1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "osContainer_linux.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.inline.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/threadSMR.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/elfFile.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 // put OS-includes here
  78 # include <sys/types.h>
  79 # include <sys/mman.h>
  80 # include <sys/stat.h>
  81 # include <sys/select.h>
  82 # include <pthread.h>
  83 # include <signal.h>
  84 # include <errno.h>
  85 # include <dlfcn.h>
  86 # include <stdio.h>
  87 # include <unistd.h>
  88 # include <sys/resource.h>
  89 # include <pthread.h>
  90 # include <sys/stat.h>
  91 # include <sys/time.h>
  92 # include <sys/times.h>
  93 # include <sys/utsname.h>
  94 # include <sys/socket.h>
  95 # include <sys/wait.h>
  96 # include <pwd.h>
  97 # include <poll.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 #define LARGEPAGES_BIT (1 << 6)
 132 #define DAX_SHARED_BIT (1 << 8)
 133 ////////////////////////////////////////////////////////////////////////////////
 134 // global variables
 135 julong os::Linux::_physical_memory = 0;
 136 
 137 address   os::Linux::_initial_thread_stack_bottom = NULL;
 138 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 139 
 140 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 141 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 142 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 143 Mutex* os::Linux::_createThread_lock = NULL;
 144 pthread_t os::Linux::_main_thread;
 145 int os::Linux::_page_size = -1;
 146 bool os::Linux::_supports_fast_thread_cpu_time = false;
 147 uint32_t os::Linux::_os_version = 0;
 148 const char * os::Linux::_glibc_version = NULL;
 149 const char * os::Linux::_libpthread_version = NULL;
 150 
 151 static jlong initial_time_count=0;
 152 
 153 static int clock_tics_per_sec = 100;
 154 
 155 // If the VM might have been created on the primordial thread, we need to resolve the
 156 // primordial thread stack bounds and check if the current thread might be the
 157 // primordial thread in places. If we know that the primordial thread is never used,
 158 // such as when the VM was created by one of the standard java launchers, we can
 159 // avoid this
 160 static bool suppress_primordial_thread_resolution = false;
 161 
 162 // For diagnostics to print a message once. see run_periodic_checks
 163 static sigset_t check_signal_done;
 164 static bool check_signals = true;
 165 
 166 // Signal number used to suspend/resume a thread
 167 
 168 // do not use any signal number less than SIGSEGV, see 4355769
 169 static int SR_signum = SIGUSR2;
 170 sigset_t SR_sigset;
 171 
 172 // utility functions
 173 
 174 static int SR_initialize();
 175 
 176 julong os::available_memory() {
 177   return Linux::available_memory();
 178 }
 179 
 180 julong os::Linux::available_memory() {
 181   // values in struct sysinfo are "unsigned long"
 182   struct sysinfo si;
 183   julong avail_mem;
 184 
 185   if (OSContainer::is_containerized()) {
 186     jlong mem_limit, mem_usage;
 187     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 188       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 189                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 190     }
 191     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 192       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 193     }
 194     if (mem_limit > 0 && mem_usage > 0 ) {
 195       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 196       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 197       return avail_mem;
 198     }
 199   }
 200 
 201   sysinfo(&si);
 202   avail_mem = (julong)si.freeram * si.mem_unit;
 203   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 204   return avail_mem;
 205 }
 206 
 207 julong os::physical_memory() {
 208   jlong phys_mem = 0;
 209   if (OSContainer::is_containerized()) {
 210     jlong mem_limit;
 211     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 212       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 213       return mem_limit;
 214     }
 215     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 216                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 217   }
 218 
 219   phys_mem = Linux::physical_memory();
 220   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 221   return phys_mem;
 222 }
 223 
 224 // Return true if user is running as root.
 225 
 226 bool os::have_special_privileges() {
 227   static bool init = false;
 228   static bool privileges = false;
 229   if (!init) {
 230     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 231     init = true;
 232   }
 233   return privileges;
 234 }
 235 
 236 
 237 #ifndef SYS_gettid
 238 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 239   #ifdef __ia64__
 240     #define SYS_gettid 1105
 241   #else
 242     #ifdef __i386__
 243       #define SYS_gettid 224
 244     #else
 245       #ifdef __amd64__
 246         #define SYS_gettid 186
 247       #else
 248         #ifdef __sparc__
 249           #define SYS_gettid 143
 250         #else
 251           #error define gettid for the arch
 252         #endif
 253       #endif
 254     #endif
 255   #endif
 256 #endif
 257 
 258 
 259 // pid_t gettid()
 260 //
 261 // Returns the kernel thread id of the currently running thread. Kernel
 262 // thread id is used to access /proc.
 263 pid_t os::Linux::gettid() {
 264   int rslt = syscall(SYS_gettid);
 265   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 266   return (pid_t)rslt;
 267 }
 268 
 269 // Most versions of linux have a bug where the number of processors are
 270 // determined by looking at the /proc file system.  In a chroot environment,
 271 // the system call returns 1.
 272 static bool unsafe_chroot_detected = false;
 273 static const char *unstable_chroot_error = "/proc file system not found.\n"
 274                      "Java may be unstable running multithreaded in a chroot "
 275                      "environment on Linux when /proc filesystem is not mounted.";
 276 
 277 void os::Linux::initialize_system_info() {
 278   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 279   if (processor_count() == 1) {
 280     pid_t pid = os::Linux::gettid();
 281     char fname[32];
 282     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 283     FILE *fp = fopen(fname, "r");
 284     if (fp == NULL) {
 285       unsafe_chroot_detected = true;
 286     } else {
 287       fclose(fp);
 288     }
 289   }
 290   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 291   assert(processor_count() > 0, "linux error");
 292 }
 293 
 294 void os::init_system_properties_values() {
 295   // The next steps are taken in the product version:
 296   //
 297   // Obtain the JAVA_HOME value from the location of libjvm.so.
 298   // This library should be located at:
 299   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 300   //
 301   // If "/jre/lib/" appears at the right place in the path, then we
 302   // assume libjvm.so is installed in a JDK and we use this path.
 303   //
 304   // Otherwise exit with message: "Could not create the Java virtual machine."
 305   //
 306   // The following extra steps are taken in the debugging version:
 307   //
 308   // If "/jre/lib/" does NOT appear at the right place in the path
 309   // instead of exit check for $JAVA_HOME environment variable.
 310   //
 311   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 312   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 313   // it looks like libjvm.so is installed there
 314   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 315   //
 316   // Otherwise exit.
 317   //
 318   // Important note: if the location of libjvm.so changes this
 319   // code needs to be changed accordingly.
 320 
 321   // See ld(1):
 322   //      The linker uses the following search paths to locate required
 323   //      shared libraries:
 324   //        1: ...
 325   //        ...
 326   //        7: The default directories, normally /lib and /usr/lib.
 327 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 328   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 329 #else
 330   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 331 #endif
 332 
 333 // Base path of extensions installed on the system.
 334 #define SYS_EXT_DIR     "/usr/java/packages"
 335 #define EXTENSIONS_DIR  "/lib/ext"
 336 
 337   // Buffer that fits several sprintfs.
 338   // Note that the space for the colon and the trailing null are provided
 339   // by the nulls included by the sizeof operator.
 340   const size_t bufsize =
 341     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 342          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 343   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 344 
 345   // sysclasspath, java_home, dll_dir
 346   {
 347     char *pslash;
 348     os::jvm_path(buf, bufsize);
 349 
 350     // Found the full path to libjvm.so.
 351     // Now cut the path to <java_home>/jre if we can.
 352     pslash = strrchr(buf, '/');
 353     if (pslash != NULL) {
 354       *pslash = '\0';            // Get rid of /libjvm.so.
 355     }
 356     pslash = strrchr(buf, '/');
 357     if (pslash != NULL) {
 358       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 359     }
 360     Arguments::set_dll_dir(buf);
 361 
 362     if (pslash != NULL) {
 363       pslash = strrchr(buf, '/');
 364       if (pslash != NULL) {
 365         *pslash = '\0';        // Get rid of /lib.
 366       }
 367     }
 368     Arguments::set_java_home(buf);
 369     if (!set_boot_path('/', ':')) {
 370       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 371     }
 372   }
 373 
 374   // Where to look for native libraries.
 375   //
 376   // Note: Due to a legacy implementation, most of the library path
 377   // is set in the launcher. This was to accomodate linking restrictions
 378   // on legacy Linux implementations (which are no longer supported).
 379   // Eventually, all the library path setting will be done here.
 380   //
 381   // However, to prevent the proliferation of improperly built native
 382   // libraries, the new path component /usr/java/packages is added here.
 383   // Eventually, all the library path setting will be done here.
 384   {
 385     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 386     // should always exist (until the legacy problem cited above is
 387     // addressed).
 388     const char *v = ::getenv("LD_LIBRARY_PATH");
 389     const char *v_colon = ":";
 390     if (v == NULL) { v = ""; v_colon = ""; }
 391     // That's +1 for the colon and +1 for the trailing '\0'.
 392     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 393                                                      strlen(v) + 1 +
 394                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 395                                                      mtInternal);
 396     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 397     Arguments::set_library_path(ld_library_path);
 398     FREE_C_HEAP_ARRAY(char, ld_library_path);
 399   }
 400 
 401   // Extensions directories.
 402   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 403   Arguments::set_ext_dirs(buf);
 404 
 405   FREE_C_HEAP_ARRAY(char, buf);
 406 
 407 #undef DEFAULT_LIBPATH
 408 #undef SYS_EXT_DIR
 409 #undef EXTENSIONS_DIR
 410 }
 411 
 412 ////////////////////////////////////////////////////////////////////////////////
 413 // breakpoint support
 414 
 415 void os::breakpoint() {
 416   BREAKPOINT;
 417 }
 418 
 419 extern "C" void breakpoint() {
 420   // use debugger to set breakpoint here
 421 }
 422 
 423 ////////////////////////////////////////////////////////////////////////////////
 424 // signal support
 425 
 426 debug_only(static bool signal_sets_initialized = false);
 427 static sigset_t unblocked_sigs, vm_sigs;
 428 
 429 void os::Linux::signal_sets_init() {
 430   // Should also have an assertion stating we are still single-threaded.
 431   assert(!signal_sets_initialized, "Already initialized");
 432   // Fill in signals that are necessarily unblocked for all threads in
 433   // the VM. Currently, we unblock the following signals:
 434   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 435   //                         by -Xrs (=ReduceSignalUsage));
 436   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 437   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 438   // the dispositions or masks wrt these signals.
 439   // Programs embedding the VM that want to use the above signals for their
 440   // own purposes must, at this time, use the "-Xrs" option to prevent
 441   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 442   // (See bug 4345157, and other related bugs).
 443   // In reality, though, unblocking these signals is really a nop, since
 444   // these signals are not blocked by default.
 445   sigemptyset(&unblocked_sigs);
 446   sigaddset(&unblocked_sigs, SIGILL);
 447   sigaddset(&unblocked_sigs, SIGSEGV);
 448   sigaddset(&unblocked_sigs, SIGBUS);
 449   sigaddset(&unblocked_sigs, SIGFPE);
 450 #if defined(PPC64)
 451   sigaddset(&unblocked_sigs, SIGTRAP);
 452 #endif
 453   sigaddset(&unblocked_sigs, SR_signum);
 454 
 455   if (!ReduceSignalUsage) {
 456     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 457       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 458     }
 459     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 460       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 461     }
 462     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 463       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 464     }
 465   }
 466   // Fill in signals that are blocked by all but the VM thread.
 467   sigemptyset(&vm_sigs);
 468   if (!ReduceSignalUsage) {
 469     sigaddset(&vm_sigs, BREAK_SIGNAL);
 470   }
 471   debug_only(signal_sets_initialized = true);
 472 
 473 }
 474 
 475 // These are signals that are unblocked while a thread is running Java.
 476 // (For some reason, they get blocked by default.)
 477 sigset_t* os::Linux::unblocked_signals() {
 478   assert(signal_sets_initialized, "Not initialized");
 479   return &unblocked_sigs;
 480 }
 481 
 482 // These are the signals that are blocked while a (non-VM) thread is
 483 // running Java. Only the VM thread handles these signals.
 484 sigset_t* os::Linux::vm_signals() {
 485   assert(signal_sets_initialized, "Not initialized");
 486   return &vm_sigs;
 487 }
 488 
 489 void os::Linux::hotspot_sigmask(Thread* thread) {
 490 
 491   //Save caller's signal mask before setting VM signal mask
 492   sigset_t caller_sigmask;
 493   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 494 
 495   OSThread* osthread = thread->osthread();
 496   osthread->set_caller_sigmask(caller_sigmask);
 497 
 498   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 499 
 500   if (!ReduceSignalUsage) {
 501     if (thread->is_VM_thread()) {
 502       // Only the VM thread handles BREAK_SIGNAL ...
 503       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 504     } else {
 505       // ... all other threads block BREAK_SIGNAL
 506       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 507     }
 508   }
 509 }
 510 
 511 //////////////////////////////////////////////////////////////////////////////
 512 // detecting pthread library
 513 
 514 void os::Linux::libpthread_init() {
 515   // Save glibc and pthread version strings.
 516 #if !defined(_CS_GNU_LIBC_VERSION) || \
 517     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 518   #error "glibc too old (< 2.3.2)"
 519 #endif
 520 
 521   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 522   assert(n > 0, "cannot retrieve glibc version");
 523   char *str = (char *)malloc(n, mtInternal);
 524   confstr(_CS_GNU_LIBC_VERSION, str, n);
 525   os::Linux::set_glibc_version(str);
 526 
 527   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 528   assert(n > 0, "cannot retrieve pthread version");
 529   str = (char *)malloc(n, mtInternal);
 530   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 531   os::Linux::set_libpthread_version(str);
 532 }
 533 
 534 /////////////////////////////////////////////////////////////////////////////
 535 // thread stack expansion
 536 
 537 // os::Linux::manually_expand_stack() takes care of expanding the thread
 538 // stack. Note that this is normally not needed: pthread stacks allocate
 539 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 540 // committed. Therefore it is not necessary to expand the stack manually.
 541 //
 542 // Manually expanding the stack was historically needed on LinuxThreads
 543 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 544 // it is kept to deal with very rare corner cases:
 545 //
 546 // For one, user may run the VM on an own implementation of threads
 547 // whose stacks are - like the old LinuxThreads - implemented using
 548 // mmap(MAP_GROWSDOWN).
 549 //
 550 // Also, this coding may be needed if the VM is running on the primordial
 551 // thread. Normally we avoid running on the primordial thread; however,
 552 // user may still invoke the VM on the primordial thread.
 553 //
 554 // The following historical comment describes the details about running
 555 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 556 
 557 
 558 // Force Linux kernel to expand current thread stack. If "bottom" is close
 559 // to the stack guard, caller should block all signals.
 560 //
 561 // MAP_GROWSDOWN:
 562 //   A special mmap() flag that is used to implement thread stacks. It tells
 563 //   kernel that the memory region should extend downwards when needed. This
 564 //   allows early versions of LinuxThreads to only mmap the first few pages
 565 //   when creating a new thread. Linux kernel will automatically expand thread
 566 //   stack as needed (on page faults).
 567 //
 568 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 569 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 570 //   region, it's hard to tell if the fault is due to a legitimate stack
 571 //   access or because of reading/writing non-exist memory (e.g. buffer
 572 //   overrun). As a rule, if the fault happens below current stack pointer,
 573 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 574 //   application (see Linux kernel fault.c).
 575 //
 576 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 577 //   stack overflow detection.
 578 //
 579 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 580 //   not use MAP_GROWSDOWN.
 581 //
 582 // To get around the problem and allow stack banging on Linux, we need to
 583 // manually expand thread stack after receiving the SIGSEGV.
 584 //
 585 // There are two ways to expand thread stack to address "bottom", we used
 586 // both of them in JVM before 1.5:
 587 //   1. adjust stack pointer first so that it is below "bottom", and then
 588 //      touch "bottom"
 589 //   2. mmap() the page in question
 590 //
 591 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 592 // if current sp is already near the lower end of page 101, and we need to
 593 // call mmap() to map page 100, it is possible that part of the mmap() frame
 594 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 595 // That will destroy the mmap() frame and cause VM to crash.
 596 //
 597 // The following code works by adjusting sp first, then accessing the "bottom"
 598 // page to force a page fault. Linux kernel will then automatically expand the
 599 // stack mapping.
 600 //
 601 // _expand_stack_to() assumes its frame size is less than page size, which
 602 // should always be true if the function is not inlined.
 603 
 604 static void NOINLINE _expand_stack_to(address bottom) {
 605   address sp;
 606   size_t size;
 607   volatile char *p;
 608 
 609   // Adjust bottom to point to the largest address within the same page, it
 610   // gives us a one-page buffer if alloca() allocates slightly more memory.
 611   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 612   bottom += os::Linux::page_size() - 1;
 613 
 614   // sp might be slightly above current stack pointer; if that's the case, we
 615   // will alloca() a little more space than necessary, which is OK. Don't use
 616   // os::current_stack_pointer(), as its result can be slightly below current
 617   // stack pointer, causing us to not alloca enough to reach "bottom".
 618   sp = (address)&sp;
 619 
 620   if (sp > bottom) {
 621     size = sp - bottom;
 622     p = (volatile char *)alloca(size);
 623     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 624     p[0] = '\0';
 625   }
 626 }
 627 
 628 void os::Linux::expand_stack_to(address bottom) {
 629   _expand_stack_to(bottom);
 630 }
 631 
 632 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 633   assert(t!=NULL, "just checking");
 634   assert(t->osthread()->expanding_stack(), "expand should be set");
 635   assert(t->stack_base() != NULL, "stack_base was not initialized");
 636 
 637   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 638     sigset_t mask_all, old_sigset;
 639     sigfillset(&mask_all);
 640     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 641     _expand_stack_to(addr);
 642     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 643     return true;
 644   }
 645   return false;
 646 }
 647 
 648 //////////////////////////////////////////////////////////////////////////////
 649 // create new thread
 650 
 651 // Thread start routine for all newly created threads
 652 static void *thread_native_entry(Thread *thread) {
 653   // Try to randomize the cache line index of hot stack frames.
 654   // This helps when threads of the same stack traces evict each other's
 655   // cache lines. The threads can be either from the same JVM instance, or
 656   // from different JVM instances. The benefit is especially true for
 657   // processors with hyperthreading technology.
 658   static int counter = 0;
 659   int pid = os::current_process_id();
 660   alloca(((pid ^ counter++) & 7) * 128);
 661 
 662   thread->initialize_thread_current();
 663 
 664   OSThread* osthread = thread->osthread();
 665   Monitor* sync = osthread->startThread_lock();
 666 
 667   osthread->set_thread_id(os::current_thread_id());
 668 
 669   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 670     os::current_thread_id(), (uintx) pthread_self());
 671 
 672   if (UseNUMA) {
 673     int lgrp_id = os::numa_get_group_id();
 674     if (lgrp_id != -1) {
 675       thread->set_lgrp_id(lgrp_id);
 676     }
 677   }
 678   // initialize signal mask for this thread
 679   os::Linux::hotspot_sigmask(thread);
 680 
 681   // initialize floating point control register
 682   os::Linux::init_thread_fpu_state();
 683 
 684   // handshaking with parent thread
 685   {
 686     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 687 
 688     // notify parent thread
 689     osthread->set_state(INITIALIZED);
 690     sync->notify_all();
 691 
 692     // wait until os::start_thread()
 693     while (osthread->get_state() == INITIALIZED) {
 694       sync->wait(Mutex::_no_safepoint_check_flag);
 695     }
 696   }
 697 
 698   // call one more level start routine
 699   thread->run();
 700 
 701   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 702     os::current_thread_id(), (uintx) pthread_self());
 703 
 704   // If a thread has not deleted itself ("delete this") as part of its
 705   // termination sequence, we have to ensure thread-local-storage is
 706   // cleared before we actually terminate. No threads should ever be
 707   // deleted asynchronously with respect to their termination.
 708   if (Thread::current_or_null_safe() != NULL) {
 709     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 710     thread->clear_thread_current();
 711   }
 712 
 713   return 0;
 714 }
 715 
 716 bool os::create_thread(Thread* thread, ThreadType thr_type,
 717                        size_t req_stack_size) {
 718   assert(thread->osthread() == NULL, "caller responsible");
 719 
 720   // Allocate the OSThread object
 721   OSThread* osthread = new OSThread(NULL, NULL);
 722   if (osthread == NULL) {
 723     return false;
 724   }
 725 
 726   // set the correct thread state
 727   osthread->set_thread_type(thr_type);
 728 
 729   // Initial state is ALLOCATED but not INITIALIZED
 730   osthread->set_state(ALLOCATED);
 731 
 732   thread->set_osthread(osthread);
 733 
 734   // init thread attributes
 735   pthread_attr_t attr;
 736   pthread_attr_init(&attr);
 737   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 738 
 739   // Calculate stack size if it's not specified by caller.
 740   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 741   // In the Linux NPTL pthread implementation the guard size mechanism
 742   // is not implemented properly. The posix standard requires adding
 743   // the size of the guard pages to the stack size, instead Linux
 744   // takes the space out of 'stacksize'. Thus we adapt the requested
 745   // stack_size by the size of the guard pages to mimick proper
 746   // behaviour. However, be careful not to end up with a size
 747   // of zero due to overflow. Don't add the guard page in that case.
 748   size_t guard_size = os::Linux::default_guard_size(thr_type);
 749   if (stack_size <= SIZE_MAX - guard_size) {
 750     stack_size += guard_size;
 751   }
 752   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 753 
 754   int status = pthread_attr_setstacksize(&attr, stack_size);
 755   assert_status(status == 0, status, "pthread_attr_setstacksize");
 756 
 757   // Configure glibc guard page.
 758   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 759 
 760   ThreadState state;
 761 
 762   {
 763     pthread_t tid;
 764     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 765 
 766     char buf[64];
 767     if (ret == 0) {
 768       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 769         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 770     } else {
 771       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 772         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 773     }
 774 
 775     pthread_attr_destroy(&attr);
 776 
 777     if (ret != 0) {
 778       // Need to clean up stuff we've allocated so far
 779       thread->set_osthread(NULL);
 780       delete osthread;
 781       return false;
 782     }
 783 
 784     // Store pthread info into the OSThread
 785     osthread->set_pthread_id(tid);
 786 
 787     // Wait until child thread is either initialized or aborted
 788     {
 789       Monitor* sync_with_child = osthread->startThread_lock();
 790       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 791       while ((state = osthread->get_state()) == ALLOCATED) {
 792         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 793       }
 794     }
 795   }
 796 
 797   // Aborted due to thread limit being reached
 798   if (state == ZOMBIE) {
 799     thread->set_osthread(NULL);
 800     delete osthread;
 801     return false;
 802   }
 803 
 804   // The thread is returned suspended (in state INITIALIZED),
 805   // and is started higher up in the call chain
 806   assert(state == INITIALIZED, "race condition");
 807   return true;
 808 }
 809 
 810 /////////////////////////////////////////////////////////////////////////////
 811 // attach existing thread
 812 
 813 // bootstrap the main thread
 814 bool os::create_main_thread(JavaThread* thread) {
 815   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 816   return create_attached_thread(thread);
 817 }
 818 
 819 bool os::create_attached_thread(JavaThread* thread) {
 820 #ifdef ASSERT
 821   thread->verify_not_published();
 822 #endif
 823 
 824   // Allocate the OSThread object
 825   OSThread* osthread = new OSThread(NULL, NULL);
 826 
 827   if (osthread == NULL) {
 828     return false;
 829   }
 830 
 831   // Store pthread info into the OSThread
 832   osthread->set_thread_id(os::Linux::gettid());
 833   osthread->set_pthread_id(::pthread_self());
 834 
 835   // initialize floating point control register
 836   os::Linux::init_thread_fpu_state();
 837 
 838   // Initial thread state is RUNNABLE
 839   osthread->set_state(RUNNABLE);
 840 
 841   thread->set_osthread(osthread);
 842 
 843   if (UseNUMA) {
 844     int lgrp_id = os::numa_get_group_id();
 845     if (lgrp_id != -1) {
 846       thread->set_lgrp_id(lgrp_id);
 847     }
 848   }
 849 
 850   if (os::is_primordial_thread()) {
 851     // If current thread is primordial thread, its stack is mapped on demand,
 852     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 853     // the entire stack region to avoid SEGV in stack banging.
 854     // It is also useful to get around the heap-stack-gap problem on SuSE
 855     // kernel (see 4821821 for details). We first expand stack to the top
 856     // of yellow zone, then enable stack yellow zone (order is significant,
 857     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 858     // is no gap between the last two virtual memory regions.
 859 
 860     JavaThread *jt = (JavaThread *)thread;
 861     address addr = jt->stack_reserved_zone_base();
 862     assert(addr != NULL, "initialization problem?");
 863     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 864 
 865     osthread->set_expanding_stack();
 866     os::Linux::manually_expand_stack(jt, addr);
 867     osthread->clear_expanding_stack();
 868   }
 869 
 870   // initialize signal mask for this thread
 871   // and save the caller's signal mask
 872   os::Linux::hotspot_sigmask(thread);
 873 
 874   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 875     os::current_thread_id(), (uintx) pthread_self());
 876 
 877   return true;
 878 }
 879 
 880 void os::pd_start_thread(Thread* thread) {
 881   OSThread * osthread = thread->osthread();
 882   assert(osthread->get_state() != INITIALIZED, "just checking");
 883   Monitor* sync_with_child = osthread->startThread_lock();
 884   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 885   sync_with_child->notify();
 886 }
 887 
 888 // Free Linux resources related to the OSThread
 889 void os::free_thread(OSThread* osthread) {
 890   assert(osthread != NULL, "osthread not set");
 891 
 892   // We are told to free resources of the argument thread,
 893   // but we can only really operate on the current thread.
 894   assert(Thread::current()->osthread() == osthread,
 895          "os::free_thread but not current thread");
 896 
 897 #ifdef ASSERT
 898   sigset_t current;
 899   sigemptyset(&current);
 900   pthread_sigmask(SIG_SETMASK, NULL, &current);
 901   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 902 #endif
 903 
 904   // Restore caller's signal mask
 905   sigset_t sigmask = osthread->caller_sigmask();
 906   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 907 
 908   delete osthread;
 909 }
 910 
 911 //////////////////////////////////////////////////////////////////////////////
 912 // primordial thread
 913 
 914 // Check if current thread is the primordial thread, similar to Solaris thr_main.
 915 bool os::is_primordial_thread(void) {
 916   if (suppress_primordial_thread_resolution) {
 917     return false;
 918   }
 919   char dummy;
 920   // If called before init complete, thread stack bottom will be null.
 921   // Can be called if fatal error occurs before initialization.
 922   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
 923   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
 924          os::Linux::initial_thread_stack_size()   != 0,
 925          "os::init did not locate primordial thread's stack region");
 926   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
 927       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
 928                         os::Linux::initial_thread_stack_size()) {
 929     return true;
 930   } else {
 931     return false;
 932   }
 933 }
 934 
 935 // Find the virtual memory area that contains addr
 936 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 937   FILE *fp = fopen("/proc/self/maps", "r");
 938   if (fp) {
 939     address low, high;
 940     while (!feof(fp)) {
 941       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 942         if (low <= addr && addr < high) {
 943           if (vma_low)  *vma_low  = low;
 944           if (vma_high) *vma_high = high;
 945           fclose(fp);
 946           return true;
 947         }
 948       }
 949       for (;;) {
 950         int ch = fgetc(fp);
 951         if (ch == EOF || ch == (int)'\n') break;
 952       }
 953     }
 954     fclose(fp);
 955   }
 956   return false;
 957 }
 958 
 959 // Locate primordial thread stack. This special handling of primordial thread stack
 960 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 961 // bogus value for the primordial process thread. While the launcher has created
 962 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 963 // JNI invocation API from a primordial thread.
 964 void os::Linux::capture_initial_stack(size_t max_size) {
 965 
 966   // max_size is either 0 (which means accept OS default for thread stacks) or
 967   // a user-specified value known to be at least the minimum needed. If we
 968   // are actually on the primordial thread we can make it appear that we have a
 969   // smaller max_size stack by inserting the guard pages at that location. But we
 970   // cannot do anything to emulate a larger stack than what has been provided by
 971   // the OS or threading library. In fact if we try to use a stack greater than
 972   // what is set by rlimit then we will crash the hosting process.
 973 
 974   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 975   // If this is "unlimited" then it will be a huge value.
 976   struct rlimit rlim;
 977   getrlimit(RLIMIT_STACK, &rlim);
 978   size_t stack_size = rlim.rlim_cur;
 979 
 980   // 6308388: a bug in ld.so will relocate its own .data section to the
 981   //   lower end of primordial stack; reduce ulimit -s value a little bit
 982   //   so we won't install guard page on ld.so's data section.
 983   //   But ensure we don't underflow the stack size - allow 1 page spare
 984   if (stack_size >= (size_t)(3 * page_size())) {
 985     stack_size -= 2 * page_size();
 986   }
 987 
 988   // Try to figure out where the stack base (top) is. This is harder.
 989   //
 990   // When an application is started, glibc saves the initial stack pointer in
 991   // a global variable "__libc_stack_end", which is then used by system
 992   // libraries. __libc_stack_end should be pretty close to stack top. The
 993   // variable is available since the very early days. However, because it is
 994   // a private interface, it could disappear in the future.
 995   //
 996   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 997   // to __libc_stack_end, it is very close to stack top, but isn't the real
 998   // stack top. Note that /proc may not exist if VM is running as a chroot
 999   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1000   // /proc/<pid>/stat could change in the future (though unlikely).
1001   //
1002   // We try __libc_stack_end first. If that doesn't work, look for
1003   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1004   // as a hint, which should work well in most cases.
1005 
1006   uintptr_t stack_start;
1007 
1008   // try __libc_stack_end first
1009   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1010   if (p && *p) {
1011     stack_start = *p;
1012   } else {
1013     // see if we can get the start_stack field from /proc/self/stat
1014     FILE *fp;
1015     int pid;
1016     char state;
1017     int ppid;
1018     int pgrp;
1019     int session;
1020     int nr;
1021     int tpgrp;
1022     unsigned long flags;
1023     unsigned long minflt;
1024     unsigned long cminflt;
1025     unsigned long majflt;
1026     unsigned long cmajflt;
1027     unsigned long utime;
1028     unsigned long stime;
1029     long cutime;
1030     long cstime;
1031     long prio;
1032     long nice;
1033     long junk;
1034     long it_real;
1035     uintptr_t start;
1036     uintptr_t vsize;
1037     intptr_t rss;
1038     uintptr_t rsslim;
1039     uintptr_t scodes;
1040     uintptr_t ecode;
1041     int i;
1042 
1043     // Figure what the primordial thread stack base is. Code is inspired
1044     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1045     // followed by command name surrounded by parentheses, state, etc.
1046     char stat[2048];
1047     int statlen;
1048 
1049     fp = fopen("/proc/self/stat", "r");
1050     if (fp) {
1051       statlen = fread(stat, 1, 2047, fp);
1052       stat[statlen] = '\0';
1053       fclose(fp);
1054 
1055       // Skip pid and the command string. Note that we could be dealing with
1056       // weird command names, e.g. user could decide to rename java launcher
1057       // to "java 1.4.2 :)", then the stat file would look like
1058       //                1234 (java 1.4.2 :)) R ... ...
1059       // We don't really need to know the command string, just find the last
1060       // occurrence of ")" and then start parsing from there. See bug 4726580.
1061       char * s = strrchr(stat, ')');
1062 
1063       i = 0;
1064       if (s) {
1065         // Skip blank chars
1066         do { s++; } while (s && isspace(*s));
1067 
1068 #define _UFM UINTX_FORMAT
1069 #define _DFM INTX_FORMAT
1070 
1071         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1072         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1073         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1074                    &state,          // 3  %c
1075                    &ppid,           // 4  %d
1076                    &pgrp,           // 5  %d
1077                    &session,        // 6  %d
1078                    &nr,             // 7  %d
1079                    &tpgrp,          // 8  %d
1080                    &flags,          // 9  %lu
1081                    &minflt,         // 10 %lu
1082                    &cminflt,        // 11 %lu
1083                    &majflt,         // 12 %lu
1084                    &cmajflt,        // 13 %lu
1085                    &utime,          // 14 %lu
1086                    &stime,          // 15 %lu
1087                    &cutime,         // 16 %ld
1088                    &cstime,         // 17 %ld
1089                    &prio,           // 18 %ld
1090                    &nice,           // 19 %ld
1091                    &junk,           // 20 %ld
1092                    &it_real,        // 21 %ld
1093                    &start,          // 22 UINTX_FORMAT
1094                    &vsize,          // 23 UINTX_FORMAT
1095                    &rss,            // 24 INTX_FORMAT
1096                    &rsslim,         // 25 UINTX_FORMAT
1097                    &scodes,         // 26 UINTX_FORMAT
1098                    &ecode,          // 27 UINTX_FORMAT
1099                    &stack_start);   // 28 UINTX_FORMAT
1100       }
1101 
1102 #undef _UFM
1103 #undef _DFM
1104 
1105       if (i != 28 - 2) {
1106         assert(false, "Bad conversion from /proc/self/stat");
1107         // product mode - assume we are the primordial thread, good luck in the
1108         // embedded case.
1109         warning("Can't detect primordial thread stack location - bad conversion");
1110         stack_start = (uintptr_t) &rlim;
1111       }
1112     } else {
1113       // For some reason we can't open /proc/self/stat (for example, running on
1114       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1115       // most cases, so don't abort:
1116       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1117       stack_start = (uintptr_t) &rlim;
1118     }
1119   }
1120 
1121   // Now we have a pointer (stack_start) very close to the stack top, the
1122   // next thing to do is to figure out the exact location of stack top. We
1123   // can find out the virtual memory area that contains stack_start by
1124   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1125   // and its upper limit is the real stack top. (again, this would fail if
1126   // running inside chroot, because /proc may not exist.)
1127 
1128   uintptr_t stack_top;
1129   address low, high;
1130   if (find_vma((address)stack_start, &low, &high)) {
1131     // success, "high" is the true stack top. (ignore "low", because initial
1132     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1133     stack_top = (uintptr_t)high;
1134   } else {
1135     // failed, likely because /proc/self/maps does not exist
1136     warning("Can't detect primordial thread stack location - find_vma failed");
1137     // best effort: stack_start is normally within a few pages below the real
1138     // stack top, use it as stack top, and reduce stack size so we won't put
1139     // guard page outside stack.
1140     stack_top = stack_start;
1141     stack_size -= 16 * page_size();
1142   }
1143 
1144   // stack_top could be partially down the page so align it
1145   stack_top = align_up(stack_top, page_size());
1146 
1147   // Allowed stack value is minimum of max_size and what we derived from rlimit
1148   if (max_size > 0) {
1149     _initial_thread_stack_size = MIN2(max_size, stack_size);
1150   } else {
1151     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1152     // clamp it at 8MB as we do on Solaris
1153     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1154   }
1155   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1156   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1157 
1158   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1159 
1160   if (log_is_enabled(Info, os, thread)) {
1161     // See if we seem to be on primordial process thread
1162     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1163                       uintptr_t(&rlim) < stack_top;
1164 
1165     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1166                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1167                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1168                          stack_top, intptr_t(_initial_thread_stack_bottom));
1169   }
1170 }
1171 
1172 ////////////////////////////////////////////////////////////////////////////////
1173 // time support
1174 
1175 // Time since start-up in seconds to a fine granularity.
1176 // Used by VMSelfDestructTimer and the MemProfiler.
1177 double os::elapsedTime() {
1178 
1179   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1180 }
1181 
1182 jlong os::elapsed_counter() {
1183   return javaTimeNanos() - initial_time_count;
1184 }
1185 
1186 jlong os::elapsed_frequency() {
1187   return NANOSECS_PER_SEC; // nanosecond resolution
1188 }
1189 
1190 bool os::supports_vtime() { return true; }
1191 bool os::enable_vtime()   { return false; }
1192 bool os::vtime_enabled()  { return false; }
1193 
1194 double os::elapsedVTime() {
1195   struct rusage usage;
1196   int retval = getrusage(RUSAGE_THREAD, &usage);
1197   if (retval == 0) {
1198     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1199   } else {
1200     // better than nothing, but not much
1201     return elapsedTime();
1202   }
1203 }
1204 
1205 jlong os::javaTimeMillis() {
1206   timeval time;
1207   int status = gettimeofday(&time, NULL);
1208   assert(status != -1, "linux error");
1209   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1210 }
1211 
1212 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1213   timeval time;
1214   int status = gettimeofday(&time, NULL);
1215   assert(status != -1, "linux error");
1216   seconds = jlong(time.tv_sec);
1217   nanos = jlong(time.tv_usec) * 1000;
1218 }
1219 
1220 
1221 #ifndef CLOCK_MONOTONIC
1222   #define CLOCK_MONOTONIC (1)
1223 #endif
1224 
1225 void os::Linux::clock_init() {
1226   // we do dlopen's in this particular order due to bug in linux
1227   // dynamical loader (see 6348968) leading to crash on exit
1228   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1229   if (handle == NULL) {
1230     handle = dlopen("librt.so", RTLD_LAZY);
1231   }
1232 
1233   if (handle) {
1234     int (*clock_getres_func)(clockid_t, struct timespec*) =
1235            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1236     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1237            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1238     if (clock_getres_func && clock_gettime_func) {
1239       // See if monotonic clock is supported by the kernel. Note that some
1240       // early implementations simply return kernel jiffies (updated every
1241       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1242       // for nano time (though the monotonic property is still nice to have).
1243       // It's fixed in newer kernels, however clock_getres() still returns
1244       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1245       // resolution for now. Hopefully as people move to new kernels, this
1246       // won't be a problem.
1247       struct timespec res;
1248       struct timespec tp;
1249       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1250           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1251         // yes, monotonic clock is supported
1252         _clock_gettime = clock_gettime_func;
1253         return;
1254       } else {
1255         // close librt if there is no monotonic clock
1256         dlclose(handle);
1257       }
1258     }
1259   }
1260   warning("No monotonic clock was available - timed services may " \
1261           "be adversely affected if the time-of-day clock changes");
1262 }
1263 
1264 #ifndef SYS_clock_getres
1265   #if defined(X86) || defined(PPC64) || defined(S390)
1266     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1267     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1268   #else
1269     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1270     #define sys_clock_getres(x,y)  -1
1271   #endif
1272 #else
1273   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1274 #endif
1275 
1276 void os::Linux::fast_thread_clock_init() {
1277   if (!UseLinuxPosixThreadCPUClocks) {
1278     return;
1279   }
1280   clockid_t clockid;
1281   struct timespec tp;
1282   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1283       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1284 
1285   // Switch to using fast clocks for thread cpu time if
1286   // the sys_clock_getres() returns 0 error code.
1287   // Note, that some kernels may support the current thread
1288   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1289   // returned by the pthread_getcpuclockid().
1290   // If the fast Posix clocks are supported then the sys_clock_getres()
1291   // must return at least tp.tv_sec == 0 which means a resolution
1292   // better than 1 sec. This is extra check for reliability.
1293 
1294   if (pthread_getcpuclockid_func &&
1295       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1296       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1297     _supports_fast_thread_cpu_time = true;
1298     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1299   }
1300 }
1301 
1302 jlong os::javaTimeNanos() {
1303   if (os::supports_monotonic_clock()) {
1304     struct timespec tp;
1305     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1306     assert(status == 0, "gettime error");
1307     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1308     return result;
1309   } else {
1310     timeval time;
1311     int status = gettimeofday(&time, NULL);
1312     assert(status != -1, "linux error");
1313     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1314     return 1000 * usecs;
1315   }
1316 }
1317 
1318 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1319   if (os::supports_monotonic_clock()) {
1320     info_ptr->max_value = ALL_64_BITS;
1321 
1322     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1323     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1324     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1325   } else {
1326     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1327     info_ptr->max_value = ALL_64_BITS;
1328 
1329     // gettimeofday is a real time clock so it skips
1330     info_ptr->may_skip_backward = true;
1331     info_ptr->may_skip_forward = true;
1332   }
1333 
1334   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1335 }
1336 
1337 // Return the real, user, and system times in seconds from an
1338 // arbitrary fixed point in the past.
1339 bool os::getTimesSecs(double* process_real_time,
1340                       double* process_user_time,
1341                       double* process_system_time) {
1342   struct tms ticks;
1343   clock_t real_ticks = times(&ticks);
1344 
1345   if (real_ticks == (clock_t) (-1)) {
1346     return false;
1347   } else {
1348     double ticks_per_second = (double) clock_tics_per_sec;
1349     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1350     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1351     *process_real_time = ((double) real_ticks) / ticks_per_second;
1352 
1353     return true;
1354   }
1355 }
1356 
1357 
1358 char * os::local_time_string(char *buf, size_t buflen) {
1359   struct tm t;
1360   time_t long_time;
1361   time(&long_time);
1362   localtime_r(&long_time, &t);
1363   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1364                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1365                t.tm_hour, t.tm_min, t.tm_sec);
1366   return buf;
1367 }
1368 
1369 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1370   return localtime_r(clock, res);
1371 }
1372 
1373 ////////////////////////////////////////////////////////////////////////////////
1374 // runtime exit support
1375 
1376 // Note: os::shutdown() might be called very early during initialization, or
1377 // called from signal handler. Before adding something to os::shutdown(), make
1378 // sure it is async-safe and can handle partially initialized VM.
1379 void os::shutdown() {
1380 
1381   // allow PerfMemory to attempt cleanup of any persistent resources
1382   perfMemory_exit();
1383 
1384   // needs to remove object in file system
1385   AttachListener::abort();
1386 
1387   // flush buffered output, finish log files
1388   ostream_abort();
1389 
1390   // Check for abort hook
1391   abort_hook_t abort_hook = Arguments::abort_hook();
1392   if (abort_hook != NULL) {
1393     abort_hook();
1394   }
1395 
1396 }
1397 
1398 // Note: os::abort() might be called very early during initialization, or
1399 // called from signal handler. Before adding something to os::abort(), make
1400 // sure it is async-safe and can handle partially initialized VM.
1401 void os::abort(bool dump_core, void* siginfo, const void* context) {
1402   os::shutdown();
1403   if (dump_core) {
1404 #ifndef PRODUCT
1405     fdStream out(defaultStream::output_fd());
1406     out.print_raw("Current thread is ");
1407     char buf[16];
1408     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1409     out.print_raw_cr(buf);
1410     out.print_raw_cr("Dumping core ...");
1411 #endif
1412     ::abort(); // dump core
1413   }
1414 
1415   ::exit(1);
1416 }
1417 
1418 // Die immediately, no exit hook, no abort hook, no cleanup.
1419 void os::die() {
1420   ::abort();
1421 }
1422 
1423 // thread_id is kernel thread id (similar to Solaris LWP id)
1424 intx os::current_thread_id() { return os::Linux::gettid(); }
1425 int os::current_process_id() {
1426   return ::getpid();
1427 }
1428 
1429 // DLL functions
1430 
1431 const char* os::dll_file_extension() { return ".so"; }
1432 
1433 // This must be hard coded because it's the system's temporary
1434 // directory not the java application's temp directory, ala java.io.tmpdir.
1435 const char* os::get_temp_directory() { return "/tmp"; }
1436 
1437 static bool file_exists(const char* filename) {
1438   struct stat statbuf;
1439   if (filename == NULL || strlen(filename) == 0) {
1440     return false;
1441   }
1442   return os::stat(filename, &statbuf) == 0;
1443 }
1444 
1445 // check if addr is inside libjvm.so
1446 bool os::address_is_in_vm(address addr) {
1447   static address libjvm_base_addr;
1448   Dl_info dlinfo;
1449 
1450   if (libjvm_base_addr == NULL) {
1451     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1452       libjvm_base_addr = (address)dlinfo.dli_fbase;
1453     }
1454     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1455   }
1456 
1457   if (dladdr((void *)addr, &dlinfo) != 0) {
1458     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1459   }
1460 
1461   return false;
1462 }
1463 
1464 bool os::dll_address_to_function_name(address addr, char *buf,
1465                                       int buflen, int *offset,
1466                                       bool demangle) {
1467   // buf is not optional, but offset is optional
1468   assert(buf != NULL, "sanity check");
1469 
1470   Dl_info dlinfo;
1471 
1472   if (dladdr((void*)addr, &dlinfo) != 0) {
1473     // see if we have a matching symbol
1474     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1475       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1476         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1477       }
1478       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1479       return true;
1480     }
1481     // no matching symbol so try for just file info
1482     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1483       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1484                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1485         return true;
1486       }
1487     }
1488   }
1489 
1490   buf[0] = '\0';
1491   if (offset != NULL) *offset = -1;
1492   return false;
1493 }
1494 
1495 struct _address_to_library_name {
1496   address addr;          // input : memory address
1497   size_t  buflen;        //         size of fname
1498   char*   fname;         // output: library name
1499   address base;          //         library base addr
1500 };
1501 
1502 static int address_to_library_name_callback(struct dl_phdr_info *info,
1503                                             size_t size, void *data) {
1504   int i;
1505   bool found = false;
1506   address libbase = NULL;
1507   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1508 
1509   // iterate through all loadable segments
1510   for (i = 0; i < info->dlpi_phnum; i++) {
1511     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1512     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1513       // base address of a library is the lowest address of its loaded
1514       // segments.
1515       if (libbase == NULL || libbase > segbase) {
1516         libbase = segbase;
1517       }
1518       // see if 'addr' is within current segment
1519       if (segbase <= d->addr &&
1520           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1521         found = true;
1522       }
1523     }
1524   }
1525 
1526   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1527   // so dll_address_to_library_name() can fall through to use dladdr() which
1528   // can figure out executable name from argv[0].
1529   if (found && info->dlpi_name && info->dlpi_name[0]) {
1530     d->base = libbase;
1531     if (d->fname) {
1532       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1533     }
1534     return 1;
1535   }
1536   return 0;
1537 }
1538 
1539 bool os::dll_address_to_library_name(address addr, char* buf,
1540                                      int buflen, int* offset) {
1541   // buf is not optional, but offset is optional
1542   assert(buf != NULL, "sanity check");
1543 
1544   Dl_info dlinfo;
1545   struct _address_to_library_name data;
1546 
1547   // There is a bug in old glibc dladdr() implementation that it could resolve
1548   // to wrong library name if the .so file has a base address != NULL. Here
1549   // we iterate through the program headers of all loaded libraries to find
1550   // out which library 'addr' really belongs to. This workaround can be
1551   // removed once the minimum requirement for glibc is moved to 2.3.x.
1552   data.addr = addr;
1553   data.fname = buf;
1554   data.buflen = buflen;
1555   data.base = NULL;
1556   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1557 
1558   if (rslt) {
1559     // buf already contains library name
1560     if (offset) *offset = addr - data.base;
1561     return true;
1562   }
1563   if (dladdr((void*)addr, &dlinfo) != 0) {
1564     if (dlinfo.dli_fname != NULL) {
1565       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1566     }
1567     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1568       *offset = addr - (address)dlinfo.dli_fbase;
1569     }
1570     return true;
1571   }
1572 
1573   buf[0] = '\0';
1574   if (offset) *offset = -1;
1575   return false;
1576 }
1577 
1578 // Loads .dll/.so and
1579 // in case of error it checks if .dll/.so was built for the
1580 // same architecture as Hotspot is running on
1581 
1582 
1583 // Remember the stack's state. The Linux dynamic linker will change
1584 // the stack to 'executable' at most once, so we must safepoint only once.
1585 bool os::Linux::_stack_is_executable = false;
1586 
1587 // VM operation that loads a library.  This is necessary if stack protection
1588 // of the Java stacks can be lost during loading the library.  If we
1589 // do not stop the Java threads, they can stack overflow before the stacks
1590 // are protected again.
1591 class VM_LinuxDllLoad: public VM_Operation {
1592  private:
1593   const char *_filename;
1594   char *_ebuf;
1595   int _ebuflen;
1596   void *_lib;
1597  public:
1598   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1599     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1600   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1601   void doit() {
1602     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1603     os::Linux::_stack_is_executable = true;
1604   }
1605   void* loaded_library() { return _lib; }
1606 };
1607 
1608 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1609   void * result = NULL;
1610   bool load_attempted = false;
1611 
1612   // Check whether the library to load might change execution rights
1613   // of the stack. If they are changed, the protection of the stack
1614   // guard pages will be lost. We need a safepoint to fix this.
1615   //
1616   // See Linux man page execstack(8) for more info.
1617   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1618     if (!ElfFile::specifies_noexecstack(filename)) {
1619       if (!is_init_completed()) {
1620         os::Linux::_stack_is_executable = true;
1621         // This is OK - No Java threads have been created yet, and hence no
1622         // stack guard pages to fix.
1623         //
1624         // This should happen only when you are building JDK7 using a very
1625         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1626         //
1627         // Dynamic loader will make all stacks executable after
1628         // this function returns, and will not do that again.
1629         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1630       } else {
1631         warning("You have loaded library %s which might have disabled stack guard. "
1632                 "The VM will try to fix the stack guard now.\n"
1633                 "It's highly recommended that you fix the library with "
1634                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1635                 filename);
1636 
1637         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1638         JavaThread *jt = JavaThread::current();
1639         if (jt->thread_state() != _thread_in_native) {
1640           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1641           // that requires ExecStack. Cannot enter safe point. Let's give up.
1642           warning("Unable to fix stack guard. Giving up.");
1643         } else {
1644           if (!LoadExecStackDllInVMThread) {
1645             // This is for the case where the DLL has an static
1646             // constructor function that executes JNI code. We cannot
1647             // load such DLLs in the VMThread.
1648             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1649           }
1650 
1651           ThreadInVMfromNative tiv(jt);
1652           debug_only(VMNativeEntryWrapper vew;)
1653 
1654           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1655           VMThread::execute(&op);
1656           if (LoadExecStackDllInVMThread) {
1657             result = op.loaded_library();
1658           }
1659           load_attempted = true;
1660         }
1661       }
1662     }
1663   }
1664 
1665   if (!load_attempted) {
1666     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1667   }
1668 
1669   if (result != NULL) {
1670     // Successful loading
1671     return result;
1672   }
1673 
1674   Elf32_Ehdr elf_head;
1675   int diag_msg_max_length=ebuflen-strlen(ebuf);
1676   char* diag_msg_buf=ebuf+strlen(ebuf);
1677 
1678   if (diag_msg_max_length==0) {
1679     // No more space in ebuf for additional diagnostics message
1680     return NULL;
1681   }
1682 
1683 
1684   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1685 
1686   if (file_descriptor < 0) {
1687     // Can't open library, report dlerror() message
1688     return NULL;
1689   }
1690 
1691   bool failed_to_read_elf_head=
1692     (sizeof(elf_head)!=
1693      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1694 
1695   ::close(file_descriptor);
1696   if (failed_to_read_elf_head) {
1697     // file i/o error - report dlerror() msg
1698     return NULL;
1699   }
1700 
1701   typedef struct {
1702     Elf32_Half    code;         // Actual value as defined in elf.h
1703     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1704     unsigned char elf_class;    // 32 or 64 bit
1705     unsigned char endianess;    // MSB or LSB
1706     char*         name;         // String representation
1707   } arch_t;
1708 
1709 #ifndef EM_486
1710   #define EM_486          6               /* Intel 80486 */
1711 #endif
1712 #ifndef EM_AARCH64
1713   #define EM_AARCH64    183               /* ARM AARCH64 */
1714 #endif
1715 
1716   static const arch_t arch_array[]={
1717     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1718     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1719     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1720     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1721     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1722     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1723     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1724     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1725 #if defined(VM_LITTLE_ENDIAN)
1726     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1727     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1728 #else
1729     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1730     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1731 #endif
1732     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1733     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1734     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1735     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1736     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1737     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1738     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1739     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1740   };
1741 
1742 #if  (defined IA32)
1743   static  Elf32_Half running_arch_code=EM_386;
1744 #elif   (defined AMD64) || (defined X32)
1745   static  Elf32_Half running_arch_code=EM_X86_64;
1746 #elif  (defined IA64)
1747   static  Elf32_Half running_arch_code=EM_IA_64;
1748 #elif  (defined __sparc) && (defined _LP64)
1749   static  Elf32_Half running_arch_code=EM_SPARCV9;
1750 #elif  (defined __sparc) && (!defined _LP64)
1751   static  Elf32_Half running_arch_code=EM_SPARC;
1752 #elif  (defined __powerpc64__)
1753   static  Elf32_Half running_arch_code=EM_PPC64;
1754 #elif  (defined __powerpc__)
1755   static  Elf32_Half running_arch_code=EM_PPC;
1756 #elif  (defined AARCH64)
1757   static  Elf32_Half running_arch_code=EM_AARCH64;
1758 #elif  (defined ARM)
1759   static  Elf32_Half running_arch_code=EM_ARM;
1760 #elif  (defined S390)
1761   static  Elf32_Half running_arch_code=EM_S390;
1762 #elif  (defined ALPHA)
1763   static  Elf32_Half running_arch_code=EM_ALPHA;
1764 #elif  (defined MIPSEL)
1765   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1766 #elif  (defined PARISC)
1767   static  Elf32_Half running_arch_code=EM_PARISC;
1768 #elif  (defined MIPS)
1769   static  Elf32_Half running_arch_code=EM_MIPS;
1770 #elif  (defined M68K)
1771   static  Elf32_Half running_arch_code=EM_68K;
1772 #elif  (defined SH)
1773   static  Elf32_Half running_arch_code=EM_SH;
1774 #else
1775     #error Method os::dll_load requires that one of following is defined:\
1776         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1777 #endif
1778 
1779   // Identify compatability class for VM's architecture and library's architecture
1780   // Obtain string descriptions for architectures
1781 
1782   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1783   int running_arch_index=-1;
1784 
1785   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1786     if (running_arch_code == arch_array[i].code) {
1787       running_arch_index    = i;
1788     }
1789     if (lib_arch.code == arch_array[i].code) {
1790       lib_arch.compat_class = arch_array[i].compat_class;
1791       lib_arch.name         = arch_array[i].name;
1792     }
1793   }
1794 
1795   assert(running_arch_index != -1,
1796          "Didn't find running architecture code (running_arch_code) in arch_array");
1797   if (running_arch_index == -1) {
1798     // Even though running architecture detection failed
1799     // we may still continue with reporting dlerror() message
1800     return NULL;
1801   }
1802 
1803   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1804     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1805     return NULL;
1806   }
1807 
1808 #ifndef S390
1809   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1810     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1811     return NULL;
1812   }
1813 #endif // !S390
1814 
1815   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1816     if (lib_arch.name!=NULL) {
1817       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1818                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1819                  lib_arch.name, arch_array[running_arch_index].name);
1820     } else {
1821       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1822                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1823                  lib_arch.code,
1824                  arch_array[running_arch_index].name);
1825     }
1826   }
1827 
1828   return NULL;
1829 }
1830 
1831 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1832                                 int ebuflen) {
1833   void * result = ::dlopen(filename, RTLD_LAZY);
1834   if (result == NULL) {
1835     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1836     ebuf[ebuflen-1] = '\0';
1837   }
1838   return result;
1839 }
1840 
1841 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1842                                        int ebuflen) {
1843   void * result = NULL;
1844   if (LoadExecStackDllInVMThread) {
1845     result = dlopen_helper(filename, ebuf, ebuflen);
1846   }
1847 
1848   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1849   // library that requires an executable stack, or which does not have this
1850   // stack attribute set, dlopen changes the stack attribute to executable. The
1851   // read protection of the guard pages gets lost.
1852   //
1853   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1854   // may have been queued at the same time.
1855 
1856   if (!_stack_is_executable) {
1857     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1858       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1859           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1860         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1861           warning("Attempt to reguard stack yellow zone failed.");
1862         }
1863       }
1864     }
1865   }
1866 
1867   return result;
1868 }
1869 
1870 void* os::dll_lookup(void* handle, const char* name) {
1871   void* res = dlsym(handle, name);
1872   return res;
1873 }
1874 
1875 void* os::get_default_process_handle() {
1876   return (void*)::dlopen(NULL, RTLD_LAZY);
1877 }
1878 
1879 static bool _print_ascii_file(const char* filename, outputStream* st) {
1880   int fd = ::open(filename, O_RDONLY);
1881   if (fd == -1) {
1882     return false;
1883   }
1884 
1885   char buf[33];
1886   int bytes;
1887   buf[32] = '\0';
1888   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1889     st->print_raw(buf, bytes);
1890   }
1891 
1892   ::close(fd);
1893 
1894   return true;
1895 }
1896 
1897 void os::print_dll_info(outputStream *st) {
1898   st->print_cr("Dynamic libraries:");
1899 
1900   char fname[32];
1901   pid_t pid = os::Linux::gettid();
1902 
1903   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1904 
1905   if (!_print_ascii_file(fname, st)) {
1906     st->print("Can not get library information for pid = %d\n", pid);
1907   }
1908 }
1909 
1910 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1911   FILE *procmapsFile = NULL;
1912 
1913   // Open the procfs maps file for the current process
1914   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1915     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1916     char line[PATH_MAX + 100];
1917 
1918     // Read line by line from 'file'
1919     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1920       u8 base, top, offset, inode;
1921       char permissions[5];
1922       char device[6];
1923       char name[PATH_MAX + 1];
1924 
1925       // Parse fields from line
1926       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1927              &base, &top, permissions, &offset, device, &inode, name);
1928 
1929       // Filter by device id '00:00' so that we only get file system mapped files.
1930       if (strcmp(device, "00:00") != 0) {
1931 
1932         // Call callback with the fields of interest
1933         if(callback(name, (address)base, (address)top, param)) {
1934           // Oops abort, callback aborted
1935           fclose(procmapsFile);
1936           return 1;
1937         }
1938       }
1939     }
1940     fclose(procmapsFile);
1941   }
1942   return 0;
1943 }
1944 
1945 void os::print_os_info_brief(outputStream* st) {
1946   os::Linux::print_distro_info(st);
1947 
1948   os::Posix::print_uname_info(st);
1949 
1950   os::Linux::print_libversion_info(st);
1951 
1952 }
1953 
1954 void os::print_os_info(outputStream* st) {
1955   st->print("OS:");
1956 
1957   os::Linux::print_distro_info(st);
1958 
1959   os::Posix::print_uname_info(st);
1960 
1961   // Print warning if unsafe chroot environment detected
1962   if (unsafe_chroot_detected) {
1963     st->print("WARNING!! ");
1964     st->print_cr("%s", unstable_chroot_error);
1965   }
1966 
1967   os::Linux::print_libversion_info(st);
1968 
1969   os::Posix::print_rlimit_info(st);
1970 
1971   os::Posix::print_load_average(st);
1972 
1973   os::Linux::print_full_memory_info(st);
1974 
1975   os::Linux::print_proc_sys_info(st);
1976 
1977   os::Linux::print_container_info(st);
1978 }
1979 
1980 // Try to identify popular distros.
1981 // Most Linux distributions have a /etc/XXX-release file, which contains
1982 // the OS version string. Newer Linux distributions have a /etc/lsb-release
1983 // file that also contains the OS version string. Some have more than one
1984 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1985 // /etc/redhat-release.), so the order is important.
1986 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1987 // their own specific XXX-release file as well as a redhat-release file.
1988 // Because of this the XXX-release file needs to be searched for before the
1989 // redhat-release file.
1990 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
1991 // search for redhat-release / SuSE-release needs to be before lsb-release.
1992 // Since the lsb-release file is the new standard it needs to be searched
1993 // before the older style release files.
1994 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
1995 // next to last resort.  The os-release file is a new standard that contains
1996 // distribution information and the system-release file seems to be an old
1997 // standard that has been replaced by the lsb-release and os-release files.
1998 // Searching for the debian_version file is the last resort.  It contains
1999 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2000 // "Debian " is printed before the contents of the debian_version file.
2001 
2002 const char* distro_files[] = {
2003   "/etc/oracle-release",
2004   "/etc/mandriva-release",
2005   "/etc/mandrake-release",
2006   "/etc/sun-release",
2007   "/etc/redhat-release",
2008   "/etc/SuSE-release",
2009   "/etc/lsb-release",
2010   "/etc/turbolinux-release",
2011   "/etc/gentoo-release",
2012   "/etc/ltib-release",
2013   "/etc/angstrom-version",
2014   "/etc/system-release",
2015   "/etc/os-release",
2016   NULL };
2017 
2018 void os::Linux::print_distro_info(outputStream* st) {
2019   for (int i = 0;; i++) {
2020     const char* file = distro_files[i];
2021     if (file == NULL) {
2022       break;  // done
2023     }
2024     // If file prints, we found it.
2025     if (_print_ascii_file(file, st)) {
2026       return;
2027     }
2028   }
2029 
2030   if (file_exists("/etc/debian_version")) {
2031     st->print("Debian ");
2032     _print_ascii_file("/etc/debian_version", st);
2033   } else {
2034     st->print("Linux");
2035   }
2036   st->cr();
2037 }
2038 
2039 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2040   char buf[256];
2041   while (fgets(buf, sizeof(buf), fp)) {
2042     // Edit out extra stuff in expected format
2043     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2044       char* ptr = strstr(buf, "\"");  // the name is in quotes
2045       if (ptr != NULL) {
2046         ptr++; // go beyond first quote
2047         char* nl = strchr(ptr, '\"');
2048         if (nl != NULL) *nl = '\0';
2049         strncpy(distro, ptr, length);
2050       } else {
2051         ptr = strstr(buf, "=");
2052         ptr++; // go beyond equals then
2053         char* nl = strchr(ptr, '\n');
2054         if (nl != NULL) *nl = '\0';
2055         strncpy(distro, ptr, length);
2056       }
2057       return;
2058     } else if (get_first_line) {
2059       char* nl = strchr(buf, '\n');
2060       if (nl != NULL) *nl = '\0';
2061       strncpy(distro, buf, length);
2062       return;
2063     }
2064   }
2065   // print last line and close
2066   char* nl = strchr(buf, '\n');
2067   if (nl != NULL) *nl = '\0';
2068   strncpy(distro, buf, length);
2069 }
2070 
2071 static void parse_os_info(char* distro, size_t length, const char* file) {
2072   FILE* fp = fopen(file, "r");
2073   if (fp != NULL) {
2074     // if suse format, print out first line
2075     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2076     parse_os_info_helper(fp, distro, length, get_first_line);
2077     fclose(fp);
2078   }
2079 }
2080 
2081 void os::get_summary_os_info(char* buf, size_t buflen) {
2082   for (int i = 0;; i++) {
2083     const char* file = distro_files[i];
2084     if (file == NULL) {
2085       break; // ran out of distro_files
2086     }
2087     if (file_exists(file)) {
2088       parse_os_info(buf, buflen, file);
2089       return;
2090     }
2091   }
2092   // special case for debian
2093   if (file_exists("/etc/debian_version")) {
2094     strncpy(buf, "Debian ", buflen);
2095     if (buflen > 7) {
2096       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2097     }
2098   } else {
2099     strncpy(buf, "Linux", buflen);
2100   }
2101 }
2102 
2103 void os::Linux::print_libversion_info(outputStream* st) {
2104   // libc, pthread
2105   st->print("libc:");
2106   st->print("%s ", os::Linux::glibc_version());
2107   st->print("%s ", os::Linux::libpthread_version());
2108   st->cr();
2109 }
2110 
2111 void os::Linux::print_proc_sys_info(outputStream* st) {
2112   st->cr();
2113   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2114   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2115   st->cr();
2116   st->cr();
2117 
2118   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2119   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2120   st->cr();
2121   st->cr();
2122 
2123   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2124   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2125   st->cr();
2126   st->cr();
2127 }
2128 
2129 void os::Linux::print_full_memory_info(outputStream* st) {
2130   st->print("\n/proc/meminfo:\n");
2131   _print_ascii_file("/proc/meminfo", st);
2132   st->cr();
2133 }
2134 
2135 void os::Linux::print_container_info(outputStream* st) {
2136   if (!OSContainer::is_containerized()) {
2137     return;
2138   }
2139 
2140   st->print("container (cgroup) information:\n");
2141 
2142   const char *p_ct = OSContainer::container_type();
2143   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2144 
2145   char *p = OSContainer::cpu_cpuset_cpus();
2146   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2147   free(p);
2148 
2149   p = OSContainer::cpu_cpuset_memory_nodes();
2150   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2151   free(p);
2152 
2153   int i = OSContainer::active_processor_count();
2154   if (i > 0) {
2155     st->print("active_processor_count: %d\n", i);
2156   } else {
2157     st->print("active_processor_count: failed\n");
2158   }
2159 
2160   i = OSContainer::cpu_quota();
2161   st->print("cpu_quota: %d\n", i);
2162 
2163   i = OSContainer::cpu_period();
2164   st->print("cpu_period: %d\n", i);
2165 
2166   i = OSContainer::cpu_shares();
2167   st->print("cpu_shares: %d\n", i);
2168 
2169   jlong j = OSContainer::memory_limit_in_bytes();
2170   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2171 
2172   j = OSContainer::memory_and_swap_limit_in_bytes();
2173   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2174 
2175   j = OSContainer::memory_soft_limit_in_bytes();
2176   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2177 
2178   j = OSContainer::OSContainer::memory_usage_in_bytes();
2179   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2180 
2181   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2182   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2183   st->cr();
2184 }
2185 
2186 void os::print_memory_info(outputStream* st) {
2187 
2188   st->print("Memory:");
2189   st->print(" %dk page", os::vm_page_size()>>10);
2190 
2191   // values in struct sysinfo are "unsigned long"
2192   struct sysinfo si;
2193   sysinfo(&si);
2194 
2195   st->print(", physical " UINT64_FORMAT "k",
2196             os::physical_memory() >> 10);
2197   st->print("(" UINT64_FORMAT "k free)",
2198             os::available_memory() >> 10);
2199   st->print(", swap " UINT64_FORMAT "k",
2200             ((jlong)si.totalswap * si.mem_unit) >> 10);
2201   st->print("(" UINT64_FORMAT "k free)",
2202             ((jlong)si.freeswap * si.mem_unit) >> 10);
2203   st->cr();
2204 }
2205 
2206 // Print the first "model name" line and the first "flags" line
2207 // that we find and nothing more. We assume "model name" comes
2208 // before "flags" so if we find a second "model name", then the
2209 // "flags" field is considered missing.
2210 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2211 #if defined(IA32) || defined(AMD64)
2212   // Other platforms have less repetitive cpuinfo files
2213   FILE *fp = fopen("/proc/cpuinfo", "r");
2214   if (fp) {
2215     while (!feof(fp)) {
2216       if (fgets(buf, buflen, fp)) {
2217         // Assume model name comes before flags
2218         bool model_name_printed = false;
2219         if (strstr(buf, "model name") != NULL) {
2220           if (!model_name_printed) {
2221             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2222             st->print_raw(buf);
2223             model_name_printed = true;
2224           } else {
2225             // model name printed but not flags?  Odd, just return
2226             fclose(fp);
2227             return true;
2228           }
2229         }
2230         // print the flags line too
2231         if (strstr(buf, "flags") != NULL) {
2232           st->print_raw(buf);
2233           fclose(fp);
2234           return true;
2235         }
2236       }
2237     }
2238     fclose(fp);
2239   }
2240 #endif // x86 platforms
2241   return false;
2242 }
2243 
2244 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2245   // Only print the model name if the platform provides this as a summary
2246   if (!print_model_name_and_flags(st, buf, buflen)) {
2247     st->print("\n/proc/cpuinfo:\n");
2248     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2249       st->print_cr("  <Not Available>");
2250     }
2251   }
2252 }
2253 
2254 #if defined(AMD64) || defined(IA32) || defined(X32)
2255 const char* search_string = "model name";
2256 #elif defined(M68K)
2257 const char* search_string = "CPU";
2258 #elif defined(PPC64)
2259 const char* search_string = "cpu";
2260 #elif defined(S390)
2261 const char* search_string = "processor";
2262 #elif defined(SPARC)
2263 const char* search_string = "cpu";
2264 #else
2265 const char* search_string = "Processor";
2266 #endif
2267 
2268 // Parses the cpuinfo file for string representing the model name.
2269 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2270   FILE* fp = fopen("/proc/cpuinfo", "r");
2271   if (fp != NULL) {
2272     while (!feof(fp)) {
2273       char buf[256];
2274       if (fgets(buf, sizeof(buf), fp)) {
2275         char* start = strstr(buf, search_string);
2276         if (start != NULL) {
2277           char *ptr = start + strlen(search_string);
2278           char *end = buf + strlen(buf);
2279           while (ptr != end) {
2280              // skip whitespace and colon for the rest of the name.
2281              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2282                break;
2283              }
2284              ptr++;
2285           }
2286           if (ptr != end) {
2287             // reasonable string, get rid of newline and keep the rest
2288             char* nl = strchr(buf, '\n');
2289             if (nl != NULL) *nl = '\0';
2290             strncpy(cpuinfo, ptr, length);
2291             fclose(fp);
2292             return;
2293           }
2294         }
2295       }
2296     }
2297     fclose(fp);
2298   }
2299   // cpuinfo not found or parsing failed, just print generic string.  The entire
2300   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2301 #if   defined(AARCH64)
2302   strncpy(cpuinfo, "AArch64", length);
2303 #elif defined(AMD64)
2304   strncpy(cpuinfo, "x86_64", length);
2305 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2306   strncpy(cpuinfo, "ARM", length);
2307 #elif defined(IA32)
2308   strncpy(cpuinfo, "x86_32", length);
2309 #elif defined(IA64)
2310   strncpy(cpuinfo, "IA64", length);
2311 #elif defined(PPC)
2312   strncpy(cpuinfo, "PPC64", length);
2313 #elif defined(S390)
2314   strncpy(cpuinfo, "S390", length);
2315 #elif defined(SPARC)
2316   strncpy(cpuinfo, "sparcv9", length);
2317 #elif defined(ZERO_LIBARCH)
2318   strncpy(cpuinfo, ZERO_LIBARCH, length);
2319 #else
2320   strncpy(cpuinfo, "unknown", length);
2321 #endif
2322 }
2323 
2324 static void print_signal_handler(outputStream* st, int sig,
2325                                  char* buf, size_t buflen);
2326 
2327 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2328   st->print_cr("Signal Handlers:");
2329   print_signal_handler(st, SIGSEGV, buf, buflen);
2330   print_signal_handler(st, SIGBUS , buf, buflen);
2331   print_signal_handler(st, SIGFPE , buf, buflen);
2332   print_signal_handler(st, SIGPIPE, buf, buflen);
2333   print_signal_handler(st, SIGXFSZ, buf, buflen);
2334   print_signal_handler(st, SIGILL , buf, buflen);
2335   print_signal_handler(st, SR_signum, buf, buflen);
2336   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2337   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2338   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2339   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2340 #if defined(PPC64)
2341   print_signal_handler(st, SIGTRAP, buf, buflen);
2342 #endif
2343 }
2344 
2345 static char saved_jvm_path[MAXPATHLEN] = {0};
2346 
2347 // Find the full path to the current module, libjvm.so
2348 void os::jvm_path(char *buf, jint buflen) {
2349   // Error checking.
2350   if (buflen < MAXPATHLEN) {
2351     assert(false, "must use a large-enough buffer");
2352     buf[0] = '\0';
2353     return;
2354   }
2355   // Lazy resolve the path to current module.
2356   if (saved_jvm_path[0] != 0) {
2357     strcpy(buf, saved_jvm_path);
2358     return;
2359   }
2360 
2361   char dli_fname[MAXPATHLEN];
2362   bool ret = dll_address_to_library_name(
2363                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2364                                          dli_fname, sizeof(dli_fname), NULL);
2365   assert(ret, "cannot locate libjvm");
2366   char *rp = NULL;
2367   if (ret && dli_fname[0] != '\0') {
2368     rp = os::Posix::realpath(dli_fname, buf, buflen);
2369   }
2370   if (rp == NULL) {
2371     return;
2372   }
2373 
2374   if (Arguments::sun_java_launcher_is_altjvm()) {
2375     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2376     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2377     // If "/jre/lib/" appears at the right place in the string, then
2378     // assume we are installed in a JDK and we're done. Otherwise, check
2379     // for a JAVA_HOME environment variable and fix up the path so it
2380     // looks like libjvm.so is installed there (append a fake suffix
2381     // hotspot/libjvm.so).
2382     const char *p = buf + strlen(buf) - 1;
2383     for (int count = 0; p > buf && count < 5; ++count) {
2384       for (--p; p > buf && *p != '/'; --p)
2385         /* empty */ ;
2386     }
2387 
2388     if (strncmp(p, "/jre/lib/", 9) != 0) {
2389       // Look for JAVA_HOME in the environment.
2390       char* java_home_var = ::getenv("JAVA_HOME");
2391       if (java_home_var != NULL && java_home_var[0] != 0) {
2392         char* jrelib_p;
2393         int len;
2394 
2395         // Check the current module name "libjvm.so".
2396         p = strrchr(buf, '/');
2397         if (p == NULL) {
2398           return;
2399         }
2400         assert(strstr(p, "/libjvm") == p, "invalid library name");
2401 
2402         rp = os::Posix::realpath(java_home_var, buf, buflen);
2403         if (rp == NULL) {
2404           return;
2405         }
2406 
2407         // determine if this is a legacy image or modules image
2408         // modules image doesn't have "jre" subdirectory
2409         len = strlen(buf);
2410         assert(len < buflen, "Ran out of buffer room");
2411         jrelib_p = buf + len;
2412         snprintf(jrelib_p, buflen-len, "/jre/lib");
2413         if (0 != access(buf, F_OK)) {
2414           snprintf(jrelib_p, buflen-len, "/lib");
2415         }
2416 
2417         if (0 == access(buf, F_OK)) {
2418           // Use current module name "libjvm.so"
2419           len = strlen(buf);
2420           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2421         } else {
2422           // Go back to path of .so
2423           rp = os::Posix::realpath(dli_fname, buf, buflen);
2424           if (rp == NULL) {
2425             return;
2426           }
2427         }
2428       }
2429     }
2430   }
2431 
2432   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2433   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2434 }
2435 
2436 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2437   // no prefix required, not even "_"
2438 }
2439 
2440 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2441   // no suffix required
2442 }
2443 
2444 ////////////////////////////////////////////////////////////////////////////////
2445 // sun.misc.Signal support
2446 
2447 static volatile jint sigint_count = 0;
2448 
2449 static void UserHandler(int sig, void *siginfo, void *context) {
2450   // 4511530 - sem_post is serialized and handled by the manager thread. When
2451   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2452   // don't want to flood the manager thread with sem_post requests.
2453   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2454     return;
2455   }
2456 
2457   // Ctrl-C is pressed during error reporting, likely because the error
2458   // handler fails to abort. Let VM die immediately.
2459   if (sig == SIGINT && VMError::is_error_reported()) {
2460     os::die();
2461   }
2462 
2463   os::signal_notify(sig);
2464 }
2465 
2466 void* os::user_handler() {
2467   return CAST_FROM_FN_PTR(void*, UserHandler);
2468 }
2469 
2470 static struct timespec create_semaphore_timespec(unsigned int sec, int nsec) {
2471   struct timespec ts;
2472   // Semaphore's are always associated with CLOCK_REALTIME
2473   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2474   // see os_posix.cpp for discussion on overflow checking
2475   if (sec >= MAX_SECS) {
2476     ts.tv_sec += MAX_SECS;
2477     ts.tv_nsec = 0;
2478   } else {
2479     ts.tv_sec += sec;
2480     ts.tv_nsec += nsec;
2481     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2482       ts.tv_nsec -= NANOSECS_PER_SEC;
2483       ++ts.tv_sec; // note: this must be <= max_secs
2484     }
2485   }
2486 
2487   return ts;
2488 }
2489 
2490 extern "C" {
2491   typedef void (*sa_handler_t)(int);
2492   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2493 }
2494 
2495 void* os::signal(int signal_number, void* handler) {
2496   struct sigaction sigAct, oldSigAct;
2497 
2498   sigfillset(&(sigAct.sa_mask));
2499   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2500   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2501 
2502   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2503     // -1 means registration failed
2504     return (void *)-1;
2505   }
2506 
2507   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2508 }
2509 
2510 void os::signal_raise(int signal_number) {
2511   ::raise(signal_number);
2512 }
2513 
2514 // The following code is moved from os.cpp for making this
2515 // code platform specific, which it is by its very nature.
2516 
2517 // Will be modified when max signal is changed to be dynamic
2518 int os::sigexitnum_pd() {
2519   return NSIG;
2520 }
2521 
2522 // a counter for each possible signal value
2523 static volatile jint pending_signals[NSIG+1] = { 0 };
2524 
2525 // Linux(POSIX) specific hand shaking semaphore.
2526 static Semaphore* sig_sem = NULL;
2527 static PosixSemaphore sr_semaphore;
2528 
2529 static void jdk_misc_signal_init() {
2530   // Initialize signal structures
2531   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2532 
2533   // Initialize signal semaphore
2534   sig_sem = new Semaphore();
2535 }
2536 
2537 void os::signal_notify(int sig) {
2538   if (sig_sem != NULL) {
2539     Atomic::inc(&pending_signals[sig]);
2540     sig_sem->signal();
2541   } else {
2542     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2543     // initialization isn't called.
2544     assert(ReduceSignalUsage, "signal semaphore should be created");
2545   }
2546 }
2547 
2548 static int check_pending_signals() {
2549   Atomic::store(0, &sigint_count);
2550   for (;;) {
2551     for (int i = 0; i < NSIG + 1; i++) {
2552       jint n = pending_signals[i];
2553       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2554         return i;
2555       }
2556     }
2557     JavaThread *thread = JavaThread::current();
2558     ThreadBlockInVM tbivm(thread);
2559 
2560     bool threadIsSuspended;
2561     do {
2562       thread->set_suspend_equivalent();
2563       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2564       sig_sem->wait();
2565 
2566       // were we externally suspended while we were waiting?
2567       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2568       if (threadIsSuspended) {
2569         // The semaphore has been incremented, but while we were waiting
2570         // another thread suspended us. We don't want to continue running
2571         // while suspended because that would surprise the thread that
2572         // suspended us.
2573         sig_sem->signal();
2574 
2575         thread->java_suspend_self();
2576       }
2577     } while (threadIsSuspended);
2578   }
2579 }
2580 
2581 int os::signal_wait() {
2582   return check_pending_signals();
2583 }
2584 
2585 ////////////////////////////////////////////////////////////////////////////////
2586 // Virtual Memory
2587 
2588 int os::vm_page_size() {
2589   // Seems redundant as all get out
2590   assert(os::Linux::page_size() != -1, "must call os::init");
2591   return os::Linux::page_size();
2592 }
2593 
2594 // Solaris allocates memory by pages.
2595 int os::vm_allocation_granularity() {
2596   assert(os::Linux::page_size() != -1, "must call os::init");
2597   return os::Linux::page_size();
2598 }
2599 
2600 // Rationale behind this function:
2601 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2602 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2603 //  samples for JITted code. Here we create private executable mapping over the code cache
2604 //  and then we can use standard (well, almost, as mapping can change) way to provide
2605 //  info for the reporting script by storing timestamp and location of symbol
2606 void linux_wrap_code(char* base, size_t size) {
2607   static volatile jint cnt = 0;
2608 
2609   if (!UseOprofile) {
2610     return;
2611   }
2612 
2613   char buf[PATH_MAX+1];
2614   int num = Atomic::add(1, &cnt);
2615 
2616   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2617            os::get_temp_directory(), os::current_process_id(), num);
2618   unlink(buf);
2619 
2620   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2621 
2622   if (fd != -1) {
2623     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2624     if (rv != (off_t)-1) {
2625       if (::write(fd, "", 1) == 1) {
2626         mmap(base, size,
2627              PROT_READ|PROT_WRITE|PROT_EXEC,
2628              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2629       }
2630     }
2631     ::close(fd);
2632     unlink(buf);
2633   }
2634 }
2635 
2636 static bool recoverable_mmap_error(int err) {
2637   // See if the error is one we can let the caller handle. This
2638   // list of errno values comes from JBS-6843484. I can't find a
2639   // Linux man page that documents this specific set of errno
2640   // values so while this list currently matches Solaris, it may
2641   // change as we gain experience with this failure mode.
2642   switch (err) {
2643   case EBADF:
2644   case EINVAL:
2645   case ENOTSUP:
2646     // let the caller deal with these errors
2647     return true;
2648 
2649   default:
2650     // Any remaining errors on this OS can cause our reserved mapping
2651     // to be lost. That can cause confusion where different data
2652     // structures think they have the same memory mapped. The worst
2653     // scenario is if both the VM and a library think they have the
2654     // same memory mapped.
2655     return false;
2656   }
2657 }
2658 
2659 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2660                                     int err) {
2661   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2662           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2663           os::strerror(err), err);
2664 }
2665 
2666 static void warn_fail_commit_memory(char* addr, size_t size,
2667                                     size_t alignment_hint, bool exec,
2668                                     int err) {
2669   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2670           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2671           alignment_hint, exec, os::strerror(err), err);
2672 }
2673 
2674 // NOTE: Linux kernel does not really reserve the pages for us.
2675 //       All it does is to check if there are enough free pages
2676 //       left at the time of mmap(). This could be a potential
2677 //       problem.
2678 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2679   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2680   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2681                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2682   if (res != (uintptr_t) MAP_FAILED) {
2683     if (UseNUMAInterleaving) {
2684       numa_make_global(addr, size);
2685     }
2686     return 0;
2687   }
2688 
2689   int err = errno;  // save errno from mmap() call above
2690 
2691   if (!recoverable_mmap_error(err)) {
2692     warn_fail_commit_memory(addr, size, exec, err);
2693     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2694   }
2695 
2696   return err;
2697 }
2698 
2699 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2700   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2701 }
2702 
2703 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2704                                   const char* mesg) {
2705   assert(mesg != NULL, "mesg must be specified");
2706   int err = os::Linux::commit_memory_impl(addr, size, exec);
2707   if (err != 0) {
2708     // the caller wants all commit errors to exit with the specified mesg:
2709     warn_fail_commit_memory(addr, size, exec, err);
2710     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2711   }
2712 }
2713 
2714 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2715 #ifndef MAP_HUGETLB
2716   #define MAP_HUGETLB 0x40000
2717 #endif
2718 
2719 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2720 #ifndef MADV_HUGEPAGE
2721   #define MADV_HUGEPAGE 14
2722 #endif
2723 
2724 int os::Linux::commit_memory_impl(char* addr, size_t size,
2725                                   size_t alignment_hint, bool exec) {
2726   int err = os::Linux::commit_memory_impl(addr, size, exec);
2727   if (err == 0) {
2728     realign_memory(addr, size, alignment_hint);
2729   }
2730   return err;
2731 }
2732 
2733 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2734                           bool exec) {
2735   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2736 }
2737 
2738 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2739                                   size_t alignment_hint, bool exec,
2740                                   const char* mesg) {
2741   assert(mesg != NULL, "mesg must be specified");
2742   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2743   if (err != 0) {
2744     // the caller wants all commit errors to exit with the specified mesg:
2745     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2746     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2747   }
2748 }
2749 
2750 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2751   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2752     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2753     // be supported or the memory may already be backed by huge pages.
2754     ::madvise(addr, bytes, MADV_HUGEPAGE);
2755   }
2756 }
2757 
2758 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2759   // This method works by doing an mmap over an existing mmaping and effectively discarding
2760   // the existing pages. However it won't work for SHM-based large pages that cannot be
2761   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2762   // small pages on top of the SHM segment. This method always works for small pages, so we
2763   // allow that in any case.
2764   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2765     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2766   }
2767 }
2768 
2769 void os::numa_make_global(char *addr, size_t bytes) {
2770   Linux::numa_interleave_memory(addr, bytes);
2771 }
2772 
2773 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2774 // bind policy to MPOL_PREFERRED for the current thread.
2775 #define USE_MPOL_PREFERRED 0
2776 
2777 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2778   // To make NUMA and large pages more robust when both enabled, we need to ease
2779   // the requirements on where the memory should be allocated. MPOL_BIND is the
2780   // default policy and it will force memory to be allocated on the specified
2781   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2782   // the specified node, but will not force it. Using this policy will prevent
2783   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2784   // free large pages.
2785   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2786   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2787 }
2788 
2789 bool os::numa_topology_changed() { return false; }
2790 
2791 size_t os::numa_get_groups_num() {
2792   // Return just the number of nodes in which it's possible to allocate memory
2793   // (in numa terminology, configured nodes).
2794   return Linux::numa_num_configured_nodes();
2795 }
2796 
2797 int os::numa_get_group_id() {
2798   int cpu_id = Linux::sched_getcpu();
2799   if (cpu_id != -1) {
2800     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2801     if (lgrp_id != -1) {
2802       return lgrp_id;
2803     }
2804   }
2805   return 0;
2806 }
2807 
2808 int os::Linux::get_existing_num_nodes() {
2809   int node;
2810   int highest_node_number = Linux::numa_max_node();
2811   int num_nodes = 0;
2812 
2813   // Get the total number of nodes in the system including nodes without memory.
2814   for (node = 0; node <= highest_node_number; node++) {
2815     if (isnode_in_existing_nodes(node)) {
2816       num_nodes++;
2817     }
2818   }
2819   return num_nodes;
2820 }
2821 
2822 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2823   int highest_node_number = Linux::numa_max_node();
2824   size_t i = 0;
2825 
2826   // Map all node ids in which it is possible to allocate memory. Also nodes are
2827   // not always consecutively available, i.e. available from 0 to the highest
2828   // node number. If the nodes have been bound explicitly using numactl membind,
2829   // then allocate memory from those nodes only.
2830   for (int node = 0; node <= highest_node_number; node++) {
2831     if (Linux::isnode_in_bound_nodes((unsigned int)node)) {
2832       ids[i++] = node;
2833     }
2834   }
2835   return i;
2836 }
2837 
2838 bool os::get_page_info(char *start, page_info* info) {
2839   return false;
2840 }
2841 
2842 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2843                      page_info* page_found) {
2844   return end;
2845 }
2846 
2847 
2848 int os::Linux::sched_getcpu_syscall(void) {
2849   unsigned int cpu = 0;
2850   int retval = -1;
2851 
2852 #if defined(IA32)
2853   #ifndef SYS_getcpu
2854     #define SYS_getcpu 318
2855   #endif
2856   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2857 #elif defined(AMD64)
2858 // Unfortunately we have to bring all these macros here from vsyscall.h
2859 // to be able to compile on old linuxes.
2860   #define __NR_vgetcpu 2
2861   #define VSYSCALL_START (-10UL << 20)
2862   #define VSYSCALL_SIZE 1024
2863   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2864   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2865   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2866   retval = vgetcpu(&cpu, NULL, NULL);
2867 #endif
2868 
2869   return (retval == -1) ? retval : cpu;
2870 }
2871 
2872 void os::Linux::sched_getcpu_init() {
2873   // sched_getcpu() should be in libc.
2874   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2875                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2876 
2877   // If it's not, try a direct syscall.
2878   if (sched_getcpu() == -1) {
2879     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2880                                     (void*)&sched_getcpu_syscall));
2881   }
2882 
2883   if (sched_getcpu() == -1) {
2884     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
2885   }
2886 }
2887 
2888 // Something to do with the numa-aware allocator needs these symbols
2889 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2890 extern "C" JNIEXPORT void numa_error(char *where) { }
2891 
2892 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2893 // load symbol from base version instead.
2894 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2895   void *f = dlvsym(handle, name, "libnuma_1.1");
2896   if (f == NULL) {
2897     f = dlsym(handle, name);
2898   }
2899   return f;
2900 }
2901 
2902 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2903 // Return NULL if the symbol is not defined in this particular version.
2904 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2905   return dlvsym(handle, name, "libnuma_1.2");
2906 }
2907 
2908 bool os::Linux::libnuma_init() {
2909   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2910     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2911     if (handle != NULL) {
2912       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2913                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2914       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2915                                        libnuma_dlsym(handle, "numa_max_node")));
2916       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2917                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2918       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2919                                         libnuma_dlsym(handle, "numa_available")));
2920       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2921                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2922       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2923                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2924       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2925                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2926       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2927                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2928       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2929                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2930       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2931                                        libnuma_dlsym(handle, "numa_distance")));
2932       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
2933                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
2934 
2935       if (numa_available() != -1) {
2936         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2937         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2938         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2939         // Create an index -> node mapping, since nodes are not always consecutive
2940         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2941         rebuild_nindex_to_node_map();
2942         // Create a cpu -> node mapping
2943         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2944         rebuild_cpu_to_node_map();
2945         return true;
2946       }
2947     }
2948   }
2949   return false;
2950 }
2951 
2952 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2953   // Creating guard page is very expensive. Java thread has HotSpot
2954   // guard pages, only enable glibc guard page for non-Java threads.
2955   // (Remember: compiler thread is a Java thread, too!)
2956   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2957 }
2958 
2959 void os::Linux::rebuild_nindex_to_node_map() {
2960   int highest_node_number = Linux::numa_max_node();
2961 
2962   nindex_to_node()->clear();
2963   for (int node = 0; node <= highest_node_number; node++) {
2964     if (Linux::isnode_in_existing_nodes(node)) {
2965       nindex_to_node()->append(node);
2966     }
2967   }
2968 }
2969 
2970 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2971 // The table is later used in get_node_by_cpu().
2972 void os::Linux::rebuild_cpu_to_node_map() {
2973   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2974                               // in libnuma (possible values are starting from 16,
2975                               // and continuing up with every other power of 2, but less
2976                               // than the maximum number of CPUs supported by kernel), and
2977                               // is a subject to change (in libnuma version 2 the requirements
2978                               // are more reasonable) we'll just hardcode the number they use
2979                               // in the library.
2980   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2981 
2982   size_t cpu_num = processor_count();
2983   size_t cpu_map_size = NCPUS / BitsPerCLong;
2984   size_t cpu_map_valid_size =
2985     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2986 
2987   cpu_to_node()->clear();
2988   cpu_to_node()->at_grow(cpu_num - 1);
2989 
2990   size_t node_num = get_existing_num_nodes();
2991 
2992   int distance = 0;
2993   int closest_distance = INT_MAX;
2994   int closest_node = 0;
2995   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2996   for (size_t i = 0; i < node_num; i++) {
2997     // Check if node is configured (not a memory-less node). If it is not, find
2998     // the closest configured node. Check also if node is bound, i.e. it's allowed
2999     // to allocate memory from the node. If it's not allowed, map cpus in that node
3000     // to the closest node from which memory allocation is allowed.
3001     if (!isnode_in_configured_nodes(nindex_to_node()->at(i)) ||
3002         !isnode_in_bound_nodes(nindex_to_node()->at(i))) {
3003       closest_distance = INT_MAX;
3004       // Check distance from all remaining nodes in the system. Ignore distance
3005       // from itself, from another non-configured node, and from another non-bound
3006       // node.
3007       for (size_t m = 0; m < node_num; m++) {
3008         if (m != i &&
3009             isnode_in_configured_nodes(nindex_to_node()->at(m)) &&
3010             isnode_in_bound_nodes(nindex_to_node()->at(m))) {
3011           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3012           // If a closest node is found, update. There is always at least one
3013           // configured and bound node in the system so there is always at least
3014           // one node close.
3015           if (distance != 0 && distance < closest_distance) {
3016             closest_distance = distance;
3017             closest_node = nindex_to_node()->at(m);
3018           }
3019         }
3020       }
3021      } else {
3022        // Current node is already a configured node.
3023        closest_node = nindex_to_node()->at(i);
3024      }
3025 
3026     // Get cpus from the original node and map them to the closest node. If node
3027     // is a configured node (not a memory-less node), then original node and
3028     // closest node are the same.
3029     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3030       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3031         if (cpu_map[j] != 0) {
3032           for (size_t k = 0; k < BitsPerCLong; k++) {
3033             if (cpu_map[j] & (1UL << k)) {
3034               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3035             }
3036           }
3037         }
3038       }
3039     }
3040   }
3041   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3042 }
3043 
3044 int os::Linux::get_node_by_cpu(int cpu_id) {
3045   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3046     return cpu_to_node()->at(cpu_id);
3047   }
3048   return -1;
3049 }
3050 
3051 GrowableArray<int>* os::Linux::_cpu_to_node;
3052 GrowableArray<int>* os::Linux::_nindex_to_node;
3053 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3054 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3055 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3056 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3057 os::Linux::numa_available_func_t os::Linux::_numa_available;
3058 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3059 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3060 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3061 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3062 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3063 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3064 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3065 unsigned long* os::Linux::_numa_all_nodes;
3066 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3067 struct bitmask* os::Linux::_numa_nodes_ptr;
3068 
3069 bool os::pd_uncommit_memory(char* addr, size_t size) {
3070   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3071                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3072   return res  != (uintptr_t) MAP_FAILED;
3073 }
3074 
3075 static address get_stack_commited_bottom(address bottom, size_t size) {
3076   address nbot = bottom;
3077   address ntop = bottom + size;
3078 
3079   size_t page_sz = os::vm_page_size();
3080   unsigned pages = size / page_sz;
3081 
3082   unsigned char vec[1];
3083   unsigned imin = 1, imax = pages + 1, imid;
3084   int mincore_return_value = 0;
3085 
3086   assert(imin <= imax, "Unexpected page size");
3087 
3088   while (imin < imax) {
3089     imid = (imax + imin) / 2;
3090     nbot = ntop - (imid * page_sz);
3091 
3092     // Use a trick with mincore to check whether the page is mapped or not.
3093     // mincore sets vec to 1 if page resides in memory and to 0 if page
3094     // is swapped output but if page we are asking for is unmapped
3095     // it returns -1,ENOMEM
3096     mincore_return_value = mincore(nbot, page_sz, vec);
3097 
3098     if (mincore_return_value == -1) {
3099       // Page is not mapped go up
3100       // to find first mapped page
3101       if (errno != EAGAIN) {
3102         assert(errno == ENOMEM, "Unexpected mincore errno");
3103         imax = imid;
3104       }
3105     } else {
3106       // Page is mapped go down
3107       // to find first not mapped page
3108       imin = imid + 1;
3109     }
3110   }
3111 
3112   nbot = nbot + page_sz;
3113 
3114   // Adjust stack bottom one page up if last checked page is not mapped
3115   if (mincore_return_value == -1) {
3116     nbot = nbot + page_sz;
3117   }
3118 
3119   return nbot;
3120 }
3121 
3122 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3123   int mincore_return_value;
3124   const size_t stripe = 1024;  // query this many pages each time
3125   unsigned char vec[stripe + 1];
3126   // set a guard
3127   vec[stripe] = 'X';
3128 
3129   const size_t page_sz = os::vm_page_size();
3130   size_t pages = size / page_sz;
3131 
3132   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3133   assert(is_aligned(size, page_sz), "Size must be page aligned");
3134 
3135   committed_start = NULL;
3136 
3137   int loops = (pages + stripe - 1) / stripe;
3138   int committed_pages = 0;
3139   address loop_base = start;
3140   bool found_range = false;
3141 
3142   for (int index = 0; index < loops && !found_range; index ++) {
3143     assert(pages > 0, "Nothing to do");
3144     int pages_to_query = (pages >= stripe) ? stripe : pages;
3145     pages -= pages_to_query;
3146 
3147     // Get stable read
3148     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3149 
3150     // During shutdown, some memory goes away without properly notifying NMT,
3151     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3152     // Bailout and return as not committed for now.
3153     if (mincore_return_value == -1 && errno == ENOMEM) {
3154       return false;
3155     }
3156 
3157     assert(vec[stripe] == 'X', "overflow guard");
3158     assert(mincore_return_value == 0, "Range must be valid");
3159     // Process this stripe
3160     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3161       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3162         // End of current contiguous region
3163         if (committed_start != NULL) {
3164           found_range = true;
3165           break;
3166         }
3167       } else { // committed
3168         // Start of region
3169         if (committed_start == NULL) {
3170           committed_start = loop_base + page_sz * vecIdx;
3171         }
3172         committed_pages ++;
3173       }
3174     }
3175 
3176     loop_base += pages_to_query * page_sz;
3177   }
3178 
3179   if (committed_start != NULL) {
3180     assert(committed_pages > 0, "Must have committed region");
3181     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3182     assert(committed_start >= start && committed_start < start + size, "Out of range");
3183     committed_size = page_sz * committed_pages;
3184     return true;
3185   } else {
3186     assert(committed_pages == 0, "Should not have committed region");
3187     return false;
3188   }
3189 }
3190 
3191 
3192 // Linux uses a growable mapping for the stack, and if the mapping for
3193 // the stack guard pages is not removed when we detach a thread the
3194 // stack cannot grow beyond the pages where the stack guard was
3195 // mapped.  If at some point later in the process the stack expands to
3196 // that point, the Linux kernel cannot expand the stack any further
3197 // because the guard pages are in the way, and a segfault occurs.
3198 //
3199 // However, it's essential not to split the stack region by unmapping
3200 // a region (leaving a hole) that's already part of the stack mapping,
3201 // so if the stack mapping has already grown beyond the guard pages at
3202 // the time we create them, we have to truncate the stack mapping.
3203 // So, we need to know the extent of the stack mapping when
3204 // create_stack_guard_pages() is called.
3205 
3206 // We only need this for stacks that are growable: at the time of
3207 // writing thread stacks don't use growable mappings (i.e. those
3208 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3209 // only applies to the main thread.
3210 
3211 // If the (growable) stack mapping already extends beyond the point
3212 // where we're going to put our guard pages, truncate the mapping at
3213 // that point by munmap()ping it.  This ensures that when we later
3214 // munmap() the guard pages we don't leave a hole in the stack
3215 // mapping. This only affects the main/primordial thread
3216 
3217 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3218   if (os::is_primordial_thread()) {
3219     // As we manually grow stack up to bottom inside create_attached_thread(),
3220     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3221     // we don't need to do anything special.
3222     // Check it first, before calling heavy function.
3223     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3224     unsigned char vec[1];
3225 
3226     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3227       // Fallback to slow path on all errors, including EAGAIN
3228       stack_extent = (uintptr_t) get_stack_commited_bottom(
3229                                                            os::Linux::initial_thread_stack_bottom(),
3230                                                            (size_t)addr - stack_extent);
3231     }
3232 
3233     if (stack_extent < (uintptr_t)addr) {
3234       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3235     }
3236   }
3237 
3238   return os::commit_memory(addr, size, !ExecMem);
3239 }
3240 
3241 // If this is a growable mapping, remove the guard pages entirely by
3242 // munmap()ping them.  If not, just call uncommit_memory(). This only
3243 // affects the main/primordial thread, but guard against future OS changes.
3244 // It's safe to always unmap guard pages for primordial thread because we
3245 // always place it right after end of the mapped region.
3246 
3247 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3248   uintptr_t stack_extent, stack_base;
3249 
3250   if (os::is_primordial_thread()) {
3251     return ::munmap(addr, size) == 0;
3252   }
3253 
3254   return os::uncommit_memory(addr, size);
3255 }
3256 
3257 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3258 // at 'requested_addr'. If there are existing memory mappings at the same
3259 // location, however, they will be overwritten. If 'fixed' is false,
3260 // 'requested_addr' is only treated as a hint, the return value may or
3261 // may not start from the requested address. Unlike Linux mmap(), this
3262 // function returns NULL to indicate failure.
3263 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3264   char * addr;
3265   int flags;
3266 
3267   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3268   if (fixed) {
3269     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3270     flags |= MAP_FIXED;
3271   }
3272 
3273   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3274   // touch an uncommitted page. Otherwise, the read/write might
3275   // succeed if we have enough swap space to back the physical page.
3276   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3277                        flags, -1, 0);
3278 
3279   return addr == MAP_FAILED ? NULL : addr;
3280 }
3281 
3282 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3283 //   (req_addr != NULL) or with a given alignment.
3284 //  - bytes shall be a multiple of alignment.
3285 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3286 //  - alignment sets the alignment at which memory shall be allocated.
3287 //     It must be a multiple of allocation granularity.
3288 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3289 //  req_addr or NULL.
3290 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3291 
3292   size_t extra_size = bytes;
3293   if (req_addr == NULL && alignment > 0) {
3294     extra_size += alignment;
3295   }
3296 
3297   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3298     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3299     -1, 0);
3300   if (start == MAP_FAILED) {
3301     start = NULL;
3302   } else {
3303     if (req_addr != NULL) {
3304       if (start != req_addr) {
3305         ::munmap(start, extra_size);
3306         start = NULL;
3307       }
3308     } else {
3309       char* const start_aligned = align_up(start, alignment);
3310       char* const end_aligned = start_aligned + bytes;
3311       char* const end = start + extra_size;
3312       if (start_aligned > start) {
3313         ::munmap(start, start_aligned - start);
3314       }
3315       if (end_aligned < end) {
3316         ::munmap(end_aligned, end - end_aligned);
3317       }
3318       start = start_aligned;
3319     }
3320   }
3321   return start;
3322 }
3323 
3324 static int anon_munmap(char * addr, size_t size) {
3325   return ::munmap(addr, size) == 0;
3326 }
3327 
3328 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3329                             size_t alignment_hint) {
3330   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3331 }
3332 
3333 bool os::pd_release_memory(char* addr, size_t size) {
3334   return anon_munmap(addr, size);
3335 }
3336 
3337 static bool linux_mprotect(char* addr, size_t size, int prot) {
3338   // Linux wants the mprotect address argument to be page aligned.
3339   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3340 
3341   // According to SUSv3, mprotect() should only be used with mappings
3342   // established by mmap(), and mmap() always maps whole pages. Unaligned
3343   // 'addr' likely indicates problem in the VM (e.g. trying to change
3344   // protection of malloc'ed or statically allocated memory). Check the
3345   // caller if you hit this assert.
3346   assert(addr == bottom, "sanity check");
3347 
3348   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3349   return ::mprotect(bottom, size, prot) == 0;
3350 }
3351 
3352 // Set protections specified
3353 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3354                         bool is_committed) {
3355   unsigned int p = 0;
3356   switch (prot) {
3357   case MEM_PROT_NONE: p = PROT_NONE; break;
3358   case MEM_PROT_READ: p = PROT_READ; break;
3359   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3360   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3361   default:
3362     ShouldNotReachHere();
3363   }
3364   // is_committed is unused.
3365   return linux_mprotect(addr, bytes, p);
3366 }
3367 
3368 bool os::guard_memory(char* addr, size_t size) {
3369   return linux_mprotect(addr, size, PROT_NONE);
3370 }
3371 
3372 bool os::unguard_memory(char* addr, size_t size) {
3373   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3374 }
3375 
3376 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3377                                                     size_t page_size) {
3378   bool result = false;
3379   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3380                  MAP_ANONYMOUS|MAP_PRIVATE,
3381                  -1, 0);
3382   if (p != MAP_FAILED) {
3383     void *aligned_p = align_up(p, page_size);
3384 
3385     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3386 
3387     munmap(p, page_size * 2);
3388   }
3389 
3390   if (warn && !result) {
3391     warning("TransparentHugePages is not supported by the operating system.");
3392   }
3393 
3394   return result;
3395 }
3396 
3397 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3398   bool result = false;
3399   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3400                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3401                  -1, 0);
3402 
3403   if (p != MAP_FAILED) {
3404     // We don't know if this really is a huge page or not.
3405     FILE *fp = fopen("/proc/self/maps", "r");
3406     if (fp) {
3407       while (!feof(fp)) {
3408         char chars[257];
3409         long x = 0;
3410         if (fgets(chars, sizeof(chars), fp)) {
3411           if (sscanf(chars, "%lx-%*x", &x) == 1
3412               && x == (long)p) {
3413             if (strstr (chars, "hugepage")) {
3414               result = true;
3415               break;
3416             }
3417           }
3418         }
3419       }
3420       fclose(fp);
3421     }
3422     munmap(p, page_size);
3423   }
3424 
3425   if (warn && !result) {
3426     warning("HugeTLBFS is not supported by the operating system.");
3427   }
3428 
3429   return result;
3430 }
3431 
3432 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3433 //
3434 // From the coredump_filter documentation:
3435 //
3436 // - (bit 0) anonymous private memory
3437 // - (bit 1) anonymous shared memory
3438 // - (bit 2) file-backed private memory
3439 // - (bit 3) file-backed shared memory
3440 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3441 //           effective only if the bit 2 is cleared)
3442 // - (bit 5) hugetlb private memory
3443 // - (bit 6) hugetlb shared memory
3444 // - (bit 7) dax private memory
3445 // - (bit 8) dax shared memory
3446 //
3447 static void set_coredump_filter(bool largepages, bool dax_shared) {
3448   FILE *f;
3449   long cdm;
3450   bool filter_changed = false;
3451 
3452   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3453     return;
3454   }
3455 
3456   if (fscanf(f, "%lx", &cdm) != 1) {
3457     fclose(f);
3458     return;
3459   }
3460 
3461   rewind(f);
3462 
3463   if (largepages && (cdm & LARGEPAGES_BIT) == 0) {
3464     cdm |= LARGEPAGES_BIT;
3465     filter_changed = true;
3466   }
3467   if (dax_shared && (cdm & DAX_SHARED_BIT) == 0) {
3468     cdm |= DAX_SHARED_BIT;
3469     filter_changed = true;
3470   }
3471   if (filter_changed) {
3472     fprintf(f, "%#lx", cdm);
3473   }
3474 
3475   fclose(f);
3476 }
3477 
3478 // Large page support
3479 
3480 static size_t _large_page_size = 0;
3481 
3482 size_t os::Linux::find_large_page_size() {
3483   size_t large_page_size = 0;
3484 
3485   // large_page_size on Linux is used to round up heap size. x86 uses either
3486   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3487   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3488   // page as large as 256M.
3489   //
3490   // Here we try to figure out page size by parsing /proc/meminfo and looking
3491   // for a line with the following format:
3492   //    Hugepagesize:     2048 kB
3493   //
3494   // If we can't determine the value (e.g. /proc is not mounted, or the text
3495   // format has been changed), we'll use the largest page size supported by
3496   // the processor.
3497 
3498 #ifndef ZERO
3499   large_page_size =
3500     AARCH64_ONLY(2 * M)
3501     AMD64_ONLY(2 * M)
3502     ARM32_ONLY(2 * M)
3503     IA32_ONLY(4 * M)
3504     IA64_ONLY(256 * M)
3505     PPC_ONLY(4 * M)
3506     S390_ONLY(1 * M)
3507     SPARC_ONLY(4 * M);
3508 #endif // ZERO
3509 
3510   FILE *fp = fopen("/proc/meminfo", "r");
3511   if (fp) {
3512     while (!feof(fp)) {
3513       int x = 0;
3514       char buf[16];
3515       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3516         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3517           large_page_size = x * K;
3518           break;
3519         }
3520       } else {
3521         // skip to next line
3522         for (;;) {
3523           int ch = fgetc(fp);
3524           if (ch == EOF || ch == (int)'\n') break;
3525         }
3526       }
3527     }
3528     fclose(fp);
3529   }
3530 
3531   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3532     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3533             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3534             proper_unit_for_byte_size(large_page_size));
3535   }
3536 
3537   return large_page_size;
3538 }
3539 
3540 size_t os::Linux::setup_large_page_size() {
3541   _large_page_size = Linux::find_large_page_size();
3542   const size_t default_page_size = (size_t)Linux::page_size();
3543   if (_large_page_size > default_page_size) {
3544     _page_sizes[0] = _large_page_size;
3545     _page_sizes[1] = default_page_size;
3546     _page_sizes[2] = 0;
3547   }
3548 
3549   return _large_page_size;
3550 }
3551 
3552 bool os::Linux::setup_large_page_type(size_t page_size) {
3553   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3554       FLAG_IS_DEFAULT(UseSHM) &&
3555       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3556 
3557     // The type of large pages has not been specified by the user.
3558 
3559     // Try UseHugeTLBFS and then UseSHM.
3560     UseHugeTLBFS = UseSHM = true;
3561 
3562     // Don't try UseTransparentHugePages since there are known
3563     // performance issues with it turned on. This might change in the future.
3564     UseTransparentHugePages = false;
3565   }
3566 
3567   if (UseTransparentHugePages) {
3568     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3569     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3570       UseHugeTLBFS = false;
3571       UseSHM = false;
3572       return true;
3573     }
3574     UseTransparentHugePages = false;
3575   }
3576 
3577   if (UseHugeTLBFS) {
3578     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3579     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3580       UseSHM = false;
3581       return true;
3582     }
3583     UseHugeTLBFS = false;
3584   }
3585 
3586   return UseSHM;
3587 }
3588 
3589 void os::large_page_init() {
3590   if (!UseLargePages &&
3591       !UseTransparentHugePages &&
3592       !UseHugeTLBFS &&
3593       !UseSHM) {
3594     // Not using large pages.
3595     return;
3596   }
3597 
3598   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3599     // The user explicitly turned off large pages.
3600     // Ignore the rest of the large pages flags.
3601     UseTransparentHugePages = false;
3602     UseHugeTLBFS = false;
3603     UseSHM = false;
3604     return;
3605   }
3606 
3607   size_t large_page_size = Linux::setup_large_page_size();
3608   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3609 
3610   set_coredump_filter(true /*largepages*/, false /*dax_shared*/);
3611 }
3612 
3613 #ifndef SHM_HUGETLB
3614   #define SHM_HUGETLB 04000
3615 #endif
3616 
3617 #define shm_warning_format(format, ...)              \
3618   do {                                               \
3619     if (UseLargePages &&                             \
3620         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3621          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3622          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3623       warning(format, __VA_ARGS__);                  \
3624     }                                                \
3625   } while (0)
3626 
3627 #define shm_warning(str) shm_warning_format("%s", str)
3628 
3629 #define shm_warning_with_errno(str)                \
3630   do {                                             \
3631     int err = errno;                               \
3632     shm_warning_format(str " (error = %d)", err);  \
3633   } while (0)
3634 
3635 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3636   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3637 
3638   if (!is_aligned(alignment, SHMLBA)) {
3639     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3640     return NULL;
3641   }
3642 
3643   // To ensure that we get 'alignment' aligned memory from shmat,
3644   // we pre-reserve aligned virtual memory and then attach to that.
3645 
3646   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3647   if (pre_reserved_addr == NULL) {
3648     // Couldn't pre-reserve aligned memory.
3649     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3650     return NULL;
3651   }
3652 
3653   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3654   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3655 
3656   if ((intptr_t)addr == -1) {
3657     int err = errno;
3658     shm_warning_with_errno("Failed to attach shared memory.");
3659 
3660     assert(err != EACCES, "Unexpected error");
3661     assert(err != EIDRM,  "Unexpected error");
3662     assert(err != EINVAL, "Unexpected error");
3663 
3664     // Since we don't know if the kernel unmapped the pre-reserved memory area
3665     // we can't unmap it, since that would potentially unmap memory that was
3666     // mapped from other threads.
3667     return NULL;
3668   }
3669 
3670   return addr;
3671 }
3672 
3673 static char* shmat_at_address(int shmid, char* req_addr) {
3674   if (!is_aligned(req_addr, SHMLBA)) {
3675     assert(false, "Requested address needs to be SHMLBA aligned");
3676     return NULL;
3677   }
3678 
3679   char* addr = (char*)shmat(shmid, req_addr, 0);
3680 
3681   if ((intptr_t)addr == -1) {
3682     shm_warning_with_errno("Failed to attach shared memory.");
3683     return NULL;
3684   }
3685 
3686   return addr;
3687 }
3688 
3689 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3690   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3691   if (req_addr != NULL) {
3692     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3693     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3694     return shmat_at_address(shmid, req_addr);
3695   }
3696 
3697   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3698   // return large page size aligned memory addresses when req_addr == NULL.
3699   // However, if the alignment is larger than the large page size, we have
3700   // to manually ensure that the memory returned is 'alignment' aligned.
3701   if (alignment > os::large_page_size()) {
3702     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3703     return shmat_with_alignment(shmid, bytes, alignment);
3704   } else {
3705     return shmat_at_address(shmid, NULL);
3706   }
3707 }
3708 
3709 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3710                                             char* req_addr, bool exec) {
3711   // "exec" is passed in but not used.  Creating the shared image for
3712   // the code cache doesn't have an SHM_X executable permission to check.
3713   assert(UseLargePages && UseSHM, "only for SHM large pages");
3714   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3715   assert(is_aligned(req_addr, alignment), "Unaligned address");
3716 
3717   if (!is_aligned(bytes, os::large_page_size())) {
3718     return NULL; // Fallback to small pages.
3719   }
3720 
3721   // Create a large shared memory region to attach to based on size.
3722   // Currently, size is the total size of the heap.
3723   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3724   if (shmid == -1) {
3725     // Possible reasons for shmget failure:
3726     // 1. shmmax is too small for Java heap.
3727     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3728     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3729     // 2. not enough large page memory.
3730     //    > check available large pages: cat /proc/meminfo
3731     //    > increase amount of large pages:
3732     //          echo new_value > /proc/sys/vm/nr_hugepages
3733     //      Note 1: different Linux may use different name for this property,
3734     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3735     //      Note 2: it's possible there's enough physical memory available but
3736     //            they are so fragmented after a long run that they can't
3737     //            coalesce into large pages. Try to reserve large pages when
3738     //            the system is still "fresh".
3739     shm_warning_with_errno("Failed to reserve shared memory.");
3740     return NULL;
3741   }
3742 
3743   // Attach to the region.
3744   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3745 
3746   // Remove shmid. If shmat() is successful, the actual shared memory segment
3747   // will be deleted when it's detached by shmdt() or when the process
3748   // terminates. If shmat() is not successful this will remove the shared
3749   // segment immediately.
3750   shmctl(shmid, IPC_RMID, NULL);
3751 
3752   return addr;
3753 }
3754 
3755 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3756                                         int error) {
3757   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3758 
3759   bool warn_on_failure = UseLargePages &&
3760       (!FLAG_IS_DEFAULT(UseLargePages) ||
3761        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3762        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3763 
3764   if (warn_on_failure) {
3765     char msg[128];
3766     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3767                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3768     warning("%s", msg);
3769   }
3770 }
3771 
3772 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3773                                                         char* req_addr,
3774                                                         bool exec) {
3775   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3776   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3777   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3778 
3779   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3780   char* addr = (char*)::mmap(req_addr, bytes, prot,
3781                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3782                              -1, 0);
3783 
3784   if (addr == MAP_FAILED) {
3785     warn_on_large_pages_failure(req_addr, bytes, errno);
3786     return NULL;
3787   }
3788 
3789   assert(is_aligned(addr, os::large_page_size()), "Must be");
3790 
3791   return addr;
3792 }
3793 
3794 // Reserve memory using mmap(MAP_HUGETLB).
3795 //  - bytes shall be a multiple of alignment.
3796 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3797 //  - alignment sets the alignment at which memory shall be allocated.
3798 //     It must be a multiple of allocation granularity.
3799 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3800 //  req_addr or NULL.
3801 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3802                                                          size_t alignment,
3803                                                          char* req_addr,
3804                                                          bool exec) {
3805   size_t large_page_size = os::large_page_size();
3806   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3807 
3808   assert(is_aligned(req_addr, alignment), "Must be");
3809   assert(is_aligned(bytes, alignment), "Must be");
3810 
3811   // First reserve - but not commit - the address range in small pages.
3812   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3813 
3814   if (start == NULL) {
3815     return NULL;
3816   }
3817 
3818   assert(is_aligned(start, alignment), "Must be");
3819 
3820   char* end = start + bytes;
3821 
3822   // Find the regions of the allocated chunk that can be promoted to large pages.
3823   char* lp_start = align_up(start, large_page_size);
3824   char* lp_end   = align_down(end, large_page_size);
3825 
3826   size_t lp_bytes = lp_end - lp_start;
3827 
3828   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3829 
3830   if (lp_bytes == 0) {
3831     // The mapped region doesn't even span the start and the end of a large page.
3832     // Fall back to allocate a non-special area.
3833     ::munmap(start, end - start);
3834     return NULL;
3835   }
3836 
3837   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3838 
3839   void* result;
3840 
3841   // Commit small-paged leading area.
3842   if (start != lp_start) {
3843     result = ::mmap(start, lp_start - start, prot,
3844                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3845                     -1, 0);
3846     if (result == MAP_FAILED) {
3847       ::munmap(lp_start, end - lp_start);
3848       return NULL;
3849     }
3850   }
3851 
3852   // Commit large-paged area.
3853   result = ::mmap(lp_start, lp_bytes, prot,
3854                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3855                   -1, 0);
3856   if (result == MAP_FAILED) {
3857     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3858     // If the mmap above fails, the large pages region will be unmapped and we
3859     // have regions before and after with small pages. Release these regions.
3860     //
3861     // |  mapped  |  unmapped  |  mapped  |
3862     // ^          ^            ^          ^
3863     // start      lp_start     lp_end     end
3864     //
3865     ::munmap(start, lp_start - start);
3866     ::munmap(lp_end, end - lp_end);
3867     return NULL;
3868   }
3869 
3870   // Commit small-paged trailing area.
3871   if (lp_end != end) {
3872     result = ::mmap(lp_end, end - lp_end, prot,
3873                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3874                     -1, 0);
3875     if (result == MAP_FAILED) {
3876       ::munmap(start, lp_end - start);
3877       return NULL;
3878     }
3879   }
3880 
3881   return start;
3882 }
3883 
3884 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3885                                                    size_t alignment,
3886                                                    char* req_addr,
3887                                                    bool exec) {
3888   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3889   assert(is_aligned(req_addr, alignment), "Must be");
3890   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3891   assert(is_power_of_2(os::large_page_size()), "Must be");
3892   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3893 
3894   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3895     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3896   } else {
3897     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3898   }
3899 }
3900 
3901 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3902                                  char* req_addr, bool exec) {
3903   assert(UseLargePages, "only for large pages");
3904 
3905   char* addr;
3906   if (UseSHM) {
3907     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3908   } else {
3909     assert(UseHugeTLBFS, "must be");
3910     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3911   }
3912 
3913   if (addr != NULL) {
3914     if (UseNUMAInterleaving) {
3915       numa_make_global(addr, bytes);
3916     }
3917 
3918     // The memory is committed
3919     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3920   }
3921 
3922   return addr;
3923 }
3924 
3925 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3926   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3927   return shmdt(base) == 0;
3928 }
3929 
3930 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3931   return pd_release_memory(base, bytes);
3932 }
3933 
3934 bool os::release_memory_special(char* base, size_t bytes) {
3935   bool res;
3936   if (MemTracker::tracking_level() > NMT_minimal) {
3937     Tracker tkr(Tracker::release);
3938     res = os::Linux::release_memory_special_impl(base, bytes);
3939     if (res) {
3940       tkr.record((address)base, bytes);
3941     }
3942 
3943   } else {
3944     res = os::Linux::release_memory_special_impl(base, bytes);
3945   }
3946   return res;
3947 }
3948 
3949 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3950   assert(UseLargePages, "only for large pages");
3951   bool res;
3952 
3953   if (UseSHM) {
3954     res = os::Linux::release_memory_special_shm(base, bytes);
3955   } else {
3956     assert(UseHugeTLBFS, "must be");
3957     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3958   }
3959   return res;
3960 }
3961 
3962 size_t os::large_page_size() {
3963   return _large_page_size;
3964 }
3965 
3966 // With SysV SHM the entire memory region must be allocated as shared
3967 // memory.
3968 // HugeTLBFS allows application to commit large page memory on demand.
3969 // However, when committing memory with HugeTLBFS fails, the region
3970 // that was supposed to be committed will lose the old reservation
3971 // and allow other threads to steal that memory region. Because of this
3972 // behavior we can't commit HugeTLBFS memory.
3973 bool os::can_commit_large_page_memory() {
3974   return UseTransparentHugePages;
3975 }
3976 
3977 bool os::can_execute_large_page_memory() {
3978   return UseTransparentHugePages || UseHugeTLBFS;
3979 }
3980 
3981 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3982   assert(file_desc >= 0, "file_desc is not valid");
3983   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
3984   if (result != NULL) {
3985     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
3986       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3987     }
3988   }
3989   return result;
3990 }
3991 
3992 // Reserve memory at an arbitrary address, only if that area is
3993 // available (and not reserved for something else).
3994 
3995 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3996   const int max_tries = 10;
3997   char* base[max_tries];
3998   size_t size[max_tries];
3999   const size_t gap = 0x000000;
4000 
4001   // Assert only that the size is a multiple of the page size, since
4002   // that's all that mmap requires, and since that's all we really know
4003   // about at this low abstraction level.  If we need higher alignment,
4004   // we can either pass an alignment to this method or verify alignment
4005   // in one of the methods further up the call chain.  See bug 5044738.
4006   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
4007 
4008   // Repeatedly allocate blocks until the block is allocated at the
4009   // right spot.
4010 
4011   // Linux mmap allows caller to pass an address as hint; give it a try first,
4012   // if kernel honors the hint then we can return immediately.
4013   char * addr = anon_mmap(requested_addr, bytes, false);
4014   if (addr == requested_addr) {
4015     return requested_addr;
4016   }
4017 
4018   if (addr != NULL) {
4019     // mmap() is successful but it fails to reserve at the requested address
4020     anon_munmap(addr, bytes);
4021   }
4022 
4023   int i;
4024   for (i = 0; i < max_tries; ++i) {
4025     base[i] = reserve_memory(bytes);
4026 
4027     if (base[i] != NULL) {
4028       // Is this the block we wanted?
4029       if (base[i] == requested_addr) {
4030         size[i] = bytes;
4031         break;
4032       }
4033 
4034       // Does this overlap the block we wanted? Give back the overlapped
4035       // parts and try again.
4036 
4037       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
4038       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
4039         unmap_memory(base[i], top_overlap);
4040         base[i] += top_overlap;
4041         size[i] = bytes - top_overlap;
4042       } else {
4043         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
4044         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
4045           unmap_memory(requested_addr, bottom_overlap);
4046           size[i] = bytes - bottom_overlap;
4047         } else {
4048           size[i] = bytes;
4049         }
4050       }
4051     }
4052   }
4053 
4054   // Give back the unused reserved pieces.
4055 
4056   for (int j = 0; j < i; ++j) {
4057     if (base[j] != NULL) {
4058       unmap_memory(base[j], size[j]);
4059     }
4060   }
4061 
4062   if (i < max_tries) {
4063     return requested_addr;
4064   } else {
4065     return NULL;
4066   }
4067 }
4068 
4069 size_t os::read(int fd, void *buf, unsigned int nBytes) {
4070   return ::read(fd, buf, nBytes);
4071 }
4072 
4073 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4074   return ::pread(fd, buf, nBytes, offset);
4075 }
4076 
4077 // Short sleep, direct OS call.
4078 //
4079 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4080 // sched_yield(2) will actually give up the CPU:
4081 //
4082 //   * Alone on this pariticular CPU, keeps running.
4083 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4084 //     (pre 2.6.39).
4085 //
4086 // So calling this with 0 is an alternative.
4087 //
4088 void os::naked_short_sleep(jlong ms) {
4089   struct timespec req;
4090 
4091   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4092   req.tv_sec = 0;
4093   if (ms > 0) {
4094     req.tv_nsec = (ms % 1000) * 1000000;
4095   } else {
4096     req.tv_nsec = 1;
4097   }
4098 
4099   nanosleep(&req, NULL);
4100 
4101   return;
4102 }
4103 
4104 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4105 void os::infinite_sleep() {
4106   while (true) {    // sleep forever ...
4107     ::sleep(100);   // ... 100 seconds at a time
4108   }
4109 }
4110 
4111 // Used to convert frequent JVM_Yield() to nops
4112 bool os::dont_yield() {
4113   return DontYieldALot;
4114 }
4115 
4116 void os::naked_yield() {
4117   sched_yield();
4118 }
4119 
4120 ////////////////////////////////////////////////////////////////////////////////
4121 // thread priority support
4122 
4123 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4124 // only supports dynamic priority, static priority must be zero. For real-time
4125 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4126 // However, for large multi-threaded applications, SCHED_RR is not only slower
4127 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4128 // of 5 runs - Sep 2005).
4129 //
4130 // The following code actually changes the niceness of kernel-thread/LWP. It
4131 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4132 // not the entire user process, and user level threads are 1:1 mapped to kernel
4133 // threads. It has always been the case, but could change in the future. For
4134 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4135 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4136 
4137 int os::java_to_os_priority[CriticalPriority + 1] = {
4138   19,              // 0 Entry should never be used
4139 
4140    4,              // 1 MinPriority
4141    3,              // 2
4142    2,              // 3
4143 
4144    1,              // 4
4145    0,              // 5 NormPriority
4146   -1,              // 6
4147 
4148   -2,              // 7
4149   -3,              // 8
4150   -4,              // 9 NearMaxPriority
4151 
4152   -5,              // 10 MaxPriority
4153 
4154   -5               // 11 CriticalPriority
4155 };
4156 
4157 static int prio_init() {
4158   if (ThreadPriorityPolicy == 1) {
4159     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4160     // if effective uid is not root. Perhaps, a more elegant way of doing
4161     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4162     if (geteuid() != 0) {
4163       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4164         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4165       }
4166       ThreadPriorityPolicy = 0;
4167     }
4168   }
4169   if (UseCriticalJavaThreadPriority) {
4170     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4171   }
4172   return 0;
4173 }
4174 
4175 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4176   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4177 
4178   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4179   return (ret == 0) ? OS_OK : OS_ERR;
4180 }
4181 
4182 OSReturn os::get_native_priority(const Thread* const thread,
4183                                  int *priority_ptr) {
4184   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4185     *priority_ptr = java_to_os_priority[NormPriority];
4186     return OS_OK;
4187   }
4188 
4189   errno = 0;
4190   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4191   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4192 }
4193 
4194 ////////////////////////////////////////////////////////////////////////////////
4195 // suspend/resume support
4196 
4197 //  The low-level signal-based suspend/resume support is a remnant from the
4198 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4199 //  within hotspot. Currently used by JFR's OSThreadSampler
4200 //
4201 //  The remaining code is greatly simplified from the more general suspension
4202 //  code that used to be used.
4203 //
4204 //  The protocol is quite simple:
4205 //  - suspend:
4206 //      - sends a signal to the target thread
4207 //      - polls the suspend state of the osthread using a yield loop
4208 //      - target thread signal handler (SR_handler) sets suspend state
4209 //        and blocks in sigsuspend until continued
4210 //  - resume:
4211 //      - sets target osthread state to continue
4212 //      - sends signal to end the sigsuspend loop in the SR_handler
4213 //
4214 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4215 //  but is checked for NULL in SR_handler as a thread termination indicator.
4216 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4217 //
4218 //  Note that resume_clear_context() and suspend_save_context() are needed
4219 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4220 //  which in part is used by:
4221 //    - Forte Analyzer: AsyncGetCallTrace()
4222 //    - StackBanging: get_frame_at_stack_banging_point()
4223 
4224 static void resume_clear_context(OSThread *osthread) {
4225   osthread->set_ucontext(NULL);
4226   osthread->set_siginfo(NULL);
4227 }
4228 
4229 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4230                                  ucontext_t* context) {
4231   osthread->set_ucontext(context);
4232   osthread->set_siginfo(siginfo);
4233 }
4234 
4235 // Handler function invoked when a thread's execution is suspended or
4236 // resumed. We have to be careful that only async-safe functions are
4237 // called here (Note: most pthread functions are not async safe and
4238 // should be avoided.)
4239 //
4240 // Note: sigwait() is a more natural fit than sigsuspend() from an
4241 // interface point of view, but sigwait() prevents the signal hander
4242 // from being run. libpthread would get very confused by not having
4243 // its signal handlers run and prevents sigwait()'s use with the
4244 // mutex granting granting signal.
4245 //
4246 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4247 //
4248 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4249   // Save and restore errno to avoid confusing native code with EINTR
4250   // after sigsuspend.
4251   int old_errno = errno;
4252 
4253   Thread* thread = Thread::current_or_null_safe();
4254   assert(thread != NULL, "Missing current thread in SR_handler");
4255 
4256   // On some systems we have seen signal delivery get "stuck" until the signal
4257   // mask is changed as part of thread termination. Check that the current thread
4258   // has not already terminated (via SR_lock()) - else the following assertion
4259   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4260   // destructor has completed.
4261 
4262   if (thread->SR_lock() == NULL) {
4263     return;
4264   }
4265 
4266   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4267 
4268   OSThread* osthread = thread->osthread();
4269 
4270   os::SuspendResume::State current = osthread->sr.state();
4271   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4272     suspend_save_context(osthread, siginfo, context);
4273 
4274     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4275     os::SuspendResume::State state = osthread->sr.suspended();
4276     if (state == os::SuspendResume::SR_SUSPENDED) {
4277       sigset_t suspend_set;  // signals for sigsuspend()
4278       sigemptyset(&suspend_set);
4279       // get current set of blocked signals and unblock resume signal
4280       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4281       sigdelset(&suspend_set, SR_signum);
4282 
4283       sr_semaphore.signal();
4284       // wait here until we are resumed
4285       while (1) {
4286         sigsuspend(&suspend_set);
4287 
4288         os::SuspendResume::State result = osthread->sr.running();
4289         if (result == os::SuspendResume::SR_RUNNING) {
4290           sr_semaphore.signal();
4291           break;
4292         }
4293       }
4294 
4295     } else if (state == os::SuspendResume::SR_RUNNING) {
4296       // request was cancelled, continue
4297     } else {
4298       ShouldNotReachHere();
4299     }
4300 
4301     resume_clear_context(osthread);
4302   } else if (current == os::SuspendResume::SR_RUNNING) {
4303     // request was cancelled, continue
4304   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4305     // ignore
4306   } else {
4307     // ignore
4308   }
4309 
4310   errno = old_errno;
4311 }
4312 
4313 static int SR_initialize() {
4314   struct sigaction act;
4315   char *s;
4316 
4317   // Get signal number to use for suspend/resume
4318   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4319     int sig = ::strtol(s, 0, 10);
4320     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4321         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4322       SR_signum = sig;
4323     } else {
4324       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4325               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4326     }
4327   }
4328 
4329   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4330          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4331 
4332   sigemptyset(&SR_sigset);
4333   sigaddset(&SR_sigset, SR_signum);
4334 
4335   // Set up signal handler for suspend/resume
4336   act.sa_flags = SA_RESTART|SA_SIGINFO;
4337   act.sa_handler = (void (*)(int)) SR_handler;
4338 
4339   // SR_signum is blocked by default.
4340   // 4528190 - We also need to block pthread restart signal (32 on all
4341   // supported Linux platforms). Note that LinuxThreads need to block
4342   // this signal for all threads to work properly. So we don't have
4343   // to use hard-coded signal number when setting up the mask.
4344   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4345 
4346   if (sigaction(SR_signum, &act, 0) == -1) {
4347     return -1;
4348   }
4349 
4350   // Save signal flag
4351   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4352   return 0;
4353 }
4354 
4355 static int sr_notify(OSThread* osthread) {
4356   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4357   assert_status(status == 0, status, "pthread_kill");
4358   return status;
4359 }
4360 
4361 // "Randomly" selected value for how long we want to spin
4362 // before bailing out on suspending a thread, also how often
4363 // we send a signal to a thread we want to resume
4364 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4365 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4366 
4367 // returns true on success and false on error - really an error is fatal
4368 // but this seems the normal response to library errors
4369 static bool do_suspend(OSThread* osthread) {
4370   assert(osthread->sr.is_running(), "thread should be running");
4371   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4372 
4373   // mark as suspended and send signal
4374   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4375     // failed to switch, state wasn't running?
4376     ShouldNotReachHere();
4377     return false;
4378   }
4379 
4380   if (sr_notify(osthread) != 0) {
4381     ShouldNotReachHere();
4382   }
4383 
4384   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4385   while (true) {
4386     if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4387       break;
4388     } else {
4389       // timeout
4390       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4391       if (cancelled == os::SuspendResume::SR_RUNNING) {
4392         return false;
4393       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4394         // make sure that we consume the signal on the semaphore as well
4395         sr_semaphore.wait();
4396         break;
4397       } else {
4398         ShouldNotReachHere();
4399         return false;
4400       }
4401     }
4402   }
4403 
4404   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4405   return true;
4406 }
4407 
4408 static void do_resume(OSThread* osthread) {
4409   assert(osthread->sr.is_suspended(), "thread should be suspended");
4410   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4411 
4412   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4413     // failed to switch to WAKEUP_REQUEST
4414     ShouldNotReachHere();
4415     return;
4416   }
4417 
4418   while (true) {
4419     if (sr_notify(osthread) == 0) {
4420       if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4421         if (osthread->sr.is_running()) {
4422           return;
4423         }
4424       }
4425     } else {
4426       ShouldNotReachHere();
4427     }
4428   }
4429 
4430   guarantee(osthread->sr.is_running(), "Must be running!");
4431 }
4432 
4433 ///////////////////////////////////////////////////////////////////////////////////
4434 // signal handling (except suspend/resume)
4435 
4436 // This routine may be used by user applications as a "hook" to catch signals.
4437 // The user-defined signal handler must pass unrecognized signals to this
4438 // routine, and if it returns true (non-zero), then the signal handler must
4439 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4440 // routine will never retun false (zero), but instead will execute a VM panic
4441 // routine kill the process.
4442 //
4443 // If this routine returns false, it is OK to call it again.  This allows
4444 // the user-defined signal handler to perform checks either before or after
4445 // the VM performs its own checks.  Naturally, the user code would be making
4446 // a serious error if it tried to handle an exception (such as a null check
4447 // or breakpoint) that the VM was generating for its own correct operation.
4448 //
4449 // This routine may recognize any of the following kinds of signals:
4450 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4451 // It should be consulted by handlers for any of those signals.
4452 //
4453 // The caller of this routine must pass in the three arguments supplied
4454 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4455 // field of the structure passed to sigaction().  This routine assumes that
4456 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4457 //
4458 // Note that the VM will print warnings if it detects conflicting signal
4459 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4460 //
4461 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4462                                                  siginfo_t* siginfo,
4463                                                  void* ucontext,
4464                                                  int abort_if_unrecognized);
4465 
4466 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4467   assert(info != NULL && uc != NULL, "it must be old kernel");
4468   int orig_errno = errno;  // Preserve errno value over signal handler.
4469   JVM_handle_linux_signal(sig, info, uc, true);
4470   errno = orig_errno;
4471 }
4472 
4473 
4474 // This boolean allows users to forward their own non-matching signals
4475 // to JVM_handle_linux_signal, harmlessly.
4476 bool os::Linux::signal_handlers_are_installed = false;
4477 
4478 // For signal-chaining
4479 struct sigaction sigact[NSIG];
4480 uint64_t sigs = 0;
4481 #if (64 < NSIG-1)
4482 #error "Not all signals can be encoded in sigs. Adapt its type!"
4483 #endif
4484 bool os::Linux::libjsig_is_loaded = false;
4485 typedef struct sigaction *(*get_signal_t)(int);
4486 get_signal_t os::Linux::get_signal_action = NULL;
4487 
4488 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4489   struct sigaction *actp = NULL;
4490 
4491   if (libjsig_is_loaded) {
4492     // Retrieve the old signal handler from libjsig
4493     actp = (*get_signal_action)(sig);
4494   }
4495   if (actp == NULL) {
4496     // Retrieve the preinstalled signal handler from jvm
4497     actp = get_preinstalled_handler(sig);
4498   }
4499 
4500   return actp;
4501 }
4502 
4503 static bool call_chained_handler(struct sigaction *actp, int sig,
4504                                  siginfo_t *siginfo, void *context) {
4505   // Call the old signal handler
4506   if (actp->sa_handler == SIG_DFL) {
4507     // It's more reasonable to let jvm treat it as an unexpected exception
4508     // instead of taking the default action.
4509     return false;
4510   } else if (actp->sa_handler != SIG_IGN) {
4511     if ((actp->sa_flags & SA_NODEFER) == 0) {
4512       // automaticlly block the signal
4513       sigaddset(&(actp->sa_mask), sig);
4514     }
4515 
4516     sa_handler_t hand = NULL;
4517     sa_sigaction_t sa = NULL;
4518     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4519     // retrieve the chained handler
4520     if (siginfo_flag_set) {
4521       sa = actp->sa_sigaction;
4522     } else {
4523       hand = actp->sa_handler;
4524     }
4525 
4526     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4527       actp->sa_handler = SIG_DFL;
4528     }
4529 
4530     // try to honor the signal mask
4531     sigset_t oset;
4532     sigemptyset(&oset);
4533     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4534 
4535     // call into the chained handler
4536     if (siginfo_flag_set) {
4537       (*sa)(sig, siginfo, context);
4538     } else {
4539       (*hand)(sig);
4540     }
4541 
4542     // restore the signal mask
4543     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4544   }
4545   // Tell jvm's signal handler the signal is taken care of.
4546   return true;
4547 }
4548 
4549 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4550   bool chained = false;
4551   // signal-chaining
4552   if (UseSignalChaining) {
4553     struct sigaction *actp = get_chained_signal_action(sig);
4554     if (actp != NULL) {
4555       chained = call_chained_handler(actp, sig, siginfo, context);
4556     }
4557   }
4558   return chained;
4559 }
4560 
4561 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4562   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4563     return &sigact[sig];
4564   }
4565   return NULL;
4566 }
4567 
4568 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4569   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4570   sigact[sig] = oldAct;
4571   sigs |= (uint64_t)1 << (sig-1);
4572 }
4573 
4574 // for diagnostic
4575 int sigflags[NSIG];
4576 
4577 int os::Linux::get_our_sigflags(int sig) {
4578   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4579   return sigflags[sig];
4580 }
4581 
4582 void os::Linux::set_our_sigflags(int sig, int flags) {
4583   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4584   if (sig > 0 && sig < NSIG) {
4585     sigflags[sig] = flags;
4586   }
4587 }
4588 
4589 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4590   // Check for overwrite.
4591   struct sigaction oldAct;
4592   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4593 
4594   void* oldhand = oldAct.sa_sigaction
4595                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4596                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4597   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4598       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4599       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4600     if (AllowUserSignalHandlers || !set_installed) {
4601       // Do not overwrite; user takes responsibility to forward to us.
4602       return;
4603     } else if (UseSignalChaining) {
4604       // save the old handler in jvm
4605       save_preinstalled_handler(sig, oldAct);
4606       // libjsig also interposes the sigaction() call below and saves the
4607       // old sigaction on it own.
4608     } else {
4609       fatal("Encountered unexpected pre-existing sigaction handler "
4610             "%#lx for signal %d.", (long)oldhand, sig);
4611     }
4612   }
4613 
4614   struct sigaction sigAct;
4615   sigfillset(&(sigAct.sa_mask));
4616   sigAct.sa_handler = SIG_DFL;
4617   if (!set_installed) {
4618     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4619   } else {
4620     sigAct.sa_sigaction = signalHandler;
4621     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4622   }
4623   // Save flags, which are set by ours
4624   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4625   sigflags[sig] = sigAct.sa_flags;
4626 
4627   int ret = sigaction(sig, &sigAct, &oldAct);
4628   assert(ret == 0, "check");
4629 
4630   void* oldhand2  = oldAct.sa_sigaction
4631                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4632                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4633   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4634 }
4635 
4636 // install signal handlers for signals that HotSpot needs to
4637 // handle in order to support Java-level exception handling.
4638 
4639 void os::Linux::install_signal_handlers() {
4640   if (!signal_handlers_are_installed) {
4641     signal_handlers_are_installed = true;
4642 
4643     // signal-chaining
4644     typedef void (*signal_setting_t)();
4645     signal_setting_t begin_signal_setting = NULL;
4646     signal_setting_t end_signal_setting = NULL;
4647     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4648                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4649     if (begin_signal_setting != NULL) {
4650       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4651                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4652       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4653                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4654       libjsig_is_loaded = true;
4655       assert(UseSignalChaining, "should enable signal-chaining");
4656     }
4657     if (libjsig_is_loaded) {
4658       // Tell libjsig jvm is setting signal handlers
4659       (*begin_signal_setting)();
4660     }
4661 
4662     set_signal_handler(SIGSEGV, true);
4663     set_signal_handler(SIGPIPE, true);
4664     set_signal_handler(SIGBUS, true);
4665     set_signal_handler(SIGILL, true);
4666     set_signal_handler(SIGFPE, true);
4667 #if defined(PPC64)
4668     set_signal_handler(SIGTRAP, true);
4669 #endif
4670     set_signal_handler(SIGXFSZ, true);
4671 
4672     if (libjsig_is_loaded) {
4673       // Tell libjsig jvm finishes setting signal handlers
4674       (*end_signal_setting)();
4675     }
4676 
4677     // We don't activate signal checker if libjsig is in place, we trust ourselves
4678     // and if UserSignalHandler is installed all bets are off.
4679     // Log that signal checking is off only if -verbose:jni is specified.
4680     if (CheckJNICalls) {
4681       if (libjsig_is_loaded) {
4682         if (PrintJNIResolving) {
4683           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4684         }
4685         check_signals = false;
4686       }
4687       if (AllowUserSignalHandlers) {
4688         if (PrintJNIResolving) {
4689           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4690         }
4691         check_signals = false;
4692       }
4693     }
4694   }
4695 }
4696 
4697 // This is the fastest way to get thread cpu time on Linux.
4698 // Returns cpu time (user+sys) for any thread, not only for current.
4699 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4700 // It might work on 2.6.10+ with a special kernel/glibc patch.
4701 // For reference, please, see IEEE Std 1003.1-2004:
4702 //   http://www.unix.org/single_unix_specification
4703 
4704 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4705   struct timespec tp;
4706   int rc = os::Linux::clock_gettime(clockid, &tp);
4707   assert(rc == 0, "clock_gettime is expected to return 0 code");
4708 
4709   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4710 }
4711 
4712 void os::Linux::initialize_os_info() {
4713   assert(_os_version == 0, "OS info already initialized");
4714 
4715   struct utsname _uname;
4716 
4717   uint32_t major;
4718   uint32_t minor;
4719   uint32_t fix;
4720 
4721   int rc;
4722 
4723   // Kernel version is unknown if
4724   // verification below fails.
4725   _os_version = 0x01000000;
4726 
4727   rc = uname(&_uname);
4728   if (rc != -1) {
4729 
4730     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4731     if (rc == 3) {
4732 
4733       if (major < 256 && minor < 256 && fix < 256) {
4734         // Kernel version format is as expected,
4735         // set it overriding unknown state.
4736         _os_version = (major << 16) |
4737                       (minor << 8 ) |
4738                       (fix   << 0 ) ;
4739       }
4740     }
4741   }
4742 }
4743 
4744 uint32_t os::Linux::os_version() {
4745   assert(_os_version != 0, "not initialized");
4746   return _os_version & 0x00FFFFFF;
4747 }
4748 
4749 bool os::Linux::os_version_is_known() {
4750   assert(_os_version != 0, "not initialized");
4751   return _os_version & 0x01000000 ? false : true;
4752 }
4753 
4754 /////
4755 // glibc on Linux platform uses non-documented flag
4756 // to indicate, that some special sort of signal
4757 // trampoline is used.
4758 // We will never set this flag, and we should
4759 // ignore this flag in our diagnostic
4760 #ifdef SIGNIFICANT_SIGNAL_MASK
4761   #undef SIGNIFICANT_SIGNAL_MASK
4762 #endif
4763 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4764 
4765 static const char* get_signal_handler_name(address handler,
4766                                            char* buf, int buflen) {
4767   int offset = 0;
4768   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4769   if (found) {
4770     // skip directory names
4771     const char *p1, *p2;
4772     p1 = buf;
4773     size_t len = strlen(os::file_separator());
4774     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4775     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4776   } else {
4777     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4778   }
4779   return buf;
4780 }
4781 
4782 static void print_signal_handler(outputStream* st, int sig,
4783                                  char* buf, size_t buflen) {
4784   struct sigaction sa;
4785 
4786   sigaction(sig, NULL, &sa);
4787 
4788   // See comment for SIGNIFICANT_SIGNAL_MASK define
4789   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4790 
4791   st->print("%s: ", os::exception_name(sig, buf, buflen));
4792 
4793   address handler = (sa.sa_flags & SA_SIGINFO)
4794     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4795     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4796 
4797   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4798     st->print("SIG_DFL");
4799   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4800     st->print("SIG_IGN");
4801   } else {
4802     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4803   }
4804 
4805   st->print(", sa_mask[0]=");
4806   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4807 
4808   address rh = VMError::get_resetted_sighandler(sig);
4809   // May be, handler was resetted by VMError?
4810   if (rh != NULL) {
4811     handler = rh;
4812     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4813   }
4814 
4815   st->print(", sa_flags=");
4816   os::Posix::print_sa_flags(st, sa.sa_flags);
4817 
4818   // Check: is it our handler?
4819   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4820       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4821     // It is our signal handler
4822     // check for flags, reset system-used one!
4823     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4824       st->print(
4825                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4826                 os::Linux::get_our_sigflags(sig));
4827     }
4828   }
4829   st->cr();
4830 }
4831 
4832 
4833 #define DO_SIGNAL_CHECK(sig)                      \
4834   do {                                            \
4835     if (!sigismember(&check_signal_done, sig)) {  \
4836       os::Linux::check_signal_handler(sig);       \
4837     }                                             \
4838   } while (0)
4839 
4840 // This method is a periodic task to check for misbehaving JNI applications
4841 // under CheckJNI, we can add any periodic checks here
4842 
4843 void os::run_periodic_checks() {
4844   if (check_signals == false) return;
4845 
4846   // SEGV and BUS if overridden could potentially prevent
4847   // generation of hs*.log in the event of a crash, debugging
4848   // such a case can be very challenging, so we absolutely
4849   // check the following for a good measure:
4850   DO_SIGNAL_CHECK(SIGSEGV);
4851   DO_SIGNAL_CHECK(SIGILL);
4852   DO_SIGNAL_CHECK(SIGFPE);
4853   DO_SIGNAL_CHECK(SIGBUS);
4854   DO_SIGNAL_CHECK(SIGPIPE);
4855   DO_SIGNAL_CHECK(SIGXFSZ);
4856 #if defined(PPC64)
4857   DO_SIGNAL_CHECK(SIGTRAP);
4858 #endif
4859 
4860   // ReduceSignalUsage allows the user to override these handlers
4861   // see comments at the very top and jvm_md.h
4862   if (!ReduceSignalUsage) {
4863     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4864     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4865     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4866     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4867   }
4868 
4869   DO_SIGNAL_CHECK(SR_signum);
4870 }
4871 
4872 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4873 
4874 static os_sigaction_t os_sigaction = NULL;
4875 
4876 void os::Linux::check_signal_handler(int sig) {
4877   char buf[O_BUFLEN];
4878   address jvmHandler = NULL;
4879 
4880 
4881   struct sigaction act;
4882   if (os_sigaction == NULL) {
4883     // only trust the default sigaction, in case it has been interposed
4884     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4885     if (os_sigaction == NULL) return;
4886   }
4887 
4888   os_sigaction(sig, (struct sigaction*)NULL, &act);
4889 
4890 
4891   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4892 
4893   address thisHandler = (act.sa_flags & SA_SIGINFO)
4894     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4895     : CAST_FROM_FN_PTR(address, act.sa_handler);
4896 
4897 
4898   switch (sig) {
4899   case SIGSEGV:
4900   case SIGBUS:
4901   case SIGFPE:
4902   case SIGPIPE:
4903   case SIGILL:
4904   case SIGXFSZ:
4905     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4906     break;
4907 
4908   case SHUTDOWN1_SIGNAL:
4909   case SHUTDOWN2_SIGNAL:
4910   case SHUTDOWN3_SIGNAL:
4911   case BREAK_SIGNAL:
4912     jvmHandler = (address)user_handler();
4913     break;
4914 
4915   default:
4916     if (sig == SR_signum) {
4917       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4918     } else {
4919       return;
4920     }
4921     break;
4922   }
4923 
4924   if (thisHandler != jvmHandler) {
4925     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4926     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4927     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4928     // No need to check this sig any longer
4929     sigaddset(&check_signal_done, sig);
4930     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4931     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4932       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4933                     exception_name(sig, buf, O_BUFLEN));
4934     }
4935   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4936     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4937     tty->print("expected:");
4938     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4939     tty->cr();
4940     tty->print("  found:");
4941     os::Posix::print_sa_flags(tty, act.sa_flags);
4942     tty->cr();
4943     // No need to check this sig any longer
4944     sigaddset(&check_signal_done, sig);
4945   }
4946 
4947   // Dump all the signal
4948   if (sigismember(&check_signal_done, sig)) {
4949     print_signal_handlers(tty, buf, O_BUFLEN);
4950   }
4951 }
4952 
4953 extern void report_error(char* file_name, int line_no, char* title,
4954                          char* format, ...);
4955 
4956 // this is called _before_ most of the global arguments have been parsed
4957 void os::init(void) {
4958   char dummy;   // used to get a guess on initial stack address
4959 
4960   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4961 
4962   init_random(1234567);
4963 
4964   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4965   if (Linux::page_size() == -1) {
4966     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4967           os::strerror(errno));
4968   }
4969   init_page_sizes((size_t) Linux::page_size());
4970 
4971   Linux::initialize_system_info();
4972 
4973   Linux::initialize_os_info();
4974 
4975   // _main_thread points to the thread that created/loaded the JVM.
4976   Linux::_main_thread = pthread_self();
4977 
4978   Linux::clock_init();
4979   initial_time_count = javaTimeNanos();
4980 
4981   // retrieve entry point for pthread_setname_np
4982   Linux::_pthread_setname_np =
4983     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4984 
4985   os::Posix::init();
4986 }
4987 
4988 // To install functions for atexit system call
4989 extern "C" {
4990   static void perfMemory_exit_helper() {
4991     perfMemory_exit();
4992   }
4993 }
4994 
4995 void os::pd_init_container_support() {
4996   OSContainer::init();
4997 }
4998 
4999 // this is called _after_ the global arguments have been parsed
5000 jint os::init_2(void) {
5001 
5002   os::Posix::init_2();
5003 
5004   Linux::fast_thread_clock_init();
5005 
5006   // initialize suspend/resume support - must do this before signal_sets_init()
5007   if (SR_initialize() != 0) {
5008     perror("SR_initialize failed");
5009     return JNI_ERR;
5010   }
5011 
5012   Linux::signal_sets_init();
5013   Linux::install_signal_handlers();
5014   // Initialize data for jdk.internal.misc.Signal
5015   if (!ReduceSignalUsage) {
5016     jdk_misc_signal_init();
5017   }
5018 
5019   // Check and sets minimum stack sizes against command line options
5020   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5021     return JNI_ERR;
5022   }
5023 
5024   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5025   if (!suppress_primordial_thread_resolution) {
5026     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5027   }
5028 
5029 #if defined(IA32)
5030   workaround_expand_exec_shield_cs_limit();
5031 #endif
5032 
5033   Linux::libpthread_init();
5034   Linux::sched_getcpu_init();
5035   log_info(os)("HotSpot is running with %s, %s",
5036                Linux::glibc_version(), Linux::libpthread_version());
5037 
5038   if (UseNUMA) {
5039     if (!Linux::libnuma_init()) {
5040       UseNUMA = false;
5041     } else {
5042       if ((Linux::numa_max_node() < 1) || Linux::isbound_to_single_node()) {
5043         // If there's only one node (they start from 0) or if the process
5044         // is bound explicitly to a single node using membind, disable NUMA.
5045         UseNUMA = false;
5046       }
5047     }
5048 
5049     if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5050       // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5051       // we can make the adaptive lgrp chunk resizing work. If the user specified both
5052       // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5053       // and disable adaptive resizing.
5054       if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5055         warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5056                 "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5057         UseAdaptiveSizePolicy = false;
5058         UseAdaptiveNUMAChunkSizing = false;
5059       }
5060     }
5061 
5062     if (!UseNUMA && ForceNUMA) {
5063       UseNUMA = true;
5064     }
5065   }
5066 
5067   if (MaxFDLimit) {
5068     // set the number of file descriptors to max. print out error
5069     // if getrlimit/setrlimit fails but continue regardless.
5070     struct rlimit nbr_files;
5071     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5072     if (status != 0) {
5073       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5074     } else {
5075       nbr_files.rlim_cur = nbr_files.rlim_max;
5076       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5077       if (status != 0) {
5078         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5079       }
5080     }
5081   }
5082 
5083   // Initialize lock used to serialize thread creation (see os::create_thread)
5084   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5085 
5086   // at-exit methods are called in the reverse order of their registration.
5087   // atexit functions are called on return from main or as a result of a
5088   // call to exit(3C). There can be only 32 of these functions registered
5089   // and atexit() does not set errno.
5090 
5091   if (PerfAllowAtExitRegistration) {
5092     // only register atexit functions if PerfAllowAtExitRegistration is set.
5093     // atexit functions can be delayed until process exit time, which
5094     // can be problematic for embedded VM situations. Embedded VMs should
5095     // call DestroyJavaVM() to assure that VM resources are released.
5096 
5097     // note: perfMemory_exit_helper atexit function may be removed in
5098     // the future if the appropriate cleanup code can be added to the
5099     // VM_Exit VMOperation's doit method.
5100     if (atexit(perfMemory_exit_helper) != 0) {
5101       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5102     }
5103   }
5104 
5105   // initialize thread priority policy
5106   prio_init();
5107 
5108   if (!FLAG_IS_DEFAULT(AllocateHeapAt)) {
5109     set_coredump_filter(false /*largepages*/, true /*dax_shared*/);
5110   }
5111   return JNI_OK;
5112 }
5113 
5114 // Mark the polling page as unreadable
5115 void os::make_polling_page_unreadable(void) {
5116   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5117     fatal("Could not disable polling page");
5118   }
5119 }
5120 
5121 // Mark the polling page as readable
5122 void os::make_polling_page_readable(void) {
5123   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5124     fatal("Could not enable polling page");
5125   }
5126 }
5127 
5128 // older glibc versions don't have this macro (which expands to
5129 // an optimized bit-counting function) so we have to roll our own
5130 #ifndef CPU_COUNT
5131 
5132 static int _cpu_count(const cpu_set_t* cpus) {
5133   int count = 0;
5134   // only look up to the number of configured processors
5135   for (int i = 0; i < os::processor_count(); i++) {
5136     if (CPU_ISSET(i, cpus)) {
5137       count++;
5138     }
5139   }
5140   return count;
5141 }
5142 
5143 #define CPU_COUNT(cpus) _cpu_count(cpus)
5144 
5145 #endif // CPU_COUNT
5146 
5147 // Get the current number of available processors for this process.
5148 // This value can change at any time during a process's lifetime.
5149 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5150 // If it appears there may be more than 1024 processors then we do a
5151 // dynamic check - see 6515172 for details.
5152 // If anything goes wrong we fallback to returning the number of online
5153 // processors - which can be greater than the number available to the process.
5154 int os::Linux::active_processor_count() {
5155   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5156   cpu_set_t* cpus_p = &cpus;
5157   int cpus_size = sizeof(cpu_set_t);
5158 
5159   int configured_cpus = os::processor_count();  // upper bound on available cpus
5160   int cpu_count = 0;
5161 
5162 // old build platforms may not support dynamic cpu sets
5163 #ifdef CPU_ALLOC
5164 
5165   // To enable easy testing of the dynamic path on different platforms we
5166   // introduce a diagnostic flag: UseCpuAllocPath
5167   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5168     // kernel may use a mask bigger than cpu_set_t
5169     log_trace(os)("active_processor_count: using dynamic path %s"
5170                   "- configured processors: %d",
5171                   UseCpuAllocPath ? "(forced) " : "",
5172                   configured_cpus);
5173     cpus_p = CPU_ALLOC(configured_cpus);
5174     if (cpus_p != NULL) {
5175       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5176       // zero it just to be safe
5177       CPU_ZERO_S(cpus_size, cpus_p);
5178     }
5179     else {
5180        // failed to allocate so fallback to online cpus
5181        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5182        log_trace(os)("active_processor_count: "
5183                      "CPU_ALLOC failed (%s) - using "
5184                      "online processor count: %d",
5185                      os::strerror(errno), online_cpus);
5186        return online_cpus;
5187     }
5188   }
5189   else {
5190     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5191                   configured_cpus);
5192   }
5193 #else // CPU_ALLOC
5194 // these stubs won't be executed
5195 #define CPU_COUNT_S(size, cpus) -1
5196 #define CPU_FREE(cpus)
5197 
5198   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5199                 configured_cpus);
5200 #endif // CPU_ALLOC
5201 
5202   // pid 0 means the current thread - which we have to assume represents the process
5203   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5204     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5205       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5206     }
5207     else {
5208       cpu_count = CPU_COUNT(cpus_p);
5209     }
5210     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5211   }
5212   else {
5213     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5214     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5215             "which may exceed available processors", os::strerror(errno), cpu_count);
5216   }
5217 
5218   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5219     CPU_FREE(cpus_p);
5220   }
5221 
5222   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5223   return cpu_count;
5224 }
5225 
5226 // Determine the active processor count from one of
5227 // three different sources:
5228 //
5229 // 1. User option -XX:ActiveProcessorCount
5230 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5231 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5232 //
5233 // Option 1, if specified, will always override.
5234 // If the cgroup subsystem is active and configured, we
5235 // will return the min of the cgroup and option 2 results.
5236 // This is required since tools, such as numactl, that
5237 // alter cpu affinity do not update cgroup subsystem
5238 // cpuset configuration files.
5239 int os::active_processor_count() {
5240   // User has overridden the number of active processors
5241   if (ActiveProcessorCount > 0) {
5242     log_trace(os)("active_processor_count: "
5243                   "active processor count set by user : %d",
5244                   ActiveProcessorCount);
5245     return ActiveProcessorCount;
5246   }
5247 
5248   int active_cpus;
5249   if (OSContainer::is_containerized()) {
5250     active_cpus = OSContainer::active_processor_count();
5251     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5252                    active_cpus);
5253   } else {
5254     active_cpus = os::Linux::active_processor_count();
5255   }
5256 
5257   return active_cpus;
5258 }
5259 
5260 uint os::processor_id() {
5261   const int id = Linux::sched_getcpu();
5262   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5263   return (uint)id;
5264 }
5265 
5266 void os::set_native_thread_name(const char *name) {
5267   if (Linux::_pthread_setname_np) {
5268     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5269     snprintf(buf, sizeof(buf), "%s", name);
5270     buf[sizeof(buf) - 1] = '\0';
5271     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5272     // ERANGE should not happen; all other errors should just be ignored.
5273     assert(rc != ERANGE, "pthread_setname_np failed");
5274   }
5275 }
5276 
5277 bool os::distribute_processes(uint length, uint* distribution) {
5278   // Not yet implemented.
5279   return false;
5280 }
5281 
5282 bool os::bind_to_processor(uint processor_id) {
5283   // Not yet implemented.
5284   return false;
5285 }
5286 
5287 ///
5288 
5289 void os::SuspendedThreadTask::internal_do_task() {
5290   if (do_suspend(_thread->osthread())) {
5291     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5292     do_task(context);
5293     do_resume(_thread->osthread());
5294   }
5295 }
5296 
5297 ////////////////////////////////////////////////////////////////////////////////
5298 // debug support
5299 
5300 bool os::find(address addr, outputStream* st) {
5301   Dl_info dlinfo;
5302   memset(&dlinfo, 0, sizeof(dlinfo));
5303   if (dladdr(addr, &dlinfo) != 0) {
5304     st->print(PTR_FORMAT ": ", p2i(addr));
5305     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5306       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5307                 p2i(addr) - p2i(dlinfo.dli_saddr));
5308     } else if (dlinfo.dli_fbase != NULL) {
5309       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5310     } else {
5311       st->print("<absolute address>");
5312     }
5313     if (dlinfo.dli_fname != NULL) {
5314       st->print(" in %s", dlinfo.dli_fname);
5315     }
5316     if (dlinfo.dli_fbase != NULL) {
5317       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5318     }
5319     st->cr();
5320 
5321     if (Verbose) {
5322       // decode some bytes around the PC
5323       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5324       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5325       address       lowest = (address) dlinfo.dli_sname;
5326       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5327       if (begin < lowest)  begin = lowest;
5328       Dl_info dlinfo2;
5329       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5330           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5331         end = (address) dlinfo2.dli_saddr;
5332       }
5333       Disassembler::decode(begin, end, st);
5334     }
5335     return true;
5336   }
5337   return false;
5338 }
5339 
5340 ////////////////////////////////////////////////////////////////////////////////
5341 // misc
5342 
5343 // This does not do anything on Linux. This is basically a hook for being
5344 // able to use structured exception handling (thread-local exception filters)
5345 // on, e.g., Win32.
5346 void
5347 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5348                          JavaCallArguments* args, Thread* thread) {
5349   f(value, method, args, thread);
5350 }
5351 
5352 void os::print_statistics() {
5353 }
5354 
5355 bool os::message_box(const char* title, const char* message) {
5356   int i;
5357   fdStream err(defaultStream::error_fd());
5358   for (i = 0; i < 78; i++) err.print_raw("=");
5359   err.cr();
5360   err.print_raw_cr(title);
5361   for (i = 0; i < 78; i++) err.print_raw("-");
5362   err.cr();
5363   err.print_raw_cr(message);
5364   for (i = 0; i < 78; i++) err.print_raw("=");
5365   err.cr();
5366 
5367   char buf[16];
5368   // Prevent process from exiting upon "read error" without consuming all CPU
5369   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5370 
5371   return buf[0] == 'y' || buf[0] == 'Y';
5372 }
5373 
5374 // Is a (classpath) directory empty?
5375 bool os::dir_is_empty(const char* path) {
5376   DIR *dir = NULL;
5377   struct dirent *ptr;
5378 
5379   dir = opendir(path);
5380   if (dir == NULL) return true;
5381 
5382   // Scan the directory
5383   bool result = true;
5384   while (result && (ptr = readdir(dir)) != NULL) {
5385     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5386       result = false;
5387     }
5388   }
5389   closedir(dir);
5390   return result;
5391 }
5392 
5393 // This code originates from JDK's sysOpen and open64_w
5394 // from src/solaris/hpi/src/system_md.c
5395 
5396 int os::open(const char *path, int oflag, int mode) {
5397   if (strlen(path) > MAX_PATH - 1) {
5398     errno = ENAMETOOLONG;
5399     return -1;
5400   }
5401 
5402   // All file descriptors that are opened in the Java process and not
5403   // specifically destined for a subprocess should have the close-on-exec
5404   // flag set.  If we don't set it, then careless 3rd party native code
5405   // might fork and exec without closing all appropriate file descriptors
5406   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5407   // turn might:
5408   //
5409   // - cause end-of-file to fail to be detected on some file
5410   //   descriptors, resulting in mysterious hangs, or
5411   //
5412   // - might cause an fopen in the subprocess to fail on a system
5413   //   suffering from bug 1085341.
5414   //
5415   // (Yes, the default setting of the close-on-exec flag is a Unix
5416   // design flaw)
5417   //
5418   // See:
5419   // 1085341: 32-bit stdio routines should support file descriptors >255
5420   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5421   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5422   //
5423   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5424   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5425   // because it saves a system call and removes a small window where the flag
5426   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5427   // and we fall back to using FD_CLOEXEC (see below).
5428 #ifdef O_CLOEXEC
5429   oflag |= O_CLOEXEC;
5430 #endif
5431 
5432   int fd = ::open64(path, oflag, mode);
5433   if (fd == -1) return -1;
5434 
5435   //If the open succeeded, the file might still be a directory
5436   {
5437     struct stat64 buf64;
5438     int ret = ::fstat64(fd, &buf64);
5439     int st_mode = buf64.st_mode;
5440 
5441     if (ret != -1) {
5442       if ((st_mode & S_IFMT) == S_IFDIR) {
5443         errno = EISDIR;
5444         ::close(fd);
5445         return -1;
5446       }
5447     } else {
5448       ::close(fd);
5449       return -1;
5450     }
5451   }
5452 
5453 #ifdef FD_CLOEXEC
5454   // Validate that the use of the O_CLOEXEC flag on open above worked.
5455   // With recent kernels, we will perform this check exactly once.
5456   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5457   if (!O_CLOEXEC_is_known_to_work) {
5458     int flags = ::fcntl(fd, F_GETFD);
5459     if (flags != -1) {
5460       if ((flags & FD_CLOEXEC) != 0)
5461         O_CLOEXEC_is_known_to_work = 1;
5462       else
5463         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5464     }
5465   }
5466 #endif
5467 
5468   return fd;
5469 }
5470 
5471 
5472 // create binary file, rewriting existing file if required
5473 int os::create_binary_file(const char* path, bool rewrite_existing) {
5474   int oflags = O_WRONLY | O_CREAT;
5475   if (!rewrite_existing) {
5476     oflags |= O_EXCL;
5477   }
5478   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5479 }
5480 
5481 // return current position of file pointer
5482 jlong os::current_file_offset(int fd) {
5483   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5484 }
5485 
5486 // move file pointer to the specified offset
5487 jlong os::seek_to_file_offset(int fd, jlong offset) {
5488   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5489 }
5490 
5491 // This code originates from JDK's sysAvailable
5492 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5493 
5494 int os::available(int fd, jlong *bytes) {
5495   jlong cur, end;
5496   int mode;
5497   struct stat64 buf64;
5498 
5499   if (::fstat64(fd, &buf64) >= 0) {
5500     mode = buf64.st_mode;
5501     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5502       int n;
5503       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5504         *bytes = n;
5505         return 1;
5506       }
5507     }
5508   }
5509   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5510     return 0;
5511   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5512     return 0;
5513   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5514     return 0;
5515   }
5516   *bytes = end - cur;
5517   return 1;
5518 }
5519 
5520 // Map a block of memory.
5521 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5522                         char *addr, size_t bytes, bool read_only,
5523                         bool allow_exec) {
5524   int prot;
5525   int flags = MAP_PRIVATE;
5526 
5527   if (read_only) {
5528     prot = PROT_READ;
5529   } else {
5530     prot = PROT_READ | PROT_WRITE;
5531   }
5532 
5533   if (allow_exec) {
5534     prot |= PROT_EXEC;
5535   }
5536 
5537   if (addr != NULL) {
5538     flags |= MAP_FIXED;
5539   }
5540 
5541   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5542                                      fd, file_offset);
5543   if (mapped_address == MAP_FAILED) {
5544     return NULL;
5545   }
5546   return mapped_address;
5547 }
5548 
5549 
5550 // Remap a block of memory.
5551 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5552                           char *addr, size_t bytes, bool read_only,
5553                           bool allow_exec) {
5554   // same as map_memory() on this OS
5555   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5556                         allow_exec);
5557 }
5558 
5559 
5560 // Unmap a block of memory.
5561 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5562   return munmap(addr, bytes) == 0;
5563 }
5564 
5565 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5566 
5567 static jlong fast_cpu_time(Thread *thread) {
5568     clockid_t clockid;
5569     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5570                                               &clockid);
5571     if (rc == 0) {
5572       return os::Linux::fast_thread_cpu_time(clockid);
5573     } else {
5574       // It's possible to encounter a terminated native thread that failed
5575       // to detach itself from the VM - which should result in ESRCH.
5576       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5577       return -1;
5578     }
5579 }
5580 
5581 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5582 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5583 // of a thread.
5584 //
5585 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5586 // the fast estimate available on the platform.
5587 
5588 jlong os::current_thread_cpu_time() {
5589   if (os::Linux::supports_fast_thread_cpu_time()) {
5590     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5591   } else {
5592     // return user + sys since the cost is the same
5593     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5594   }
5595 }
5596 
5597 jlong os::thread_cpu_time(Thread* thread) {
5598   // consistent with what current_thread_cpu_time() returns
5599   if (os::Linux::supports_fast_thread_cpu_time()) {
5600     return fast_cpu_time(thread);
5601   } else {
5602     return slow_thread_cpu_time(thread, true /* user + sys */);
5603   }
5604 }
5605 
5606 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5607   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5608     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5609   } else {
5610     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5611   }
5612 }
5613 
5614 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5615   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5616     return fast_cpu_time(thread);
5617   } else {
5618     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5619   }
5620 }
5621 
5622 //  -1 on error.
5623 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5624   pid_t  tid = thread->osthread()->thread_id();
5625   char *s;
5626   char stat[2048];
5627   int statlen;
5628   char proc_name[64];
5629   int count;
5630   long sys_time, user_time;
5631   char cdummy;
5632   int idummy;
5633   long ldummy;
5634   FILE *fp;
5635 
5636   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5637   fp = fopen(proc_name, "r");
5638   if (fp == NULL) return -1;
5639   statlen = fread(stat, 1, 2047, fp);
5640   stat[statlen] = '\0';
5641   fclose(fp);
5642 
5643   // Skip pid and the command string. Note that we could be dealing with
5644   // weird command names, e.g. user could decide to rename java launcher
5645   // to "java 1.4.2 :)", then the stat file would look like
5646   //                1234 (java 1.4.2 :)) R ... ...
5647   // We don't really need to know the command string, just find the last
5648   // occurrence of ")" and then start parsing from there. See bug 4726580.
5649   s = strrchr(stat, ')');
5650   if (s == NULL) return -1;
5651 
5652   // Skip blank chars
5653   do { s++; } while (s && isspace(*s));
5654 
5655   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5656                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5657                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5658                  &user_time, &sys_time);
5659   if (count != 13) return -1;
5660   if (user_sys_cpu_time) {
5661     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5662   } else {
5663     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5664   }
5665 }
5666 
5667 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5668   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5669   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5670   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5671   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5672 }
5673 
5674 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5675   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5676   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5677   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5678   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5679 }
5680 
5681 bool os::is_thread_cpu_time_supported() {
5682   return true;
5683 }
5684 
5685 // System loadavg support.  Returns -1 if load average cannot be obtained.
5686 // Linux doesn't yet have a (official) notion of processor sets,
5687 // so just return the system wide load average.
5688 int os::loadavg(double loadavg[], int nelem) {
5689   return ::getloadavg(loadavg, nelem);
5690 }
5691 
5692 void os::pause() {
5693   char filename[MAX_PATH];
5694   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5695     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5696   } else {
5697     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5698   }
5699 
5700   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5701   if (fd != -1) {
5702     struct stat buf;
5703     ::close(fd);
5704     while (::stat(filename, &buf) == 0) {
5705       (void)::poll(NULL, 0, 100);
5706     }
5707   } else {
5708     jio_fprintf(stderr,
5709                 "Could not open pause file '%s', continuing immediately.\n", filename);
5710   }
5711 }
5712 
5713 extern char** environ;
5714 
5715 // Run the specified command in a separate process. Return its exit value,
5716 // or -1 on failure (e.g. can't fork a new process).
5717 // Unlike system(), this function can be called from signal handler. It
5718 // doesn't block SIGINT et al.
5719 int os::fork_and_exec(char* cmd) {
5720   const char * argv[4] = {"sh", "-c", cmd, NULL};
5721 
5722   pid_t pid = fork();
5723 
5724   if (pid < 0) {
5725     // fork failed
5726     return -1;
5727 
5728   } else if (pid == 0) {
5729     // child process
5730 
5731     execve("/bin/sh", (char* const*)argv, environ);
5732 
5733     // execve failed
5734     _exit(-1);
5735 
5736   } else  {
5737     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5738     // care about the actual exit code, for now.
5739 
5740     int status;
5741 
5742     // Wait for the child process to exit.  This returns immediately if
5743     // the child has already exited. */
5744     while (waitpid(pid, &status, 0) < 0) {
5745       switch (errno) {
5746       case ECHILD: return 0;
5747       case EINTR: break;
5748       default: return -1;
5749       }
5750     }
5751 
5752     if (WIFEXITED(status)) {
5753       // The child exited normally; get its exit code.
5754       return WEXITSTATUS(status);
5755     } else if (WIFSIGNALED(status)) {
5756       // The child exited because of a signal
5757       // The best value to return is 0x80 + signal number,
5758       // because that is what all Unix shells do, and because
5759       // it allows callers to distinguish between process exit and
5760       // process death by signal.
5761       return 0x80 + WTERMSIG(status);
5762     } else {
5763       // Unknown exit code; pass it through
5764       return status;
5765     }
5766   }
5767 }
5768 
5769 // Get the default path to the core file
5770 // Returns the length of the string
5771 int os::get_core_path(char* buffer, size_t bufferSize) {
5772   /*
5773    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5774    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5775    */
5776   const int core_pattern_len = 129;
5777   char core_pattern[core_pattern_len] = {0};
5778 
5779   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5780   if (core_pattern_file == -1) {
5781     return -1;
5782   }
5783 
5784   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5785   ::close(core_pattern_file);
5786   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5787     return -1;
5788   }
5789   if (core_pattern[ret-1] == '\n') {
5790     core_pattern[ret-1] = '\0';
5791   } else {
5792     core_pattern[ret] = '\0';
5793   }
5794 
5795   // Replace the %p in the core pattern with the process id. NOTE: we do this
5796   // only if the pattern doesn't start with "|", and we support only one %p in
5797   // the pattern.
5798   char *pid_pos = strstr(core_pattern, "%p");
5799   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
5800   int written;
5801 
5802   if (core_pattern[0] == '/') {
5803     if (pid_pos != NULL) {
5804       *pid_pos = '\0';
5805       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
5806                              current_process_id(), tail);
5807     } else {
5808       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5809     }
5810   } else {
5811     char cwd[PATH_MAX];
5812 
5813     const char* p = get_current_directory(cwd, PATH_MAX);
5814     if (p == NULL) {
5815       return -1;
5816     }
5817 
5818     if (core_pattern[0] == '|') {
5819       written = jio_snprintf(buffer, bufferSize,
5820                              "\"%s\" (or dumping to %s/core.%d)",
5821                              &core_pattern[1], p, current_process_id());
5822     } else if (pid_pos != NULL) {
5823       *pid_pos = '\0';
5824       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
5825                              current_process_id(), tail);
5826     } else {
5827       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5828     }
5829   }
5830 
5831   if (written < 0) {
5832     return -1;
5833   }
5834 
5835   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5836     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5837 
5838     if (core_uses_pid_file != -1) {
5839       char core_uses_pid = 0;
5840       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5841       ::close(core_uses_pid_file);
5842 
5843       if (core_uses_pid == '1') {
5844         jio_snprintf(buffer + written, bufferSize - written,
5845                                           ".%d", current_process_id());
5846       }
5847     }
5848   }
5849 
5850   return strlen(buffer);
5851 }
5852 
5853 bool os::start_debugging(char *buf, int buflen) {
5854   int len = (int)strlen(buf);
5855   char *p = &buf[len];
5856 
5857   jio_snprintf(p, buflen-len,
5858                "\n\n"
5859                "Do you want to debug the problem?\n\n"
5860                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5861                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5862                "Otherwise, press RETURN to abort...",
5863                os::current_process_id(), os::current_process_id(),
5864                os::current_thread_id(), os::current_thread_id());
5865 
5866   bool yes = os::message_box("Unexpected Error", buf);
5867 
5868   if (yes) {
5869     // yes, user asked VM to launch debugger
5870     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5871                  os::current_process_id(), os::current_process_id());
5872 
5873     os::fork_and_exec(buf);
5874     yes = false;
5875   }
5876   return yes;
5877 }
5878 
5879 
5880 // Java/Compiler thread:
5881 //
5882 //   Low memory addresses
5883 // P0 +------------------------+
5884 //    |                        |\  Java thread created by VM does not have glibc
5885 //    |    glibc guard page    | - guard page, attached Java thread usually has
5886 //    |                        |/  1 glibc guard page.
5887 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5888 //    |                        |\
5889 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5890 //    |                        |/
5891 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5892 //    |                        |\
5893 //    |      Normal Stack      | -
5894 //    |                        |/
5895 // P2 +------------------------+ Thread::stack_base()
5896 //
5897 // Non-Java thread:
5898 //
5899 //   Low memory addresses
5900 // P0 +------------------------+
5901 //    |                        |\
5902 //    |  glibc guard page      | - usually 1 page
5903 //    |                        |/
5904 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5905 //    |                        |\
5906 //    |      Normal Stack      | -
5907 //    |                        |/
5908 // P2 +------------------------+ Thread::stack_base()
5909 //
5910 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5911 //    returned from pthread_attr_getstack().
5912 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5913 //    of the stack size given in pthread_attr. We work around this for
5914 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5915 //
5916 #ifndef ZERO
5917 static void current_stack_region(address * bottom, size_t * size) {
5918   if (os::is_primordial_thread()) {
5919     // primordial thread needs special handling because pthread_getattr_np()
5920     // may return bogus value.
5921     *bottom = os::Linux::initial_thread_stack_bottom();
5922     *size   = os::Linux::initial_thread_stack_size();
5923   } else {
5924     pthread_attr_t attr;
5925 
5926     int rslt = pthread_getattr_np(pthread_self(), &attr);
5927 
5928     // JVM needs to know exact stack location, abort if it fails
5929     if (rslt != 0) {
5930       if (rslt == ENOMEM) {
5931         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5932       } else {
5933         fatal("pthread_getattr_np failed with error = %d", rslt);
5934       }
5935     }
5936 
5937     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5938       fatal("Cannot locate current stack attributes!");
5939     }
5940 
5941     // Work around NPTL stack guard error.
5942     size_t guard_size = 0;
5943     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5944     if (rslt != 0) {
5945       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5946     }
5947     *bottom += guard_size;
5948     *size   -= guard_size;
5949 
5950     pthread_attr_destroy(&attr);
5951 
5952   }
5953   assert(os::current_stack_pointer() >= *bottom &&
5954          os::current_stack_pointer() < *bottom + *size, "just checking");
5955 }
5956 
5957 address os::current_stack_base() {
5958   address bottom;
5959   size_t size;
5960   current_stack_region(&bottom, &size);
5961   return (bottom + size);
5962 }
5963 
5964 size_t os::current_stack_size() {
5965   // This stack size includes the usable stack and HotSpot guard pages
5966   // (for the threads that have Hotspot guard pages).
5967   address bottom;
5968   size_t size;
5969   current_stack_region(&bottom, &size);
5970   return size;
5971 }
5972 #endif
5973 
5974 static inline struct timespec get_mtime(const char* filename) {
5975   struct stat st;
5976   int ret = os::stat(filename, &st);
5977   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5978   return st.st_mtim;
5979 }
5980 
5981 int os::compare_file_modified_times(const char* file1, const char* file2) {
5982   struct timespec filetime1 = get_mtime(file1);
5983   struct timespec filetime2 = get_mtime(file2);
5984   int diff = filetime1.tv_sec - filetime2.tv_sec;
5985   if (diff == 0) {
5986     return filetime1.tv_nsec - filetime2.tv_nsec;
5987   }
5988   return diff;
5989 }
5990 
5991 /////////////// Unit tests ///////////////
5992 
5993 #ifndef PRODUCT
5994 
5995 #define test_log(...)              \
5996   do {                             \
5997     if (VerboseInternalVMTests) {  \
5998       tty->print_cr(__VA_ARGS__);  \
5999       tty->flush();                \
6000     }                              \
6001   } while (false)
6002 
6003 class TestReserveMemorySpecial : AllStatic {
6004  public:
6005   static void small_page_write(void* addr, size_t size) {
6006     size_t page_size = os::vm_page_size();
6007 
6008     char* end = (char*)addr + size;
6009     for (char* p = (char*)addr; p < end; p += page_size) {
6010       *p = 1;
6011     }
6012   }
6013 
6014   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6015     if (!UseHugeTLBFS) {
6016       return;
6017     }
6018 
6019     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6020 
6021     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6022 
6023     if (addr != NULL) {
6024       small_page_write(addr, size);
6025 
6026       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6027     }
6028   }
6029 
6030   static void test_reserve_memory_special_huge_tlbfs_only() {
6031     if (!UseHugeTLBFS) {
6032       return;
6033     }
6034 
6035     size_t lp = os::large_page_size();
6036 
6037     for (size_t size = lp; size <= lp * 10; size += lp) {
6038       test_reserve_memory_special_huge_tlbfs_only(size);
6039     }
6040   }
6041 
6042   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6043     size_t lp = os::large_page_size();
6044     size_t ag = os::vm_allocation_granularity();
6045 
6046     // sizes to test
6047     const size_t sizes[] = {
6048       lp, lp + ag, lp + lp / 2, lp * 2,
6049       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6050       lp * 10, lp * 10 + lp / 2
6051     };
6052     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6053 
6054     // For each size/alignment combination, we test three scenarios:
6055     // 1) with req_addr == NULL
6056     // 2) with a non-null req_addr at which we expect to successfully allocate
6057     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6058     //    expect the allocation to either fail or to ignore req_addr
6059 
6060     // Pre-allocate two areas; they shall be as large as the largest allocation
6061     //  and aligned to the largest alignment we will be testing.
6062     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6063     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6064       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6065       -1, 0);
6066     assert(mapping1 != MAP_FAILED, "should work");
6067 
6068     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6069       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6070       -1, 0);
6071     assert(mapping2 != MAP_FAILED, "should work");
6072 
6073     // Unmap the first mapping, but leave the second mapping intact: the first
6074     // mapping will serve as a value for a "good" req_addr (case 2). The second
6075     // mapping, still intact, as "bad" req_addr (case 3).
6076     ::munmap(mapping1, mapping_size);
6077 
6078     // Case 1
6079     test_log("%s, req_addr NULL:", __FUNCTION__);
6080     test_log("size            align           result");
6081 
6082     for (int i = 0; i < num_sizes; i++) {
6083       const size_t size = sizes[i];
6084       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6085         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6086         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6087                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6088         if (p != NULL) {
6089           assert(is_aligned(p, alignment), "must be");
6090           small_page_write(p, size);
6091           os::Linux::release_memory_special_huge_tlbfs(p, size);
6092         }
6093       }
6094     }
6095 
6096     // Case 2
6097     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6098     test_log("size            align           req_addr         result");
6099 
6100     for (int i = 0; i < num_sizes; i++) {
6101       const size_t size = sizes[i];
6102       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6103         char* const req_addr = align_up(mapping1, alignment);
6104         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6105         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6106                  size, alignment, p2i(req_addr), p2i(p),
6107                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6108         if (p != NULL) {
6109           assert(p == req_addr, "must be");
6110           small_page_write(p, size);
6111           os::Linux::release_memory_special_huge_tlbfs(p, size);
6112         }
6113       }
6114     }
6115 
6116     // Case 3
6117     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6118     test_log("size            align           req_addr         result");
6119 
6120     for (int i = 0; i < num_sizes; i++) {
6121       const size_t size = sizes[i];
6122       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6123         char* const req_addr = align_up(mapping2, alignment);
6124         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6125         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6126                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6127         // as the area around req_addr contains already existing mappings, the API should always
6128         // return NULL (as per contract, it cannot return another address)
6129         assert(p == NULL, "must be");
6130       }
6131     }
6132 
6133     ::munmap(mapping2, mapping_size);
6134 
6135   }
6136 
6137   static void test_reserve_memory_special_huge_tlbfs() {
6138     if (!UseHugeTLBFS) {
6139       return;
6140     }
6141 
6142     test_reserve_memory_special_huge_tlbfs_only();
6143     test_reserve_memory_special_huge_tlbfs_mixed();
6144   }
6145 
6146   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6147     if (!UseSHM) {
6148       return;
6149     }
6150 
6151     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6152 
6153     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6154 
6155     if (addr != NULL) {
6156       assert(is_aligned(addr, alignment), "Check");
6157       assert(is_aligned(addr, os::large_page_size()), "Check");
6158 
6159       small_page_write(addr, size);
6160 
6161       os::Linux::release_memory_special_shm(addr, size);
6162     }
6163   }
6164 
6165   static void test_reserve_memory_special_shm() {
6166     size_t lp = os::large_page_size();
6167     size_t ag = os::vm_allocation_granularity();
6168 
6169     for (size_t size = ag; size < lp * 3; size += ag) {
6170       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6171         test_reserve_memory_special_shm(size, alignment);
6172       }
6173     }
6174   }
6175 
6176   static void test() {
6177     test_reserve_memory_special_huge_tlbfs();
6178     test_reserve_memory_special_shm();
6179   }
6180 };
6181 
6182 void TestReserveMemorySpecial_test() {
6183   TestReserveMemorySpecial::test();
6184 }
6185 
6186 #endif