1 /*
   2  * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "gc/shared/barrierSetAssembler.hpp"
  28 #include "interpreter/interp_masm.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/templateTable.hpp"
  32 #include "memory/universe.hpp"
  33 #include "oops/cpCache.hpp"
  34 #include "oops/methodData.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/methodHandles.hpp"
  38 #include "runtime/frame.inline.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "runtime/synchronizer.hpp"
  42 
  43 #define __ _masm->
  44 
  45 //----------------------------------------------------------------------------------------------------
  46 // Platform-dependent initialization
  47 
  48 void TemplateTable::pd_initialize() {
  49   // No arm specific initialization
  50 }
  51 
  52 //----------------------------------------------------------------------------------------------------
  53 // Address computation
  54 
  55 // local variables
  56 static inline Address iaddress(int n)            {
  57   return Address(Rlocals, Interpreter::local_offset_in_bytes(n));
  58 }
  59 
  60 static inline Address laddress(int n)            { return iaddress(n + 1); }
  61 #ifndef AARCH64
  62 static inline Address haddress(int n)            { return iaddress(n + 0); }
  63 #endif // !AARCH64
  64 
  65 static inline Address faddress(int n)            { return iaddress(n); }
  66 static inline Address daddress(int n)            { return laddress(n); }
  67 static inline Address aaddress(int n)            { return iaddress(n); }
  68 
  69 
  70 void TemplateTable::get_local_base_addr(Register r, Register index) {
  71   __ sub(r, Rlocals, AsmOperand(index, lsl, Interpreter::logStackElementSize));
  72 }
  73 
  74 Address TemplateTable::load_iaddress(Register index, Register scratch) {
  75 #ifdef AARCH64
  76   get_local_base_addr(scratch, index);
  77   return Address(scratch);
  78 #else
  79   return Address(Rlocals, index, lsl, Interpreter::logStackElementSize, basic_offset, sub_offset);
  80 #endif // AARCH64
  81 }
  82 
  83 Address TemplateTable::load_aaddress(Register index, Register scratch) {
  84   return load_iaddress(index, scratch);
  85 }
  86 
  87 Address TemplateTable::load_faddress(Register index, Register scratch) {
  88 #ifdef __SOFTFP__
  89   return load_iaddress(index, scratch);
  90 #else
  91   get_local_base_addr(scratch, index);
  92   return Address(scratch);
  93 #endif // __SOFTFP__
  94 }
  95 
  96 Address TemplateTable::load_daddress(Register index, Register scratch) {
  97   get_local_base_addr(scratch, index);
  98   return Address(scratch, Interpreter::local_offset_in_bytes(1));
  99 }
 100 
 101 // At top of Java expression stack which may be different than SP.
 102 // It isn't for category 1 objects.
 103 static inline Address at_tos() {
 104   return Address(Rstack_top, Interpreter::expr_offset_in_bytes(0));
 105 }
 106 
 107 static inline Address at_tos_p1() {
 108   return Address(Rstack_top, Interpreter::expr_offset_in_bytes(1));
 109 }
 110 
 111 static inline Address at_tos_p2() {
 112   return Address(Rstack_top, Interpreter::expr_offset_in_bytes(2));
 113 }
 114 
 115 
 116 // 32-bit ARM:
 117 // Loads double/long local into R0_tos_lo/R1_tos_hi with two
 118 // separate ldr instructions (supports nonadjacent values).
 119 // Used for longs in all modes, and for doubles in SOFTFP mode.
 120 //
 121 // AArch64: loads long local into R0_tos.
 122 //
 123 void TemplateTable::load_category2_local(Register Rlocal_index, Register tmp) {
 124   const Register Rlocal_base = tmp;
 125   assert_different_registers(Rlocal_index, tmp);
 126 
 127   get_local_base_addr(Rlocal_base, Rlocal_index);
 128 #ifdef AARCH64
 129   __ ldr(R0_tos, Address(Rlocal_base, Interpreter::local_offset_in_bytes(1)));
 130 #else
 131   __ ldr(R0_tos_lo, Address(Rlocal_base, Interpreter::local_offset_in_bytes(1)));
 132   __ ldr(R1_tos_hi, Address(Rlocal_base, Interpreter::local_offset_in_bytes(0)));
 133 #endif // AARCH64
 134 }
 135 
 136 
 137 // 32-bit ARM:
 138 // Stores R0_tos_lo/R1_tos_hi to double/long local with two
 139 // separate str instructions (supports nonadjacent values).
 140 // Used for longs in all modes, and for doubles in SOFTFP mode
 141 //
 142 // AArch64: stores R0_tos to long local.
 143 //
 144 void TemplateTable::store_category2_local(Register Rlocal_index, Register tmp) {
 145   const Register Rlocal_base = tmp;
 146   assert_different_registers(Rlocal_index, tmp);
 147 
 148   get_local_base_addr(Rlocal_base, Rlocal_index);
 149 #ifdef AARCH64
 150   __ str(R0_tos, Address(Rlocal_base, Interpreter::local_offset_in_bytes(1)));
 151 #else
 152   __ str(R0_tos_lo, Address(Rlocal_base, Interpreter::local_offset_in_bytes(1)));
 153   __ str(R1_tos_hi, Address(Rlocal_base, Interpreter::local_offset_in_bytes(0)));
 154 #endif // AARCH64
 155 }
 156 
 157 // Returns address of Java array element using temp register as address base.
 158 Address TemplateTable::get_array_elem_addr(BasicType elemType, Register array, Register index, Register temp) {
 159   int logElemSize = exact_log2(type2aelembytes(elemType));
 160   __ add_ptr_scaled_int32(temp, array, index, logElemSize);
 161   return Address(temp, arrayOopDesc::base_offset_in_bytes(elemType));
 162 }
 163 
 164 // Returns address of Java array element using temp register as offset from array base
 165 Address TemplateTable::get_array_elem_addr_same_base(BasicType elemType, Register array, Register index, Register temp) {
 166   int logElemSize = exact_log2(type2aelembytes(elemType));
 167   if (logElemSize == 0) {
 168     __ add(temp, index, arrayOopDesc::base_offset_in_bytes(elemType));
 169   } else {
 170     __ mov(temp, arrayOopDesc::base_offset_in_bytes(elemType));
 171     __ add_ptr_scaled_int32(temp, temp, index, logElemSize);
 172   }
 173   return Address(array, temp);
 174 }
 175 
 176 //----------------------------------------------------------------------------------------------------
 177 // Condition conversion
 178 AsmCondition convNegCond(TemplateTable::Condition cc) {
 179   switch (cc) {
 180     case TemplateTable::equal        : return ne;
 181     case TemplateTable::not_equal    : return eq;
 182     case TemplateTable::less         : return ge;
 183     case TemplateTable::less_equal   : return gt;
 184     case TemplateTable::greater      : return le;
 185     case TemplateTable::greater_equal: return lt;
 186   }
 187   ShouldNotReachHere();
 188   return nv;
 189 }
 190 
 191 //----------------------------------------------------------------------------------------------------
 192 // Miscelaneous helper routines
 193 
 194 // Store an oop (or NULL) at the address described by obj.
 195 // Blows all volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
 196 // Also destroys new_val and obj.base().
 197 static void do_oop_store(InterpreterMacroAssembler* _masm,
 198                          Address obj,
 199                          Register new_val,
 200                          Register tmp1,
 201                          Register tmp2,
 202                          Register tmp3,
 203                          bool is_null,
 204                          DecoratorSet decorators = 0) {
 205 
 206   assert_different_registers(obj.base(), new_val, tmp1, tmp2, tmp3, noreg);
 207   if (is_null) {
 208     __ store_heap_oop_null(obj, new_val, tmp1, tmp2, tmp3, decorators);
 209   } else {
 210     __ store_heap_oop(obj, new_val, tmp1, tmp2, tmp3, decorators);
 211   }
 212 }
 213 
 214 static void do_oop_load(InterpreterMacroAssembler* _masm,
 215                         Register dst,
 216                         Address obj,
 217                         DecoratorSet decorators = 0) {
 218   __ load_heap_oop(dst, obj, noreg, noreg, noreg, decorators);
 219 }
 220 
 221 Address TemplateTable::at_bcp(int offset) {
 222   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 223   return Address(Rbcp, offset);
 224 }
 225 
 226 
 227 // Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR.
 228 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 229                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 230                                    int byte_no) {
 231   assert_different_registers(bc_reg, temp_reg);
 232   if (!RewriteBytecodes)  return;
 233   Label L_patch_done;
 234 
 235   switch (bc) {
 236   case Bytecodes::_fast_aputfield:
 237   case Bytecodes::_fast_bputfield:
 238   case Bytecodes::_fast_zputfield:
 239   case Bytecodes::_fast_cputfield:
 240   case Bytecodes::_fast_dputfield:
 241   case Bytecodes::_fast_fputfield:
 242   case Bytecodes::_fast_iputfield:
 243   case Bytecodes::_fast_lputfield:
 244   case Bytecodes::_fast_sputfield:
 245     {
 246       // We skip bytecode quickening for putfield instructions when
 247       // the put_code written to the constant pool cache is zero.
 248       // This is required so that every execution of this instruction
 249       // calls out to InterpreterRuntime::resolve_get_put to do
 250       // additional, required work.
 251       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 252       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 253       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1, sizeof(u2));
 254       __ mov(bc_reg, bc);
 255       __ cbz(temp_reg, L_patch_done);  // test if bytecode is zero
 256     }
 257     break;
 258   default:
 259     assert(byte_no == -1, "sanity");
 260     // the pair bytecodes have already done the load.
 261     if (load_bc_into_bc_reg) {
 262       __ mov(bc_reg, bc);
 263     }
 264   }
 265 
 266   if (__ can_post_breakpoint()) {
 267     Label L_fast_patch;
 268     // if a breakpoint is present we can't rewrite the stream directly
 269     __ ldrb(temp_reg, at_bcp(0));
 270     __ cmp(temp_reg, Bytecodes::_breakpoint);
 271     __ b(L_fast_patch, ne);
 272     if (bc_reg != R3) {
 273       __ mov(R3, bc_reg);
 274     }
 275     __ mov(R1, Rmethod);
 276     __ mov(R2, Rbcp);
 277     // Let breakpoint table handling rewrite to quicker bytecode
 278     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), R1, R2, R3);
 279     __ b(L_patch_done);
 280     __ bind(L_fast_patch);
 281   }
 282 
 283 #ifdef ASSERT
 284   Label L_okay;
 285   __ ldrb(temp_reg, at_bcp(0));
 286   __ cmp(temp_reg, (int)Bytecodes::java_code(bc));
 287   __ b(L_okay, eq);
 288   __ cmp(temp_reg, bc_reg);
 289   __ b(L_okay, eq);
 290   __ stop("patching the wrong bytecode");
 291   __ bind(L_okay);
 292 #endif
 293 
 294   // patch bytecode
 295   __ strb(bc_reg, at_bcp(0));
 296   __ bind(L_patch_done);
 297 }
 298 
 299 //----------------------------------------------------------------------------------------------------
 300 // Individual instructions
 301 
 302 void TemplateTable::nop() {
 303   transition(vtos, vtos);
 304   // nothing to do
 305 }
 306 
 307 void TemplateTable::shouldnotreachhere() {
 308   transition(vtos, vtos);
 309   __ stop("shouldnotreachhere bytecode");
 310 }
 311 
 312 
 313 
 314 void TemplateTable::aconst_null() {
 315   transition(vtos, atos);
 316   __ mov(R0_tos, 0);
 317 }
 318 
 319 
 320 void TemplateTable::iconst(int value) {
 321   transition(vtos, itos);
 322   __ mov_slow(R0_tos, value);
 323 }
 324 
 325 
 326 void TemplateTable::lconst(int value) {
 327   transition(vtos, ltos);
 328   assert((value == 0) || (value == 1), "unexpected long constant");
 329   __ mov(R0_tos, value);
 330 #ifndef AARCH64
 331   __ mov(R1_tos_hi, 0);
 332 #endif // !AARCH64
 333 }
 334 
 335 
 336 void TemplateTable::fconst(int value) {
 337   transition(vtos, ftos);
 338 #ifdef AARCH64
 339   switch(value) {
 340   case 0:   __ fmov_sw(S0_tos, ZR);    break;
 341   case 1:   __ fmov_s (S0_tos, 0x70);  break;
 342   case 2:   __ fmov_s (S0_tos, 0x00);  break;
 343   default:  ShouldNotReachHere();      break;
 344   }
 345 #else
 346   const int zero = 0;         // 0.0f
 347   const int one = 0x3f800000; // 1.0f
 348   const int two = 0x40000000; // 2.0f
 349 
 350   switch(value) {
 351   case 0:   __ mov(R0_tos, zero);   break;
 352   case 1:   __ mov(R0_tos, one);    break;
 353   case 2:   __ mov(R0_tos, two);    break;
 354   default:  ShouldNotReachHere();   break;
 355   }
 356 
 357 #ifndef __SOFTFP__
 358   __ fmsr(S0_tos, R0_tos);
 359 #endif // !__SOFTFP__
 360 #endif // AARCH64
 361 }
 362 
 363 
 364 void TemplateTable::dconst(int value) {
 365   transition(vtos, dtos);
 366 #ifdef AARCH64
 367   switch(value) {
 368   case 0:   __ fmov_dx(D0_tos, ZR);    break;
 369   case 1:   __ fmov_d (D0_tos, 0x70);  break;
 370   default:  ShouldNotReachHere();      break;
 371   }
 372 #else
 373   const int one_lo = 0;            // low part of 1.0
 374   const int one_hi = 0x3ff00000;   // high part of 1.0
 375 
 376   if (value == 0) {
 377 #ifdef __SOFTFP__
 378     __ mov(R0_tos_lo, 0);
 379     __ mov(R1_tos_hi, 0);
 380 #else
 381     __ mov(R0_tmp, 0);
 382     __ fmdrr(D0_tos, R0_tmp, R0_tmp);
 383 #endif // __SOFTFP__
 384   } else if (value == 1) {
 385     __ mov(R0_tos_lo, one_lo);
 386     __ mov_slow(R1_tos_hi, one_hi);
 387 #ifndef __SOFTFP__
 388     __ fmdrr(D0_tos, R0_tos_lo, R1_tos_hi);
 389 #endif // !__SOFTFP__
 390   } else {
 391     ShouldNotReachHere();
 392   }
 393 #endif // AARCH64
 394 }
 395 
 396 
 397 void TemplateTable::bipush() {
 398   transition(vtos, itos);
 399   __ ldrsb(R0_tos, at_bcp(1));
 400 }
 401 
 402 
 403 void TemplateTable::sipush() {
 404   transition(vtos, itos);
 405   __ ldrsb(R0_tmp, at_bcp(1));
 406   __ ldrb(R1_tmp, at_bcp(2));
 407   __ orr(R0_tos, R1_tmp, AsmOperand(R0_tmp, lsl, BitsPerByte));
 408 }
 409 
 410 
 411 void TemplateTable::ldc(bool wide) {
 412   transition(vtos, vtos);
 413   Label fastCase, Condy, Done;
 414 
 415   const Register Rindex = R1_tmp;
 416   const Register Rcpool = R2_tmp;
 417   const Register Rtags  = R3_tmp;
 418   const Register RtagType = R3_tmp;
 419 
 420   if (wide) {
 421     __ get_unsigned_2_byte_index_at_bcp(Rindex, 1);
 422   } else {
 423     __ ldrb(Rindex, at_bcp(1));
 424   }
 425   __ get_cpool_and_tags(Rcpool, Rtags);
 426 
 427   const int base_offset = ConstantPool::header_size() * wordSize;
 428   const int tags_offset = Array<u1>::base_offset_in_bytes();
 429 
 430   // get const type
 431   __ add(Rtemp, Rtags, tags_offset);
 432 #ifdef AARCH64
 433   __ add(Rtemp, Rtemp, Rindex);
 434   __ ldarb(RtagType, Rtemp);  // TODO-AARCH64 figure out if barrier is needed here, or control dependency is enough
 435 #else
 436   __ ldrb(RtagType, Address(Rtemp, Rindex));
 437   volatile_barrier(MacroAssembler::LoadLoad, Rtemp);
 438 #endif // AARCH64
 439 
 440   // unresolved class - get the resolved class
 441   __ cmp(RtagType, JVM_CONSTANT_UnresolvedClass);
 442 
 443   // unresolved class in error (resolution failed) - call into runtime
 444   // so that the same error from first resolution attempt is thrown.
 445 #ifdef AARCH64
 446   __ mov(Rtemp, JVM_CONSTANT_UnresolvedClassInError); // this constant does not fit into 5-bit immediate constraint
 447   __ cond_cmp(RtagType, Rtemp, ne);
 448 #else
 449   __ cond_cmp(RtagType, JVM_CONSTANT_UnresolvedClassInError, ne);
 450 #endif // AARCH64
 451 
 452   // resolved class - need to call vm to get java mirror of the class
 453   __ cond_cmp(RtagType, JVM_CONSTANT_Class, ne);
 454 
 455   __ b(fastCase, ne);
 456 
 457   // slow case - call runtime
 458   __ mov(R1, wide);
 459   call_VM(R0_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), R1);
 460   __ push(atos);
 461   __ b(Done);
 462 
 463   // int, float, String
 464   __ bind(fastCase);
 465 
 466   __ cmp(RtagType, JVM_CONSTANT_Integer);
 467   __ cond_cmp(RtagType, JVM_CONSTANT_Float, ne);
 468   __ b(Condy, ne);
 469 
 470   // itos, ftos
 471   __ add(Rtemp, Rcpool, AsmOperand(Rindex, lsl, LogBytesPerWord));
 472   __ ldr_u32(R0_tos, Address(Rtemp, base_offset));
 473 
 474   // floats and ints are placed on stack in the same way, so
 475   // we can use push(itos) to transfer float value without VFP
 476   __ push(itos);
 477   __ b(Done);
 478 
 479   __ bind(Condy);
 480   condy_helper(Done);
 481 
 482   __ bind(Done);
 483 }
 484 
 485 // Fast path for caching oop constants.
 486 void TemplateTable::fast_aldc(bool wide) {
 487   transition(vtos, atos);
 488   int index_size = wide ? sizeof(u2) : sizeof(u1);
 489   Label resolved;
 490 
 491   // We are resolved if the resolved reference cache entry contains a
 492   // non-null object (CallSite, etc.)
 493   assert_different_registers(R0_tos, R2_tmp);
 494   __ get_index_at_bcp(R2_tmp, 1, R0_tos, index_size);
 495   __ load_resolved_reference_at_index(R0_tos, R2_tmp);
 496   __ cbnz(R0_tos, resolved);
 497 
 498   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 499 
 500   // first time invocation - must resolve first
 501   __ mov(R1, (int)bytecode());
 502   __ call_VM(R0_tos, entry, R1);
 503   __ bind(resolved);
 504 
 505   { // Check for the null sentinel.
 506     // If we just called the VM, that already did the mapping for us,
 507     // but it's harmless to retry.
 508     Label notNull;
 509     Register result = R0;
 510     Register tmp = R1;
 511     Register rarg = R2;
 512 
 513     // Stash null_sentinel address to get its value later
 514     __ mov_slow(rarg, (uintptr_t)Universe::the_null_sentinel_addr());
 515     __ ldr(tmp, Address(rarg));
 516     __ cmp(result, tmp);
 517     __ b(notNull, ne);
 518     __ mov(result, 0);  // NULL object reference
 519     __ bind(notNull);
 520   }
 521 
 522   if (VerifyOops) {
 523     __ verify_oop(R0_tos);
 524   }
 525 }
 526 
 527 void TemplateTable::ldc2_w() {
 528   transition(vtos, vtos);
 529   const Register Rtags  = R2_tmp;
 530   const Register Rindex = R3_tmp;
 531   const Register Rcpool = R4_tmp;
 532   const Register Rbase  = R5_tmp;
 533 
 534   __ get_unsigned_2_byte_index_at_bcp(Rindex, 1);
 535 
 536   __ get_cpool_and_tags(Rcpool, Rtags);
 537   const int base_offset = ConstantPool::header_size() * wordSize;
 538   const int tags_offset = Array<u1>::base_offset_in_bytes();
 539 
 540   __ add(Rbase, Rcpool, AsmOperand(Rindex, lsl, LogBytesPerWord));
 541 
 542   Label Condy, exit;
 543 #ifdef __ABI_HARD__
 544   Label Long;
 545   // get type from tags
 546   __ add(Rtemp, Rtags, tags_offset);
 547   __ ldrb(Rtemp, Address(Rtemp, Rindex));
 548   __ cmp(Rtemp, JVM_CONSTANT_Double);
 549   __ b(Long, ne);
 550   __ ldr_double(D0_tos, Address(Rbase, base_offset));
 551 
 552   __ push(dtos);
 553   __ b(exit);
 554   __ bind(Long);
 555 #endif
 556 
 557   __ cmp(Rtemp, JVM_CONSTANT_Long);
 558   __ b(Condy, ne);
 559 #ifdef AARCH64
 560   __ ldr(R0_tos, Address(Rbase, base_offset));
 561 #else
 562   __ ldr(R0_tos_lo, Address(Rbase, base_offset + 0 * wordSize));
 563   __ ldr(R1_tos_hi, Address(Rbase, base_offset + 1 * wordSize));
 564 #endif // AARCH64
 565   __ push(ltos);
 566   __ b(exit);
 567 
 568   __ bind(Condy);
 569   condy_helper(exit);
 570 
 571   __ bind(exit);
 572 }
 573 
 574 
 575 void TemplateTable::condy_helper(Label& Done)
 576 {
 577   Register obj   = R0_tmp;
 578   Register rtmp  = R1_tmp;
 579   Register flags = R2_tmp;
 580   Register off   = R3_tmp;
 581 
 582   __ mov(rtmp, (int) bytecode());
 583   __ call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rtmp);
 584   __ get_vm_result_2(flags, rtmp);
 585 
 586   // VMr = obj = base address to find primitive value to push
 587   // VMr2 = flags = (tos, off) using format of CPCE::_flags
 588   __ mov(off, flags);
 589 
 590 #ifdef AARCH64
 591   __ andr(off, off, (unsigned)ConstantPoolCacheEntry::field_index_mask);
 592 #else
 593   __ logical_shift_left( off, off, 32 - ConstantPoolCacheEntry::field_index_bits);
 594   __ logical_shift_right(off, off, 32 - ConstantPoolCacheEntry::field_index_bits);
 595 #endif
 596 
 597   const Address field(obj, off);
 598 
 599   __ logical_shift_right(flags, flags, ConstantPoolCacheEntry::tos_state_shift);
 600   // Make sure we don't need to mask flags after the above shift
 601   ConstantPoolCacheEntry::verify_tos_state_shift();
 602 
 603   switch (bytecode()) {
 604     case Bytecodes::_ldc:
 605     case Bytecodes::_ldc_w:
 606       {
 607         // tos in (itos, ftos, stos, btos, ctos, ztos)
 608         Label notIntFloat, notShort, notByte, notChar, notBool;
 609         __ cmp(flags, itos);
 610         __ cond_cmp(flags, ftos, ne);
 611         __ b(notIntFloat, ne);
 612         __ ldr(R0_tos, field);
 613         __ push(itos);
 614         __ b(Done);
 615 
 616         __ bind(notIntFloat);
 617         __ cmp(flags, stos);
 618         __ b(notShort, ne);
 619         __ ldrsh(R0_tos, field);
 620         __ push(stos);
 621         __ b(Done);
 622 
 623         __ bind(notShort);
 624         __ cmp(flags, btos);
 625         __ b(notByte, ne);
 626         __ ldrsb(R0_tos, field);
 627         __ push(btos);
 628         __ b(Done);
 629 
 630         __ bind(notByte);
 631         __ cmp(flags, ctos);
 632         __ b(notChar, ne);
 633         __ ldrh(R0_tos, field);
 634         __ push(ctos);
 635         __ b(Done);
 636 
 637         __ bind(notChar);
 638         __ cmp(flags, ztos);
 639         __ b(notBool, ne);
 640         __ ldrsb(R0_tos, field);
 641         __ push(ztos);
 642         __ b(Done);
 643 
 644         __ bind(notBool);
 645         break;
 646       }
 647 
 648     case Bytecodes::_ldc2_w:
 649       {
 650         Label notLongDouble;
 651         __ cmp(flags, ltos);
 652         __ cond_cmp(flags, dtos, ne);
 653         __ b(notLongDouble, ne);
 654 
 655 #ifdef AARCH64
 656         __ ldr(R0_tos, field);
 657 #else
 658         __ add(rtmp, obj, wordSize);
 659         __ ldr(R0_tos_lo, Address(obj, off));
 660         __ ldr(R1_tos_hi, Address(rtmp, off));
 661 #endif
 662         __ push(ltos);
 663         __ b(Done);
 664 
 665         __ bind(notLongDouble);
 666 
 667         break;
 668       }
 669 
 670     default:
 671       ShouldNotReachHere();
 672     }
 673 
 674     __ stop("bad ldc/condy");
 675 }
 676 
 677 
 678 void TemplateTable::locals_index(Register reg, int offset) {
 679   __ ldrb(reg, at_bcp(offset));
 680 }
 681 
 682 void TemplateTable::iload() {
 683   iload_internal();
 684 }
 685 
 686 void TemplateTable::nofast_iload() {
 687   iload_internal(may_not_rewrite);
 688 }
 689 
 690 void TemplateTable::iload_internal(RewriteControl rc) {
 691   transition(vtos, itos);
 692 
 693   if ((rc == may_rewrite) && __ rewrite_frequent_pairs()) {
 694     Label rewrite, done;
 695     const Register next_bytecode = R1_tmp;
 696     const Register target_bytecode = R2_tmp;
 697 
 698     // get next byte
 699     __ ldrb(next_bytecode, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 700     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 701     // last two iloads in a pair.  Comparing against fast_iload means that
 702     // the next bytecode is neither an iload or a caload, and therefore
 703     // an iload pair.
 704     __ cmp(next_bytecode, Bytecodes::_iload);
 705     __ b(done, eq);
 706 
 707     __ cmp(next_bytecode, Bytecodes::_fast_iload);
 708     __ mov(target_bytecode, Bytecodes::_fast_iload2);
 709     __ b(rewrite, eq);
 710 
 711     // if _caload, rewrite to fast_icaload
 712     __ cmp(next_bytecode, Bytecodes::_caload);
 713     __ mov(target_bytecode, Bytecodes::_fast_icaload);
 714     __ b(rewrite, eq);
 715 
 716     // rewrite so iload doesn't check again.
 717     __ mov(target_bytecode, Bytecodes::_fast_iload);
 718 
 719     // rewrite
 720     // R2: fast bytecode
 721     __ bind(rewrite);
 722     patch_bytecode(Bytecodes::_iload, target_bytecode, Rtemp, false);
 723     __ bind(done);
 724   }
 725 
 726   // Get the local value into tos
 727   const Register Rlocal_index = R1_tmp;
 728   locals_index(Rlocal_index);
 729   Address local = load_iaddress(Rlocal_index, Rtemp);
 730   __ ldr_s32(R0_tos, local);
 731 }
 732 
 733 
 734 void TemplateTable::fast_iload2() {
 735   transition(vtos, itos);
 736   const Register Rlocal_index = R1_tmp;
 737 
 738   locals_index(Rlocal_index);
 739   Address local = load_iaddress(Rlocal_index, Rtemp);
 740   __ ldr_s32(R0_tos, local);
 741   __ push(itos);
 742 
 743   locals_index(Rlocal_index, 3);
 744   local = load_iaddress(Rlocal_index, Rtemp);
 745   __ ldr_s32(R0_tos, local);
 746 }
 747 
 748 void TemplateTable::fast_iload() {
 749   transition(vtos, itos);
 750   const Register Rlocal_index = R1_tmp;
 751 
 752   locals_index(Rlocal_index);
 753   Address local = load_iaddress(Rlocal_index, Rtemp);
 754   __ ldr_s32(R0_tos, local);
 755 }
 756 
 757 
 758 void TemplateTable::lload() {
 759   transition(vtos, ltos);
 760   const Register Rlocal_index = R2_tmp;
 761 
 762   locals_index(Rlocal_index);
 763   load_category2_local(Rlocal_index, R3_tmp);
 764 }
 765 
 766 
 767 void TemplateTable::fload() {
 768   transition(vtos, ftos);
 769   const Register Rlocal_index = R2_tmp;
 770 
 771   // Get the local value into tos
 772   locals_index(Rlocal_index);
 773   Address local = load_faddress(Rlocal_index, Rtemp);
 774 #ifdef __SOFTFP__
 775   __ ldr(R0_tos, local);
 776 #else
 777   __ ldr_float(S0_tos, local);
 778 #endif // __SOFTFP__
 779 }
 780 
 781 
 782 void TemplateTable::dload() {
 783   transition(vtos, dtos);
 784   const Register Rlocal_index = R2_tmp;
 785 
 786   locals_index(Rlocal_index);
 787 
 788 #ifdef __SOFTFP__
 789   load_category2_local(Rlocal_index, R3_tmp);
 790 #else
 791   __ ldr_double(D0_tos, load_daddress(Rlocal_index, Rtemp));
 792 #endif // __SOFTFP__
 793 }
 794 
 795 
 796 void TemplateTable::aload() {
 797   transition(vtos, atos);
 798   const Register Rlocal_index = R1_tmp;
 799 
 800   locals_index(Rlocal_index);
 801   Address local = load_aaddress(Rlocal_index, Rtemp);
 802   __ ldr(R0_tos, local);
 803 }
 804 
 805 
 806 void TemplateTable::locals_index_wide(Register reg) {
 807   assert_different_registers(reg, Rtemp);
 808   __ ldrb(Rtemp, at_bcp(2));
 809   __ ldrb(reg, at_bcp(3));
 810   __ orr(reg, reg, AsmOperand(Rtemp, lsl, 8));
 811 }
 812 
 813 
 814 void TemplateTable::wide_iload() {
 815   transition(vtos, itos);
 816   const Register Rlocal_index = R2_tmp;
 817 
 818   locals_index_wide(Rlocal_index);
 819   Address local = load_iaddress(Rlocal_index, Rtemp);
 820   __ ldr_s32(R0_tos, local);
 821 }
 822 
 823 
 824 void TemplateTable::wide_lload() {
 825   transition(vtos, ltos);
 826   const Register Rlocal_index = R2_tmp;
 827   const Register Rlocal_base = R3_tmp;
 828 
 829   locals_index_wide(Rlocal_index);
 830   load_category2_local(Rlocal_index, R3_tmp);
 831 }
 832 
 833 
 834 void TemplateTable::wide_fload() {
 835   transition(vtos, ftos);
 836   const Register Rlocal_index = R2_tmp;
 837 
 838   locals_index_wide(Rlocal_index);
 839   Address local = load_faddress(Rlocal_index, Rtemp);
 840 #ifdef __SOFTFP__
 841   __ ldr(R0_tos, local);
 842 #else
 843   __ ldr_float(S0_tos, local);
 844 #endif // __SOFTFP__
 845 }
 846 
 847 
 848 void TemplateTable::wide_dload() {
 849   transition(vtos, dtos);
 850   const Register Rlocal_index = R2_tmp;
 851 
 852   locals_index_wide(Rlocal_index);
 853 #ifdef __SOFTFP__
 854   load_category2_local(Rlocal_index, R3_tmp);
 855 #else
 856   __ ldr_double(D0_tos, load_daddress(Rlocal_index, Rtemp));
 857 #endif // __SOFTFP__
 858 }
 859 
 860 
 861 void TemplateTable::wide_aload() {
 862   transition(vtos, atos);
 863   const Register Rlocal_index = R2_tmp;
 864 
 865   locals_index_wide(Rlocal_index);
 866   Address local = load_aaddress(Rlocal_index, Rtemp);
 867   __ ldr(R0_tos, local);
 868 }
 869 
 870 void TemplateTable::index_check(Register array, Register index) {
 871   // Pop ptr into array
 872   __ pop_ptr(array);
 873   index_check_without_pop(array, index);
 874 }
 875 
 876 void TemplateTable::index_check_without_pop(Register array, Register index) {
 877   assert_different_registers(array, index, Rtemp);
 878   // check array
 879   __ null_check(array, Rtemp, arrayOopDesc::length_offset_in_bytes());
 880   // check index
 881   __ ldr_s32(Rtemp, Address(array, arrayOopDesc::length_offset_in_bytes()));
 882   __ cmp_32(index, Rtemp);
 883   if (index != R4_ArrayIndexOutOfBounds_index) {
 884     // convention with generate_ArrayIndexOutOfBounds_handler()
 885     __ mov(R4_ArrayIndexOutOfBounds_index, index, hs);
 886   }
 887   __ mov(R1, array, hs);
 888   __ b(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, hs);
 889 }
 890 
 891 
 892 void TemplateTable::iaload() {
 893   transition(itos, itos);
 894   const Register Rarray = R1_tmp;
 895   const Register Rindex = R0_tos;
 896 
 897   index_check(Rarray, Rindex);
 898   Address addr = get_array_elem_addr_same_base(T_INT, Rarray, Rindex, Rtemp);
 899   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, addr, R0_tos, noreg, noreg, noreg);
 900 }
 901 
 902 
 903 void TemplateTable::laload() {
 904   transition(itos, ltos);
 905   const Register Rarray = R1_tmp;
 906   const Register Rindex = R0_tos;
 907 
 908   index_check(Rarray, Rindex);
 909 
 910 #ifdef AARCH64
 911   __ ldr(R0_tos, get_array_elem_addr(T_LONG, Rarray, Rindex, Rtemp));
 912 #else
 913   Address addr = get_array_elem_addr_same_base(T_LONG, Rarray, Rindex, Rtemp);
 914   __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, addr, noreg /* ltos */, noreg, noreg, noreg);
 915 #endif // AARCH64
 916 }
 917 
 918 
 919 void TemplateTable::faload() {
 920   transition(itos, ftos);
 921   const Register Rarray = R1_tmp;
 922   const Register Rindex = R0_tos;
 923 
 924   index_check(Rarray, Rindex);
 925 
 926   Address addr = get_array_elem_addr_same_base(T_FLOAT, Rarray, Rindex, Rtemp);
 927   __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, addr, noreg /* ftos */, noreg, noreg, noreg);
 928 }
 929 
 930 
 931 void TemplateTable::daload() {
 932   transition(itos, dtos);
 933   const Register Rarray = R1_tmp;
 934   const Register Rindex = R0_tos;
 935 
 936   index_check(Rarray, Rindex);
 937 
 938   Address addr = get_array_elem_addr_same_base(T_DOUBLE, Rarray, Rindex, Rtemp);
 939   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, addr, noreg /* dtos */, noreg, noreg, noreg);
 940 }
 941 
 942 
 943 void TemplateTable::aaload() {
 944   transition(itos, atos);
 945   const Register Rarray = R1_tmp;
 946   const Register Rindex = R0_tos;
 947 
 948   index_check(Rarray, Rindex);
 949   do_oop_load(_masm, R0_tos, get_array_elem_addr_same_base(T_OBJECT, Rarray, Rindex, Rtemp), IS_ARRAY);
 950 }
 951 
 952 
 953 void TemplateTable::baload() {
 954   transition(itos, itos);
 955   const Register Rarray = R1_tmp;
 956   const Register Rindex = R0_tos;
 957 
 958   index_check(Rarray, Rindex);
 959   Address addr = get_array_elem_addr_same_base(T_BYTE, Rarray, Rindex, Rtemp);
 960   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, addr, R0_tos, noreg, noreg, noreg);
 961 }
 962 
 963 
 964 void TemplateTable::caload() {
 965   transition(itos, itos);
 966   const Register Rarray = R1_tmp;
 967   const Register Rindex = R0_tos;
 968 
 969   index_check(Rarray, Rindex);
 970   Address addr = get_array_elem_addr_same_base(T_CHAR, Rarray, Rindex, Rtemp);
 971   __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, addr, R0_tos, noreg, noreg, noreg);
 972 }
 973 
 974 
 975 // iload followed by caload frequent pair
 976 void TemplateTable::fast_icaload() {
 977   transition(vtos, itos);
 978   const Register Rlocal_index = R1_tmp;
 979   const Register Rarray = R1_tmp;
 980   const Register Rindex = R4_tmp; // index_check prefers index on R4
 981   assert_different_registers(Rlocal_index, Rindex);
 982   assert_different_registers(Rarray, Rindex);
 983 
 984   // load index out of locals
 985   locals_index(Rlocal_index);
 986   Address local = load_iaddress(Rlocal_index, Rtemp);
 987   __ ldr_s32(Rindex, local);
 988 
 989   // get array element
 990   index_check(Rarray, Rindex);
 991   Address addr = get_array_elem_addr_same_base(T_CHAR, Rarray, Rindex, Rtemp);
 992   __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, addr, R0_tos, noreg, noreg, noreg);
 993 }
 994 
 995 
 996 void TemplateTable::saload() {
 997   transition(itos, itos);
 998   const Register Rarray = R1_tmp;
 999   const Register Rindex = R0_tos;
1000 
1001   index_check(Rarray, Rindex);
1002   Address addr = get_array_elem_addr_same_base(T_SHORT, Rarray, Rindex, Rtemp);
1003   __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, addr, R0_tos, noreg, noreg, noreg);
1004 }
1005 
1006 
1007 void TemplateTable::iload(int n) {
1008   transition(vtos, itos);
1009   __ ldr_s32(R0_tos, iaddress(n));
1010 }
1011 
1012 
1013 void TemplateTable::lload(int n) {
1014   transition(vtos, ltos);
1015 #ifdef AARCH64
1016   __ ldr(R0_tos, laddress(n));
1017 #else
1018   __ ldr(R0_tos_lo, laddress(n));
1019   __ ldr(R1_tos_hi, haddress(n));
1020 #endif // AARCH64
1021 }
1022 
1023 
1024 void TemplateTable::fload(int n) {
1025   transition(vtos, ftos);
1026 #ifdef __SOFTFP__
1027   __ ldr(R0_tos, faddress(n));
1028 #else
1029   __ ldr_float(S0_tos, faddress(n));
1030 #endif // __SOFTFP__
1031 }
1032 
1033 
1034 void TemplateTable::dload(int n) {
1035   transition(vtos, dtos);
1036 #ifdef __SOFTFP__
1037   __ ldr(R0_tos_lo, laddress(n));
1038   __ ldr(R1_tos_hi, haddress(n));
1039 #else
1040   __ ldr_double(D0_tos, daddress(n));
1041 #endif // __SOFTFP__
1042 }
1043 
1044 
1045 void TemplateTable::aload(int n) {
1046   transition(vtos, atos);
1047   __ ldr(R0_tos, aaddress(n));
1048 }
1049 
1050 void TemplateTable::aload_0() {
1051   aload_0_internal();
1052 }
1053 
1054 void TemplateTable::nofast_aload_0() {
1055   aload_0_internal(may_not_rewrite);
1056 }
1057 
1058 void TemplateTable::aload_0_internal(RewriteControl rc) {
1059   transition(vtos, atos);
1060   // According to bytecode histograms, the pairs:
1061   //
1062   // _aload_0, _fast_igetfield
1063   // _aload_0, _fast_agetfield
1064   // _aload_0, _fast_fgetfield
1065   //
1066   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
1067   // bytecode checks if the next bytecode is either _fast_igetfield,
1068   // _fast_agetfield or _fast_fgetfield and then rewrites the
1069   // current bytecode into a pair bytecode; otherwise it rewrites the current
1070   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
1071   //
1072   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
1073   //       otherwise we may miss an opportunity for a pair.
1074   //
1075   // Also rewrite frequent pairs
1076   //   aload_0, aload_1
1077   //   aload_0, iload_1
1078   // These bytecodes with a small amount of code are most profitable to rewrite
1079   if ((rc == may_rewrite) && __ rewrite_frequent_pairs()) {
1080     Label rewrite, done;
1081     const Register next_bytecode = R1_tmp;
1082     const Register target_bytecode = R2_tmp;
1083 
1084     // get next byte
1085     __ ldrb(next_bytecode, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
1086 
1087     // if _getfield then wait with rewrite
1088     __ cmp(next_bytecode, Bytecodes::_getfield);
1089     __ b(done, eq);
1090 
1091     // if _igetfield then rewrite to _fast_iaccess_0
1092     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
1093     __ cmp(next_bytecode, Bytecodes::_fast_igetfield);
1094     __ mov(target_bytecode, Bytecodes::_fast_iaccess_0);
1095     __ b(rewrite, eq);
1096 
1097     // if _agetfield then rewrite to _fast_aaccess_0
1098     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
1099     __ cmp(next_bytecode, Bytecodes::_fast_agetfield);
1100     __ mov(target_bytecode, Bytecodes::_fast_aaccess_0);
1101     __ b(rewrite, eq);
1102 
1103     // if _fgetfield then rewrite to _fast_faccess_0, else rewrite to _fast_aload0
1104     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
1105     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
1106 
1107     __ cmp(next_bytecode, Bytecodes::_fast_fgetfield);
1108 #ifdef AARCH64
1109     __ mov(Rtemp, Bytecodes::_fast_faccess_0);
1110     __ mov(target_bytecode, Bytecodes::_fast_aload_0);
1111     __ mov(target_bytecode, Rtemp, eq);
1112 #else
1113     __ mov(target_bytecode, Bytecodes::_fast_faccess_0, eq);
1114     __ mov(target_bytecode, Bytecodes::_fast_aload_0, ne);
1115 #endif // AARCH64
1116 
1117     // rewrite
1118     __ bind(rewrite);
1119     patch_bytecode(Bytecodes::_aload_0, target_bytecode, Rtemp, false);
1120 
1121     __ bind(done);
1122   }
1123 
1124   aload(0);
1125 }
1126 
1127 void TemplateTable::istore() {
1128   transition(itos, vtos);
1129   const Register Rlocal_index = R2_tmp;
1130 
1131   locals_index(Rlocal_index);
1132   Address local = load_iaddress(Rlocal_index, Rtemp);
1133   __ str_32(R0_tos, local);
1134 }
1135 
1136 
1137 void TemplateTable::lstore() {
1138   transition(ltos, vtos);
1139   const Register Rlocal_index = R2_tmp;
1140 
1141   locals_index(Rlocal_index);
1142   store_category2_local(Rlocal_index, R3_tmp);
1143 }
1144 
1145 
1146 void TemplateTable::fstore() {
1147   transition(ftos, vtos);
1148   const Register Rlocal_index = R2_tmp;
1149 
1150   locals_index(Rlocal_index);
1151   Address local = load_faddress(Rlocal_index, Rtemp);
1152 #ifdef __SOFTFP__
1153   __ str(R0_tos, local);
1154 #else
1155   __ str_float(S0_tos, local);
1156 #endif // __SOFTFP__
1157 }
1158 
1159 
1160 void TemplateTable::dstore() {
1161   transition(dtos, vtos);
1162   const Register Rlocal_index = R2_tmp;
1163 
1164   locals_index(Rlocal_index);
1165 
1166 #ifdef __SOFTFP__
1167   store_category2_local(Rlocal_index, R3_tmp);
1168 #else
1169   __ str_double(D0_tos, load_daddress(Rlocal_index, Rtemp));
1170 #endif // __SOFTFP__
1171 }
1172 
1173 
1174 void TemplateTable::astore() {
1175   transition(vtos, vtos);
1176   const Register Rlocal_index = R1_tmp;
1177 
1178   __ pop_ptr(R0_tos);
1179   locals_index(Rlocal_index);
1180   Address local = load_aaddress(Rlocal_index, Rtemp);
1181   __ str(R0_tos, local);
1182 }
1183 
1184 
1185 void TemplateTable::wide_istore() {
1186   transition(vtos, vtos);
1187   const Register Rlocal_index = R2_tmp;
1188 
1189   __ pop_i(R0_tos);
1190   locals_index_wide(Rlocal_index);
1191   Address local = load_iaddress(Rlocal_index, Rtemp);
1192   __ str_32(R0_tos, local);
1193 }
1194 
1195 
1196 void TemplateTable::wide_lstore() {
1197   transition(vtos, vtos);
1198   const Register Rlocal_index = R2_tmp;
1199   const Register Rlocal_base = R3_tmp;
1200 
1201 #ifdef AARCH64
1202   __ pop_l(R0_tos);
1203 #else
1204   __ pop_l(R0_tos_lo, R1_tos_hi);
1205 #endif // AARCH64
1206 
1207   locals_index_wide(Rlocal_index);
1208   store_category2_local(Rlocal_index, R3_tmp);
1209 }
1210 
1211 
1212 void TemplateTable::wide_fstore() {
1213   wide_istore();
1214 }
1215 
1216 
1217 void TemplateTable::wide_dstore() {
1218   wide_lstore();
1219 }
1220 
1221 
1222 void TemplateTable::wide_astore() {
1223   transition(vtos, vtos);
1224   const Register Rlocal_index = R2_tmp;
1225 
1226   __ pop_ptr(R0_tos);
1227   locals_index_wide(Rlocal_index);
1228   Address local = load_aaddress(Rlocal_index, Rtemp);
1229   __ str(R0_tos, local);
1230 }
1231 
1232 
1233 void TemplateTable::iastore() {
1234   transition(itos, vtos);
1235   const Register Rindex = R4_tmp; // index_check prefers index in R4
1236   const Register Rarray = R3_tmp;
1237   // R0_tos: value
1238 
1239   __ pop_i(Rindex);
1240   index_check(Rarray, Rindex);
1241   Address addr = get_array_elem_addr_same_base(T_INT, Rarray, Rindex, Rtemp);
1242   __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, addr, R0_tos, noreg, noreg, noreg, false);
1243 }
1244 
1245 
1246 void TemplateTable::lastore() {
1247   transition(ltos, vtos);
1248   const Register Rindex = R4_tmp; // index_check prefers index in R4
1249   const Register Rarray = R3_tmp;
1250   // R0_tos_lo:R1_tos_hi: value
1251 
1252   __ pop_i(Rindex);
1253   index_check(Rarray, Rindex);
1254 
1255 #ifdef AARCH64
1256   __ str(R0_tos, get_array_elem_addr(T_LONG, Rarray, Rindex, Rtemp));
1257 #else
1258   Address addr = get_array_elem_addr_same_base(T_LONG, Rarray, Rindex, Rtemp);
1259   __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, addr, noreg /* ltos */, noreg, noreg, noreg, false);
1260 #endif // AARCH64
1261 }
1262 
1263 
1264 void TemplateTable::fastore() {
1265   transition(ftos, vtos);
1266   const Register Rindex = R4_tmp; // index_check prefers index in R4
1267   const Register Rarray = R3_tmp;
1268   // S0_tos/R0_tos: value
1269 
1270   __ pop_i(Rindex);
1271   index_check(Rarray, Rindex);
1272   Address addr = get_array_elem_addr_same_base(T_FLOAT, Rarray, Rindex, Rtemp);
1273   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, addr, noreg /* ftos */, noreg, noreg, noreg, false);
1274 }
1275 
1276 
1277 void TemplateTable::dastore() {
1278   transition(dtos, vtos);
1279   const Register Rindex = R4_tmp; // index_check prefers index in R4
1280   const Register Rarray = R3_tmp;
1281   // D0_tos / R0_tos_lo:R1_to_hi: value
1282 
1283   __ pop_i(Rindex);
1284   index_check(Rarray, Rindex);
1285 
1286   Address addr = get_array_elem_addr_same_base(T_DOUBLE, Rarray, Rindex, Rtemp);
1287   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, addr, noreg /* dtos */, noreg, noreg, noreg, false);
1288 }
1289 
1290 
1291 void TemplateTable::aastore() {
1292   transition(vtos, vtos);
1293   Label is_null, throw_array_store, done;
1294 
1295   const Register Raddr_1   = R1_tmp;
1296   const Register Rvalue_2  = R2_tmp;
1297   const Register Rarray_3  = R3_tmp;
1298   const Register Rindex_4  = R4_tmp;   // preferred by index_check_without_pop()
1299   const Register Rsub_5    = R5_tmp;
1300   const Register Rsuper_LR = LR_tmp;
1301 
1302   // stack: ..., array, index, value
1303   __ ldr(Rvalue_2, at_tos());     // Value
1304   __ ldr_s32(Rindex_4, at_tos_p1());  // Index
1305   __ ldr(Rarray_3, at_tos_p2());  // Array
1306 
1307   index_check_without_pop(Rarray_3, Rindex_4);
1308 
1309   // Compute the array base
1310   __ add(Raddr_1, Rarray_3, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1311 
1312   // do array store check - check for NULL value first
1313   __ cbz(Rvalue_2, is_null);
1314 
1315   // Load subklass
1316   __ load_klass(Rsub_5, Rvalue_2);
1317   // Load superklass
1318   __ load_klass(Rtemp, Rarray_3);
1319   __ ldr(Rsuper_LR, Address(Rtemp, ObjArrayKlass::element_klass_offset()));
1320 
1321   __ gen_subtype_check(Rsub_5, Rsuper_LR, throw_array_store, R0_tmp, R3_tmp);
1322   // Come here on success
1323 
1324   // Store value
1325   __ add(Raddr_1, Raddr_1, AsmOperand(Rindex_4, lsl, LogBytesPerHeapOop));
1326 
1327   // Now store using the appropriate barrier
1328   do_oop_store(_masm, Raddr_1, Rvalue_2, Rtemp, R0_tmp, R3_tmp, false, IS_ARRAY);
1329   __ b(done);
1330 
1331   __ bind(throw_array_store);
1332 
1333   // Come here on failure of subtype check
1334   __ profile_typecheck_failed(R0_tmp);
1335 
1336   // object is at TOS
1337   __ b(Interpreter::_throw_ArrayStoreException_entry);
1338 
1339   // Have a NULL in Rvalue_2, store NULL at array[index].
1340   __ bind(is_null);
1341   __ profile_null_seen(R0_tmp);
1342 
1343   // Store a NULL
1344   do_oop_store(_masm, Address::indexed_oop(Raddr_1, Rindex_4), Rvalue_2, Rtemp, R0_tmp, R3_tmp, true, IS_ARRAY);
1345 
1346   // Pop stack arguments
1347   __ bind(done);
1348   __ add(Rstack_top, Rstack_top, 3 * Interpreter::stackElementSize);
1349 }
1350 
1351 
1352 void TemplateTable::bastore() {
1353   transition(itos, vtos);
1354   const Register Rindex = R4_tmp; // index_check prefers index in R4
1355   const Register Rarray = R3_tmp;
1356   // R0_tos: value
1357 
1358   __ pop_i(Rindex);
1359   index_check(Rarray, Rindex);
1360 
1361   // Need to check whether array is boolean or byte
1362   // since both types share the bastore bytecode.
1363   __ load_klass(Rtemp, Rarray);
1364   __ ldr_u32(Rtemp, Address(Rtemp, Klass::layout_helper_offset()));
1365   Label L_skip;
1366   __ tst(Rtemp, Klass::layout_helper_boolean_diffbit());
1367   __ b(L_skip, eq);
1368   __ and_32(R0_tos, R0_tos, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1
1369   __ bind(L_skip);
1370   Address addr = get_array_elem_addr_same_base(T_BYTE, Rarray, Rindex, Rtemp);
1371   __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, addr, R0_tos, noreg, noreg, noreg, false);
1372 }
1373 
1374 
1375 void TemplateTable::castore() {
1376   transition(itos, vtos);
1377   const Register Rindex = R4_tmp; // index_check prefers index in R4
1378   const Register Rarray = R3_tmp;
1379   // R0_tos: value
1380 
1381   __ pop_i(Rindex);
1382   index_check(Rarray, Rindex);
1383   Address addr = get_array_elem_addr_same_base(T_CHAR, Rarray, Rindex, Rtemp);
1384   __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, addr, R0_tos, noreg, noreg, noreg, false);
1385 }
1386 
1387 
1388 void TemplateTable::sastore() {
1389   assert(arrayOopDesc::base_offset_in_bytes(T_CHAR) ==
1390            arrayOopDesc::base_offset_in_bytes(T_SHORT),
1391          "base offsets for char and short should be equal");
1392   castore();
1393 }
1394 
1395 
1396 void TemplateTable::istore(int n) {
1397   transition(itos, vtos);
1398   __ str_32(R0_tos, iaddress(n));
1399 }
1400 
1401 
1402 void TemplateTable::lstore(int n) {
1403   transition(ltos, vtos);
1404 #ifdef AARCH64
1405   __ str(R0_tos, laddress(n));
1406 #else
1407   __ str(R0_tos_lo, laddress(n));
1408   __ str(R1_tos_hi, haddress(n));
1409 #endif // AARCH64
1410 }
1411 
1412 
1413 void TemplateTable::fstore(int n) {
1414   transition(ftos, vtos);
1415 #ifdef __SOFTFP__
1416   __ str(R0_tos, faddress(n));
1417 #else
1418   __ str_float(S0_tos, faddress(n));
1419 #endif // __SOFTFP__
1420 }
1421 
1422 
1423 void TemplateTable::dstore(int n) {
1424   transition(dtos, vtos);
1425 #ifdef __SOFTFP__
1426   __ str(R0_tos_lo, laddress(n));
1427   __ str(R1_tos_hi, haddress(n));
1428 #else
1429   __ str_double(D0_tos, daddress(n));
1430 #endif // __SOFTFP__
1431 }
1432 
1433 
1434 void TemplateTable::astore(int n) {
1435   transition(vtos, vtos);
1436   __ pop_ptr(R0_tos);
1437   __ str(R0_tos, aaddress(n));
1438 }
1439 
1440 
1441 void TemplateTable::pop() {
1442   transition(vtos, vtos);
1443   __ add(Rstack_top, Rstack_top, Interpreter::stackElementSize);
1444 }
1445 
1446 
1447 void TemplateTable::pop2() {
1448   transition(vtos, vtos);
1449   __ add(Rstack_top, Rstack_top, 2*Interpreter::stackElementSize);
1450 }
1451 
1452 
1453 void TemplateTable::dup() {
1454   transition(vtos, vtos);
1455   // stack: ..., a
1456   __ load_ptr(0, R0_tmp);
1457   __ push_ptr(R0_tmp);
1458   // stack: ..., a, a
1459 }
1460 
1461 
1462 void TemplateTable::dup_x1() {
1463   transition(vtos, vtos);
1464   // stack: ..., a, b
1465   __ load_ptr(0, R0_tmp);  // load b
1466   __ load_ptr(1, R2_tmp);  // load a
1467   __ store_ptr(1, R0_tmp); // store b
1468   __ store_ptr(0, R2_tmp); // store a
1469   __ push_ptr(R0_tmp);     // push b
1470   // stack: ..., b, a, b
1471 }
1472 
1473 
1474 void TemplateTable::dup_x2() {
1475   transition(vtos, vtos);
1476   // stack: ..., a, b, c
1477   __ load_ptr(0, R0_tmp);   // load c
1478   __ load_ptr(1, R2_tmp);   // load b
1479   __ load_ptr(2, R4_tmp);   // load a
1480 
1481   __ push_ptr(R0_tmp);      // push c
1482 
1483   // stack: ..., a, b, c, c
1484   __ store_ptr(1, R2_tmp);  // store b
1485   __ store_ptr(2, R4_tmp);  // store a
1486   __ store_ptr(3, R0_tmp);  // store c
1487   // stack: ..., c, a, b, c
1488 }
1489 
1490 
1491 void TemplateTable::dup2() {
1492   transition(vtos, vtos);
1493   // stack: ..., a, b
1494   __ load_ptr(1, R0_tmp);  // load a
1495   __ push_ptr(R0_tmp);     // push a
1496   __ load_ptr(1, R0_tmp);  // load b
1497   __ push_ptr(R0_tmp);     // push b
1498   // stack: ..., a, b, a, b
1499 }
1500 
1501 
1502 void TemplateTable::dup2_x1() {
1503   transition(vtos, vtos);
1504 
1505   // stack: ..., a, b, c
1506   __ load_ptr(0, R4_tmp);  // load c
1507   __ load_ptr(1, R2_tmp);  // load b
1508   __ load_ptr(2, R0_tmp);  // load a
1509 
1510   __ push_ptr(R2_tmp);     // push b
1511   __ push_ptr(R4_tmp);     // push c
1512 
1513   // stack: ..., a, b, c, b, c
1514 
1515   __ store_ptr(2, R0_tmp);  // store a
1516   __ store_ptr(3, R4_tmp);  // store c
1517   __ store_ptr(4, R2_tmp);  // store b
1518 
1519   // stack: ..., b, c, a, b, c
1520 }
1521 
1522 
1523 void TemplateTable::dup2_x2() {
1524   transition(vtos, vtos);
1525   // stack: ..., a, b, c, d
1526   __ load_ptr(0, R0_tmp);  // load d
1527   __ load_ptr(1, R2_tmp);  // load c
1528   __ push_ptr(R2_tmp);     // push c
1529   __ push_ptr(R0_tmp);     // push d
1530   // stack: ..., a, b, c, d, c, d
1531   __ load_ptr(4, R4_tmp);  // load b
1532   __ store_ptr(4, R0_tmp); // store d in b
1533   __ store_ptr(2, R4_tmp); // store b in d
1534   // stack: ..., a, d, c, b, c, d
1535   __ load_ptr(5, R4_tmp);  // load a
1536   __ store_ptr(5, R2_tmp); // store c in a
1537   __ store_ptr(3, R4_tmp); // store a in c
1538   // stack: ..., c, d, a, b, c, d
1539 }
1540 
1541 
1542 void TemplateTable::swap() {
1543   transition(vtos, vtos);
1544   // stack: ..., a, b
1545   __ load_ptr(1, R0_tmp);  // load a
1546   __ load_ptr(0, R2_tmp);  // load b
1547   __ store_ptr(0, R0_tmp); // store a in b
1548   __ store_ptr(1, R2_tmp); // store b in a
1549   // stack: ..., b, a
1550 }
1551 
1552 
1553 void TemplateTable::iop2(Operation op) {
1554   transition(itos, itos);
1555   const Register arg1 = R1_tmp;
1556   const Register arg2 = R0_tos;
1557 
1558   __ pop_i(arg1);
1559   switch (op) {
1560     case add  : __ add_32 (R0_tos, arg1, arg2); break;
1561     case sub  : __ sub_32 (R0_tos, arg1, arg2); break;
1562     case mul  : __ mul_32 (R0_tos, arg1, arg2); break;
1563     case _and : __ and_32 (R0_tos, arg1, arg2); break;
1564     case _or  : __ orr_32 (R0_tos, arg1, arg2); break;
1565     case _xor : __ eor_32 (R0_tos, arg1, arg2); break;
1566 #ifdef AARCH64
1567     case shl  : __ lslv_w (R0_tos, arg1, arg2); break;
1568     case shr  : __ asrv_w (R0_tos, arg1, arg2); break;
1569     case ushr : __ lsrv_w (R0_tos, arg1, arg2); break;
1570 #else
1571     case shl  : __ andr(arg2, arg2, 0x1f); __ mov (R0_tos, AsmOperand(arg1, lsl, arg2)); break;
1572     case shr  : __ andr(arg2, arg2, 0x1f); __ mov (R0_tos, AsmOperand(arg1, asr, arg2)); break;
1573     case ushr : __ andr(arg2, arg2, 0x1f); __ mov (R0_tos, AsmOperand(arg1, lsr, arg2)); break;
1574 #endif // AARCH64
1575     default   : ShouldNotReachHere();
1576   }
1577 }
1578 
1579 
1580 void TemplateTable::lop2(Operation op) {
1581   transition(ltos, ltos);
1582 #ifdef AARCH64
1583   const Register arg1 = R1_tmp;
1584   const Register arg2 = R0_tos;
1585 
1586   __ pop_l(arg1);
1587   switch (op) {
1588     case add  : __ add (R0_tos, arg1, arg2); break;
1589     case sub  : __ sub (R0_tos, arg1, arg2); break;
1590     case _and : __ andr(R0_tos, arg1, arg2); break;
1591     case _or  : __ orr (R0_tos, arg1, arg2); break;
1592     case _xor : __ eor (R0_tos, arg1, arg2); break;
1593     default   : ShouldNotReachHere();
1594   }
1595 #else
1596   const Register arg1_lo = R2_tmp;
1597   const Register arg1_hi = R3_tmp;
1598   const Register arg2_lo = R0_tos_lo;
1599   const Register arg2_hi = R1_tos_hi;
1600 
1601   __ pop_l(arg1_lo, arg1_hi);
1602   switch (op) {
1603     case add : __ adds(R0_tos_lo, arg1_lo, arg2_lo); __ adc (R1_tos_hi, arg1_hi, arg2_hi); break;
1604     case sub : __ subs(R0_tos_lo, arg1_lo, arg2_lo); __ sbc (R1_tos_hi, arg1_hi, arg2_hi); break;
1605     case _and: __ andr(R0_tos_lo, arg1_lo, arg2_lo); __ andr(R1_tos_hi, arg1_hi, arg2_hi); break;
1606     case _or : __ orr (R0_tos_lo, arg1_lo, arg2_lo); __ orr (R1_tos_hi, arg1_hi, arg2_hi); break;
1607     case _xor: __ eor (R0_tos_lo, arg1_lo, arg2_lo); __ eor (R1_tos_hi, arg1_hi, arg2_hi); break;
1608     default : ShouldNotReachHere();
1609   }
1610 #endif // AARCH64
1611 }
1612 
1613 
1614 void TemplateTable::idiv() {
1615   transition(itos, itos);
1616 #ifdef AARCH64
1617   const Register divisor = R0_tos;
1618   const Register dividend = R1_tmp;
1619 
1620   __ cbz_w(divisor, Interpreter::_throw_ArithmeticException_entry);
1621   __ pop_i(dividend);
1622   __ sdiv_w(R0_tos, dividend, divisor);
1623 #else
1624   __ mov(R2, R0_tos);
1625   __ pop_i(R0);
1626   // R0 - dividend
1627   // R2 - divisor
1628   __ call(StubRoutines::Arm::idiv_irem_entry(), relocInfo::none);
1629   // R1 - result
1630   __ mov(R0_tos, R1);
1631 #endif // AARCH64
1632 }
1633 
1634 
1635 void TemplateTable::irem() {
1636   transition(itos, itos);
1637 #ifdef AARCH64
1638   const Register divisor = R0_tos;
1639   const Register dividend = R1_tmp;
1640   const Register quotient = R2_tmp;
1641 
1642   __ cbz_w(divisor, Interpreter::_throw_ArithmeticException_entry);
1643   __ pop_i(dividend);
1644   __ sdiv_w(quotient, dividend, divisor);
1645   __ msub_w(R0_tos, divisor, quotient, dividend);
1646 #else
1647   __ mov(R2, R0_tos);
1648   __ pop_i(R0);
1649   // R0 - dividend
1650   // R2 - divisor
1651   __ call(StubRoutines::Arm::idiv_irem_entry(), relocInfo::none);
1652   // R0 - remainder
1653 #endif // AARCH64
1654 }
1655 
1656 
1657 void TemplateTable::lmul() {
1658   transition(ltos, ltos);
1659 #ifdef AARCH64
1660   const Register arg1 = R0_tos;
1661   const Register arg2 = R1_tmp;
1662 
1663   __ pop_l(arg2);
1664   __ mul(R0_tos, arg1, arg2);
1665 #else
1666   const Register arg1_lo = R0_tos_lo;
1667   const Register arg1_hi = R1_tos_hi;
1668   const Register arg2_lo = R2_tmp;
1669   const Register arg2_hi = R3_tmp;
1670 
1671   __ pop_l(arg2_lo, arg2_hi);
1672 
1673   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lmul), arg1_lo, arg1_hi, arg2_lo, arg2_hi);
1674 #endif // AARCH64
1675 }
1676 
1677 
1678 void TemplateTable::ldiv() {
1679   transition(ltos, ltos);
1680 #ifdef AARCH64
1681   const Register divisor = R0_tos;
1682   const Register dividend = R1_tmp;
1683 
1684   __ cbz(divisor, Interpreter::_throw_ArithmeticException_entry);
1685   __ pop_l(dividend);
1686   __ sdiv(R0_tos, dividend, divisor);
1687 #else
1688   const Register x_lo = R2_tmp;
1689   const Register x_hi = R3_tmp;
1690   const Register y_lo = R0_tos_lo;
1691   const Register y_hi = R1_tos_hi;
1692 
1693   __ pop_l(x_lo, x_hi);
1694 
1695   // check if y = 0
1696   __ orrs(Rtemp, y_lo, y_hi);
1697   __ call(Interpreter::_throw_ArithmeticException_entry, relocInfo::none, eq);
1698   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv), y_lo, y_hi, x_lo, x_hi);
1699 #endif // AARCH64
1700 }
1701 
1702 
1703 void TemplateTable::lrem() {
1704   transition(ltos, ltos);
1705 #ifdef AARCH64
1706   const Register divisor = R0_tos;
1707   const Register dividend = R1_tmp;
1708   const Register quotient = R2_tmp;
1709 
1710   __ cbz(divisor, Interpreter::_throw_ArithmeticException_entry);
1711   __ pop_l(dividend);
1712   __ sdiv(quotient, dividend, divisor);
1713   __ msub(R0_tos, divisor, quotient, dividend);
1714 #else
1715   const Register x_lo = R2_tmp;
1716   const Register x_hi = R3_tmp;
1717   const Register y_lo = R0_tos_lo;
1718   const Register y_hi = R1_tos_hi;
1719 
1720   __ pop_l(x_lo, x_hi);
1721 
1722   // check if y = 0
1723   __ orrs(Rtemp, y_lo, y_hi);
1724   __ call(Interpreter::_throw_ArithmeticException_entry, relocInfo::none, eq);
1725   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem), y_lo, y_hi, x_lo, x_hi);
1726 #endif // AARCH64
1727 }
1728 
1729 
1730 void TemplateTable::lshl() {
1731   transition(itos, ltos);
1732 #ifdef AARCH64
1733   const Register val = R1_tmp;
1734   const Register shift_cnt = R0_tos;
1735   __ pop_l(val);
1736   __ lslv(R0_tos, val, shift_cnt);
1737 #else
1738   const Register shift_cnt = R4_tmp;
1739   const Register val_lo = R2_tmp;
1740   const Register val_hi = R3_tmp;
1741 
1742   __ pop_l(val_lo, val_hi);
1743   __ andr(shift_cnt, R0_tos, 63);
1744   __ long_shift(R0_tos_lo, R1_tos_hi, val_lo, val_hi, lsl, shift_cnt);
1745 #endif // AARCH64
1746 }
1747 
1748 
1749 void TemplateTable::lshr() {
1750   transition(itos, ltos);
1751 #ifdef AARCH64
1752   const Register val = R1_tmp;
1753   const Register shift_cnt = R0_tos;
1754   __ pop_l(val);
1755   __ asrv(R0_tos, val, shift_cnt);
1756 #else
1757   const Register shift_cnt = R4_tmp;
1758   const Register val_lo = R2_tmp;
1759   const Register val_hi = R3_tmp;
1760 
1761   __ pop_l(val_lo, val_hi);
1762   __ andr(shift_cnt, R0_tos, 63);
1763   __ long_shift(R0_tos_lo, R1_tos_hi, val_lo, val_hi, asr, shift_cnt);
1764 #endif // AARCH64
1765 }
1766 
1767 
1768 void TemplateTable::lushr() {
1769   transition(itos, ltos);
1770 #ifdef AARCH64
1771   const Register val = R1_tmp;
1772   const Register shift_cnt = R0_tos;
1773   __ pop_l(val);
1774   __ lsrv(R0_tos, val, shift_cnt);
1775 #else
1776   const Register shift_cnt = R4_tmp;
1777   const Register val_lo = R2_tmp;
1778   const Register val_hi = R3_tmp;
1779 
1780   __ pop_l(val_lo, val_hi);
1781   __ andr(shift_cnt, R0_tos, 63);
1782   __ long_shift(R0_tos_lo, R1_tos_hi, val_lo, val_hi, lsr, shift_cnt);
1783 #endif // AARCH64
1784 }
1785 
1786 
1787 void TemplateTable::fop2(Operation op) {
1788   transition(ftos, ftos);
1789 #ifdef __SOFTFP__
1790   __ mov(R1, R0_tos);
1791   __ pop_i(R0);
1792   switch (op) {
1793     case add: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_fadd_glibc), R0, R1); break;
1794     case sub: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_fsub_glibc), R0, R1); break;
1795     case mul: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_fmul), R0, R1); break;
1796     case div: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_fdiv), R0, R1); break;
1797     case rem: __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), R0, R1); break;
1798     default : ShouldNotReachHere();
1799   }
1800 #else
1801   const FloatRegister arg1 = S1_tmp;
1802   const FloatRegister arg2 = S0_tos;
1803 
1804   switch (op) {
1805     case add: __ pop_f(arg1); __ add_float(S0_tos, arg1, arg2); break;
1806     case sub: __ pop_f(arg1); __ sub_float(S0_tos, arg1, arg2); break;
1807     case mul: __ pop_f(arg1); __ mul_float(S0_tos, arg1, arg2); break;
1808     case div: __ pop_f(arg1); __ div_float(S0_tos, arg1, arg2); break;
1809     case rem:
1810 #ifndef __ABI_HARD__
1811       __ pop_f(arg1);
1812       __ fmrs(R0, arg1);
1813       __ fmrs(R1, arg2);
1814       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), R0, R1);
1815       __ fmsr(S0_tos, R0);
1816 #else
1817       __ mov_float(S1_reg, arg2);
1818       __ pop_f(S0);
1819       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1820 #endif // !__ABI_HARD__
1821       break;
1822     default : ShouldNotReachHere();
1823   }
1824 #endif // __SOFTFP__
1825 }
1826 
1827 
1828 void TemplateTable::dop2(Operation op) {
1829   transition(dtos, dtos);
1830 #ifdef __SOFTFP__
1831   __ mov(R2, R0_tos_lo);
1832   __ mov(R3, R1_tos_hi);
1833   __ pop_l(R0, R1);
1834   switch (op) {
1835     // __aeabi_XXXX_glibc: Imported code from glibc soft-fp bundle for calculation accuracy improvement. See CR 6757269.
1836     case add: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_dadd_glibc), R0, R1, R2, R3); break;
1837     case sub: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_dsub_glibc), R0, R1, R2, R3); break;
1838     case mul: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_dmul), R0, R1, R2, R3); break;
1839     case div: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_ddiv), R0, R1, R2, R3); break;
1840     case rem: __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), R0, R1, R2, R3); break;
1841     default : ShouldNotReachHere();
1842   }
1843 #else
1844   const FloatRegister arg1 = D1_tmp;
1845   const FloatRegister arg2 = D0_tos;
1846 
1847   switch (op) {
1848     case add: __ pop_d(arg1); __ add_double(D0_tos, arg1, arg2); break;
1849     case sub: __ pop_d(arg1); __ sub_double(D0_tos, arg1, arg2); break;
1850     case mul: __ pop_d(arg1); __ mul_double(D0_tos, arg1, arg2); break;
1851     case div: __ pop_d(arg1); __ div_double(D0_tos, arg1, arg2); break;
1852     case rem:
1853 #ifndef __ABI_HARD__
1854       __ pop_d(arg1);
1855       __ fmrrd(R0, R1, arg1);
1856       __ fmrrd(R2, R3, arg2);
1857       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), R0, R1, R2, R3);
1858       __ fmdrr(D0_tos, R0, R1);
1859 #else
1860       __ mov_double(D1, arg2);
1861       __ pop_d(D0);
1862       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1863 #endif // !__ABI_HARD__
1864       break;
1865     default : ShouldNotReachHere();
1866   }
1867 #endif // __SOFTFP__
1868 }
1869 
1870 
1871 void TemplateTable::ineg() {
1872   transition(itos, itos);
1873   __ neg_32(R0_tos, R0_tos);
1874 }
1875 
1876 
1877 void TemplateTable::lneg() {
1878   transition(ltos, ltos);
1879 #ifdef AARCH64
1880   __ neg(R0_tos, R0_tos);
1881 #else
1882   __ rsbs(R0_tos_lo, R0_tos_lo, 0);
1883   __ rsc (R1_tos_hi, R1_tos_hi, 0);
1884 #endif // AARCH64
1885 }
1886 
1887 
1888 void TemplateTable::fneg() {
1889   transition(ftos, ftos);
1890 #ifdef __SOFTFP__
1891   // Invert sign bit
1892   const int sign_mask = 0x80000000;
1893   __ eor(R0_tos, R0_tos, sign_mask);
1894 #else
1895   __ neg_float(S0_tos, S0_tos);
1896 #endif // __SOFTFP__
1897 }
1898 
1899 
1900 void TemplateTable::dneg() {
1901   transition(dtos, dtos);
1902 #ifdef __SOFTFP__
1903   // Invert sign bit in the high part of the double
1904   const int sign_mask_hi = 0x80000000;
1905   __ eor(R1_tos_hi, R1_tos_hi, sign_mask_hi);
1906 #else
1907   __ neg_double(D0_tos, D0_tos);
1908 #endif // __SOFTFP__
1909 }
1910 
1911 
1912 void TemplateTable::iinc() {
1913   transition(vtos, vtos);
1914   const Register Rconst = R2_tmp;
1915   const Register Rlocal_index = R1_tmp;
1916   const Register Rval = R0_tmp;
1917 
1918   __ ldrsb(Rconst, at_bcp(2));
1919   locals_index(Rlocal_index);
1920   Address local = load_iaddress(Rlocal_index, Rtemp);
1921   __ ldr_s32(Rval, local);
1922   __ add(Rval, Rval, Rconst);
1923   __ str_32(Rval, local);
1924 }
1925 
1926 
1927 void TemplateTable::wide_iinc() {
1928   transition(vtos, vtos);
1929   const Register Rconst = R2_tmp;
1930   const Register Rlocal_index = R1_tmp;
1931   const Register Rval = R0_tmp;
1932 
1933   // get constant in Rconst
1934   __ ldrsb(R2_tmp, at_bcp(4));
1935   __ ldrb(R3_tmp, at_bcp(5));
1936   __ orr(Rconst, R3_tmp, AsmOperand(R2_tmp, lsl, 8));
1937 
1938   locals_index_wide(Rlocal_index);
1939   Address local = load_iaddress(Rlocal_index, Rtemp);
1940   __ ldr_s32(Rval, local);
1941   __ add(Rval, Rval, Rconst);
1942   __ str_32(Rval, local);
1943 }
1944 
1945 
1946 void TemplateTable::convert() {
1947   // Checking
1948 #ifdef ASSERT
1949   { TosState tos_in  = ilgl;
1950     TosState tos_out = ilgl;
1951     switch (bytecode()) {
1952       case Bytecodes::_i2l: // fall through
1953       case Bytecodes::_i2f: // fall through
1954       case Bytecodes::_i2d: // fall through
1955       case Bytecodes::_i2b: // fall through
1956       case Bytecodes::_i2c: // fall through
1957       case Bytecodes::_i2s: tos_in = itos; break;
1958       case Bytecodes::_l2i: // fall through
1959       case Bytecodes::_l2f: // fall through
1960       case Bytecodes::_l2d: tos_in = ltos; break;
1961       case Bytecodes::_f2i: // fall through
1962       case Bytecodes::_f2l: // fall through
1963       case Bytecodes::_f2d: tos_in = ftos; break;
1964       case Bytecodes::_d2i: // fall through
1965       case Bytecodes::_d2l: // fall through
1966       case Bytecodes::_d2f: tos_in = dtos; break;
1967       default             : ShouldNotReachHere();
1968     }
1969     switch (bytecode()) {
1970       case Bytecodes::_l2i: // fall through
1971       case Bytecodes::_f2i: // fall through
1972       case Bytecodes::_d2i: // fall through
1973       case Bytecodes::_i2b: // fall through
1974       case Bytecodes::_i2c: // fall through
1975       case Bytecodes::_i2s: tos_out = itos; break;
1976       case Bytecodes::_i2l: // fall through
1977       case Bytecodes::_f2l: // fall through
1978       case Bytecodes::_d2l: tos_out = ltos; break;
1979       case Bytecodes::_i2f: // fall through
1980       case Bytecodes::_l2f: // fall through
1981       case Bytecodes::_d2f: tos_out = ftos; break;
1982       case Bytecodes::_i2d: // fall through
1983       case Bytecodes::_l2d: // fall through
1984       case Bytecodes::_f2d: tos_out = dtos; break;
1985       default             : ShouldNotReachHere();
1986     }
1987     transition(tos_in, tos_out);
1988   }
1989 #endif // ASSERT
1990 
1991   // Conversion
1992   switch (bytecode()) {
1993     case Bytecodes::_i2l:
1994 #ifdef AARCH64
1995       __ sign_extend(R0_tos, R0_tos, 32);
1996 #else
1997       __ mov(R1_tos_hi, AsmOperand(R0_tos, asr, BitsPerWord-1));
1998 #endif // AARCH64
1999       break;
2000 
2001     case Bytecodes::_i2f:
2002 #ifdef AARCH64
2003       __ scvtf_sw(S0_tos, R0_tos);
2004 #else
2005 #ifdef __SOFTFP__
2006       __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_i2f), R0_tos);
2007 #else
2008       __ fmsr(S0_tmp, R0_tos);
2009       __ fsitos(S0_tos, S0_tmp);
2010 #endif // __SOFTFP__
2011 #endif // AARCH64
2012       break;
2013 
2014     case Bytecodes::_i2d:
2015 #ifdef AARCH64
2016       __ scvtf_dw(D0_tos, R0_tos);
2017 #else
2018 #ifdef __SOFTFP__
2019       __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_i2d), R0_tos);
2020 #else
2021       __ fmsr(S0_tmp, R0_tos);
2022       __ fsitod(D0_tos, S0_tmp);
2023 #endif // __SOFTFP__
2024 #endif // AARCH64
2025       break;
2026 
2027     case Bytecodes::_i2b:
2028       __ sign_extend(R0_tos, R0_tos, 8);
2029       break;
2030 
2031     case Bytecodes::_i2c:
2032       __ zero_extend(R0_tos, R0_tos, 16);
2033       break;
2034 
2035     case Bytecodes::_i2s:
2036       __ sign_extend(R0_tos, R0_tos, 16);
2037       break;
2038 
2039     case Bytecodes::_l2i:
2040       /* nothing to do */
2041       break;
2042 
2043     case Bytecodes::_l2f:
2044 #ifdef AARCH64
2045       __ scvtf_sx(S0_tos, R0_tos);
2046 #else
2047       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2f), R0_tos_lo, R1_tos_hi);
2048 #if !defined(__SOFTFP__) && !defined(__ABI_HARD__)
2049       __ fmsr(S0_tos, R0);
2050 #endif // !__SOFTFP__ && !__ABI_HARD__
2051 #endif // AARCH64
2052       break;
2053 
2054     case Bytecodes::_l2d:
2055 #ifdef AARCH64
2056       __ scvtf_dx(D0_tos, R0_tos);
2057 #else
2058       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2d), R0_tos_lo, R1_tos_hi);
2059 #if !defined(__SOFTFP__) && !defined(__ABI_HARD__)
2060       __ fmdrr(D0_tos, R0, R1);
2061 #endif // !__SOFTFP__ && !__ABI_HARD__
2062 #endif // AARCH64
2063       break;
2064 
2065     case Bytecodes::_f2i:
2066 #ifdef AARCH64
2067       __ fcvtzs_ws(R0_tos, S0_tos);
2068 #else
2069 #ifndef __SOFTFP__
2070       __ ftosizs(S0_tos, S0_tos);
2071       __ fmrs(R0_tos, S0_tos);
2072 #else
2073       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), R0_tos);
2074 #endif // !__SOFTFP__
2075 #endif // AARCH64
2076       break;
2077 
2078     case Bytecodes::_f2l:
2079 #ifdef AARCH64
2080       __ fcvtzs_xs(R0_tos, S0_tos);
2081 #else
2082 #ifndef __SOFTFP__
2083       __ fmrs(R0_tos, S0_tos);
2084 #endif // !__SOFTFP__
2085       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), R0_tos);
2086 #endif // AARCH64
2087       break;
2088 
2089     case Bytecodes::_f2d:
2090 #ifdef __SOFTFP__
2091       __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_f2d), R0_tos);
2092 #else
2093       __ convert_f2d(D0_tos, S0_tos);
2094 #endif // __SOFTFP__
2095       break;
2096 
2097     case Bytecodes::_d2i:
2098 #ifdef AARCH64
2099       __ fcvtzs_wd(R0_tos, D0_tos);
2100 #else
2101 #ifndef __SOFTFP__
2102       __ ftosizd(Stemp, D0);
2103       __ fmrs(R0, Stemp);
2104 #else
2105       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), R0_tos_lo, R1_tos_hi);
2106 #endif // !__SOFTFP__
2107 #endif // AARCH64
2108       break;
2109 
2110     case Bytecodes::_d2l:
2111 #ifdef AARCH64
2112       __ fcvtzs_xd(R0_tos, D0_tos);
2113 #else
2114 #ifndef __SOFTFP__
2115       __ fmrrd(R0_tos_lo, R1_tos_hi, D0_tos);
2116 #endif // !__SOFTFP__
2117       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), R0_tos_lo, R1_tos_hi);
2118 #endif // AARCH64
2119       break;
2120 
2121     case Bytecodes::_d2f:
2122 #ifdef __SOFTFP__
2123       __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_d2f), R0_tos_lo, R1_tos_hi);
2124 #else
2125       __ convert_d2f(S0_tos, D0_tos);
2126 #endif // __SOFTFP__
2127       break;
2128 
2129     default:
2130       ShouldNotReachHere();
2131   }
2132 }
2133 
2134 
2135 void TemplateTable::lcmp() {
2136   transition(ltos, itos);
2137 #ifdef AARCH64
2138   const Register arg1 = R1_tmp;
2139   const Register arg2 = R0_tos;
2140 
2141   __ pop_l(arg1);
2142 
2143   __ cmp(arg1, arg2);
2144   __ cset(R0_tos, gt);               // 1 if '>', else 0
2145   __ csinv(R0_tos, R0_tos, ZR, ge);  // previous value if '>=', else -1
2146 #else
2147   const Register arg1_lo = R2_tmp;
2148   const Register arg1_hi = R3_tmp;
2149   const Register arg2_lo = R0_tos_lo;
2150   const Register arg2_hi = R1_tos_hi;
2151   const Register res = R4_tmp;
2152 
2153   __ pop_l(arg1_lo, arg1_hi);
2154 
2155   // long compare arg1 with arg2
2156   // result is -1/0/+1 if '<'/'='/'>'
2157   Label done;
2158 
2159   __ mov (res, 0);
2160   __ cmp (arg1_hi, arg2_hi);
2161   __ mvn (res, 0, lt);
2162   __ mov (res, 1, gt);
2163   __ b(done, ne);
2164   __ cmp (arg1_lo, arg2_lo);
2165   __ mvn (res, 0, lo);
2166   __ mov (res, 1, hi);
2167   __ bind(done);
2168   __ mov (R0_tos, res);
2169 #endif // AARCH64
2170 }
2171 
2172 
2173 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
2174   assert((unordered_result == 1) || (unordered_result == -1), "invalid unordered result");
2175 
2176 #ifdef AARCH64
2177   if (is_float) {
2178     transition(ftos, itos);
2179     __ pop_f(S1_tmp);
2180     __ fcmp_s(S1_tmp, S0_tos);
2181   } else {
2182     transition(dtos, itos);
2183     __ pop_d(D1_tmp);
2184     __ fcmp_d(D1_tmp, D0_tos);
2185   }
2186 
2187   if (unordered_result < 0) {
2188     __ cset(R0_tos, gt);               // 1 if '>', else 0
2189     __ csinv(R0_tos, R0_tos, ZR, ge);  // previous value if '>=', else -1
2190   } else {
2191     __ cset(R0_tos, hi);               // 1 if '>' or unordered, else 0
2192     __ csinv(R0_tos, R0_tos, ZR, pl);  // previous value if '>=' or unordered, else -1
2193   }
2194 
2195 #else
2196 
2197 #ifdef __SOFTFP__
2198 
2199   if (is_float) {
2200     transition(ftos, itos);
2201     const Register Rx = R0;
2202     const Register Ry = R1;
2203 
2204     __ mov(Ry, R0_tos);
2205     __ pop_i(Rx);
2206 
2207     if (unordered_result == 1) {
2208       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fcmpg), Rx, Ry);
2209     } else {
2210       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fcmpl), Rx, Ry);
2211     }
2212 
2213   } else {
2214 
2215     transition(dtos, itos);
2216     const Register Rx_lo = R0;
2217     const Register Rx_hi = R1;
2218     const Register Ry_lo = R2;
2219     const Register Ry_hi = R3;
2220 
2221     __ mov(Ry_lo, R0_tos_lo);
2222     __ mov(Ry_hi, R1_tos_hi);
2223     __ pop_l(Rx_lo, Rx_hi);
2224 
2225     if (unordered_result == 1) {
2226       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcmpg), Rx_lo, Rx_hi, Ry_lo, Ry_hi);
2227     } else {
2228       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcmpl), Rx_lo, Rx_hi, Ry_lo, Ry_hi);
2229     }
2230   }
2231 
2232 #else
2233 
2234   if (is_float) {
2235     transition(ftos, itos);
2236     __ pop_f(S1_tmp);
2237     __ fcmps(S1_tmp, S0_tos);
2238   } else {
2239     transition(dtos, itos);
2240     __ pop_d(D1_tmp);
2241     __ fcmpd(D1_tmp, D0_tos);
2242   }
2243 
2244   __ fmstat();
2245 
2246   // comparison result | flag N | flag Z | flag C | flag V
2247   // "<"               |   1    |   0    |   0    |   0
2248   // "=="              |   0    |   1    |   1    |   0
2249   // ">"               |   0    |   0    |   1    |   0
2250   // unordered         |   0    |   0    |   1    |   1
2251 
2252   if (unordered_result < 0) {
2253     __ mov(R0_tos, 1);           // result ==  1 if greater
2254     __ mvn(R0_tos, 0, lt);       // result == -1 if less or unordered (N!=V)
2255   } else {
2256     __ mov(R0_tos, 1);           // result ==  1 if greater or unordered
2257     __ mvn(R0_tos, 0, mi);       // result == -1 if less (N=1)
2258   }
2259   __ mov(R0_tos, 0, eq);         // result ==  0 if equ (Z=1)
2260 #endif // __SOFTFP__
2261 #endif // AARCH64
2262 }
2263 
2264 
2265 void TemplateTable::branch(bool is_jsr, bool is_wide) {
2266 
2267   const Register Rdisp = R0_tmp;
2268   const Register Rbumped_taken_count = R5_tmp;
2269 
2270   __ profile_taken_branch(R0_tmp, Rbumped_taken_count); // R0 holds updated MDP, Rbumped_taken_count holds bumped taken count
2271 
2272   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
2273                              InvocationCounter::counter_offset();
2274   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
2275                               InvocationCounter::counter_offset();
2276   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
2277 
2278   // Load up R0 with the branch displacement
2279   if (is_wide) {
2280     __ ldrsb(R0_tmp, at_bcp(1));
2281     __ ldrb(R1_tmp, at_bcp(2));
2282     __ ldrb(R2_tmp, at_bcp(3));
2283     __ ldrb(R3_tmp, at_bcp(4));
2284     __ orr(R0_tmp, R1_tmp, AsmOperand(R0_tmp, lsl, BitsPerByte));
2285     __ orr(R0_tmp, R2_tmp, AsmOperand(R0_tmp, lsl, BitsPerByte));
2286     __ orr(Rdisp, R3_tmp, AsmOperand(R0_tmp, lsl, BitsPerByte));
2287   } else {
2288     __ ldrsb(R0_tmp, at_bcp(1));
2289     __ ldrb(R1_tmp, at_bcp(2));
2290     __ orr(Rdisp, R1_tmp, AsmOperand(R0_tmp, lsl, BitsPerByte));
2291   }
2292 
2293   // Handle all the JSR stuff here, then exit.
2294   // It's much shorter and cleaner than intermingling with the
2295   // non-JSR normal-branch stuff occuring below.
2296   if (is_jsr) {
2297     // compute return address as bci in R1
2298     const Register Rret_addr = R1_tmp;
2299     assert_different_registers(Rdisp, Rret_addr, Rtemp);
2300 
2301     __ ldr(Rtemp, Address(Rmethod, Method::const_offset()));
2302     __ sub(Rret_addr, Rbcp, - (is_wide ? 5 : 3) + in_bytes(ConstMethod::codes_offset()));
2303     __ sub(Rret_addr, Rret_addr, Rtemp);
2304 
2305     // Load the next target bytecode into R3_bytecode and advance Rbcp
2306 #ifdef AARCH64
2307     __ add(Rbcp, Rbcp, Rdisp);
2308     __ ldrb(R3_bytecode, Address(Rbcp));
2309 #else
2310     __ ldrb(R3_bytecode, Address(Rbcp, Rdisp, lsl, 0, pre_indexed));
2311 #endif // AARCH64
2312 
2313     // Push return address
2314     __ push_i(Rret_addr);
2315     // jsr returns vtos
2316     __ dispatch_only_noverify(vtos);
2317     return;
2318   }
2319 
2320   // Normal (non-jsr) branch handling
2321 
2322   // Adjust the bcp by the displacement in Rdisp and load next bytecode.
2323 #ifdef AARCH64
2324   __ add(Rbcp, Rbcp, Rdisp);
2325   __ ldrb(R3_bytecode, Address(Rbcp));
2326 #else
2327   __ ldrb(R3_bytecode, Address(Rbcp, Rdisp, lsl, 0, pre_indexed));
2328 #endif // AARCH64
2329 
2330   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
2331   Label backedge_counter_overflow;
2332   Label profile_method;
2333   Label dispatch;
2334 
2335   if (UseLoopCounter) {
2336     // increment backedge counter for backward branches
2337     // Rdisp (R0): target offset
2338 
2339     const Register Rcnt = R2_tmp;
2340     const Register Rcounters = R1_tmp;
2341 
2342     // count only if backward branch
2343 #ifdef AARCH64
2344     __ tbz(Rdisp, (BitsPerWord - 1), dispatch); // TODO-AARCH64: check performance of this variant on 32-bit ARM
2345 #else
2346     __ tst(Rdisp, Rdisp);
2347     __ b(dispatch, pl);
2348 #endif // AARCH64
2349 
2350     if (TieredCompilation) {
2351       Label no_mdo;
2352       int increment = InvocationCounter::count_increment;
2353       if (ProfileInterpreter) {
2354         // Are we profiling?
2355         __ ldr(Rtemp, Address(Rmethod, Method::method_data_offset()));
2356         __ cbz(Rtemp, no_mdo);
2357         // Increment the MDO backedge counter
2358         const Address mdo_backedge_counter(Rtemp, in_bytes(MethodData::backedge_counter_offset()) +
2359                                                   in_bytes(InvocationCounter::counter_offset()));
2360         const Address mask(Rtemp, in_bytes(MethodData::backedge_mask_offset()));
2361         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
2362                                    Rcnt, R4_tmp, eq, &backedge_counter_overflow);
2363         __ b(dispatch);
2364       }
2365       __ bind(no_mdo);
2366       // Increment backedge counter in MethodCounters*
2367       // Note Rbumped_taken_count is a callee saved registers for ARM32, but caller saved for ARM64
2368       __ get_method_counters(Rmethod, Rcounters, dispatch, true /*saveRegs*/,
2369                              Rdisp, R3_bytecode,
2370                              AARCH64_ONLY(Rbumped_taken_count) NOT_AARCH64(noreg));
2371       const Address mask(Rcounters, in_bytes(MethodCounters::backedge_mask_offset()));
2372       __ increment_mask_and_jump(Address(Rcounters, be_offset), increment, mask,
2373                                  Rcnt, R4_tmp, eq, &backedge_counter_overflow);
2374     } else {
2375       // Increment backedge counter in MethodCounters*
2376       __ get_method_counters(Rmethod, Rcounters, dispatch, true /*saveRegs*/,
2377                              Rdisp, R3_bytecode,
2378                              AARCH64_ONLY(Rbumped_taken_count) NOT_AARCH64(noreg));
2379       __ ldr_u32(Rtemp, Address(Rcounters, be_offset));           // load backedge counter
2380       __ add(Rtemp, Rtemp, InvocationCounter::count_increment);   // increment counter
2381       __ str_32(Rtemp, Address(Rcounters, be_offset));            // store counter
2382 
2383       __ ldr_u32(Rcnt, Address(Rcounters, inv_offset));           // load invocation counter
2384 #ifdef AARCH64
2385       __ andr(Rcnt, Rcnt, (unsigned int)InvocationCounter::count_mask_value);  // and the status bits
2386 #else
2387       __ bic(Rcnt, Rcnt, ~InvocationCounter::count_mask_value);  // and the status bits
2388 #endif // AARCH64
2389       __ add(Rcnt, Rcnt, Rtemp);                                 // add both counters
2390 
2391       if (ProfileInterpreter) {
2392         // Test to see if we should create a method data oop
2393         const Address profile_limit(Rcounters, in_bytes(MethodCounters::interpreter_profile_limit_offset()));
2394         __ ldr_s32(Rtemp, profile_limit);
2395         __ cmp_32(Rcnt, Rtemp);
2396         __ b(dispatch, lt);
2397 
2398         // if no method data exists, go to profile method
2399         __ test_method_data_pointer(R4_tmp, profile_method);
2400 
2401         if (UseOnStackReplacement) {
2402           // check for overflow against Rbumped_taken_count, which is the MDO taken count
2403           const Address backward_branch_limit(Rcounters, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()));
2404           __ ldr_s32(Rtemp, backward_branch_limit);
2405           __ cmp(Rbumped_taken_count, Rtemp);
2406           __ b(dispatch, lo);
2407 
2408           // When ProfileInterpreter is on, the backedge_count comes from the
2409           // MethodData*, which value does not get reset on the call to
2410           // frequency_counter_overflow().  To avoid excessive calls to the overflow
2411           // routine while the method is being compiled, add a second test to make
2412           // sure the overflow function is called only once every overflow_frequency.
2413           const int overflow_frequency = 1024;
2414 
2415 #ifdef AARCH64
2416           __ tst(Rbumped_taken_count, (unsigned)(overflow_frequency-1));
2417 #else
2418           // was '__ andrs(...,overflow_frequency-1)', testing if lowest 10 bits are 0
2419           assert(overflow_frequency == (1 << 10),"shift by 22 not correct for expected frequency");
2420           __ movs(Rbumped_taken_count, AsmOperand(Rbumped_taken_count, lsl, 22));
2421 #endif // AARCH64
2422 
2423           __ b(backedge_counter_overflow, eq);
2424         }
2425       } else {
2426         if (UseOnStackReplacement) {
2427           // check for overflow against Rcnt, which is the sum of the counters
2428           const Address backward_branch_limit(Rcounters, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()));
2429           __ ldr_s32(Rtemp, backward_branch_limit);
2430           __ cmp_32(Rcnt, Rtemp);
2431           __ b(backedge_counter_overflow, hs);
2432 
2433         }
2434       }
2435     }
2436     __ bind(dispatch);
2437   }
2438 
2439   if (!UseOnStackReplacement) {
2440     __ bind(backedge_counter_overflow);
2441   }
2442 
2443   // continue with the bytecode @ target
2444   __ dispatch_only(vtos);
2445 
2446   if (UseLoopCounter) {
2447     if (ProfileInterpreter) {
2448       // Out-of-line code to allocate method data oop.
2449       __ bind(profile_method);
2450 
2451       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
2452       __ set_method_data_pointer_for_bcp();
2453       // reload next bytecode
2454       __ ldrb(R3_bytecode, Address(Rbcp));
2455       __ b(dispatch);
2456     }
2457 
2458     if (UseOnStackReplacement) {
2459       // invocation counter overflow
2460       __ bind(backedge_counter_overflow);
2461 
2462       __ sub(R1, Rbcp, Rdisp);                   // branch bcp
2463       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R1);
2464 
2465       // R0: osr nmethod (osr ok) or NULL (osr not possible)
2466       const Register Rnmethod = R0;
2467 
2468       __ ldrb(R3_bytecode, Address(Rbcp));       // reload next bytecode
2469 
2470       __ cbz(Rnmethod, dispatch);                // test result, no osr if null
2471 
2472       // nmethod may have been invalidated (VM may block upon call_VM return)
2473       __ ldrb(R1_tmp, Address(Rnmethod, nmethod::state_offset()));
2474       __ cmp(R1_tmp, nmethod::in_use);
2475       __ b(dispatch, ne);
2476 
2477       // We have the address of an on stack replacement routine in Rnmethod,
2478       // We need to prepare to execute the OSR method. First we must
2479       // migrate the locals and monitors off of the stack.
2480 
2481       __ mov(Rtmp_save0, Rnmethod);                      // save the nmethod
2482 
2483       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
2484 
2485       // R0 is OSR buffer
2486 
2487       __ ldr(R1_tmp, Address(Rtmp_save0, nmethod::osr_entry_point_offset()));
2488       __ ldr(Rtemp, Address(FP, frame::interpreter_frame_sender_sp_offset * wordSize));
2489 
2490 #ifdef AARCH64
2491       __ ldp(FP, LR, Address(FP));
2492       __ mov(SP, Rtemp);
2493 #else
2494       __ ldmia(FP, RegisterSet(FP) | RegisterSet(LR));
2495       __ bic(SP, Rtemp, StackAlignmentInBytes - 1);     // Remove frame and align stack
2496 #endif // AARCH64
2497 
2498       __ jump(R1_tmp);
2499     }
2500   }
2501 }
2502 
2503 
2504 void TemplateTable::if_0cmp(Condition cc) {
2505   transition(itos, vtos);
2506   // assume branch is more often taken than not (loops use backward branches)
2507   Label not_taken;
2508 #ifdef AARCH64
2509   if (cc == equal) {
2510     __ cbnz_w(R0_tos, not_taken);
2511   } else if (cc == not_equal) {
2512     __ cbz_w(R0_tos, not_taken);
2513   } else {
2514     __ cmp_32(R0_tos, 0);
2515     __ b(not_taken, convNegCond(cc));
2516   }
2517 #else
2518   __ cmp_32(R0_tos, 0);
2519   __ b(not_taken, convNegCond(cc));
2520 #endif // AARCH64
2521   branch(false, false);
2522   __ bind(not_taken);
2523   __ profile_not_taken_branch(R0_tmp);
2524 }
2525 
2526 
2527 void TemplateTable::if_icmp(Condition cc) {
2528   transition(itos, vtos);
2529   // assume branch is more often taken than not (loops use backward branches)
2530   Label not_taken;
2531   __ pop_i(R1_tmp);
2532   __ cmp_32(R1_tmp, R0_tos);
2533   __ b(not_taken, convNegCond(cc));
2534   branch(false, false);
2535   __ bind(not_taken);
2536   __ profile_not_taken_branch(R0_tmp);
2537 }
2538 
2539 
2540 void TemplateTable::if_nullcmp(Condition cc) {
2541   transition(atos, vtos);
2542   assert(cc == equal || cc == not_equal, "invalid condition");
2543 
2544   // assume branch is more often taken than not (loops use backward branches)
2545   Label not_taken;
2546   if (cc == equal) {
2547     __ cbnz(R0_tos, not_taken);
2548   } else {
2549     __ cbz(R0_tos, not_taken);
2550   }
2551   branch(false, false);
2552   __ bind(not_taken);
2553   __ profile_not_taken_branch(R0_tmp);
2554 }
2555 
2556 
2557 void TemplateTable::if_acmp(Condition cc) {
2558   transition(atos, vtos);
2559   // assume branch is more often taken than not (loops use backward branches)
2560   Label not_taken;
2561   __ pop_ptr(R1_tmp);
2562   __ cmp(R1_tmp, R0_tos);
2563   __ b(not_taken, convNegCond(cc));
2564   branch(false, false);
2565   __ bind(not_taken);
2566   __ profile_not_taken_branch(R0_tmp);
2567 }
2568 
2569 
2570 void TemplateTable::ret() {
2571   transition(vtos, vtos);
2572   const Register Rlocal_index = R1_tmp;
2573   const Register Rret_bci = Rtmp_save0; // R4/R19
2574 
2575   locals_index(Rlocal_index);
2576   Address local = load_iaddress(Rlocal_index, Rtemp);
2577   __ ldr_s32(Rret_bci, local);          // get return bci, compute return bcp
2578   __ profile_ret(Rtmp_save1, Rret_bci);
2579   __ ldr(Rtemp, Address(Rmethod, Method::const_offset()));
2580   __ add(Rtemp, Rtemp, in_bytes(ConstMethod::codes_offset()));
2581   __ add(Rbcp, Rtemp, Rret_bci);
2582   __ dispatch_next(vtos);
2583 }
2584 
2585 
2586 void TemplateTable::wide_ret() {
2587   transition(vtos, vtos);
2588   const Register Rlocal_index = R1_tmp;
2589   const Register Rret_bci = Rtmp_save0; // R4/R19
2590 
2591   locals_index_wide(Rlocal_index);
2592   Address local = load_iaddress(Rlocal_index, Rtemp);
2593   __ ldr_s32(Rret_bci, local);               // get return bci, compute return bcp
2594   __ profile_ret(Rtmp_save1, Rret_bci);
2595   __ ldr(Rtemp, Address(Rmethod, Method::const_offset()));
2596   __ add(Rtemp, Rtemp, in_bytes(ConstMethod::codes_offset()));
2597   __ add(Rbcp, Rtemp, Rret_bci);
2598   __ dispatch_next(vtos);
2599 }
2600 
2601 
2602 void TemplateTable::tableswitch() {
2603   transition(itos, vtos);
2604 
2605   const Register Rindex  = R0_tos;
2606 #ifndef AARCH64
2607   const Register Rtemp2  = R1_tmp;
2608 #endif // !AARCH64
2609   const Register Rabcp   = R2_tmp;  // aligned bcp
2610   const Register Rlow    = R3_tmp;
2611   const Register Rhigh   = R4_tmp;
2612   const Register Roffset = R5_tmp;
2613 
2614   // align bcp
2615   __ add(Rtemp, Rbcp, 1 + (2*BytesPerInt-1));
2616   __ align_reg(Rabcp, Rtemp, BytesPerInt);
2617 
2618   // load lo & hi
2619 #ifdef AARCH64
2620   __ ldp_w(Rlow, Rhigh, Address(Rabcp, 2*BytesPerInt, post_indexed));
2621 #else
2622   __ ldmia(Rabcp, RegisterSet(Rlow) | RegisterSet(Rhigh), writeback);
2623 #endif // AARCH64
2624   __ byteswap_u32(Rlow, Rtemp, Rtemp2);
2625   __ byteswap_u32(Rhigh, Rtemp, Rtemp2);
2626 
2627   // compare index with high bound
2628   __ cmp_32(Rhigh, Rindex);
2629 
2630 #ifdef AARCH64
2631   Label default_case, do_dispatch;
2632   __ ccmp_w(Rindex, Rlow, Assembler::flags_for_condition(lt), ge);
2633   __ b(default_case, lt);
2634 
2635   __ sub_w(Rindex, Rindex, Rlow);
2636   __ ldr_s32(Roffset, Address(Rabcp, Rindex, ex_sxtw, LogBytesPerInt));
2637   if(ProfileInterpreter) {
2638     __ sxtw(Rindex, Rindex);
2639     __ profile_switch_case(Rabcp, Rindex, Rtemp2, R0_tmp);
2640   }
2641   __ b(do_dispatch);
2642 
2643   __ bind(default_case);
2644   __ ldr_s32(Roffset, Address(Rabcp, -3 * BytesPerInt));
2645   if(ProfileInterpreter) {
2646     __ profile_switch_default(R0_tmp);
2647   }
2648 
2649   __ bind(do_dispatch);
2650 #else
2651 
2652   // if Rindex <= Rhigh then calculate index in table (Rindex - Rlow)
2653   __ subs(Rindex, Rindex, Rlow, ge);
2654 
2655   // if Rindex <= Rhigh and (Rindex - Rlow) >= 0
2656   // ("ge" status accumulated from cmp and subs instructions) then load
2657   // offset from table, otherwise load offset for default case
2658 
2659   if(ProfileInterpreter) {
2660     Label default_case, continue_execution;
2661 
2662     __ b(default_case, lt);
2663     __ ldr(Roffset, Address(Rabcp, Rindex, lsl, LogBytesPerInt));
2664     __ profile_switch_case(Rabcp, Rindex, Rtemp2, R0_tmp);
2665     __ b(continue_execution);
2666 
2667     __ bind(default_case);
2668     __ profile_switch_default(R0_tmp);
2669     __ ldr(Roffset, Address(Rabcp, -3 * BytesPerInt));
2670 
2671     __ bind(continue_execution);
2672   } else {
2673     __ ldr(Roffset, Address(Rabcp, -3 * BytesPerInt), lt);
2674     __ ldr(Roffset, Address(Rabcp, Rindex, lsl, LogBytesPerInt), ge);
2675   }
2676 #endif // AARCH64
2677 
2678   __ byteswap_u32(Roffset, Rtemp, Rtemp2);
2679 
2680   // load the next bytecode to R3_bytecode and advance Rbcp
2681 #ifdef AARCH64
2682   __ add(Rbcp, Rbcp, Roffset, ex_sxtw);
2683   __ ldrb(R3_bytecode, Address(Rbcp));
2684 #else
2685   __ ldrb(R3_bytecode, Address(Rbcp, Roffset, lsl, 0, pre_indexed));
2686 #endif // AARCH64
2687   __ dispatch_only(vtos);
2688 
2689 }
2690 
2691 
2692 void TemplateTable::lookupswitch() {
2693   transition(itos, itos);
2694   __ stop("lookupswitch bytecode should have been rewritten");
2695 }
2696 
2697 
2698 void TemplateTable::fast_linearswitch() {
2699   transition(itos, vtos);
2700   Label loop, found, default_case, continue_execution;
2701 
2702   const Register Rkey     = R0_tos;
2703   const Register Rabcp    = R2_tmp;  // aligned bcp
2704   const Register Rdefault = R3_tmp;
2705   const Register Rcount   = R4_tmp;
2706   const Register Roffset  = R5_tmp;
2707 
2708   // bswap Rkey, so we can avoid bswapping the table entries
2709   __ byteswap_u32(Rkey, R1_tmp, Rtemp);
2710 
2711   // align bcp
2712   __ add(Rtemp, Rbcp, 1 + (BytesPerInt-1));
2713   __ align_reg(Rabcp, Rtemp, BytesPerInt);
2714 
2715   // load default & counter
2716 #ifdef AARCH64
2717   __ ldp_w(Rdefault, Rcount, Address(Rabcp, 2*BytesPerInt, post_indexed));
2718 #else
2719   __ ldmia(Rabcp, RegisterSet(Rdefault) | RegisterSet(Rcount), writeback);
2720 #endif // AARCH64
2721   __ byteswap_u32(Rcount, R1_tmp, Rtemp);
2722 
2723 #ifdef AARCH64
2724   __ cbz_w(Rcount, default_case);
2725 #else
2726   __ cmp_32(Rcount, 0);
2727   __ ldr(Rtemp, Address(Rabcp, 2*BytesPerInt, post_indexed), ne);
2728   __ b(default_case, eq);
2729 #endif // AARCH64
2730 
2731   // table search
2732   __ bind(loop);
2733 #ifdef AARCH64
2734   __ ldr_s32(Rtemp, Address(Rabcp, 2*BytesPerInt, post_indexed));
2735 #endif // AARCH64
2736   __ cmp_32(Rtemp, Rkey);
2737   __ b(found, eq);
2738   __ subs(Rcount, Rcount, 1);
2739 #ifndef AARCH64
2740   __ ldr(Rtemp, Address(Rabcp, 2*BytesPerInt, post_indexed), ne);
2741 #endif // !AARCH64
2742   __ b(loop, ne);
2743 
2744   // default case
2745   __ bind(default_case);
2746   __ profile_switch_default(R0_tmp);
2747   __ mov(Roffset, Rdefault);
2748   __ b(continue_execution);
2749 
2750   // entry found -> get offset
2751   __ bind(found);
2752   // Rabcp is already incremented and points to the next entry
2753   __ ldr_s32(Roffset, Address(Rabcp, -BytesPerInt));
2754   if (ProfileInterpreter) {
2755     // Calculate index of the selected case.
2756     assert_different_registers(Roffset, Rcount, Rtemp, R0_tmp, R1_tmp, R2_tmp);
2757 
2758     // align bcp
2759     __ add(Rtemp, Rbcp, 1 + (BytesPerInt-1));
2760     __ align_reg(R2_tmp, Rtemp, BytesPerInt);
2761 
2762     // load number of cases
2763     __ ldr_u32(R2_tmp, Address(R2_tmp, BytesPerInt));
2764     __ byteswap_u32(R2_tmp, R1_tmp, Rtemp);
2765 
2766     // Selected index = <number of cases> - <current loop count>
2767     __ sub(R1_tmp, R2_tmp, Rcount);
2768     __ profile_switch_case(R0_tmp, R1_tmp, Rtemp, R1_tmp);
2769   }
2770 
2771   // continue execution
2772   __ bind(continue_execution);
2773   __ byteswap_u32(Roffset, R1_tmp, Rtemp);
2774 
2775   // load the next bytecode to R3_bytecode and advance Rbcp
2776 #ifdef AARCH64
2777   __ add(Rbcp, Rbcp, Roffset, ex_sxtw);
2778   __ ldrb(R3_bytecode, Address(Rbcp));
2779 #else
2780   __ ldrb(R3_bytecode, Address(Rbcp, Roffset, lsl, 0, pre_indexed));
2781 #endif // AARCH64
2782   __ dispatch_only(vtos);
2783 }
2784 
2785 
2786 void TemplateTable::fast_binaryswitch() {
2787   transition(itos, vtos);
2788   // Implementation using the following core algorithm:
2789   //
2790   // int binary_search(int key, LookupswitchPair* array, int n) {
2791   //   // Binary search according to "Methodik des Programmierens" by
2792   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2793   //   int i = 0;
2794   //   int j = n;
2795   //   while (i+1 < j) {
2796   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2797   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2798   //     // where a stands for the array and assuming that the (inexisting)
2799   //     // element a[n] is infinitely big.
2800   //     int h = (i + j) >> 1;
2801   //     // i < h < j
2802   //     if (key < array[h].fast_match()) {
2803   //       j = h;
2804   //     } else {
2805   //       i = h;
2806   //     }
2807   //   }
2808   //   // R: a[i] <= key < a[i+1] or Q
2809   //   // (i.e., if key is within array, i is the correct index)
2810   //   return i;
2811   // }
2812 
2813   // register allocation
2814   const Register key    = R0_tos;                // already set (tosca)
2815   const Register array  = R1_tmp;
2816   const Register i      = R2_tmp;
2817   const Register j      = R3_tmp;
2818   const Register h      = R4_tmp;
2819   const Register val    = R5_tmp;
2820   const Register temp1  = Rtemp;
2821   const Register temp2  = LR_tmp;
2822   const Register offset = R3_tmp;
2823 
2824   // set 'array' = aligned bcp + 2 ints
2825   __ add(temp1, Rbcp, 1 + (BytesPerInt-1) + 2*BytesPerInt);
2826   __ align_reg(array, temp1, BytesPerInt);
2827 
2828   // initialize i & j
2829   __ mov(i, 0);                                  // i = 0;
2830   __ ldr_s32(j, Address(array, -BytesPerInt));   // j = length(array);
2831   // Convert j into native byteordering
2832   __ byteswap_u32(j, temp1, temp2);
2833 
2834   // and start
2835   Label entry;
2836   __ b(entry);
2837 
2838   // binary search loop
2839   { Label loop;
2840     __ bind(loop);
2841     // int h = (i + j) >> 1;
2842     __ add(h, i, j);                             // h = i + j;
2843     __ logical_shift_right(h, h, 1);             // h = (i + j) >> 1;
2844     // if (key < array[h].fast_match()) {
2845     //   j = h;
2846     // } else {
2847     //   i = h;
2848     // }
2849 #ifdef AARCH64
2850     __ add(temp1, array, AsmOperand(h, lsl, 1+LogBytesPerInt));
2851     __ ldr_s32(val, Address(temp1));
2852 #else
2853     __ ldr_s32(val, Address(array, h, lsl, 1+LogBytesPerInt));
2854 #endif // AARCH64
2855     // Convert array[h].match to native byte-ordering before compare
2856     __ byteswap_u32(val, temp1, temp2);
2857     __ cmp_32(key, val);
2858     __ mov(j, h, lt);   // j = h if (key <  array[h].fast_match())
2859     __ mov(i, h, ge);   // i = h if (key >= array[h].fast_match())
2860     // while (i+1 < j)
2861     __ bind(entry);
2862     __ add(temp1, i, 1);                             // i+1
2863     __ cmp(temp1, j);                                // i+1 < j
2864     __ b(loop, lt);
2865   }
2866 
2867   // end of binary search, result index is i (must check again!)
2868   Label default_case;
2869   // Convert array[i].match to native byte-ordering before compare
2870 #ifdef AARCH64
2871   __ add(temp1, array, AsmOperand(i, lsl, 1+LogBytesPerInt));
2872   __ ldr_s32(val, Address(temp1));
2873 #else
2874   __ ldr_s32(val, Address(array, i, lsl, 1+LogBytesPerInt));
2875 #endif // AARCH64
2876   __ byteswap_u32(val, temp1, temp2);
2877   __ cmp_32(key, val);
2878   __ b(default_case, ne);
2879 
2880   // entry found
2881   __ add(temp1, array, AsmOperand(i, lsl, 1+LogBytesPerInt));
2882   __ ldr_s32(offset, Address(temp1, 1*BytesPerInt));
2883   __ profile_switch_case(R0, i, R1, i);
2884   __ byteswap_u32(offset, temp1, temp2);
2885 #ifdef AARCH64
2886   __ add(Rbcp, Rbcp, offset, ex_sxtw);
2887   __ ldrb(R3_bytecode, Address(Rbcp));
2888 #else
2889   __ ldrb(R3_bytecode, Address(Rbcp, offset, lsl, 0, pre_indexed));
2890 #endif // AARCH64
2891   __ dispatch_only(vtos);
2892 
2893   // default case
2894   __ bind(default_case);
2895   __ profile_switch_default(R0);
2896   __ ldr_s32(offset, Address(array, -2*BytesPerInt));
2897   __ byteswap_u32(offset, temp1, temp2);
2898 #ifdef AARCH64
2899   __ add(Rbcp, Rbcp, offset, ex_sxtw);
2900   __ ldrb(R3_bytecode, Address(Rbcp));
2901 #else
2902   __ ldrb(R3_bytecode, Address(Rbcp, offset, lsl, 0, pre_indexed));
2903 #endif // AARCH64
2904   __ dispatch_only(vtos);
2905 }
2906 
2907 
2908 void TemplateTable::_return(TosState state) {
2909   transition(state, state);
2910   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
2911 
2912   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2913     Label skip_register_finalizer;
2914     assert(state == vtos, "only valid state");
2915     __ ldr(R1, aaddress(0));
2916     __ load_klass(Rtemp, R1);
2917     __ ldr_u32(Rtemp, Address(Rtemp, Klass::access_flags_offset()));
2918     __ tbz(Rtemp, exact_log2(JVM_ACC_HAS_FINALIZER), skip_register_finalizer);
2919 
2920     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), R1);
2921 
2922     __ bind(skip_register_finalizer);
2923   }
2924 
2925   // Narrow result if state is itos but result type is smaller.
2926   // Need to narrow in the return bytecode rather than in generate_return_entry
2927   // since compiled code callers expect the result to already be narrowed.
2928   if (state == itos) {
2929     __ narrow(R0_tos);
2930   }
2931   __ remove_activation(state, LR);
2932 
2933   __ interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
2934 
2935 #ifndef AARCH64
2936   // According to interpreter calling conventions, result is returned in R0/R1,
2937   // so ftos (S0) and dtos (D0) are moved to R0/R1.
2938   // This conversion should be done after remove_activation, as it uses
2939   // push(state) & pop(state) to preserve return value.
2940   __ convert_tos_to_retval(state);
2941 #endif // !AARCH64
2942 
2943   __ ret();
2944 
2945   __ nop(); // to avoid filling CPU pipeline with invalid instructions
2946   __ nop();
2947 }
2948 
2949 
2950 // ----------------------------------------------------------------------------
2951 // Volatile variables demand their effects be made known to all CPU's in
2952 // order.  Store buffers on most chips allow reads & writes to reorder; the
2953 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
2954 // memory barrier (i.e., it's not sufficient that the interpreter does not
2955 // reorder volatile references, the hardware also must not reorder them).
2956 //
2957 // According to the new Java Memory Model (JMM):
2958 // (1) All volatiles are serialized wrt to each other.
2959 // ALSO reads & writes act as aquire & release, so:
2960 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
2961 // the read float up to before the read.  It's OK for non-volatile memory refs
2962 // that happen before the volatile read to float down below it.
2963 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
2964 // that happen BEFORE the write float down to after the write.  It's OK for
2965 // non-volatile memory refs that happen after the volatile write to float up
2966 // before it.
2967 //
2968 // We only put in barriers around volatile refs (they are expensive), not
2969 // _between_ memory refs (that would require us to track the flavor of the
2970 // previous memory refs).  Requirements (2) and (3) require some barriers
2971 // before volatile stores and after volatile loads.  These nearly cover
2972 // requirement (1) but miss the volatile-store-volatile-load case.  This final
2973 // case is placed after volatile-stores although it could just as well go
2974 // before volatile-loads.
2975 // TODO-AARCH64: consider removing extra unused parameters
2976 void TemplateTable::volatile_barrier(MacroAssembler::Membar_mask_bits order_constraint,
2977                                      Register tmp,
2978                                      bool preserve_flags,
2979                                      Register load_tgt) {
2980 #ifdef AARCH64
2981   __ membar(order_constraint);
2982 #else
2983   __ membar(order_constraint, tmp, preserve_flags, load_tgt);
2984 #endif
2985 }
2986 
2987 // Blows all volatile registers: R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR.
2988 void TemplateTable::resolve_cache_and_index(int byte_no,
2989                                             Register Rcache,
2990                                             Register Rindex,
2991                                             size_t index_size) {
2992   assert_different_registers(Rcache, Rindex, Rtemp);
2993 
2994   Label resolved;
2995   Bytecodes::Code code = bytecode();
2996   switch (code) {
2997   case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2998   case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2999   }
3000 
3001   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
3002   __ get_cache_and_index_and_bytecode_at_bcp(Rcache, Rindex, Rtemp, byte_no, 1, index_size);
3003   __ cmp(Rtemp, code);  // have we resolved this bytecode?
3004   __ b(resolved, eq);
3005 
3006   // resolve first time through
3007   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
3008   __ mov(R1, code);
3009   __ call_VM(noreg, entry, R1);
3010   // Update registers with resolved info
3011   __ get_cache_and_index_at_bcp(Rcache, Rindex, 1, index_size);
3012   __ bind(resolved);
3013 }
3014 
3015 
3016 // The Rcache and Rindex registers must be set before call
3017 void TemplateTable::load_field_cp_cache_entry(Register Rcache,
3018                                               Register Rindex,
3019                                               Register Roffset,
3020                                               Register Rflags,
3021                                               Register Robj,
3022                                               bool is_static = false) {
3023 
3024   assert_different_registers(Rcache, Rindex, Rtemp);
3025   assert_different_registers(Roffset, Rflags, Robj, Rtemp);
3026 
3027   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3028 
3029   __ add(Rtemp, Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord));
3030 
3031   // Field offset
3032   __ ldr(Roffset, Address(Rtemp,
3033            cp_base_offset + ConstantPoolCacheEntry::f2_offset()));
3034 
3035   // Flags
3036   __ ldr_u32(Rflags, Address(Rtemp,
3037            cp_base_offset + ConstantPoolCacheEntry::flags_offset()));
3038 
3039   if (is_static) {
3040     __ ldr(Robj, Address(Rtemp,
3041              cp_base_offset + ConstantPoolCacheEntry::f1_offset()));
3042     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
3043     __ ldr(Robj, Address(Robj, mirror_offset));
3044     __ resolve_oop_handle(Robj);
3045   }
3046 }
3047 
3048 
3049 // Blows all volatile registers: R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR.
3050 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
3051                                                Register method,
3052                                                Register itable_index,
3053                                                Register flags,
3054                                                bool is_invokevirtual,
3055                                                bool is_invokevfinal/*unused*/,
3056                                                bool is_invokedynamic) {
3057   // setup registers
3058   const Register cache = R2_tmp;
3059   const Register index = R3_tmp;
3060   const Register temp_reg = Rtemp;
3061   assert_different_registers(cache, index, temp_reg);
3062   assert_different_registers(method, itable_index, temp_reg);
3063 
3064   // determine constant pool cache field offsets
3065   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
3066   const int method_offset = in_bytes(
3067     ConstantPoolCache::base_offset() +
3068       ((byte_no == f2_byte)
3069        ? ConstantPoolCacheEntry::f2_offset()
3070        : ConstantPoolCacheEntry::f1_offset()
3071       )
3072     );
3073   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
3074                                     ConstantPoolCacheEntry::flags_offset());
3075   // access constant pool cache fields
3076   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
3077                                     ConstantPoolCacheEntry::f2_offset());
3078 
3079   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
3080   resolve_cache_and_index(byte_no, cache, index, index_size);
3081     __ add(temp_reg, cache, AsmOperand(index, lsl, LogBytesPerWord));
3082     __ ldr(method, Address(temp_reg, method_offset));
3083 
3084   if (itable_index != noreg) {
3085     __ ldr(itable_index, Address(temp_reg, index_offset));
3086   }
3087   __ ldr_u32(flags, Address(temp_reg, flags_offset));
3088 }
3089 
3090 
3091 // The registers cache and index expected to be set before call, and should not be Rtemp.
3092 // Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR,
3093 // except cache and index registers which are preserved.
3094 void TemplateTable::jvmti_post_field_access(Register Rcache,
3095                                             Register Rindex,
3096                                             bool is_static,
3097                                             bool has_tos) {
3098   assert_different_registers(Rcache, Rindex, Rtemp);
3099 
3100   if (__ can_post_field_access()) {
3101     // Check to see if a field access watch has been set before we take
3102     // the time to call into the VM.
3103 
3104     Label Lcontinue;
3105 
3106     __ ldr_global_s32(Rtemp, (address)JvmtiExport::get_field_access_count_addr());
3107     __ cbz(Rtemp, Lcontinue);
3108 
3109     // cache entry pointer
3110     __ add(R2, Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord));
3111     __ add(R2, R2, in_bytes(ConstantPoolCache::base_offset()));
3112     if (is_static) {
3113       __ mov(R1, 0);        // NULL object reference
3114     } else {
3115       __ pop(atos);         // Get the object
3116       __ mov(R1, R0_tos);
3117       __ verify_oop(R1);
3118       __ push(atos);        // Restore stack state
3119     }
3120     // R1: object pointer or NULL
3121     // R2: cache entry pointer
3122     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
3123                R1, R2);
3124     __ get_cache_and_index_at_bcp(Rcache, Rindex, 1);
3125 
3126     __ bind(Lcontinue);
3127   }
3128 }
3129 
3130 
3131 void TemplateTable::pop_and_check_object(Register r) {
3132   __ pop_ptr(r);
3133   __ null_check(r, Rtemp);  // for field access must check obj.
3134   __ verify_oop(r);
3135 }
3136 
3137 
3138 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
3139   transition(vtos, vtos);
3140 
3141   const Register Roffset  = R2_tmp;
3142   const Register Robj     = R3_tmp;
3143   const Register Rcache   = R4_tmp;
3144   const Register Rflagsav = Rtmp_save0;  // R4/R19
3145   const Register Rindex   = R5_tmp;
3146   const Register Rflags   = R5_tmp;
3147 
3148   const bool gen_volatile_check = os::is_MP();
3149 
3150   resolve_cache_and_index(byte_no, Rcache, Rindex, sizeof(u2));
3151   jvmti_post_field_access(Rcache, Rindex, is_static, false);
3152   load_field_cp_cache_entry(Rcache, Rindex, Roffset, Rflags, Robj, is_static);
3153 
3154   if (gen_volatile_check) {
3155     __ mov(Rflagsav, Rflags);
3156   }
3157 
3158   if (!is_static) pop_and_check_object(Robj);
3159 
3160   Label Done, Lint, Ltable, shouldNotReachHere;
3161   Label Lbtos, Lztos, Lctos, Lstos, Litos, Lltos, Lftos, Ldtos, Latos;
3162 
3163   // compute type
3164   __ logical_shift_right(Rflags, Rflags, ConstantPoolCacheEntry::tos_state_shift);
3165   // Make sure we don't need to mask flags after the above shift
3166   ConstantPoolCacheEntry::verify_tos_state_shift();
3167 
3168   // There are actually two versions of implementation of getfield/getstatic:
3169   //
3170   // 32-bit ARM:
3171   // 1) Table switch using add(PC,...) instruction (fast_version)
3172   // 2) Table switch using ldr(PC,...) instruction
3173   //
3174   // AArch64:
3175   // 1) Table switch using adr/add/br instructions (fast_version)
3176   // 2) Table switch using adr/ldr/br instructions
3177   //
3178   // First version requires fixed size of code block for each case and
3179   // can not be used in RewriteBytecodes and VerifyOops
3180   // modes.
3181 
3182   // Size of fixed size code block for fast_version
3183   const int log_max_block_size = AARCH64_ONLY(2) NOT_AARCH64(3);
3184   const int max_block_size = 1 << log_max_block_size;
3185 
3186   // Decide if fast version is enabled
3187   bool fast_version = (is_static || !RewriteBytecodes) && !VerifyOops && !VerifyInterpreterStackTop;
3188 
3189   // On 32-bit ARM atos and itos cases can be merged only for fast version, because
3190   // atos requires additional processing in slow version.
3191   // On AArch64 atos and itos cannot be merged.
3192   bool atos_merged_with_itos = AARCH64_ONLY(false) NOT_AARCH64(fast_version);
3193 
3194   assert(number_of_states == 10, "number of tos states should be equal to 9");
3195 
3196   __ cmp(Rflags, itos);
3197 #ifdef AARCH64
3198   __ b(Lint, eq);
3199 
3200   if(fast_version) {
3201     __ adr(Rtemp, Lbtos);
3202     __ add(Rtemp, Rtemp, AsmOperand(Rflags, lsl, log_max_block_size + Assembler::LogInstructionSize));
3203     __ br(Rtemp);
3204   } else {
3205     __ adr(Rtemp, Ltable);
3206     __ ldr(Rtemp, Address::indexed_ptr(Rtemp, Rflags));
3207     __ br(Rtemp);
3208   }
3209 #else
3210   if(atos_merged_with_itos) {
3211     __ cmp(Rflags, atos, ne);
3212   }
3213 
3214   // table switch by type
3215   if(fast_version) {
3216     __ add(PC, PC, AsmOperand(Rflags, lsl, log_max_block_size + Assembler::LogInstructionSize), ne);
3217   } else {
3218     __ ldr(PC, Address(PC, Rflags, lsl, LogBytesPerWord), ne);
3219   }
3220 
3221   // jump to itos/atos case
3222   __ b(Lint);
3223 #endif // AARCH64
3224 
3225   // table with addresses for slow version
3226   if (fast_version) {
3227     // nothing to do
3228   } else  {
3229     AARCH64_ONLY(__ align(wordSize));
3230     __ bind(Ltable);
3231     __ emit_address(Lbtos);
3232     __ emit_address(Lztos);
3233     __ emit_address(Lctos);
3234     __ emit_address(Lstos);
3235     __ emit_address(Litos);
3236     __ emit_address(Lltos);
3237     __ emit_address(Lftos);
3238     __ emit_address(Ldtos);
3239     __ emit_address(Latos);
3240   }
3241 
3242 #ifdef ASSERT
3243   int seq = 0;
3244 #endif
3245   // btos
3246   {
3247     assert(btos == seq++, "btos has unexpected value");
3248     FixedSizeCodeBlock btos_block(_masm, max_block_size, fast_version);
3249     __ bind(Lbtos);
3250     __ access_load_at(T_BYTE, IN_HEAP, Address(Robj, Roffset), R0_tos, noreg, noreg, noreg);
3251     __ push(btos);
3252     // Rewrite bytecode to be faster
3253     if (!is_static && rc == may_rewrite) {
3254       patch_bytecode(Bytecodes::_fast_bgetfield, R0_tmp, Rtemp);
3255     }
3256     __ b(Done);
3257   }
3258 
3259   // ztos (same as btos for getfield)
3260   {
3261     assert(ztos == seq++, "btos has unexpected value");
3262     FixedSizeCodeBlock ztos_block(_masm, max_block_size, fast_version);
3263     __ bind(Lztos);
3264     __ access_load_at(T_BOOLEAN, IN_HEAP, Address(Robj, Roffset), R0_tos, noreg, noreg, noreg);
3265     __ push(ztos);
3266     // Rewrite bytecode to be faster (use btos fast getfield)
3267     if (!is_static && rc == may_rewrite) {
3268       patch_bytecode(Bytecodes::_fast_bgetfield, R0_tmp, Rtemp);
3269     }
3270     __ b(Done);
3271   }
3272 
3273   // ctos
3274   {
3275     assert(ctos == seq++, "ctos has unexpected value");
3276     FixedSizeCodeBlock ctos_block(_masm, max_block_size, fast_version);
3277     __ bind(Lctos);
3278     __ access_load_at(T_CHAR, IN_HEAP, Address(Robj, Roffset), R0_tos, noreg, noreg, noreg);
3279     __ push(ctos);
3280     if (!is_static && rc == may_rewrite) {
3281       patch_bytecode(Bytecodes::_fast_cgetfield, R0_tmp, Rtemp);
3282     }
3283     __ b(Done);
3284   }
3285 
3286   // stos
3287   {
3288     assert(stos == seq++, "stos has unexpected value");
3289     FixedSizeCodeBlock stos_block(_masm, max_block_size, fast_version);
3290     __ bind(Lstos);
3291     __ access_load_at(T_SHORT, IN_HEAP, Address(Robj, Roffset), R0_tos, noreg, noreg, noreg);
3292     __ push(stos);
3293     if (!is_static && rc == may_rewrite) {
3294       patch_bytecode(Bytecodes::_fast_sgetfield, R0_tmp, Rtemp);
3295     }
3296     __ b(Done);
3297   }
3298 
3299   // itos
3300   {
3301     assert(itos == seq++, "itos has unexpected value");
3302     FixedSizeCodeBlock itos_block(_masm, max_block_size, fast_version);
3303     __ bind(Litos);
3304     __ b(shouldNotReachHere);
3305   }
3306 
3307   // ltos
3308   {
3309     assert(ltos == seq++, "ltos has unexpected value");
3310     FixedSizeCodeBlock ltos_block(_masm, max_block_size, fast_version);
3311     __ bind(Lltos);
3312 #ifdef AARCH64
3313     __ ldr(R0_tos, Address(Robj, Roffset));
3314 #else
3315     __ access_load_at(T_LONG, IN_HEAP, Address(Robj, Roffset), noreg /* ltos */, noreg, noreg, noreg);
3316 #endif // AARCH64
3317     __ push(ltos);
3318     if (!is_static && rc == may_rewrite) {
3319       patch_bytecode(Bytecodes::_fast_lgetfield, R0_tmp, Rtemp);
3320     }
3321     __ b(Done);
3322   }
3323 
3324   // ftos
3325   {
3326     assert(ftos == seq++, "ftos has unexpected value");
3327     FixedSizeCodeBlock ftos_block(_masm, max_block_size, fast_version);
3328     __ bind(Lftos);
3329     // floats and ints are placed on stack in same way, so
3330     // we can use push(itos) to transfer value without using VFP
3331     __ access_load_at(T_INT, IN_HEAP, Address(Robj, Roffset), R0_tos, noreg, noreg, noreg);
3332     __ push(itos);
3333     if (!is_static && rc == may_rewrite) {
3334       patch_bytecode(Bytecodes::_fast_fgetfield, R0_tmp, Rtemp);
3335     }
3336     __ b(Done);
3337   }
3338 
3339   // dtos
3340   {
3341     assert(dtos == seq++, "dtos has unexpected value");
3342     FixedSizeCodeBlock dtos_block(_masm, max_block_size, fast_version);
3343     __ bind(Ldtos);
3344     // doubles and longs are placed on stack in the same way, so
3345     // we can use push(ltos) to transfer value without using VFP
3346 #ifdef AARCH64
3347     __ ldr(R0_tos, Address(Robj, Roffset));
3348 #else
3349     __ access_load_at(T_LONG, IN_HEAP, Address(Robj, Roffset), noreg /* ltos */, noreg, noreg, noreg);
3350 #endif // AARCH64
3351     __ push(ltos);
3352     if (!is_static && rc == may_rewrite) {
3353       patch_bytecode(Bytecodes::_fast_dgetfield, R0_tmp, Rtemp);
3354     }
3355     __ b(Done);
3356   }
3357 
3358   // atos
3359   {
3360     assert(atos == seq++, "atos has unexpected value");
3361 
3362     // atos case for AArch64 and slow version on 32-bit ARM
3363     if(!atos_merged_with_itos) {
3364       __ bind(Latos);
3365       do_oop_load(_masm, R0_tos, Address(Robj, Roffset));
3366       __ push(atos);
3367       // Rewrite bytecode to be faster
3368       if (!is_static && rc == may_rewrite) {
3369         patch_bytecode(Bytecodes::_fast_agetfield, R0_tmp, Rtemp);
3370       }
3371       __ b(Done);
3372     }
3373   }
3374 
3375   assert(vtos == seq++, "vtos has unexpected value");
3376 
3377   __ bind(shouldNotReachHere);
3378   __ should_not_reach_here();
3379 
3380   // itos and atos cases are frequent so it makes sense to move them out of table switch
3381   // atos case can be merged with itos case (and thus moved out of table switch) on 32-bit ARM, fast version only
3382 
3383   __ bind(Lint);
3384   __ access_load_at(T_INT, IN_HEAP, Address(Robj, Roffset), R0_tos, noreg, noreg, noreg);
3385   __ push(itos);
3386   // Rewrite bytecode to be faster
3387   if (!is_static && rc == may_rewrite) {
3388     patch_bytecode(Bytecodes::_fast_igetfield, R0_tmp, Rtemp);
3389   }
3390 
3391   __ bind(Done);
3392 
3393   if (gen_volatile_check) {
3394     // Check for volatile field
3395     Label notVolatile;
3396     __ tbz(Rflagsav, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3397 
3398     volatile_barrier(MacroAssembler::Membar_mask_bits(MacroAssembler::LoadLoad | MacroAssembler::LoadStore), Rtemp);
3399 
3400     __ bind(notVolatile);
3401   }
3402 
3403 }
3404 
3405 void TemplateTable::getfield(int byte_no) {
3406   getfield_or_static(byte_no, false);
3407 }
3408 
3409 void TemplateTable::nofast_getfield(int byte_no) {
3410   getfield_or_static(byte_no, false, may_not_rewrite);
3411 }
3412 
3413 void TemplateTable::getstatic(int byte_no) {
3414   getfield_or_static(byte_no, true);
3415 }
3416 
3417 
3418 // The registers cache and index expected to be set before call, and should not be R1 or Rtemp.
3419 // Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR,
3420 // except cache and index registers which are preserved.
3421 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register Rindex, bool is_static) {
3422   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3423   assert_different_registers(Rcache, Rindex, R1, Rtemp);
3424 
3425   if (__ can_post_field_modification()) {
3426     // Check to see if a field modification watch has been set before we take
3427     // the time to call into the VM.
3428     Label Lcontinue;
3429 
3430     __ ldr_global_s32(Rtemp, (address)JvmtiExport::get_field_modification_count_addr());
3431     __ cbz(Rtemp, Lcontinue);
3432 
3433     if (is_static) {
3434       // Life is simple.  Null out the object pointer.
3435       __ mov(R1, 0);
3436     } else {
3437       // Life is harder. The stack holds the value on top, followed by the object.
3438       // We don't know the size of the value, though; it could be one or two words
3439       // depending on its type. As a result, we must find the type to determine where
3440       // the object is.
3441 
3442       __ add(Rtemp, Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord));
3443       __ ldr_u32(Rtemp, Address(Rtemp, cp_base_offset + ConstantPoolCacheEntry::flags_offset()));
3444 
3445       __ logical_shift_right(Rtemp, Rtemp, ConstantPoolCacheEntry::tos_state_shift);
3446       // Make sure we don't need to mask Rtemp after the above shift
3447       ConstantPoolCacheEntry::verify_tos_state_shift();
3448 
3449       __ cmp(Rtemp, ltos);
3450       __ cond_cmp(Rtemp, dtos, ne);
3451 #ifdef AARCH64
3452       __ mov(Rtemp, Interpreter::expr_offset_in_bytes(2));
3453       __ mov(R1, Interpreter::expr_offset_in_bytes(1));
3454       __ mov(R1, Rtemp, eq);
3455       __ ldr(R1, Address(Rstack_top, R1));
3456 #else
3457       // two word value (ltos/dtos)
3458       __ ldr(R1, Address(SP, Interpreter::expr_offset_in_bytes(2)), eq);
3459 
3460       // one word value (not ltos, dtos)
3461       __ ldr(R1, Address(SP, Interpreter::expr_offset_in_bytes(1)), ne);
3462 #endif // AARCH64
3463     }
3464 
3465     // cache entry pointer
3466     __ add(R2, Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord));
3467     __ add(R2, R2, in_bytes(cp_base_offset));
3468 
3469     // object (tos)
3470     __ mov(R3, Rstack_top);
3471 
3472     // R1: object pointer set up above (NULL if static)
3473     // R2: cache entry pointer
3474     // R3: value object on the stack
3475     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
3476                R1, R2, R3);
3477     __ get_cache_and_index_at_bcp(Rcache, Rindex, 1);
3478 
3479     __ bind(Lcontinue);
3480   }
3481 }
3482 
3483 
3484 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
3485   transition(vtos, vtos);
3486 
3487   const Register Roffset  = R2_tmp;
3488   const Register Robj     = R3_tmp;
3489   const Register Rcache   = R4_tmp;
3490   const Register Rflagsav = Rtmp_save0;  // R4/R19
3491   const Register Rindex   = R5_tmp;
3492   const Register Rflags   = R5_tmp;
3493 
3494   const bool gen_volatile_check = os::is_MP();
3495 
3496   resolve_cache_and_index(byte_no, Rcache, Rindex, sizeof(u2));
3497   jvmti_post_field_mod(Rcache, Rindex, is_static);
3498   load_field_cp_cache_entry(Rcache, Rindex, Roffset, Rflags, Robj, is_static);
3499 
3500   if (gen_volatile_check) {
3501     // Check for volatile field
3502     Label notVolatile;
3503     __ mov(Rflagsav, Rflags);
3504     __ tbz(Rflagsav, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3505 
3506     volatile_barrier(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);
3507 
3508     __ bind(notVolatile);
3509   }
3510 
3511   Label Done, Lint, shouldNotReachHere;
3512   Label Ltable, Lbtos, Lztos, Lctos, Lstos, Litos, Lltos, Lftos, Ldtos, Latos;
3513 
3514   // compute type
3515   __ logical_shift_right(Rflags, Rflags, ConstantPoolCacheEntry::tos_state_shift);
3516   // Make sure we don't need to mask flags after the above shift
3517   ConstantPoolCacheEntry::verify_tos_state_shift();
3518 
3519   // There are actually two versions of implementation of putfield/putstatic:
3520   //
3521   // 32-bit ARM:
3522   // 1) Table switch using add(PC,...) instruction (fast_version)
3523   // 2) Table switch using ldr(PC,...) instruction
3524   //
3525   // AArch64:
3526   // 1) Table switch using adr/add/br instructions (fast_version)
3527   // 2) Table switch using adr/ldr/br instructions
3528   //
3529   // First version requires fixed size of code block for each case and
3530   // can not be used in RewriteBytecodes and VerifyOops
3531   // modes.
3532 
3533   // Size of fixed size code block for fast_version (in instructions)
3534   const int log_max_block_size = AARCH64_ONLY(is_static ? 2 : 3) NOT_AARCH64(3);
3535   const int max_block_size = 1 << log_max_block_size;
3536 
3537   // Decide if fast version is enabled
3538   bool fast_version = (is_static || !RewriteBytecodes) && !VerifyOops && !ZapHighNonSignificantBits;
3539 
3540   assert(number_of_states == 10, "number of tos states should be equal to 9");
3541 
3542   // itos case is frequent and is moved outside table switch
3543   __ cmp(Rflags, itos);
3544 
3545 #ifdef AARCH64
3546   __ b(Lint, eq);
3547 
3548   if (fast_version) {
3549     __ adr(Rtemp, Lbtos);
3550     __ add(Rtemp, Rtemp, AsmOperand(Rflags, lsl, log_max_block_size + Assembler::LogInstructionSize));
3551     __ br(Rtemp);
3552   } else {
3553     __ adr(Rtemp, Ltable);
3554     __ ldr(Rtemp, Address::indexed_ptr(Rtemp, Rflags));
3555     __ br(Rtemp);
3556   }
3557 #else
3558   // table switch by type
3559   if (fast_version) {
3560     __ add(PC, PC, AsmOperand(Rflags, lsl, log_max_block_size + Assembler::LogInstructionSize), ne);
3561   } else  {
3562     __ ldr(PC, Address(PC, Rflags, lsl, LogBytesPerWord), ne);
3563   }
3564 
3565   // jump to itos case
3566   __ b(Lint);
3567 #endif // AARCH64
3568 
3569   // table with addresses for slow version
3570   if (fast_version) {
3571     // nothing to do
3572   } else  {
3573     AARCH64_ONLY(__ align(wordSize));
3574     __ bind(Ltable);
3575     __ emit_address(Lbtos);
3576     __ emit_address(Lztos);
3577     __ emit_address(Lctos);
3578     __ emit_address(Lstos);
3579     __ emit_address(Litos);
3580     __ emit_address(Lltos);
3581     __ emit_address(Lftos);
3582     __ emit_address(Ldtos);
3583     __ emit_address(Latos);
3584   }
3585 
3586 #ifdef ASSERT
3587   int seq = 0;
3588 #endif
3589   // btos
3590   {
3591     assert(btos == seq++, "btos has unexpected value");
3592     FixedSizeCodeBlock btos_block(_masm, max_block_size, fast_version);
3593     __ bind(Lbtos);
3594     __ pop(btos);
3595     if (!is_static) pop_and_check_object(Robj);
3596     __ access_store_at(T_BYTE, IN_HEAP, Address(Robj, Roffset), R0_tos, noreg, noreg, noreg, false);
3597     if (!is_static && rc == may_rewrite) {
3598       patch_bytecode(Bytecodes::_fast_bputfield, R0_tmp, Rtemp, true, byte_no);
3599     }
3600     __ b(Done);
3601   }
3602 
3603   // ztos
3604   {
3605     assert(ztos == seq++, "ztos has unexpected value");
3606     FixedSizeCodeBlock ztos_block(_masm, max_block_size, fast_version);
3607     __ bind(Lztos);
3608     __ pop(ztos);
3609     if (!is_static) pop_and_check_object(Robj);
3610     __ access_store_at(T_BOOLEAN, IN_HEAP, Address(Robj, Roffset), R0_tos, noreg, noreg, noreg, false);
3611     if (!is_static && rc == may_rewrite) {
3612       patch_bytecode(Bytecodes::_fast_zputfield, R0_tmp, Rtemp, true, byte_no);
3613     }
3614     __ b(Done);
3615   }
3616 
3617   // ctos
3618   {
3619     assert(ctos == seq++, "ctos has unexpected value");
3620     FixedSizeCodeBlock ctos_block(_masm, max_block_size, fast_version);
3621     __ bind(Lctos);
3622     __ pop(ctos);
3623     if (!is_static) pop_and_check_object(Robj);
3624     __ access_store_at(T_CHAR, IN_HEAP, Address(Robj, Roffset), R0_tos, noreg, noreg, noreg, false);
3625     if (!is_static && rc == may_rewrite) {
3626       patch_bytecode(Bytecodes::_fast_cputfield, R0_tmp, Rtemp, true, byte_no);
3627     }
3628     __ b(Done);
3629   }
3630 
3631   // stos
3632   {
3633     assert(stos == seq++, "stos has unexpected value");
3634     FixedSizeCodeBlock stos_block(_masm, max_block_size, fast_version);
3635     __ bind(Lstos);
3636     __ pop(stos);
3637     if (!is_static) pop_and_check_object(Robj);
3638     __ access_store_at(T_SHORT, IN_HEAP, Address(Robj, Roffset), R0_tos, noreg, noreg, noreg, false);
3639     if (!is_static && rc == may_rewrite) {
3640       patch_bytecode(Bytecodes::_fast_sputfield, R0_tmp, Rtemp, true, byte_no);
3641     }
3642     __ b(Done);
3643   }
3644 
3645   // itos
3646   {
3647     assert(itos == seq++, "itos has unexpected value");
3648     FixedSizeCodeBlock itos_block(_masm, max_block_size, fast_version);
3649     __ bind(Litos);
3650     __ b(shouldNotReachHere);
3651   }
3652 
3653   // ltos
3654   {
3655     assert(ltos == seq++, "ltos has unexpected value");
3656     FixedSizeCodeBlock ltos_block(_masm, max_block_size, fast_version);
3657     __ bind(Lltos);
3658     __ pop(ltos);
3659     if (!is_static) pop_and_check_object(Robj);
3660 #ifdef AARCH64
3661     __ str(R0_tos, Address(Robj, Roffset));
3662 #else
3663     __ access_store_at(T_LONG, IN_HEAP, Address(Robj, Roffset), noreg /* ltos */, noreg, noreg, noreg, false);
3664 #endif // AARCH64
3665     if (!is_static && rc == may_rewrite) {
3666       patch_bytecode(Bytecodes::_fast_lputfield, R0_tmp, Rtemp, true, byte_no);
3667     }
3668     __ b(Done);
3669   }
3670 
3671   // ftos
3672   {
3673     assert(ftos == seq++, "ftos has unexpected value");
3674     FixedSizeCodeBlock ftos_block(_masm, max_block_size, fast_version);
3675     __ bind(Lftos);
3676     // floats and ints are placed on stack in the same way, so
3677     // we can use pop(itos) to transfer value without using VFP
3678     __ pop(itos);
3679     if (!is_static) pop_and_check_object(Robj);
3680     __ access_store_at(T_INT, IN_HEAP, Address(Robj, Roffset), R0_tos, noreg, noreg, noreg, false);
3681     if (!is_static && rc == may_rewrite) {
3682       patch_bytecode(Bytecodes::_fast_fputfield, R0_tmp, Rtemp, true, byte_no);
3683     }
3684     __ b(Done);
3685   }
3686 
3687   // dtos
3688   {
3689     assert(dtos == seq++, "dtos has unexpected value");
3690     FixedSizeCodeBlock dtos_block(_masm, max_block_size, fast_version);
3691     __ bind(Ldtos);
3692     // doubles and longs are placed on stack in the same way, so
3693     // we can use pop(ltos) to transfer value without using VFP
3694     __ pop(ltos);
3695     if (!is_static) pop_and_check_object(Robj);
3696 #ifdef AARCH64
3697     __ str(R0_tos, Address(Robj, Roffset));
3698 #else
3699     __ access_store_at(T_LONG, IN_HEAP, Address(Robj, Roffset), noreg /* ltos */, noreg, noreg, noreg, false);
3700 #endif // AARCH64
3701     if (!is_static && rc == may_rewrite) {
3702       patch_bytecode(Bytecodes::_fast_dputfield, R0_tmp, Rtemp, true, byte_no);
3703     }
3704     __ b(Done);
3705   }
3706 
3707   // atos
3708   {
3709     assert(atos == seq++, "dtos has unexpected value");
3710     __ bind(Latos);
3711     __ pop(atos);
3712     if (!is_static) pop_and_check_object(Robj);
3713     // Store into the field
3714     do_oop_store(_masm, Address(Robj, Roffset), R0_tos, Rtemp, R1_tmp, R5_tmp, false);
3715     if (!is_static && rc == may_rewrite) {
3716       patch_bytecode(Bytecodes::_fast_aputfield, R0_tmp, Rtemp, true, byte_no);
3717     }
3718     __ b(Done);
3719   }
3720 
3721   __ bind(shouldNotReachHere);
3722   __ should_not_reach_here();
3723 
3724   // itos case is frequent and is moved outside table switch
3725   __ bind(Lint);
3726   __ pop(itos);
3727   if (!is_static) pop_and_check_object(Robj);
3728   __ access_store_at(T_INT, IN_HEAP, Address(Robj, Roffset), R0_tos, noreg, noreg, noreg, false);
3729   if (!is_static && rc == may_rewrite) {
3730     patch_bytecode(Bytecodes::_fast_iputfield, R0_tmp, Rtemp, true, byte_no);
3731   }
3732 
3733   __ bind(Done);
3734 
3735   if (gen_volatile_check) {
3736     Label notVolatile;
3737     if (is_static) {
3738       // Just check for volatile. Memory barrier for static final field
3739       // is handled by class initialization.
3740       __ tbz(Rflagsav, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3741       volatile_barrier(MacroAssembler::StoreLoad, Rtemp);
3742       __ bind(notVolatile);
3743     } else {
3744       // Check for volatile field and final field
3745       Label skipMembar;
3746 
3747       __ tst(Rflagsav, 1 << ConstantPoolCacheEntry::is_volatile_shift |
3748                        1 << ConstantPoolCacheEntry::is_final_shift);
3749       __ b(skipMembar, eq);
3750 
3751       __ tbz(Rflagsav, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3752 
3753       // StoreLoad barrier after volatile field write
3754       volatile_barrier(MacroAssembler::StoreLoad, Rtemp);
3755       __ b(skipMembar);
3756 
3757       // StoreStore barrier after final field write
3758       __ bind(notVolatile);
3759       volatile_barrier(MacroAssembler::StoreStore, Rtemp);
3760 
3761       __ bind(skipMembar);
3762     }
3763   }
3764 
3765 }
3766 
3767 void TemplateTable::putfield(int byte_no) {
3768   putfield_or_static(byte_no, false);
3769 }
3770 
3771 void TemplateTable::nofast_putfield(int byte_no) {
3772   putfield_or_static(byte_no, false, may_not_rewrite);
3773 }
3774 
3775 void TemplateTable::putstatic(int byte_no) {
3776   putfield_or_static(byte_no, true);
3777 }
3778 
3779 
3780 void TemplateTable::jvmti_post_fast_field_mod() {
3781   // This version of jvmti_post_fast_field_mod() is not used on ARM
3782   Unimplemented();
3783 }
3784 
3785 // Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR,
3786 // but preserves tosca with the given state.
3787 void TemplateTable::jvmti_post_fast_field_mod(TosState state) {
3788   if (__ can_post_field_modification()) {
3789     // Check to see if a field modification watch has been set before we take
3790     // the time to call into the VM.
3791     Label done;
3792 
3793     __ ldr_global_s32(R2, (address)JvmtiExport::get_field_modification_count_addr());
3794     __ cbz(R2, done);
3795 
3796     __ pop_ptr(R3);               // copy the object pointer from tos
3797     __ verify_oop(R3);
3798     __ push_ptr(R3);              // put the object pointer back on tos
3799 
3800     __ push(state);               // save value on the stack
3801 
3802     // access constant pool cache entry
3803     __ get_cache_entry_pointer_at_bcp(R2, R1, 1);
3804 
3805     __ mov(R1, R3);
3806     assert(Interpreter::expr_offset_in_bytes(0) == 0, "adjust this code");
3807     __ mov(R3, Rstack_top); // put tos addr into R3
3808 
3809     // R1: object pointer copied above
3810     // R2: cache entry pointer
3811     // R3: jvalue object on the stack
3812     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), R1, R2, R3);
3813 
3814     __ pop(state);                // restore value
3815 
3816     __ bind(done);
3817   }
3818 }
3819 
3820 
3821 void TemplateTable::fast_storefield(TosState state) {
3822   transition(state, vtos);
3823 
3824   ByteSize base = ConstantPoolCache::base_offset();
3825 
3826   jvmti_post_fast_field_mod(state);
3827 
3828   const Register Rcache  = R2_tmp;
3829   const Register Rindex  = R3_tmp;
3830   const Register Roffset = R3_tmp;
3831   const Register Rflags  = Rtmp_save0; // R4/R19
3832   const Register Robj    = R5_tmp;
3833 
3834   const bool gen_volatile_check = os::is_MP();
3835 
3836   // access constant pool cache
3837   __ get_cache_and_index_at_bcp(Rcache, Rindex, 1);
3838 
3839   __ add(Rcache, Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord));
3840 
3841   if (gen_volatile_check) {
3842     // load flags to test volatile
3843     __ ldr_u32(Rflags, Address(Rcache, base + ConstantPoolCacheEntry::flags_offset()));
3844   }
3845 
3846   // replace index with field offset from cache entry
3847   __ ldr(Roffset, Address(Rcache, base + ConstantPoolCacheEntry::f2_offset()));
3848 
3849   if (gen_volatile_check) {
3850     // Check for volatile store
3851     Label notVolatile;
3852     __ tbz(Rflags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3853 
3854     // TODO-AARCH64 on AArch64, store-release instructions can be used to get rid of this explict barrier
3855     volatile_barrier(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);
3856 
3857     __ bind(notVolatile);
3858   }
3859 
3860   // Get object from stack
3861   pop_and_check_object(Robj);
3862 
3863   Address addr = Address(Robj, Roffset);
3864   // access field
3865   switch (bytecode()) {
3866     case Bytecodes::_fast_zputfield:
3867       __ access_store_at(T_BOOLEAN, IN_HEAP, addr, R0_tos, noreg, noreg, noreg, false);
3868       break;
3869     case Bytecodes::_fast_bputfield:
3870       __ access_store_at(T_BYTE, IN_HEAP, addr, R0_tos, noreg, noreg, noreg, false);
3871       break;
3872     case Bytecodes::_fast_sputfield:
3873       __ access_store_at(T_SHORT, IN_HEAP, addr, R0_tos, noreg, noreg, noreg, false);
3874       break;
3875     case Bytecodes::_fast_cputfield:
3876       __ access_store_at(T_CHAR, IN_HEAP, addr, R0_tos, noreg, noreg, noreg,false);
3877       break;
3878     case Bytecodes::_fast_iputfield:
3879       __ access_store_at(T_INT, IN_HEAP, addr, R0_tos, noreg, noreg, noreg, false);
3880       break;
3881 #ifdef AARCH64
3882     case Bytecodes::_fast_lputfield: __ str  (R0_tos, addr); break;
3883     case Bytecodes::_fast_fputfield: __ str_s(S0_tos, addr); break;
3884     case Bytecodes::_fast_dputfield: __ str_d(D0_tos, addr); break;
3885 #else
3886     case Bytecodes::_fast_lputfield:
3887       __ access_store_at(T_LONG, IN_HEAP, addr, noreg, noreg, noreg, noreg, false);
3888       break;
3889     case Bytecodes::_fast_fputfield:
3890       __ access_store_at(T_FLOAT, IN_HEAP, addr, noreg, noreg, noreg, noreg, false);
3891       break;
3892     case Bytecodes::_fast_dputfield:
3893       __ access_store_at(T_DOUBLE, IN_HEAP, addr, noreg, noreg, noreg, noreg, false);
3894       break;
3895 #endif // AARCH64
3896 
3897     case Bytecodes::_fast_aputfield:
3898       do_oop_store(_masm, addr, R0_tos, Rtemp, R1_tmp, R2_tmp, false);
3899       break;
3900 
3901     default:
3902       ShouldNotReachHere();
3903   }
3904 
3905   if (gen_volatile_check) {
3906     Label notVolatile;
3907     Label skipMembar;
3908     __ tst(Rflags, 1 << ConstantPoolCacheEntry::is_volatile_shift |
3909                    1 << ConstantPoolCacheEntry::is_final_shift);
3910     __ b(skipMembar, eq);
3911 
3912     __ tbz(Rflags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3913 
3914     // StoreLoad barrier after volatile field write
3915     volatile_barrier(MacroAssembler::StoreLoad, Rtemp);
3916     __ b(skipMembar);
3917 
3918     // StoreStore barrier after final field write
3919     __ bind(notVolatile);
3920     volatile_barrier(MacroAssembler::StoreStore, Rtemp);
3921 
3922     __ bind(skipMembar);
3923   }
3924 }
3925 
3926 
3927 void TemplateTable::fast_accessfield(TosState state) {
3928   transition(atos, state);
3929 
3930   // do the JVMTI work here to avoid disturbing the register state below
3931   if (__ can_post_field_access()) {
3932     // Check to see if a field access watch has been set before we take
3933     // the time to call into the VM.
3934     Label done;
3935     __ ldr_global_s32(R2, (address) JvmtiExport::get_field_access_count_addr());
3936     __ cbz(R2, done);
3937     // access constant pool cache entry
3938     __ get_cache_entry_pointer_at_bcp(R2, R1, 1);
3939     __ push_ptr(R0_tos);  // save object pointer before call_VM() clobbers it
3940     __ verify_oop(R0_tos);
3941     __ mov(R1, R0_tos);
3942     // R1: object pointer copied above
3943     // R2: cache entry pointer
3944     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), R1, R2);
3945     __ pop_ptr(R0_tos);   // restore object pointer
3946 
3947     __ bind(done);
3948   }
3949 
3950   const Register Robj    = R0_tos;
3951   const Register Rcache  = R2_tmp;
3952   const Register Rflags  = R2_tmp;
3953   const Register Rindex  = R3_tmp;
3954   const Register Roffset = R3_tmp;
3955 
3956   const bool gen_volatile_check = os::is_MP();
3957 
3958   // access constant pool cache
3959   __ get_cache_and_index_at_bcp(Rcache, Rindex, 1);
3960   // replace index with field offset from cache entry
3961   __ add(Rtemp, Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord));
3962   __ ldr(Roffset, Address(Rtemp, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
3963 
3964   if (gen_volatile_check) {
3965     // load flags to test volatile
3966     __ ldr_u32(Rflags, Address(Rtemp, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
3967   }
3968 
3969   __ verify_oop(Robj);
3970   __ null_check(Robj, Rtemp);
3971 
3972   Address addr = Address(Robj, Roffset);
3973   // access field
3974   switch (bytecode()) {
3975     case Bytecodes::_fast_bgetfield:
3976       __ access_load_at(T_BYTE, IN_HEAP, addr, R0_tos, noreg, noreg, noreg);
3977       break;
3978     case Bytecodes::_fast_sgetfield:
3979       __ access_load_at(T_SHORT, IN_HEAP, addr, R0_tos, noreg, noreg, noreg);
3980       break;
3981     case Bytecodes::_fast_cgetfield:
3982       __ access_load_at(T_CHAR, IN_HEAP, addr, R0_tos, noreg, noreg, noreg);
3983       break;
3984     case Bytecodes::_fast_igetfield:
3985       __ access_load_at(T_INT, IN_HEAP, addr, R0_tos, noreg, noreg, noreg);
3986       break;
3987 #ifdef AARCH64
3988     case Bytecodes::_fast_lgetfield: __ ldr  (R0_tos, addr); break;
3989     case Bytecodes::_fast_fgetfield: __ ldr_s(S0_tos, addr); break;
3990     case Bytecodes::_fast_dgetfield: __ ldr_d(D0_tos, addr); break;
3991 #else
3992     case Bytecodes::_fast_lgetfield:
3993       __ access_load_at(T_LONG, IN_HEAP, addr, noreg, noreg, noreg, noreg);
3994       break;
3995     case Bytecodes::_fast_fgetfield:
3996       __ access_load_at(T_FLOAT, IN_HEAP, addr, noreg, noreg, noreg, noreg);
3997       break;
3998     case Bytecodes::_fast_dgetfield:
3999       __ access_load_at(T_DOUBLE, IN_HEAP, addr, noreg, noreg, noreg, noreg);
4000       break;
4001 #endif // AARCH64
4002     case Bytecodes::_fast_agetfield:
4003       do_oop_load(_masm, R0_tos, addr);
4004       __ verify_oop(R0_tos);
4005       break;
4006     default:
4007       ShouldNotReachHere();
4008   }
4009 
4010   if (gen_volatile_check) {
4011     // Check for volatile load
4012     Label notVolatile;
4013     __ tbz(Rflags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
4014 
4015     // TODO-AARCH64 on AArch64, load-acquire instructions can be used to get rid of this explict barrier
4016     volatile_barrier(MacroAssembler::Membar_mask_bits(MacroAssembler::LoadLoad | MacroAssembler::LoadStore), Rtemp);
4017 
4018     __ bind(notVolatile);
4019   }
4020 }
4021 
4022 
4023 void TemplateTable::fast_xaccess(TosState state) {
4024   transition(vtos, state);
4025 
4026   const Register Robj = R1_tmp;
4027   const Register Rcache = R2_tmp;
4028   const Register Rindex = R3_tmp;
4029   const Register Roffset = R3_tmp;
4030   const Register Rflags = R4_tmp;
4031   Label done;
4032 
4033   // get receiver
4034   __ ldr(Robj, aaddress(0));
4035 
4036   // access constant pool cache
4037   __ get_cache_and_index_at_bcp(Rcache, Rindex, 2);
4038   __ add(Rtemp, Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord));
4039   __ ldr(Roffset, Address(Rtemp, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
4040 
4041   const bool gen_volatile_check = os::is_MP();
4042 
4043   if (gen_volatile_check) {
4044     // load flags to test volatile
4045     __ ldr_u32(Rflags, Address(Rtemp, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
4046   }
4047 
4048   // make sure exception is reported in correct bcp range (getfield is next instruction)
4049   __ add(Rbcp, Rbcp, 1);
4050   __ null_check(Robj, Rtemp);
4051   __ sub(Rbcp, Rbcp, 1);
4052 
4053 #ifdef AARCH64
4054   if (gen_volatile_check) {
4055     Label notVolatile;
4056     __ tbz(Rflags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
4057 
4058     __ add(Rtemp, Robj, Roffset);
4059 
4060     if (state == itos) {
4061       __ ldar_w(R0_tos, Rtemp);
4062     } else if (state == atos) {
4063       if (UseCompressedOops) {
4064         __ ldar_w(R0_tos, Rtemp);
4065         __ decode_heap_oop(R0_tos);
4066       } else {
4067         __ ldar(R0_tos, Rtemp);
4068       }
4069       __ verify_oop(R0_tos);
4070     } else if (state == ftos) {
4071       __ ldar_w(R0_tos, Rtemp);
4072       __ fmov_sw(S0_tos, R0_tos);
4073     } else {
4074       ShouldNotReachHere();
4075     }
4076     __ b(done);
4077 
4078     __ bind(notVolatile);
4079   }
4080 #endif // AARCH64
4081 
4082   if (state == itos) {
4083     __ access_load_at(T_INT, IN_HEAP, Address(Robj, Roffset), R0_tos, noreg, noreg, noreg);
4084   } else if (state == atos) {
4085     do_oop_load(_masm, R0_tos, Address(Robj, Roffset));
4086     __ verify_oop(R0_tos);
4087   } else if (state == ftos) {
4088 #ifdef AARCH64
4089     __ ldr_s(S0_tos, Address(Robj, Roffset));
4090 #else
4091 #ifdef __SOFTFP__
4092     __ ldr(R0_tos, Address(Robj, Roffset));
4093 #else
4094     __ access_load_at(T_FLOAT, IN_HEAP, Address(Robj, Roffset), noreg /* ftos */, noreg, noreg, noreg);
4095 #endif // __SOFTFP__
4096 #endif // AARCH64
4097   } else {
4098     ShouldNotReachHere();
4099   }
4100 
4101 #ifndef AARCH64
4102   if (gen_volatile_check) {
4103     // Check for volatile load
4104     Label notVolatile;
4105     __ tbz(Rflags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
4106 
4107     volatile_barrier(MacroAssembler::Membar_mask_bits(MacroAssembler::LoadLoad | MacroAssembler::LoadStore), Rtemp);
4108 
4109     __ bind(notVolatile);
4110   }
4111 #endif // !AARCH64
4112 
4113   __ bind(done);
4114 }
4115 
4116 
4117 
4118 //----------------------------------------------------------------------------------------------------
4119 // Calls
4120 
4121 void TemplateTable::count_calls(Register method, Register temp) {
4122   // implemented elsewhere
4123   ShouldNotReachHere();
4124 }
4125 
4126 
4127 void TemplateTable::prepare_invoke(int byte_no,
4128                                    Register method,  // linked method (or i-klass)
4129                                    Register index,   // itable index, MethodType, etc.
4130                                    Register recv,    // if caller wants to see it
4131                                    Register flags    // if caller wants to test it
4132                                    ) {
4133   // determine flags
4134   const Bytecodes::Code code = bytecode();
4135   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
4136   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
4137   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
4138   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
4139   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
4140   const bool load_receiver       = (recv != noreg);
4141   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
4142   assert(recv  == noreg || recv  == R2, "");
4143   assert(flags == noreg || flags == R3, "");
4144 
4145   // setup registers & access constant pool cache
4146   if (recv  == noreg)  recv  = R2;
4147   if (flags == noreg)  flags = R3;
4148   const Register temp = Rtemp;
4149   const Register ret_type = R1_tmp;
4150   assert_different_registers(method, index, flags, recv, LR, ret_type, temp);
4151 
4152   // save 'interpreter return address'
4153   __ save_bcp();
4154 
4155   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
4156 
4157   // maybe push extra argument
4158   if (is_invokedynamic || is_invokehandle) {
4159     Label L_no_push;
4160     __ tbz(flags, ConstantPoolCacheEntry::has_appendix_shift, L_no_push);
4161     __ mov(temp, index);
4162     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
4163     __ load_resolved_reference_at_index(index, temp);
4164     __ verify_oop(index);
4165     __ push_ptr(index);  // push appendix (MethodType, CallSite, etc.)
4166     __ bind(L_no_push);
4167   }
4168 
4169   // load receiver if needed (after extra argument is pushed so parameter size is correct)
4170   if (load_receiver) {
4171     __ andr(temp, flags, (uintx)ConstantPoolCacheEntry::parameter_size_mask);  // get parameter size
4172     Address recv_addr = __ receiver_argument_address(Rstack_top, temp, recv);
4173     __ ldr(recv, recv_addr);
4174     __ verify_oop(recv);
4175   }
4176 
4177   // compute return type
4178   __ logical_shift_right(ret_type, flags, ConstantPoolCacheEntry::tos_state_shift);
4179   // Make sure we don't need to mask flags after the above shift
4180   ConstantPoolCacheEntry::verify_tos_state_shift();
4181   // load return address
4182   { const address table = (address) Interpreter::invoke_return_entry_table_for(code);
4183     __ mov_slow(temp, table);
4184     __ ldr(LR, Address::indexed_ptr(temp, ret_type));
4185   }
4186 }
4187 
4188 
4189 void TemplateTable::invokevirtual_helper(Register index,
4190                                          Register recv,
4191                                          Register flags) {
4192 
4193   const Register recv_klass = R2_tmp;
4194 
4195   assert_different_registers(index, recv, flags, Rtemp);
4196   assert_different_registers(index, recv_klass, R0_tmp, Rtemp);
4197 
4198   // Test for an invoke of a final method
4199   Label notFinal;
4200   __ tbz(flags, ConstantPoolCacheEntry::is_vfinal_shift, notFinal);
4201 
4202   assert(index == Rmethod, "Method* must be Rmethod, for interpreter calling convention");
4203 
4204   // do the call - the index is actually the method to call
4205 
4206   // It's final, need a null check here!
4207   __ null_check(recv, Rtemp);
4208 
4209   // profile this call
4210   __ profile_final_call(R0_tmp);
4211 
4212   __ jump_from_interpreted(Rmethod);
4213 
4214   __ bind(notFinal);
4215 
4216   // get receiver klass
4217   __ null_check(recv, Rtemp, oopDesc::klass_offset_in_bytes());
4218   __ load_klass(recv_klass, recv);
4219 
4220   // profile this call
4221   __ profile_virtual_call(R0_tmp, recv_klass);
4222 
4223   // get target Method* & entry point
4224   const int base = in_bytes(Klass::vtable_start_offset());
4225   assert(vtableEntry::size() == 1, "adjust the scaling in the code below");
4226   __ add(Rtemp, recv_klass, AsmOperand(index, lsl, LogHeapWordSize));
4227   __ ldr(Rmethod, Address(Rtemp, base + vtableEntry::method_offset_in_bytes()));
4228   __ jump_from_interpreted(Rmethod);
4229 }
4230 
4231 void TemplateTable::invokevirtual(int byte_no) {
4232   transition(vtos, vtos);
4233   assert(byte_no == f2_byte, "use this argument");
4234 
4235   const Register Rrecv  = R2_tmp;
4236   const Register Rflags = R3_tmp;
4237 
4238   prepare_invoke(byte_no, Rmethod, noreg, Rrecv, Rflags);
4239 
4240   // Rmethod: index
4241   // Rrecv:   receiver
4242   // Rflags:  flags
4243   // LR:      return address
4244 
4245   invokevirtual_helper(Rmethod, Rrecv, Rflags);
4246 }
4247 
4248 
4249 void TemplateTable::invokespecial(int byte_no) {
4250   transition(vtos, vtos);
4251   assert(byte_no == f1_byte, "use this argument");
4252   const Register Rrecv  = R2_tmp;
4253   prepare_invoke(byte_no, Rmethod, noreg, Rrecv);
4254   __ verify_oop(Rrecv);
4255   __ null_check(Rrecv, Rtemp);
4256   // do the call
4257   __ profile_call(Rrecv);
4258   __ jump_from_interpreted(Rmethod);
4259 }
4260 
4261 
4262 void TemplateTable::invokestatic(int byte_no) {
4263   transition(vtos, vtos);
4264   assert(byte_no == f1_byte, "use this argument");
4265   prepare_invoke(byte_no, Rmethod);
4266   // do the call
4267   __ profile_call(R2_tmp);
4268   __ jump_from_interpreted(Rmethod);
4269 }
4270 
4271 
4272 void TemplateTable::fast_invokevfinal(int byte_no) {
4273   transition(vtos, vtos);
4274   assert(byte_no == f2_byte, "use this argument");
4275   __ stop("fast_invokevfinal is not used on ARM");
4276 }
4277 
4278 
4279 void TemplateTable::invokeinterface(int byte_no) {
4280   transition(vtos, vtos);
4281   assert(byte_no == f1_byte, "use this argument");
4282 
4283   const Register Ritable = R1_tmp;
4284   const Register Rrecv   = R2_tmp;
4285   const Register Rinterf = R5_tmp;
4286   const Register Rindex  = R4_tmp;
4287   const Register Rflags  = R3_tmp;
4288   const Register Rklass  = R2_tmp; // Note! Same register with Rrecv
4289 
4290   prepare_invoke(byte_no, Rinterf, Rmethod, Rrecv, Rflags);
4291 
4292   // First check for Object case, then private interface method,
4293   // then regular interface method.
4294 
4295   // Special case of invokeinterface called for virtual method of
4296   // java.lang.Object.  See cpCache.cpp for details.
4297   Label notObjectMethod;
4298   __ tbz(Rflags, ConstantPoolCacheEntry::is_forced_virtual_shift, notObjectMethod);
4299   invokevirtual_helper(Rmethod, Rrecv, Rflags);
4300   __ bind(notObjectMethod);
4301 
4302   // Get receiver klass into Rklass - also a null check
4303   __ load_klass(Rklass, Rrecv);
4304 
4305   // Check for private method invocation - indicated by vfinal
4306   Label no_such_interface;
4307 
4308   Label notVFinal;
4309   __ tbz(Rflags, ConstantPoolCacheEntry::is_vfinal_shift, notVFinal);
4310 
4311   Label subtype;
4312   __ check_klass_subtype(Rklass, Rinterf, R1_tmp, R3_tmp, noreg, subtype);
4313   // If we get here the typecheck failed
4314   __ b(no_such_interface);
4315   __ bind(subtype);
4316 
4317   // do the call
4318   __ profile_final_call(R0_tmp);
4319   __ jump_from_interpreted(Rmethod);
4320 
4321   __ bind(notVFinal);
4322 
4323   // Receiver subtype check against REFC.
4324   __ lookup_interface_method(// inputs: rec. class, interface
4325                              Rklass, Rinterf, noreg,
4326                              // outputs:  scan temp. reg1, scan temp. reg2
4327                              noreg, Ritable, Rtemp,
4328                              no_such_interface);
4329 
4330   // profile this call
4331   __ profile_virtual_call(R0_tmp, Rklass);
4332 
4333   // Get declaring interface class from method
4334   __ ldr(Rtemp, Address(Rmethod, Method::const_offset()));
4335   __ ldr(Rtemp, Address(Rtemp, ConstMethod::constants_offset()));
4336   __ ldr(Rinterf, Address(Rtemp, ConstantPool::pool_holder_offset_in_bytes()));
4337 
4338   // Get itable index from method
4339   __ ldr_s32(Rtemp, Address(Rmethod, Method::itable_index_offset()));
4340   __ add(Rtemp, Rtemp, (-Method::itable_index_max)); // small negative constant is too large for an immediate on arm32
4341   __ neg(Rindex, Rtemp);
4342 
4343   __ lookup_interface_method(// inputs: rec. class, interface
4344                              Rklass, Rinterf, Rindex,
4345                              // outputs:  scan temp. reg1, scan temp. reg2
4346                              Rmethod, Ritable, Rtemp,
4347                              no_such_interface);
4348 
4349   // Rmethod: Method* to call
4350 
4351   // Check for abstract method error
4352   // Note: This should be done more efficiently via a throw_abstract_method_error
4353   //       interpreter entry point and a conditional jump to it in case of a null
4354   //       method.
4355   { Label L;
4356     __ cbnz(Rmethod, L);
4357     // throw exception
4358     // note: must restore interpreter registers to canonical
4359     //       state for exception handling to work correctly!
4360     __ restore_method();
4361     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
4362     // the call_VM checks for exception, so we should never return here.
4363     __ should_not_reach_here();
4364     __ bind(L);
4365   }
4366 
4367   // do the call
4368   __ jump_from_interpreted(Rmethod);
4369 
4370   // throw exception
4371   __ bind(no_such_interface);
4372   __ restore_method();
4373   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
4374   // the call_VM checks for exception, so we should never return here.
4375   __ should_not_reach_here();
4376 }
4377 
4378 void TemplateTable::invokehandle(int byte_no) {
4379   transition(vtos, vtos);
4380 
4381   // TODO-AARCH64 review register usage
4382   const Register Rrecv  = R2_tmp;
4383   const Register Rmtype = R4_tmp;
4384   const Register R5_method = R5_tmp;  // can't reuse Rmethod!
4385 
4386   prepare_invoke(byte_no, R5_method, Rmtype, Rrecv);
4387   __ null_check(Rrecv, Rtemp);
4388 
4389   // Rmtype:  MethodType object (from cpool->resolved_references[f1], if necessary)
4390   // Rmethod: MH.invokeExact_MT method (from f2)
4391 
4392   // Note:  Rmtype is already pushed (if necessary) by prepare_invoke
4393 
4394   // do the call
4395   __ profile_final_call(R3_tmp);  // FIXME: profile the LambdaForm also
4396   __ mov(Rmethod, R5_method);
4397   __ jump_from_interpreted(Rmethod);
4398 }
4399 
4400 void TemplateTable::invokedynamic(int byte_no) {
4401   transition(vtos, vtos);
4402 
4403   // TODO-AARCH64 review register usage
4404   const Register Rcallsite = R4_tmp;
4405   const Register R5_method = R5_tmp;  // can't reuse Rmethod!
4406 
4407   prepare_invoke(byte_no, R5_method, Rcallsite);
4408 
4409   // Rcallsite: CallSite object (from cpool->resolved_references[f1])
4410   // Rmethod:   MH.linkToCallSite method (from f2)
4411 
4412   // Note:  Rcallsite is already pushed by prepare_invoke
4413 
4414   if (ProfileInterpreter) {
4415     __ profile_call(R2_tmp);
4416   }
4417 
4418   // do the call
4419   __ mov(Rmethod, R5_method);
4420   __ jump_from_interpreted(Rmethod);
4421 }
4422 
4423 //----------------------------------------------------------------------------------------------------
4424 // Allocation
4425 
4426 void TemplateTable::_new() {
4427   transition(vtos, atos);
4428 
4429   const Register Robj   = R0_tos;
4430   const Register Rcpool = R1_tmp;
4431   const Register Rindex = R2_tmp;
4432   const Register Rtags  = R3_tmp;
4433   const Register Rsize  = R3_tmp;
4434 
4435   Register Rklass = R4_tmp;
4436   assert_different_registers(Rcpool, Rindex, Rtags, Rklass, Rtemp);
4437   assert_different_registers(Rcpool, Rindex, Rklass, Rsize);
4438 
4439   Label slow_case;
4440   Label done;
4441   Label initialize_header;
4442   Label initialize_object;  // including clearing the fields
4443 
4444   const bool allow_shared_alloc =
4445     Universe::heap()->supports_inline_contig_alloc();
4446 
4447   // Literals
4448   InlinedAddress Lheap_top_addr(allow_shared_alloc ? (address)Universe::heap()->top_addr() : NULL);
4449 
4450   __ get_unsigned_2_byte_index_at_bcp(Rindex, 1);
4451   __ get_cpool_and_tags(Rcpool, Rtags);
4452 
4453   // Make sure the class we're about to instantiate has been resolved.
4454   // This is done before loading InstanceKlass to be consistent with the order
4455   // how Constant Pool is updated (see ConstantPool::klass_at_put)
4456   const int tags_offset = Array<u1>::base_offset_in_bytes();
4457   __ add(Rtemp, Rtags, Rindex);
4458 
4459 #ifdef AARCH64
4460   __ add(Rtemp, Rtemp, tags_offset);
4461   __ ldarb(Rtemp, Rtemp);
4462 #else
4463   __ ldrb(Rtemp, Address(Rtemp, tags_offset));
4464 
4465   // use Rklass as a scratch
4466   volatile_barrier(MacroAssembler::LoadLoad, Rklass);
4467 #endif // AARCH64
4468 
4469   // get InstanceKlass
4470   __ cmp(Rtemp, JVM_CONSTANT_Class);
4471   __ b(slow_case, ne);
4472   __ load_resolved_klass_at_offset(Rcpool, Rindex, Rklass);
4473 
4474   // make sure klass is initialized & doesn't have finalizer
4475   // make sure klass is fully initialized
4476   __ ldrb(Rtemp, Address(Rklass, InstanceKlass::init_state_offset()));
4477   __ cmp(Rtemp, InstanceKlass::fully_initialized);
4478   __ b(slow_case, ne);
4479 
4480   // get instance_size in InstanceKlass (scaled to a count of bytes)
4481   __ ldr_u32(Rsize, Address(Rklass, Klass::layout_helper_offset()));
4482 
4483   // test to see if it has a finalizer or is malformed in some way
4484   // Klass::_lh_instance_slow_path_bit is really a bit mask, not bit number
4485   __ tbnz(Rsize, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case);
4486 
4487   // Allocate the instance:
4488   //  If TLAB is enabled:
4489   //    Try to allocate in the TLAB.
4490   //    If fails, go to the slow path.
4491   //  Else If inline contiguous allocations are enabled:
4492   //    Try to allocate in eden.
4493   //    If fails due to heap end, go to slow path.
4494   //
4495   //  If TLAB is enabled OR inline contiguous is enabled:
4496   //    Initialize the allocation.
4497   //    Exit.
4498   //
4499   //  Go to slow path.
4500   if (UseTLAB) {
4501     const Register Rtlab_top = R1_tmp;
4502     const Register Rtlab_end = R2_tmp;
4503     assert_different_registers(Robj, Rsize, Rklass, Rtlab_top, Rtlab_end);
4504 
4505     __ ldr(Robj, Address(Rthread, JavaThread::tlab_top_offset()));
4506     __ ldr(Rtlab_end, Address(Rthread, in_bytes(JavaThread::tlab_end_offset())));
4507     __ add(Rtlab_top, Robj, Rsize);
4508     __ cmp(Rtlab_top, Rtlab_end);
4509     __ b(slow_case, hi);
4510     __ str(Rtlab_top, Address(Rthread, JavaThread::tlab_top_offset()));
4511     if (ZeroTLAB) {
4512       // the fields have been already cleared
4513       __ b(initialize_header);
4514     } else {
4515       // initialize both the header and fields
4516       __ b(initialize_object);
4517     }
4518   } else {
4519     // Allocation in the shared Eden, if allowed.
4520     if (allow_shared_alloc) {
4521       const Register Rheap_top_addr = R2_tmp;
4522       const Register Rheap_top = R5_tmp;
4523       const Register Rheap_end = Rtemp;
4524       assert_different_registers(Robj, Rklass, Rsize, Rheap_top_addr, Rheap_top, Rheap_end, LR);
4525 
4526       // heap_end now (re)loaded in the loop since also used as a scratch register in the CAS
4527       __ ldr_literal(Rheap_top_addr, Lheap_top_addr);
4528 
4529       Label retry;
4530       __ bind(retry);
4531 
4532 #ifdef AARCH64
4533       __ ldxr(Robj, Rheap_top_addr);
4534 #else
4535       __ ldr(Robj, Address(Rheap_top_addr));
4536 #endif // AARCH64
4537 
4538       __ ldr(Rheap_end, Address(Rheap_top_addr, (intptr_t)Universe::heap()->end_addr()-(intptr_t)Universe::heap()->top_addr()));
4539       __ add(Rheap_top, Robj, Rsize);
4540       __ cmp(Rheap_top, Rheap_end);
4541       __ b(slow_case, hi);
4542 
4543       // Update heap top atomically.
4544       // If someone beats us on the allocation, try again, otherwise continue.
4545 #ifdef AARCH64
4546       __ stxr(Rtemp2, Rheap_top, Rheap_top_addr);
4547       __ cbnz_w(Rtemp2, retry);
4548 #else
4549       __ atomic_cas_bool(Robj, Rheap_top, Rheap_top_addr, 0, Rheap_end/*scratched*/);
4550       __ b(retry, ne);
4551 #endif // AARCH64
4552 
4553       __ incr_allocated_bytes(Rsize, Rtemp);
4554     }
4555   }
4556 
4557   if (UseTLAB || allow_shared_alloc) {
4558     const Register Rzero0 = R1_tmp;
4559     const Register Rzero1 = R2_tmp;
4560     const Register Rzero_end = R5_tmp;
4561     const Register Rzero_cur = Rtemp;
4562     assert_different_registers(Robj, Rsize, Rklass, Rzero0, Rzero1, Rzero_cur, Rzero_end);
4563 
4564     // The object is initialized before the header.  If the object size is
4565     // zero, go directly to the header initialization.
4566     __ bind(initialize_object);
4567     __ subs(Rsize, Rsize, sizeof(oopDesc));
4568     __ add(Rzero_cur, Robj, sizeof(oopDesc));
4569     __ b(initialize_header, eq);
4570 
4571 #ifdef ASSERT
4572     // make sure Rsize is a multiple of 8
4573     Label L;
4574     __ tst(Rsize, 0x07);
4575     __ b(L, eq);
4576     __ stop("object size is not multiple of 8 - adjust this code");
4577     __ bind(L);
4578 #endif
4579 
4580 #ifdef AARCH64
4581     {
4582       Label loop;
4583       // Step back by 1 word if object size is not a multiple of 2*wordSize.
4584       assert(wordSize <= sizeof(oopDesc), "oop header should contain at least one word");
4585       __ andr(Rtemp2, Rsize, (uintx)wordSize);
4586       __ sub(Rzero_cur, Rzero_cur, Rtemp2);
4587 
4588       // Zero by 2 words per iteration.
4589       __ bind(loop);
4590       __ subs(Rsize, Rsize, 2*wordSize);
4591       __ stp(ZR, ZR, Address(Rzero_cur, 2*wordSize, post_indexed));
4592       __ b(loop, gt);
4593     }
4594 #else
4595     __ mov(Rzero0, 0);
4596     __ mov(Rzero1, 0);
4597     __ add(Rzero_end, Rzero_cur, Rsize);
4598 
4599     // initialize remaining object fields: Rsize was a multiple of 8
4600     { Label loop;
4601       // loop is unrolled 2 times
4602       __ bind(loop);
4603       // #1
4604       __ stmia(Rzero_cur, RegisterSet(Rzero0) | RegisterSet(Rzero1), writeback);
4605       __ cmp(Rzero_cur, Rzero_end);
4606       // #2
4607       __ stmia(Rzero_cur, RegisterSet(Rzero0) | RegisterSet(Rzero1), writeback, ne);
4608       __ cmp(Rzero_cur, Rzero_end, ne);
4609       __ b(loop, ne);
4610     }
4611 #endif // AARCH64
4612 
4613     // initialize object header only.
4614     __ bind(initialize_header);
4615     if (UseBiasedLocking) {
4616       __ ldr(Rtemp, Address(Rklass, Klass::prototype_header_offset()));
4617     } else {
4618       __ mov_slow(Rtemp, (intptr_t)markOopDesc::prototype());
4619     }
4620     // mark
4621     __ str(Rtemp, Address(Robj, oopDesc::mark_offset_in_bytes()));
4622 
4623     // klass
4624 #ifdef AARCH64
4625     __ store_klass_gap(Robj);
4626 #endif // AARCH64
4627     __ store_klass(Rklass, Robj); // blows Rklass:
4628     Rklass = noreg;
4629 
4630     // Note: Disable DTrace runtime check for now to eliminate overhead on each allocation
4631     if (DTraceAllocProbes) {
4632       // Trigger dtrace event for fastpath
4633       Label Lcontinue;
4634 
4635       __ ldrb_global(Rtemp, (address)&DTraceAllocProbes);
4636       __ cbz(Rtemp, Lcontinue);
4637 
4638       __ push(atos);
4639       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), Robj);
4640       __ pop(atos);
4641 
4642       __ bind(Lcontinue);
4643     }
4644 
4645     __ b(done);
4646   } else {
4647     // jump over literals
4648     __ b(slow_case);
4649   }
4650 
4651   if (allow_shared_alloc) {
4652     __ bind_literal(Lheap_top_addr);
4653   }
4654 
4655   // slow case
4656   __ bind(slow_case);
4657   __ get_constant_pool(Rcpool);
4658   __ get_unsigned_2_byte_index_at_bcp(Rindex, 1);
4659   __ call_VM(Robj, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Rcpool, Rindex);
4660 
4661   // continue
4662   __ bind(done);
4663 
4664   // StoreStore barrier required after complete initialization
4665   // (headers + content zeroing), before the object may escape.
4666   __ membar(MacroAssembler::StoreStore, R1_tmp);
4667 }
4668 
4669 
4670 void TemplateTable::newarray() {
4671   transition(itos, atos);
4672   __ ldrb(R1, at_bcp(1));
4673   __ mov(R2, R0_tos);
4674   call_VM(R0_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), R1, R2);
4675   // MacroAssembler::StoreStore useless (included in the runtime exit path)
4676 }
4677 
4678 
4679 void TemplateTable::anewarray() {
4680   transition(itos, atos);
4681   __ get_unsigned_2_byte_index_at_bcp(R2, 1);
4682   __ get_constant_pool(R1);
4683   __ mov(R3, R0_tos);
4684   call_VM(R0_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), R1, R2, R3);
4685   // MacroAssembler::StoreStore useless (included in the runtime exit path)
4686 }
4687 
4688 
4689 void TemplateTable::arraylength() {
4690   transition(atos, itos);
4691   __ null_check(R0_tos, Rtemp, arrayOopDesc::length_offset_in_bytes());
4692   __ ldr_s32(R0_tos, Address(R0_tos, arrayOopDesc::length_offset_in_bytes()));
4693 }
4694 
4695 
4696 void TemplateTable::checkcast() {
4697   transition(atos, atos);
4698   Label done, is_null, quicked, resolved, throw_exception;
4699 
4700   const Register Robj = R0_tos;
4701   const Register Rcpool = R2_tmp;
4702   const Register Rtags = R3_tmp;
4703   const Register Rindex = R4_tmp;
4704   const Register Rsuper = R3_tmp;
4705   const Register Rsub   = R4_tmp;
4706   const Register Rsubtype_check_tmp1 = R1_tmp;
4707   const Register Rsubtype_check_tmp2 = LR_tmp;
4708 
4709   __ cbz(Robj, is_null);
4710 
4711   // Get cpool & tags index
4712   __ get_cpool_and_tags(Rcpool, Rtags);
4713   __ get_unsigned_2_byte_index_at_bcp(Rindex, 1);
4714 
4715   // See if bytecode has already been quicked
4716   __ add(Rtemp, Rtags, Rindex);
4717 #ifdef AARCH64
4718   // TODO-AARCH64: investigate if LoadLoad barrier is needed here or control dependency is enough
4719   __ add(Rtemp, Rtemp, Array<u1>::base_offset_in_bytes());
4720   __ ldarb(Rtemp, Rtemp); // acts as LoadLoad memory barrier
4721 #else
4722   __ ldrb(Rtemp, Address(Rtemp, Array<u1>::base_offset_in_bytes()));
4723 #endif // AARCH64
4724 
4725   __ cmp(Rtemp, JVM_CONSTANT_Class);
4726 
4727 #ifndef AARCH64
4728   volatile_barrier(MacroAssembler::LoadLoad, Rtemp, true);
4729 #endif // !AARCH64
4730 
4731   __ b(quicked, eq);
4732 
4733   __ push(atos);
4734   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4735   // vm_result_2 has metadata result
4736   __ get_vm_result_2(Rsuper, Robj);
4737   __ pop_ptr(Robj);
4738   __ b(resolved);
4739 
4740   __ bind(throw_exception);
4741   // Come here on failure of subtype check
4742   __ profile_typecheck_failed(R1_tmp);
4743   __ mov(R2_ClassCastException_obj, Robj);             // convention with generate_ClassCastException_handler()
4744   __ b(Interpreter::_throw_ClassCastException_entry);
4745 
4746   // Get superklass in Rsuper and subklass in Rsub
4747   __ bind(quicked);
4748   __ load_resolved_klass_at_offset(Rcpool, Rindex, Rsuper);
4749 
4750   __ bind(resolved);
4751   __ load_klass(Rsub, Robj);
4752 
4753   // Generate subtype check. Blows both tmps and Rtemp.
4754   assert_different_registers(Robj, Rsub, Rsuper, Rsubtype_check_tmp1, Rsubtype_check_tmp2, Rtemp);
4755   __ gen_subtype_check(Rsub, Rsuper, throw_exception, Rsubtype_check_tmp1, Rsubtype_check_tmp2);
4756 
4757   // Come here on success
4758 
4759   // Collect counts on whether this check-cast sees NULLs a lot or not.
4760   if (ProfileInterpreter) {
4761     __ b(done);
4762     __ bind(is_null);
4763     __ profile_null_seen(R1_tmp);
4764   } else {
4765     __ bind(is_null);   // same as 'done'
4766   }
4767   __ bind(done);
4768 }
4769 
4770 
4771 void TemplateTable::instanceof() {
4772   // result = 0: obj == NULL or  obj is not an instanceof the specified klass
4773   // result = 1: obj != NULL and obj is     an instanceof the specified klass
4774 
4775   transition(atos, itos);
4776   Label done, is_null, not_subtype, quicked, resolved;
4777 
4778   const Register Robj = R0_tos;
4779   const Register Rcpool = R2_tmp;
4780   const Register Rtags = R3_tmp;
4781   const Register Rindex = R4_tmp;
4782   const Register Rsuper = R3_tmp;
4783   const Register Rsub   = R4_tmp;
4784   const Register Rsubtype_check_tmp1 = R0_tmp;
4785   const Register Rsubtype_check_tmp2 = R1_tmp;
4786 
4787   __ cbz(Robj, is_null);
4788 
4789   __ load_klass(Rsub, Robj);
4790 
4791   // Get cpool & tags index
4792   __ get_cpool_and_tags(Rcpool, Rtags);
4793   __ get_unsigned_2_byte_index_at_bcp(Rindex, 1);
4794 
4795   // See if bytecode has already been quicked
4796   __ add(Rtemp, Rtags, Rindex);
4797 #ifdef AARCH64
4798   // TODO-AARCH64: investigate if LoadLoad barrier is needed here or control dependency is enough
4799   __ add(Rtemp, Rtemp, Array<u1>::base_offset_in_bytes());
4800   __ ldarb(Rtemp, Rtemp); // acts as LoadLoad memory barrier
4801 #else
4802   __ ldrb(Rtemp, Address(Rtemp, Array<u1>::base_offset_in_bytes()));
4803 #endif // AARCH64
4804   __ cmp(Rtemp, JVM_CONSTANT_Class);
4805 
4806 #ifndef AARCH64
4807   volatile_barrier(MacroAssembler::LoadLoad, Rtemp, true);
4808 #endif // !AARCH64
4809 
4810   __ b(quicked, eq);
4811 
4812   __ push(atos);
4813   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4814   // vm_result_2 has metadata result
4815   __ get_vm_result_2(Rsuper, Robj);
4816   __ pop_ptr(Robj);
4817   __ b(resolved);
4818 
4819   // Get superklass in Rsuper and subklass in Rsub
4820   __ bind(quicked);
4821   __ load_resolved_klass_at_offset(Rcpool, Rindex, Rsuper);
4822 
4823   __ bind(resolved);
4824   __ load_klass(Rsub, Robj);
4825 
4826   // Generate subtype check. Blows both tmps and Rtemp.
4827   __ gen_subtype_check(Rsub, Rsuper, not_subtype, Rsubtype_check_tmp1, Rsubtype_check_tmp2);
4828 
4829   // Come here on success
4830   __ mov(R0_tos, 1);
4831   __ b(done);
4832 
4833   __ bind(not_subtype);
4834   // Come here on failure
4835   __ profile_typecheck_failed(R1_tmp);
4836   __ mov(R0_tos, 0);
4837 
4838   // Collect counts on whether this test sees NULLs a lot or not.
4839   if (ProfileInterpreter) {
4840     __ b(done);
4841     __ bind(is_null);
4842     __ profile_null_seen(R1_tmp);
4843   } else {
4844     __ bind(is_null);   // same as 'done'
4845   }
4846   __ bind(done);
4847 }
4848 
4849 
4850 //----------------------------------------------------------------------------------------------------
4851 // Breakpoints
4852 void TemplateTable::_breakpoint() {
4853 
4854   // Note: We get here even if we are single stepping..
4855   // jbug inists on setting breakpoints at every bytecode
4856   // even if we are in single step mode.
4857 
4858   transition(vtos, vtos);
4859 
4860   // get the unpatched byte code
4861   __ mov(R1, Rmethod);
4862   __ mov(R2, Rbcp);
4863   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), R1, R2);
4864 #ifdef AARCH64
4865   __ sxtw(Rtmp_save0, R0);
4866 #else
4867   __ mov(Rtmp_save0, R0);
4868 #endif // AARCH64
4869 
4870   // post the breakpoint event
4871   __ mov(R1, Rmethod);
4872   __ mov(R2, Rbcp);
4873   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), R1, R2);
4874 
4875   // complete the execution of original bytecode
4876   __ mov(R3_bytecode, Rtmp_save0);
4877   __ dispatch_only_normal(vtos);
4878 }
4879 
4880 
4881 //----------------------------------------------------------------------------------------------------
4882 // Exceptions
4883 
4884 void TemplateTable::athrow() {
4885   transition(atos, vtos);
4886   __ mov(Rexception_obj, R0_tos);
4887   __ null_check(Rexception_obj, Rtemp);
4888   __ b(Interpreter::throw_exception_entry());
4889 }
4890 
4891 
4892 //----------------------------------------------------------------------------------------------------
4893 // Synchronization
4894 //
4895 // Note: monitorenter & exit are symmetric routines; which is reflected
4896 //       in the assembly code structure as well
4897 //
4898 // Stack layout:
4899 //
4900 // [expressions  ] <--- Rstack_top        = expression stack top
4901 // ..
4902 // [expressions  ]
4903 // [monitor entry] <--- monitor block top = expression stack bot
4904 // ..
4905 // [monitor entry]
4906 // [frame data   ] <--- monitor block bot
4907 // ...
4908 // [saved FP     ] <--- FP
4909 
4910 
4911 void TemplateTable::monitorenter() {
4912   transition(atos, vtos);
4913 
4914   const Register Robj = R0_tos;
4915   const Register Rentry = R1_tmp;
4916 
4917   // check for NULL object
4918   __ null_check(Robj, Rtemp);
4919 
4920   const int entry_size = (frame::interpreter_frame_monitor_size() * wordSize);
4921   assert (entry_size % StackAlignmentInBytes == 0, "keep stack alignment");
4922   Label allocate_monitor, allocated;
4923 
4924   // initialize entry pointer
4925   __ mov(Rentry, 0);                             // points to free slot or NULL
4926 
4927   // find a free slot in the monitor block (result in Rentry)
4928   { Label loop, exit;
4929     const Register Rcur = R2_tmp;
4930     const Register Rcur_obj = Rtemp;
4931     const Register Rbottom = R3_tmp;
4932     assert_different_registers(Robj, Rentry, Rcur, Rbottom, Rcur_obj);
4933 
4934     __ ldr(Rcur, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
4935                                  // points to current entry, starting with top-most entry
4936     __ sub(Rbottom, FP, -frame::interpreter_frame_monitor_block_bottom_offset * wordSize);
4937                                  // points to word before bottom of monitor block
4938 
4939     __ cmp(Rcur, Rbottom);                       // check if there are no monitors
4940 #ifndef AARCH64
4941     __ ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()), ne);
4942                                                  // prefetch monitor's object for the first iteration
4943 #endif // !AARCH64
4944     __ b(allocate_monitor, eq);                  // there are no monitors, skip searching
4945 
4946     __ bind(loop);
4947 #ifdef AARCH64
4948     __ ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()));
4949 #endif // AARCH64
4950     __ cmp(Rcur_obj, 0);                         // check if current entry is used
4951     __ mov(Rentry, Rcur, eq);                    // if not used then remember entry
4952 
4953     __ cmp(Rcur_obj, Robj);                      // check if current entry is for same object
4954     __ b(exit, eq);                              // if same object then stop searching
4955 
4956     __ add(Rcur, Rcur, entry_size);              // otherwise advance to next entry
4957 
4958     __ cmp(Rcur, Rbottom);                       // check if bottom reached
4959 #ifndef AARCH64
4960     __ ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()), ne);
4961                                                  // prefetch monitor's object for the next iteration
4962 #endif // !AARCH64
4963     __ b(loop, ne);                              // if not at bottom then check this entry
4964     __ bind(exit);
4965   }
4966 
4967   __ cbnz(Rentry, allocated);                    // check if a slot has been found; if found, continue with that one
4968 
4969   __ bind(allocate_monitor);
4970 
4971   // allocate one if there's no free slot
4972   { Label loop;
4973     assert_different_registers(Robj, Rentry, R2_tmp, Rtemp);
4974 
4975     // 1. compute new pointers
4976 
4977 #ifdef AARCH64
4978     __ check_extended_sp(Rtemp);
4979     __ sub(SP, SP, entry_size);                  // adjust extended SP
4980     __ mov(Rtemp, SP);
4981     __ str(Rtemp, Address(FP, frame::interpreter_frame_extended_sp_offset * wordSize));
4982 #endif // AARCH64
4983 
4984     __ ldr(Rentry, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
4985                                                  // old monitor block top / expression stack bottom
4986 
4987     __ sub(Rstack_top, Rstack_top, entry_size);  // move expression stack top
4988     __ check_stack_top_on_expansion();
4989 
4990     __ sub(Rentry, Rentry, entry_size);          // move expression stack bottom
4991 
4992     __ mov(R2_tmp, Rstack_top);                  // set start value for copy loop
4993 
4994     __ str(Rentry, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
4995                                                  // set new monitor block top
4996 
4997     // 2. move expression stack contents
4998 
4999     __ cmp(R2_tmp, Rentry);                                 // check if expression stack is empty
5000 #ifndef AARCH64
5001     __ ldr(Rtemp, Address(R2_tmp, entry_size), ne);         // load expression stack word from old location
5002 #endif // !AARCH64
5003     __ b(allocated, eq);
5004 
5005     __ bind(loop);
5006 #ifdef AARCH64
5007     __ ldr(Rtemp, Address(R2_tmp, entry_size));             // load expression stack word from old location
5008 #endif // AARCH64
5009     __ str(Rtemp, Address(R2_tmp, wordSize, post_indexed)); // store expression stack word at new location
5010                                                             // and advance to next word
5011     __ cmp(R2_tmp, Rentry);                                 // check if bottom reached
5012 #ifndef AARCH64
5013     __ ldr(Rtemp, Address(R2, entry_size), ne);             // load expression stack word from old location
5014 #endif // !AARCH64
5015     __ b(loop, ne);                                         // if not at bottom then copy next word
5016   }
5017 
5018   // call run-time routine
5019 
5020   // Rentry: points to monitor entry
5021   __ bind(allocated);
5022 
5023   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
5024   // The object has already been poped from the stack, so the expression stack looks correct.
5025   __ add(Rbcp, Rbcp, 1);
5026 
5027   __ str(Robj, Address(Rentry, BasicObjectLock::obj_offset_in_bytes()));     // store object
5028   __ lock_object(Rentry);
5029 
5030   // check to make sure this monitor doesn't cause stack overflow after locking
5031   __ save_bcp();  // in case of exception
5032   __ arm_stack_overflow_check(0, Rtemp);
5033 
5034   // The bcp has already been incremented. Just need to dispatch to next instruction.
5035   __ dispatch_next(vtos);
5036 }
5037 
5038 
5039 void TemplateTable::monitorexit() {
5040   transition(atos, vtos);
5041 
5042   const Register Robj = R0_tos;
5043   const Register Rcur = R1_tmp;
5044   const Register Rbottom = R2_tmp;
5045   const Register Rcur_obj = Rtemp;
5046 
5047   // check for NULL object
5048   __ null_check(Robj, Rtemp);
5049 
5050   const int entry_size = (frame::interpreter_frame_monitor_size() * wordSize);
5051   Label found, throw_exception;
5052 
5053   // find matching slot
5054   { Label loop;
5055     assert_different_registers(Robj, Rcur, Rbottom, Rcur_obj);
5056 
5057     __ ldr(Rcur, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
5058                                  // points to current entry, starting with top-most entry
5059     __ sub(Rbottom, FP, -frame::interpreter_frame_monitor_block_bottom_offset * wordSize);
5060                                  // points to word before bottom of monitor block
5061 
5062     __ cmp(Rcur, Rbottom);                       // check if bottom reached
5063 #ifndef AARCH64
5064     __ ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()), ne);
5065                                                  // prefetch monitor's object for the first iteration
5066 #endif // !AARCH64
5067     __ b(throw_exception, eq);                   // throw exception if there are now monitors
5068 
5069     __ bind(loop);
5070 #ifdef AARCH64
5071     __ ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()));
5072 #endif // AARCH64
5073     // check if current entry is for same object
5074     __ cmp(Rcur_obj, Robj);
5075     __ b(found, eq);                             // if same object then stop searching
5076     __ add(Rcur, Rcur, entry_size);              // otherwise advance to next entry
5077     __ cmp(Rcur, Rbottom);                       // check if bottom reached
5078 #ifndef AARCH64
5079     __ ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()), ne);
5080 #endif // !AARCH64
5081     __ b (loop, ne);                             // if not at bottom then check this entry
5082   }
5083 
5084   // error handling. Unlocking was not block-structured
5085   __ bind(throw_exception);
5086   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
5087   __ should_not_reach_here();
5088 
5089   // call run-time routine
5090   // Rcur: points to monitor entry
5091   __ bind(found);
5092   __ push_ptr(Robj);                             // make sure object is on stack (contract with oopMaps)
5093   __ unlock_object(Rcur);
5094   __ pop_ptr(Robj);                              // discard object
5095 }
5096 
5097 
5098 //----------------------------------------------------------------------------------------------------
5099 // Wide instructions
5100 
5101 void TemplateTable::wide() {
5102   transition(vtos, vtos);
5103   __ ldrb(R3_bytecode, at_bcp(1));
5104 
5105   InlinedAddress Ltable((address)Interpreter::_wentry_point);
5106   __ ldr_literal(Rtemp, Ltable);
5107   __ indirect_jump(Address::indexed_ptr(Rtemp, R3_bytecode), Rtemp);
5108 
5109   __ nop(); // to avoid filling CPU pipeline with invalid instructions
5110   __ nop();
5111   __ bind_literal(Ltable);
5112 }
5113 
5114 
5115 //----------------------------------------------------------------------------------------------------
5116 // Multi arrays
5117 
5118 void TemplateTable::multianewarray() {
5119   transition(vtos, atos);
5120   __ ldrb(Rtmp_save0, at_bcp(3));   // get number of dimensions
5121 
5122   // last dim is on top of stack; we want address of first one:
5123   // first_addr = last_addr + ndims * stackElementSize - 1*wordsize
5124   // the latter wordSize to point to the beginning of the array.
5125   __ add(Rtemp, Rstack_top, AsmOperand(Rtmp_save0, lsl, Interpreter::logStackElementSize));
5126   __ sub(R1, Rtemp, wordSize);
5127 
5128   call_VM(R0, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), R1);
5129   __ add(Rstack_top, Rstack_top, AsmOperand(Rtmp_save0, lsl, Interpreter::logStackElementSize));
5130   // MacroAssembler::StoreStore useless (included in the runtime exit path)
5131 }