1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/elfFile.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <sys/types.h>
  77 # include <sys/mman.h>
  78 # include <sys/stat.h>
  79 # include <sys/select.h>
  80 # include <pthread.h>
  81 # include <signal.h>
  82 # include <errno.h>
  83 # include <dlfcn.h>
  84 # include <stdio.h>
  85 # include <unistd.h>
  86 # include <sys/resource.h>
  87 # include <pthread.h>
  88 # include <sys/stat.h>
  89 # include <sys/time.h>
  90 # include <sys/times.h>
  91 # include <sys/utsname.h>
  92 # include <sys/socket.h>
  93 # include <sys/wait.h>
  94 # include <pwd.h>
  95 # include <poll.h>
  96 # include <semaphore.h>
  97 # include <fcntl.h>
  98 # include <string.h>
  99 # include <syscall.h>
 100 # include <sys/sysinfo.h>
 101 # include <gnu/libc-version.h>
 102 # include <sys/ipc.h>
 103 # include <sys/shm.h>
 104 # include <link.h>
 105 # include <stdint.h>
 106 # include <inttypes.h>
 107 # include <sys/ioctl.h>
 108 
 109 #ifndef _GNU_SOURCE
 110   #define _GNU_SOURCE
 111   #include <sched.h>
 112   #undef _GNU_SOURCE
 113 #else
 114   #include <sched.h>
 115 #endif
 116 
 117 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 118 // getrusage() is prepared to handle the associated failure.
 119 #ifndef RUSAGE_THREAD
 120   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 121 #endif
 122 
 123 #define MAX_PATH    (2 * K)
 124 
 125 #define MAX_SECS 100000000
 126 
 127 // for timer info max values which include all bits
 128 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 129 
 130 #define LARGEPAGES_BIT (1 << 6)
 131 ////////////////////////////////////////////////////////////////////////////////
 132 // global variables
 133 julong os::Linux::_physical_memory = 0;
 134 
 135 address   os::Linux::_initial_thread_stack_bottom = NULL;
 136 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 137 
 138 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 139 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 140 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 141 Mutex* os::Linux::_createThread_lock = NULL;
 142 pthread_t os::Linux::_main_thread;
 143 int os::Linux::_page_size = -1;
 144 bool os::Linux::_supports_fast_thread_cpu_time = false;
 145 uint32_t os::Linux::_os_version = 0;
 146 const char * os::Linux::_glibc_version = NULL;
 147 const char * os::Linux::_libpthread_version = NULL;
 148 pthread_condattr_t os::Linux::_condattr[1];
 149 
 150 static jlong initial_time_count=0;
 151 
 152 static int clock_tics_per_sec = 100;
 153 
 154 // For diagnostics to print a message once. see run_periodic_checks
 155 static sigset_t check_signal_done;
 156 static bool check_signals = true;
 157 
 158 // Signal number used to suspend/resume a thread
 159 
 160 // do not use any signal number less than SIGSEGV, see 4355769
 161 static int SR_signum = SIGUSR2;
 162 sigset_t SR_sigset;
 163 
 164 // Declarations
 165 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 166 
 167 // utility functions
 168 
 169 static int SR_initialize();
 170 
 171 julong os::available_memory() {
 172   return Linux::available_memory();
 173 }
 174 
 175 julong os::Linux::available_memory() {
 176   // values in struct sysinfo are "unsigned long"
 177   struct sysinfo si;
 178   sysinfo(&si);
 179 
 180   return (julong)si.freeram * si.mem_unit;
 181 }
 182 
 183 julong os::physical_memory() {
 184   return Linux::physical_memory();
 185 }
 186 
 187 // Return true if user is running as root.
 188 
 189 bool os::have_special_privileges() {
 190   static bool init = false;
 191   static bool privileges = false;
 192   if (!init) {
 193     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 194     init = true;
 195   }
 196   return privileges;
 197 }
 198 
 199 
 200 #ifndef SYS_gettid
 201 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 202   #ifdef __ia64__
 203     #define SYS_gettid 1105
 204   #else
 205     #ifdef __i386__
 206       #define SYS_gettid 224
 207     #else
 208       #ifdef __amd64__
 209         #define SYS_gettid 186
 210       #else
 211         #ifdef __sparc__
 212           #define SYS_gettid 143
 213         #else
 214           #error define gettid for the arch
 215         #endif
 216       #endif
 217     #endif
 218   #endif
 219 #endif
 220 
 221 
 222 // pid_t gettid()
 223 //
 224 // Returns the kernel thread id of the currently running thread. Kernel
 225 // thread id is used to access /proc.
 226 pid_t os::Linux::gettid() {
 227   int rslt = syscall(SYS_gettid);
 228   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 229   return (pid_t)rslt;
 230 }
 231 
 232 // Most versions of linux have a bug where the number of processors are
 233 // determined by looking at the /proc file system.  In a chroot environment,
 234 // the system call returns 1.  This causes the VM to act as if it is
 235 // a single processor and elide locking (see is_MP() call).
 236 static bool unsafe_chroot_detected = false;
 237 static const char *unstable_chroot_error = "/proc file system not found.\n"
 238                      "Java may be unstable running multithreaded in a chroot "
 239                      "environment on Linux when /proc filesystem is not mounted.";
 240 
 241 void os::Linux::initialize_system_info() {
 242   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 243   if (processor_count() == 1) {
 244     pid_t pid = os::Linux::gettid();
 245     char fname[32];
 246     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 247     FILE *fp = fopen(fname, "r");
 248     if (fp == NULL) {
 249       unsafe_chroot_detected = true;
 250     } else {
 251       fclose(fp);
 252     }
 253   }
 254   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 255   assert(processor_count() > 0, "linux error");
 256 }
 257 
 258 void os::init_system_properties_values() {
 259   // The next steps are taken in the product version:
 260   //
 261   // Obtain the JAVA_HOME value from the location of libjvm.so.
 262   // This library should be located at:
 263   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 264   //
 265   // If "/jre/lib/" appears at the right place in the path, then we
 266   // assume libjvm.so is installed in a JDK and we use this path.
 267   //
 268   // Otherwise exit with message: "Could not create the Java virtual machine."
 269   //
 270   // The following extra steps are taken in the debugging version:
 271   //
 272   // If "/jre/lib/" does NOT appear at the right place in the path
 273   // instead of exit check for $JAVA_HOME environment variable.
 274   //
 275   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 276   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 277   // it looks like libjvm.so is installed there
 278   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 279   //
 280   // Otherwise exit.
 281   //
 282   // Important note: if the location of libjvm.so changes this
 283   // code needs to be changed accordingly.
 284 
 285   // See ld(1):
 286   //      The linker uses the following search paths to locate required
 287   //      shared libraries:
 288   //        1: ...
 289   //        ...
 290   //        7: The default directories, normally /lib and /usr/lib.
 291 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 292   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 293 #else
 294   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 295 #endif
 296 
 297 // Base path of extensions installed on the system.
 298 #define SYS_EXT_DIR     "/usr/java/packages"
 299 #define EXTENSIONS_DIR  "/lib/ext"
 300 
 301   // Buffer that fits several sprintfs.
 302   // Note that the space for the colon and the trailing null are provided
 303   // by the nulls included by the sizeof operator.
 304   const size_t bufsize =
 305     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 306          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 307   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 308 
 309   // sysclasspath, java_home, dll_dir
 310   {
 311     char *pslash;
 312     os::jvm_path(buf, bufsize);
 313 
 314     // Found the full path to libjvm.so.
 315     // Now cut the path to <java_home>/jre if we can.
 316     pslash = strrchr(buf, '/');
 317     if (pslash != NULL) {
 318       *pslash = '\0';            // Get rid of /libjvm.so.
 319     }
 320     pslash = strrchr(buf, '/');
 321     if (pslash != NULL) {
 322       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 323     }
 324     Arguments::set_dll_dir(buf);
 325 
 326     if (pslash != NULL) {
 327       pslash = strrchr(buf, '/');
 328       if (pslash != NULL) {
 329         *pslash = '\0';        // Get rid of /lib.
 330       }
 331     }
 332     Arguments::set_java_home(buf);
 333     set_boot_path('/', ':');
 334   }
 335 
 336   // Where to look for native libraries.
 337   //
 338   // Note: Due to a legacy implementation, most of the library path
 339   // is set in the launcher. This was to accomodate linking restrictions
 340   // on legacy Linux implementations (which are no longer supported).
 341   // Eventually, all the library path setting will be done here.
 342   //
 343   // However, to prevent the proliferation of improperly built native
 344   // libraries, the new path component /usr/java/packages is added here.
 345   // Eventually, all the library path setting will be done here.
 346   {
 347     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 348     // should always exist (until the legacy problem cited above is
 349     // addressed).
 350     const char *v = ::getenv("LD_LIBRARY_PATH");
 351     const char *v_colon = ":";
 352     if (v == NULL) { v = ""; v_colon = ""; }
 353     // That's +1 for the colon and +1 for the trailing '\0'.
 354     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 355                                                      strlen(v) + 1 +
 356                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 357                                                      mtInternal);
 358     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 359     Arguments::set_library_path(ld_library_path);
 360     FREE_C_HEAP_ARRAY(char, ld_library_path);
 361   }
 362 
 363   // Extensions directories.
 364   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 365   Arguments::set_ext_dirs(buf);
 366 
 367   FREE_C_HEAP_ARRAY(char, buf);
 368 
 369 #undef DEFAULT_LIBPATH
 370 #undef SYS_EXT_DIR
 371 #undef EXTENSIONS_DIR
 372 }
 373 
 374 ////////////////////////////////////////////////////////////////////////////////
 375 // breakpoint support
 376 
 377 void os::breakpoint() {
 378   BREAKPOINT;
 379 }
 380 
 381 extern "C" void breakpoint() {
 382   // use debugger to set breakpoint here
 383 }
 384 
 385 ////////////////////////////////////////////////////////////////////////////////
 386 // signal support
 387 
 388 debug_only(static bool signal_sets_initialized = false);
 389 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 390 
 391 bool os::Linux::is_sig_ignored(int sig) {
 392   struct sigaction oact;
 393   sigaction(sig, (struct sigaction*)NULL, &oact);
 394   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 395                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 396   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 397     return true;
 398   } else {
 399     return false;
 400   }
 401 }
 402 
 403 void os::Linux::signal_sets_init() {
 404   // Should also have an assertion stating we are still single-threaded.
 405   assert(!signal_sets_initialized, "Already initialized");
 406   // Fill in signals that are necessarily unblocked for all threads in
 407   // the VM. Currently, we unblock the following signals:
 408   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 409   //                         by -Xrs (=ReduceSignalUsage));
 410   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 411   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 412   // the dispositions or masks wrt these signals.
 413   // Programs embedding the VM that want to use the above signals for their
 414   // own purposes must, at this time, use the "-Xrs" option to prevent
 415   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 416   // (See bug 4345157, and other related bugs).
 417   // In reality, though, unblocking these signals is really a nop, since
 418   // these signals are not blocked by default.
 419   sigemptyset(&unblocked_sigs);
 420   sigemptyset(&allowdebug_blocked_sigs);
 421   sigaddset(&unblocked_sigs, SIGILL);
 422   sigaddset(&unblocked_sigs, SIGSEGV);
 423   sigaddset(&unblocked_sigs, SIGBUS);
 424   sigaddset(&unblocked_sigs, SIGFPE);
 425 #if defined(PPC64)
 426   sigaddset(&unblocked_sigs, SIGTRAP);
 427 #endif
 428   sigaddset(&unblocked_sigs, SR_signum);
 429 
 430   if (!ReduceSignalUsage) {
 431     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 432       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 433       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 434     }
 435     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 436       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 437       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 438     }
 439     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 440       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 441       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 442     }
 443   }
 444   // Fill in signals that are blocked by all but the VM thread.
 445   sigemptyset(&vm_sigs);
 446   if (!ReduceSignalUsage) {
 447     sigaddset(&vm_sigs, BREAK_SIGNAL);
 448   }
 449   debug_only(signal_sets_initialized = true);
 450 
 451 }
 452 
 453 // These are signals that are unblocked while a thread is running Java.
 454 // (For some reason, they get blocked by default.)
 455 sigset_t* os::Linux::unblocked_signals() {
 456   assert(signal_sets_initialized, "Not initialized");
 457   return &unblocked_sigs;
 458 }
 459 
 460 // These are the signals that are blocked while a (non-VM) thread is
 461 // running Java. Only the VM thread handles these signals.
 462 sigset_t* os::Linux::vm_signals() {
 463   assert(signal_sets_initialized, "Not initialized");
 464   return &vm_sigs;
 465 }
 466 
 467 // These are signals that are blocked during cond_wait to allow debugger in
 468 sigset_t* os::Linux::allowdebug_blocked_signals() {
 469   assert(signal_sets_initialized, "Not initialized");
 470   return &allowdebug_blocked_sigs;
 471 }
 472 
 473 void os::Linux::hotspot_sigmask(Thread* thread) {
 474 
 475   //Save caller's signal mask before setting VM signal mask
 476   sigset_t caller_sigmask;
 477   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 478 
 479   OSThread* osthread = thread->osthread();
 480   osthread->set_caller_sigmask(caller_sigmask);
 481 
 482   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 483 
 484   if (!ReduceSignalUsage) {
 485     if (thread->is_VM_thread()) {
 486       // Only the VM thread handles BREAK_SIGNAL ...
 487       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 488     } else {
 489       // ... all other threads block BREAK_SIGNAL
 490       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 491     }
 492   }
 493 }
 494 
 495 //////////////////////////////////////////////////////////////////////////////
 496 // detecting pthread library
 497 
 498 void os::Linux::libpthread_init() {
 499   // Save glibc and pthread version strings.
 500 #if !defined(_CS_GNU_LIBC_VERSION) || \
 501     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 502   #error "glibc too old (< 2.3.2)"
 503 #endif
 504 
 505   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 506   assert(n > 0, "cannot retrieve glibc version");
 507   char *str = (char *)malloc(n, mtInternal);
 508   confstr(_CS_GNU_LIBC_VERSION, str, n);
 509   os::Linux::set_glibc_version(str);
 510 
 511   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 512   assert(n > 0, "cannot retrieve pthread version");
 513   str = (char *)malloc(n, mtInternal);
 514   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 515   os::Linux::set_libpthread_version(str);
 516 }
 517 
 518 /////////////////////////////////////////////////////////////////////////////
 519 // thread stack expansion
 520 
 521 // os::Linux::manually_expand_stack() takes care of expanding the thread
 522 // stack. Note that this is normally not needed: pthread stacks allocate
 523 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 524 // committed. Therefore it is not necessary to expand the stack manually.
 525 //
 526 // Manually expanding the stack was historically needed on LinuxThreads
 527 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 528 // it is kept to deal with very rare corner cases:
 529 //
 530 // For one, user may run the VM on an own implementation of threads
 531 // whose stacks are - like the old LinuxThreads - implemented using
 532 // mmap(MAP_GROWSDOWN).
 533 //
 534 // Also, this coding may be needed if the VM is running on the primordial
 535 // thread. Normally we avoid running on the primordial thread; however,
 536 // user may still invoke the VM on the primordial thread.
 537 //
 538 // The following historical comment describes the details about running
 539 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 540 
 541 
 542 // Force Linux kernel to expand current thread stack. If "bottom" is close
 543 // to the stack guard, caller should block all signals.
 544 //
 545 // MAP_GROWSDOWN:
 546 //   A special mmap() flag that is used to implement thread stacks. It tells
 547 //   kernel that the memory region should extend downwards when needed. This
 548 //   allows early versions of LinuxThreads to only mmap the first few pages
 549 //   when creating a new thread. Linux kernel will automatically expand thread
 550 //   stack as needed (on page faults).
 551 //
 552 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 553 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 554 //   region, it's hard to tell if the fault is due to a legitimate stack
 555 //   access or because of reading/writing non-exist memory (e.g. buffer
 556 //   overrun). As a rule, if the fault happens below current stack pointer,
 557 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 558 //   application (see Linux kernel fault.c).
 559 //
 560 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 561 //   stack overflow detection.
 562 //
 563 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 564 //   not use MAP_GROWSDOWN.
 565 //
 566 // To get around the problem and allow stack banging on Linux, we need to
 567 // manually expand thread stack after receiving the SIGSEGV.
 568 //
 569 // There are two ways to expand thread stack to address "bottom", we used
 570 // both of them in JVM before 1.5:
 571 //   1. adjust stack pointer first so that it is below "bottom", and then
 572 //      touch "bottom"
 573 //   2. mmap() the page in question
 574 //
 575 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 576 // if current sp is already near the lower end of page 101, and we need to
 577 // call mmap() to map page 100, it is possible that part of the mmap() frame
 578 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 579 // That will destroy the mmap() frame and cause VM to crash.
 580 //
 581 // The following code works by adjusting sp first, then accessing the "bottom"
 582 // page to force a page fault. Linux kernel will then automatically expand the
 583 // stack mapping.
 584 //
 585 // _expand_stack_to() assumes its frame size is less than page size, which
 586 // should always be true if the function is not inlined.
 587 
 588 static void NOINLINE _expand_stack_to(address bottom) {
 589   address sp;
 590   size_t size;
 591   volatile char *p;
 592 
 593   // Adjust bottom to point to the largest address within the same page, it
 594   // gives us a one-page buffer if alloca() allocates slightly more memory.
 595   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 596   bottom += os::Linux::page_size() - 1;
 597 
 598   // sp might be slightly above current stack pointer; if that's the case, we
 599   // will alloca() a little more space than necessary, which is OK. Don't use
 600   // os::current_stack_pointer(), as its result can be slightly below current
 601   // stack pointer, causing us to not alloca enough to reach "bottom".
 602   sp = (address)&sp;
 603 
 604   if (sp > bottom) {
 605     size = sp - bottom;
 606     p = (volatile char *)alloca(size);
 607     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 608     p[0] = '\0';
 609   }
 610 }
 611 
 612 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 613   assert(t!=NULL, "just checking");
 614   assert(t->osthread()->expanding_stack(), "expand should be set");
 615   assert(t->stack_base() != NULL, "stack_base was not initialized");
 616 
 617   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 618     sigset_t mask_all, old_sigset;
 619     sigfillset(&mask_all);
 620     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 621     _expand_stack_to(addr);
 622     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 623     return true;
 624   }
 625   return false;
 626 }
 627 
 628 //////////////////////////////////////////////////////////////////////////////
 629 // create new thread
 630 
 631 // Thread start routine for all newly created threads
 632 static void *thread_native_entry(Thread *thread) {
 633   // Try to randomize the cache line index of hot stack frames.
 634   // This helps when threads of the same stack traces evict each other's
 635   // cache lines. The threads can be either from the same JVM instance, or
 636   // from different JVM instances. The benefit is especially true for
 637   // processors with hyperthreading technology.
 638   static int counter = 0;
 639   int pid = os::current_process_id();
 640   alloca(((pid ^ counter++) & 7) * 128);
 641 
 642   thread->initialize_thread_current();
 643 
 644   OSThread* osthread = thread->osthread();
 645   Monitor* sync = osthread->startThread_lock();
 646 
 647   osthread->set_thread_id(os::current_thread_id());
 648 
 649   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 650     os::current_thread_id(), (uintx) pthread_self());
 651 
 652   if (UseNUMA) {
 653     int lgrp_id = os::numa_get_group_id();
 654     if (lgrp_id != -1) {
 655       thread->set_lgrp_id(lgrp_id);
 656     }
 657   }
 658   // initialize signal mask for this thread
 659   os::Linux::hotspot_sigmask(thread);
 660 
 661   // initialize floating point control register
 662   os::Linux::init_thread_fpu_state();
 663 
 664   // handshaking with parent thread
 665   {
 666     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 667 
 668     // notify parent thread
 669     osthread->set_state(INITIALIZED);
 670     sync->notify_all();
 671 
 672     // wait until os::start_thread()
 673     while (osthread->get_state() == INITIALIZED) {
 674       sync->wait(Mutex::_no_safepoint_check_flag);
 675     }
 676   }
 677 
 678   // call one more level start routine
 679   thread->run();
 680 
 681   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 682     os::current_thread_id(), (uintx) pthread_self());
 683 
 684   // If a thread has not deleted itself ("delete this") as part of its
 685   // termination sequence, we have to ensure thread-local-storage is
 686   // cleared before we actually terminate. No threads should ever be
 687   // deleted asynchronously with respect to their termination.
 688   if (Thread::current_or_null_safe() != NULL) {
 689     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 690     thread->clear_thread_current();
 691   }
 692 
 693   return 0;
 694 }
 695 
 696 bool os::create_thread(Thread* thread, ThreadType thr_type,
 697                        size_t req_stack_size) {
 698   assert(thread->osthread() == NULL, "caller responsible");
 699 
 700   // Allocate the OSThread object
 701   OSThread* osthread = new OSThread(NULL, NULL);
 702   if (osthread == NULL) {
 703     return false;
 704   }
 705 
 706   // set the correct thread state
 707   osthread->set_thread_type(thr_type);
 708 
 709   // Initial state is ALLOCATED but not INITIALIZED
 710   osthread->set_state(ALLOCATED);
 711 
 712   thread->set_osthread(osthread);
 713 
 714   // init thread attributes
 715   pthread_attr_t attr;
 716   pthread_attr_init(&attr);
 717   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 718 
 719   // calculate stack size if it's not specified by caller
 720   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 721   pthread_attr_setstacksize(&attr, stack_size);
 722 
 723   // glibc guard page
 724   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 725 
 726   ThreadState state;
 727 
 728   {
 729     pthread_t tid;
 730     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 731 
 732     char buf[64];
 733     if (ret == 0) {
 734       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 735         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 736     } else {
 737       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 738         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 739     }
 740 
 741     pthread_attr_destroy(&attr);
 742 
 743     if (ret != 0) {
 744       // Need to clean up stuff we've allocated so far
 745       thread->set_osthread(NULL);
 746       delete osthread;
 747       return false;
 748     }
 749 
 750     // Store pthread info into the OSThread
 751     osthread->set_pthread_id(tid);
 752 
 753     // Wait until child thread is either initialized or aborted
 754     {
 755       Monitor* sync_with_child = osthread->startThread_lock();
 756       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 757       while ((state = osthread->get_state()) == ALLOCATED) {
 758         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 759       }
 760     }
 761   }
 762 
 763   // Aborted due to thread limit being reached
 764   if (state == ZOMBIE) {
 765     thread->set_osthread(NULL);
 766     delete osthread;
 767     return false;
 768   }
 769 
 770   // The thread is returned suspended (in state INITIALIZED),
 771   // and is started higher up in the call chain
 772   assert(state == INITIALIZED, "race condition");
 773   return true;
 774 }
 775 
 776 /////////////////////////////////////////////////////////////////////////////
 777 // attach existing thread
 778 
 779 // bootstrap the main thread
 780 bool os::create_main_thread(JavaThread* thread) {
 781   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 782   return create_attached_thread(thread);
 783 }
 784 
 785 bool os::create_attached_thread(JavaThread* thread) {
 786 #ifdef ASSERT
 787   thread->verify_not_published();
 788 #endif
 789 
 790   // Allocate the OSThread object
 791   OSThread* osthread = new OSThread(NULL, NULL);
 792 
 793   if (osthread == NULL) {
 794     return false;
 795   }
 796 
 797   // Store pthread info into the OSThread
 798   osthread->set_thread_id(os::Linux::gettid());
 799   osthread->set_pthread_id(::pthread_self());
 800 
 801   // initialize floating point control register
 802   os::Linux::init_thread_fpu_state();
 803 
 804   // Initial thread state is RUNNABLE
 805   osthread->set_state(RUNNABLE);
 806 
 807   thread->set_osthread(osthread);
 808 
 809   if (UseNUMA) {
 810     int lgrp_id = os::numa_get_group_id();
 811     if (lgrp_id != -1) {
 812       thread->set_lgrp_id(lgrp_id);
 813     }
 814   }
 815 
 816   if (os::Linux::is_initial_thread()) {
 817     // If current thread is initial thread, its stack is mapped on demand,
 818     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 819     // the entire stack region to avoid SEGV in stack banging.
 820     // It is also useful to get around the heap-stack-gap problem on SuSE
 821     // kernel (see 4821821 for details). We first expand stack to the top
 822     // of yellow zone, then enable stack yellow zone (order is significant,
 823     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 824     // is no gap between the last two virtual memory regions.
 825 
 826     JavaThread *jt = (JavaThread *)thread;
 827     address addr = jt->stack_reserved_zone_base();
 828     assert(addr != NULL, "initialization problem?");
 829     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 830 
 831     osthread->set_expanding_stack();
 832     os::Linux::manually_expand_stack(jt, addr);
 833     osthread->clear_expanding_stack();
 834   }
 835 
 836   // initialize signal mask for this thread
 837   // and save the caller's signal mask
 838   os::Linux::hotspot_sigmask(thread);
 839 
 840   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 841     os::current_thread_id(), (uintx) pthread_self());
 842 
 843   return true;
 844 }
 845 
 846 void os::pd_start_thread(Thread* thread) {
 847   OSThread * osthread = thread->osthread();
 848   assert(osthread->get_state() != INITIALIZED, "just checking");
 849   Monitor* sync_with_child = osthread->startThread_lock();
 850   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 851   sync_with_child->notify();
 852 }
 853 
 854 // Free Linux resources related to the OSThread
 855 void os::free_thread(OSThread* osthread) {
 856   assert(osthread != NULL, "osthread not set");
 857 
 858   // We are told to free resources of the argument thread,
 859   // but we can only really operate on the current thread.
 860   assert(Thread::current()->osthread() == osthread,
 861          "os::free_thread but not current thread");
 862 
 863 #ifdef ASSERT
 864   sigset_t current;
 865   sigemptyset(&current);
 866   pthread_sigmask(SIG_SETMASK, NULL, &current);
 867   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 868 #endif
 869 
 870   // Restore caller's signal mask
 871   sigset_t sigmask = osthread->caller_sigmask();
 872   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 873 
 874   delete osthread;
 875 }
 876 
 877 //////////////////////////////////////////////////////////////////////////////
 878 // initial thread
 879 
 880 // Check if current thread is the initial thread, similar to Solaris thr_main.
 881 bool os::Linux::is_initial_thread(void) {
 882   char dummy;
 883   // If called before init complete, thread stack bottom will be null.
 884   // Can be called if fatal error occurs before initialization.
 885   if (initial_thread_stack_bottom() == NULL) return false;
 886   assert(initial_thread_stack_bottom() != NULL &&
 887          initial_thread_stack_size()   != 0,
 888          "os::init did not locate initial thread's stack region");
 889   if ((address)&dummy >= initial_thread_stack_bottom() &&
 890       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 891     return true;
 892   } else {
 893     return false;
 894   }
 895 }
 896 
 897 // Find the virtual memory area that contains addr
 898 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 899   FILE *fp = fopen("/proc/self/maps", "r");
 900   if (fp) {
 901     address low, high;
 902     while (!feof(fp)) {
 903       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 904         if (low <= addr && addr < high) {
 905           if (vma_low)  *vma_low  = low;
 906           if (vma_high) *vma_high = high;
 907           fclose(fp);
 908           return true;
 909         }
 910       }
 911       for (;;) {
 912         int ch = fgetc(fp);
 913         if (ch == EOF || ch == (int)'\n') break;
 914       }
 915     }
 916     fclose(fp);
 917   }
 918   return false;
 919 }
 920 
 921 // Locate initial thread stack. This special handling of initial thread stack
 922 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 923 // bogus value for the primordial process thread. While the launcher has created
 924 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 925 // JNI invocation API from a primordial thread.
 926 void os::Linux::capture_initial_stack(size_t max_size) {
 927 
 928   // max_size is either 0 (which means accept OS default for thread stacks) or
 929   // a user-specified value known to be at least the minimum needed. If we
 930   // are actually on the primordial thread we can make it appear that we have a
 931   // smaller max_size stack by inserting the guard pages at that location. But we
 932   // cannot do anything to emulate a larger stack than what has been provided by
 933   // the OS or threading library. In fact if we try to use a stack greater than
 934   // what is set by rlimit then we will crash the hosting process.
 935 
 936   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 937   // If this is "unlimited" then it will be a huge value.
 938   struct rlimit rlim;
 939   getrlimit(RLIMIT_STACK, &rlim);
 940   size_t stack_size = rlim.rlim_cur;
 941 
 942   // 6308388: a bug in ld.so will relocate its own .data section to the
 943   //   lower end of primordial stack; reduce ulimit -s value a little bit
 944   //   so we won't install guard page on ld.so's data section.
 945   stack_size -= 2 * page_size();
 946 
 947   // Try to figure out where the stack base (top) is. This is harder.
 948   //
 949   // When an application is started, glibc saves the initial stack pointer in
 950   // a global variable "__libc_stack_end", which is then used by system
 951   // libraries. __libc_stack_end should be pretty close to stack top. The
 952   // variable is available since the very early days. However, because it is
 953   // a private interface, it could disappear in the future.
 954   //
 955   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 956   // to __libc_stack_end, it is very close to stack top, but isn't the real
 957   // stack top. Note that /proc may not exist if VM is running as a chroot
 958   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 959   // /proc/<pid>/stat could change in the future (though unlikely).
 960   //
 961   // We try __libc_stack_end first. If that doesn't work, look for
 962   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
 963   // as a hint, which should work well in most cases.
 964 
 965   uintptr_t stack_start;
 966 
 967   // try __libc_stack_end first
 968   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
 969   if (p && *p) {
 970     stack_start = *p;
 971   } else {
 972     // see if we can get the start_stack field from /proc/self/stat
 973     FILE *fp;
 974     int pid;
 975     char state;
 976     int ppid;
 977     int pgrp;
 978     int session;
 979     int nr;
 980     int tpgrp;
 981     unsigned long flags;
 982     unsigned long minflt;
 983     unsigned long cminflt;
 984     unsigned long majflt;
 985     unsigned long cmajflt;
 986     unsigned long utime;
 987     unsigned long stime;
 988     long cutime;
 989     long cstime;
 990     long prio;
 991     long nice;
 992     long junk;
 993     long it_real;
 994     uintptr_t start;
 995     uintptr_t vsize;
 996     intptr_t rss;
 997     uintptr_t rsslim;
 998     uintptr_t scodes;
 999     uintptr_t ecode;
1000     int i;
1001 
1002     // Figure what the primordial thread stack base is. Code is inspired
1003     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1004     // followed by command name surrounded by parentheses, state, etc.
1005     char stat[2048];
1006     int statlen;
1007 
1008     fp = fopen("/proc/self/stat", "r");
1009     if (fp) {
1010       statlen = fread(stat, 1, 2047, fp);
1011       stat[statlen] = '\0';
1012       fclose(fp);
1013 
1014       // Skip pid and the command string. Note that we could be dealing with
1015       // weird command names, e.g. user could decide to rename java launcher
1016       // to "java 1.4.2 :)", then the stat file would look like
1017       //                1234 (java 1.4.2 :)) R ... ...
1018       // We don't really need to know the command string, just find the last
1019       // occurrence of ")" and then start parsing from there. See bug 4726580.
1020       char * s = strrchr(stat, ')');
1021 
1022       i = 0;
1023       if (s) {
1024         // Skip blank chars
1025         do { s++; } while (s && isspace(*s));
1026 
1027 #define _UFM UINTX_FORMAT
1028 #define _DFM INTX_FORMAT
1029 
1030         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1031         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1032         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1033                    &state,          // 3  %c
1034                    &ppid,           // 4  %d
1035                    &pgrp,           // 5  %d
1036                    &session,        // 6  %d
1037                    &nr,             // 7  %d
1038                    &tpgrp,          // 8  %d
1039                    &flags,          // 9  %lu
1040                    &minflt,         // 10 %lu
1041                    &cminflt,        // 11 %lu
1042                    &majflt,         // 12 %lu
1043                    &cmajflt,        // 13 %lu
1044                    &utime,          // 14 %lu
1045                    &stime,          // 15 %lu
1046                    &cutime,         // 16 %ld
1047                    &cstime,         // 17 %ld
1048                    &prio,           // 18 %ld
1049                    &nice,           // 19 %ld
1050                    &junk,           // 20 %ld
1051                    &it_real,        // 21 %ld
1052                    &start,          // 22 UINTX_FORMAT
1053                    &vsize,          // 23 UINTX_FORMAT
1054                    &rss,            // 24 INTX_FORMAT
1055                    &rsslim,         // 25 UINTX_FORMAT
1056                    &scodes,         // 26 UINTX_FORMAT
1057                    &ecode,          // 27 UINTX_FORMAT
1058                    &stack_start);   // 28 UINTX_FORMAT
1059       }
1060 
1061 #undef _UFM
1062 #undef _DFM
1063 
1064       if (i != 28 - 2) {
1065         assert(false, "Bad conversion from /proc/self/stat");
1066         // product mode - assume we are the initial thread, good luck in the
1067         // embedded case.
1068         warning("Can't detect initial thread stack location - bad conversion");
1069         stack_start = (uintptr_t) &rlim;
1070       }
1071     } else {
1072       // For some reason we can't open /proc/self/stat (for example, running on
1073       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1074       // most cases, so don't abort:
1075       warning("Can't detect initial thread stack location - no /proc/self/stat");
1076       stack_start = (uintptr_t) &rlim;
1077     }
1078   }
1079 
1080   // Now we have a pointer (stack_start) very close to the stack top, the
1081   // next thing to do is to figure out the exact location of stack top. We
1082   // can find out the virtual memory area that contains stack_start by
1083   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1084   // and its upper limit is the real stack top. (again, this would fail if
1085   // running inside chroot, because /proc may not exist.)
1086 
1087   uintptr_t stack_top;
1088   address low, high;
1089   if (find_vma((address)stack_start, &low, &high)) {
1090     // success, "high" is the true stack top. (ignore "low", because initial
1091     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1092     stack_top = (uintptr_t)high;
1093   } else {
1094     // failed, likely because /proc/self/maps does not exist
1095     warning("Can't detect initial thread stack location - find_vma failed");
1096     // best effort: stack_start is normally within a few pages below the real
1097     // stack top, use it as stack top, and reduce stack size so we won't put
1098     // guard page outside stack.
1099     stack_top = stack_start;
1100     stack_size -= 16 * page_size();
1101   }
1102 
1103   // stack_top could be partially down the page so align it
1104   stack_top = align_size_up(stack_top, page_size());
1105 
1106   // Allowed stack value is minimum of max_size and what we derived from rlimit
1107   if (max_size > 0) {
1108     _initial_thread_stack_size = MIN2(max_size, stack_size);
1109   } else {
1110     // Accept the rlimit max, but if stack is unlimited then it will be huge, so 
1111     // clamp it at 8MB as we do on Solaris
1112     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1113   }
1114   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1115   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1116 
1117   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1118 
1119   if (log_is_enabled(Info, os, thread)) {
1120     // See if we seem to be on primordial process thread
1121     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1122                       uintptr_t(&rlim) < stack_top;
1123 
1124     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1125                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1126                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1127                          stack_top, intptr_t(_initial_thread_stack_bottom));
1128   }
1129 }
1130 
1131 ////////////////////////////////////////////////////////////////////////////////
1132 // time support
1133 
1134 // Time since start-up in seconds to a fine granularity.
1135 // Used by VMSelfDestructTimer and the MemProfiler.
1136 double os::elapsedTime() {
1137 
1138   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1139 }
1140 
1141 jlong os::elapsed_counter() {
1142   return javaTimeNanos() - initial_time_count;
1143 }
1144 
1145 jlong os::elapsed_frequency() {
1146   return NANOSECS_PER_SEC; // nanosecond resolution
1147 }
1148 
1149 bool os::supports_vtime() { return true; }
1150 bool os::enable_vtime()   { return false; }
1151 bool os::vtime_enabled()  { return false; }
1152 
1153 double os::elapsedVTime() {
1154   struct rusage usage;
1155   int retval = getrusage(RUSAGE_THREAD, &usage);
1156   if (retval == 0) {
1157     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1158   } else {
1159     // better than nothing, but not much
1160     return elapsedTime();
1161   }
1162 }
1163 
1164 jlong os::javaTimeMillis() {
1165   timeval time;
1166   int status = gettimeofday(&time, NULL);
1167   assert(status != -1, "linux error");
1168   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1169 }
1170 
1171 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1172   timeval time;
1173   int status = gettimeofday(&time, NULL);
1174   assert(status != -1, "linux error");
1175   seconds = jlong(time.tv_sec);
1176   nanos = jlong(time.tv_usec) * 1000;
1177 }
1178 
1179 
1180 #ifndef CLOCK_MONOTONIC
1181   #define CLOCK_MONOTONIC (1)
1182 #endif
1183 
1184 void os::Linux::clock_init() {
1185   // we do dlopen's in this particular order due to bug in linux
1186   // dynamical loader (see 6348968) leading to crash on exit
1187   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1188   if (handle == NULL) {
1189     handle = dlopen("librt.so", RTLD_LAZY);
1190   }
1191 
1192   if (handle) {
1193     int (*clock_getres_func)(clockid_t, struct timespec*) =
1194            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1195     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1196            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1197     if (clock_getres_func && clock_gettime_func) {
1198       // See if monotonic clock is supported by the kernel. Note that some
1199       // early implementations simply return kernel jiffies (updated every
1200       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1201       // for nano time (though the monotonic property is still nice to have).
1202       // It's fixed in newer kernels, however clock_getres() still returns
1203       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1204       // resolution for now. Hopefully as people move to new kernels, this
1205       // won't be a problem.
1206       struct timespec res;
1207       struct timespec tp;
1208       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1209           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1210         // yes, monotonic clock is supported
1211         _clock_gettime = clock_gettime_func;
1212         return;
1213       } else {
1214         // close librt if there is no monotonic clock
1215         dlclose(handle);
1216       }
1217     }
1218   }
1219   warning("No monotonic clock was available - timed services may " \
1220           "be adversely affected if the time-of-day clock changes");
1221 }
1222 
1223 #ifndef SYS_clock_getres
1224   #if defined(X86) || defined(PPC64) || defined(S390)
1225     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1226     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1227   #else
1228     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1229     #define sys_clock_getres(x,y)  -1
1230   #endif
1231 #else
1232   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1233 #endif
1234 
1235 void os::Linux::fast_thread_clock_init() {
1236   if (!UseLinuxPosixThreadCPUClocks) {
1237     return;
1238   }
1239   clockid_t clockid;
1240   struct timespec tp;
1241   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1242       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1243 
1244   // Switch to using fast clocks for thread cpu time if
1245   // the sys_clock_getres() returns 0 error code.
1246   // Note, that some kernels may support the current thread
1247   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1248   // returned by the pthread_getcpuclockid().
1249   // If the fast Posix clocks are supported then the sys_clock_getres()
1250   // must return at least tp.tv_sec == 0 which means a resolution
1251   // better than 1 sec. This is extra check for reliability.
1252 
1253   if (pthread_getcpuclockid_func &&
1254       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1255       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1256     _supports_fast_thread_cpu_time = true;
1257     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1258   }
1259 }
1260 
1261 jlong os::javaTimeNanos() {
1262   if (os::supports_monotonic_clock()) {
1263     struct timespec tp;
1264     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1265     assert(status == 0, "gettime error");
1266     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1267     return result;
1268   } else {
1269     timeval time;
1270     int status = gettimeofday(&time, NULL);
1271     assert(status != -1, "linux error");
1272     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1273     return 1000 * usecs;
1274   }
1275 }
1276 
1277 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1278   if (os::supports_monotonic_clock()) {
1279     info_ptr->max_value = ALL_64_BITS;
1280 
1281     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1282     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1283     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1284   } else {
1285     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1286     info_ptr->max_value = ALL_64_BITS;
1287 
1288     // gettimeofday is a real time clock so it skips
1289     info_ptr->may_skip_backward = true;
1290     info_ptr->may_skip_forward = true;
1291   }
1292 
1293   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1294 }
1295 
1296 // Return the real, user, and system times in seconds from an
1297 // arbitrary fixed point in the past.
1298 bool os::getTimesSecs(double* process_real_time,
1299                       double* process_user_time,
1300                       double* process_system_time) {
1301   struct tms ticks;
1302   clock_t real_ticks = times(&ticks);
1303 
1304   if (real_ticks == (clock_t) (-1)) {
1305     return false;
1306   } else {
1307     double ticks_per_second = (double) clock_tics_per_sec;
1308     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1309     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1310     *process_real_time = ((double) real_ticks) / ticks_per_second;
1311 
1312     return true;
1313   }
1314 }
1315 
1316 
1317 char * os::local_time_string(char *buf, size_t buflen) {
1318   struct tm t;
1319   time_t long_time;
1320   time(&long_time);
1321   localtime_r(&long_time, &t);
1322   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1323                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1324                t.tm_hour, t.tm_min, t.tm_sec);
1325   return buf;
1326 }
1327 
1328 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1329   return localtime_r(clock, res);
1330 }
1331 
1332 ////////////////////////////////////////////////////////////////////////////////
1333 // runtime exit support
1334 
1335 // Note: os::shutdown() might be called very early during initialization, or
1336 // called from signal handler. Before adding something to os::shutdown(), make
1337 // sure it is async-safe and can handle partially initialized VM.
1338 void os::shutdown() {
1339 
1340   // allow PerfMemory to attempt cleanup of any persistent resources
1341   perfMemory_exit();
1342 
1343   // needs to remove object in file system
1344   AttachListener::abort();
1345 
1346   // flush buffered output, finish log files
1347   ostream_abort();
1348 
1349   // Check for abort hook
1350   abort_hook_t abort_hook = Arguments::abort_hook();
1351   if (abort_hook != NULL) {
1352     abort_hook();
1353   }
1354 
1355 }
1356 
1357 // Note: os::abort() might be called very early during initialization, or
1358 // called from signal handler. Before adding something to os::abort(), make
1359 // sure it is async-safe and can handle partially initialized VM.
1360 void os::abort(bool dump_core, void* siginfo, const void* context) {
1361   os::shutdown();
1362   if (dump_core) {
1363 #ifndef PRODUCT
1364     fdStream out(defaultStream::output_fd());
1365     out.print_raw("Current thread is ");
1366     char buf[16];
1367     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1368     out.print_raw_cr(buf);
1369     out.print_raw_cr("Dumping core ...");
1370 #endif
1371     ::abort(); // dump core
1372   }
1373 
1374   ::exit(1);
1375 }
1376 
1377 // Die immediately, no exit hook, no abort hook, no cleanup.
1378 void os::die() {
1379   ::abort();
1380 }
1381 
1382 
1383 // This method is a copy of JDK's sysGetLastErrorString
1384 // from src/solaris/hpi/src/system_md.c
1385 
1386 size_t os::lasterror(char *buf, size_t len) {
1387   if (errno == 0)  return 0;
1388 
1389   const char *s = os::strerror(errno);
1390   size_t n = ::strlen(s);
1391   if (n >= len) {
1392     n = len - 1;
1393   }
1394   ::strncpy(buf, s, n);
1395   buf[n] = '\0';
1396   return n;
1397 }
1398 
1399 // thread_id is kernel thread id (similar to Solaris LWP id)
1400 intx os::current_thread_id() { return os::Linux::gettid(); }
1401 int os::current_process_id() {
1402   return ::getpid();
1403 }
1404 
1405 // DLL functions
1406 
1407 const char* os::dll_file_extension() { return ".so"; }
1408 
1409 // This must be hard coded because it's the system's temporary
1410 // directory not the java application's temp directory, ala java.io.tmpdir.
1411 const char* os::get_temp_directory() { return "/tmp"; }
1412 
1413 static bool file_exists(const char* filename) {
1414   struct stat statbuf;
1415   if (filename == NULL || strlen(filename) == 0) {
1416     return false;
1417   }
1418   return os::stat(filename, &statbuf) == 0;
1419 }
1420 
1421 bool os::dll_build_name(char* buffer, size_t buflen,
1422                         const char* pname, const char* fname) {
1423   bool retval = false;
1424   // Copied from libhpi
1425   const size_t pnamelen = pname ? strlen(pname) : 0;
1426 
1427   // Return error on buffer overflow.
1428   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1429     return retval;
1430   }
1431 
1432   if (pnamelen == 0) {
1433     snprintf(buffer, buflen, "lib%s.so", fname);
1434     retval = true;
1435   } else if (strchr(pname, *os::path_separator()) != NULL) {
1436     int n;
1437     char** pelements = split_path(pname, &n);
1438     if (pelements == NULL) {
1439       return false;
1440     }
1441     for (int i = 0; i < n; i++) {
1442       // Really shouldn't be NULL, but check can't hurt
1443       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1444         continue; // skip the empty path values
1445       }
1446       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1447       if (file_exists(buffer)) {
1448         retval = true;
1449         break;
1450       }
1451     }
1452     // release the storage
1453     for (int i = 0; i < n; i++) {
1454       if (pelements[i] != NULL) {
1455         FREE_C_HEAP_ARRAY(char, pelements[i]);
1456       }
1457     }
1458     if (pelements != NULL) {
1459       FREE_C_HEAP_ARRAY(char*, pelements);
1460     }
1461   } else {
1462     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1463     retval = true;
1464   }
1465   return retval;
1466 }
1467 
1468 // check if addr is inside libjvm.so
1469 bool os::address_is_in_vm(address addr) {
1470   static address libjvm_base_addr;
1471   Dl_info dlinfo;
1472 
1473   if (libjvm_base_addr == NULL) {
1474     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1475       libjvm_base_addr = (address)dlinfo.dli_fbase;
1476     }
1477     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1478   }
1479 
1480   if (dladdr((void *)addr, &dlinfo) != 0) {
1481     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1482   }
1483 
1484   return false;
1485 }
1486 
1487 bool os::dll_address_to_function_name(address addr, char *buf,
1488                                       int buflen, int *offset,
1489                                       bool demangle) {
1490   // buf is not optional, but offset is optional
1491   assert(buf != NULL, "sanity check");
1492 
1493   Dl_info dlinfo;
1494 
1495   if (dladdr((void*)addr, &dlinfo) != 0) {
1496     // see if we have a matching symbol
1497     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1498       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1499         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1500       }
1501       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1502       return true;
1503     }
1504     // no matching symbol so try for just file info
1505     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1506       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1507                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1508         return true;
1509       }
1510     }
1511   }
1512 
1513   buf[0] = '\0';
1514   if (offset != NULL) *offset = -1;
1515   return false;
1516 }
1517 
1518 struct _address_to_library_name {
1519   address addr;          // input : memory address
1520   size_t  buflen;        //         size of fname
1521   char*   fname;         // output: library name
1522   address base;          //         library base addr
1523 };
1524 
1525 static int address_to_library_name_callback(struct dl_phdr_info *info,
1526                                             size_t size, void *data) {
1527   int i;
1528   bool found = false;
1529   address libbase = NULL;
1530   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1531 
1532   // iterate through all loadable segments
1533   for (i = 0; i < info->dlpi_phnum; i++) {
1534     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1535     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1536       // base address of a library is the lowest address of its loaded
1537       // segments.
1538       if (libbase == NULL || libbase > segbase) {
1539         libbase = segbase;
1540       }
1541       // see if 'addr' is within current segment
1542       if (segbase <= d->addr &&
1543           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1544         found = true;
1545       }
1546     }
1547   }
1548 
1549   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1550   // so dll_address_to_library_name() can fall through to use dladdr() which
1551   // can figure out executable name from argv[0].
1552   if (found && info->dlpi_name && info->dlpi_name[0]) {
1553     d->base = libbase;
1554     if (d->fname) {
1555       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1556     }
1557     return 1;
1558   }
1559   return 0;
1560 }
1561 
1562 bool os::dll_address_to_library_name(address addr, char* buf,
1563                                      int buflen, int* offset) {
1564   // buf is not optional, but offset is optional
1565   assert(buf != NULL, "sanity check");
1566 
1567   Dl_info dlinfo;
1568   struct _address_to_library_name data;
1569 
1570   // There is a bug in old glibc dladdr() implementation that it could resolve
1571   // to wrong library name if the .so file has a base address != NULL. Here
1572   // we iterate through the program headers of all loaded libraries to find
1573   // out which library 'addr' really belongs to. This workaround can be
1574   // removed once the minimum requirement for glibc is moved to 2.3.x.
1575   data.addr = addr;
1576   data.fname = buf;
1577   data.buflen = buflen;
1578   data.base = NULL;
1579   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1580 
1581   if (rslt) {
1582     // buf already contains library name
1583     if (offset) *offset = addr - data.base;
1584     return true;
1585   }
1586   if (dladdr((void*)addr, &dlinfo) != 0) {
1587     if (dlinfo.dli_fname != NULL) {
1588       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1589     }
1590     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1591       *offset = addr - (address)dlinfo.dli_fbase;
1592     }
1593     return true;
1594   }
1595 
1596   buf[0] = '\0';
1597   if (offset) *offset = -1;
1598   return false;
1599 }
1600 
1601 // Loads .dll/.so and
1602 // in case of error it checks if .dll/.so was built for the
1603 // same architecture as Hotspot is running on
1604 
1605 
1606 // Remember the stack's state. The Linux dynamic linker will change
1607 // the stack to 'executable' at most once, so we must safepoint only once.
1608 bool os::Linux::_stack_is_executable = false;
1609 
1610 // VM operation that loads a library.  This is necessary if stack protection
1611 // of the Java stacks can be lost during loading the library.  If we
1612 // do not stop the Java threads, they can stack overflow before the stacks
1613 // are protected again.
1614 class VM_LinuxDllLoad: public VM_Operation {
1615  private:
1616   const char *_filename;
1617   char *_ebuf;
1618   int _ebuflen;
1619   void *_lib;
1620  public:
1621   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1622     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1623   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1624   void doit() {
1625     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1626     os::Linux::_stack_is_executable = true;
1627   }
1628   void* loaded_library() { return _lib; }
1629 };
1630 
1631 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1632   void * result = NULL;
1633   bool load_attempted = false;
1634 
1635   // Check whether the library to load might change execution rights
1636   // of the stack. If they are changed, the protection of the stack
1637   // guard pages will be lost. We need a safepoint to fix this.
1638   //
1639   // See Linux man page execstack(8) for more info.
1640   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1641     ElfFile ef(filename);
1642     if (!ef.specifies_noexecstack()) {
1643       if (!is_init_completed()) {
1644         os::Linux::_stack_is_executable = true;
1645         // This is OK - No Java threads have been created yet, and hence no
1646         // stack guard pages to fix.
1647         //
1648         // This should happen only when you are building JDK7 using a very
1649         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1650         //
1651         // Dynamic loader will make all stacks executable after
1652         // this function returns, and will not do that again.
1653         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1654       } else {
1655         warning("You have loaded library %s which might have disabled stack guard. "
1656                 "The VM will try to fix the stack guard now.\n"
1657                 "It's highly recommended that you fix the library with "
1658                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1659                 filename);
1660 
1661         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1662         JavaThread *jt = JavaThread::current();
1663         if (jt->thread_state() != _thread_in_native) {
1664           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1665           // that requires ExecStack. Cannot enter safe point. Let's give up.
1666           warning("Unable to fix stack guard. Giving up.");
1667         } else {
1668           if (!LoadExecStackDllInVMThread) {
1669             // This is for the case where the DLL has an static
1670             // constructor function that executes JNI code. We cannot
1671             // load such DLLs in the VMThread.
1672             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1673           }
1674 
1675           ThreadInVMfromNative tiv(jt);
1676           debug_only(VMNativeEntryWrapper vew;)
1677 
1678           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1679           VMThread::execute(&op);
1680           if (LoadExecStackDllInVMThread) {
1681             result = op.loaded_library();
1682           }
1683           load_attempted = true;
1684         }
1685       }
1686     }
1687   }
1688 
1689   if (!load_attempted) {
1690     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1691   }
1692 
1693   if (result != NULL) {
1694     // Successful loading
1695     return result;
1696   }
1697 
1698   Elf32_Ehdr elf_head;
1699   int diag_msg_max_length=ebuflen-strlen(ebuf);
1700   char* diag_msg_buf=ebuf+strlen(ebuf);
1701 
1702   if (diag_msg_max_length==0) {
1703     // No more space in ebuf for additional diagnostics message
1704     return NULL;
1705   }
1706 
1707 
1708   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1709 
1710   if (file_descriptor < 0) {
1711     // Can't open library, report dlerror() message
1712     return NULL;
1713   }
1714 
1715   bool failed_to_read_elf_head=
1716     (sizeof(elf_head)!=
1717      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1718 
1719   ::close(file_descriptor);
1720   if (failed_to_read_elf_head) {
1721     // file i/o error - report dlerror() msg
1722     return NULL;
1723   }
1724 
1725   typedef struct {
1726     Elf32_Half    code;         // Actual value as defined in elf.h
1727     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1728     unsigned char elf_class;    // 32 or 64 bit
1729     unsigned char endianess;    // MSB or LSB
1730     char*         name;         // String representation
1731   } arch_t;
1732 
1733 #ifndef EM_486
1734   #define EM_486          6               /* Intel 80486 */
1735 #endif
1736 #ifndef EM_AARCH64
1737   #define EM_AARCH64    183               /* ARM AARCH64 */
1738 #endif
1739 
1740   static const arch_t arch_array[]={
1741     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1742     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1743     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1744     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1745     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1746     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1747     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1748     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1749 #if defined(VM_LITTLE_ENDIAN)
1750     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1751 #else
1752     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64 LE"},
1753 #endif
1754     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1755     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1756     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1757     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1758     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1759     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1760     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1761     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1762   };
1763 
1764 #if  (defined IA32)
1765   static  Elf32_Half running_arch_code=EM_386;
1766 #elif   (defined AMD64)
1767   static  Elf32_Half running_arch_code=EM_X86_64;
1768 #elif  (defined IA64)
1769   static  Elf32_Half running_arch_code=EM_IA_64;
1770 #elif  (defined __sparc) && (defined _LP64)
1771   static  Elf32_Half running_arch_code=EM_SPARCV9;
1772 #elif  (defined __sparc) && (!defined _LP64)
1773   static  Elf32_Half running_arch_code=EM_SPARC;
1774 #elif  (defined __powerpc64__)
1775   static  Elf32_Half running_arch_code=EM_PPC64;
1776 #elif  (defined __powerpc__)
1777   static  Elf32_Half running_arch_code=EM_PPC;
1778 #elif  (defined AARCH64)
1779   static  Elf32_Half running_arch_code=EM_AARCH64;
1780 #elif  (defined ARM)
1781   static  Elf32_Half running_arch_code=EM_ARM;
1782 #elif  (defined S390)
1783   static  Elf32_Half running_arch_code=EM_S390;
1784 #elif  (defined ALPHA)
1785   static  Elf32_Half running_arch_code=EM_ALPHA;
1786 #elif  (defined MIPSEL)
1787   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1788 #elif  (defined PARISC)
1789   static  Elf32_Half running_arch_code=EM_PARISC;
1790 #elif  (defined MIPS)
1791   static  Elf32_Half running_arch_code=EM_MIPS;
1792 #elif  (defined M68K)
1793   static  Elf32_Half running_arch_code=EM_68K;
1794 #else
1795     #error Method os::dll_load requires that one of following is defined:\
1796         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, __sparc
1797 #endif
1798 
1799   // Identify compatability class for VM's architecture and library's architecture
1800   // Obtain string descriptions for architectures
1801 
1802   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1803   int running_arch_index=-1;
1804 
1805   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1806     if (running_arch_code == arch_array[i].code) {
1807       running_arch_index    = i;
1808     }
1809     if (lib_arch.code == arch_array[i].code) {
1810       lib_arch.compat_class = arch_array[i].compat_class;
1811       lib_arch.name         = arch_array[i].name;
1812     }
1813   }
1814 
1815   assert(running_arch_index != -1,
1816          "Didn't find running architecture code (running_arch_code) in arch_array");
1817   if (running_arch_index == -1) {
1818     // Even though running architecture detection failed
1819     // we may still continue with reporting dlerror() message
1820     return NULL;
1821   }
1822 
1823   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1824     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1825     return NULL;
1826   }
1827 
1828 #ifndef S390
1829   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1830     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1831     return NULL;
1832   }
1833 #endif // !S390
1834 
1835   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1836     if (lib_arch.name!=NULL) {
1837       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1838                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1839                  lib_arch.name, arch_array[running_arch_index].name);
1840     } else {
1841       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1842                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1843                  lib_arch.code,
1844                  arch_array[running_arch_index].name);
1845     }
1846   }
1847 
1848   return NULL;
1849 }
1850 
1851 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1852                                 int ebuflen) {
1853   void * result = ::dlopen(filename, RTLD_LAZY);
1854   if (result == NULL) {
1855     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1856     ebuf[ebuflen-1] = '\0';
1857   }
1858   return result;
1859 }
1860 
1861 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1862                                        int ebuflen) {
1863   void * result = NULL;
1864   if (LoadExecStackDllInVMThread) {
1865     result = dlopen_helper(filename, ebuf, ebuflen);
1866   }
1867 
1868   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1869   // library that requires an executable stack, or which does not have this
1870   // stack attribute set, dlopen changes the stack attribute to executable. The
1871   // read protection of the guard pages gets lost.
1872   //
1873   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1874   // may have been queued at the same time.
1875 
1876   if (!_stack_is_executable) {
1877     JavaThread *jt = Threads::first();
1878 
1879     while (jt) {
1880       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1881           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1882         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1883           warning("Attempt to reguard stack yellow zone failed.");
1884         }
1885       }
1886       jt = jt->next();
1887     }
1888   }
1889 
1890   return result;
1891 }
1892 
1893 void* os::dll_lookup(void* handle, const char* name) {
1894   void* res = dlsym(handle, name);
1895   return res;
1896 }
1897 
1898 void* os::get_default_process_handle() {
1899   return (void*)::dlopen(NULL, RTLD_LAZY);
1900 }
1901 
1902 static bool _print_ascii_file(const char* filename, outputStream* st) {
1903   int fd = ::open(filename, O_RDONLY);
1904   if (fd == -1) {
1905     return false;
1906   }
1907 
1908   char buf[33];
1909   int bytes;
1910   buf[32] = '\0';
1911   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1912     st->print_raw(buf, bytes);
1913   }
1914 
1915   ::close(fd);
1916 
1917   return true;
1918 }
1919 
1920 void os::print_dll_info(outputStream *st) {
1921   st->print_cr("Dynamic libraries:");
1922 
1923   char fname[32];
1924   pid_t pid = os::Linux::gettid();
1925 
1926   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1927 
1928   if (!_print_ascii_file(fname, st)) {
1929     st->print("Can not get library information for pid = %d\n", pid);
1930   }
1931 }
1932 
1933 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1934   FILE *procmapsFile = NULL;
1935 
1936   // Open the procfs maps file for the current process
1937   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1938     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1939     char line[PATH_MAX + 100];
1940 
1941     // Read line by line from 'file'
1942     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1943       u8 base, top, offset, inode;
1944       char permissions[5];
1945       char device[6];
1946       char name[PATH_MAX + 1];
1947 
1948       // Parse fields from line
1949       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1950              &base, &top, permissions, &offset, device, &inode, name);
1951 
1952       // Filter by device id '00:00' so that we only get file system mapped files.
1953       if (strcmp(device, "00:00") != 0) {
1954 
1955         // Call callback with the fields of interest
1956         if(callback(name, (address)base, (address)top, param)) {
1957           // Oops abort, callback aborted
1958           fclose(procmapsFile);
1959           return 1;
1960         }
1961       }
1962     }
1963     fclose(procmapsFile);
1964   }
1965   return 0;
1966 }
1967 
1968 void os::print_os_info_brief(outputStream* st) {
1969   os::Linux::print_distro_info(st);
1970 
1971   os::Posix::print_uname_info(st);
1972 
1973   os::Linux::print_libversion_info(st);
1974 
1975 }
1976 
1977 void os::print_os_info(outputStream* st) {
1978   st->print("OS:");
1979 
1980   os::Linux::print_distro_info(st);
1981 
1982   os::Posix::print_uname_info(st);
1983 
1984   // Print warning if unsafe chroot environment detected
1985   if (unsafe_chroot_detected) {
1986     st->print("WARNING!! ");
1987     st->print_cr("%s", unstable_chroot_error);
1988   }
1989 
1990   os::Linux::print_libversion_info(st);
1991 
1992   os::Posix::print_rlimit_info(st);
1993 
1994   os::Posix::print_load_average(st);
1995 
1996   os::Linux::print_full_memory_info(st);
1997 }
1998 
1999 // Try to identify popular distros.
2000 // Most Linux distributions have a /etc/XXX-release file, which contains
2001 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2002 // file that also contains the OS version string. Some have more than one
2003 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2004 // /etc/redhat-release.), so the order is important.
2005 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2006 // their own specific XXX-release file as well as a redhat-release file.
2007 // Because of this the XXX-release file needs to be searched for before the
2008 // redhat-release file.
2009 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2010 // search for redhat-release / SuSE-release needs to be before lsb-release.
2011 // Since the lsb-release file is the new standard it needs to be searched
2012 // before the older style release files.
2013 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2014 // next to last resort.  The os-release file is a new standard that contains
2015 // distribution information and the system-release file seems to be an old
2016 // standard that has been replaced by the lsb-release and os-release files.
2017 // Searching for the debian_version file is the last resort.  It contains
2018 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2019 // "Debian " is printed before the contents of the debian_version file.
2020 
2021 const char* distro_files[] = {
2022   "/etc/oracle-release",
2023   "/etc/mandriva-release",
2024   "/etc/mandrake-release",
2025   "/etc/sun-release",
2026   "/etc/redhat-release",
2027   "/etc/SuSE-release",
2028   "/etc/lsb-release",
2029   "/etc/turbolinux-release",
2030   "/etc/gentoo-release",
2031   "/etc/ltib-release",
2032   "/etc/angstrom-version",
2033   "/etc/system-release",
2034   "/etc/os-release",
2035   NULL };
2036 
2037 void os::Linux::print_distro_info(outputStream* st) {
2038   for (int i = 0;; i++) {
2039     const char* file = distro_files[i];
2040     if (file == NULL) {
2041       break;  // done
2042     }
2043     // If file prints, we found it.
2044     if (_print_ascii_file(file, st)) {
2045       return;
2046     }
2047   }
2048 
2049   if (file_exists("/etc/debian_version")) {
2050     st->print("Debian ");
2051     _print_ascii_file("/etc/debian_version", st);
2052   } else {
2053     st->print("Linux");
2054   }
2055   st->cr();
2056 }
2057 
2058 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2059   char buf[256];
2060   while (fgets(buf, sizeof(buf), fp)) {
2061     // Edit out extra stuff in expected format
2062     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2063       char* ptr = strstr(buf, "\"");  // the name is in quotes
2064       if (ptr != NULL) {
2065         ptr++; // go beyond first quote
2066         char* nl = strchr(ptr, '\"');
2067         if (nl != NULL) *nl = '\0';
2068         strncpy(distro, ptr, length);
2069       } else {
2070         ptr = strstr(buf, "=");
2071         ptr++; // go beyond equals then
2072         char* nl = strchr(ptr, '\n');
2073         if (nl != NULL) *nl = '\0';
2074         strncpy(distro, ptr, length);
2075       }
2076       return;
2077     } else if (get_first_line) {
2078       char* nl = strchr(buf, '\n');
2079       if (nl != NULL) *nl = '\0';
2080       strncpy(distro, buf, length);
2081       return;
2082     }
2083   }
2084   // print last line and close
2085   char* nl = strchr(buf, '\n');
2086   if (nl != NULL) *nl = '\0';
2087   strncpy(distro, buf, length);
2088 }
2089 
2090 static void parse_os_info(char* distro, size_t length, const char* file) {
2091   FILE* fp = fopen(file, "r");
2092   if (fp != NULL) {
2093     // if suse format, print out first line
2094     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2095     parse_os_info_helper(fp, distro, length, get_first_line);
2096     fclose(fp);
2097   }
2098 }
2099 
2100 void os::get_summary_os_info(char* buf, size_t buflen) {
2101   for (int i = 0;; i++) {
2102     const char* file = distro_files[i];
2103     if (file == NULL) {
2104       break; // ran out of distro_files
2105     }
2106     if (file_exists(file)) {
2107       parse_os_info(buf, buflen, file);
2108       return;
2109     }
2110   }
2111   // special case for debian
2112   if (file_exists("/etc/debian_version")) {
2113     strncpy(buf, "Debian ", buflen);
2114     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2115   } else {
2116     strncpy(buf, "Linux", buflen);
2117   }
2118 }
2119 
2120 void os::Linux::print_libversion_info(outputStream* st) {
2121   // libc, pthread
2122   st->print("libc:");
2123   st->print("%s ", os::Linux::glibc_version());
2124   st->print("%s ", os::Linux::libpthread_version());
2125   st->cr();
2126 }
2127 
2128 void os::Linux::print_full_memory_info(outputStream* st) {
2129   st->print("\n/proc/meminfo:\n");
2130   _print_ascii_file("/proc/meminfo", st);
2131   st->cr();
2132 }
2133 
2134 void os::print_memory_info(outputStream* st) {
2135 
2136   st->print("Memory:");
2137   st->print(" %dk page", os::vm_page_size()>>10);
2138 
2139   // values in struct sysinfo are "unsigned long"
2140   struct sysinfo si;
2141   sysinfo(&si);
2142 
2143   st->print(", physical " UINT64_FORMAT "k",
2144             os::physical_memory() >> 10);
2145   st->print("(" UINT64_FORMAT "k free)",
2146             os::available_memory() >> 10);
2147   st->print(", swap " UINT64_FORMAT "k",
2148             ((jlong)si.totalswap * si.mem_unit) >> 10);
2149   st->print("(" UINT64_FORMAT "k free)",
2150             ((jlong)si.freeswap * si.mem_unit) >> 10);
2151   st->cr();
2152 }
2153 
2154 // Print the first "model name" line and the first "flags" line
2155 // that we find and nothing more. We assume "model name" comes
2156 // before "flags" so if we find a second "model name", then the
2157 // "flags" field is considered missing.
2158 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2159 #if defined(IA32) || defined(AMD64)
2160   // Other platforms have less repetitive cpuinfo files
2161   FILE *fp = fopen("/proc/cpuinfo", "r");
2162   if (fp) {
2163     while (!feof(fp)) {
2164       if (fgets(buf, buflen, fp)) {
2165         // Assume model name comes before flags
2166         bool model_name_printed = false;
2167         if (strstr(buf, "model name") != NULL) {
2168           if (!model_name_printed) {
2169             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2170             st->print_raw(buf);
2171             model_name_printed = true;
2172           } else {
2173             // model name printed but not flags?  Odd, just return
2174             fclose(fp);
2175             return true;
2176           }
2177         }
2178         // print the flags line too
2179         if (strstr(buf, "flags") != NULL) {
2180           st->print_raw(buf);
2181           fclose(fp);
2182           return true;
2183         }
2184       }
2185     }
2186     fclose(fp);
2187   }
2188 #endif // x86 platforms
2189   return false;
2190 }
2191 
2192 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2193   // Only print the model name if the platform provides this as a summary
2194   if (!print_model_name_and_flags(st, buf, buflen)) {
2195     st->print("\n/proc/cpuinfo:\n");
2196     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2197       st->print_cr("  <Not Available>");
2198     }
2199   }
2200 }
2201 
2202 #if defined(AMD64) || defined(IA32) || defined(X32)
2203 const char* search_string = "model name";
2204 #elif defined(PPC64)
2205 const char* search_string = "cpu";
2206 #elif defined(S390)
2207 const char* search_string = "processor";
2208 #elif defined(SPARC)
2209 const char* search_string = "cpu";
2210 #else
2211 const char* search_string = "Processor";
2212 #endif
2213 
2214 // Parses the cpuinfo file for string representing the model name.
2215 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2216   FILE* fp = fopen("/proc/cpuinfo", "r");
2217   if (fp != NULL) {
2218     while (!feof(fp)) {
2219       char buf[256];
2220       if (fgets(buf, sizeof(buf), fp)) {
2221         char* start = strstr(buf, search_string);
2222         if (start != NULL) {
2223           char *ptr = start + strlen(search_string);
2224           char *end = buf + strlen(buf);
2225           while (ptr != end) {
2226              // skip whitespace and colon for the rest of the name.
2227              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2228                break;
2229              }
2230              ptr++;
2231           }
2232           if (ptr != end) {
2233             // reasonable string, get rid of newline and keep the rest
2234             char* nl = strchr(buf, '\n');
2235             if (nl != NULL) *nl = '\0';
2236             strncpy(cpuinfo, ptr, length);
2237             fclose(fp);
2238             return;
2239           }
2240         }
2241       }
2242     }
2243     fclose(fp);
2244   }
2245   // cpuinfo not found or parsing failed, just print generic string.  The entire
2246   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2247 #if   defined(AARCH64)
2248   strncpy(cpuinfo, "AArch64", length);
2249 #elif defined(AMD64)
2250   strncpy(cpuinfo, "x86_64", length);
2251 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2252   strncpy(cpuinfo, "ARM", length);
2253 #elif defined(IA32)
2254   strncpy(cpuinfo, "x86_32", length);
2255 #elif defined(IA64)
2256   strncpy(cpuinfo, "IA64", length);
2257 #elif defined(PPC)
2258   strncpy(cpuinfo, "PPC64", length);
2259 #elif defined(S390)
2260   strncpy(cpuinfo, "S390", length);
2261 #elif defined(SPARC)
2262   strncpy(cpuinfo, "sparcv9", length);
2263 #elif defined(ZERO_LIBARCH)
2264   strncpy(cpuinfo, ZERO_LIBARCH, length);
2265 #else
2266   strncpy(cpuinfo, "unknown", length);
2267 #endif
2268 }
2269 
2270 static void print_signal_handler(outputStream* st, int sig,
2271                                  char* buf, size_t buflen);
2272 
2273 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2274   st->print_cr("Signal Handlers:");
2275   print_signal_handler(st, SIGSEGV, buf, buflen);
2276   print_signal_handler(st, SIGBUS , buf, buflen);
2277   print_signal_handler(st, SIGFPE , buf, buflen);
2278   print_signal_handler(st, SIGPIPE, buf, buflen);
2279   print_signal_handler(st, SIGXFSZ, buf, buflen);
2280   print_signal_handler(st, SIGILL , buf, buflen);
2281   print_signal_handler(st, SR_signum, buf, buflen);
2282   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2283   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2284   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2285   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2286 #if defined(PPC64)
2287   print_signal_handler(st, SIGTRAP, buf, buflen);
2288 #endif
2289 }
2290 
2291 static char saved_jvm_path[MAXPATHLEN] = {0};
2292 
2293 // Find the full path to the current module, libjvm.so
2294 void os::jvm_path(char *buf, jint buflen) {
2295   // Error checking.
2296   if (buflen < MAXPATHLEN) {
2297     assert(false, "must use a large-enough buffer");
2298     buf[0] = '\0';
2299     return;
2300   }
2301   // Lazy resolve the path to current module.
2302   if (saved_jvm_path[0] != 0) {
2303     strcpy(buf, saved_jvm_path);
2304     return;
2305   }
2306 
2307   char dli_fname[MAXPATHLEN];
2308   bool ret = dll_address_to_library_name(
2309                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2310                                          dli_fname, sizeof(dli_fname), NULL);
2311   assert(ret, "cannot locate libjvm");
2312   char *rp = NULL;
2313   if (ret && dli_fname[0] != '\0') {
2314     rp = realpath(dli_fname, buf);
2315   }
2316   if (rp == NULL) {
2317     return;
2318   }
2319 
2320   if (Arguments::sun_java_launcher_is_altjvm()) {
2321     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2322     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2323     // If "/jre/lib/" appears at the right place in the string, then
2324     // assume we are installed in a JDK and we're done. Otherwise, check
2325     // for a JAVA_HOME environment variable and fix up the path so it
2326     // looks like libjvm.so is installed there (append a fake suffix
2327     // hotspot/libjvm.so).
2328     const char *p = buf + strlen(buf) - 1;
2329     for (int count = 0; p > buf && count < 5; ++count) {
2330       for (--p; p > buf && *p != '/'; --p)
2331         /* empty */ ;
2332     }
2333 
2334     if (strncmp(p, "/jre/lib/", 9) != 0) {
2335       // Look for JAVA_HOME in the environment.
2336       char* java_home_var = ::getenv("JAVA_HOME");
2337       if (java_home_var != NULL && java_home_var[0] != 0) {
2338         char* jrelib_p;
2339         int len;
2340 
2341         // Check the current module name "libjvm.so".
2342         p = strrchr(buf, '/');
2343         if (p == NULL) {
2344           return;
2345         }
2346         assert(strstr(p, "/libjvm") == p, "invalid library name");
2347 
2348         rp = realpath(java_home_var, buf);
2349         if (rp == NULL) {
2350           return;
2351         }
2352 
2353         // determine if this is a legacy image or modules image
2354         // modules image doesn't have "jre" subdirectory
2355         len = strlen(buf);
2356         assert(len < buflen, "Ran out of buffer room");
2357         jrelib_p = buf + len;
2358         snprintf(jrelib_p, buflen-len, "/jre/lib");
2359         if (0 != access(buf, F_OK)) {
2360           snprintf(jrelib_p, buflen-len, "/lib");
2361         }
2362 
2363         if (0 == access(buf, F_OK)) {
2364           // Use current module name "libjvm.so"
2365           len = strlen(buf);
2366           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2367         } else {
2368           // Go back to path of .so
2369           rp = realpath(dli_fname, buf);
2370           if (rp == NULL) {
2371             return;
2372           }
2373         }
2374       }
2375     }
2376   }
2377 
2378   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2379   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2380 }
2381 
2382 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2383   // no prefix required, not even "_"
2384 }
2385 
2386 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2387   // no suffix required
2388 }
2389 
2390 ////////////////////////////////////////////////////////////////////////////////
2391 // sun.misc.Signal support
2392 
2393 static volatile jint sigint_count = 0;
2394 
2395 static void UserHandler(int sig, void *siginfo, void *context) {
2396   // 4511530 - sem_post is serialized and handled by the manager thread. When
2397   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2398   // don't want to flood the manager thread with sem_post requests.
2399   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2400     return;
2401   }
2402 
2403   // Ctrl-C is pressed during error reporting, likely because the error
2404   // handler fails to abort. Let VM die immediately.
2405   if (sig == SIGINT && is_error_reported()) {
2406     os::die();
2407   }
2408 
2409   os::signal_notify(sig);
2410 }
2411 
2412 void* os::user_handler() {
2413   return CAST_FROM_FN_PTR(void*, UserHandler);
2414 }
2415 
2416 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2417   struct timespec ts;
2418   // Semaphore's are always associated with CLOCK_REALTIME
2419   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2420   // see unpackTime for discussion on overflow checking
2421   if (sec >= MAX_SECS) {
2422     ts.tv_sec += MAX_SECS;
2423     ts.tv_nsec = 0;
2424   } else {
2425     ts.tv_sec += sec;
2426     ts.tv_nsec += nsec;
2427     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2428       ts.tv_nsec -= NANOSECS_PER_SEC;
2429       ++ts.tv_sec; // note: this must be <= max_secs
2430     }
2431   }
2432 
2433   return ts;
2434 }
2435 
2436 extern "C" {
2437   typedef void (*sa_handler_t)(int);
2438   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2439 }
2440 
2441 void* os::signal(int signal_number, void* handler) {
2442   struct sigaction sigAct, oldSigAct;
2443 
2444   sigfillset(&(sigAct.sa_mask));
2445   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2446   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2447 
2448   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2449     // -1 means registration failed
2450     return (void *)-1;
2451   }
2452 
2453   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2454 }
2455 
2456 void os::signal_raise(int signal_number) {
2457   ::raise(signal_number);
2458 }
2459 
2460 // The following code is moved from os.cpp for making this
2461 // code platform specific, which it is by its very nature.
2462 
2463 // Will be modified when max signal is changed to be dynamic
2464 int os::sigexitnum_pd() {
2465   return NSIG;
2466 }
2467 
2468 // a counter for each possible signal value
2469 static volatile jint pending_signals[NSIG+1] = { 0 };
2470 
2471 // Linux(POSIX) specific hand shaking semaphore.
2472 static sem_t sig_sem;
2473 static PosixSemaphore sr_semaphore;
2474 
2475 void os::signal_init_pd() {
2476   // Initialize signal structures
2477   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2478 
2479   // Initialize signal semaphore
2480   ::sem_init(&sig_sem, 0, 0);
2481 }
2482 
2483 void os::signal_notify(int sig) {
2484   Atomic::inc(&pending_signals[sig]);
2485   ::sem_post(&sig_sem);
2486 }
2487 
2488 static int check_pending_signals(bool wait) {
2489   Atomic::store(0, &sigint_count);
2490   for (;;) {
2491     for (int i = 0; i < NSIG + 1; i++) {
2492       jint n = pending_signals[i];
2493       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2494         return i;
2495       }
2496     }
2497     if (!wait) {
2498       return -1;
2499     }
2500     JavaThread *thread = JavaThread::current();
2501     ThreadBlockInVM tbivm(thread);
2502 
2503     bool threadIsSuspended;
2504     do {
2505       thread->set_suspend_equivalent();
2506       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2507       ::sem_wait(&sig_sem);
2508 
2509       // were we externally suspended while we were waiting?
2510       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2511       if (threadIsSuspended) {
2512         // The semaphore has been incremented, but while we were waiting
2513         // another thread suspended us. We don't want to continue running
2514         // while suspended because that would surprise the thread that
2515         // suspended us.
2516         ::sem_post(&sig_sem);
2517 
2518         thread->java_suspend_self();
2519       }
2520     } while (threadIsSuspended);
2521   }
2522 }
2523 
2524 int os::signal_lookup() {
2525   return check_pending_signals(false);
2526 }
2527 
2528 int os::signal_wait() {
2529   return check_pending_signals(true);
2530 }
2531 
2532 ////////////////////////////////////////////////////////////////////////////////
2533 // Virtual Memory
2534 
2535 int os::vm_page_size() {
2536   // Seems redundant as all get out
2537   assert(os::Linux::page_size() != -1, "must call os::init");
2538   return os::Linux::page_size();
2539 }
2540 
2541 // Solaris allocates memory by pages.
2542 int os::vm_allocation_granularity() {
2543   assert(os::Linux::page_size() != -1, "must call os::init");
2544   return os::Linux::page_size();
2545 }
2546 
2547 // Rationale behind this function:
2548 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2549 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2550 //  samples for JITted code. Here we create private executable mapping over the code cache
2551 //  and then we can use standard (well, almost, as mapping can change) way to provide
2552 //  info for the reporting script by storing timestamp and location of symbol
2553 void linux_wrap_code(char* base, size_t size) {
2554   static volatile jint cnt = 0;
2555 
2556   if (!UseOprofile) {
2557     return;
2558   }
2559 
2560   char buf[PATH_MAX+1];
2561   int num = Atomic::add(1, &cnt);
2562 
2563   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2564            os::get_temp_directory(), os::current_process_id(), num);
2565   unlink(buf);
2566 
2567   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2568 
2569   if (fd != -1) {
2570     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2571     if (rv != (off_t)-1) {
2572       if (::write(fd, "", 1) == 1) {
2573         mmap(base, size,
2574              PROT_READ|PROT_WRITE|PROT_EXEC,
2575              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2576       }
2577     }
2578     ::close(fd);
2579     unlink(buf);
2580   }
2581 }
2582 
2583 static bool recoverable_mmap_error(int err) {
2584   // See if the error is one we can let the caller handle. This
2585   // list of errno values comes from JBS-6843484. I can't find a
2586   // Linux man page that documents this specific set of errno
2587   // values so while this list currently matches Solaris, it may
2588   // change as we gain experience with this failure mode.
2589   switch (err) {
2590   case EBADF:
2591   case EINVAL:
2592   case ENOTSUP:
2593     // let the caller deal with these errors
2594     return true;
2595 
2596   default:
2597     // Any remaining errors on this OS can cause our reserved mapping
2598     // to be lost. That can cause confusion where different data
2599     // structures think they have the same memory mapped. The worst
2600     // scenario is if both the VM and a library think they have the
2601     // same memory mapped.
2602     return false;
2603   }
2604 }
2605 
2606 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2607                                     int err) {
2608   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2609           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2610           os::strerror(err), err);
2611 }
2612 
2613 static void warn_fail_commit_memory(char* addr, size_t size,
2614                                     size_t alignment_hint, bool exec,
2615                                     int err) {
2616   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2617           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2618           alignment_hint, exec, os::strerror(err), err);
2619 }
2620 
2621 // NOTE: Linux kernel does not really reserve the pages for us.
2622 //       All it does is to check if there are enough free pages
2623 //       left at the time of mmap(). This could be a potential
2624 //       problem.
2625 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2626   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2627   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2628                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2629   if (res != (uintptr_t) MAP_FAILED) {
2630     if (UseNUMAInterleaving) {
2631       numa_make_global(addr, size);
2632     }
2633     return 0;
2634   }
2635 
2636   int err = errno;  // save errno from mmap() call above
2637 
2638   if (!recoverable_mmap_error(err)) {
2639     warn_fail_commit_memory(addr, size, exec, err);
2640     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2641   }
2642 
2643   return err;
2644 }
2645 
2646 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2647   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2648 }
2649 
2650 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2651                                   const char* mesg) {
2652   assert(mesg != NULL, "mesg must be specified");
2653   int err = os::Linux::commit_memory_impl(addr, size, exec);
2654   if (err != 0) {
2655     // the caller wants all commit errors to exit with the specified mesg:
2656     warn_fail_commit_memory(addr, size, exec, err);
2657     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2658   }
2659 }
2660 
2661 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2662 #ifndef MAP_HUGETLB
2663   #define MAP_HUGETLB 0x40000
2664 #endif
2665 
2666 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2667 #ifndef MADV_HUGEPAGE
2668   #define MADV_HUGEPAGE 14
2669 #endif
2670 
2671 int os::Linux::commit_memory_impl(char* addr, size_t size,
2672                                   size_t alignment_hint, bool exec) {
2673   int err = os::Linux::commit_memory_impl(addr, size, exec);
2674   if (err == 0) {
2675     realign_memory(addr, size, alignment_hint);
2676   }
2677   return err;
2678 }
2679 
2680 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2681                           bool exec) {
2682   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2683 }
2684 
2685 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2686                                   size_t alignment_hint, bool exec,
2687                                   const char* mesg) {
2688   assert(mesg != NULL, "mesg must be specified");
2689   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2690   if (err != 0) {
2691     // the caller wants all commit errors to exit with the specified mesg:
2692     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2693     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2694   }
2695 }
2696 
2697 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2698   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2699     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2700     // be supported or the memory may already be backed by huge pages.
2701     ::madvise(addr, bytes, MADV_HUGEPAGE);
2702   }
2703 }
2704 
2705 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2706   // This method works by doing an mmap over an existing mmaping and effectively discarding
2707   // the existing pages. However it won't work for SHM-based large pages that cannot be
2708   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2709   // small pages on top of the SHM segment. This method always works for small pages, so we
2710   // allow that in any case.
2711   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2712     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2713   }
2714 }
2715 
2716 void os::numa_make_global(char *addr, size_t bytes) {
2717   Linux::numa_interleave_memory(addr, bytes);
2718 }
2719 
2720 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2721 // bind policy to MPOL_PREFERRED for the current thread.
2722 #define USE_MPOL_PREFERRED 0
2723 
2724 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2725   // To make NUMA and large pages more robust when both enabled, we need to ease
2726   // the requirements on where the memory should be allocated. MPOL_BIND is the
2727   // default policy and it will force memory to be allocated on the specified
2728   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2729   // the specified node, but will not force it. Using this policy will prevent
2730   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2731   // free large pages.
2732   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2733   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2734 }
2735 
2736 bool os::numa_topology_changed() { return false; }
2737 
2738 size_t os::numa_get_groups_num() {
2739   int max_node = Linux::numa_max_node();
2740   return max_node > 0 ? max_node + 1 : 1;
2741 }
2742 
2743 int os::numa_get_group_id() {
2744   int cpu_id = Linux::sched_getcpu();
2745   if (cpu_id != -1) {
2746     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2747     if (lgrp_id != -1) {
2748       return lgrp_id;
2749     }
2750   }
2751   return 0;
2752 }
2753 
2754 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2755   for (size_t i = 0; i < size; i++) {
2756     ids[i] = i;
2757   }
2758   return size;
2759 }
2760 
2761 bool os::get_page_info(char *start, page_info* info) {
2762   return false;
2763 }
2764 
2765 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2766                      page_info* page_found) {
2767   return end;
2768 }
2769 
2770 
2771 int os::Linux::sched_getcpu_syscall(void) {
2772   unsigned int cpu = 0;
2773   int retval = -1;
2774 
2775 #if defined(IA32)
2776   #ifndef SYS_getcpu
2777     #define SYS_getcpu 318
2778   #endif
2779   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2780 #elif defined(AMD64)
2781 // Unfortunately we have to bring all these macros here from vsyscall.h
2782 // to be able to compile on old linuxes.
2783   #define __NR_vgetcpu 2
2784   #define VSYSCALL_START (-10UL << 20)
2785   #define VSYSCALL_SIZE 1024
2786   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2787   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2788   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2789   retval = vgetcpu(&cpu, NULL, NULL);
2790 #endif
2791 
2792   return (retval == -1) ? retval : cpu;
2793 }
2794 
2795 // Something to do with the numa-aware allocator needs these symbols
2796 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2797 extern "C" JNIEXPORT void numa_error(char *where) { }
2798 
2799 
2800 // If we are running with libnuma version > 2, then we should
2801 // be trying to use symbols with versions 1.1
2802 // If we are running with earlier version, which did not have symbol versions,
2803 // we should use the base version.
2804 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2805   void *f = dlvsym(handle, name, "libnuma_1.1");
2806   if (f == NULL) {
2807     f = dlsym(handle, name);
2808   }
2809   return f;
2810 }
2811 
2812 bool os::Linux::libnuma_init() {
2813   // sched_getcpu() should be in libc.
2814   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2815                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2816 
2817   // If it's not, try a direct syscall.
2818   if (sched_getcpu() == -1) {
2819     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2820                                     (void*)&sched_getcpu_syscall));
2821   }
2822 
2823   if (sched_getcpu() != -1) { // Does it work?
2824     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2825     if (handle != NULL) {
2826       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2827                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2828       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2829                                        libnuma_dlsym(handle, "numa_max_node")));
2830       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2831                                         libnuma_dlsym(handle, "numa_available")));
2832       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2833                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2834       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2835                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2836       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2837                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2838 
2839 
2840       if (numa_available() != -1) {
2841         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2842         // Create a cpu -> node mapping
2843         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2844         rebuild_cpu_to_node_map();
2845         return true;
2846       }
2847     }
2848   }
2849   return false;
2850 }
2851 
2852 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2853 // The table is later used in get_node_by_cpu().
2854 void os::Linux::rebuild_cpu_to_node_map() {
2855   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2856                               // in libnuma (possible values are starting from 16,
2857                               // and continuing up with every other power of 2, but less
2858                               // than the maximum number of CPUs supported by kernel), and
2859                               // is a subject to change (in libnuma version 2 the requirements
2860                               // are more reasonable) we'll just hardcode the number they use
2861                               // in the library.
2862   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2863 
2864   size_t cpu_num = processor_count();
2865   size_t cpu_map_size = NCPUS / BitsPerCLong;
2866   size_t cpu_map_valid_size =
2867     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2868 
2869   cpu_to_node()->clear();
2870   cpu_to_node()->at_grow(cpu_num - 1);
2871   size_t node_num = numa_get_groups_num();
2872 
2873   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2874   for (size_t i = 0; i < node_num; i++) {
2875     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2876       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2877         if (cpu_map[j] != 0) {
2878           for (size_t k = 0; k < BitsPerCLong; k++) {
2879             if (cpu_map[j] & (1UL << k)) {
2880               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2881             }
2882           }
2883         }
2884       }
2885     }
2886   }
2887   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2888 }
2889 
2890 int os::Linux::get_node_by_cpu(int cpu_id) {
2891   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2892     return cpu_to_node()->at(cpu_id);
2893   }
2894   return -1;
2895 }
2896 
2897 GrowableArray<int>* os::Linux::_cpu_to_node;
2898 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2899 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2900 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2901 os::Linux::numa_available_func_t os::Linux::_numa_available;
2902 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2903 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2904 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2905 unsigned long* os::Linux::_numa_all_nodes;
2906 
2907 bool os::pd_uncommit_memory(char* addr, size_t size) {
2908   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2909                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2910   return res  != (uintptr_t) MAP_FAILED;
2911 }
2912 
2913 static address get_stack_commited_bottom(address bottom, size_t size) {
2914   address nbot = bottom;
2915   address ntop = bottom + size;
2916 
2917   size_t page_sz = os::vm_page_size();
2918   unsigned pages = size / page_sz;
2919 
2920   unsigned char vec[1];
2921   unsigned imin = 1, imax = pages + 1, imid;
2922   int mincore_return_value = 0;
2923 
2924   assert(imin <= imax, "Unexpected page size");
2925 
2926   while (imin < imax) {
2927     imid = (imax + imin) / 2;
2928     nbot = ntop - (imid * page_sz);
2929 
2930     // Use a trick with mincore to check whether the page is mapped or not.
2931     // mincore sets vec to 1 if page resides in memory and to 0 if page
2932     // is swapped output but if page we are asking for is unmapped
2933     // it returns -1,ENOMEM
2934     mincore_return_value = mincore(nbot, page_sz, vec);
2935 
2936     if (mincore_return_value == -1) {
2937       // Page is not mapped go up
2938       // to find first mapped page
2939       if (errno != EAGAIN) {
2940         assert(errno == ENOMEM, "Unexpected mincore errno");
2941         imax = imid;
2942       }
2943     } else {
2944       // Page is mapped go down
2945       // to find first not mapped page
2946       imin = imid + 1;
2947     }
2948   }
2949 
2950   nbot = nbot + page_sz;
2951 
2952   // Adjust stack bottom one page up if last checked page is not mapped
2953   if (mincore_return_value == -1) {
2954     nbot = nbot + page_sz;
2955   }
2956 
2957   return nbot;
2958 }
2959 
2960 
2961 // Linux uses a growable mapping for the stack, and if the mapping for
2962 // the stack guard pages is not removed when we detach a thread the
2963 // stack cannot grow beyond the pages where the stack guard was
2964 // mapped.  If at some point later in the process the stack expands to
2965 // that point, the Linux kernel cannot expand the stack any further
2966 // because the guard pages are in the way, and a segfault occurs.
2967 //
2968 // However, it's essential not to split the stack region by unmapping
2969 // a region (leaving a hole) that's already part of the stack mapping,
2970 // so if the stack mapping has already grown beyond the guard pages at
2971 // the time we create them, we have to truncate the stack mapping.
2972 // So, we need to know the extent of the stack mapping when
2973 // create_stack_guard_pages() is called.
2974 
2975 // We only need this for stacks that are growable: at the time of
2976 // writing thread stacks don't use growable mappings (i.e. those
2977 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2978 // only applies to the main thread.
2979 
2980 // If the (growable) stack mapping already extends beyond the point
2981 // where we're going to put our guard pages, truncate the mapping at
2982 // that point by munmap()ping it.  This ensures that when we later
2983 // munmap() the guard pages we don't leave a hole in the stack
2984 // mapping. This only affects the main/initial thread
2985 
2986 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2987   if (os::Linux::is_initial_thread()) {
2988     // As we manually grow stack up to bottom inside create_attached_thread(),
2989     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2990     // we don't need to do anything special.
2991     // Check it first, before calling heavy function.
2992     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2993     unsigned char vec[1];
2994 
2995     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2996       // Fallback to slow path on all errors, including EAGAIN
2997       stack_extent = (uintptr_t) get_stack_commited_bottom(
2998                                                            os::Linux::initial_thread_stack_bottom(),
2999                                                            (size_t)addr - stack_extent);
3000     }
3001 
3002     if (stack_extent < (uintptr_t)addr) {
3003       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3004     }
3005   }
3006 
3007   return os::commit_memory(addr, size, !ExecMem);
3008 }
3009 
3010 // If this is a growable mapping, remove the guard pages entirely by
3011 // munmap()ping them.  If not, just call uncommit_memory(). This only
3012 // affects the main/initial thread, but guard against future OS changes
3013 // It's safe to always unmap guard pages for initial thread because we
3014 // always place it right after end of the mapped region
3015 
3016 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3017   uintptr_t stack_extent, stack_base;
3018 
3019   if (os::Linux::is_initial_thread()) {
3020     return ::munmap(addr, size) == 0;
3021   }
3022 
3023   return os::uncommit_memory(addr, size);
3024 }
3025 
3026 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3027 // at 'requested_addr'. If there are existing memory mappings at the same
3028 // location, however, they will be overwritten. If 'fixed' is false,
3029 // 'requested_addr' is only treated as a hint, the return value may or
3030 // may not start from the requested address. Unlike Linux mmap(), this
3031 // function returns NULL to indicate failure.
3032 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3033   char * addr;
3034   int flags;
3035 
3036   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3037   if (fixed) {
3038     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3039     flags |= MAP_FIXED;
3040   }
3041 
3042   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3043   // touch an uncommitted page. Otherwise, the read/write might
3044   // succeed if we have enough swap space to back the physical page.
3045   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3046                        flags, -1, 0);
3047 
3048   return addr == MAP_FAILED ? NULL : addr;
3049 }
3050 
3051 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3052 //   (req_addr != NULL) or with a given alignment.
3053 //  - bytes shall be a multiple of alignment.
3054 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3055 //  - alignment sets the alignment at which memory shall be allocated.
3056 //     It must be a multiple of allocation granularity.
3057 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3058 //  req_addr or NULL.
3059 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3060 
3061   size_t extra_size = bytes;
3062   if (req_addr == NULL && alignment > 0) {
3063     extra_size += alignment;
3064   }
3065 
3066   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3067     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3068     -1, 0);
3069   if (start == MAP_FAILED) {
3070     start = NULL;
3071   } else {
3072     if (req_addr != NULL) {
3073       if (start != req_addr) {
3074         ::munmap(start, extra_size);
3075         start = NULL;
3076       }
3077     } else {
3078       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3079       char* const end_aligned = start_aligned + bytes;
3080       char* const end = start + extra_size;
3081       if (start_aligned > start) {
3082         ::munmap(start, start_aligned - start);
3083       }
3084       if (end_aligned < end) {
3085         ::munmap(end_aligned, end - end_aligned);
3086       }
3087       start = start_aligned;
3088     }
3089   }
3090   return start;
3091 }
3092 
3093 static int anon_munmap(char * addr, size_t size) {
3094   return ::munmap(addr, size) == 0;
3095 }
3096 
3097 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3098                             size_t alignment_hint) {
3099   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3100 }
3101 
3102 bool os::pd_release_memory(char* addr, size_t size) {
3103   return anon_munmap(addr, size);
3104 }
3105 
3106 static bool linux_mprotect(char* addr, size_t size, int prot) {
3107   // Linux wants the mprotect address argument to be page aligned.
3108   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3109 
3110   // According to SUSv3, mprotect() should only be used with mappings
3111   // established by mmap(), and mmap() always maps whole pages. Unaligned
3112   // 'addr' likely indicates problem in the VM (e.g. trying to change
3113   // protection of malloc'ed or statically allocated memory). Check the
3114   // caller if you hit this assert.
3115   assert(addr == bottom, "sanity check");
3116 
3117   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3118   return ::mprotect(bottom, size, prot) == 0;
3119 }
3120 
3121 // Set protections specified
3122 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3123                         bool is_committed) {
3124   unsigned int p = 0;
3125   switch (prot) {
3126   case MEM_PROT_NONE: p = PROT_NONE; break;
3127   case MEM_PROT_READ: p = PROT_READ; break;
3128   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3129   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3130   default:
3131     ShouldNotReachHere();
3132   }
3133   // is_committed is unused.
3134   return linux_mprotect(addr, bytes, p);
3135 }
3136 
3137 bool os::guard_memory(char* addr, size_t size) {
3138   return linux_mprotect(addr, size, PROT_NONE);
3139 }
3140 
3141 bool os::unguard_memory(char* addr, size_t size) {
3142   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3143 }
3144 
3145 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3146                                                     size_t page_size) {
3147   bool result = false;
3148   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3149                  MAP_ANONYMOUS|MAP_PRIVATE,
3150                  -1, 0);
3151   if (p != MAP_FAILED) {
3152     void *aligned_p = align_ptr_up(p, page_size);
3153 
3154     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3155 
3156     munmap(p, page_size * 2);
3157   }
3158 
3159   if (warn && !result) {
3160     warning("TransparentHugePages is not supported by the operating system.");
3161   }
3162 
3163   return result;
3164 }
3165 
3166 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3167   bool result = false;
3168   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3169                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3170                  -1, 0);
3171 
3172   if (p != MAP_FAILED) {
3173     // We don't know if this really is a huge page or not.
3174     FILE *fp = fopen("/proc/self/maps", "r");
3175     if (fp) {
3176       while (!feof(fp)) {
3177         char chars[257];
3178         long x = 0;
3179         if (fgets(chars, sizeof(chars), fp)) {
3180           if (sscanf(chars, "%lx-%*x", &x) == 1
3181               && x == (long)p) {
3182             if (strstr (chars, "hugepage")) {
3183               result = true;
3184               break;
3185             }
3186           }
3187         }
3188       }
3189       fclose(fp);
3190     }
3191     munmap(p, page_size);
3192   }
3193 
3194   if (warn && !result) {
3195     warning("HugeTLBFS is not supported by the operating system.");
3196   }
3197 
3198   return result;
3199 }
3200 
3201 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3202 //
3203 // From the coredump_filter documentation:
3204 //
3205 // - (bit 0) anonymous private memory
3206 // - (bit 1) anonymous shared memory
3207 // - (bit 2) file-backed private memory
3208 // - (bit 3) file-backed shared memory
3209 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3210 //           effective only if the bit 2 is cleared)
3211 // - (bit 5) hugetlb private memory
3212 // - (bit 6) hugetlb shared memory
3213 //
3214 static void set_coredump_filter(void) {
3215   FILE *f;
3216   long cdm;
3217 
3218   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3219     return;
3220   }
3221 
3222   if (fscanf(f, "%lx", &cdm) != 1) {
3223     fclose(f);
3224     return;
3225   }
3226 
3227   rewind(f);
3228 
3229   if ((cdm & LARGEPAGES_BIT) == 0) {
3230     cdm |= LARGEPAGES_BIT;
3231     fprintf(f, "%#lx", cdm);
3232   }
3233 
3234   fclose(f);
3235 }
3236 
3237 // Large page support
3238 
3239 static size_t _large_page_size = 0;
3240 
3241 size_t os::Linux::find_large_page_size() {
3242   size_t large_page_size = 0;
3243 
3244   // large_page_size on Linux is used to round up heap size. x86 uses either
3245   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3246   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3247   // page as large as 256M.
3248   //
3249   // Here we try to figure out page size by parsing /proc/meminfo and looking
3250   // for a line with the following format:
3251   //    Hugepagesize:     2048 kB
3252   //
3253   // If we can't determine the value (e.g. /proc is not mounted, or the text
3254   // format has been changed), we'll use the largest page size supported by
3255   // the processor.
3256 
3257 #ifndef ZERO
3258   large_page_size =
3259     AARCH64_ONLY(2 * M)
3260     AMD64_ONLY(2 * M)
3261     ARM32_ONLY(2 * M)
3262     IA32_ONLY(4 * M)
3263     IA64_ONLY(256 * M)
3264     PPC_ONLY(4 * M)
3265     S390_ONLY(1 * M)
3266     SPARC_ONLY(4 * M);
3267 #endif // ZERO
3268 
3269   FILE *fp = fopen("/proc/meminfo", "r");
3270   if (fp) {
3271     while (!feof(fp)) {
3272       int x = 0;
3273       char buf[16];
3274       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3275         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3276           large_page_size = x * K;
3277           break;
3278         }
3279       } else {
3280         // skip to next line
3281         for (;;) {
3282           int ch = fgetc(fp);
3283           if (ch == EOF || ch == (int)'\n') break;
3284         }
3285       }
3286     }
3287     fclose(fp);
3288   }
3289 
3290   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3291     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3292             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3293             proper_unit_for_byte_size(large_page_size));
3294   }
3295 
3296   return large_page_size;
3297 }
3298 
3299 size_t os::Linux::setup_large_page_size() {
3300   _large_page_size = Linux::find_large_page_size();
3301   const size_t default_page_size = (size_t)Linux::page_size();
3302   if (_large_page_size > default_page_size) {
3303     _page_sizes[0] = _large_page_size;
3304     _page_sizes[1] = default_page_size;
3305     _page_sizes[2] = 0;
3306   }
3307 
3308   return _large_page_size;
3309 }
3310 
3311 bool os::Linux::setup_large_page_type(size_t page_size) {
3312   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3313       FLAG_IS_DEFAULT(UseSHM) &&
3314       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3315 
3316     // The type of large pages has not been specified by the user.
3317 
3318     // Try UseHugeTLBFS and then UseSHM.
3319     UseHugeTLBFS = UseSHM = true;
3320 
3321     // Don't try UseTransparentHugePages since there are known
3322     // performance issues with it turned on. This might change in the future.
3323     UseTransparentHugePages = false;
3324   }
3325 
3326   if (UseTransparentHugePages) {
3327     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3328     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3329       UseHugeTLBFS = false;
3330       UseSHM = false;
3331       return true;
3332     }
3333     UseTransparentHugePages = false;
3334   }
3335 
3336   if (UseHugeTLBFS) {
3337     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3338     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3339       UseSHM = false;
3340       return true;
3341     }
3342     UseHugeTLBFS = false;
3343   }
3344 
3345   return UseSHM;
3346 }
3347 
3348 void os::large_page_init() {
3349   if (!UseLargePages &&
3350       !UseTransparentHugePages &&
3351       !UseHugeTLBFS &&
3352       !UseSHM) {
3353     // Not using large pages.
3354     return;
3355   }
3356 
3357   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3358     // The user explicitly turned off large pages.
3359     // Ignore the rest of the large pages flags.
3360     UseTransparentHugePages = false;
3361     UseHugeTLBFS = false;
3362     UseSHM = false;
3363     return;
3364   }
3365 
3366   size_t large_page_size = Linux::setup_large_page_size();
3367   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3368 
3369   set_coredump_filter();
3370 }
3371 
3372 #ifndef SHM_HUGETLB
3373   #define SHM_HUGETLB 04000
3374 #endif
3375 
3376 #define shm_warning_format(format, ...)              \
3377   do {                                               \
3378     if (UseLargePages &&                             \
3379         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3380          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3381          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3382       warning(format, __VA_ARGS__);                  \
3383     }                                                \
3384   } while (0)
3385 
3386 #define shm_warning(str) shm_warning_format("%s", str)
3387 
3388 #define shm_warning_with_errno(str)                \
3389   do {                                             \
3390     int err = errno;                               \
3391     shm_warning_format(str " (error = %d)", err);  \
3392   } while (0)
3393 
3394 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3395   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3396 
3397   if (!is_size_aligned(alignment, SHMLBA)) {
3398     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3399     return NULL;
3400   }
3401 
3402   // To ensure that we get 'alignment' aligned memory from shmat,
3403   // we pre-reserve aligned virtual memory and then attach to that.
3404 
3405   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3406   if (pre_reserved_addr == NULL) {
3407     // Couldn't pre-reserve aligned memory.
3408     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3409     return NULL;
3410   }
3411 
3412   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3413   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3414 
3415   if ((intptr_t)addr == -1) {
3416     int err = errno;
3417     shm_warning_with_errno("Failed to attach shared memory.");
3418 
3419     assert(err != EACCES, "Unexpected error");
3420     assert(err != EIDRM,  "Unexpected error");
3421     assert(err != EINVAL, "Unexpected error");
3422 
3423     // Since we don't know if the kernel unmapped the pre-reserved memory area
3424     // we can't unmap it, since that would potentially unmap memory that was
3425     // mapped from other threads.
3426     return NULL;
3427   }
3428 
3429   return addr;
3430 }
3431 
3432 static char* shmat_at_address(int shmid, char* req_addr) {
3433   if (!is_ptr_aligned(req_addr, SHMLBA)) {
3434     assert(false, "Requested address needs to be SHMLBA aligned");
3435     return NULL;
3436   }
3437 
3438   char* addr = (char*)shmat(shmid, req_addr, 0);
3439 
3440   if ((intptr_t)addr == -1) {
3441     shm_warning_with_errno("Failed to attach shared memory.");
3442     return NULL;
3443   }
3444 
3445   return addr;
3446 }
3447 
3448 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3449   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3450   if (req_addr != NULL) {
3451     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3452     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3453     return shmat_at_address(shmid, req_addr);
3454   }
3455 
3456   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3457   // return large page size aligned memory addresses when req_addr == NULL.
3458   // However, if the alignment is larger than the large page size, we have
3459   // to manually ensure that the memory returned is 'alignment' aligned.
3460   if (alignment > os::large_page_size()) {
3461     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3462     return shmat_with_alignment(shmid, bytes, alignment);
3463   } else {
3464     return shmat_at_address(shmid, NULL);
3465   }
3466 }
3467 
3468 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3469                                             char* req_addr, bool exec) {
3470   // "exec" is passed in but not used.  Creating the shared image for
3471   // the code cache doesn't have an SHM_X executable permission to check.
3472   assert(UseLargePages && UseSHM, "only for SHM large pages");
3473   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3474   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3475 
3476   if (!is_size_aligned(bytes, os::large_page_size())) {
3477     return NULL; // Fallback to small pages.
3478   }
3479 
3480   // Create a large shared memory region to attach to based on size.
3481   // Currently, size is the total size of the heap.
3482   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3483   if (shmid == -1) {
3484     // Possible reasons for shmget failure:
3485     // 1. shmmax is too small for Java heap.
3486     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3487     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3488     // 2. not enough large page memory.
3489     //    > check available large pages: cat /proc/meminfo
3490     //    > increase amount of large pages:
3491     //          echo new_value > /proc/sys/vm/nr_hugepages
3492     //      Note 1: different Linux may use different name for this property,
3493     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3494     //      Note 2: it's possible there's enough physical memory available but
3495     //            they are so fragmented after a long run that they can't
3496     //            coalesce into large pages. Try to reserve large pages when
3497     //            the system is still "fresh".
3498     shm_warning_with_errno("Failed to reserve shared memory.");
3499     return NULL;
3500   }
3501 
3502   // Attach to the region.
3503   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3504 
3505   // Remove shmid. If shmat() is successful, the actual shared memory segment
3506   // will be deleted when it's detached by shmdt() or when the process
3507   // terminates. If shmat() is not successful this will remove the shared
3508   // segment immediately.
3509   shmctl(shmid, IPC_RMID, NULL);
3510 
3511   return addr;
3512 }
3513 
3514 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3515                                         int error) {
3516   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3517 
3518   bool warn_on_failure = UseLargePages &&
3519       (!FLAG_IS_DEFAULT(UseLargePages) ||
3520        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3521        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3522 
3523   if (warn_on_failure) {
3524     char msg[128];
3525     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3526                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3527     warning("%s", msg);
3528   }
3529 }
3530 
3531 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3532                                                         char* req_addr,
3533                                                         bool exec) {
3534   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3535   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3536   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3537 
3538   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3539   char* addr = (char*)::mmap(req_addr, bytes, prot,
3540                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3541                              -1, 0);
3542 
3543   if (addr == MAP_FAILED) {
3544     warn_on_large_pages_failure(req_addr, bytes, errno);
3545     return NULL;
3546   }
3547 
3548   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3549 
3550   return addr;
3551 }
3552 
3553 // Reserve memory using mmap(MAP_HUGETLB).
3554 //  - bytes shall be a multiple of alignment.
3555 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3556 //  - alignment sets the alignment at which memory shall be allocated.
3557 //     It must be a multiple of allocation granularity.
3558 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3559 //  req_addr or NULL.
3560 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3561                                                          size_t alignment,
3562                                                          char* req_addr,
3563                                                          bool exec) {
3564   size_t large_page_size = os::large_page_size();
3565   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3566 
3567   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3568   assert(is_size_aligned(bytes, alignment), "Must be");
3569 
3570   // First reserve - but not commit - the address range in small pages.
3571   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3572 
3573   if (start == NULL) {
3574     return NULL;
3575   }
3576 
3577   assert(is_ptr_aligned(start, alignment), "Must be");
3578 
3579   char* end = start + bytes;
3580 
3581   // Find the regions of the allocated chunk that can be promoted to large pages.
3582   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3583   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3584 
3585   size_t lp_bytes = lp_end - lp_start;
3586 
3587   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3588 
3589   if (lp_bytes == 0) {
3590     // The mapped region doesn't even span the start and the end of a large page.
3591     // Fall back to allocate a non-special area.
3592     ::munmap(start, end - start);
3593     return NULL;
3594   }
3595 
3596   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3597 
3598   void* result;
3599 
3600   // Commit small-paged leading area.
3601   if (start != lp_start) {
3602     result = ::mmap(start, lp_start - start, prot,
3603                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3604                     -1, 0);
3605     if (result == MAP_FAILED) {
3606       ::munmap(lp_start, end - lp_start);
3607       return NULL;
3608     }
3609   }
3610 
3611   // Commit large-paged area.
3612   result = ::mmap(lp_start, lp_bytes, prot,
3613                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3614                   -1, 0);
3615   if (result == MAP_FAILED) {
3616     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3617     // If the mmap above fails, the large pages region will be unmapped and we
3618     // have regions before and after with small pages. Release these regions.
3619     //
3620     // |  mapped  |  unmapped  |  mapped  |
3621     // ^          ^            ^          ^
3622     // start      lp_start     lp_end     end
3623     //
3624     ::munmap(start, lp_start - start);
3625     ::munmap(lp_end, end - lp_end);
3626     return NULL;
3627   }
3628 
3629   // Commit small-paged trailing area.
3630   if (lp_end != end) {
3631     result = ::mmap(lp_end, end - lp_end, prot,
3632                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3633                     -1, 0);
3634     if (result == MAP_FAILED) {
3635       ::munmap(start, lp_end - start);
3636       return NULL;
3637     }
3638   }
3639 
3640   return start;
3641 }
3642 
3643 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3644                                                    size_t alignment,
3645                                                    char* req_addr,
3646                                                    bool exec) {
3647   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3648   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3649   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3650   assert(is_power_of_2(os::large_page_size()), "Must be");
3651   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3652 
3653   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3654     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3655   } else {
3656     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3657   }
3658 }
3659 
3660 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3661                                  char* req_addr, bool exec) {
3662   assert(UseLargePages, "only for large pages");
3663 
3664   char* addr;
3665   if (UseSHM) {
3666     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3667   } else {
3668     assert(UseHugeTLBFS, "must be");
3669     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3670   }
3671 
3672   if (addr != NULL) {
3673     if (UseNUMAInterleaving) {
3674       numa_make_global(addr, bytes);
3675     }
3676 
3677     // The memory is committed
3678     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3679   }
3680 
3681   return addr;
3682 }
3683 
3684 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3685   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3686   return shmdt(base) == 0;
3687 }
3688 
3689 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3690   return pd_release_memory(base, bytes);
3691 }
3692 
3693 bool os::release_memory_special(char* base, size_t bytes) {
3694   bool res;
3695   if (MemTracker::tracking_level() > NMT_minimal) {
3696     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3697     res = os::Linux::release_memory_special_impl(base, bytes);
3698     if (res) {
3699       tkr.record((address)base, bytes);
3700     }
3701 
3702   } else {
3703     res = os::Linux::release_memory_special_impl(base, bytes);
3704   }
3705   return res;
3706 }
3707 
3708 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3709   assert(UseLargePages, "only for large pages");
3710   bool res;
3711 
3712   if (UseSHM) {
3713     res = os::Linux::release_memory_special_shm(base, bytes);
3714   } else {
3715     assert(UseHugeTLBFS, "must be");
3716     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3717   }
3718   return res;
3719 }
3720 
3721 size_t os::large_page_size() {
3722   return _large_page_size;
3723 }
3724 
3725 // With SysV SHM the entire memory region must be allocated as shared
3726 // memory.
3727 // HugeTLBFS allows application to commit large page memory on demand.
3728 // However, when committing memory with HugeTLBFS fails, the region
3729 // that was supposed to be committed will lose the old reservation
3730 // and allow other threads to steal that memory region. Because of this
3731 // behavior we can't commit HugeTLBFS memory.
3732 bool os::can_commit_large_page_memory() {
3733   return UseTransparentHugePages;
3734 }
3735 
3736 bool os::can_execute_large_page_memory() {
3737   return UseTransparentHugePages || UseHugeTLBFS;
3738 }
3739 
3740 // Reserve memory at an arbitrary address, only if that area is
3741 // available (and not reserved for something else).
3742 
3743 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3744   const int max_tries = 10;
3745   char* base[max_tries];
3746   size_t size[max_tries];
3747   const size_t gap = 0x000000;
3748 
3749   // Assert only that the size is a multiple of the page size, since
3750   // that's all that mmap requires, and since that's all we really know
3751   // about at this low abstraction level.  If we need higher alignment,
3752   // we can either pass an alignment to this method or verify alignment
3753   // in one of the methods further up the call chain.  See bug 5044738.
3754   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3755 
3756   // Repeatedly allocate blocks until the block is allocated at the
3757   // right spot.
3758 
3759   // Linux mmap allows caller to pass an address as hint; give it a try first,
3760   // if kernel honors the hint then we can return immediately.
3761   char * addr = anon_mmap(requested_addr, bytes, false);
3762   if (addr == requested_addr) {
3763     return requested_addr;
3764   }
3765 
3766   if (addr != NULL) {
3767     // mmap() is successful but it fails to reserve at the requested address
3768     anon_munmap(addr, bytes);
3769   }
3770 
3771   int i;
3772   for (i = 0; i < max_tries; ++i) {
3773     base[i] = reserve_memory(bytes);
3774 
3775     if (base[i] != NULL) {
3776       // Is this the block we wanted?
3777       if (base[i] == requested_addr) {
3778         size[i] = bytes;
3779         break;
3780       }
3781 
3782       // Does this overlap the block we wanted? Give back the overlapped
3783       // parts and try again.
3784 
3785       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3786       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3787         unmap_memory(base[i], top_overlap);
3788         base[i] += top_overlap;
3789         size[i] = bytes - top_overlap;
3790       } else {
3791         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3792         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3793           unmap_memory(requested_addr, bottom_overlap);
3794           size[i] = bytes - bottom_overlap;
3795         } else {
3796           size[i] = bytes;
3797         }
3798       }
3799     }
3800   }
3801 
3802   // Give back the unused reserved pieces.
3803 
3804   for (int j = 0; j < i; ++j) {
3805     if (base[j] != NULL) {
3806       unmap_memory(base[j], size[j]);
3807     }
3808   }
3809 
3810   if (i < max_tries) {
3811     return requested_addr;
3812   } else {
3813     return NULL;
3814   }
3815 }
3816 
3817 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3818   return ::read(fd, buf, nBytes);
3819 }
3820 
3821 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3822   return ::pread(fd, buf, nBytes, offset);
3823 }
3824 
3825 // Short sleep, direct OS call.
3826 //
3827 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3828 // sched_yield(2) will actually give up the CPU:
3829 //
3830 //   * Alone on this pariticular CPU, keeps running.
3831 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3832 //     (pre 2.6.39).
3833 //
3834 // So calling this with 0 is an alternative.
3835 //
3836 void os::naked_short_sleep(jlong ms) {
3837   struct timespec req;
3838 
3839   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3840   req.tv_sec = 0;
3841   if (ms > 0) {
3842     req.tv_nsec = (ms % 1000) * 1000000;
3843   } else {
3844     req.tv_nsec = 1;
3845   }
3846 
3847   nanosleep(&req, NULL);
3848 
3849   return;
3850 }
3851 
3852 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3853 void os::infinite_sleep() {
3854   while (true) {    // sleep forever ...
3855     ::sleep(100);   // ... 100 seconds at a time
3856   }
3857 }
3858 
3859 // Used to convert frequent JVM_Yield() to nops
3860 bool os::dont_yield() {
3861   return DontYieldALot;
3862 }
3863 
3864 void os::naked_yield() {
3865   sched_yield();
3866 }
3867 
3868 ////////////////////////////////////////////////////////////////////////////////
3869 // thread priority support
3870 
3871 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3872 // only supports dynamic priority, static priority must be zero. For real-time
3873 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3874 // However, for large multi-threaded applications, SCHED_RR is not only slower
3875 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3876 // of 5 runs - Sep 2005).
3877 //
3878 // The following code actually changes the niceness of kernel-thread/LWP. It
3879 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3880 // not the entire user process, and user level threads are 1:1 mapped to kernel
3881 // threads. It has always been the case, but could change in the future. For
3882 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3883 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3884 
3885 int os::java_to_os_priority[CriticalPriority + 1] = {
3886   19,              // 0 Entry should never be used
3887 
3888    4,              // 1 MinPriority
3889    3,              // 2
3890    2,              // 3
3891 
3892    1,              // 4
3893    0,              // 5 NormPriority
3894   -1,              // 6
3895 
3896   -2,              // 7
3897   -3,              // 8
3898   -4,              // 9 NearMaxPriority
3899 
3900   -5,              // 10 MaxPriority
3901 
3902   -5               // 11 CriticalPriority
3903 };
3904 
3905 static int prio_init() {
3906   if (ThreadPriorityPolicy == 1) {
3907     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3908     // if effective uid is not root. Perhaps, a more elegant way of doing
3909     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3910     if (geteuid() != 0) {
3911       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3912         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3913       }
3914       ThreadPriorityPolicy = 0;
3915     }
3916   }
3917   if (UseCriticalJavaThreadPriority) {
3918     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3919   }
3920   return 0;
3921 }
3922 
3923 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3924   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3925 
3926   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3927   return (ret == 0) ? OS_OK : OS_ERR;
3928 }
3929 
3930 OSReturn os::get_native_priority(const Thread* const thread,
3931                                  int *priority_ptr) {
3932   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3933     *priority_ptr = java_to_os_priority[NormPriority];
3934     return OS_OK;
3935   }
3936 
3937   errno = 0;
3938   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3939   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3940 }
3941 
3942 // Hint to the underlying OS that a task switch would not be good.
3943 // Void return because it's a hint and can fail.
3944 void os::hint_no_preempt() {}
3945 
3946 ////////////////////////////////////////////////////////////////////////////////
3947 // suspend/resume support
3948 
3949 //  the low-level signal-based suspend/resume support is a remnant from the
3950 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3951 //  within hotspot. Now there is a single use-case for this:
3952 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3953 //      that runs in the watcher thread.
3954 //  The remaining code is greatly simplified from the more general suspension
3955 //  code that used to be used.
3956 //
3957 //  The protocol is quite simple:
3958 //  - suspend:
3959 //      - sends a signal to the target thread
3960 //      - polls the suspend state of the osthread using a yield loop
3961 //      - target thread signal handler (SR_handler) sets suspend state
3962 //        and blocks in sigsuspend until continued
3963 //  - resume:
3964 //      - sets target osthread state to continue
3965 //      - sends signal to end the sigsuspend loop in the SR_handler
3966 //
3967 //  Note that the SR_lock plays no role in this suspend/resume protocol,
3968 //  but is checked for NULL in SR_handler as a thread termination indicator.
3969 
3970 static void resume_clear_context(OSThread *osthread) {
3971   osthread->set_ucontext(NULL);
3972   osthread->set_siginfo(NULL);
3973 }
3974 
3975 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3976                                  ucontext_t* context) {
3977   osthread->set_ucontext(context);
3978   osthread->set_siginfo(siginfo);
3979 }
3980 
3981 // Handler function invoked when a thread's execution is suspended or
3982 // resumed. We have to be careful that only async-safe functions are
3983 // called here (Note: most pthread functions are not async safe and
3984 // should be avoided.)
3985 //
3986 // Note: sigwait() is a more natural fit than sigsuspend() from an
3987 // interface point of view, but sigwait() prevents the signal hander
3988 // from being run. libpthread would get very confused by not having
3989 // its signal handlers run and prevents sigwait()'s use with the
3990 // mutex granting granting signal.
3991 //
3992 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3993 //
3994 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3995   // Save and restore errno to avoid confusing native code with EINTR
3996   // after sigsuspend.
3997   int old_errno = errno;
3998 
3999   Thread* thread = Thread::current_or_null_safe();
4000   assert(thread != NULL, "Missing current thread in SR_handler");
4001 
4002   // On some systems we have seen signal delivery get "stuck" until the signal
4003   // mask is changed as part of thread termination. Check that the current thread
4004   // has not already terminated (via SR_lock()) - else the following assertion
4005   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4006   // destructor has completed.
4007 
4008   if (thread->SR_lock() == NULL) {
4009     return;
4010   }
4011 
4012   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4013 
4014   OSThread* osthread = thread->osthread();
4015 
4016   os::SuspendResume::State current = osthread->sr.state();
4017   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4018     suspend_save_context(osthread, siginfo, context);
4019 
4020     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4021     os::SuspendResume::State state = osthread->sr.suspended();
4022     if (state == os::SuspendResume::SR_SUSPENDED) {
4023       sigset_t suspend_set;  // signals for sigsuspend()
4024       sigemptyset(&suspend_set);
4025       // get current set of blocked signals and unblock resume signal
4026       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4027       sigdelset(&suspend_set, SR_signum);
4028 
4029       sr_semaphore.signal();
4030       // wait here until we are resumed
4031       while (1) {
4032         sigsuspend(&suspend_set);
4033 
4034         os::SuspendResume::State result = osthread->sr.running();
4035         if (result == os::SuspendResume::SR_RUNNING) {
4036           sr_semaphore.signal();
4037           break;
4038         }
4039       }
4040 
4041     } else if (state == os::SuspendResume::SR_RUNNING) {
4042       // request was cancelled, continue
4043     } else {
4044       ShouldNotReachHere();
4045     }
4046 
4047     resume_clear_context(osthread);
4048   } else if (current == os::SuspendResume::SR_RUNNING) {
4049     // request was cancelled, continue
4050   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4051     // ignore
4052   } else {
4053     // ignore
4054   }
4055 
4056   errno = old_errno;
4057 }
4058 
4059 static int SR_initialize() {
4060   struct sigaction act;
4061   char *s;
4062 
4063   // Get signal number to use for suspend/resume
4064   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4065     int sig = ::strtol(s, 0, 10);
4066     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4067         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4068       SR_signum = sig;
4069     } else {
4070       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4071               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4072     }
4073   }
4074 
4075   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4076          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4077 
4078   sigemptyset(&SR_sigset);
4079   sigaddset(&SR_sigset, SR_signum);
4080 
4081   // Set up signal handler for suspend/resume
4082   act.sa_flags = SA_RESTART|SA_SIGINFO;
4083   act.sa_handler = (void (*)(int)) SR_handler;
4084 
4085   // SR_signum is blocked by default.
4086   // 4528190 - We also need to block pthread restart signal (32 on all
4087   // supported Linux platforms). Note that LinuxThreads need to block
4088   // this signal for all threads to work properly. So we don't have
4089   // to use hard-coded signal number when setting up the mask.
4090   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4091 
4092   if (sigaction(SR_signum, &act, 0) == -1) {
4093     return -1;
4094   }
4095 
4096   // Save signal flag
4097   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4098   return 0;
4099 }
4100 
4101 static int sr_notify(OSThread* osthread) {
4102   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4103   assert_status(status == 0, status, "pthread_kill");
4104   return status;
4105 }
4106 
4107 // "Randomly" selected value for how long we want to spin
4108 // before bailing out on suspending a thread, also how often
4109 // we send a signal to a thread we want to resume
4110 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4111 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4112 
4113 // returns true on success and false on error - really an error is fatal
4114 // but this seems the normal response to library errors
4115 static bool do_suspend(OSThread* osthread) {
4116   assert(osthread->sr.is_running(), "thread should be running");
4117   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4118 
4119   // mark as suspended and send signal
4120   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4121     // failed to switch, state wasn't running?
4122     ShouldNotReachHere();
4123     return false;
4124   }
4125 
4126   if (sr_notify(osthread) != 0) {
4127     ShouldNotReachHere();
4128   }
4129 
4130   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4131   while (true) {
4132     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4133       break;
4134     } else {
4135       // timeout
4136       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4137       if (cancelled == os::SuspendResume::SR_RUNNING) {
4138         return false;
4139       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4140         // make sure that we consume the signal on the semaphore as well
4141         sr_semaphore.wait();
4142         break;
4143       } else {
4144         ShouldNotReachHere();
4145         return false;
4146       }
4147     }
4148   }
4149 
4150   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4151   return true;
4152 }
4153 
4154 static void do_resume(OSThread* osthread) {
4155   assert(osthread->sr.is_suspended(), "thread should be suspended");
4156   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4157 
4158   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4159     // failed to switch to WAKEUP_REQUEST
4160     ShouldNotReachHere();
4161     return;
4162   }
4163 
4164   while (true) {
4165     if (sr_notify(osthread) == 0) {
4166       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4167         if (osthread->sr.is_running()) {
4168           return;
4169         }
4170       }
4171     } else {
4172       ShouldNotReachHere();
4173     }
4174   }
4175 
4176   guarantee(osthread->sr.is_running(), "Must be running!");
4177 }
4178 
4179 ///////////////////////////////////////////////////////////////////////////////////
4180 // signal handling (except suspend/resume)
4181 
4182 // This routine may be used by user applications as a "hook" to catch signals.
4183 // The user-defined signal handler must pass unrecognized signals to this
4184 // routine, and if it returns true (non-zero), then the signal handler must
4185 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4186 // routine will never retun false (zero), but instead will execute a VM panic
4187 // routine kill the process.
4188 //
4189 // If this routine returns false, it is OK to call it again.  This allows
4190 // the user-defined signal handler to perform checks either before or after
4191 // the VM performs its own checks.  Naturally, the user code would be making
4192 // a serious error if it tried to handle an exception (such as a null check
4193 // or breakpoint) that the VM was generating for its own correct operation.
4194 //
4195 // This routine may recognize any of the following kinds of signals:
4196 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4197 // It should be consulted by handlers for any of those signals.
4198 //
4199 // The caller of this routine must pass in the three arguments supplied
4200 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4201 // field of the structure passed to sigaction().  This routine assumes that
4202 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4203 //
4204 // Note that the VM will print warnings if it detects conflicting signal
4205 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4206 //
4207 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4208                                                  siginfo_t* siginfo,
4209                                                  void* ucontext,
4210                                                  int abort_if_unrecognized);
4211 
4212 void signalHandler(int sig, siginfo_t* info, void* uc) {
4213   assert(info != NULL && uc != NULL, "it must be old kernel");
4214   int orig_errno = errno;  // Preserve errno value over signal handler.
4215   JVM_handle_linux_signal(sig, info, uc, true);
4216   errno = orig_errno;
4217 }
4218 
4219 
4220 // This boolean allows users to forward their own non-matching signals
4221 // to JVM_handle_linux_signal, harmlessly.
4222 bool os::Linux::signal_handlers_are_installed = false;
4223 
4224 // For signal-chaining
4225 struct sigaction sigact[NSIG];
4226 uint64_t sigs = 0;
4227 #if (64 < NSIG-1)
4228 #error "Not all signals can be encoded in sigs. Adapt its type!"
4229 #endif
4230 bool os::Linux::libjsig_is_loaded = false;
4231 typedef struct sigaction *(*get_signal_t)(int);
4232 get_signal_t os::Linux::get_signal_action = NULL;
4233 
4234 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4235   struct sigaction *actp = NULL;
4236 
4237   if (libjsig_is_loaded) {
4238     // Retrieve the old signal handler from libjsig
4239     actp = (*get_signal_action)(sig);
4240   }
4241   if (actp == NULL) {
4242     // Retrieve the preinstalled signal handler from jvm
4243     actp = get_preinstalled_handler(sig);
4244   }
4245 
4246   return actp;
4247 }
4248 
4249 static bool call_chained_handler(struct sigaction *actp, int sig,
4250                                  siginfo_t *siginfo, void *context) {
4251   // Call the old signal handler
4252   if (actp->sa_handler == SIG_DFL) {
4253     // It's more reasonable to let jvm treat it as an unexpected exception
4254     // instead of taking the default action.
4255     return false;
4256   } else if (actp->sa_handler != SIG_IGN) {
4257     if ((actp->sa_flags & SA_NODEFER) == 0) {
4258       // automaticlly block the signal
4259       sigaddset(&(actp->sa_mask), sig);
4260     }
4261 
4262     sa_handler_t hand = NULL;
4263     sa_sigaction_t sa = NULL;
4264     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4265     // retrieve the chained handler
4266     if (siginfo_flag_set) {
4267       sa = actp->sa_sigaction;
4268     } else {
4269       hand = actp->sa_handler;
4270     }
4271 
4272     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4273       actp->sa_handler = SIG_DFL;
4274     }
4275 
4276     // try to honor the signal mask
4277     sigset_t oset;
4278     sigemptyset(&oset);
4279     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4280 
4281     // call into the chained handler
4282     if (siginfo_flag_set) {
4283       (*sa)(sig, siginfo, context);
4284     } else {
4285       (*hand)(sig);
4286     }
4287 
4288     // restore the signal mask
4289     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4290   }
4291   // Tell jvm's signal handler the signal is taken care of.
4292   return true;
4293 }
4294 
4295 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4296   bool chained = false;
4297   // signal-chaining
4298   if (UseSignalChaining) {
4299     struct sigaction *actp = get_chained_signal_action(sig);
4300     if (actp != NULL) {
4301       chained = call_chained_handler(actp, sig, siginfo, context);
4302     }
4303   }
4304   return chained;
4305 }
4306 
4307 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4308   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4309     return &sigact[sig];
4310   }
4311   return NULL;
4312 }
4313 
4314 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4315   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4316   sigact[sig] = oldAct;
4317   sigs |= (uint64_t)1 << (sig-1);
4318 }
4319 
4320 // for diagnostic
4321 int sigflags[NSIG];
4322 
4323 int os::Linux::get_our_sigflags(int sig) {
4324   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4325   return sigflags[sig];
4326 }
4327 
4328 void os::Linux::set_our_sigflags(int sig, int flags) {
4329   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4330   if (sig > 0 && sig < NSIG) {
4331     sigflags[sig] = flags;
4332   }
4333 }
4334 
4335 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4336   // Check for overwrite.
4337   struct sigaction oldAct;
4338   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4339 
4340   void* oldhand = oldAct.sa_sigaction
4341                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4342                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4343   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4344       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4345       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4346     if (AllowUserSignalHandlers || !set_installed) {
4347       // Do not overwrite; user takes responsibility to forward to us.
4348       return;
4349     } else if (UseSignalChaining) {
4350       // save the old handler in jvm
4351       save_preinstalled_handler(sig, oldAct);
4352       // libjsig also interposes the sigaction() call below and saves the
4353       // old sigaction on it own.
4354     } else {
4355       fatal("Encountered unexpected pre-existing sigaction handler "
4356             "%#lx for signal %d.", (long)oldhand, sig);
4357     }
4358   }
4359 
4360   struct sigaction sigAct;
4361   sigfillset(&(sigAct.sa_mask));
4362   sigAct.sa_handler = SIG_DFL;
4363   if (!set_installed) {
4364     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4365   } else {
4366     sigAct.sa_sigaction = signalHandler;
4367     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4368   }
4369   // Save flags, which are set by ours
4370   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4371   sigflags[sig] = sigAct.sa_flags;
4372 
4373   int ret = sigaction(sig, &sigAct, &oldAct);
4374   assert(ret == 0, "check");
4375 
4376   void* oldhand2  = oldAct.sa_sigaction
4377                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4378                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4379   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4380 }
4381 
4382 // install signal handlers for signals that HotSpot needs to
4383 // handle in order to support Java-level exception handling.
4384 
4385 void os::Linux::install_signal_handlers() {
4386   if (!signal_handlers_are_installed) {
4387     signal_handlers_are_installed = true;
4388 
4389     // signal-chaining
4390     typedef void (*signal_setting_t)();
4391     signal_setting_t begin_signal_setting = NULL;
4392     signal_setting_t end_signal_setting = NULL;
4393     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4394                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4395     if (begin_signal_setting != NULL) {
4396       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4397                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4398       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4399                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4400       libjsig_is_loaded = true;
4401       assert(UseSignalChaining, "should enable signal-chaining");
4402     }
4403     if (libjsig_is_loaded) {
4404       // Tell libjsig jvm is setting signal handlers
4405       (*begin_signal_setting)();
4406     }
4407 
4408     set_signal_handler(SIGSEGV, true);
4409     set_signal_handler(SIGPIPE, true);
4410     set_signal_handler(SIGBUS, true);
4411     set_signal_handler(SIGILL, true);
4412     set_signal_handler(SIGFPE, true);
4413 #if defined(PPC64)
4414     set_signal_handler(SIGTRAP, true);
4415 #endif
4416     set_signal_handler(SIGXFSZ, true);
4417 
4418     if (libjsig_is_loaded) {
4419       // Tell libjsig jvm finishes setting signal handlers
4420       (*end_signal_setting)();
4421     }
4422 
4423     // We don't activate signal checker if libjsig is in place, we trust ourselves
4424     // and if UserSignalHandler is installed all bets are off.
4425     // Log that signal checking is off only if -verbose:jni is specified.
4426     if (CheckJNICalls) {
4427       if (libjsig_is_loaded) {
4428         if (PrintJNIResolving) {
4429           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4430         }
4431         check_signals = false;
4432       }
4433       if (AllowUserSignalHandlers) {
4434         if (PrintJNIResolving) {
4435           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4436         }
4437         check_signals = false;
4438       }
4439     }
4440   }
4441 }
4442 
4443 // This is the fastest way to get thread cpu time on Linux.
4444 // Returns cpu time (user+sys) for any thread, not only for current.
4445 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4446 // It might work on 2.6.10+ with a special kernel/glibc patch.
4447 // For reference, please, see IEEE Std 1003.1-2004:
4448 //   http://www.unix.org/single_unix_specification
4449 
4450 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4451   struct timespec tp;
4452   int rc = os::Linux::clock_gettime(clockid, &tp);
4453   assert(rc == 0, "clock_gettime is expected to return 0 code");
4454 
4455   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4456 }
4457 
4458 void os::Linux::initialize_os_info() {
4459   assert(_os_version == 0, "OS info already initialized");
4460 
4461   struct utsname _uname;
4462 
4463   uint32_t major;
4464   uint32_t minor;
4465   uint32_t fix;
4466 
4467   int rc;
4468 
4469   // Kernel version is unknown if
4470   // verification below fails.
4471   _os_version = 0x01000000;
4472 
4473   rc = uname(&_uname);
4474   if (rc != -1) {
4475 
4476     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4477     if (rc == 3) {
4478 
4479       if (major < 256 && minor < 256 && fix < 256) {
4480         // Kernel version format is as expected,
4481         // set it overriding unknown state.
4482         _os_version = (major << 16) |
4483                       (minor << 8 ) |
4484                       (fix   << 0 ) ;
4485       }
4486     }
4487   }
4488 }
4489 
4490 uint32_t os::Linux::os_version() {
4491   assert(_os_version != 0, "not initialized");
4492   return _os_version & 0x00FFFFFF;
4493 }
4494 
4495 bool os::Linux::os_version_is_known() {
4496   assert(_os_version != 0, "not initialized");
4497   return _os_version & 0x01000000 ? false : true;
4498 }
4499 
4500 /////
4501 // glibc on Linux platform uses non-documented flag
4502 // to indicate, that some special sort of signal
4503 // trampoline is used.
4504 // We will never set this flag, and we should
4505 // ignore this flag in our diagnostic
4506 #ifdef SIGNIFICANT_SIGNAL_MASK
4507   #undef SIGNIFICANT_SIGNAL_MASK
4508 #endif
4509 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4510 
4511 static const char* get_signal_handler_name(address handler,
4512                                            char* buf, int buflen) {
4513   int offset = 0;
4514   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4515   if (found) {
4516     // skip directory names
4517     const char *p1, *p2;
4518     p1 = buf;
4519     size_t len = strlen(os::file_separator());
4520     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4521     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4522   } else {
4523     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4524   }
4525   return buf;
4526 }
4527 
4528 static void print_signal_handler(outputStream* st, int sig,
4529                                  char* buf, size_t buflen) {
4530   struct sigaction sa;
4531 
4532   sigaction(sig, NULL, &sa);
4533 
4534   // See comment for SIGNIFICANT_SIGNAL_MASK define
4535   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4536 
4537   st->print("%s: ", os::exception_name(sig, buf, buflen));
4538 
4539   address handler = (sa.sa_flags & SA_SIGINFO)
4540     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4541     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4542 
4543   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4544     st->print("SIG_DFL");
4545   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4546     st->print("SIG_IGN");
4547   } else {
4548     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4549   }
4550 
4551   st->print(", sa_mask[0]=");
4552   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4553 
4554   address rh = VMError::get_resetted_sighandler(sig);
4555   // May be, handler was resetted by VMError?
4556   if (rh != NULL) {
4557     handler = rh;
4558     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4559   }
4560 
4561   st->print(", sa_flags=");
4562   os::Posix::print_sa_flags(st, sa.sa_flags);
4563 
4564   // Check: is it our handler?
4565   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4566       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4567     // It is our signal handler
4568     // check for flags, reset system-used one!
4569     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4570       st->print(
4571                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4572                 os::Linux::get_our_sigflags(sig));
4573     }
4574   }
4575   st->cr();
4576 }
4577 
4578 
4579 #define DO_SIGNAL_CHECK(sig)                      \
4580   do {                                            \
4581     if (!sigismember(&check_signal_done, sig)) {  \
4582       os::Linux::check_signal_handler(sig);       \
4583     }                                             \
4584   } while (0)
4585 
4586 // This method is a periodic task to check for misbehaving JNI applications
4587 // under CheckJNI, we can add any periodic checks here
4588 
4589 void os::run_periodic_checks() {
4590   if (check_signals == false) return;
4591 
4592   // SEGV and BUS if overridden could potentially prevent
4593   // generation of hs*.log in the event of a crash, debugging
4594   // such a case can be very challenging, so we absolutely
4595   // check the following for a good measure:
4596   DO_SIGNAL_CHECK(SIGSEGV);
4597   DO_SIGNAL_CHECK(SIGILL);
4598   DO_SIGNAL_CHECK(SIGFPE);
4599   DO_SIGNAL_CHECK(SIGBUS);
4600   DO_SIGNAL_CHECK(SIGPIPE);
4601   DO_SIGNAL_CHECK(SIGXFSZ);
4602 #if defined(PPC64)
4603   DO_SIGNAL_CHECK(SIGTRAP);
4604 #endif
4605 
4606   // ReduceSignalUsage allows the user to override these handlers
4607   // see comments at the very top and jvm_solaris.h
4608   if (!ReduceSignalUsage) {
4609     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4610     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4611     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4612     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4613   }
4614 
4615   DO_SIGNAL_CHECK(SR_signum);
4616 }
4617 
4618 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4619 
4620 static os_sigaction_t os_sigaction = NULL;
4621 
4622 void os::Linux::check_signal_handler(int sig) {
4623   char buf[O_BUFLEN];
4624   address jvmHandler = NULL;
4625 
4626 
4627   struct sigaction act;
4628   if (os_sigaction == NULL) {
4629     // only trust the default sigaction, in case it has been interposed
4630     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4631     if (os_sigaction == NULL) return;
4632   }
4633 
4634   os_sigaction(sig, (struct sigaction*)NULL, &act);
4635 
4636 
4637   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4638 
4639   address thisHandler = (act.sa_flags & SA_SIGINFO)
4640     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4641     : CAST_FROM_FN_PTR(address, act.sa_handler);
4642 
4643 
4644   switch (sig) {
4645   case SIGSEGV:
4646   case SIGBUS:
4647   case SIGFPE:
4648   case SIGPIPE:
4649   case SIGILL:
4650   case SIGXFSZ:
4651     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4652     break;
4653 
4654   case SHUTDOWN1_SIGNAL:
4655   case SHUTDOWN2_SIGNAL:
4656   case SHUTDOWN3_SIGNAL:
4657   case BREAK_SIGNAL:
4658     jvmHandler = (address)user_handler();
4659     break;
4660 
4661   default:
4662     if (sig == SR_signum) {
4663       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4664     } else {
4665       return;
4666     }
4667     break;
4668   }
4669 
4670   if (thisHandler != jvmHandler) {
4671     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4672     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4673     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4674     // No need to check this sig any longer
4675     sigaddset(&check_signal_done, sig);
4676     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4677     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4678       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4679                     exception_name(sig, buf, O_BUFLEN));
4680     }
4681   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4682     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4683     tty->print("expected:");
4684     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4685     tty->cr();
4686     tty->print("  found:");
4687     os::Posix::print_sa_flags(tty, act.sa_flags);
4688     tty->cr();
4689     // No need to check this sig any longer
4690     sigaddset(&check_signal_done, sig);
4691   }
4692 
4693   // Dump all the signal
4694   if (sigismember(&check_signal_done, sig)) {
4695     print_signal_handlers(tty, buf, O_BUFLEN);
4696   }
4697 }
4698 
4699 extern void report_error(char* file_name, int line_no, char* title,
4700                          char* format, ...);
4701 
4702 // this is called _before_ the most of global arguments have been parsed
4703 void os::init(void) {
4704   char dummy;   // used to get a guess on initial stack address
4705 //  first_hrtime = gethrtime();
4706 
4707   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4708 
4709   init_random(1234567);
4710 
4711   ThreadCritical::initialize();
4712 
4713   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4714   if (Linux::page_size() == -1) {
4715     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4716           os::strerror(errno));
4717   }
4718   init_page_sizes((size_t) Linux::page_size());
4719 
4720   Linux::initialize_system_info();
4721 
4722   Linux::initialize_os_info();
4723 
4724   // main_thread points to the aboriginal thread
4725   Linux::_main_thread = pthread_self();
4726 
4727   Linux::clock_init();
4728   initial_time_count = javaTimeNanos();
4729 
4730   // pthread_condattr initialization for monotonic clock
4731   int status;
4732   pthread_condattr_t* _condattr = os::Linux::condAttr();
4733   if ((status = pthread_condattr_init(_condattr)) != 0) {
4734     fatal("pthread_condattr_init: %s", os::strerror(status));
4735   }
4736   // Only set the clock if CLOCK_MONOTONIC is available
4737   if (os::supports_monotonic_clock()) {
4738     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4739       if (status == EINVAL) {
4740         warning("Unable to use monotonic clock with relative timed-waits" \
4741                 " - changes to the time-of-day clock may have adverse affects");
4742       } else {
4743         fatal("pthread_condattr_setclock: %s", os::strerror(status));
4744       }
4745     }
4746   }
4747   // else it defaults to CLOCK_REALTIME
4748 
4749   // retrieve entry point for pthread_setname_np
4750   Linux::_pthread_setname_np =
4751     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4752 
4753 }
4754 
4755 // To install functions for atexit system call
4756 extern "C" {
4757   static void perfMemory_exit_helper() {
4758     perfMemory_exit();
4759   }
4760 }
4761 
4762 // this is called _after_ the global arguments have been parsed
4763 jint os::init_2(void) {
4764   Linux::fast_thread_clock_init();
4765 
4766   // Allocate a single page and mark it as readable for safepoint polling
4767   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4768   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4769 
4770   os::set_polling_page(polling_page);
4771   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4772 
4773   if (!UseMembar) {
4774     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4775     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4776     os::set_memory_serialize_page(mem_serialize_page);
4777     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4778   }
4779 
4780   // initialize suspend/resume support - must do this before signal_sets_init()
4781   if (SR_initialize() != 0) {
4782     perror("SR_initialize failed");
4783     return JNI_ERR;
4784   }
4785 
4786   Linux::signal_sets_init();
4787   Linux::install_signal_handlers();
4788 
4789   // Check and sets minimum stack sizes against command line options
4790   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4791     return JNI_ERR;
4792   }
4793   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4794 
4795 #if defined(IA32)
4796   workaround_expand_exec_shield_cs_limit();
4797 #endif
4798 
4799   Linux::libpthread_init();
4800   log_info(os)("HotSpot is running with %s, %s",
4801                Linux::glibc_version(), Linux::libpthread_version());
4802 
4803   if (UseNUMA) {
4804     if (!Linux::libnuma_init()) {
4805       UseNUMA = false;
4806     } else {
4807       if ((Linux::numa_max_node() < 1)) {
4808         // There's only one node(they start from 0), disable NUMA.
4809         UseNUMA = false;
4810       }
4811     }
4812     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4813     // we can make the adaptive lgrp chunk resizing work. If the user specified
4814     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4815     // disable adaptive resizing.
4816     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4817       if (FLAG_IS_DEFAULT(UseNUMA)) {
4818         UseNUMA = false;
4819       } else {
4820         if (FLAG_IS_DEFAULT(UseLargePages) &&
4821             FLAG_IS_DEFAULT(UseSHM) &&
4822             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4823           UseLargePages = false;
4824         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4825           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4826           UseAdaptiveSizePolicy = false;
4827           UseAdaptiveNUMAChunkSizing = false;
4828         }
4829       }
4830     }
4831     if (!UseNUMA && ForceNUMA) {
4832       UseNUMA = true;
4833     }
4834   }
4835 
4836   if (MaxFDLimit) {
4837     // set the number of file descriptors to max. print out error
4838     // if getrlimit/setrlimit fails but continue regardless.
4839     struct rlimit nbr_files;
4840     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4841     if (status != 0) {
4842       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4843     } else {
4844       nbr_files.rlim_cur = nbr_files.rlim_max;
4845       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4846       if (status != 0) {
4847         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4848       }
4849     }
4850   }
4851 
4852   // Initialize lock used to serialize thread creation (see os::create_thread)
4853   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4854 
4855   // at-exit methods are called in the reverse order of their registration.
4856   // atexit functions are called on return from main or as a result of a
4857   // call to exit(3C). There can be only 32 of these functions registered
4858   // and atexit() does not set errno.
4859 
4860   if (PerfAllowAtExitRegistration) {
4861     // only register atexit functions if PerfAllowAtExitRegistration is set.
4862     // atexit functions can be delayed until process exit time, which
4863     // can be problematic for embedded VM situations. Embedded VMs should
4864     // call DestroyJavaVM() to assure that VM resources are released.
4865 
4866     // note: perfMemory_exit_helper atexit function may be removed in
4867     // the future if the appropriate cleanup code can be added to the
4868     // VM_Exit VMOperation's doit method.
4869     if (atexit(perfMemory_exit_helper) != 0) {
4870       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4871     }
4872   }
4873 
4874   // initialize thread priority policy
4875   prio_init();
4876 
4877   return JNI_OK;
4878 }
4879 
4880 // Mark the polling page as unreadable
4881 void os::make_polling_page_unreadable(void) {
4882   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4883     fatal("Could not disable polling page");
4884   }
4885 }
4886 
4887 // Mark the polling page as readable
4888 void os::make_polling_page_readable(void) {
4889   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4890     fatal("Could not enable polling page");
4891   }
4892 }
4893 
4894 // older glibc versions don't have this macro (which expands to
4895 // an optimized bit-counting function) so we have to roll our own
4896 #ifndef CPU_COUNT
4897 
4898 static int _cpu_count(const cpu_set_t* cpus) {
4899   int count = 0;
4900   // only look up to the number of configured processors
4901   for (int i = 0; i < os::processor_count(); i++) {
4902     if (CPU_ISSET(i, cpus)) {
4903       count++;
4904     }
4905   }
4906   return count;
4907 }
4908 
4909 #define CPU_COUNT(cpus) _cpu_count(cpus)
4910 
4911 #endif // CPU_COUNT
4912 
4913 // Get the current number of available processors for this process.
4914 // This value can change at any time during a process's lifetime.
4915 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
4916 // If it appears there may be more than 1024 processors then we do a
4917 // dynamic check - see 6515172 for details.
4918 // If anything goes wrong we fallback to returning the number of online
4919 // processors - which can be greater than the number available to the process.
4920 int os::active_processor_count() {
4921   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4922   cpu_set_t* cpus_p = &cpus;
4923   int cpus_size = sizeof(cpu_set_t);
4924 
4925   int configured_cpus = processor_count();  // upper bound on available cpus
4926   int cpu_count = 0;
4927 
4928 // old build platforms may not support dynamic cpu sets
4929 #ifdef CPU_ALLOC
4930 
4931   // To enable easy testing of the dynamic path on different platforms we
4932   // introduce a diagnostic flag: UseCpuAllocPath
4933   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4934     // kernel may use a mask bigger than cpu_set_t
4935     log_trace(os)("active_processor_count: using dynamic path %s"
4936                   "- configured processors: %d",
4937                   UseCpuAllocPath ? "(forced) " : "",
4938                   configured_cpus);
4939     cpus_p = CPU_ALLOC(configured_cpus);
4940     if (cpus_p != NULL) {
4941       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4942       // zero it just to be safe
4943       CPU_ZERO_S(cpus_size, cpus_p);
4944     }
4945     else {
4946        // failed to allocate so fallback to online cpus
4947        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4948        log_trace(os)("active_processor_count: "
4949                      "CPU_ALLOC failed (%s) - using "
4950                      "online processor count: %d",
4951                      os::strerror(errno), online_cpus);
4952        return online_cpus;
4953     }
4954   }
4955   else {
4956     log_trace(os)("active_processor_count: using static path - configured processors: %d",
4957                   configured_cpus);
4958   }
4959 #else // CPU_ALLOC
4960 // these stubs won't be executed
4961 #define CPU_COUNT_S(size, cpus) -1
4962 #define CPU_FREE(cpus)
4963 
4964   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
4965                 configured_cpus);
4966 #endif // CPU_ALLOC
4967 
4968   // pid 0 means the current thread - which we have to assume represents the process
4969   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
4970     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4971       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
4972     }
4973     else {
4974       cpu_count = CPU_COUNT(cpus_p);
4975     }
4976     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
4977   }
4978   else {
4979     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
4980     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
4981             "which may exceed available processors", os::strerror(errno), cpu_count);
4982   }
4983 
4984   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4985     CPU_FREE(cpus_p);
4986   }
4987 
4988   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
4989   return cpu_count;
4990 }
4991 
4992 void os::set_native_thread_name(const char *name) {
4993   if (Linux::_pthread_setname_np) {
4994     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4995     snprintf(buf, sizeof(buf), "%s", name);
4996     buf[sizeof(buf) - 1] = '\0';
4997     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4998     // ERANGE should not happen; all other errors should just be ignored.
4999     assert(rc != ERANGE, "pthread_setname_np failed");
5000   }
5001 }
5002 
5003 bool os::distribute_processes(uint length, uint* distribution) {
5004   // Not yet implemented.
5005   return false;
5006 }
5007 
5008 bool os::bind_to_processor(uint processor_id) {
5009   // Not yet implemented.
5010   return false;
5011 }
5012 
5013 ///
5014 
5015 void os::SuspendedThreadTask::internal_do_task() {
5016   if (do_suspend(_thread->osthread())) {
5017     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5018     do_task(context);
5019     do_resume(_thread->osthread());
5020   }
5021 }
5022 
5023 class PcFetcher : public os::SuspendedThreadTask {
5024  public:
5025   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5026   ExtendedPC result();
5027  protected:
5028   void do_task(const os::SuspendedThreadTaskContext& context);
5029  private:
5030   ExtendedPC _epc;
5031 };
5032 
5033 ExtendedPC PcFetcher::result() {
5034   guarantee(is_done(), "task is not done yet.");
5035   return _epc;
5036 }
5037 
5038 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5039   Thread* thread = context.thread();
5040   OSThread* osthread = thread->osthread();
5041   if (osthread->ucontext() != NULL) {
5042     _epc = os::Linux::ucontext_get_pc((const ucontext_t *) context.ucontext());
5043   } else {
5044     // NULL context is unexpected, double-check this is the VMThread
5045     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5046   }
5047 }
5048 
5049 // Suspends the target using the signal mechanism and then grabs the PC before
5050 // resuming the target. Used by the flat-profiler only
5051 ExtendedPC os::get_thread_pc(Thread* thread) {
5052   // Make sure that it is called by the watcher for the VMThread
5053   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5054   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5055 
5056   PcFetcher fetcher(thread);
5057   fetcher.run();
5058   return fetcher.result();
5059 }
5060 
5061 ////////////////////////////////////////////////////////////////////////////////
5062 // debug support
5063 
5064 bool os::find(address addr, outputStream* st) {
5065   Dl_info dlinfo;
5066   memset(&dlinfo, 0, sizeof(dlinfo));
5067   if (dladdr(addr, &dlinfo) != 0) {
5068     st->print(PTR_FORMAT ": ", p2i(addr));
5069     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5070       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5071                 p2i(addr) - p2i(dlinfo.dli_saddr));
5072     } else if (dlinfo.dli_fbase != NULL) {
5073       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5074     } else {
5075       st->print("<absolute address>");
5076     }
5077     if (dlinfo.dli_fname != NULL) {
5078       st->print(" in %s", dlinfo.dli_fname);
5079     }
5080     if (dlinfo.dli_fbase != NULL) {
5081       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5082     }
5083     st->cr();
5084 
5085     if (Verbose) {
5086       // decode some bytes around the PC
5087       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5088       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5089       address       lowest = (address) dlinfo.dli_sname;
5090       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5091       if (begin < lowest)  begin = lowest;
5092       Dl_info dlinfo2;
5093       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5094           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5095         end = (address) dlinfo2.dli_saddr;
5096       }
5097       Disassembler::decode(begin, end, st);
5098     }
5099     return true;
5100   }
5101   return false;
5102 }
5103 
5104 ////////////////////////////////////////////////////////////////////////////////
5105 // misc
5106 
5107 // This does not do anything on Linux. This is basically a hook for being
5108 // able to use structured exception handling (thread-local exception filters)
5109 // on, e.g., Win32.
5110 void
5111 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5112                          JavaCallArguments* args, Thread* thread) {
5113   f(value, method, args, thread);
5114 }
5115 
5116 void os::print_statistics() {
5117 }
5118 
5119 bool os::message_box(const char* title, const char* message) {
5120   int i;
5121   fdStream err(defaultStream::error_fd());
5122   for (i = 0; i < 78; i++) err.print_raw("=");
5123   err.cr();
5124   err.print_raw_cr(title);
5125   for (i = 0; i < 78; i++) err.print_raw("-");
5126   err.cr();
5127   err.print_raw_cr(message);
5128   for (i = 0; i < 78; i++) err.print_raw("=");
5129   err.cr();
5130 
5131   char buf[16];
5132   // Prevent process from exiting upon "read error" without consuming all CPU
5133   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5134 
5135   return buf[0] == 'y' || buf[0] == 'Y';
5136 }
5137 
5138 int os::stat(const char *path, struct stat *sbuf) {
5139   char pathbuf[MAX_PATH];
5140   if (strlen(path) > MAX_PATH - 1) {
5141     errno = ENAMETOOLONG;
5142     return -1;
5143   }
5144   os::native_path(strcpy(pathbuf, path));
5145   return ::stat(pathbuf, sbuf);
5146 }
5147 
5148 // Is a (classpath) directory empty?
5149 bool os::dir_is_empty(const char* path) {
5150   DIR *dir = NULL;
5151   struct dirent *ptr;
5152 
5153   dir = opendir(path);
5154   if (dir == NULL) return true;
5155 
5156   // Scan the directory
5157   bool result = true;
5158   char buf[sizeof(struct dirent) + MAX_PATH];
5159   while (result && (ptr = ::readdir(dir)) != NULL) {
5160     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5161       result = false;
5162     }
5163   }
5164   closedir(dir);
5165   return result;
5166 }
5167 
5168 // This code originates from JDK's sysOpen and open64_w
5169 // from src/solaris/hpi/src/system_md.c
5170 
5171 int os::open(const char *path, int oflag, int mode) {
5172   if (strlen(path) > MAX_PATH - 1) {
5173     errno = ENAMETOOLONG;
5174     return -1;
5175   }
5176 
5177   // All file descriptors that are opened in the Java process and not
5178   // specifically destined for a subprocess should have the close-on-exec
5179   // flag set.  If we don't set it, then careless 3rd party native code
5180   // might fork and exec without closing all appropriate file descriptors
5181   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5182   // turn might:
5183   //
5184   // - cause end-of-file to fail to be detected on some file
5185   //   descriptors, resulting in mysterious hangs, or
5186   //
5187   // - might cause an fopen in the subprocess to fail on a system
5188   //   suffering from bug 1085341.
5189   //
5190   // (Yes, the default setting of the close-on-exec flag is a Unix
5191   // design flaw)
5192   //
5193   // See:
5194   // 1085341: 32-bit stdio routines should support file descriptors >255
5195   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5196   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5197   //
5198   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5199   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5200   // because it saves a system call and removes a small window where the flag
5201   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5202   // and we fall back to using FD_CLOEXEC (see below).
5203 #ifdef O_CLOEXEC
5204   oflag |= O_CLOEXEC;
5205 #endif
5206 
5207   int fd = ::open64(path, oflag, mode);
5208   if (fd == -1) return -1;
5209 
5210   //If the open succeeded, the file might still be a directory
5211   {
5212     struct stat64 buf64;
5213     int ret = ::fstat64(fd, &buf64);
5214     int st_mode = buf64.st_mode;
5215 
5216     if (ret != -1) {
5217       if ((st_mode & S_IFMT) == S_IFDIR) {
5218         errno = EISDIR;
5219         ::close(fd);
5220         return -1;
5221       }
5222     } else {
5223       ::close(fd);
5224       return -1;
5225     }
5226   }
5227 
5228 #ifdef FD_CLOEXEC
5229   // Validate that the use of the O_CLOEXEC flag on open above worked.
5230   // With recent kernels, we will perform this check exactly once.
5231   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5232   if (!O_CLOEXEC_is_known_to_work) {
5233     int flags = ::fcntl(fd, F_GETFD);
5234     if (flags != -1) {
5235       if ((flags & FD_CLOEXEC) != 0)
5236         O_CLOEXEC_is_known_to_work = 1;
5237       else
5238         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5239     }
5240   }
5241 #endif
5242 
5243   return fd;
5244 }
5245 
5246 
5247 // create binary file, rewriting existing file if required
5248 int os::create_binary_file(const char* path, bool rewrite_existing) {
5249   int oflags = O_WRONLY | O_CREAT;
5250   if (!rewrite_existing) {
5251     oflags |= O_EXCL;
5252   }
5253   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5254 }
5255 
5256 // return current position of file pointer
5257 jlong os::current_file_offset(int fd) {
5258   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5259 }
5260 
5261 // move file pointer to the specified offset
5262 jlong os::seek_to_file_offset(int fd, jlong offset) {
5263   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5264 }
5265 
5266 // This code originates from JDK's sysAvailable
5267 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5268 
5269 int os::available(int fd, jlong *bytes) {
5270   jlong cur, end;
5271   int mode;
5272   struct stat64 buf64;
5273 
5274   if (::fstat64(fd, &buf64) >= 0) {
5275     mode = buf64.st_mode;
5276     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5277       int n;
5278       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5279         *bytes = n;
5280         return 1;
5281       }
5282     }
5283   }
5284   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5285     return 0;
5286   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5287     return 0;
5288   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5289     return 0;
5290   }
5291   *bytes = end - cur;
5292   return 1;
5293 }
5294 
5295 // Map a block of memory.
5296 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5297                         char *addr, size_t bytes, bool read_only,
5298                         bool allow_exec) {
5299   int prot;
5300   int flags = MAP_PRIVATE;
5301 
5302   if (read_only) {
5303     prot = PROT_READ;
5304   } else {
5305     prot = PROT_READ | PROT_WRITE;
5306   }
5307 
5308   if (allow_exec) {
5309     prot |= PROT_EXEC;
5310   }
5311 
5312   if (addr != NULL) {
5313     flags |= MAP_FIXED;
5314   }
5315 
5316   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5317                                      fd, file_offset);
5318   if (mapped_address == MAP_FAILED) {
5319     return NULL;
5320   }
5321   return mapped_address;
5322 }
5323 
5324 
5325 // Remap a block of memory.
5326 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5327                           char *addr, size_t bytes, bool read_only,
5328                           bool allow_exec) {
5329   // same as map_memory() on this OS
5330   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5331                         allow_exec);
5332 }
5333 
5334 
5335 // Unmap a block of memory.
5336 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5337   return munmap(addr, bytes) == 0;
5338 }
5339 
5340 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5341 
5342 static clockid_t thread_cpu_clockid(Thread* thread) {
5343   pthread_t tid = thread->osthread()->pthread_id();
5344   clockid_t clockid;
5345 
5346   // Get thread clockid
5347   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5348   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5349   return clockid;
5350 }
5351 
5352 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5353 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5354 // of a thread.
5355 //
5356 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5357 // the fast estimate available on the platform.
5358 
5359 jlong os::current_thread_cpu_time() {
5360   if (os::Linux::supports_fast_thread_cpu_time()) {
5361     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5362   } else {
5363     // return user + sys since the cost is the same
5364     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5365   }
5366 }
5367 
5368 jlong os::thread_cpu_time(Thread* thread) {
5369   // consistent with what current_thread_cpu_time() returns
5370   if (os::Linux::supports_fast_thread_cpu_time()) {
5371     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5372   } else {
5373     return slow_thread_cpu_time(thread, true /* user + sys */);
5374   }
5375 }
5376 
5377 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5378   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5379     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5380   } else {
5381     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5382   }
5383 }
5384 
5385 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5386   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5387     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5388   } else {
5389     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5390   }
5391 }
5392 
5393 //  -1 on error.
5394 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5395   pid_t  tid = thread->osthread()->thread_id();
5396   char *s;
5397   char stat[2048];
5398   int statlen;
5399   char proc_name[64];
5400   int count;
5401   long sys_time, user_time;
5402   char cdummy;
5403   int idummy;
5404   long ldummy;
5405   FILE *fp;
5406 
5407   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5408   fp = fopen(proc_name, "r");
5409   if (fp == NULL) return -1;
5410   statlen = fread(stat, 1, 2047, fp);
5411   stat[statlen] = '\0';
5412   fclose(fp);
5413 
5414   // Skip pid and the command string. Note that we could be dealing with
5415   // weird command names, e.g. user could decide to rename java launcher
5416   // to "java 1.4.2 :)", then the stat file would look like
5417   //                1234 (java 1.4.2 :)) R ... ...
5418   // We don't really need to know the command string, just find the last
5419   // occurrence of ")" and then start parsing from there. See bug 4726580.
5420   s = strrchr(stat, ')');
5421   if (s == NULL) return -1;
5422 
5423   // Skip blank chars
5424   do { s++; } while (s && isspace(*s));
5425 
5426   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5427                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5428                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5429                  &user_time, &sys_time);
5430   if (count != 13) return -1;
5431   if (user_sys_cpu_time) {
5432     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5433   } else {
5434     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5435   }
5436 }
5437 
5438 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5439   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5440   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5441   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5442   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5443 }
5444 
5445 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5446   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5447   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5448   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5449   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5450 }
5451 
5452 bool os::is_thread_cpu_time_supported() {
5453   return true;
5454 }
5455 
5456 // System loadavg support.  Returns -1 if load average cannot be obtained.
5457 // Linux doesn't yet have a (official) notion of processor sets,
5458 // so just return the system wide load average.
5459 int os::loadavg(double loadavg[], int nelem) {
5460   return ::getloadavg(loadavg, nelem);
5461 }
5462 
5463 void os::pause() {
5464   char filename[MAX_PATH];
5465   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5466     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5467   } else {
5468     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5469   }
5470 
5471   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5472   if (fd != -1) {
5473     struct stat buf;
5474     ::close(fd);
5475     while (::stat(filename, &buf) == 0) {
5476       (void)::poll(NULL, 0, 100);
5477     }
5478   } else {
5479     jio_fprintf(stderr,
5480                 "Could not open pause file '%s', continuing immediately.\n", filename);
5481   }
5482 }
5483 
5484 
5485 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5486 // comment paragraphs are worth repeating here:
5487 //
5488 // Assumption:
5489 //    Only one parker can exist on an event, which is why we allocate
5490 //    them per-thread. Multiple unparkers can coexist.
5491 //
5492 // _Event serves as a restricted-range semaphore.
5493 //   -1 : thread is blocked, i.e. there is a waiter
5494 //    0 : neutral: thread is running or ready,
5495 //        could have been signaled after a wait started
5496 //    1 : signaled - thread is running or ready
5497 //
5498 
5499 // utility to compute the abstime argument to timedwait:
5500 // millis is the relative timeout time
5501 // abstime will be the absolute timeout time
5502 // TODO: replace compute_abstime() with unpackTime()
5503 
5504 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5505   if (millis < 0)  millis = 0;
5506 
5507   jlong seconds = millis / 1000;
5508   millis %= 1000;
5509   if (seconds > 50000000) { // see man cond_timedwait(3T)
5510     seconds = 50000000;
5511   }
5512 
5513   if (os::supports_monotonic_clock()) {
5514     struct timespec now;
5515     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5516     assert_status(status == 0, status, "clock_gettime");
5517     abstime->tv_sec = now.tv_sec  + seconds;
5518     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5519     if (nanos >= NANOSECS_PER_SEC) {
5520       abstime->tv_sec += 1;
5521       nanos -= NANOSECS_PER_SEC;
5522     }
5523     abstime->tv_nsec = nanos;
5524   } else {
5525     struct timeval now;
5526     int status = gettimeofday(&now, NULL);
5527     assert(status == 0, "gettimeofday");
5528     abstime->tv_sec = now.tv_sec  + seconds;
5529     long usec = now.tv_usec + millis * 1000;
5530     if (usec >= 1000000) {
5531       abstime->tv_sec += 1;
5532       usec -= 1000000;
5533     }
5534     abstime->tv_nsec = usec * 1000;
5535   }
5536   return abstime;
5537 }
5538 
5539 void os::PlatformEvent::park() {       // AKA "down()"
5540   // Transitions for _Event:
5541   //   -1 => -1 : illegal
5542   //    1 =>  0 : pass - return immediately
5543   //    0 => -1 : block; then set _Event to 0 before returning
5544 
5545   // Invariant: Only the thread associated with the Event/PlatformEvent
5546   // may call park().
5547   // TODO: assert that _Assoc != NULL or _Assoc == Self
5548   assert(_nParked == 0, "invariant");
5549 
5550   int v;
5551   for (;;) {
5552     v = _Event;
5553     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5554   }
5555   guarantee(v >= 0, "invariant");
5556   if (v == 0) {
5557     // Do this the hard way by blocking ...
5558     int status = pthread_mutex_lock(_mutex);
5559     assert_status(status == 0, status, "mutex_lock");
5560     guarantee(_nParked == 0, "invariant");
5561     ++_nParked;
5562     while (_Event < 0) {
5563       status = pthread_cond_wait(_cond, _mutex);
5564       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5565       // Treat this the same as if the wait was interrupted
5566       if (status == ETIME) { status = EINTR; }
5567       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5568     }
5569     --_nParked;
5570 
5571     _Event = 0;
5572     status = pthread_mutex_unlock(_mutex);
5573     assert_status(status == 0, status, "mutex_unlock");
5574     // Paranoia to ensure our locked and lock-free paths interact
5575     // correctly with each other.
5576     OrderAccess::fence();
5577   }
5578   guarantee(_Event >= 0, "invariant");
5579 }
5580 
5581 int os::PlatformEvent::park(jlong millis) {
5582   // Transitions for _Event:
5583   //   -1 => -1 : illegal
5584   //    1 =>  0 : pass - return immediately
5585   //    0 => -1 : block; then set _Event to 0 before returning
5586 
5587   guarantee(_nParked == 0, "invariant");
5588 
5589   int v;
5590   for (;;) {
5591     v = _Event;
5592     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5593   }
5594   guarantee(v >= 0, "invariant");
5595   if (v != 0) return OS_OK;
5596 
5597   // We do this the hard way, by blocking the thread.
5598   // Consider enforcing a minimum timeout value.
5599   struct timespec abst;
5600   compute_abstime(&abst, millis);
5601 
5602   int ret = OS_TIMEOUT;
5603   int status = pthread_mutex_lock(_mutex);
5604   assert_status(status == 0, status, "mutex_lock");
5605   guarantee(_nParked == 0, "invariant");
5606   ++_nParked;
5607 
5608   // Object.wait(timo) will return because of
5609   // (a) notification
5610   // (b) timeout
5611   // (c) thread.interrupt
5612   //
5613   // Thread.interrupt and object.notify{All} both call Event::set.
5614   // That is, we treat thread.interrupt as a special case of notification.
5615   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5616   // We assume all ETIME returns are valid.
5617   //
5618   // TODO: properly differentiate simultaneous notify+interrupt.
5619   // In that case, we should propagate the notify to another waiter.
5620 
5621   while (_Event < 0) {
5622     status = pthread_cond_timedwait(_cond, _mutex, &abst);
5623     assert_status(status == 0 || status == EINTR ||
5624                   status == ETIME || status == ETIMEDOUT,
5625                   status, "cond_timedwait");
5626     if (!FilterSpuriousWakeups) break;                 // previous semantics
5627     if (status == ETIME || status == ETIMEDOUT) break;
5628     // We consume and ignore EINTR and spurious wakeups.
5629   }
5630   --_nParked;
5631   if (_Event >= 0) {
5632     ret = OS_OK;
5633   }
5634   _Event = 0;
5635   status = pthread_mutex_unlock(_mutex);
5636   assert_status(status == 0, status, "mutex_unlock");
5637   assert(_nParked == 0, "invariant");
5638   // Paranoia to ensure our locked and lock-free paths interact
5639   // correctly with each other.
5640   OrderAccess::fence();
5641   return ret;
5642 }
5643 
5644 void os::PlatformEvent::unpark() {
5645   // Transitions for _Event:
5646   //    0 => 1 : just return
5647   //    1 => 1 : just return
5648   //   -1 => either 0 or 1; must signal target thread
5649   //         That is, we can safely transition _Event from -1 to either
5650   //         0 or 1.
5651   // See also: "Semaphores in Plan 9" by Mullender & Cox
5652   //
5653   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5654   // that it will take two back-to-back park() calls for the owning
5655   // thread to block. This has the benefit of forcing a spurious return
5656   // from the first park() call after an unpark() call which will help
5657   // shake out uses of park() and unpark() without condition variables.
5658 
5659   if (Atomic::xchg(1, &_Event) >= 0) return;
5660 
5661   // Wait for the thread associated with the event to vacate
5662   int status = pthread_mutex_lock(_mutex);
5663   assert_status(status == 0, status, "mutex_lock");
5664   int AnyWaiters = _nParked;
5665   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5666   status = pthread_mutex_unlock(_mutex);
5667   assert_status(status == 0, status, "mutex_unlock");
5668   if (AnyWaiters != 0) {
5669     // Note that we signal() *after* dropping the lock for "immortal" Events.
5670     // This is safe and avoids a common class of  futile wakeups.  In rare
5671     // circumstances this can cause a thread to return prematurely from
5672     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5673     // will simply re-test the condition and re-park itself.
5674     // This provides particular benefit if the underlying platform does not
5675     // provide wait morphing.
5676     status = pthread_cond_signal(_cond);
5677     assert_status(status == 0, status, "cond_signal");
5678   }
5679 }
5680 
5681 
5682 // JSR166
5683 // -------------------------------------------------------
5684 
5685 // The solaris and linux implementations of park/unpark are fairly
5686 // conservative for now, but can be improved. They currently use a
5687 // mutex/condvar pair, plus a a count.
5688 // Park decrements count if > 0, else does a condvar wait.  Unpark
5689 // sets count to 1 and signals condvar.  Only one thread ever waits
5690 // on the condvar. Contention seen when trying to park implies that someone
5691 // is unparking you, so don't wait. And spurious returns are fine, so there
5692 // is no need to track notifications.
5693 
5694 // This code is common to linux and solaris and will be moved to a
5695 // common place in dolphin.
5696 //
5697 // The passed in time value is either a relative time in nanoseconds
5698 // or an absolute time in milliseconds. Either way it has to be unpacked
5699 // into suitable seconds and nanoseconds components and stored in the
5700 // given timespec structure.
5701 // Given time is a 64-bit value and the time_t used in the timespec is only
5702 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5703 // overflow if times way in the future are given. Further on Solaris versions
5704 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5705 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5706 // As it will be 28 years before "now + 100000000" will overflow we can
5707 // ignore overflow and just impose a hard-limit on seconds using the value
5708 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5709 // years from "now".
5710 
5711 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5712   assert(time > 0, "convertTime");
5713   time_t max_secs = 0;
5714 
5715   if (!os::supports_monotonic_clock() || isAbsolute) {
5716     struct timeval now;
5717     int status = gettimeofday(&now, NULL);
5718     assert(status == 0, "gettimeofday");
5719 
5720     max_secs = now.tv_sec + MAX_SECS;
5721 
5722     if (isAbsolute) {
5723       jlong secs = time / 1000;
5724       if (secs > max_secs) {
5725         absTime->tv_sec = max_secs;
5726       } else {
5727         absTime->tv_sec = secs;
5728       }
5729       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5730     } else {
5731       jlong secs = time / NANOSECS_PER_SEC;
5732       if (secs >= MAX_SECS) {
5733         absTime->tv_sec = max_secs;
5734         absTime->tv_nsec = 0;
5735       } else {
5736         absTime->tv_sec = now.tv_sec + secs;
5737         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5738         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5739           absTime->tv_nsec -= NANOSECS_PER_SEC;
5740           ++absTime->tv_sec; // note: this must be <= max_secs
5741         }
5742       }
5743     }
5744   } else {
5745     // must be relative using monotonic clock
5746     struct timespec now;
5747     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5748     assert_status(status == 0, status, "clock_gettime");
5749     max_secs = now.tv_sec + MAX_SECS;
5750     jlong secs = time / NANOSECS_PER_SEC;
5751     if (secs >= MAX_SECS) {
5752       absTime->tv_sec = max_secs;
5753       absTime->tv_nsec = 0;
5754     } else {
5755       absTime->tv_sec = now.tv_sec + secs;
5756       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5757       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5758         absTime->tv_nsec -= NANOSECS_PER_SEC;
5759         ++absTime->tv_sec; // note: this must be <= max_secs
5760       }
5761     }
5762   }
5763   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5764   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5765   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5766   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5767 }
5768 
5769 void Parker::park(bool isAbsolute, jlong time) {
5770   // Ideally we'd do something useful while spinning, such
5771   // as calling unpackTime().
5772 
5773   // Optional fast-path check:
5774   // Return immediately if a permit is available.
5775   // We depend on Atomic::xchg() having full barrier semantics
5776   // since we are doing a lock-free update to _counter.
5777   if (Atomic::xchg(0, &_counter) > 0) return;
5778 
5779   Thread* thread = Thread::current();
5780   assert(thread->is_Java_thread(), "Must be JavaThread");
5781   JavaThread *jt = (JavaThread *)thread;
5782 
5783   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5784   // Check interrupt before trying to wait
5785   if (Thread::is_interrupted(thread, false)) {
5786     return;
5787   }
5788 
5789   // Next, demultiplex/decode time arguments
5790   timespec absTime;
5791   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5792     return;
5793   }
5794   if (time > 0) {
5795     unpackTime(&absTime, isAbsolute, time);
5796   }
5797 
5798 
5799   // Enter safepoint region
5800   // Beware of deadlocks such as 6317397.
5801   // The per-thread Parker:: mutex is a classic leaf-lock.
5802   // In particular a thread must never block on the Threads_lock while
5803   // holding the Parker:: mutex.  If safepoints are pending both the
5804   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5805   ThreadBlockInVM tbivm(jt);
5806 
5807   // Don't wait if cannot get lock since interference arises from
5808   // unblocking.  Also. check interrupt before trying wait
5809   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5810     return;
5811   }
5812 
5813   int status;
5814   if (_counter > 0)  { // no wait needed
5815     _counter = 0;
5816     status = pthread_mutex_unlock(_mutex);
5817     assert_status(status == 0, status, "invariant");
5818     // Paranoia to ensure our locked and lock-free paths interact
5819     // correctly with each other and Java-level accesses.
5820     OrderAccess::fence();
5821     return;
5822   }
5823 
5824 #ifdef ASSERT
5825   // Don't catch signals while blocked; let the running threads have the signals.
5826   // (This allows a debugger to break into the running thread.)
5827   sigset_t oldsigs;
5828   sigemptyset(&oldsigs);
5829   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5830   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5831 #endif
5832 
5833   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5834   jt->set_suspend_equivalent();
5835   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5836 
5837   assert(_cur_index == -1, "invariant");
5838   if (time == 0) {
5839     _cur_index = REL_INDEX; // arbitrary choice when not timed
5840     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5841   } else {
5842     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5843     status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5844   }
5845   _cur_index = -1;
5846   assert_status(status == 0 || status == EINTR ||
5847                 status == ETIME || status == ETIMEDOUT,
5848                 status, "cond_timedwait");
5849 
5850 #ifdef ASSERT
5851   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5852 #endif
5853 
5854   _counter = 0;
5855   status = pthread_mutex_unlock(_mutex);
5856   assert_status(status == 0, status, "invariant");
5857   // Paranoia to ensure our locked and lock-free paths interact
5858   // correctly with each other and Java-level accesses.
5859   OrderAccess::fence();
5860 
5861   // If externally suspended while waiting, re-suspend
5862   if (jt->handle_special_suspend_equivalent_condition()) {
5863     jt->java_suspend_self();
5864   }
5865 }
5866 
5867 void Parker::unpark() {
5868   int status = pthread_mutex_lock(_mutex);
5869   assert_status(status == 0, status, "invariant");
5870   const int s = _counter;
5871   _counter = 1;
5872   // must capture correct index before unlocking
5873   int index = _cur_index;
5874   status = pthread_mutex_unlock(_mutex);
5875   assert_status(status == 0, status, "invariant");
5876   if (s < 1 && index != -1) {
5877     // thread is definitely parked
5878     status = pthread_cond_signal(&_cond[index]);
5879     assert_status(status == 0, status, "invariant");
5880   }
5881 }
5882 
5883 
5884 extern char** environ;
5885 
5886 // Run the specified command in a separate process. Return its exit value,
5887 // or -1 on failure (e.g. can't fork a new process).
5888 // Unlike system(), this function can be called from signal handler. It
5889 // doesn't block SIGINT et al.
5890 int os::fork_and_exec(char* cmd) {
5891   const char * argv[4] = {"sh", "-c", cmd, NULL};
5892 
5893   pid_t pid = fork();
5894 
5895   if (pid < 0) {
5896     // fork failed
5897     return -1;
5898 
5899   } else if (pid == 0) {
5900     // child process
5901 
5902     execve("/bin/sh", (char* const*)argv, environ);
5903 
5904     // execve failed
5905     _exit(-1);
5906 
5907   } else  {
5908     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5909     // care about the actual exit code, for now.
5910 
5911     int status;
5912 
5913     // Wait for the child process to exit.  This returns immediately if
5914     // the child has already exited. */
5915     while (waitpid(pid, &status, 0) < 0) {
5916       switch (errno) {
5917       case ECHILD: return 0;
5918       case EINTR: break;
5919       default: return -1;
5920       }
5921     }
5922 
5923     if (WIFEXITED(status)) {
5924       // The child exited normally; get its exit code.
5925       return WEXITSTATUS(status);
5926     } else if (WIFSIGNALED(status)) {
5927       // The child exited because of a signal
5928       // The best value to return is 0x80 + signal number,
5929       // because that is what all Unix shells do, and because
5930       // it allows callers to distinguish between process exit and
5931       // process death by signal.
5932       return 0x80 + WTERMSIG(status);
5933     } else {
5934       // Unknown exit code; pass it through
5935       return status;
5936     }
5937   }
5938 }
5939 
5940 // is_headless_jre()
5941 //
5942 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5943 // in order to report if we are running in a headless jre
5944 //
5945 // Since JDK8 xawt/libmawt.so was moved into the same directory
5946 // as libawt.so, and renamed libawt_xawt.so
5947 //
5948 bool os::is_headless_jre() {
5949   struct stat statbuf;
5950   char buf[MAXPATHLEN];
5951   char libmawtpath[MAXPATHLEN];
5952   const char *xawtstr  = "/xawt/libmawt.so";
5953   const char *new_xawtstr = "/libawt_xawt.so";
5954   char *p;
5955 
5956   // Get path to libjvm.so
5957   os::jvm_path(buf, sizeof(buf));
5958 
5959   // Get rid of libjvm.so
5960   p = strrchr(buf, '/');
5961   if (p == NULL) {
5962     return false;
5963   } else {
5964     *p = '\0';
5965   }
5966 
5967   // Get rid of client or server
5968   p = strrchr(buf, '/');
5969   if (p == NULL) {
5970     return false;
5971   } else {
5972     *p = '\0';
5973   }
5974 
5975   // check xawt/libmawt.so
5976   strcpy(libmawtpath, buf);
5977   strcat(libmawtpath, xawtstr);
5978   if (::stat(libmawtpath, &statbuf) == 0) return false;
5979 
5980   // check libawt_xawt.so
5981   strcpy(libmawtpath, buf);
5982   strcat(libmawtpath, new_xawtstr);
5983   if (::stat(libmawtpath, &statbuf) == 0) return false;
5984 
5985   return true;
5986 }
5987 
5988 // Get the default path to the core file
5989 // Returns the length of the string
5990 int os::get_core_path(char* buffer, size_t bufferSize) {
5991   /*
5992    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5993    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5994    */
5995   const int core_pattern_len = 129;
5996   char core_pattern[core_pattern_len] = {0};
5997 
5998   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5999   if (core_pattern_file == -1) {
6000     return -1;
6001   }
6002 
6003   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6004   ::close(core_pattern_file);
6005   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
6006     return -1;
6007   }
6008   if (core_pattern[ret-1] == '\n') {
6009     core_pattern[ret-1] = '\0';
6010   } else {
6011     core_pattern[ret] = '\0';
6012   }
6013 
6014   char *pid_pos = strstr(core_pattern, "%p");
6015   int written;
6016 
6017   if (core_pattern[0] == '/') {
6018     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
6019   } else {
6020     char cwd[PATH_MAX];
6021 
6022     const char* p = get_current_directory(cwd, PATH_MAX);
6023     if (p == NULL) {
6024       return -1;
6025     }
6026 
6027     if (core_pattern[0] == '|') {
6028       written = jio_snprintf(buffer, bufferSize,
6029                              "\"%s\" (or dumping to %s/core.%d)",
6030                              &core_pattern[1], p, current_process_id());
6031     } else {
6032       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6033     }
6034   }
6035 
6036   if (written < 0) {
6037     return -1;
6038   }
6039 
6040   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6041     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6042 
6043     if (core_uses_pid_file != -1) {
6044       char core_uses_pid = 0;
6045       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6046       ::close(core_uses_pid_file);
6047 
6048       if (core_uses_pid == '1') {
6049         jio_snprintf(buffer + written, bufferSize - written,
6050                                           ".%d", current_process_id());
6051       }
6052     }
6053   }
6054 
6055   return strlen(buffer);
6056 }
6057 
6058 bool os::start_debugging(char *buf, int buflen) {
6059   int len = (int)strlen(buf);
6060   char *p = &buf[len];
6061 
6062   jio_snprintf(p, buflen-len,
6063                "\n\n"
6064                "Do you want to debug the problem?\n\n"
6065                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6066                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6067                "Otherwise, press RETURN to abort...",
6068                os::current_process_id(), os::current_process_id(),
6069                os::current_thread_id(), os::current_thread_id());
6070 
6071   bool yes = os::message_box("Unexpected Error", buf);
6072 
6073   if (yes) {
6074     // yes, user asked VM to launch debugger
6075     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6076                  os::current_process_id(), os::current_process_id());
6077 
6078     os::fork_and_exec(buf);
6079     yes = false;
6080   }
6081   return yes;
6082 }
6083 
6084 static inline struct timespec get_mtime(const char* filename) {
6085   struct stat st;
6086   int ret = os::stat(filename, &st);
6087   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
6088   return st.st_mtim;
6089 }
6090 
6091 int os::compare_file_modified_times(const char* file1, const char* file2) {
6092   struct timespec filetime1 = get_mtime(file1);
6093   struct timespec filetime2 = get_mtime(file2);
6094   int diff = filetime1.tv_sec - filetime2.tv_sec;
6095   if (diff == 0) {
6096     return filetime1.tv_nsec - filetime2.tv_nsec;
6097   }
6098   return diff;
6099 }
6100 
6101 /////////////// Unit tests ///////////////
6102 
6103 #ifndef PRODUCT
6104 
6105 #define test_log(...)              \
6106   do {                             \
6107     if (VerboseInternalVMTests) {  \
6108       tty->print_cr(__VA_ARGS__);  \
6109       tty->flush();                \
6110     }                              \
6111   } while (false)
6112 
6113 class TestReserveMemorySpecial : AllStatic {
6114  public:
6115   static void small_page_write(void* addr, size_t size) {
6116     size_t page_size = os::vm_page_size();
6117 
6118     char* end = (char*)addr + size;
6119     for (char* p = (char*)addr; p < end; p += page_size) {
6120       *p = 1;
6121     }
6122   }
6123 
6124   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6125     if (!UseHugeTLBFS) {
6126       return;
6127     }
6128 
6129     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6130 
6131     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6132 
6133     if (addr != NULL) {
6134       small_page_write(addr, size);
6135 
6136       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6137     }
6138   }
6139 
6140   static void test_reserve_memory_special_huge_tlbfs_only() {
6141     if (!UseHugeTLBFS) {
6142       return;
6143     }
6144 
6145     size_t lp = os::large_page_size();
6146 
6147     for (size_t size = lp; size <= lp * 10; size += lp) {
6148       test_reserve_memory_special_huge_tlbfs_only(size);
6149     }
6150   }
6151 
6152   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6153     size_t lp = os::large_page_size();
6154     size_t ag = os::vm_allocation_granularity();
6155 
6156     // sizes to test
6157     const size_t sizes[] = {
6158       lp, lp + ag, lp + lp / 2, lp * 2,
6159       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6160       lp * 10, lp * 10 + lp / 2
6161     };
6162     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6163 
6164     // For each size/alignment combination, we test three scenarios:
6165     // 1) with req_addr == NULL
6166     // 2) with a non-null req_addr at which we expect to successfully allocate
6167     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6168     //    expect the allocation to either fail or to ignore req_addr
6169 
6170     // Pre-allocate two areas; they shall be as large as the largest allocation
6171     //  and aligned to the largest alignment we will be testing.
6172     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6173     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6174       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6175       -1, 0);
6176     assert(mapping1 != MAP_FAILED, "should work");
6177 
6178     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6179       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6180       -1, 0);
6181     assert(mapping2 != MAP_FAILED, "should work");
6182 
6183     // Unmap the first mapping, but leave the second mapping intact: the first
6184     // mapping will serve as a value for a "good" req_addr (case 2). The second
6185     // mapping, still intact, as "bad" req_addr (case 3).
6186     ::munmap(mapping1, mapping_size);
6187 
6188     // Case 1
6189     test_log("%s, req_addr NULL:", __FUNCTION__);
6190     test_log("size            align           result");
6191 
6192     for (int i = 0; i < num_sizes; i++) {
6193       const size_t size = sizes[i];
6194       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6195         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6196         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6197                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6198         if (p != NULL) {
6199           assert(is_ptr_aligned(p, alignment), "must be");
6200           small_page_write(p, size);
6201           os::Linux::release_memory_special_huge_tlbfs(p, size);
6202         }
6203       }
6204     }
6205 
6206     // Case 2
6207     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6208     test_log("size            align           req_addr         result");
6209 
6210     for (int i = 0; i < num_sizes; i++) {
6211       const size_t size = sizes[i];
6212       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6213         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6214         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6215         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6216                  size, alignment, p2i(req_addr), p2i(p),
6217                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6218         if (p != NULL) {
6219           assert(p == req_addr, "must be");
6220           small_page_write(p, size);
6221           os::Linux::release_memory_special_huge_tlbfs(p, size);
6222         }
6223       }
6224     }
6225 
6226     // Case 3
6227     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6228     test_log("size            align           req_addr         result");
6229 
6230     for (int i = 0; i < num_sizes; i++) {
6231       const size_t size = sizes[i];
6232       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6233         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6234         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6235         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6236                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6237         // as the area around req_addr contains already existing mappings, the API should always
6238         // return NULL (as per contract, it cannot return another address)
6239         assert(p == NULL, "must be");
6240       }
6241     }
6242 
6243     ::munmap(mapping2, mapping_size);
6244 
6245   }
6246 
6247   static void test_reserve_memory_special_huge_tlbfs() {
6248     if (!UseHugeTLBFS) {
6249       return;
6250     }
6251 
6252     test_reserve_memory_special_huge_tlbfs_only();
6253     test_reserve_memory_special_huge_tlbfs_mixed();
6254   }
6255 
6256   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6257     if (!UseSHM) {
6258       return;
6259     }
6260 
6261     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6262 
6263     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6264 
6265     if (addr != NULL) {
6266       assert(is_ptr_aligned(addr, alignment), "Check");
6267       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6268 
6269       small_page_write(addr, size);
6270 
6271       os::Linux::release_memory_special_shm(addr, size);
6272     }
6273   }
6274 
6275   static void test_reserve_memory_special_shm() {
6276     size_t lp = os::large_page_size();
6277     size_t ag = os::vm_allocation_granularity();
6278 
6279     for (size_t size = ag; size < lp * 3; size += ag) {
6280       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6281         test_reserve_memory_special_shm(size, alignment);
6282       }
6283     }
6284   }
6285 
6286   static void test() {
6287     test_reserve_memory_special_huge_tlbfs();
6288     test_reserve_memory_special_shm();
6289   }
6290 };
6291 
6292 void TestReserveMemorySpecial_test() {
6293   TestReserveMemorySpecial::test();
6294 }
6295 
6296 #endif