/* * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_Defs.hpp" #include "c1/c1_LIRGenerator.hpp" #include "gc/shared/c1/barrierSetC1.hpp" #include "utilities/macros.hpp" #ifndef PATCHED_ADDR #define PATCHED_ADDR (max_jint) #endif #ifdef ASSERT #define __ gen->lir(__FILE__, __LINE__)-> #else #define __ gen->lir()-> #endif LIR_Opr BarrierSetC1::resolve_address(LIRAccess& access, bool resolve_in_register) { DecoratorSet decorators = access.decorators(); bool is_array = (decorators & IS_ARRAY) != 0; bool needs_patching = (decorators & C1_NEEDS_PATCHING) != 0; LIRItem& base = access.base().item(); LIR_Opr offset = access.offset().opr(); LIRGenerator *gen = access.gen(); LIR_Opr addr_opr; if (is_array) { addr_opr = LIR_OprFact::address(gen->emit_array_address(base.result(), offset, access.type())); } else if (needs_patching) { // we need to patch the offset in the instruction so don't allow // generate_address to try to be smart about emitting the -1. // Otherwise the patching code won't know how to find the // instruction to patch. addr_opr = LIR_OprFact::address(new LIR_Address(base.result(), PATCHED_ADDR, access.type())); } else { addr_opr = LIR_OprFact::address(gen->generate_address(base.result(), offset, 0, 0, access.type())); } if (resolve_in_register) { LIR_Opr resolved_addr = gen->new_pointer_register(); __ leal(addr_opr, resolved_addr); resolved_addr = LIR_OprFact::address(new LIR_Address(resolved_addr, access.type())); return resolved_addr; } else { return addr_opr; } } void BarrierSetC1::store_at(LIRAccess& access, LIR_Opr value) { DecoratorSet decorators = access.decorators(); bool in_heap = (decorators & IN_HEAP) != 0; assert(in_heap, "not supported yet"); LIR_Opr resolved = resolve_address(access, false); access.set_resolved_addr(resolved); store_at_resolved(access, value); } void BarrierSetC1::load_at(LIRAccess& access, LIR_Opr result) { DecoratorSet decorators = access.decorators(); bool in_heap = (decorators & IN_HEAP) != 0; assert(in_heap, "not supported yet"); LIR_Opr resolved = resolve_address(access, false); access.set_resolved_addr(resolved); load_at_resolved(access, result); } void BarrierSetC1::load(LIRAccess& access, LIR_Opr result) { DecoratorSet decorators = access.decorators(); bool in_heap = (decorators & IN_HEAP) != 0; assert(!in_heap, "consider using load_at"); load_at_resolved(access, result); } LIR_Opr BarrierSetC1::atomic_cmpxchg_at(LIRAccess& access, LIRItem& cmp_value, LIRItem& new_value) { DecoratorSet decorators = access.decorators(); bool in_heap = (decorators & IN_HEAP) != 0; assert(in_heap, "not supported yet"); access.load_address(); LIR_Opr resolved = resolve_address(access, true); access.set_resolved_addr(resolved); return atomic_cmpxchg_at_resolved(access, cmp_value, new_value); } LIR_Opr BarrierSetC1::atomic_xchg_at(LIRAccess& access, LIRItem& value) { DecoratorSet decorators = access.decorators(); bool in_heap = (decorators & IN_HEAP) != 0; assert(in_heap, "not supported yet"); access.load_address(); LIR_Opr resolved = resolve_address(access, true); access.set_resolved_addr(resolved); return atomic_xchg_at_resolved(access, value); } LIR_Opr BarrierSetC1::atomic_add_at(LIRAccess& access, LIRItem& value) { DecoratorSet decorators = access.decorators(); bool in_heap = (decorators & IN_HEAP) != 0; assert(in_heap, "not supported yet"); access.load_address(); LIR_Opr resolved = resolve_address(access, true); access.set_resolved_addr(resolved); return atomic_add_at_resolved(access, value); } void BarrierSetC1::store_at_resolved(LIRAccess& access, LIR_Opr value) { DecoratorSet decorators = access.decorators(); bool is_volatile = (((decorators & MO_SEQ_CST) != 0) || AlwaysAtomicAccesses); bool needs_patching = (decorators & C1_NEEDS_PATCHING) != 0; bool mask_boolean = (decorators & C1_MASK_BOOLEAN) != 0; LIRGenerator* gen = access.gen(); if (mask_boolean) { value = gen->mask_boolean(access.base().opr(), value, access.access_emit_info()); } if (is_volatile) { __ membar_release(); } LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none; if (is_volatile && !needs_patching) { gen->volatile_field_store(value, access.resolved_addr()->as_address_ptr(), access.access_emit_info()); } else { __ store(value, access.resolved_addr()->as_address_ptr(), access.access_emit_info(), patch_code); } if (is_volatile && !support_IRIW_for_not_multiple_copy_atomic_cpu) { __ membar(); } } void BarrierSetC1::load_at_resolved(LIRAccess& access, LIR_Opr result) { LIRGenerator *gen = access.gen(); DecoratorSet decorators = access.decorators(); bool is_volatile = (((decorators & MO_SEQ_CST) != 0) || AlwaysAtomicAccesses); bool needs_patching = (decorators & C1_NEEDS_PATCHING) != 0; bool mask_boolean = (decorators & C1_MASK_BOOLEAN) != 0; bool in_native = (decorators & IN_NATIVE) != 0; if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile) { __ membar(); } LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none; if (in_native) { __ move_wide(access.resolved_addr()->as_address_ptr(), result); } else if (is_volatile && !needs_patching) { gen->volatile_field_load(access.resolved_addr()->as_address_ptr(), result, access.access_emit_info()); } else { __ load(access.resolved_addr()->as_address_ptr(), result, access.access_emit_info(), patch_code); } if (is_volatile) { __ membar_acquire(); } /* Normalize boolean value returned by unsafe operation, i.e., value != 0 ? value = true : value false. */ if (mask_boolean) { LabelObj* equalZeroLabel = new LabelObj(); __ cmp(lir_cond_equal, result, 0); __ branch(lir_cond_equal, T_BOOLEAN, equalZeroLabel->label()); __ move(LIR_OprFact::intConst(1), result); __ branch_destination(equalZeroLabel->label()); } } LIR_Opr BarrierSetC1::atomic_cmpxchg_at_resolved(LIRAccess& access, LIRItem& cmp_value, LIRItem& new_value) { LIRGenerator *gen = access.gen(); return gen->atomic_cmpxchg(access.type(), access.resolved_addr(), cmp_value, new_value); } LIR_Opr BarrierSetC1::atomic_xchg_at_resolved(LIRAccess& access, LIRItem& value) { LIRGenerator *gen = access.gen(); return gen->atomic_xchg(access.type(), access.resolved_addr(), value); } LIR_Opr BarrierSetC1::atomic_add_at_resolved(LIRAccess& access, LIRItem& value) { LIRGenerator *gen = access.gen(); return gen->atomic_add(access.type(), access.resolved_addr(), value); } void BarrierSetC1::generate_referent_check(LIRAccess& access, LabelObj* cont) { // We might be reading the value of the referent field of a // Reference object in order to attach it back to the live // object graph. If G1 is enabled then we need to record // the value that is being returned in an SATB log buffer. // // We need to generate code similar to the following... // // if (offset == java_lang_ref_Reference::referent_offset) { // if (src != NULL) { // if (klass(src)->reference_type() != REF_NONE) { // pre_barrier(..., value, ...); // } // } // } bool gen_pre_barrier = true; // Assume we need to generate pre_barrier. bool gen_offset_check = true; // Assume we need to generate the offset guard. bool gen_source_check = true; // Assume we need to check the src object for null. bool gen_type_check = true; // Assume we need to check the reference_type. LIRGenerator *gen = access.gen(); LIRItem& base = access.base().item(); LIR_Opr offset = access.offset().opr(); if (offset->is_constant()) { LIR_Const* constant = offset->as_constant_ptr(); jlong off_con = (constant->type() == T_INT ? (jlong)constant->as_jint() : constant->as_jlong()); if (off_con != (jlong) java_lang_ref_Reference::referent_offset) { // The constant offset is something other than referent_offset. // We can skip generating/checking the remaining guards and // skip generation of the code stub. gen_pre_barrier = false; } else { // The constant offset is the same as referent_offset - // we do not need to generate a runtime offset check. gen_offset_check = false; } } // We don't need to generate stub if the source object is an array if (gen_pre_barrier && base.type()->is_array()) { gen_pre_barrier = false; } if (gen_pre_barrier) { // We still need to continue with the checks. if (base.is_constant()) { ciObject* src_con = base.get_jobject_constant(); guarantee(src_con != NULL, "no source constant"); if (src_con->is_null_object()) { // The constant src object is null - We can skip // generating the code stub. gen_pre_barrier = false; } else { // Non-null constant source object. We still have to generate // the slow stub - but we don't need to generate the runtime // null object check. gen_source_check = false; } } } if (gen_pre_barrier && !PatchALot) { // Can the klass of object be statically determined to be // a sub-class of Reference? ciType* type = base.value()->declared_type(); if ((type != NULL) && type->is_loaded()) { if (type->is_subtype_of(gen->compilation()->env()->Reference_klass())) { gen_type_check = false; } else if (type->is_klass() && !gen->compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) { // Not Reference and not Object klass. gen_pre_barrier = false; } } } if (gen_pre_barrier) { // We can have generate one runtime check here. Let's start with // the offset check. if (gen_offset_check) { // if (offset != referent_offset) -> continue // If offset is an int then we can do the comparison with the // referent_offset constant; otherwise we need to move // referent_offset into a temporary register and generate // a reg-reg compare. LIR_Opr referent_off; if (offset->type() == T_INT) { referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset); } else { assert(offset->type() == T_LONG, "what else?"); referent_off = gen->new_register(T_LONG); __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off); } __ cmp(lir_cond_notEqual, offset, referent_off); __ branch(lir_cond_notEqual, offset->type(), cont->label()); } if (gen_source_check) { // offset is a const and equals referent offset // if (source == null) -> continue __ cmp(lir_cond_equal, base.result(), LIR_OprFact::oopConst(NULL)); __ branch(lir_cond_equal, T_OBJECT, cont->label()); } LIR_Opr src_klass = gen->new_register(T_METADATA); if (gen_type_check) { // We have determined that offset == referent_offset && src != null. // if (src->_klass->_reference_type == REF_NONE) -> continue __ move(new LIR_Address(base.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass); LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE); LIR_Opr reference_type = gen->new_register(T_INT); __ move(reference_type_addr, reference_type); __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE)); __ branch(lir_cond_equal, T_INT, cont->label()); } } } LIR_Opr BarrierSetC1::resolve(LIRGenerator* gen, DecoratorSet decorators, LIR_Opr obj) { return obj; }