1863       // and check again. Eventually we will get SR_lock without a pending
1864       // external suspend request and will be able to mark ourselves as
1865       // exiting.
1866     }
1867     // no more external suspends are allowed at this point
1868   } else {
1869     // before_exit() has already posted JVMTI THREAD_END events
1870   }
1871 
1872   // Notify waiters on thread object. This has to be done after exit() is called
1873   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1874   // group should have the destroyed bit set before waiters are notified).
1875   ensure_join(this);
1876   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1877 
1878   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1879   // held by this thread must be released. The spec does not distinguish
1880   // between JNI-acquired and regular Java monitors. We can only see
1881   // regular Java monitors here if monitor enter-exit matching is broken.
1882   //
1883   // Optionally release any monitors for regular JavaThread exits. This
1884   // is provided as a work around for any bugs in monitor enter-exit
1885   // matching. This can be expensive so it is not enabled by default.
1886   //
1887   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1888   // ObjectSynchronizer::release_monitors_owned_by_thread().
1889   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1890     // Sanity check even though JNI DetachCurrentThread() would have
1891     // returned JNI_ERR if there was a Java frame. JavaThread exit
1892     // should be done executing Java code by the time we get here.
1893     assert(!this->has_last_Java_frame(),
1894            "should not have a Java frame when detaching or exiting");
1895     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1896     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1897   }
1898 
1899   // These things needs to be done while we are still a Java Thread. Make sure that thread
1900   // is in a consistent state, in case GC happens
1901   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1902 
1903   if (active_handles() != NULL) {
1904     JNIHandleBlock* block = active_handles();
1905     set_active_handles(NULL);
1906     JNIHandleBlock::release_block(block);
1907   }
1908 
1909   if (free_handle_block() != NULL) {
1910     JNIHandleBlock* block = free_handle_block();
1911     set_free_handle_block(NULL);
1912     JNIHandleBlock::release_block(block);
1913   }
1914 
1915   // These have to be removed while this is still a valid thread.
1916   remove_stack_guard_pages();
1917 
1918   if (UseTLAB) {
1919     tlab().make_parsable(true);  // retire TLAB
1920   }
1921 
1922   if (JvmtiEnv::environments_might_exist()) {
1923     JvmtiExport::cleanup_thread(this);
1924   }
1925 
1926   // We must flush any deferred card marks before removing a thread from
1927   // the list of active threads.
1928   Universe::heap()->flush_deferred_store_barrier(this);
1929   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1930 
1931 #if INCLUDE_ALL_GCS
1932   // We must flush the G1-related buffers before removing a thread
1933   // from the list of active threads. We must do this after any deferred
1934   // card marks have been flushed (above) so that any entries that are
1935   // added to the thread's dirty card queue as a result are not lost.
1936   if (UseG1GC) {
1937     flush_barrier_queues();
1938   }
1939 #endif // INCLUDE_ALL_GCS
1940 
1941   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1942     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1943     os::current_thread_id());
1944 
1945   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1946   Threads::remove(this);
1947 }
1948 
1949 #if INCLUDE_ALL_GCS
1950 // Flush G1-related queues.
1951 void JavaThread::flush_barrier_queues() {
1952   satb_mark_queue().flush();
1953   dirty_card_queue().flush();
1954 }
1955 
1956 void JavaThread::initialize_queues() {
1957   assert(!SafepointSynchronize::is_at_safepoint(),
1958          "we should not be at a safepoint");
1959 
1960   SATBMarkQueue& satb_queue = satb_mark_queue();
1961   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1962   // The SATB queue should have been constructed with its active
1963   // field set to false.
1964   assert(!satb_queue.is_active(), "SATB queue should not be active");
1965   assert(satb_queue.is_empty(), "SATB queue should be empty");
1966   // If we are creating the thread during a marking cycle, we should
1967   // set the active field of the SATB queue to true.
1968   if (satb_queue_set.is_active()) {
1969     satb_queue.set_active(true);
1970   }
1971 
1972   DirtyCardQueue& dirty_queue = dirty_card_queue();
1973   // The dirty card queue should have been constructed with its
1974   // active field set to true.
1975   assert(dirty_queue.is_active(), "dirty card queue should be active");
1976 }
1977 #endif // INCLUDE_ALL_GCS
1978 
1979 void JavaThread::cleanup_failed_attach_current_thread() {
1980   if (get_thread_profiler() != NULL) {
1981     get_thread_profiler()->disengage();
1982     ResourceMark rm;
1983     get_thread_profiler()->print(get_thread_name());
1984   }
1985 
1986   if (active_handles() != NULL) {
1987     JNIHandleBlock* block = active_handles();
1988     set_active_handles(NULL);
1989     JNIHandleBlock::release_block(block);
1990   }
1991 
1992   if (free_handle_block() != NULL) {
1993     JNIHandleBlock* block = free_handle_block();
1994     set_free_handle_block(NULL);
1995     JNIHandleBlock::release_block(block);
1996   }
1997 
1998   // These have to be removed while this is still a valid thread.
1999   remove_stack_guard_pages();
2000 
2001   if (UseTLAB) {
2002     tlab().make_parsable(true);  // retire TLAB, if any
2003   }
2004 
2005 #if INCLUDE_ALL_GCS
2006   if (UseG1GC) {
2007     flush_barrier_queues();
2008   }
2009 #endif // INCLUDE_ALL_GCS
2010 
2011   Threads::remove(this);
2012   delete this;
2013 }
2014 
2015 
2016 
2017 
2018 JavaThread* JavaThread::active() {
2019   Thread* thread = Thread::current();
2020   if (thread->is_Java_thread()) {
2021     return (JavaThread*) thread;
2022   } else {
2023     assert(thread->is_VM_thread(), "this must be a vm thread");
2024     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2025     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2026     assert(ret->is_Java_thread(), "must be a Java thread");
2027     return ret;
2028   }
2029 }
2030 
2031 bool JavaThread::is_lock_owned(address adr) const {
2032   if (Thread::is_lock_owned(adr)) return true;
2033 
2034   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2035     if (chunk->contains(adr)) return true;
2036   }
2037 
2038   return false;
2039 }
2040 
2041 
2042 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2043   chunk->set_next(monitor_chunks());
2044   set_monitor_chunks(chunk);
2045 }
2046 
2047 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2048   guarantee(monitor_chunks() != NULL, "must be non empty");
2049   if (monitor_chunks() == chunk) {
2050     set_monitor_chunks(chunk->next());
2051   } else {
2052     MonitorChunk* prev = monitor_chunks();
2053     while (prev->next() != chunk) prev = prev->next();
2054     prev->set_next(chunk->next());
2055   }
2056 }
2057 
2058 // JVM support.
2059 
2060 // Note: this function shouldn't block if it's called in
2061 // _thread_in_native_trans state (such as from
2062 // check_special_condition_for_native_trans()).
2063 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2064 
2065   if (has_last_Java_frame() && has_async_condition()) {
2066     // If we are at a polling page safepoint (not a poll return)
2067     // then we must defer async exception because live registers
2068     // will be clobbered by the exception path. Poll return is
2069     // ok because the call we a returning from already collides
2070     // with exception handling registers and so there is no issue.
2071     // (The exception handling path kills call result registers but
2072     //  this is ok since the exception kills the result anyway).
2073 
2074     if (is_at_poll_safepoint()) {
2075       // if the code we are returning to has deoptimized we must defer
2076       // the exception otherwise live registers get clobbered on the
2077       // exception path before deoptimization is able to retrieve them.
2078       //
2079       RegisterMap map(this, false);
2080       frame caller_fr = last_frame().sender(&map);
2081       assert(caller_fr.is_compiled_frame(), "what?");
2082       if (caller_fr.is_deoptimized_frame()) {
2083         log_info(exceptions)("deferred async exception at compiled safepoint");
2084         return;
2085       }
2086     }
2087   }
2088 
2089   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2090   if (condition == _no_async_condition) {
2091     // Conditions have changed since has_special_runtime_exit_condition()
2092     // was called:
2093     // - if we were here only because of an external suspend request,
2094     //   then that was taken care of above (or cancelled) so we are done
2095     // - if we were here because of another async request, then it has
2096     //   been cleared between the has_special_runtime_exit_condition()
2097     //   and now so again we are done
2098     return;
2099   }
2100 
2101   // Check for pending async. exception
2102   if (_pending_async_exception != NULL) {
2103     // Only overwrite an already pending exception, if it is not a threadDeath.
2104     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2105 
2106       // We cannot call Exceptions::_throw(...) here because we cannot block
2107       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2108 
2109       if (log_is_enabled(Info, exceptions)) {
2110         ResourceMark rm;
2111         outputStream* logstream = Log(exceptions)::info_stream();
2112         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2113           if (has_last_Java_frame()) {
2114             frame f = last_frame();
2115            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2116           }
2117         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2118       }
2119       _pending_async_exception = NULL;
2120       clear_has_async_exception();
2121     }
2122   }
2123 
2124   if (check_unsafe_error &&
2125       condition == _async_unsafe_access_error && !has_pending_exception()) {
2126     condition = _no_async_condition;  // done
2127     switch (thread_state()) {
2128     case _thread_in_vm: {
2129       JavaThread* THREAD = this;
2130       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2131     }
2132     case _thread_in_native: {
2133       ThreadInVMfromNative tiv(this);
2134       JavaThread* THREAD = this;
2135       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2136     }
2137     case _thread_in_Java: {
2138       ThreadInVMfromJava tiv(this);
2139       JavaThread* THREAD = this;
2140       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2141     }
2142     default:
2143       ShouldNotReachHere();
2144     }
2145   }
2146 
2147   assert(condition == _no_async_condition || has_pending_exception() ||
2148          (!check_unsafe_error && condition == _async_unsafe_access_error),
2149          "must have handled the async condition, if no exception");
2150 }
2151 
2152 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2153   //
2154   // Check for pending external suspend. Internal suspend requests do
2155   // not use handle_special_runtime_exit_condition().
2156   // If JNIEnv proxies are allowed, don't self-suspend if the target
2157   // thread is not the current thread. In older versions of jdbx, jdbx
2158   // threads could call into the VM with another thread's JNIEnv so we
2159   // can be here operating on behalf of a suspended thread (4432884).
2160   bool do_self_suspend = is_external_suspend_with_lock();
2161   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2162     //
2163     // Because thread is external suspended the safepoint code will count
2164     // thread as at a safepoint. This can be odd because we can be here
2165     // as _thread_in_Java which would normally transition to _thread_blocked
2166     // at a safepoint. We would like to mark the thread as _thread_blocked
2167     // before calling java_suspend_self like all other callers of it but
2168     // we must then observe proper safepoint protocol. (We can't leave
2169     // _thread_blocked with a safepoint in progress). However we can be
2170     // here as _thread_in_native_trans so we can't use a normal transition
2171     // constructor/destructor pair because they assert on that type of
2172     // transition. We could do something like:
2173     //
2174     // JavaThreadState state = thread_state();
2175     // set_thread_state(_thread_in_vm);
2176     // {
2177     //   ThreadBlockInVM tbivm(this);
2178     //   java_suspend_self()
2179     // }
2180     // set_thread_state(_thread_in_vm_trans);
2181     // if (safepoint) block;
2182     // set_thread_state(state);
2183     //
2184     // but that is pretty messy. Instead we just go with the way the
2185     // code has worked before and note that this is the only path to
2186     // java_suspend_self that doesn't put the thread in _thread_blocked
2187     // mode.
2188 
2189     frame_anchor()->make_walkable(this);
2190     java_suspend_self();
2191 
2192     // We might be here for reasons in addition to the self-suspend request
2193     // so check for other async requests.
2194   }
2195 
2196   if (check_asyncs) {
2197     check_and_handle_async_exceptions();
2198   }
2199 }
2200 
2201 void JavaThread::send_thread_stop(oop java_throwable)  {
2202   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2203   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2204   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2205 
2206   // Do not throw asynchronous exceptions against the compiler thread
2207   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2208   if (!can_call_java()) return;
2209 
2210   {
2211     // Actually throw the Throwable against the target Thread - however
2212     // only if there is no thread death exception installed already.
2213     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2214       // If the topmost frame is a runtime stub, then we are calling into
2215       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2216       // must deoptimize the caller before continuing, as the compiled  exception handler table
2217       // may not be valid
2218       if (has_last_Java_frame()) {
2219         frame f = last_frame();
2220         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2221           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2222           RegisterMap reg_map(this, UseBiasedLocking);
2223           frame compiled_frame = f.sender(&reg_map);
2224           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2225             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2226           }
2227         }
2228       }
2229 
2230       // Set async. pending exception in thread.
2231       set_pending_async_exception(java_throwable);
2232 
2233       if (log_is_enabled(Info, exceptions)) {
2234          ResourceMark rm;
2235         log_info(exceptions)("Pending Async. exception installed of type: %s",
2236                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2237       }
2238       // for AbortVMOnException flag
2239       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2240     }
2241   }
2242 
2243 
2244   // Interrupt thread so it will wake up from a potential wait()
2245   Thread::interrupt(this);
2246 }
2247 
2248 // External suspension mechanism.
2249 //
2250 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2251 // to any VM_locks and it is at a transition
2252 // Self-suspension will happen on the transition out of the vm.
2253 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2254 //
2255 // Guarantees on return:
2256 //   + Target thread will not execute any new bytecode (that's why we need to
2257 //     force a safepoint)
2258 //   + Target thread will not enter any new monitors
2259 //
2260 void JavaThread::java_suspend() {
2261   { MutexLocker mu(Threads_lock);
2262     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2263       return;
2264     }
2265   }
2266 
2267   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2268     if (!is_external_suspend()) {
2269       // a racing resume has cancelled us; bail out now
2270       return;
2271     }
2272 
2273     // suspend is done
2274     uint32_t debug_bits = 0;
2275     // Warning: is_ext_suspend_completed() may temporarily drop the
2276     // SR_lock to allow the thread to reach a stable thread state if
2277     // it is currently in a transient thread state.
2278     if (is_ext_suspend_completed(false /* !called_by_wait */,
2279                                  SuspendRetryDelay, &debug_bits)) {
2280       return;
2281     }
2282   }
2283 
2284   VM_ForceSafepoint vm_suspend;
2285   VMThread::execute(&vm_suspend);
2286 }
2287 
2288 // Part II of external suspension.
2289 // A JavaThread self suspends when it detects a pending external suspend
2290 // request. This is usually on transitions. It is also done in places
2291 // where continuing to the next transition would surprise the caller,
2292 // e.g., monitor entry.
2293 //
2294 // Returns the number of times that the thread self-suspended.
2295 //
2296 // Note: DO NOT call java_suspend_self() when you just want to block current
2297 //       thread. java_suspend_self() is the second stage of cooperative
2298 //       suspension for external suspend requests and should only be used
2299 //       to complete an external suspend request.
2300 //
2301 int JavaThread::java_suspend_self() {
2302   int ret = 0;
2303 
2304   // we are in the process of exiting so don't suspend
2305   if (is_exiting()) {
2306     clear_external_suspend();
2307     return ret;
2308   }
2309 
2310   assert(_anchor.walkable() ||
2311          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2312          "must have walkable stack");
2313 
2314   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2315 
2316   assert(!this->is_ext_suspended(),
2317          "a thread trying to self-suspend should not already be suspended");
2318 
2319   if (this->is_suspend_equivalent()) {
2320     // If we are self-suspending as a result of the lifting of a
2321     // suspend equivalent condition, then the suspend_equivalent
2322     // flag is not cleared until we set the ext_suspended flag so
2323     // that wait_for_ext_suspend_completion() returns consistent
2324     // results.
2325     this->clear_suspend_equivalent();
2326   }
2327 
2328   // A racing resume may have cancelled us before we grabbed SR_lock
2329   // above. Or another external suspend request could be waiting for us
2330   // by the time we return from SR_lock()->wait(). The thread
2331   // that requested the suspension may already be trying to walk our
2332   // stack and if we return now, we can change the stack out from under
2333   // it. This would be a "bad thing (TM)" and cause the stack walker
2334   // to crash. We stay self-suspended until there are no more pending
2335   // external suspend requests.
2336   while (is_external_suspend()) {
2337     ret++;
2338     this->set_ext_suspended();
2339 
2340     // _ext_suspended flag is cleared by java_resume()
2341     while (is_ext_suspended()) {
2342       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2343     }
2344   }
2345 
2346   return ret;
2347 }
2348 
2349 #ifdef ASSERT
2350 // verify the JavaThread has not yet been published in the Threads::list, and
2351 // hence doesn't need protection from concurrent access at this stage
2352 void JavaThread::verify_not_published() {
2353   if (!Threads_lock->owned_by_self()) {
2354     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2355     assert(!Threads::includes(this),
2356            "java thread shouldn't have been published yet!");
2357   } else {
2358     assert(!Threads::includes(this),
2359            "java thread shouldn't have been published yet!");
2360   }
2361 }
2362 #endif
2363 
2364 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2365 // progress or when _suspend_flags is non-zero.
2366 // Current thread needs to self-suspend if there is a suspend request and/or
2367 // block if a safepoint is in progress.
2368 // Async exception ISN'T checked.
2369 // Note only the ThreadInVMfromNative transition can call this function
2370 // directly and when thread state is _thread_in_native_trans
2371 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2372   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2373 
2374   JavaThread *curJT = JavaThread::current();
2375   bool do_self_suspend = thread->is_external_suspend();
2376 
2377   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2378 
2379   // If JNIEnv proxies are allowed, don't self-suspend if the target
2380   // thread is not the current thread. In older versions of jdbx, jdbx
2381   // threads could call into the VM with another thread's JNIEnv so we
2382   // can be here operating on behalf of a suspended thread (4432884).
2383   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2384     JavaThreadState state = thread->thread_state();
2385 
2386     // We mark this thread_blocked state as a suspend-equivalent so
2387     // that a caller to is_ext_suspend_completed() won't be confused.
2388     // The suspend-equivalent state is cleared by java_suspend_self().
2389     thread->set_suspend_equivalent();
2390 
2391     // If the safepoint code sees the _thread_in_native_trans state, it will
2392     // wait until the thread changes to other thread state. There is no
2393     // guarantee on how soon we can obtain the SR_lock and complete the
2394     // self-suspend request. It would be a bad idea to let safepoint wait for
2395     // too long. Temporarily change the state to _thread_blocked to
2396     // let the VM thread know that this thread is ready for GC. The problem
2397     // of changing thread state is that safepoint could happen just after
2398     // java_suspend_self() returns after being resumed, and VM thread will
2399     // see the _thread_blocked state. We must check for safepoint
2400     // after restoring the state and make sure we won't leave while a safepoint
2401     // is in progress.
2402     thread->set_thread_state(_thread_blocked);
2403     thread->java_suspend_self();
2404     thread->set_thread_state(state);
2405     // Make sure new state is seen by VM thread
2406     if (os::is_MP()) {
2407       if (UseMembar) {
2408         // Force a fence between the write above and read below
2409         OrderAccess::fence();
2410       } else {
2411         // Must use this rather than serialization page in particular on Windows
2412         InterfaceSupport::serialize_memory(thread);
2413       }
2414     }
2415   }
2416 
2417   if (SafepointSynchronize::do_call_back()) {
2418     // If we are safepointing, then block the caller which may not be
2419     // the same as the target thread (see above).
2420     SafepointSynchronize::block(curJT);
2421   }
2422 
2423   if (thread->is_deopt_suspend()) {
2424     thread->clear_deopt_suspend();
2425     RegisterMap map(thread, false);
2426     frame f = thread->last_frame();
2427     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2428       f = f.sender(&map);
2429     }
2430     if (f.id() == thread->must_deopt_id()) {
2431       thread->clear_must_deopt_id();
2432       f.deoptimize(thread);
2433     } else {
2434       fatal("missed deoptimization!");
2435     }
2436   }
2437 }
2438 
2439 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2440 // progress or when _suspend_flags is non-zero.
2441 // Current thread needs to self-suspend if there is a suspend request and/or
2442 // block if a safepoint is in progress.
2443 // Also check for pending async exception (not including unsafe access error).
2444 // Note only the native==>VM/Java barriers can call this function and when
2445 // thread state is _thread_in_native_trans.
2446 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2447   check_safepoint_and_suspend_for_native_trans(thread);
2448 
2449   if (thread->has_async_exception()) {
2450     // We are in _thread_in_native_trans state, don't handle unsafe
2451     // access error since that may block.
2452     thread->check_and_handle_async_exceptions(false);
2453   }
2454 }
2455 
2456 // This is a variant of the normal
2457 // check_special_condition_for_native_trans with slightly different
2458 // semantics for use by critical native wrappers.  It does all the
2459 // normal checks but also performs the transition back into
2460 // thread_in_Java state.  This is required so that critical natives
2461 // can potentially block and perform a GC if they are the last thread
2462 // exiting the GCLocker.
2463 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2464   check_special_condition_for_native_trans(thread);
2465 
2466   // Finish the transition
2467   thread->set_thread_state(_thread_in_Java);
2468 
2469   if (thread->do_critical_native_unlock()) {
2470     ThreadInVMfromJavaNoAsyncException tiv(thread);
2471     GCLocker::unlock_critical(thread);
2472     thread->clear_critical_native_unlock();
2473   }
2474 }
2475 
2476 // We need to guarantee the Threads_lock here, since resumes are not
2477 // allowed during safepoint synchronization
2478 // Can only resume from an external suspension
2479 void JavaThread::java_resume() {
2480   assert_locked_or_safepoint(Threads_lock);
2481 
2482   // Sanity check: thread is gone, has started exiting or the thread
2483   // was not externally suspended.
2484   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2485     return;
2486   }
2487 
2488   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2489 
2490   clear_external_suspend();
2491 
2492   if (is_ext_suspended()) {
2493     clear_ext_suspended();
2494     SR_lock()->notify_all();
2495   }
2496 }
2497 
2498 size_t JavaThread::_stack_red_zone_size = 0;
2499 size_t JavaThread::_stack_yellow_zone_size = 0;
2500 size_t JavaThread::_stack_reserved_zone_size = 0;
2501 size_t JavaThread::_stack_shadow_zone_size = 0;
2502 
2503 void JavaThread::create_stack_guard_pages() {
2504   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2505   address low_addr = stack_end();
2506   size_t len = stack_guard_zone_size();
2507 
2508   int allocate = os::allocate_stack_guard_pages();
2509   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2510 
2511   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2512     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2513     return;
2514   }
2515 
2516   if (os::guard_memory((char *) low_addr, len)) {
2517     _stack_guard_state = stack_guard_enabled;
2518   } else {
2519     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2520       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2521     if (os::uncommit_memory((char *) low_addr, len)) {
2522       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2523     }
2524     return;
2525   }
2526 
2527   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2528     PTR_FORMAT "-" PTR_FORMAT ".",
2529     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2530 
2531 }
2532 
2533 void JavaThread::remove_stack_guard_pages() {
2534   assert(Thread::current() == this, "from different thread");
2535   if (_stack_guard_state == stack_guard_unused) return;
2536   address low_addr = stack_end();
2537   size_t len = stack_guard_zone_size();
2538 
2539   if (os::allocate_stack_guard_pages()) {
2540     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2541       _stack_guard_state = stack_guard_unused;
2542     } else {
2543       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2544         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2545       return;
2546     }
2547   } else {
2548     if (_stack_guard_state == stack_guard_unused) return;
2549     if (os::unguard_memory((char *) low_addr, len)) {
2550       _stack_guard_state = stack_guard_unused;
2551     } else {
2552       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2553         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2554       return;
2555     }
2556   }
2557 
2558   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2559     PTR_FORMAT "-" PTR_FORMAT ".",
2560     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2561 
2562 }
2563 
2564 void JavaThread::enable_stack_reserved_zone() {
2565   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2566   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2567 
2568   // The base notation is from the stack's point of view, growing downward.
2569   // We need to adjust it to work correctly with guard_memory()
2570   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2571 
2572   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2573   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2574 
2575   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2576     _stack_guard_state = stack_guard_enabled;
2577   } else {
2578     warning("Attempt to guard stack reserved zone failed.");
2579   }
2580   enable_register_stack_guard();
2581 }
2582 
2583 void JavaThread::disable_stack_reserved_zone() {
2584   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2585   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2586 
2587   // Simply return if called for a thread that does not use guard pages.
2588   if (_stack_guard_state == stack_guard_unused) return;
2589 
2590   // The base notation is from the stack's point of view, growing downward.
2591   // We need to adjust it to work correctly with guard_memory()
2592   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2593 
2594   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2595     _stack_guard_state = stack_guard_reserved_disabled;
2596   } else {
2597     warning("Attempt to unguard stack reserved zone failed.");
2598   }
2599   disable_register_stack_guard();
2600 }
2601 
2602 void JavaThread::enable_stack_yellow_reserved_zone() {
2603   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2604   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2605 
2606   // The base notation is from the stacks point of view, growing downward.
2607   // We need to adjust it to work correctly with guard_memory()
2608   address base = stack_red_zone_base();
2609 
2610   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2611   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2612 
2613   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2614     _stack_guard_state = stack_guard_enabled;
2615   } else {
2616     warning("Attempt to guard stack yellow zone failed.");
2617   }
2618   enable_register_stack_guard();
2619 }
2620 
2621 void JavaThread::disable_stack_yellow_reserved_zone() {
2622   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2623   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2624 
2625   // Simply return if called for a thread that does not use guard pages.
2626   if (_stack_guard_state == stack_guard_unused) return;
2627 
2628   // The base notation is from the stacks point of view, growing downward.
2629   // We need to adjust it to work correctly with guard_memory()
2630   address base = stack_red_zone_base();
2631 
2632   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2633     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2634   } else {
2635     warning("Attempt to unguard stack yellow zone failed.");
2636   }
2637   disable_register_stack_guard();
2638 }
2639 
2640 void JavaThread::enable_stack_red_zone() {
2641   // The base notation is from the stacks point of view, growing downward.
2642   // We need to adjust it to work correctly with guard_memory()
2643   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2644   address base = stack_red_zone_base() - stack_red_zone_size();
2645 
2646   guarantee(base < stack_base(), "Error calculating stack red zone");
2647   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2648 
2649   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2650     warning("Attempt to guard stack red zone failed.");
2651   }
2652 }
2653 
2654 void JavaThread::disable_stack_red_zone() {
2655   // The base notation is from the stacks point of view, growing downward.
2656   // We need to adjust it to work correctly with guard_memory()
2657   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2658   address base = stack_red_zone_base() - stack_red_zone_size();
2659   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2660     warning("Attempt to unguard stack red zone failed.");
2661   }
2662 }
2663 
2664 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2665   // ignore is there is no stack
2666   if (!has_last_Java_frame()) return;
2667   // traverse the stack frames. Starts from top frame.
2668   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2669     frame* fr = fst.current();
2670     f(fr, fst.register_map());
2671   }
2672 }
2673 
2674 
2675 #ifndef PRODUCT
2676 // Deoptimization
2677 // Function for testing deoptimization
2678 void JavaThread::deoptimize() {
2679   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2680   StackFrameStream fst(this, UseBiasedLocking);
2681   bool deopt = false;           // Dump stack only if a deopt actually happens.
2682   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2683   // Iterate over all frames in the thread and deoptimize
2684   for (; !fst.is_done(); fst.next()) {
2685     if (fst.current()->can_be_deoptimized()) {
2686 
2687       if (only_at) {
2688         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2689         // consists of comma or carriage return separated numbers so
2690         // search for the current bci in that string.
2691         address pc = fst.current()->pc();
2692         nmethod* nm =  (nmethod*) fst.current()->cb();
2693         ScopeDesc* sd = nm->scope_desc_at(pc);
2694         char buffer[8];
2695         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2696         size_t len = strlen(buffer);
2697         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2698         while (found != NULL) {
2699           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2700               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2701             // Check that the bci found is bracketed by terminators.
2702             break;
2703           }
2704           found = strstr(found + 1, buffer);
2705         }
2706         if (!found) {
2707           continue;
2708         }
2709       }
2710 
2711       if (DebugDeoptimization && !deopt) {
2712         deopt = true; // One-time only print before deopt
2713         tty->print_cr("[BEFORE Deoptimization]");
2714         trace_frames();
2715         trace_stack();
2716       }
2717       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2718     }
2719   }
2720 
2721   if (DebugDeoptimization && deopt) {
2722     tty->print_cr("[AFTER Deoptimization]");
2723     trace_frames();
2724   }
2725 }
2726 
2727 
2728 // Make zombies
2729 void JavaThread::make_zombies() {
2730   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2731     if (fst.current()->can_be_deoptimized()) {
2732       // it is a Java nmethod
2733       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2734       nm->make_not_entrant();
2735     }
2736   }
2737 }
2738 #endif // PRODUCT
2739 
2740 
2741 void JavaThread::deoptimized_wrt_marked_nmethods() {
2742   if (!has_last_Java_frame()) return;
2743   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2744   StackFrameStream fst(this, UseBiasedLocking);
2745   for (; !fst.is_done(); fst.next()) {
2746     if (fst.current()->should_be_deoptimized()) {
2747       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2748     }
2749   }
2750 }
2751 
2752 
2753 // If the caller is a NamedThread, then remember, in the current scope,
2754 // the given JavaThread in its _processed_thread field.
2755 class RememberProcessedThread: public StackObj {
2756   NamedThread* _cur_thr;
2757  public:
2758   RememberProcessedThread(JavaThread* jthr) {
2759     Thread* thread = Thread::current();
2760     if (thread->is_Named_thread()) {
2761       _cur_thr = (NamedThread *)thread;
2762       _cur_thr->set_processed_thread(jthr);
2763     } else {
2764       _cur_thr = NULL;
2765     }
2766   }
2767 
2768   ~RememberProcessedThread() {
2769     if (_cur_thr) {
2770       _cur_thr->set_processed_thread(NULL);
2771     }
2772   }
2773 };
2774 
2775 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2776   // Verify that the deferred card marks have been flushed.
2777   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2778 
2779   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2780   // since there may be more than one thread using each ThreadProfiler.
2781 
2782   // Traverse the GCHandles
2783   Thread::oops_do(f, cf);
2784 
2785   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2786 
2787   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2788          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2789 
2790   if (has_last_Java_frame()) {
2791     // Record JavaThread to GC thread
2792     RememberProcessedThread rpt(this);
2793 
2794     // Traverse the privileged stack
2795     if (_privileged_stack_top != NULL) {
2796       _privileged_stack_top->oops_do(f);
2797     }
2798 
2799     // traverse the registered growable array
2800     if (_array_for_gc != NULL) {
2801       for (int index = 0; index < _array_for_gc->length(); index++) {
2802         f->do_oop(_array_for_gc->adr_at(index));
2803       }
2804     }
2805 
2806     // Traverse the monitor chunks
2807     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2808       chunk->oops_do(f);
2809     }
2810 
2811     // Traverse the execution stack
2812     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2813       fst.current()->oops_do(f, cf, fst.register_map());
2814     }
2815   }
2816 
2817   // callee_target is never live across a gc point so NULL it here should
2818   // it still contain a methdOop.
2819 
2820   set_callee_target(NULL);
2821 
2822   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2823   // If we have deferred set_locals there might be oops waiting to be
2824   // written
2825   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2826   if (list != NULL) {
2827     for (int i = 0; i < list->length(); i++) {
2828       list->at(i)->oops_do(f);
2829     }
2830   }
2831 
2832   // Traverse instance variables at the end since the GC may be moving things
2833   // around using this function
2834   f->do_oop((oop*) &_threadObj);
2835   f->do_oop((oop*) &_vm_result);
2836   f->do_oop((oop*) &_exception_oop);
2837   f->do_oop((oop*) &_pending_async_exception);
2838 
2839   if (jvmti_thread_state() != NULL) {
2840     jvmti_thread_state()->oops_do(f);
2841   }
2842 }
2843 
2844 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2845   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2846          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2847 
2848   if (has_last_Java_frame()) {
2849     // Traverse the execution stack
2850     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2851       fst.current()->nmethods_do(cf);
2852     }
2853   }
2854 }
2855 
2856 void JavaThread::metadata_do(void f(Metadata*)) {
2857   if (has_last_Java_frame()) {
2858     // Traverse the execution stack to call f() on the methods in the stack
2859     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2860       fst.current()->metadata_do(f);
2861     }
2862   } else if (is_Compiler_thread()) {
2863     // need to walk ciMetadata in current compile tasks to keep alive.
2864     CompilerThread* ct = (CompilerThread*)this;
2865     if (ct->env() != NULL) {
2866       ct->env()->metadata_do(f);
2867     }
2868     if (ct->task() != NULL) {
2869       ct->task()->metadata_do(f);
2870     }
2871   }
2872 }
2873 
2874 // Printing
2875 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2876   switch (_thread_state) {
2877   case _thread_uninitialized:     return "_thread_uninitialized";
2878   case _thread_new:               return "_thread_new";
2879   case _thread_new_trans:         return "_thread_new_trans";
2880   case _thread_in_native:         return "_thread_in_native";
2881   case _thread_in_native_trans:   return "_thread_in_native_trans";
2882   case _thread_in_vm:             return "_thread_in_vm";
2883   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2884   case _thread_in_Java:           return "_thread_in_Java";
2885   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2886   case _thread_blocked:           return "_thread_blocked";
2887   case _thread_blocked_trans:     return "_thread_blocked_trans";
2888   default:                        return "unknown thread state";
2889   }
2890 }
2891 
2892 #ifndef PRODUCT
2893 void JavaThread::print_thread_state_on(outputStream *st) const {
2894   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2895 };
2896 void JavaThread::print_thread_state() const {
2897   print_thread_state_on(tty);
2898 }
2899 #endif // PRODUCT
2900 
2901 // Called by Threads::print() for VM_PrintThreads operation
2902 void JavaThread::print_on(outputStream *st) const {
2903   st->print_raw("\"");
2904   st->print_raw(get_thread_name());
2905   st->print_raw("\" ");
2906   oop thread_oop = threadObj();
2907   if (thread_oop != NULL) {
2908     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2909     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2910     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2911   }
2912   Thread::print_on(st);
2913   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2914   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2915   if (thread_oop != NULL) {
2916     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2917   }
2918 #ifndef PRODUCT
2919   print_thread_state_on(st);
2920   _safepoint_state->print_on(st);
2921 #endif // PRODUCT
2922   if (is_Compiler_thread()) {
2923     CompilerThread* ct = (CompilerThread*)this;
2924     if (ct->task() != NULL) {
2925       st->print("   Compiling: ");
2926       ct->task()->print(st, NULL, true, false);
2927     } else {
2928       st->print("   No compile task");
2929     }
2930     st->cr();
2931   }
2932 }
2933 
2934 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2935   st->print("%s", get_thread_name_string(buf, buflen));
2936 }
2937 
2938 // Called by fatal error handler. The difference between this and
2939 // JavaThread::print() is that we can't grab lock or allocate memory.
2940 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2941   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2942   oop thread_obj = threadObj();
2943   if (thread_obj != NULL) {
2944     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2945   }
2946   st->print(" [");
2947   st->print("%s", _get_thread_state_name(_thread_state));
2948   if (osthread()) {
2949     st->print(", id=%d", osthread()->thread_id());
2950   }
2951   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2952             p2i(stack_end()), p2i(stack_base()));
2953   st->print("]");
2954   return;
2955 }
2956 
2957 // Verification
2958 
2959 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2960 
2961 void JavaThread::verify() {
2962   // Verify oops in the thread.
2963   oops_do(&VerifyOopClosure::verify_oop, NULL);
2964 
2965   // Verify the stack frames.
2966   frames_do(frame_verify);
2967 }
2968 
2969 // CR 6300358 (sub-CR 2137150)
2970 // Most callers of this method assume that it can't return NULL but a
2971 // thread may not have a name whilst it is in the process of attaching to
2972 // the VM - see CR 6412693, and there are places where a JavaThread can be
2973 // seen prior to having it's threadObj set (eg JNI attaching threads and
2974 // if vm exit occurs during initialization). These cases can all be accounted
2975 // for such that this method never returns NULL.
2976 const char* JavaThread::get_thread_name() const {
2977 #ifdef ASSERT
2978   // early safepoints can hit while current thread does not yet have TLS
2979   if (!SafepointSynchronize::is_at_safepoint()) {
2980     Thread *cur = Thread::current();
2981     if (!(cur->is_Java_thread() && cur == this)) {
2982       // Current JavaThreads are allowed to get their own name without
2983       // the Threads_lock.
2984       assert_locked_or_safepoint(Threads_lock);
2985     }
2986   }
2987 #endif // ASSERT
2988   return get_thread_name_string();
2989 }
2990 
2991 // Returns a non-NULL representation of this thread's name, or a suitable
2992 // descriptive string if there is no set name
2993 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2994   const char* name_str;
2995   oop thread_obj = threadObj();
2996   if (thread_obj != NULL) {
2997     oop name = java_lang_Thread::name(thread_obj);
2998     if (name != NULL) {
2999       if (buf == NULL) {
3000         name_str = java_lang_String::as_utf8_string(name);
3001       } else {
3002         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3003       }
3004     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3005       name_str = "<no-name - thread is attaching>";
3006     } else {
3007       name_str = Thread::name();
3008     }
3009   } else {
3010     name_str = Thread::name();
3011   }
3012   assert(name_str != NULL, "unexpected NULL thread name");
3013   return name_str;
3014 }
3015 
3016 
3017 const char* JavaThread::get_threadgroup_name() const {
3018   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3019   oop thread_obj = threadObj();
3020   if (thread_obj != NULL) {
3021     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3022     if (thread_group != NULL) {
3023       // ThreadGroup.name can be null
3024       return java_lang_ThreadGroup::name(thread_group);
3025     }
3026   }
3027   return NULL;
3028 }
3029 
3030 const char* JavaThread::get_parent_name() const {
3031   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3032   oop thread_obj = threadObj();
3033   if (thread_obj != NULL) {
3034     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3035     if (thread_group != NULL) {
3036       oop parent = java_lang_ThreadGroup::parent(thread_group);
3037       if (parent != NULL) {
3038         // ThreadGroup.name can be null
3039         return java_lang_ThreadGroup::name(parent);
3040       }
3041     }
3042   }
3043   return NULL;
3044 }
3045 
3046 ThreadPriority JavaThread::java_priority() const {
3047   oop thr_oop = threadObj();
3048   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3049   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3050   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3051   return priority;
3052 }
3053 
3054 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3055 
3056   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3057   // Link Java Thread object <-> C++ Thread
3058 
3059   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3060   // and put it into a new Handle.  The Handle "thread_oop" can then
3061   // be used to pass the C++ thread object to other methods.
3062 
3063   // Set the Java level thread object (jthread) field of the
3064   // new thread (a JavaThread *) to C++ thread object using the
3065   // "thread_oop" handle.
3066 
3067   // Set the thread field (a JavaThread *) of the
3068   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3069 
3070   Handle thread_oop(Thread::current(),
3071                     JNIHandles::resolve_non_null(jni_thread));
3072   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3073          "must be initialized");
3074   set_threadObj(thread_oop());
3075   java_lang_Thread::set_thread(thread_oop(), this);
3076 
3077   if (prio == NoPriority) {
3078     prio = java_lang_Thread::priority(thread_oop());
3079     assert(prio != NoPriority, "A valid priority should be present");
3080   }
3081 
3082   // Push the Java priority down to the native thread; needs Threads_lock
3083   Thread::set_priority(this, prio);
3084 
3085   prepare_ext();
3086 
3087   // Add the new thread to the Threads list and set it in motion.
3088   // We must have threads lock in order to call Threads::add.
3089   // It is crucial that we do not block before the thread is
3090   // added to the Threads list for if a GC happens, then the java_thread oop
3091   // will not be visited by GC.
3092   Threads::add(this);
3093 }
3094 
3095 oop JavaThread::current_park_blocker() {
3096   // Support for JSR-166 locks
3097   oop thread_oop = threadObj();
3098   if (thread_oop != NULL &&
3099       JDK_Version::current().supports_thread_park_blocker()) {
3100     return java_lang_Thread::park_blocker(thread_oop);
3101   }
3102   return NULL;
3103 }
3104 
3105 
3106 void JavaThread::print_stack_on(outputStream* st) {
3107   if (!has_last_Java_frame()) return;
3108   ResourceMark rm;
3109   HandleMark   hm;
3110 
3111   RegisterMap reg_map(this);
3112   vframe* start_vf = last_java_vframe(&reg_map);
3113   int count = 0;
3114   for (vframe* f = start_vf; f; f = f->sender()) {
3115     if (f->is_java_frame()) {
3116       javaVFrame* jvf = javaVFrame::cast(f);
3117       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3118 
3119       // Print out lock information
3120       if (JavaMonitorsInStackTrace) {
3121         jvf->print_lock_info_on(st, count);
3122       }
3123     } else {
3124       // Ignore non-Java frames
3125     }
3126 
3127     // Bail-out case for too deep stacks
3128     count++;
3129     if (MaxJavaStackTraceDepth == count) return;
3130   }
3131 }
3132 
3133 
3134 // JVMTI PopFrame support
3135 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3136   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3137   if (in_bytes(size_in_bytes) != 0) {
3138     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3139     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3140     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3141   }
3142 }
3143 
3144 void* JavaThread::popframe_preserved_args() {
3145   return _popframe_preserved_args;
3146 }
3147 
3148 ByteSize JavaThread::popframe_preserved_args_size() {
3149   return in_ByteSize(_popframe_preserved_args_size);
3150 }
3151 
3152 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3153   int sz = in_bytes(popframe_preserved_args_size());
3154   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3155   return in_WordSize(sz / wordSize);
3156 }
3157 
3158 void JavaThread::popframe_free_preserved_args() {
3159   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3160   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3161   _popframe_preserved_args = NULL;
3162   _popframe_preserved_args_size = 0;
3163 }
3164 
3165 #ifndef PRODUCT
3166 
3167 void JavaThread::trace_frames() {
3168   tty->print_cr("[Describe stack]");
3169   int frame_no = 1;
3170   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3171     tty->print("  %d. ", frame_no++);
3172     fst.current()->print_value_on(tty, this);
3173     tty->cr();
3174   }
3175 }
3176 
3177 class PrintAndVerifyOopClosure: public OopClosure {
3178  protected:
3179   template <class T> inline void do_oop_work(T* p) {
3180     oop obj = oopDesc::load_decode_heap_oop(p);
3181     if (obj == NULL) return;
3182     tty->print(INTPTR_FORMAT ": ", p2i(p));
3183     if (obj->is_oop_or_null()) {
3184       if (obj->is_objArray()) {
3185         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3186       } else {
3187         obj->print();
3188       }
3189     } else {
3190       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3191     }
3192     tty->cr();
3193   }
3194  public:
3195   virtual void do_oop(oop* p) { do_oop_work(p); }
3196   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3197 };
3198 
3199 
3200 static void oops_print(frame* f, const RegisterMap *map) {
3201   PrintAndVerifyOopClosure print;
3202   f->print_value();
3203   f->oops_do(&print, NULL, (RegisterMap*)map);
3204 }
3205 
3206 // Print our all the locations that contain oops and whether they are
3207 // valid or not.  This useful when trying to find the oldest frame
3208 // where an oop has gone bad since the frame walk is from youngest to
3209 // oldest.
3210 void JavaThread::trace_oops() {
3211   tty->print_cr("[Trace oops]");
3212   frames_do(oops_print);
3213 }
3214 
3215 
3216 #ifdef ASSERT
3217 // Print or validate the layout of stack frames
3218 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3219   ResourceMark rm;
3220   PRESERVE_EXCEPTION_MARK;
3221   FrameValues values;
3222   int frame_no = 0;
3223   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3224     fst.current()->describe(values, ++frame_no);
3225     if (depth == frame_no) break;
3226   }
3227   if (validate_only) {
3228     values.validate();
3229   } else {
3230     tty->print_cr("[Describe stack layout]");
3231     values.print(this);
3232   }
3233 }
3234 #endif
3235 
3236 void JavaThread::trace_stack_from(vframe* start_vf) {
3237   ResourceMark rm;
3238   int vframe_no = 1;
3239   for (vframe* f = start_vf; f; f = f->sender()) {
3240     if (f->is_java_frame()) {
3241       javaVFrame::cast(f)->print_activation(vframe_no++);
3242     } else {
3243       f->print();
3244     }
3245     if (vframe_no > StackPrintLimit) {
3246       tty->print_cr("...<more frames>...");
3247       return;
3248     }
3249   }
3250 }
3251 
3252 
3253 void JavaThread::trace_stack() {
3254   if (!has_last_Java_frame()) return;
3255   ResourceMark rm;
3256   HandleMark   hm;
3257   RegisterMap reg_map(this);
3258   trace_stack_from(last_java_vframe(&reg_map));
3259 }
3260 
3261 
3262 #endif // PRODUCT
3263 
3264 
3265 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3266   assert(reg_map != NULL, "a map must be given");
3267   frame f = last_frame();
3268   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3269     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3270   }
3271   return NULL;
3272 }
3273 
3274 
3275 Klass* JavaThread::security_get_caller_class(int depth) {
3276   vframeStream vfst(this);
3277   vfst.security_get_caller_frame(depth);
3278   if (!vfst.at_end()) {
3279     return vfst.method()->method_holder();
3280   }
3281   return NULL;
3282 }
3283 
3284 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3285   assert(thread->is_Compiler_thread(), "must be compiler thread");
3286   CompileBroker::compiler_thread_loop();
3287 }
3288 
3289 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3290   NMethodSweeper::sweeper_loop();
3291 }
3292 
3293 // Create a CompilerThread
3294 CompilerThread::CompilerThread(CompileQueue* queue,
3295                                CompilerCounters* counters)
3296                                : JavaThread(&compiler_thread_entry) {
3297   _env   = NULL;
3298   _log   = NULL;
3299   _task  = NULL;
3300   _queue = queue;
3301   _counters = counters;
3302   _buffer_blob = NULL;
3303   _compiler = NULL;
3304 
3305 #ifndef PRODUCT
3306   _ideal_graph_printer = NULL;
3307 #endif
3308 }
3309 
3310 bool CompilerThread::can_call_java() const {
3311   return _compiler != NULL && _compiler->is_jvmci();
3312 }
3313 
3314 // Create sweeper thread
3315 CodeCacheSweeperThread::CodeCacheSweeperThread()
3316 : JavaThread(&sweeper_thread_entry) {
3317   _scanned_nmethod = NULL;
3318 }
3319 
3320 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3321   JavaThread::oops_do(f, cf);
3322   if (_scanned_nmethod != NULL && cf != NULL) {
3323     // Safepoints can occur when the sweeper is scanning an nmethod so
3324     // process it here to make sure it isn't unloaded in the middle of
3325     // a scan.
3326     cf->do_code_blob(_scanned_nmethod);
3327   }
3328 }
3329 
3330 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3331   JavaThread::nmethods_do(cf);
3332   if (_scanned_nmethod != NULL && cf != NULL) {
3333     // Safepoints can occur when the sweeper is scanning an nmethod so
3334     // process it here to make sure it isn't unloaded in the middle of
3335     // a scan.
3336     cf->do_code_blob(_scanned_nmethod);
3337   }
3338 }
3339 
3340 
3341 // ======= Threads ========
3342 
3343 // The Threads class links together all active threads, and provides
3344 // operations over all threads.  It is protected by its own Mutex
3345 // lock, which is also used in other contexts to protect thread
3346 // operations from having the thread being operated on from exiting
3347 // and going away unexpectedly (e.g., safepoint synchronization)
3348 
3349 JavaThread* Threads::_thread_list = NULL;
3350 int         Threads::_number_of_threads = 0;
3351 int         Threads::_number_of_non_daemon_threads = 0;
3352 int         Threads::_return_code = 0;
3353 int         Threads::_thread_claim_parity = 0;
3354 size_t      JavaThread::_stack_size_at_create = 0;
3355 #ifdef ASSERT
3356 bool        Threads::_vm_complete = false;
3357 #endif
3358 
3359 // All JavaThreads
3360 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3361 
3362 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3363 void Threads::threads_do(ThreadClosure* tc) {
3364   assert_locked_or_safepoint(Threads_lock);
3365   // ALL_JAVA_THREADS iterates through all JavaThreads
3366   ALL_JAVA_THREADS(p) {
3367     tc->do_thread(p);
3368   }
3369   // Someday we could have a table or list of all non-JavaThreads.
3370   // For now, just manually iterate through them.
3371   tc->do_thread(VMThread::vm_thread());
3372   Universe::heap()->gc_threads_do(tc);
3373   WatcherThread *wt = WatcherThread::watcher_thread();
3374   // Strictly speaking, the following NULL check isn't sufficient to make sure
3375   // the data for WatcherThread is still valid upon being examined. However,
3376   // considering that WatchThread terminates when the VM is on the way to
3377   // exit at safepoint, the chance of the above is extremely small. The right
3378   // way to prevent termination of WatcherThread would be to acquire
3379   // Terminator_lock, but we can't do that without violating the lock rank
3380   // checking in some cases.
3381   if (wt != NULL) {
3382     tc->do_thread(wt);
3383   }
3384 
3385   // If CompilerThreads ever become non-JavaThreads, add them here
3386 }
3387 
3388 // The system initialization in the library has three phases.
3389 //
3390 // Phase 1: java.lang.System class initialization
3391 //     java.lang.System is a primordial class loaded and initialized
3392 //     by the VM early during startup.  java.lang.System.<clinit>
3393 //     only does registerNatives and keeps the rest of the class
3394 //     initialization work later until thread initialization completes.
3395 //
3396 //     System.initPhase1 initializes the system properties, the static
3397 //     fields in, out, and err. Set up java signal handlers, OS-specific
3398 //     system settings, and thread group of the main thread.
3399 static void call_initPhase1(TRAPS) {
3400   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3401   instanceKlassHandle klass (THREAD, k);
3402 
3403   JavaValue result(T_VOID);
3404   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3405                                          vmSymbols::void_method_signature(), CHECK);
3406 }
3407 
3408 // Phase 2. Module system initialization
3409 //     This will initialize the module system.  Only java.base classes
3410 //     can be loaded until phase 2 completes.
3411 //
3412 //     Call System.initPhase2 after the compiler initialization and jsr292
3413 //     classes get initialized because module initialization runs a lot of java
3414 //     code, that for performance reasons, should be compiled.  Also, this will
3415 //     enable the startup code to use lambda and other language features in this
3416 //     phase and onward.
3417 //
3418 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3419 static void call_initPhase2(TRAPS) {
3420   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3421   instanceKlassHandle klass (THREAD, k);
3422 
3423   JavaValue result(T_VOID);
3424   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3425                                          vmSymbols::void_method_signature(), CHECK);
3426   universe_post_module_init();
3427 }
3428 
3429 // Phase 3. final setup - set security manager, system class loader and TCCL
3430 //
3431 //     This will instantiate and set the security manager, set the system class
3432 //     loader as well as the thread context class loader.  The security manager
3433 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3434 //     other modules or the application's classpath.
3435 static void call_initPhase3(TRAPS) {
3436   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3437   instanceKlassHandle klass (THREAD, k);
3438 
3439   JavaValue result(T_VOID);
3440   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3441                                          vmSymbols::void_method_signature(), CHECK);
3442 }
3443 
3444 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3445   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3446 
3447   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3448     create_vm_init_libraries();
3449   }
3450 
3451   initialize_class(vmSymbols::java_lang_String(), CHECK);
3452 
3453   // Inject CompactStrings value after the static initializers for String ran.
3454   java_lang_String::set_compact_strings(CompactStrings);
3455 
3456   // Initialize java_lang.System (needed before creating the thread)
3457   initialize_class(vmSymbols::java_lang_System(), CHECK);
3458   // The VM creates & returns objects of this class. Make sure it's initialized.
3459   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3460   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3461   Handle thread_group = create_initial_thread_group(CHECK);
3462   Universe::set_main_thread_group(thread_group());
3463   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3464   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3465   main_thread->set_threadObj(thread_object);
3466   // Set thread status to running since main thread has
3467   // been started and running.
3468   java_lang_Thread::set_thread_status(thread_object,
3469                                       java_lang_Thread::RUNNABLE);
3470 
3471   // The VM creates objects of this class.
3472   initialize_class(vmSymbols::java_lang_reflect_Module(), CHECK);
3473 
3474   // The VM preresolves methods to these classes. Make sure that they get initialized
3475   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3476   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3477 
3478   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3479   call_initPhase1(CHECK);
3480 
3481   // get the Java runtime name after java.lang.System is initialized
3482   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3483   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3484 
3485   // an instance of OutOfMemory exception has been allocated earlier
3486   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3487   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3488   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3489   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3490   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3491   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3492   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3493   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3494 }
3495 
3496 void Threads::initialize_jsr292_core_classes(TRAPS) {
3497   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3498 
3499   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3500   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3501   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3502 }
3503 
3504 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3505   extern void JDK_Version_init();
3506 
3507   // Preinitialize version info.
3508   VM_Version::early_initialize();
3509 
3510   // Check version
3511   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3512 
3513   // Initialize library-based TLS
3514   ThreadLocalStorage::init();
3515 
3516   // Initialize the output stream module
3517   ostream_init();
3518 
3519   // Process java launcher properties.
3520   Arguments::process_sun_java_launcher_properties(args);
3521 
3522   // Initialize the os module
3523   os::init();
3524 
3525   // Record VM creation timing statistics
3526   TraceVmCreationTime create_vm_timer;
3527   create_vm_timer.start();
3528 
3529   // Initialize system properties.
3530   Arguments::init_system_properties();
3531 
3532   // So that JDK version can be used as a discriminator when parsing arguments
3533   JDK_Version_init();
3534 
3535   // Update/Initialize System properties after JDK version number is known
3536   Arguments::init_version_specific_system_properties();
3537 
3538   // Make sure to initialize log configuration *before* parsing arguments
3539   LogConfiguration::initialize(create_vm_timer.begin_time());
3540 
3541   // Parse arguments
3542   jint parse_result = Arguments::parse(args);
3543   if (parse_result != JNI_OK) return parse_result;
3544 
3545   os::init_before_ergo();
3546 
3547   jint ergo_result = Arguments::apply_ergo();
3548   if (ergo_result != JNI_OK) return ergo_result;
3549 
3550   // Final check of all ranges after ergonomics which may change values.
3551   if (!CommandLineFlagRangeList::check_ranges()) {
3552     return JNI_EINVAL;
3553   }
3554 
3555   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3556   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3557   if (!constraint_result) {
3558     return JNI_EINVAL;
3559   }
3560 
3561   if (PauseAtStartup) {
3562     os::pause();
3563   }
3564 
3565   HOTSPOT_VM_INIT_BEGIN();
3566 
3567   // Timing (must come after argument parsing)
3568   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3569 
3570   // Initialize the os module after parsing the args
3571   jint os_init_2_result = os::init_2();
3572   if (os_init_2_result != JNI_OK) return os_init_2_result;
3573 
3574   jint adjust_after_os_result = Arguments::adjust_after_os();
3575   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3576 
3577   // Initialize output stream logging
3578   ostream_init_log();
3579 
3580   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3581   // Must be before create_vm_init_agents()
3582   if (Arguments::init_libraries_at_startup()) {
3583     convert_vm_init_libraries_to_agents();
3584   }
3585 
3586   // Launch -agentlib/-agentpath and converted -Xrun agents
3587   if (Arguments::init_agents_at_startup()) {
3588     create_vm_init_agents();
3589   }
3590 
3591   // Initialize Threads state
3592   _thread_list = NULL;
3593   _number_of_threads = 0;
3594   _number_of_non_daemon_threads = 0;
3595 
3596   // Initialize global data structures and create system classes in heap
3597   vm_init_globals();
3598 
3599 #if INCLUDE_JVMCI
3600   if (JVMCICounterSize > 0) {
3601     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3602     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3603   } else {
3604     JavaThread::_jvmci_old_thread_counters = NULL;
3605   }
3606 #endif // INCLUDE_JVMCI
3607 
3608   // Attach the main thread to this os thread
3609   JavaThread* main_thread = new JavaThread();
3610   main_thread->set_thread_state(_thread_in_vm);
3611   main_thread->initialize_thread_current();
3612   // must do this before set_active_handles
3613   main_thread->record_stack_base_and_size();
3614   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3615 
3616   if (!main_thread->set_as_starting_thread()) {
3617     vm_shutdown_during_initialization(
3618                                       "Failed necessary internal allocation. Out of swap space");
3619     delete main_thread;
3620     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3621     return JNI_ENOMEM;
3622   }
3623 
3624   // Enable guard page *after* os::create_main_thread(), otherwise it would
3625   // crash Linux VM, see notes in os_linux.cpp.
3626   main_thread->create_stack_guard_pages();
3627 
3628   // Initialize Java-Level synchronization subsystem
3629   ObjectMonitor::Initialize();
3630 
3631   // Initialize global modules
3632   jint status = init_globals();
3633   if (status != JNI_OK) {
3634     delete main_thread;
3635     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3636     return status;
3637   }
3638 
3639   if (TRACE_INITIALIZE() != JNI_OK) {
3640     vm_exit_during_initialization("Failed to initialize tracing backend");
3641   }
3642 
3643   // Should be done after the heap is fully created
3644   main_thread->cache_global_variables();
3645 
3646   HandleMark hm;
3647 
3648   { MutexLocker mu(Threads_lock);
3649     Threads::add(main_thread);
3650   }
3651 
3652   // Any JVMTI raw monitors entered in onload will transition into
3653   // real raw monitor. VM is setup enough here for raw monitor enter.
3654   JvmtiExport::transition_pending_onload_raw_monitors();
3655 
3656   // Create the VMThread
3657   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3658 
3659   VMThread::create();
3660     Thread* vmthread = VMThread::vm_thread();
3661 
3662     if (!os::create_thread(vmthread, os::vm_thread)) {
3663       vm_exit_during_initialization("Cannot create VM thread. "
3664                                     "Out of system resources.");
3665     }
3666 
3667     // Wait for the VM thread to become ready, and VMThread::run to initialize
3668     // Monitors can have spurious returns, must always check another state flag
3669     {
3670       MutexLocker ml(Notify_lock);
3671       os::start_thread(vmthread);
3672       while (vmthread->active_handles() == NULL) {
3673         Notify_lock->wait();
3674       }
3675     }
3676   }
3677 
3678   assert(Universe::is_fully_initialized(), "not initialized");
3679   if (VerifyDuringStartup) {
3680     // Make sure we're starting with a clean slate.
3681     VM_Verify verify_op;
3682     VMThread::execute(&verify_op);
3683   }
3684 
3685   Thread* THREAD = Thread::current();
3686 
3687   // At this point, the Universe is initialized, but we have not executed
3688   // any byte code.  Now is a good time (the only time) to dump out the
3689   // internal state of the JVM for sharing.
3690   if (DumpSharedSpaces) {
3691     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3692     ShouldNotReachHere();
3693   }
3694 
3695   // Always call even when there are not JVMTI environments yet, since environments
3696   // may be attached late and JVMTI must track phases of VM execution
3697   JvmtiExport::enter_early_start_phase();
3698 
3699   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3700   JvmtiExport::post_early_vm_start();
3701 
3702   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3703 
3704   // We need this for ClassDataSharing - the initial vm.info property is set
3705   // with the default value of CDS "sharing" which may be reset through
3706   // command line options.
3707   reset_vm_info_property(CHECK_JNI_ERR);
3708 
3709   quicken_jni_functions();
3710 
3711   // No more stub generation allowed after that point.
3712   StubCodeDesc::freeze();
3713 
3714   // Set flag that basic initialization has completed. Used by exceptions and various
3715   // debug stuff, that does not work until all basic classes have been initialized.
3716   set_init_completed();
3717 
3718   LogConfiguration::post_initialize();
3719   Metaspace::post_initialize();
3720 
3721   HOTSPOT_VM_INIT_END();
3722 
3723   // record VM initialization completion time
3724 #if INCLUDE_MANAGEMENT
3725   Management::record_vm_init_completed();
3726 #endif // INCLUDE_MANAGEMENT
3727 
3728   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3729   // set_init_completed has just been called, causing exceptions not to be shortcut
3730   // anymore. We call vm_exit_during_initialization directly instead.
3731 
3732   // Initialize reference pending list locker
3733   bool needs_locker_thread = Universe::heap()->needs_reference_pending_list_locker_thread();
3734   ReferencePendingListLocker::initialize(needs_locker_thread, CHECK_JNI_ERR);
3735 
3736   // Signal Dispatcher needs to be started before VMInit event is posted
3737   os::signal_init();
3738 
3739   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3740   if (!DisableAttachMechanism) {
3741     AttachListener::vm_start();
3742     if (StartAttachListener || AttachListener::init_at_startup()) {
3743       AttachListener::init();
3744     }
3745   }
3746 
3747   // Launch -Xrun agents
3748   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3749   // back-end can launch with -Xdebug -Xrunjdwp.
3750   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3751     create_vm_init_libraries();
3752   }
3753 
3754   if (CleanChunkPoolAsync) {
3755     Chunk::start_chunk_pool_cleaner_task();
3756   }
3757 
3758   // initialize compiler(s)
3759 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3760   CompileBroker::compilation_init(CHECK_JNI_ERR);
3761 #endif
3762 
3763   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3764   // It is done after compilers are initialized, because otherwise compilations of
3765   // signature polymorphic MH intrinsics can be missed
3766   // (see SystemDictionary::find_method_handle_intrinsic).
3767   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3768 
3769   // This will initialize the module system.  Only java.base classes can be
3770   // loaded until phase 2 completes
3771   call_initPhase2(CHECK_JNI_ERR);
3772 
3773   // Always call even when there are not JVMTI environments yet, since environments
3774   // may be attached late and JVMTI must track phases of VM execution
3775   JvmtiExport::enter_start_phase();
3776 
3777   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3778   JvmtiExport::post_vm_start();
3779 
3780   // Final system initialization including security manager and system class loader
3781   call_initPhase3(CHECK_JNI_ERR);
3782 
3783   // cache the system class loader
3784   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3785 
3786   // Always call even when there are not JVMTI environments yet, since environments
3787   // may be attached late and JVMTI must track phases of VM execution
3788   JvmtiExport::enter_live_phase();
3789 
3790   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3791   JvmtiExport::post_vm_initialized();
3792 
3793   if (TRACE_START() != JNI_OK) {
3794     vm_exit_during_initialization("Failed to start tracing backend.");
3795   }
3796 
3797 #if INCLUDE_MANAGEMENT
3798   Management::initialize(THREAD);
3799 
3800   if (HAS_PENDING_EXCEPTION) {
3801     // management agent fails to start possibly due to
3802     // configuration problem and is responsible for printing
3803     // stack trace if appropriate. Simply exit VM.
3804     vm_exit(1);
3805   }
3806 #endif // INCLUDE_MANAGEMENT
3807 
3808   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3809   if (MemProfiling)                   MemProfiler::engage();
3810   StatSampler::engage();
3811   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3812 
3813   BiasedLocking::init();
3814 
3815 #if INCLUDE_RTM_OPT
3816   RTMLockingCounters::init();
3817 #endif
3818 
3819   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3820     call_postVMInitHook(THREAD);
3821     // The Java side of PostVMInitHook.run must deal with all
3822     // exceptions and provide means of diagnosis.
3823     if (HAS_PENDING_EXCEPTION) {
3824       CLEAR_PENDING_EXCEPTION;
3825     }
3826   }
3827 
3828   {
3829     MutexLocker ml(PeriodicTask_lock);
3830     // Make sure the WatcherThread can be started by WatcherThread::start()
3831     // or by dynamic enrollment.
3832     WatcherThread::make_startable();
3833     // Start up the WatcherThread if there are any periodic tasks
3834     // NOTE:  All PeriodicTasks should be registered by now. If they
3835     //   aren't, late joiners might appear to start slowly (we might
3836     //   take a while to process their first tick).
3837     if (PeriodicTask::num_tasks() > 0) {
3838       WatcherThread::start();
3839     }
3840   }
3841 
3842   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3843 
3844   create_vm_timer.end();
3845 #ifdef ASSERT
3846   _vm_complete = true;
3847 #endif
3848   return JNI_OK;
3849 }
3850 
3851 // type for the Agent_OnLoad and JVM_OnLoad entry points
3852 extern "C" {
3853   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3854 }
3855 // Find a command line agent library and return its entry point for
3856 //         -agentlib:  -agentpath:   -Xrun
3857 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3858 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3859                                     const char *on_load_symbols[],
3860                                     size_t num_symbol_entries) {
3861   OnLoadEntry_t on_load_entry = NULL;
3862   void *library = NULL;
3863 
3864   if (!agent->valid()) {
3865     char buffer[JVM_MAXPATHLEN];
3866     char ebuf[1024] = "";
3867     const char *name = agent->name();
3868     const char *msg = "Could not find agent library ";
3869 
3870     // First check to see if agent is statically linked into executable
3871     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3872       library = agent->os_lib();
3873     } else if (agent->is_absolute_path()) {
3874       library = os::dll_load(name, ebuf, sizeof ebuf);
3875       if (library == NULL) {
3876         const char *sub_msg = " in absolute path, with error: ";
3877         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3878         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3879         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3880         // If we can't find the agent, exit.
3881         vm_exit_during_initialization(buf, NULL);
3882         FREE_C_HEAP_ARRAY(char, buf);
3883       }
3884     } else {
3885       // Try to load the agent from the standard dll directory
3886       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3887                              name)) {
3888         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3889       }
3890       if (library == NULL) { // Try the local directory
3891         char ns[1] = {0};
3892         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3893           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3894         }
3895         if (library == NULL) {
3896           const char *sub_msg = " on the library path, with error: ";
3897           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3898           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3899           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3900           // If we can't find the agent, exit.
3901           vm_exit_during_initialization(buf, NULL);
3902           FREE_C_HEAP_ARRAY(char, buf);
3903         }
3904       }
3905     }
3906     agent->set_os_lib(library);
3907     agent->set_valid();
3908   }
3909 
3910   // Find the OnLoad function.
3911   on_load_entry =
3912     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3913                                                           false,
3914                                                           on_load_symbols,
3915                                                           num_symbol_entries));
3916   return on_load_entry;
3917 }
3918 
3919 // Find the JVM_OnLoad entry point
3920 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3921   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3922   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3923 }
3924 
3925 // Find the Agent_OnLoad entry point
3926 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3927   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3928   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3929 }
3930 
3931 // For backwards compatibility with -Xrun
3932 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3933 // treated like -agentpath:
3934 // Must be called before agent libraries are created
3935 void Threads::convert_vm_init_libraries_to_agents() {
3936   AgentLibrary* agent;
3937   AgentLibrary* next;
3938 
3939   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3940     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3941     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3942 
3943     // If there is an JVM_OnLoad function it will get called later,
3944     // otherwise see if there is an Agent_OnLoad
3945     if (on_load_entry == NULL) {
3946       on_load_entry = lookup_agent_on_load(agent);
3947       if (on_load_entry != NULL) {
3948         // switch it to the agent list -- so that Agent_OnLoad will be called,
3949         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3950         Arguments::convert_library_to_agent(agent);
3951       } else {
3952         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3953       }
3954     }
3955   }
3956 }
3957 
3958 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3959 // Invokes Agent_OnLoad
3960 // Called very early -- before JavaThreads exist
3961 void Threads::create_vm_init_agents() {
3962   extern struct JavaVM_ main_vm;
3963   AgentLibrary* agent;
3964 
3965   JvmtiExport::enter_onload_phase();
3966 
3967   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3968     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3969 
3970     if (on_load_entry != NULL) {
3971       // Invoke the Agent_OnLoad function
3972       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3973       if (err != JNI_OK) {
3974         vm_exit_during_initialization("agent library failed to init", agent->name());
3975       }
3976     } else {
3977       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3978     }
3979   }
3980   JvmtiExport::enter_primordial_phase();
3981 }
3982 
3983 extern "C" {
3984   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3985 }
3986 
3987 void Threads::shutdown_vm_agents() {
3988   // Send any Agent_OnUnload notifications
3989   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3990   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3991   extern struct JavaVM_ main_vm;
3992   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3993 
3994     // Find the Agent_OnUnload function.
3995     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3996                                                    os::find_agent_function(agent,
3997                                                    false,
3998                                                    on_unload_symbols,
3999                                                    num_symbol_entries));
4000 
4001     // Invoke the Agent_OnUnload function
4002     if (unload_entry != NULL) {
4003       JavaThread* thread = JavaThread::current();
4004       ThreadToNativeFromVM ttn(thread);
4005       HandleMark hm(thread);
4006       (*unload_entry)(&main_vm);
4007     }
4008   }
4009 }
4010 
4011 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4012 // Invokes JVM_OnLoad
4013 void Threads::create_vm_init_libraries() {
4014   extern struct JavaVM_ main_vm;
4015   AgentLibrary* agent;
4016 
4017   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4018     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4019 
4020     if (on_load_entry != NULL) {
4021       // Invoke the JVM_OnLoad function
4022       JavaThread* thread = JavaThread::current();
4023       ThreadToNativeFromVM ttn(thread);
4024       HandleMark hm(thread);
4025       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4026       if (err != JNI_OK) {
4027         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4028       }
4029     } else {
4030       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4031     }
4032   }
4033 }
4034 
4035 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4036   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4037 
4038   JavaThread* java_thread = NULL;
4039   // Sequential search for now.  Need to do better optimization later.
4040   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4041     oop tobj = thread->threadObj();
4042     if (!thread->is_exiting() &&
4043         tobj != NULL &&
4044         java_tid == java_lang_Thread::thread_id(tobj)) {
4045       java_thread = thread;
4046       break;
4047     }
4048   }
4049   return java_thread;
4050 }
4051 
4052 
4053 // Last thread running calls java.lang.Shutdown.shutdown()
4054 void JavaThread::invoke_shutdown_hooks() {
4055   HandleMark hm(this);
4056 
4057   // We could get here with a pending exception, if so clear it now.
4058   if (this->has_pending_exception()) {
4059     this->clear_pending_exception();
4060   }
4061 
4062   EXCEPTION_MARK;
4063   Klass* k =
4064     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4065                                       THREAD);
4066   if (k != NULL) {
4067     // SystemDictionary::resolve_or_null will return null if there was
4068     // an exception.  If we cannot load the Shutdown class, just don't
4069     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4070     // and finalizers (if runFinalizersOnExit is set) won't be run.
4071     // Note that if a shutdown hook was registered or runFinalizersOnExit
4072     // was called, the Shutdown class would have already been loaded
4073     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4074     instanceKlassHandle shutdown_klass (THREAD, k);
4075     JavaValue result(T_VOID);
4076     JavaCalls::call_static(&result,
4077                            shutdown_klass,
4078                            vmSymbols::shutdown_method_name(),
4079                            vmSymbols::void_method_signature(),
4080                            THREAD);
4081   }
4082   CLEAR_PENDING_EXCEPTION;
4083 }
4084 
4085 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4086 // the program falls off the end of main(). Another VM exit path is through
4087 // vm_exit() when the program calls System.exit() to return a value or when
4088 // there is a serious error in VM. The two shutdown paths are not exactly
4089 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4090 // and VM_Exit op at VM level.
4091 //
4092 // Shutdown sequence:
4093 //   + Shutdown native memory tracking if it is on
4094 //   + Wait until we are the last non-daemon thread to execute
4095 //     <-- every thing is still working at this moment -->
4096 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4097 //        shutdown hooks, run finalizers if finalization-on-exit
4098 //   + Call before_exit(), prepare for VM exit
4099 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4100 //        currently the only user of this mechanism is File.deleteOnExit())
4101 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4102 //        post thread end and vm death events to JVMTI,
4103 //        stop signal thread
4104 //   + Call JavaThread::exit(), it will:
4105 //      > release JNI handle blocks, remove stack guard pages
4106 //      > remove this thread from Threads list
4107 //     <-- no more Java code from this thread after this point -->
4108 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4109 //     the compiler threads at safepoint
4110 //     <-- do not use anything that could get blocked by Safepoint -->
4111 //   + Disable tracing at JNI/JVM barriers
4112 //   + Set _vm_exited flag for threads that are still running native code
4113 //   + Delete this thread
4114 //   + Call exit_globals()
4115 //      > deletes tty
4116 //      > deletes PerfMemory resources
4117 //   + Return to caller
4118 
4119 bool Threads::destroy_vm() {
4120   JavaThread* thread = JavaThread::current();
4121 
4122 #ifdef ASSERT
4123   _vm_complete = false;
4124 #endif
4125   // Wait until we are the last non-daemon thread to execute
4126   { MutexLocker nu(Threads_lock);
4127     while (Threads::number_of_non_daemon_threads() > 1)
4128       // This wait should make safepoint checks, wait without a timeout,
4129       // and wait as a suspend-equivalent condition.
4130       //
4131       // Note: If the FlatProfiler is running and this thread is waiting
4132       // for another non-daemon thread to finish, then the FlatProfiler
4133       // is waiting for the external suspend request on this thread to
4134       // complete. wait_for_ext_suspend_completion() will eventually
4135       // timeout, but that takes time. Making this wait a suspend-
4136       // equivalent condition solves that timeout problem.
4137       //
4138       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4139                          Mutex::_as_suspend_equivalent_flag);
4140   }
4141 
4142   // Hang forever on exit if we are reporting an error.
4143   if (ShowMessageBoxOnError && is_error_reported()) {
4144     os::infinite_sleep();
4145   }
4146   os::wait_for_keypress_at_exit();
4147 
4148   // run Java level shutdown hooks
4149   thread->invoke_shutdown_hooks();
4150 
4151   before_exit(thread);
4152 
4153   thread->exit(true);
4154 
4155   // Stop VM thread.
4156   {
4157     // 4945125 The vm thread comes to a safepoint during exit.
4158     // GC vm_operations can get caught at the safepoint, and the
4159     // heap is unparseable if they are caught. Grab the Heap_lock
4160     // to prevent this. The GC vm_operations will not be able to
4161     // queue until after the vm thread is dead. After this point,
4162     // we'll never emerge out of the safepoint before the VM exits.
4163 
4164     MutexLocker ml(Heap_lock);
4165 
4166     VMThread::wait_for_vm_thread_exit();
4167     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4168     VMThread::destroy();
4169   }
4170 
4171   // clean up ideal graph printers
4172 #if defined(COMPILER2) && !defined(PRODUCT)
4173   IdealGraphPrinter::clean_up();
4174 #endif
4175 
4176   // Now, all Java threads are gone except daemon threads. Daemon threads
4177   // running Java code or in VM are stopped by the Safepoint. However,
4178   // daemon threads executing native code are still running.  But they
4179   // will be stopped at native=>Java/VM barriers. Note that we can't
4180   // simply kill or suspend them, as it is inherently deadlock-prone.
4181 
4182   VM_Exit::set_vm_exited();
4183 
4184   notify_vm_shutdown();
4185 
4186   delete thread;
4187 
4188 #if INCLUDE_JVMCI
4189   if (JVMCICounterSize > 0) {
4190     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4191   }
4192 #endif
4193 
4194   // exit_globals() will delete tty
4195   exit_globals();
4196 
4197   LogConfiguration::finalize();
4198 
4199   return true;
4200 }
4201 
4202 
4203 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4204   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4205   return is_supported_jni_version(version);
4206 }
4207 
4208 
4209 jboolean Threads::is_supported_jni_version(jint version) {
4210   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4211   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4212   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4213   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4214   if (version == JNI_VERSION_9) return JNI_TRUE;
4215   return JNI_FALSE;
4216 }
4217 
4218 
4219 void Threads::add(JavaThread* p, bool force_daemon) {
4220   // The threads lock must be owned at this point
4221   assert_locked_or_safepoint(Threads_lock);
4222 
4223   // See the comment for this method in thread.hpp for its purpose and
4224   // why it is called here.
4225   p->initialize_queues();
4226   p->set_next(_thread_list);
4227   _thread_list = p;
4228   _number_of_threads++;
4229   oop threadObj = p->threadObj();
4230   bool daemon = true;
4231   // Bootstrapping problem: threadObj can be null for initial
4232   // JavaThread (or for threads attached via JNI)
4233   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4234     _number_of_non_daemon_threads++;
4235     daemon = false;
4236   }
4237 
4238   ThreadService::add_thread(p, daemon);
4239 
4240   // Possible GC point.
4241   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4242 }
4243 
4244 void Threads::remove(JavaThread* p) {
4245   // Extra scope needed for Thread_lock, so we can check
4246   // that we do not remove thread without safepoint code notice
4247   { MutexLocker ml(Threads_lock);
4248 
4249     assert(includes(p), "p must be present");
4250 
4251     JavaThread* current = _thread_list;
4252     JavaThread* prev    = NULL;
4253 
4254     while (current != p) {
4255       prev    = current;
4256       current = current->next();
4257     }
4258 
4259     if (prev) {
4260       prev->set_next(current->next());
4261     } else {
4262       _thread_list = p->next();
4263     }
4264     _number_of_threads--;
4265     oop threadObj = p->threadObj();
4266     bool daemon = true;
4267     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4268       _number_of_non_daemon_threads--;
4269       daemon = false;
4270 
4271       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4272       // on destroy_vm will wake up.
4273       if (number_of_non_daemon_threads() == 1) {
4274         Threads_lock->notify_all();
4275       }
4276     }
4277     ThreadService::remove_thread(p, daemon);
4278 
4279     // Make sure that safepoint code disregard this thread. This is needed since
4280     // the thread might mess around with locks after this point. This can cause it
4281     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4282     // of this thread since it is removed from the queue.
4283     p->set_terminated_value();
4284   } // unlock Threads_lock
4285 
4286   // Since Events::log uses a lock, we grab it outside the Threads_lock
4287   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4288 }
4289 
4290 // Threads_lock must be held when this is called (or must be called during a safepoint)
4291 bool Threads::includes(JavaThread* p) {
4292   assert(Threads_lock->is_locked(), "sanity check");
4293   ALL_JAVA_THREADS(q) {
4294     if (q == p) {
4295       return true;
4296     }
4297   }
4298   return false;
4299 }
4300 
4301 // Operations on the Threads list for GC.  These are not explicitly locked,
4302 // but the garbage collector must provide a safe context for them to run.
4303 // In particular, these things should never be called when the Threads_lock
4304 // is held by some other thread. (Note: the Safepoint abstraction also
4305 // uses the Threads_lock to guarantee this property. It also makes sure that
4306 // all threads gets blocked when exiting or starting).
4307 
4308 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4309   ALL_JAVA_THREADS(p) {
4310     p->oops_do(f, cf);
4311   }
4312   VMThread::vm_thread()->oops_do(f, cf);
4313 }
4314 
4315 void Threads::change_thread_claim_parity() {
4316   // Set the new claim parity.
4317   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4318          "Not in range.");
4319   _thread_claim_parity++;
4320   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4321   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4322          "Not in range.");
4323 }
4324 
4325 #ifdef ASSERT
4326 void Threads::assert_all_threads_claimed() {
4327   ALL_JAVA_THREADS(p) {
4328     const int thread_parity = p->oops_do_parity();
4329     assert((thread_parity == _thread_claim_parity),
4330            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4331   }
4332 }
4333 #endif // ASSERT
4334 
4335 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4336   int cp = Threads::thread_claim_parity();
4337   ALL_JAVA_THREADS(p) {
4338     if (p->claim_oops_do(is_par, cp)) {
4339       p->oops_do(f, cf);
4340     }
4341   }
4342   VMThread* vmt = VMThread::vm_thread();
4343   if (vmt->claim_oops_do(is_par, cp)) {
4344     vmt->oops_do(f, cf);
4345   }
4346 }
4347 
4348 #if INCLUDE_ALL_GCS
4349 // Used by ParallelScavenge
4350 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4351   ALL_JAVA_THREADS(p) {
4352     q->enqueue(new ThreadRootsTask(p));
4353   }
4354   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4355 }
4356 
4357 // Used by Parallel Old
4358 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4359   ALL_JAVA_THREADS(p) {
4360     q->enqueue(new ThreadRootsMarkingTask(p));
4361   }
4362   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4363 }
4364 #endif // INCLUDE_ALL_GCS
4365 
4366 void Threads::nmethods_do(CodeBlobClosure* cf) {
4367   ALL_JAVA_THREADS(p) {
4368     // This is used by the code cache sweeper to mark nmethods that are active
4369     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4370     // marking CodeCacheSweeperThread::_scanned_nmethod as active.
4371     if(!p->is_Code_cache_sweeper_thread()) {
4372       p->nmethods_do(cf);
4373     }
4374   }
4375 }
4376 
4377 void Threads::metadata_do(void f(Metadata*)) {
4378   ALL_JAVA_THREADS(p) {
4379     p->metadata_do(f);
4380   }
4381 }
4382 
4383 class ThreadHandlesClosure : public ThreadClosure {
4384   void (*_f)(Metadata*);
4385  public:
4386   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4387   virtual void do_thread(Thread* thread) {
4388     thread->metadata_handles_do(_f);
4389   }
4390 };
4391 
4392 void Threads::metadata_handles_do(void f(Metadata*)) {
4393   // Only walk the Handles in Thread.
4394   ThreadHandlesClosure handles_closure(f);
4395   threads_do(&handles_closure);
4396 }
4397 
4398 void Threads::deoptimized_wrt_marked_nmethods() {
4399   ALL_JAVA_THREADS(p) {
4400     p->deoptimized_wrt_marked_nmethods();
4401   }
4402 }
4403 
4404 
4405 // Get count Java threads that are waiting to enter the specified monitor.
4406 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4407                                                          address monitor,
4408                                                          bool doLock) {
4409   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4410          "must grab Threads_lock or be at safepoint");
4411   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4412 
4413   int i = 0;
4414   {
4415     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4416     ALL_JAVA_THREADS(p) {
4417       if (!p->can_call_java()) continue;
4418 
4419       address pending = (address)p->current_pending_monitor();
4420       if (pending == monitor) {             // found a match
4421         if (i < count) result->append(p);   // save the first count matches
4422         i++;
4423       }
4424     }
4425   }
4426   return result;
4427 }
4428 
4429 
4430 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4431                                                       bool doLock) {
4432   assert(doLock ||
4433          Threads_lock->owned_by_self() ||
4434          SafepointSynchronize::is_at_safepoint(),
4435          "must grab Threads_lock or be at safepoint");
4436 
4437   // NULL owner means not locked so we can skip the search
4438   if (owner == NULL) return NULL;
4439 
4440   {
4441     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4442     ALL_JAVA_THREADS(p) {
4443       // first, see if owner is the address of a Java thread
4444       if (owner == (address)p) return p;
4445     }
4446   }
4447   // Cannot assert on lack of success here since this function may be
4448   // used by code that is trying to report useful problem information
4449   // like deadlock detection.
4450   if (UseHeavyMonitors) return NULL;
4451 
4452   // If we didn't find a matching Java thread and we didn't force use of
4453   // heavyweight monitors, then the owner is the stack address of the
4454   // Lock Word in the owning Java thread's stack.
4455   //
4456   JavaThread* the_owner = NULL;
4457   {
4458     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4459     ALL_JAVA_THREADS(q) {
4460       if (q->is_lock_owned(owner)) {
4461         the_owner = q;
4462         break;
4463       }
4464     }
4465   }
4466   // cannot assert on lack of success here; see above comment
4467   return the_owner;
4468 }
4469 
4470 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4471 void Threads::print_on(outputStream* st, bool print_stacks,
4472                        bool internal_format, bool print_concurrent_locks) {
4473   char buf[32];
4474   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4475 
4476   st->print_cr("Full thread dump %s (%s %s):",
4477                Abstract_VM_Version::vm_name(),
4478                Abstract_VM_Version::vm_release(),
4479                Abstract_VM_Version::vm_info_string());
4480   st->cr();
4481 
4482 #if INCLUDE_SERVICES
4483   // Dump concurrent locks
4484   ConcurrentLocksDump concurrent_locks;
4485   if (print_concurrent_locks) {
4486     concurrent_locks.dump_at_safepoint();
4487   }
4488 #endif // INCLUDE_SERVICES
4489 
4490   ALL_JAVA_THREADS(p) {
4491     ResourceMark rm;
4492     p->print_on(st);
4493     if (print_stacks) {
4494       if (internal_format) {
4495         p->trace_stack();
4496       } else {
4497         p->print_stack_on(st);
4498       }
4499     }
4500     st->cr();
4501 #if INCLUDE_SERVICES
4502     if (print_concurrent_locks) {
4503       concurrent_locks.print_locks_on(p, st);
4504     }
4505 #endif // INCLUDE_SERVICES
4506   }
4507 
4508   VMThread::vm_thread()->print_on(st);
4509   st->cr();
4510   Universe::heap()->print_gc_threads_on(st);
4511   WatcherThread* wt = WatcherThread::watcher_thread();
4512   if (wt != NULL) {
4513     wt->print_on(st);
4514     st->cr();
4515   }
4516   st->flush();
4517 }
4518 
4519 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4520                              int buflen, bool* found_current) {
4521   if (this_thread != NULL) {
4522     bool is_current = (current == this_thread);
4523     *found_current = *found_current || is_current;
4524     st->print("%s", is_current ? "=>" : "  ");
4525 
4526     st->print(PTR_FORMAT, p2i(this_thread));
4527     st->print(" ");
4528     this_thread->print_on_error(st, buf, buflen);
4529     st->cr();
4530   }
4531 }
4532 
4533 class PrintOnErrorClosure : public ThreadClosure {
4534   outputStream* _st;
4535   Thread* _current;
4536   char* _buf;
4537   int _buflen;
4538   bool* _found_current;
4539  public:
4540   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4541                       int buflen, bool* found_current) :
4542    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4543 
4544   virtual void do_thread(Thread* thread) {
4545     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4546   }
4547 };
4548 
4549 // Threads::print_on_error() is called by fatal error handler. It's possible
4550 // that VM is not at safepoint and/or current thread is inside signal handler.
4551 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4552 // memory (even in resource area), it might deadlock the error handler.
4553 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4554                              int buflen) {
4555   bool found_current = false;
4556   st->print_cr("Java Threads: ( => current thread )");
4557   ALL_JAVA_THREADS(thread) {
4558     print_on_error(thread, st, current, buf, buflen, &found_current);
4559   }
4560   st->cr();
4561 
4562   st->print_cr("Other Threads:");
4563   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4564   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4565 
4566   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4567   Universe::heap()->gc_threads_do(&print_closure);
4568 
4569   if (!found_current) {
4570     st->cr();
4571     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4572     current->print_on_error(st, buf, buflen);
4573     st->cr();
4574   }
4575   st->cr();
4576   st->print_cr("Threads with active compile tasks:");
4577   print_threads_compiling(st, buf, buflen);
4578 }
4579 
4580 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4581   ALL_JAVA_THREADS(thread) {
4582     if (thread->is_Compiler_thread()) {
4583       CompilerThread* ct = (CompilerThread*) thread;
4584       if (ct->task() != NULL) {
4585         thread->print_name_on_error(st, buf, buflen);
4586         ct->task()->print(st, NULL, true, true);
4587       }
4588     }
4589   }
4590 }
4591 
4592 
4593 // Internal SpinLock and Mutex
4594 // Based on ParkEvent
4595 
4596 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4597 //
4598 // We employ SpinLocks _only for low-contention, fixed-length
4599 // short-duration critical sections where we're concerned
4600 // about native mutex_t or HotSpot Mutex:: latency.
4601 // The mux construct provides a spin-then-block mutual exclusion
4602 // mechanism.
4603 //
4604 // Testing has shown that contention on the ListLock guarding gFreeList
4605 // is common.  If we implement ListLock as a simple SpinLock it's common
4606 // for the JVM to devolve to yielding with little progress.  This is true
4607 // despite the fact that the critical sections protected by ListLock are
4608 // extremely short.
4609 //
4610 // TODO-FIXME: ListLock should be of type SpinLock.
4611 // We should make this a 1st-class type, integrated into the lock
4612 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4613 // should have sufficient padding to avoid false-sharing and excessive
4614 // cache-coherency traffic.
4615 
4616 
4617 typedef volatile int SpinLockT;
4618 
4619 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4620   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4621     return;   // normal fast-path return
4622   }
4623 
4624   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4625   TEVENT(SpinAcquire - ctx);
4626   int ctr = 0;
4627   int Yields = 0;
4628   for (;;) {
4629     while (*adr != 0) {
4630       ++ctr;
4631       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4632         if (Yields > 5) {
4633           os::naked_short_sleep(1);
4634         } else {
4635           os::naked_yield();
4636           ++Yields;
4637         }
4638       } else {
4639         SpinPause();
4640       }
4641     }
4642     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4643   }
4644 }
4645 
4646 void Thread::SpinRelease(volatile int * adr) {
4647   assert(*adr != 0, "invariant");
4648   OrderAccess::fence();      // guarantee at least release consistency.
4649   // Roach-motel semantics.
4650   // It's safe if subsequent LDs and STs float "up" into the critical section,
4651   // but prior LDs and STs within the critical section can't be allowed
4652   // to reorder or float past the ST that releases the lock.
4653   // Loads and stores in the critical section - which appear in program
4654   // order before the store that releases the lock - must also appear
4655   // before the store that releases the lock in memory visibility order.
4656   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4657   // the ST of 0 into the lock-word which releases the lock, so fence
4658   // more than covers this on all platforms.
4659   *adr = 0;
4660 }
4661 
4662 // muxAcquire and muxRelease:
4663 //
4664 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4665 //    The LSB of the word is set IFF the lock is held.
4666 //    The remainder of the word points to the head of a singly-linked list
4667 //    of threads blocked on the lock.
4668 //
4669 // *  The current implementation of muxAcquire-muxRelease uses its own
4670 //    dedicated Thread._MuxEvent instance.  If we're interested in
4671 //    minimizing the peak number of extant ParkEvent instances then
4672 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4673 //    as certain invariants were satisfied.  Specifically, care would need
4674 //    to be taken with regards to consuming unpark() "permits".
4675 //    A safe rule of thumb is that a thread would never call muxAcquire()
4676 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4677 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4678 //    consume an unpark() permit intended for monitorenter, for instance.
4679 //    One way around this would be to widen the restricted-range semaphore
4680 //    implemented in park().  Another alternative would be to provide
4681 //    multiple instances of the PlatformEvent() for each thread.  One
4682 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4683 //
4684 // *  Usage:
4685 //    -- Only as leaf locks
4686 //    -- for short-term locking only as muxAcquire does not perform
4687 //       thread state transitions.
4688 //
4689 // Alternatives:
4690 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4691 //    but with parking or spin-then-park instead of pure spinning.
4692 // *  Use Taura-Oyama-Yonenzawa locks.
4693 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4694 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4695 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4696 //    acquiring threads use timers (ParkTimed) to detect and recover from
4697 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4698 //    boundaries by using placement-new.
4699 // *  Augment MCS with advisory back-link fields maintained with CAS().
4700 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4701 //    The validity of the backlinks must be ratified before we trust the value.
4702 //    If the backlinks are invalid the exiting thread must back-track through the
4703 //    the forward links, which are always trustworthy.
4704 // *  Add a successor indication.  The LockWord is currently encoded as
4705 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4706 //    to provide the usual futile-wakeup optimization.
4707 //    See RTStt for details.
4708 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4709 //
4710 
4711 
4712 typedef volatile intptr_t MutexT;      // Mux Lock-word
4713 enum MuxBits { LOCKBIT = 1 };
4714 
4715 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4716   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4717   if (w == 0) return;
4718   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4719     return;
4720   }
4721 
4722   TEVENT(muxAcquire - Contention);
4723   ParkEvent * const Self = Thread::current()->_MuxEvent;
4724   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4725   for (;;) {
4726     int its = (os::is_MP() ? 100 : 0) + 1;
4727 
4728     // Optional spin phase: spin-then-park strategy
4729     while (--its >= 0) {
4730       w = *Lock;
4731       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4732         return;
4733       }
4734     }
4735 
4736     Self->reset();
4737     Self->OnList = intptr_t(Lock);
4738     // The following fence() isn't _strictly necessary as the subsequent
4739     // CAS() both serializes execution and ratifies the fetched *Lock value.
4740     OrderAccess::fence();
4741     for (;;) {
4742       w = *Lock;
4743       if ((w & LOCKBIT) == 0) {
4744         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4745           Self->OnList = 0;   // hygiene - allows stronger asserts
4746           return;
4747         }
4748         continue;      // Interference -- *Lock changed -- Just retry
4749       }
4750       assert(w & LOCKBIT, "invariant");
4751       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4752       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4753     }
4754 
4755     while (Self->OnList != 0) {
4756       Self->park();
4757     }
4758   }
4759 }
4760 
4761 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4762   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4763   if (w == 0) return;
4764   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4765     return;
4766   }
4767 
4768   TEVENT(muxAcquire - Contention);
4769   ParkEvent * ReleaseAfter = NULL;
4770   if (ev == NULL) {
4771     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4772   }
4773   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4774   for (;;) {
4775     guarantee(ev->OnList == 0, "invariant");
4776     int its = (os::is_MP() ? 100 : 0) + 1;
4777 
4778     // Optional spin phase: spin-then-park strategy
4779     while (--its >= 0) {
4780       w = *Lock;
4781       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4782         if (ReleaseAfter != NULL) {
4783           ParkEvent::Release(ReleaseAfter);
4784         }
4785         return;
4786       }
4787     }
4788 
4789     ev->reset();
4790     ev->OnList = intptr_t(Lock);
4791     // The following fence() isn't _strictly necessary as the subsequent
4792     // CAS() both serializes execution and ratifies the fetched *Lock value.
4793     OrderAccess::fence();
4794     for (;;) {
4795       w = *Lock;
4796       if ((w & LOCKBIT) == 0) {
4797         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4798           ev->OnList = 0;
4799           // We call ::Release while holding the outer lock, thus
4800           // artificially lengthening the critical section.
4801           // Consider deferring the ::Release() until the subsequent unlock(),
4802           // after we've dropped the outer lock.
4803           if (ReleaseAfter != NULL) {
4804             ParkEvent::Release(ReleaseAfter);
4805           }
4806           return;
4807         }
4808         continue;      // Interference -- *Lock changed -- Just retry
4809       }
4810       assert(w & LOCKBIT, "invariant");
4811       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4812       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4813     }
4814 
4815     while (ev->OnList != 0) {
4816       ev->park();
4817     }
4818   }
4819 }
4820 
4821 // Release() must extract a successor from the list and then wake that thread.
4822 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4823 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4824 // Release() would :
4825 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4826 // (B) Extract a successor from the private list "in-hand"
4827 // (C) attempt to CAS() the residual back into *Lock over null.
4828 //     If there were any newly arrived threads and the CAS() would fail.
4829 //     In that case Release() would detach the RATs, re-merge the list in-hand
4830 //     with the RATs and repeat as needed.  Alternately, Release() might
4831 //     detach and extract a successor, but then pass the residual list to the wakee.
4832 //     The wakee would be responsible for reattaching and remerging before it
4833 //     competed for the lock.
4834 //
4835 // Both "pop" and DMR are immune from ABA corruption -- there can be
4836 // multiple concurrent pushers, but only one popper or detacher.
4837 // This implementation pops from the head of the list.  This is unfair,
4838 // but tends to provide excellent throughput as hot threads remain hot.
4839 // (We wake recently run threads first).
4840 //
4841 // All paths through muxRelease() will execute a CAS.
4842 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4843 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4844 // executed within the critical section are complete and globally visible before the
4845 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4846 void Thread::muxRelease(volatile intptr_t * Lock)  {
4847   for (;;) {
4848     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4849     assert(w & LOCKBIT, "invariant");
4850     if (w == LOCKBIT) return;
4851     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4852     assert(List != NULL, "invariant");
4853     assert(List->OnList == intptr_t(Lock), "invariant");
4854     ParkEvent * const nxt = List->ListNext;
4855     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4856 
4857     // The following CAS() releases the lock and pops the head element.
4858     // The CAS() also ratifies the previously fetched lock-word value.
4859     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4860       continue;
4861     }
4862     List->OnList = 0;
4863     OrderAccess::fence();
4864     List->unpark();
4865     return;
4866   }
4867 }
4868 
4869 
4870 void Threads::verify() {
4871   ALL_JAVA_THREADS(p) {
4872     p->verify();
4873   }
4874   VMThread* thread = VMThread::vm_thread();
4875   if (thread != NULL) thread->verify();
4876 }