1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "osContainer_linux.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.inline.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/threadSMR.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/elfFile.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 // put OS-includes here
  78 # include <sys/types.h>
  79 # include <sys/mman.h>
  80 # include <sys/stat.h>
  81 # include <sys/select.h>
  82 # include <pthread.h>
  83 # include <signal.h>
  84 # include <errno.h>
  85 # include <dlfcn.h>
  86 # include <stdio.h>
  87 # include <unistd.h>
  88 # include <sys/resource.h>
  89 # include <pthread.h>
  90 # include <sys/stat.h>
  91 # include <sys/time.h>
  92 # include <sys/times.h>
  93 # include <sys/utsname.h>
  94 # include <sys/socket.h>
  95 # include <sys/wait.h>
  96 # include <pwd.h>
  97 # include <poll.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 enum CoredumpFilterBit {
 132   FILE_BACKED_PVT_BIT = 1 << 2,
 133   LARGEPAGES_BIT = 1 << 6,
 134   DAX_SHARED_BIT = 1 << 8
 135 };
 136 
 137 ////////////////////////////////////////////////////////////////////////////////
 138 // global variables
 139 julong os::Linux::_physical_memory = 0;
 140 
 141 address   os::Linux::_initial_thread_stack_bottom = NULL;
 142 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 143 
 144 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 145 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 146 Mutex* os::Linux::_createThread_lock = NULL;
 147 pthread_t os::Linux::_main_thread;
 148 int os::Linux::_page_size = -1;
 149 bool os::Linux::_supports_fast_thread_cpu_time = false;
 150 uint32_t os::Linux::_os_version = 0;
 151 const char * os::Linux::_glibc_version = NULL;
 152 const char * os::Linux::_libpthread_version = NULL;
 153 
 154 static jlong initial_time_count=0;
 155 
 156 static int clock_tics_per_sec = 100;
 157 
 158 // If the VM might have been created on the primordial thread, we need to resolve the
 159 // primordial thread stack bounds and check if the current thread might be the
 160 // primordial thread in places. If we know that the primordial thread is never used,
 161 // such as when the VM was created by one of the standard java launchers, we can
 162 // avoid this
 163 static bool suppress_primordial_thread_resolution = false;
 164 
 165 // For diagnostics to print a message once. see run_periodic_checks
 166 static sigset_t check_signal_done;
 167 static bool check_signals = true;
 168 
 169 // Signal number used to suspend/resume a thread
 170 
 171 // do not use any signal number less than SIGSEGV, see 4355769
 172 static int SR_signum = SIGUSR2;
 173 sigset_t SR_sigset;
 174 
 175 // utility functions
 176 
 177 static int SR_initialize();
 178 
 179 julong os::available_memory() {
 180   return Linux::available_memory();
 181 }
 182 
 183 julong os::Linux::available_memory() {
 184   // values in struct sysinfo are "unsigned long"
 185   struct sysinfo si;
 186   julong avail_mem;
 187 
 188   if (OSContainer::is_containerized()) {
 189     jlong mem_limit, mem_usage;
 190     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 191       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 192                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 193     }
 194     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 195       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 196     }
 197     if (mem_limit > 0 && mem_usage > 0 ) {
 198       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 199       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 200       return avail_mem;
 201     }
 202   }
 203 
 204   sysinfo(&si);
 205   avail_mem = (julong)si.freeram * si.mem_unit;
 206   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 207   return avail_mem;
 208 }
 209 
 210 julong os::physical_memory() {
 211   jlong phys_mem = 0;
 212   if (OSContainer::is_containerized()) {
 213     jlong mem_limit;
 214     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 215       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 216       return mem_limit;
 217     }
 218     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 219                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 220   }
 221 
 222   phys_mem = Linux::physical_memory();
 223   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 224   return phys_mem;
 225 }
 226 
 227 // Return true if user is running as root.
 228 
 229 bool os::have_special_privileges() {
 230   static bool init = false;
 231   static bool privileges = false;
 232   if (!init) {
 233     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 234     init = true;
 235   }
 236   return privileges;
 237 }
 238 
 239 
 240 #ifndef SYS_gettid
 241 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 242   #ifdef __ia64__
 243     #define SYS_gettid 1105
 244   #else
 245     #ifdef __i386__
 246       #define SYS_gettid 224
 247     #else
 248       #ifdef __amd64__
 249         #define SYS_gettid 186
 250       #else
 251         #ifdef __sparc__
 252           #define SYS_gettid 143
 253         #else
 254           #error define gettid for the arch
 255         #endif
 256       #endif
 257     #endif
 258   #endif
 259 #endif
 260 
 261 
 262 // pid_t gettid()
 263 //
 264 // Returns the kernel thread id of the currently running thread. Kernel
 265 // thread id is used to access /proc.
 266 pid_t os::Linux::gettid() {
 267   int rslt = syscall(SYS_gettid);
 268   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 269   return (pid_t)rslt;
 270 }
 271 
 272 // Most versions of linux have a bug where the number of processors are
 273 // determined by looking at the /proc file system.  In a chroot environment,
 274 // the system call returns 1.
 275 static bool unsafe_chroot_detected = false;
 276 static const char *unstable_chroot_error = "/proc file system not found.\n"
 277                      "Java may be unstable running multithreaded in a chroot "
 278                      "environment on Linux when /proc filesystem is not mounted.";
 279 
 280 void os::Linux::initialize_system_info() {
 281   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 282   if (processor_count() == 1) {
 283     pid_t pid = os::Linux::gettid();
 284     char fname[32];
 285     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 286     FILE *fp = fopen(fname, "r");
 287     if (fp == NULL) {
 288       unsafe_chroot_detected = true;
 289     } else {
 290       fclose(fp);
 291     }
 292   }
 293   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 294   assert(processor_count() > 0, "linux error");
 295 }
 296 
 297 void os::init_system_properties_values() {
 298   // The next steps are taken in the product version:
 299   //
 300   // Obtain the JAVA_HOME value from the location of libjvm.so.
 301   // This library should be located at:
 302   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 303   //
 304   // If "/jre/lib/" appears at the right place in the path, then we
 305   // assume libjvm.so is installed in a JDK and we use this path.
 306   //
 307   // Otherwise exit with message: "Could not create the Java virtual machine."
 308   //
 309   // The following extra steps are taken in the debugging version:
 310   //
 311   // If "/jre/lib/" does NOT appear at the right place in the path
 312   // instead of exit check for $JAVA_HOME environment variable.
 313   //
 314   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 315   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 316   // it looks like libjvm.so is installed there
 317   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 318   //
 319   // Otherwise exit.
 320   //
 321   // Important note: if the location of libjvm.so changes this
 322   // code needs to be changed accordingly.
 323 
 324   // See ld(1):
 325   //      The linker uses the following search paths to locate required
 326   //      shared libraries:
 327   //        1: ...
 328   //        ...
 329   //        7: The default directories, normally /lib and /usr/lib.
 330 #ifndef OVERRIDE_LIBPATH
 331   #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 332     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 333   #else
 334     #define DEFAULT_LIBPATH "/lib:/usr/lib"
 335   #endif
 336 #else
 337   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 338 #endif
 339 
 340 // Base path of extensions installed on the system.
 341 #define SYS_EXT_DIR     "/usr/java/packages"
 342 #define EXTENSIONS_DIR  "/lib/ext"
 343 
 344   // Buffer that fits several sprintfs.
 345   // Note that the space for the colon and the trailing null are provided
 346   // by the nulls included by the sizeof operator.
 347   const size_t bufsize =
 348     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 349          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 350   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 351 
 352   // sysclasspath, java_home, dll_dir
 353   {
 354     char *pslash;
 355     os::jvm_path(buf, bufsize);
 356 
 357     // Found the full path to libjvm.so.
 358     // Now cut the path to <java_home>/jre if we can.
 359     pslash = strrchr(buf, '/');
 360     if (pslash != NULL) {
 361       *pslash = '\0';            // Get rid of /libjvm.so.
 362     }
 363     pslash = strrchr(buf, '/');
 364     if (pslash != NULL) {
 365       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 366     }
 367     Arguments::set_dll_dir(buf);
 368 
 369     if (pslash != NULL) {
 370       pslash = strrchr(buf, '/');
 371       if (pslash != NULL) {
 372         *pslash = '\0';        // Get rid of /lib.
 373       }
 374     }
 375     Arguments::set_java_home(buf);
 376     if (!set_boot_path('/', ':')) {
 377       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 378     }
 379   }
 380 
 381   // Where to look for native libraries.
 382   //
 383   // Note: Due to a legacy implementation, most of the library path
 384   // is set in the launcher. This was to accomodate linking restrictions
 385   // on legacy Linux implementations (which are no longer supported).
 386   // Eventually, all the library path setting will be done here.
 387   //
 388   // However, to prevent the proliferation of improperly built native
 389   // libraries, the new path component /usr/java/packages is added here.
 390   // Eventually, all the library path setting will be done here.
 391   {
 392     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 393     // should always exist (until the legacy problem cited above is
 394     // addressed).
 395     const char *v = ::getenv("LD_LIBRARY_PATH");
 396     const char *v_colon = ":";
 397     if (v == NULL) { v = ""; v_colon = ""; }
 398     // That's +1 for the colon and +1 for the trailing '\0'.
 399     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 400                                                      strlen(v) + 1 +
 401                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 402                                                      mtInternal);
 403     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 404     Arguments::set_library_path(ld_library_path);
 405     FREE_C_HEAP_ARRAY(char, ld_library_path);
 406   }
 407 
 408   // Extensions directories.
 409   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 410   Arguments::set_ext_dirs(buf);
 411 
 412   FREE_C_HEAP_ARRAY(char, buf);
 413 
 414 #undef DEFAULT_LIBPATH
 415 #undef SYS_EXT_DIR
 416 #undef EXTENSIONS_DIR
 417 }
 418 
 419 ////////////////////////////////////////////////////////////////////////////////
 420 // breakpoint support
 421 
 422 void os::breakpoint() {
 423   BREAKPOINT;
 424 }
 425 
 426 extern "C" void breakpoint() {
 427   // use debugger to set breakpoint here
 428 }
 429 
 430 ////////////////////////////////////////////////////////////////////////////////
 431 // signal support
 432 
 433 debug_only(static bool signal_sets_initialized = false);
 434 static sigset_t unblocked_sigs, vm_sigs;
 435 
 436 void os::Linux::signal_sets_init() {
 437   // Should also have an assertion stating we are still single-threaded.
 438   assert(!signal_sets_initialized, "Already initialized");
 439   // Fill in signals that are necessarily unblocked for all threads in
 440   // the VM. Currently, we unblock the following signals:
 441   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 442   //                         by -Xrs (=ReduceSignalUsage));
 443   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 444   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 445   // the dispositions or masks wrt these signals.
 446   // Programs embedding the VM that want to use the above signals for their
 447   // own purposes must, at this time, use the "-Xrs" option to prevent
 448   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 449   // (See bug 4345157, and other related bugs).
 450   // In reality, though, unblocking these signals is really a nop, since
 451   // these signals are not blocked by default.
 452   sigemptyset(&unblocked_sigs);
 453   sigaddset(&unblocked_sigs, SIGILL);
 454   sigaddset(&unblocked_sigs, SIGSEGV);
 455   sigaddset(&unblocked_sigs, SIGBUS);
 456   sigaddset(&unblocked_sigs, SIGFPE);
 457 #if defined(PPC64)
 458   sigaddset(&unblocked_sigs, SIGTRAP);
 459 #endif
 460   sigaddset(&unblocked_sigs, SR_signum);
 461 
 462   if (!ReduceSignalUsage) {
 463     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 464       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 465     }
 466     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 467       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 468     }
 469     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 470       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 471     }
 472   }
 473   // Fill in signals that are blocked by all but the VM thread.
 474   sigemptyset(&vm_sigs);
 475   if (!ReduceSignalUsage) {
 476     sigaddset(&vm_sigs, BREAK_SIGNAL);
 477   }
 478   debug_only(signal_sets_initialized = true);
 479 
 480 }
 481 
 482 // These are signals that are unblocked while a thread is running Java.
 483 // (For some reason, they get blocked by default.)
 484 sigset_t* os::Linux::unblocked_signals() {
 485   assert(signal_sets_initialized, "Not initialized");
 486   return &unblocked_sigs;
 487 }
 488 
 489 // These are the signals that are blocked while a (non-VM) thread is
 490 // running Java. Only the VM thread handles these signals.
 491 sigset_t* os::Linux::vm_signals() {
 492   assert(signal_sets_initialized, "Not initialized");
 493   return &vm_sigs;
 494 }
 495 
 496 void os::Linux::hotspot_sigmask(Thread* thread) {
 497 
 498   //Save caller's signal mask before setting VM signal mask
 499   sigset_t caller_sigmask;
 500   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 501 
 502   OSThread* osthread = thread->osthread();
 503   osthread->set_caller_sigmask(caller_sigmask);
 504 
 505   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 506 
 507   if (!ReduceSignalUsage) {
 508     if (thread->is_VM_thread()) {
 509       // Only the VM thread handles BREAK_SIGNAL ...
 510       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 511     } else {
 512       // ... all other threads block BREAK_SIGNAL
 513       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 514     }
 515   }
 516 }
 517 
 518 //////////////////////////////////////////////////////////////////////////////
 519 // detecting pthread library
 520 
 521 void os::Linux::libpthread_init() {
 522   // Save glibc and pthread version strings.
 523 #if !defined(_CS_GNU_LIBC_VERSION) || \
 524     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 525   #error "glibc too old (< 2.3.2)"
 526 #endif
 527 
 528   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 529   assert(n > 0, "cannot retrieve glibc version");
 530   char *str = (char *)malloc(n, mtInternal);
 531   confstr(_CS_GNU_LIBC_VERSION, str, n);
 532   os::Linux::set_glibc_version(str);
 533 
 534   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 535   assert(n > 0, "cannot retrieve pthread version");
 536   str = (char *)malloc(n, mtInternal);
 537   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 538   os::Linux::set_libpthread_version(str);
 539 }
 540 
 541 /////////////////////////////////////////////////////////////////////////////
 542 // thread stack expansion
 543 
 544 // os::Linux::manually_expand_stack() takes care of expanding the thread
 545 // stack. Note that this is normally not needed: pthread stacks allocate
 546 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 547 // committed. Therefore it is not necessary to expand the stack manually.
 548 //
 549 // Manually expanding the stack was historically needed on LinuxThreads
 550 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 551 // it is kept to deal with very rare corner cases:
 552 //
 553 // For one, user may run the VM on an own implementation of threads
 554 // whose stacks are - like the old LinuxThreads - implemented using
 555 // mmap(MAP_GROWSDOWN).
 556 //
 557 // Also, this coding may be needed if the VM is running on the primordial
 558 // thread. Normally we avoid running on the primordial thread; however,
 559 // user may still invoke the VM on the primordial thread.
 560 //
 561 // The following historical comment describes the details about running
 562 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 563 
 564 
 565 // Force Linux kernel to expand current thread stack. If "bottom" is close
 566 // to the stack guard, caller should block all signals.
 567 //
 568 // MAP_GROWSDOWN:
 569 //   A special mmap() flag that is used to implement thread stacks. It tells
 570 //   kernel that the memory region should extend downwards when needed. This
 571 //   allows early versions of LinuxThreads to only mmap the first few pages
 572 //   when creating a new thread. Linux kernel will automatically expand thread
 573 //   stack as needed (on page faults).
 574 //
 575 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 576 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 577 //   region, it's hard to tell if the fault is due to a legitimate stack
 578 //   access or because of reading/writing non-exist memory (e.g. buffer
 579 //   overrun). As a rule, if the fault happens below current stack pointer,
 580 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 581 //   application (see Linux kernel fault.c).
 582 //
 583 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 584 //   stack overflow detection.
 585 //
 586 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 587 //   not use MAP_GROWSDOWN.
 588 //
 589 // To get around the problem and allow stack banging on Linux, we need to
 590 // manually expand thread stack after receiving the SIGSEGV.
 591 //
 592 // There are two ways to expand thread stack to address "bottom", we used
 593 // both of them in JVM before 1.5:
 594 //   1. adjust stack pointer first so that it is below "bottom", and then
 595 //      touch "bottom"
 596 //   2. mmap() the page in question
 597 //
 598 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 599 // if current sp is already near the lower end of page 101, and we need to
 600 // call mmap() to map page 100, it is possible that part of the mmap() frame
 601 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 602 // That will destroy the mmap() frame and cause VM to crash.
 603 //
 604 // The following code works by adjusting sp first, then accessing the "bottom"
 605 // page to force a page fault. Linux kernel will then automatically expand the
 606 // stack mapping.
 607 //
 608 // _expand_stack_to() assumes its frame size is less than page size, which
 609 // should always be true if the function is not inlined.
 610 
 611 static void NOINLINE _expand_stack_to(address bottom) {
 612   address sp;
 613   size_t size;
 614   volatile char *p;
 615 
 616   // Adjust bottom to point to the largest address within the same page, it
 617   // gives us a one-page buffer if alloca() allocates slightly more memory.
 618   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 619   bottom += os::Linux::page_size() - 1;
 620 
 621   // sp might be slightly above current stack pointer; if that's the case, we
 622   // will alloca() a little more space than necessary, which is OK. Don't use
 623   // os::current_stack_pointer(), as its result can be slightly below current
 624   // stack pointer, causing us to not alloca enough to reach "bottom".
 625   sp = (address)&sp;
 626 
 627   if (sp > bottom) {
 628     size = sp - bottom;
 629     p = (volatile char *)alloca(size);
 630     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 631     p[0] = '\0';
 632   }
 633 }
 634 
 635 void os::Linux::expand_stack_to(address bottom) {
 636   _expand_stack_to(bottom);
 637 }
 638 
 639 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 640   assert(t!=NULL, "just checking");
 641   assert(t->osthread()->expanding_stack(), "expand should be set");
 642   assert(t->stack_base() != NULL, "stack_base was not initialized");
 643 
 644   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 645     sigset_t mask_all, old_sigset;
 646     sigfillset(&mask_all);
 647     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 648     _expand_stack_to(addr);
 649     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 650     return true;
 651   }
 652   return false;
 653 }
 654 
 655 //////////////////////////////////////////////////////////////////////////////
 656 // create new thread
 657 
 658 // Thread start routine for all newly created threads
 659 static void *thread_native_entry(Thread *thread) {
 660 
 661   thread->record_stack_base_and_size();
 662 
 663   // Try to randomize the cache line index of hot stack frames.
 664   // This helps when threads of the same stack traces evict each other's
 665   // cache lines. The threads can be either from the same JVM instance, or
 666   // from different JVM instances. The benefit is especially true for
 667   // processors with hyperthreading technology.
 668   static int counter = 0;
 669   int pid = os::current_process_id();
 670   alloca(((pid ^ counter++) & 7) * 128);
 671 
 672   thread->initialize_thread_current();
 673 
 674   OSThread* osthread = thread->osthread();
 675   Monitor* sync = osthread->startThread_lock();
 676 
 677   osthread->set_thread_id(os::current_thread_id());
 678 
 679   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 680     os::current_thread_id(), (uintx) pthread_self());
 681 
 682   if (UseNUMA) {
 683     int lgrp_id = os::numa_get_group_id();
 684     if (lgrp_id != -1) {
 685       thread->set_lgrp_id(lgrp_id);
 686     }
 687   }
 688   // initialize signal mask for this thread
 689   os::Linux::hotspot_sigmask(thread);
 690 
 691   // initialize floating point control register
 692   os::Linux::init_thread_fpu_state();
 693 
 694   // handshaking with parent thread
 695   {
 696     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 697 
 698     // notify parent thread
 699     osthread->set_state(INITIALIZED);
 700     sync->notify_all();
 701 
 702     // wait until os::start_thread()
 703     while (osthread->get_state() == INITIALIZED) {
 704       sync->wait(Mutex::_no_safepoint_check_flag);
 705     }
 706   }
 707 
 708   // call one more level start routine
 709   thread->call_run();
 710 
 711   // Note: at this point the thread object may already have deleted itself.
 712   // Prevent dereferencing it from here on out.
 713   thread = NULL;
 714 
 715   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 716     os::current_thread_id(), (uintx) pthread_self());
 717 
 718   return 0;
 719 }
 720 
 721 bool os::create_thread(Thread* thread, ThreadType thr_type,
 722                        size_t req_stack_size) {
 723   assert(thread->osthread() == NULL, "caller responsible");
 724 
 725   // Allocate the OSThread object
 726   OSThread* osthread = new OSThread(NULL, NULL);
 727   if (osthread == NULL) {
 728     return false;
 729   }
 730 
 731   // set the correct thread state
 732   osthread->set_thread_type(thr_type);
 733 
 734   // Initial state is ALLOCATED but not INITIALIZED
 735   osthread->set_state(ALLOCATED);
 736 
 737   thread->set_osthread(osthread);
 738 
 739   // init thread attributes
 740   pthread_attr_t attr;
 741   pthread_attr_init(&attr);
 742   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 743 
 744   // Calculate stack size if it's not specified by caller.
 745   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 746   // In the Linux NPTL pthread implementation the guard size mechanism
 747   // is not implemented properly. The posix standard requires adding
 748   // the size of the guard pages to the stack size, instead Linux
 749   // takes the space out of 'stacksize'. Thus we adapt the requested
 750   // stack_size by the size of the guard pages to mimick proper
 751   // behaviour. However, be careful not to end up with a size
 752   // of zero due to overflow. Don't add the guard page in that case.
 753   size_t guard_size = os::Linux::default_guard_size(thr_type);
 754   if (stack_size <= SIZE_MAX - guard_size) {
 755     stack_size += guard_size;
 756   }
 757   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 758 
 759   int status = pthread_attr_setstacksize(&attr, stack_size);
 760   assert_status(status == 0, status, "pthread_attr_setstacksize");
 761 
 762   // Configure glibc guard page.
 763   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 764 
 765   ThreadState state;
 766 
 767   {
 768     pthread_t tid;
 769     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 770 
 771     char buf[64];
 772     if (ret == 0) {
 773       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 774         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 775     } else {
 776       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 777         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 778     }
 779 
 780     pthread_attr_destroy(&attr);
 781 
 782     if (ret != 0) {
 783       // Need to clean up stuff we've allocated so far
 784       thread->set_osthread(NULL);
 785       delete osthread;
 786       return false;
 787     }
 788 
 789     // Store pthread info into the OSThread
 790     osthread->set_pthread_id(tid);
 791 
 792     // Wait until child thread is either initialized or aborted
 793     {
 794       Monitor* sync_with_child = osthread->startThread_lock();
 795       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 796       while ((state = osthread->get_state()) == ALLOCATED) {
 797         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 798       }
 799     }
 800   }
 801 
 802   // Aborted due to thread limit being reached
 803   if (state == ZOMBIE) {
 804     thread->set_osthread(NULL);
 805     delete osthread;
 806     return false;
 807   }
 808 
 809   // The thread is returned suspended (in state INITIALIZED),
 810   // and is started higher up in the call chain
 811   assert(state == INITIALIZED, "race condition");
 812   return true;
 813 }
 814 
 815 /////////////////////////////////////////////////////////////////////////////
 816 // attach existing thread
 817 
 818 // bootstrap the main thread
 819 bool os::create_main_thread(JavaThread* thread) {
 820   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 821   return create_attached_thread(thread);
 822 }
 823 
 824 bool os::create_attached_thread(JavaThread* thread) {
 825 #ifdef ASSERT
 826   thread->verify_not_published();
 827 #endif
 828 
 829   // Allocate the OSThread object
 830   OSThread* osthread = new OSThread(NULL, NULL);
 831 
 832   if (osthread == NULL) {
 833     return false;
 834   }
 835 
 836   // Store pthread info into the OSThread
 837   osthread->set_thread_id(os::Linux::gettid());
 838   osthread->set_pthread_id(::pthread_self());
 839 
 840   // initialize floating point control register
 841   os::Linux::init_thread_fpu_state();
 842 
 843   // Initial thread state is RUNNABLE
 844   osthread->set_state(RUNNABLE);
 845 
 846   thread->set_osthread(osthread);
 847 
 848   if (UseNUMA) {
 849     int lgrp_id = os::numa_get_group_id();
 850     if (lgrp_id != -1) {
 851       thread->set_lgrp_id(lgrp_id);
 852     }
 853   }
 854 
 855   if (os::is_primordial_thread()) {
 856     // If current thread is primordial thread, its stack is mapped on demand,
 857     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 858     // the entire stack region to avoid SEGV in stack banging.
 859     // It is also useful to get around the heap-stack-gap problem on SuSE
 860     // kernel (see 4821821 for details). We first expand stack to the top
 861     // of yellow zone, then enable stack yellow zone (order is significant,
 862     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 863     // is no gap between the last two virtual memory regions.
 864 
 865     JavaThread *jt = (JavaThread *)thread;
 866     address addr = jt->stack_reserved_zone_base();
 867     assert(addr != NULL, "initialization problem?");
 868     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 869 
 870     osthread->set_expanding_stack();
 871     os::Linux::manually_expand_stack(jt, addr);
 872     osthread->clear_expanding_stack();
 873   }
 874 
 875   // initialize signal mask for this thread
 876   // and save the caller's signal mask
 877   os::Linux::hotspot_sigmask(thread);
 878 
 879   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 880     os::current_thread_id(), (uintx) pthread_self());
 881 
 882   return true;
 883 }
 884 
 885 void os::pd_start_thread(Thread* thread) {
 886   OSThread * osthread = thread->osthread();
 887   assert(osthread->get_state() != INITIALIZED, "just checking");
 888   Monitor* sync_with_child = osthread->startThread_lock();
 889   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 890   sync_with_child->notify();
 891 }
 892 
 893 // Free Linux resources related to the OSThread
 894 void os::free_thread(OSThread* osthread) {
 895   assert(osthread != NULL, "osthread not set");
 896 
 897   // We are told to free resources of the argument thread,
 898   // but we can only really operate on the current thread.
 899   assert(Thread::current()->osthread() == osthread,
 900          "os::free_thread but not current thread");
 901 
 902 #ifdef ASSERT
 903   sigset_t current;
 904   sigemptyset(&current);
 905   pthread_sigmask(SIG_SETMASK, NULL, &current);
 906   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 907 #endif
 908 
 909   // Restore caller's signal mask
 910   sigset_t sigmask = osthread->caller_sigmask();
 911   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 912 
 913   delete osthread;
 914 }
 915 
 916 //////////////////////////////////////////////////////////////////////////////
 917 // primordial thread
 918 
 919 // Check if current thread is the primordial thread, similar to Solaris thr_main.
 920 bool os::is_primordial_thread(void) {
 921   if (suppress_primordial_thread_resolution) {
 922     return false;
 923   }
 924   char dummy;
 925   // If called before init complete, thread stack bottom will be null.
 926   // Can be called if fatal error occurs before initialization.
 927   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
 928   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
 929          os::Linux::initial_thread_stack_size()   != 0,
 930          "os::init did not locate primordial thread's stack region");
 931   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
 932       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
 933                         os::Linux::initial_thread_stack_size()) {
 934     return true;
 935   } else {
 936     return false;
 937   }
 938 }
 939 
 940 // Find the virtual memory area that contains addr
 941 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 942   FILE *fp = fopen("/proc/self/maps", "r");
 943   if (fp) {
 944     address low, high;
 945     while (!feof(fp)) {
 946       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 947         if (low <= addr && addr < high) {
 948           if (vma_low)  *vma_low  = low;
 949           if (vma_high) *vma_high = high;
 950           fclose(fp);
 951           return true;
 952         }
 953       }
 954       for (;;) {
 955         int ch = fgetc(fp);
 956         if (ch == EOF || ch == (int)'\n') break;
 957       }
 958     }
 959     fclose(fp);
 960   }
 961   return false;
 962 }
 963 
 964 // Locate primordial thread stack. This special handling of primordial thread stack
 965 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 966 // bogus value for the primordial process thread. While the launcher has created
 967 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 968 // JNI invocation API from a primordial thread.
 969 void os::Linux::capture_initial_stack(size_t max_size) {
 970 
 971   // max_size is either 0 (which means accept OS default for thread stacks) or
 972   // a user-specified value known to be at least the minimum needed. If we
 973   // are actually on the primordial thread we can make it appear that we have a
 974   // smaller max_size stack by inserting the guard pages at that location. But we
 975   // cannot do anything to emulate a larger stack than what has been provided by
 976   // the OS or threading library. In fact if we try to use a stack greater than
 977   // what is set by rlimit then we will crash the hosting process.
 978 
 979   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 980   // If this is "unlimited" then it will be a huge value.
 981   struct rlimit rlim;
 982   getrlimit(RLIMIT_STACK, &rlim);
 983   size_t stack_size = rlim.rlim_cur;
 984 
 985   // 6308388: a bug in ld.so will relocate its own .data section to the
 986   //   lower end of primordial stack; reduce ulimit -s value a little bit
 987   //   so we won't install guard page on ld.so's data section.
 988   //   But ensure we don't underflow the stack size - allow 1 page spare
 989   if (stack_size >= (size_t)(3 * page_size())) {
 990     stack_size -= 2 * page_size();
 991   }
 992 
 993   // Try to figure out where the stack base (top) is. This is harder.
 994   //
 995   // When an application is started, glibc saves the initial stack pointer in
 996   // a global variable "__libc_stack_end", which is then used by system
 997   // libraries. __libc_stack_end should be pretty close to stack top. The
 998   // variable is available since the very early days. However, because it is
 999   // a private interface, it could disappear in the future.
1000   //
1001   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1002   // to __libc_stack_end, it is very close to stack top, but isn't the real
1003   // stack top. Note that /proc may not exist if VM is running as a chroot
1004   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1005   // /proc/<pid>/stat could change in the future (though unlikely).
1006   //
1007   // We try __libc_stack_end first. If that doesn't work, look for
1008   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1009   // as a hint, which should work well in most cases.
1010 
1011   uintptr_t stack_start;
1012 
1013   // try __libc_stack_end first
1014   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1015   if (p && *p) {
1016     stack_start = *p;
1017   } else {
1018     // see if we can get the start_stack field from /proc/self/stat
1019     FILE *fp;
1020     int pid;
1021     char state;
1022     int ppid;
1023     int pgrp;
1024     int session;
1025     int nr;
1026     int tpgrp;
1027     unsigned long flags;
1028     unsigned long minflt;
1029     unsigned long cminflt;
1030     unsigned long majflt;
1031     unsigned long cmajflt;
1032     unsigned long utime;
1033     unsigned long stime;
1034     long cutime;
1035     long cstime;
1036     long prio;
1037     long nice;
1038     long junk;
1039     long it_real;
1040     uintptr_t start;
1041     uintptr_t vsize;
1042     intptr_t rss;
1043     uintptr_t rsslim;
1044     uintptr_t scodes;
1045     uintptr_t ecode;
1046     int i;
1047 
1048     // Figure what the primordial thread stack base is. Code is inspired
1049     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1050     // followed by command name surrounded by parentheses, state, etc.
1051     char stat[2048];
1052     int statlen;
1053 
1054     fp = fopen("/proc/self/stat", "r");
1055     if (fp) {
1056       statlen = fread(stat, 1, 2047, fp);
1057       stat[statlen] = '\0';
1058       fclose(fp);
1059 
1060       // Skip pid and the command string. Note that we could be dealing with
1061       // weird command names, e.g. user could decide to rename java launcher
1062       // to "java 1.4.2 :)", then the stat file would look like
1063       //                1234 (java 1.4.2 :)) R ... ...
1064       // We don't really need to know the command string, just find the last
1065       // occurrence of ")" and then start parsing from there. See bug 4726580.
1066       char * s = strrchr(stat, ')');
1067 
1068       i = 0;
1069       if (s) {
1070         // Skip blank chars
1071         do { s++; } while (s && isspace(*s));
1072 
1073 #define _UFM UINTX_FORMAT
1074 #define _DFM INTX_FORMAT
1075 
1076         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1077         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1078         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1079                    &state,          // 3  %c
1080                    &ppid,           // 4  %d
1081                    &pgrp,           // 5  %d
1082                    &session,        // 6  %d
1083                    &nr,             // 7  %d
1084                    &tpgrp,          // 8  %d
1085                    &flags,          // 9  %lu
1086                    &minflt,         // 10 %lu
1087                    &cminflt,        // 11 %lu
1088                    &majflt,         // 12 %lu
1089                    &cmajflt,        // 13 %lu
1090                    &utime,          // 14 %lu
1091                    &stime,          // 15 %lu
1092                    &cutime,         // 16 %ld
1093                    &cstime,         // 17 %ld
1094                    &prio,           // 18 %ld
1095                    &nice,           // 19 %ld
1096                    &junk,           // 20 %ld
1097                    &it_real,        // 21 %ld
1098                    &start,          // 22 UINTX_FORMAT
1099                    &vsize,          // 23 UINTX_FORMAT
1100                    &rss,            // 24 INTX_FORMAT
1101                    &rsslim,         // 25 UINTX_FORMAT
1102                    &scodes,         // 26 UINTX_FORMAT
1103                    &ecode,          // 27 UINTX_FORMAT
1104                    &stack_start);   // 28 UINTX_FORMAT
1105       }
1106 
1107 #undef _UFM
1108 #undef _DFM
1109 
1110       if (i != 28 - 2) {
1111         assert(false, "Bad conversion from /proc/self/stat");
1112         // product mode - assume we are the primordial thread, good luck in the
1113         // embedded case.
1114         warning("Can't detect primordial thread stack location - bad conversion");
1115         stack_start = (uintptr_t) &rlim;
1116       }
1117     } else {
1118       // For some reason we can't open /proc/self/stat (for example, running on
1119       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1120       // most cases, so don't abort:
1121       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1122       stack_start = (uintptr_t) &rlim;
1123     }
1124   }
1125 
1126   // Now we have a pointer (stack_start) very close to the stack top, the
1127   // next thing to do is to figure out the exact location of stack top. We
1128   // can find out the virtual memory area that contains stack_start by
1129   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1130   // and its upper limit is the real stack top. (again, this would fail if
1131   // running inside chroot, because /proc may not exist.)
1132 
1133   uintptr_t stack_top;
1134   address low, high;
1135   if (find_vma((address)stack_start, &low, &high)) {
1136     // success, "high" is the true stack top. (ignore "low", because initial
1137     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1138     stack_top = (uintptr_t)high;
1139   } else {
1140     // failed, likely because /proc/self/maps does not exist
1141     warning("Can't detect primordial thread stack location - find_vma failed");
1142     // best effort: stack_start is normally within a few pages below the real
1143     // stack top, use it as stack top, and reduce stack size so we won't put
1144     // guard page outside stack.
1145     stack_top = stack_start;
1146     stack_size -= 16 * page_size();
1147   }
1148 
1149   // stack_top could be partially down the page so align it
1150   stack_top = align_up(stack_top, page_size());
1151 
1152   // Allowed stack value is minimum of max_size and what we derived from rlimit
1153   if (max_size > 0) {
1154     _initial_thread_stack_size = MIN2(max_size, stack_size);
1155   } else {
1156     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1157     // clamp it at 8MB as we do on Solaris
1158     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1159   }
1160   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1161   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1162 
1163   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1164 
1165   if (log_is_enabled(Info, os, thread)) {
1166     // See if we seem to be on primordial process thread
1167     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1168                       uintptr_t(&rlim) < stack_top;
1169 
1170     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1171                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1172                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1173                          stack_top, intptr_t(_initial_thread_stack_bottom));
1174   }
1175 }
1176 
1177 ////////////////////////////////////////////////////////////////////////////////
1178 // time support
1179 
1180 #ifndef SUPPORTS_CLOCK_MONOTONIC
1181 #error "Build platform doesn't support clock_gettime and related functionality"
1182 #endif
1183 
1184 // Time since start-up in seconds to a fine granularity.
1185 // Used by VMSelfDestructTimer and the MemProfiler.
1186 double os::elapsedTime() {
1187 
1188   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1189 }
1190 
1191 jlong os::elapsed_counter() {
1192   return javaTimeNanos() - initial_time_count;
1193 }
1194 
1195 jlong os::elapsed_frequency() {
1196   return NANOSECS_PER_SEC; // nanosecond resolution
1197 }
1198 
1199 bool os::supports_vtime() { return true; }
1200 bool os::enable_vtime()   { return false; }
1201 bool os::vtime_enabled()  { return false; }
1202 
1203 double os::elapsedVTime() {
1204   struct rusage usage;
1205   int retval = getrusage(RUSAGE_THREAD, &usage);
1206   if (retval == 0) {
1207     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1208   } else {
1209     // better than nothing, but not much
1210     return elapsedTime();
1211   }
1212 }
1213 
1214 jlong os::javaTimeMillis() {
1215   timeval time;
1216   int status = gettimeofday(&time, NULL);
1217   assert(status != -1, "linux error");
1218   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1219 }
1220 
1221 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1222   timeval time;
1223   int status = gettimeofday(&time, NULL);
1224   assert(status != -1, "linux error");
1225   seconds = jlong(time.tv_sec);
1226   nanos = jlong(time.tv_usec) * 1000;
1227 }
1228 
1229 void os::Linux::fast_thread_clock_init() {
1230   if (!UseLinuxPosixThreadCPUClocks) {
1231     return;
1232   }
1233   clockid_t clockid;
1234   struct timespec tp;
1235   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1236       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1237 
1238   // Switch to using fast clocks for thread cpu time if
1239   // the clock_getres() returns 0 error code.
1240   // Note, that some kernels may support the current thread
1241   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1242   // returned by the pthread_getcpuclockid().
1243   // If the fast Posix clocks are supported then the clock_getres()
1244   // must return at least tp.tv_sec == 0 which means a resolution
1245   // better than 1 sec. This is extra check for reliability.
1246 
1247   if (pthread_getcpuclockid_func &&
1248       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1249       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1250     _supports_fast_thread_cpu_time = true;
1251     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1252   }
1253 }
1254 
1255 jlong os::javaTimeNanos() {
1256   if (os::supports_monotonic_clock()) {
1257     struct timespec tp;
1258     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1259     assert(status == 0, "gettime error");
1260     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1261     return result;
1262   } else {
1263     timeval time;
1264     int status = gettimeofday(&time, NULL);
1265     assert(status != -1, "linux error");
1266     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1267     return 1000 * usecs;
1268   }
1269 }
1270 
1271 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1272   if (os::supports_monotonic_clock()) {
1273     info_ptr->max_value = ALL_64_BITS;
1274 
1275     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1276     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1277     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1278   } else {
1279     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1280     info_ptr->max_value = ALL_64_BITS;
1281 
1282     // gettimeofday is a real time clock so it skips
1283     info_ptr->may_skip_backward = true;
1284     info_ptr->may_skip_forward = true;
1285   }
1286 
1287   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1288 }
1289 
1290 // Return the real, user, and system times in seconds from an
1291 // arbitrary fixed point in the past.
1292 bool os::getTimesSecs(double* process_real_time,
1293                       double* process_user_time,
1294                       double* process_system_time) {
1295   struct tms ticks;
1296   clock_t real_ticks = times(&ticks);
1297 
1298   if (real_ticks == (clock_t) (-1)) {
1299     return false;
1300   } else {
1301     double ticks_per_second = (double) clock_tics_per_sec;
1302     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1303     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1304     *process_real_time = ((double) real_ticks) / ticks_per_second;
1305 
1306     return true;
1307   }
1308 }
1309 
1310 
1311 char * os::local_time_string(char *buf, size_t buflen) {
1312   struct tm t;
1313   time_t long_time;
1314   time(&long_time);
1315   localtime_r(&long_time, &t);
1316   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1317                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1318                t.tm_hour, t.tm_min, t.tm_sec);
1319   return buf;
1320 }
1321 
1322 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1323   return localtime_r(clock, res);
1324 }
1325 
1326 ////////////////////////////////////////////////////////////////////////////////
1327 // runtime exit support
1328 
1329 // Note: os::shutdown() might be called very early during initialization, or
1330 // called from signal handler. Before adding something to os::shutdown(), make
1331 // sure it is async-safe and can handle partially initialized VM.
1332 void os::shutdown() {
1333 
1334   // allow PerfMemory to attempt cleanup of any persistent resources
1335   perfMemory_exit();
1336 
1337   // needs to remove object in file system
1338   AttachListener::abort();
1339 
1340   // flush buffered output, finish log files
1341   ostream_abort();
1342 
1343   // Check for abort hook
1344   abort_hook_t abort_hook = Arguments::abort_hook();
1345   if (abort_hook != NULL) {
1346     abort_hook();
1347   }
1348 
1349 }
1350 
1351 // Note: os::abort() might be called very early during initialization, or
1352 // called from signal handler. Before adding something to os::abort(), make
1353 // sure it is async-safe and can handle partially initialized VM.
1354 void os::abort(bool dump_core, void* siginfo, const void* context) {
1355   os::shutdown();
1356   if (dump_core) {
1357 #if INCLUDE_CDS
1358     if (UseSharedSpaces && DumpPrivateMappingsInCore) {
1359       ClassLoader::close_jrt_image();
1360     }
1361 #endif
1362 #ifndef PRODUCT
1363     fdStream out(defaultStream::output_fd());
1364     out.print_raw("Current thread is ");
1365     char buf[16];
1366     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1367     out.print_raw_cr(buf);
1368     out.print_raw_cr("Dumping core ...");
1369 #endif
1370     ::abort(); // dump core
1371   }
1372 
1373   ::exit(1);
1374 }
1375 
1376 // Die immediately, no exit hook, no abort hook, no cleanup.
1377 void os::die() {
1378   ::abort();
1379 }
1380 
1381 // thread_id is kernel thread id (similar to Solaris LWP id)
1382 intx os::current_thread_id() { return os::Linux::gettid(); }
1383 int os::current_process_id() {
1384   return ::getpid();
1385 }
1386 
1387 // DLL functions
1388 
1389 const char* os::dll_file_extension() { return ".so"; }
1390 
1391 // This must be hard coded because it's the system's temporary
1392 // directory not the java application's temp directory, ala java.io.tmpdir.
1393 const char* os::get_temp_directory() { return "/tmp"; }
1394 
1395 static bool file_exists(const char* filename) {
1396   struct stat statbuf;
1397   if (filename == NULL || strlen(filename) == 0) {
1398     return false;
1399   }
1400   return os::stat(filename, &statbuf) == 0;
1401 }
1402 
1403 // check if addr is inside libjvm.so
1404 bool os::address_is_in_vm(address addr) {
1405   static address libjvm_base_addr;
1406   Dl_info dlinfo;
1407 
1408   if (libjvm_base_addr == NULL) {
1409     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1410       libjvm_base_addr = (address)dlinfo.dli_fbase;
1411     }
1412     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1413   }
1414 
1415   if (dladdr((void *)addr, &dlinfo) != 0) {
1416     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1417   }
1418 
1419   return false;
1420 }
1421 
1422 bool os::dll_address_to_function_name(address addr, char *buf,
1423                                       int buflen, int *offset,
1424                                       bool demangle) {
1425   // buf is not optional, but offset is optional
1426   assert(buf != NULL, "sanity check");
1427 
1428   Dl_info dlinfo;
1429 
1430   if (dladdr((void*)addr, &dlinfo) != 0) {
1431     // see if we have a matching symbol
1432     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1433       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1434         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1435       }
1436       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1437       return true;
1438     }
1439     // no matching symbol so try for just file info
1440     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1441       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1442                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1443         return true;
1444       }
1445     }
1446   }
1447 
1448   buf[0] = '\0';
1449   if (offset != NULL) *offset = -1;
1450   return false;
1451 }
1452 
1453 struct _address_to_library_name {
1454   address addr;          // input : memory address
1455   size_t  buflen;        //         size of fname
1456   char*   fname;         // output: library name
1457   address base;          //         library base addr
1458 };
1459 
1460 static int address_to_library_name_callback(struct dl_phdr_info *info,
1461                                             size_t size, void *data) {
1462   int i;
1463   bool found = false;
1464   address libbase = NULL;
1465   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1466 
1467   // iterate through all loadable segments
1468   for (i = 0; i < info->dlpi_phnum; i++) {
1469     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1470     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1471       // base address of a library is the lowest address of its loaded
1472       // segments.
1473       if (libbase == NULL || libbase > segbase) {
1474         libbase = segbase;
1475       }
1476       // see if 'addr' is within current segment
1477       if (segbase <= d->addr &&
1478           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1479         found = true;
1480       }
1481     }
1482   }
1483 
1484   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1485   // so dll_address_to_library_name() can fall through to use dladdr() which
1486   // can figure out executable name from argv[0].
1487   if (found && info->dlpi_name && info->dlpi_name[0]) {
1488     d->base = libbase;
1489     if (d->fname) {
1490       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1491     }
1492     return 1;
1493   }
1494   return 0;
1495 }
1496 
1497 bool os::dll_address_to_library_name(address addr, char* buf,
1498                                      int buflen, int* offset) {
1499   // buf is not optional, but offset is optional
1500   assert(buf != NULL, "sanity check");
1501 
1502   Dl_info dlinfo;
1503   struct _address_to_library_name data;
1504 
1505   // There is a bug in old glibc dladdr() implementation that it could resolve
1506   // to wrong library name if the .so file has a base address != NULL. Here
1507   // we iterate through the program headers of all loaded libraries to find
1508   // out which library 'addr' really belongs to. This workaround can be
1509   // removed once the minimum requirement for glibc is moved to 2.3.x.
1510   data.addr = addr;
1511   data.fname = buf;
1512   data.buflen = buflen;
1513   data.base = NULL;
1514   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1515 
1516   if (rslt) {
1517     // buf already contains library name
1518     if (offset) *offset = addr - data.base;
1519     return true;
1520   }
1521   if (dladdr((void*)addr, &dlinfo) != 0) {
1522     if (dlinfo.dli_fname != NULL) {
1523       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1524     }
1525     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1526       *offset = addr - (address)dlinfo.dli_fbase;
1527     }
1528     return true;
1529   }
1530 
1531   buf[0] = '\0';
1532   if (offset) *offset = -1;
1533   return false;
1534 }
1535 
1536 // Loads .dll/.so and
1537 // in case of error it checks if .dll/.so was built for the
1538 // same architecture as Hotspot is running on
1539 
1540 
1541 // Remember the stack's state. The Linux dynamic linker will change
1542 // the stack to 'executable' at most once, so we must safepoint only once.
1543 bool os::Linux::_stack_is_executable = false;
1544 
1545 // VM operation that loads a library.  This is necessary if stack protection
1546 // of the Java stacks can be lost during loading the library.  If we
1547 // do not stop the Java threads, they can stack overflow before the stacks
1548 // are protected again.
1549 class VM_LinuxDllLoad: public VM_Operation {
1550  private:
1551   const char *_filename;
1552   char *_ebuf;
1553   int _ebuflen;
1554   void *_lib;
1555  public:
1556   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1557     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1558   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1559   void doit() {
1560     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1561     os::Linux::_stack_is_executable = true;
1562   }
1563   void* loaded_library() { return _lib; }
1564 };
1565 
1566 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1567   void * result = NULL;
1568   bool load_attempted = false;
1569 
1570   // Check whether the library to load might change execution rights
1571   // of the stack. If they are changed, the protection of the stack
1572   // guard pages will be lost. We need a safepoint to fix this.
1573   //
1574   // See Linux man page execstack(8) for more info.
1575   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1576     if (!ElfFile::specifies_noexecstack(filename)) {
1577       if (!is_init_completed()) {
1578         os::Linux::_stack_is_executable = true;
1579         // This is OK - No Java threads have been created yet, and hence no
1580         // stack guard pages to fix.
1581         //
1582         // Dynamic loader will make all stacks executable after
1583         // this function returns, and will not do that again.
1584         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1585       } else {
1586         warning("You have loaded library %s which might have disabled stack guard. "
1587                 "The VM will try to fix the stack guard now.\n"
1588                 "It's highly recommended that you fix the library with "
1589                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1590                 filename);
1591 
1592         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1593         JavaThread *jt = JavaThread::current();
1594         if (jt->thread_state() != _thread_in_native) {
1595           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1596           // that requires ExecStack. Cannot enter safe point. Let's give up.
1597           warning("Unable to fix stack guard. Giving up.");
1598         } else {
1599           if (!LoadExecStackDllInVMThread) {
1600             // This is for the case where the DLL has an static
1601             // constructor function that executes JNI code. We cannot
1602             // load such DLLs in the VMThread.
1603             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1604           }
1605 
1606           ThreadInVMfromNative tiv(jt);
1607           debug_only(VMNativeEntryWrapper vew;)
1608 
1609           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1610           VMThread::execute(&op);
1611           if (LoadExecStackDllInVMThread) {
1612             result = op.loaded_library();
1613           }
1614           load_attempted = true;
1615         }
1616       }
1617     }
1618   }
1619 
1620   if (!load_attempted) {
1621     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1622   }
1623 
1624   if (result != NULL) {
1625     // Successful loading
1626     return result;
1627   }
1628 
1629   Elf32_Ehdr elf_head;
1630   int diag_msg_max_length=ebuflen-strlen(ebuf);
1631   char* diag_msg_buf=ebuf+strlen(ebuf);
1632 
1633   if (diag_msg_max_length==0) {
1634     // No more space in ebuf for additional diagnostics message
1635     return NULL;
1636   }
1637 
1638 
1639   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1640 
1641   if (file_descriptor < 0) {
1642     // Can't open library, report dlerror() message
1643     return NULL;
1644   }
1645 
1646   bool failed_to_read_elf_head=
1647     (sizeof(elf_head)!=
1648      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1649 
1650   ::close(file_descriptor);
1651   if (failed_to_read_elf_head) {
1652     // file i/o error - report dlerror() msg
1653     return NULL;
1654   }
1655 
1656   typedef struct {
1657     Elf32_Half    code;         // Actual value as defined in elf.h
1658     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1659     unsigned char elf_class;    // 32 or 64 bit
1660     unsigned char endianess;    // MSB or LSB
1661     char*         name;         // String representation
1662   } arch_t;
1663 
1664 #ifndef EM_486
1665   #define EM_486          6               /* Intel 80486 */
1666 #endif
1667 #ifndef EM_AARCH64
1668   #define EM_AARCH64    183               /* ARM AARCH64 */
1669 #endif
1670 
1671   static const arch_t arch_array[]={
1672     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1673     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1674     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1675     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1676     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1677     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1678     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1679     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1680 #if defined(VM_LITTLE_ENDIAN)
1681     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1682     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1683 #else
1684     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1685     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1686 #endif
1687     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1688     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1689     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1690     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1691     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1692     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1693     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1694     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1695   };
1696 
1697 #if  (defined IA32)
1698   static  Elf32_Half running_arch_code=EM_386;
1699 #elif   (defined AMD64) || (defined X32)
1700   static  Elf32_Half running_arch_code=EM_X86_64;
1701 #elif  (defined IA64)
1702   static  Elf32_Half running_arch_code=EM_IA_64;
1703 #elif  (defined __sparc) && (defined _LP64)
1704   static  Elf32_Half running_arch_code=EM_SPARCV9;
1705 #elif  (defined __sparc) && (!defined _LP64)
1706   static  Elf32_Half running_arch_code=EM_SPARC;
1707 #elif  (defined __powerpc64__)
1708   static  Elf32_Half running_arch_code=EM_PPC64;
1709 #elif  (defined __powerpc__)
1710   static  Elf32_Half running_arch_code=EM_PPC;
1711 #elif  (defined AARCH64)
1712   static  Elf32_Half running_arch_code=EM_AARCH64;
1713 #elif  (defined ARM)
1714   static  Elf32_Half running_arch_code=EM_ARM;
1715 #elif  (defined S390)
1716   static  Elf32_Half running_arch_code=EM_S390;
1717 #elif  (defined ALPHA)
1718   static  Elf32_Half running_arch_code=EM_ALPHA;
1719 #elif  (defined MIPSEL)
1720   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1721 #elif  (defined PARISC)
1722   static  Elf32_Half running_arch_code=EM_PARISC;
1723 #elif  (defined MIPS)
1724   static  Elf32_Half running_arch_code=EM_MIPS;
1725 #elif  (defined M68K)
1726   static  Elf32_Half running_arch_code=EM_68K;
1727 #elif  (defined SH)
1728   static  Elf32_Half running_arch_code=EM_SH;
1729 #else
1730     #error Method os::dll_load requires that one of following is defined:\
1731         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1732 #endif
1733 
1734   // Identify compatability class for VM's architecture and library's architecture
1735   // Obtain string descriptions for architectures
1736 
1737   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1738   int running_arch_index=-1;
1739 
1740   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1741     if (running_arch_code == arch_array[i].code) {
1742       running_arch_index    = i;
1743     }
1744     if (lib_arch.code == arch_array[i].code) {
1745       lib_arch.compat_class = arch_array[i].compat_class;
1746       lib_arch.name         = arch_array[i].name;
1747     }
1748   }
1749 
1750   assert(running_arch_index != -1,
1751          "Didn't find running architecture code (running_arch_code) in arch_array");
1752   if (running_arch_index == -1) {
1753     // Even though running architecture detection failed
1754     // we may still continue with reporting dlerror() message
1755     return NULL;
1756   }
1757 
1758   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1759     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1760     return NULL;
1761   }
1762 
1763 #ifndef S390
1764   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1765     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1766     return NULL;
1767   }
1768 #endif // !S390
1769 
1770   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1771     if (lib_arch.name!=NULL) {
1772       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1773                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1774                  lib_arch.name, arch_array[running_arch_index].name);
1775     } else {
1776       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1777                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1778                  lib_arch.code,
1779                  arch_array[running_arch_index].name);
1780     }
1781   }
1782 
1783   return NULL;
1784 }
1785 
1786 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1787                                 int ebuflen) {
1788   void * result = ::dlopen(filename, RTLD_LAZY);
1789   if (result == NULL) {
1790     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1791     ebuf[ebuflen-1] = '\0';
1792   }
1793   return result;
1794 }
1795 
1796 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1797                                        int ebuflen) {
1798   void * result = NULL;
1799   if (LoadExecStackDllInVMThread) {
1800     result = dlopen_helper(filename, ebuf, ebuflen);
1801   }
1802 
1803   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1804   // library that requires an executable stack, or which does not have this
1805   // stack attribute set, dlopen changes the stack attribute to executable. The
1806   // read protection of the guard pages gets lost.
1807   //
1808   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1809   // may have been queued at the same time.
1810 
1811   if (!_stack_is_executable) {
1812     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1813       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1814           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1815         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1816           warning("Attempt to reguard stack yellow zone failed.");
1817         }
1818       }
1819     }
1820   }
1821 
1822   return result;
1823 }
1824 
1825 void* os::dll_lookup(void* handle, const char* name) {
1826   void* res = dlsym(handle, name);
1827   return res;
1828 }
1829 
1830 void* os::get_default_process_handle() {
1831   return (void*)::dlopen(NULL, RTLD_LAZY);
1832 }
1833 
1834 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
1835   int fd = ::open(filename, O_RDONLY);
1836   if (fd == -1) {
1837     return false;
1838   }
1839 
1840   if (hdr != NULL) {
1841     st->print_cr("%s", hdr);
1842   }
1843 
1844   char buf[33];
1845   int bytes;
1846   buf[32] = '\0';
1847   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1848     st->print_raw(buf, bytes);
1849   }
1850 
1851   ::close(fd);
1852 
1853   return true;
1854 }
1855 
1856 void os::print_dll_info(outputStream *st) {
1857   st->print_cr("Dynamic libraries:");
1858 
1859   char fname[32];
1860   pid_t pid = os::Linux::gettid();
1861 
1862   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1863 
1864   if (!_print_ascii_file(fname, st)) {
1865     st->print("Can not get library information for pid = %d\n", pid);
1866   }
1867 }
1868 
1869 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1870   FILE *procmapsFile = NULL;
1871 
1872   // Open the procfs maps file for the current process
1873   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1874     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1875     char line[PATH_MAX + 100];
1876 
1877     // Read line by line from 'file'
1878     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1879       u8 base, top, offset, inode;
1880       char permissions[5];
1881       char device[6];
1882       char name[PATH_MAX + 1];
1883 
1884       // Parse fields from line
1885       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1886              &base, &top, permissions, &offset, device, &inode, name);
1887 
1888       // Filter by device id '00:00' so that we only get file system mapped files.
1889       if (strcmp(device, "00:00") != 0) {
1890 
1891         // Call callback with the fields of interest
1892         if(callback(name, (address)base, (address)top, param)) {
1893           // Oops abort, callback aborted
1894           fclose(procmapsFile);
1895           return 1;
1896         }
1897       }
1898     }
1899     fclose(procmapsFile);
1900   }
1901   return 0;
1902 }
1903 
1904 void os::print_os_info_brief(outputStream* st) {
1905   os::Linux::print_distro_info(st);
1906 
1907   os::Posix::print_uname_info(st);
1908 
1909   os::Linux::print_libversion_info(st);
1910 
1911 }
1912 
1913 void os::print_os_info(outputStream* st) {
1914   st->print("OS:");
1915 
1916   os::Linux::print_distro_info(st);
1917 
1918   os::Posix::print_uname_info(st);
1919 
1920   // Print warning if unsafe chroot environment detected
1921   if (unsafe_chroot_detected) {
1922     st->print("WARNING!! ");
1923     st->print_cr("%s", unstable_chroot_error);
1924   }
1925 
1926   os::Linux::print_libversion_info(st);
1927 
1928   os::Posix::print_rlimit_info(st);
1929 
1930   os::Posix::print_load_average(st);
1931 
1932   os::Linux::print_full_memory_info(st);
1933 
1934   os::Linux::print_proc_sys_info(st);
1935 
1936   os::Linux::print_ld_preload_file(st);
1937 
1938   os::Linux::print_container_info(st);
1939 }
1940 
1941 // Try to identify popular distros.
1942 // Most Linux distributions have a /etc/XXX-release file, which contains
1943 // the OS version string. Newer Linux distributions have a /etc/lsb-release
1944 // file that also contains the OS version string. Some have more than one
1945 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1946 // /etc/redhat-release.), so the order is important.
1947 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1948 // their own specific XXX-release file as well as a redhat-release file.
1949 // Because of this the XXX-release file needs to be searched for before the
1950 // redhat-release file.
1951 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
1952 // search for redhat-release / SuSE-release needs to be before lsb-release.
1953 // Since the lsb-release file is the new standard it needs to be searched
1954 // before the older style release files.
1955 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
1956 // next to last resort.  The os-release file is a new standard that contains
1957 // distribution information and the system-release file seems to be an old
1958 // standard that has been replaced by the lsb-release and os-release files.
1959 // Searching for the debian_version file is the last resort.  It contains
1960 // an informative string like "6.0.6" or "wheezy/sid". Because of this
1961 // "Debian " is printed before the contents of the debian_version file.
1962 
1963 const char* distro_files[] = {
1964   "/etc/oracle-release",
1965   "/etc/mandriva-release",
1966   "/etc/mandrake-release",
1967   "/etc/sun-release",
1968   "/etc/redhat-release",
1969   "/etc/SuSE-release",
1970   "/etc/lsb-release",
1971   "/etc/turbolinux-release",
1972   "/etc/gentoo-release",
1973   "/etc/ltib-release",
1974   "/etc/angstrom-version",
1975   "/etc/system-release",
1976   "/etc/os-release",
1977   NULL };
1978 
1979 void os::Linux::print_distro_info(outputStream* st) {
1980   for (int i = 0;; i++) {
1981     const char* file = distro_files[i];
1982     if (file == NULL) {
1983       break;  // done
1984     }
1985     // If file prints, we found it.
1986     if (_print_ascii_file(file, st)) {
1987       return;
1988     }
1989   }
1990 
1991   if (file_exists("/etc/debian_version")) {
1992     st->print("Debian ");
1993     _print_ascii_file("/etc/debian_version", st);
1994   } else {
1995     st->print("Linux");
1996   }
1997   st->cr();
1998 }
1999 
2000 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2001   char buf[256];
2002   while (fgets(buf, sizeof(buf), fp)) {
2003     // Edit out extra stuff in expected format
2004     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2005       char* ptr = strstr(buf, "\"");  // the name is in quotes
2006       if (ptr != NULL) {
2007         ptr++; // go beyond first quote
2008         char* nl = strchr(ptr, '\"');
2009         if (nl != NULL) *nl = '\0';
2010         strncpy(distro, ptr, length);
2011       } else {
2012         ptr = strstr(buf, "=");
2013         ptr++; // go beyond equals then
2014         char* nl = strchr(ptr, '\n');
2015         if (nl != NULL) *nl = '\0';
2016         strncpy(distro, ptr, length);
2017       }
2018       return;
2019     } else if (get_first_line) {
2020       char* nl = strchr(buf, '\n');
2021       if (nl != NULL) *nl = '\0';
2022       strncpy(distro, buf, length);
2023       return;
2024     }
2025   }
2026   // print last line and close
2027   char* nl = strchr(buf, '\n');
2028   if (nl != NULL) *nl = '\0';
2029   strncpy(distro, buf, length);
2030 }
2031 
2032 static void parse_os_info(char* distro, size_t length, const char* file) {
2033   FILE* fp = fopen(file, "r");
2034   if (fp != NULL) {
2035     // if suse format, print out first line
2036     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2037     parse_os_info_helper(fp, distro, length, get_first_line);
2038     fclose(fp);
2039   }
2040 }
2041 
2042 void os::get_summary_os_info(char* buf, size_t buflen) {
2043   for (int i = 0;; i++) {
2044     const char* file = distro_files[i];
2045     if (file == NULL) {
2046       break; // ran out of distro_files
2047     }
2048     if (file_exists(file)) {
2049       parse_os_info(buf, buflen, file);
2050       return;
2051     }
2052   }
2053   // special case for debian
2054   if (file_exists("/etc/debian_version")) {
2055     strncpy(buf, "Debian ", buflen);
2056     if (buflen > 7) {
2057       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2058     }
2059   } else {
2060     strncpy(buf, "Linux", buflen);
2061   }
2062 }
2063 
2064 void os::Linux::print_libversion_info(outputStream* st) {
2065   // libc, pthread
2066   st->print("libc:");
2067   st->print("%s ", os::Linux::glibc_version());
2068   st->print("%s ", os::Linux::libpthread_version());
2069   st->cr();
2070 }
2071 
2072 void os::Linux::print_proc_sys_info(outputStream* st) {
2073   st->cr();
2074   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2075   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2076   st->cr();
2077   st->cr();
2078 
2079   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2080   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2081   st->cr();
2082   st->cr();
2083 
2084   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2085   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2086   st->cr();
2087   st->cr();
2088 }
2089 
2090 void os::Linux::print_full_memory_info(outputStream* st) {
2091   st->print("\n/proc/meminfo:\n");
2092   _print_ascii_file("/proc/meminfo", st);
2093   st->cr();
2094 }
2095 
2096 void os::Linux::print_ld_preload_file(outputStream* st) {
2097   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2098   st->cr();
2099 }
2100 
2101 void os::Linux::print_container_info(outputStream* st) {
2102   if (!OSContainer::is_containerized()) {
2103     return;
2104   }
2105 
2106   st->print("container (cgroup) information:\n");
2107 
2108   const char *p_ct = OSContainer::container_type();
2109   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2110 
2111   char *p = OSContainer::cpu_cpuset_cpus();
2112   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2113   free(p);
2114 
2115   p = OSContainer::cpu_cpuset_memory_nodes();
2116   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2117   free(p);
2118 
2119   int i = OSContainer::active_processor_count();
2120   if (i > 0) {
2121     st->print("active_processor_count: %d\n", i);
2122   } else {
2123     st->print("active_processor_count: failed\n");
2124   }
2125 
2126   i = OSContainer::cpu_quota();
2127   st->print("cpu_quota: %d\n", i);
2128 
2129   i = OSContainer::cpu_period();
2130   st->print("cpu_period: %d\n", i);
2131 
2132   i = OSContainer::cpu_shares();
2133   st->print("cpu_shares: %d\n", i);
2134 
2135   jlong j = OSContainer::memory_limit_in_bytes();
2136   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2137 
2138   j = OSContainer::memory_and_swap_limit_in_bytes();
2139   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2140 
2141   j = OSContainer::memory_soft_limit_in_bytes();
2142   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2143 
2144   j = OSContainer::OSContainer::memory_usage_in_bytes();
2145   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2146 
2147   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2148   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2149   st->cr();
2150 }
2151 
2152 void os::print_memory_info(outputStream* st) {
2153 
2154   st->print("Memory:");
2155   st->print(" %dk page", os::vm_page_size()>>10);
2156 
2157   // values in struct sysinfo are "unsigned long"
2158   struct sysinfo si;
2159   sysinfo(&si);
2160 
2161   st->print(", physical " UINT64_FORMAT "k",
2162             os::physical_memory() >> 10);
2163   st->print("(" UINT64_FORMAT "k free)",
2164             os::available_memory() >> 10);
2165   st->print(", swap " UINT64_FORMAT "k",
2166             ((jlong)si.totalswap * si.mem_unit) >> 10);
2167   st->print("(" UINT64_FORMAT "k free)",
2168             ((jlong)si.freeswap * si.mem_unit) >> 10);
2169   st->cr();
2170 }
2171 
2172 // Print the first "model name" line and the first "flags" line
2173 // that we find and nothing more. We assume "model name" comes
2174 // before "flags" so if we find a second "model name", then the
2175 // "flags" field is considered missing.
2176 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2177 #if defined(IA32) || defined(AMD64)
2178   // Other platforms have less repetitive cpuinfo files
2179   FILE *fp = fopen("/proc/cpuinfo", "r");
2180   if (fp) {
2181     while (!feof(fp)) {
2182       if (fgets(buf, buflen, fp)) {
2183         // Assume model name comes before flags
2184         bool model_name_printed = false;
2185         if (strstr(buf, "model name") != NULL) {
2186           if (!model_name_printed) {
2187             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2188             st->print_raw(buf);
2189             model_name_printed = true;
2190           } else {
2191             // model name printed but not flags?  Odd, just return
2192             fclose(fp);
2193             return true;
2194           }
2195         }
2196         // print the flags line too
2197         if (strstr(buf, "flags") != NULL) {
2198           st->print_raw(buf);
2199           fclose(fp);
2200           return true;
2201         }
2202       }
2203     }
2204     fclose(fp);
2205   }
2206 #endif // x86 platforms
2207   return false;
2208 }
2209 
2210 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2211   // Only print the model name if the platform provides this as a summary
2212   if (!print_model_name_and_flags(st, buf, buflen)) {
2213     st->print("\n/proc/cpuinfo:\n");
2214     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2215       st->print_cr("  <Not Available>");
2216     }
2217   }
2218 }
2219 
2220 #if defined(AMD64) || defined(IA32) || defined(X32)
2221 const char* search_string = "model name";
2222 #elif defined(M68K)
2223 const char* search_string = "CPU";
2224 #elif defined(PPC64)
2225 const char* search_string = "cpu";
2226 #elif defined(S390)
2227 const char* search_string = "processor";
2228 #elif defined(SPARC)
2229 const char* search_string = "cpu";
2230 #else
2231 const char* search_string = "Processor";
2232 #endif
2233 
2234 // Parses the cpuinfo file for string representing the model name.
2235 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2236   FILE* fp = fopen("/proc/cpuinfo", "r");
2237   if (fp != NULL) {
2238     while (!feof(fp)) {
2239       char buf[256];
2240       if (fgets(buf, sizeof(buf), fp)) {
2241         char* start = strstr(buf, search_string);
2242         if (start != NULL) {
2243           char *ptr = start + strlen(search_string);
2244           char *end = buf + strlen(buf);
2245           while (ptr != end) {
2246              // skip whitespace and colon for the rest of the name.
2247              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2248                break;
2249              }
2250              ptr++;
2251           }
2252           if (ptr != end) {
2253             // reasonable string, get rid of newline and keep the rest
2254             char* nl = strchr(buf, '\n');
2255             if (nl != NULL) *nl = '\0';
2256             strncpy(cpuinfo, ptr, length);
2257             fclose(fp);
2258             return;
2259           }
2260         }
2261       }
2262     }
2263     fclose(fp);
2264   }
2265   // cpuinfo not found or parsing failed, just print generic string.  The entire
2266   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2267 #if   defined(AARCH64)
2268   strncpy(cpuinfo, "AArch64", length);
2269 #elif defined(AMD64)
2270   strncpy(cpuinfo, "x86_64", length);
2271 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2272   strncpy(cpuinfo, "ARM", length);
2273 #elif defined(IA32)
2274   strncpy(cpuinfo, "x86_32", length);
2275 #elif defined(IA64)
2276   strncpy(cpuinfo, "IA64", length);
2277 #elif defined(PPC)
2278   strncpy(cpuinfo, "PPC64", length);
2279 #elif defined(S390)
2280   strncpy(cpuinfo, "S390", length);
2281 #elif defined(SPARC)
2282   strncpy(cpuinfo, "sparcv9", length);
2283 #elif defined(ZERO_LIBARCH)
2284   strncpy(cpuinfo, ZERO_LIBARCH, length);
2285 #else
2286   strncpy(cpuinfo, "unknown", length);
2287 #endif
2288 }
2289 
2290 static void print_signal_handler(outputStream* st, int sig,
2291                                  char* buf, size_t buflen);
2292 
2293 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2294   st->print_cr("Signal Handlers:");
2295   print_signal_handler(st, SIGSEGV, buf, buflen);
2296   print_signal_handler(st, SIGBUS , buf, buflen);
2297   print_signal_handler(st, SIGFPE , buf, buflen);
2298   print_signal_handler(st, SIGPIPE, buf, buflen);
2299   print_signal_handler(st, SIGXFSZ, buf, buflen);
2300   print_signal_handler(st, SIGILL , buf, buflen);
2301   print_signal_handler(st, SR_signum, buf, buflen);
2302   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2303   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2304   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2305   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2306 #if defined(PPC64)
2307   print_signal_handler(st, SIGTRAP, buf, buflen);
2308 #endif
2309 }
2310 
2311 static char saved_jvm_path[MAXPATHLEN] = {0};
2312 
2313 // Find the full path to the current module, libjvm.so
2314 void os::jvm_path(char *buf, jint buflen) {
2315   // Error checking.
2316   if (buflen < MAXPATHLEN) {
2317     assert(false, "must use a large-enough buffer");
2318     buf[0] = '\0';
2319     return;
2320   }
2321   // Lazy resolve the path to current module.
2322   if (saved_jvm_path[0] != 0) {
2323     strcpy(buf, saved_jvm_path);
2324     return;
2325   }
2326 
2327   char dli_fname[MAXPATHLEN];
2328   bool ret = dll_address_to_library_name(
2329                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2330                                          dli_fname, sizeof(dli_fname), NULL);
2331   assert(ret, "cannot locate libjvm");
2332   char *rp = NULL;
2333   if (ret && dli_fname[0] != '\0') {
2334     rp = os::Posix::realpath(dli_fname, buf, buflen);
2335   }
2336   if (rp == NULL) {
2337     return;
2338   }
2339 
2340   if (Arguments::sun_java_launcher_is_altjvm()) {
2341     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2342     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2343     // If "/jre/lib/" appears at the right place in the string, then
2344     // assume we are installed in a JDK and we're done. Otherwise, check
2345     // for a JAVA_HOME environment variable and fix up the path so it
2346     // looks like libjvm.so is installed there (append a fake suffix
2347     // hotspot/libjvm.so).
2348     const char *p = buf + strlen(buf) - 1;
2349     for (int count = 0; p > buf && count < 5; ++count) {
2350       for (--p; p > buf && *p != '/'; --p)
2351         /* empty */ ;
2352     }
2353 
2354     if (strncmp(p, "/jre/lib/", 9) != 0) {
2355       // Look for JAVA_HOME in the environment.
2356       char* java_home_var = ::getenv("JAVA_HOME");
2357       if (java_home_var != NULL && java_home_var[0] != 0) {
2358         char* jrelib_p;
2359         int len;
2360 
2361         // Check the current module name "libjvm.so".
2362         p = strrchr(buf, '/');
2363         if (p == NULL) {
2364           return;
2365         }
2366         assert(strstr(p, "/libjvm") == p, "invalid library name");
2367 
2368         rp = os::Posix::realpath(java_home_var, buf, buflen);
2369         if (rp == NULL) {
2370           return;
2371         }
2372 
2373         // determine if this is a legacy image or modules image
2374         // modules image doesn't have "jre" subdirectory
2375         len = strlen(buf);
2376         assert(len < buflen, "Ran out of buffer room");
2377         jrelib_p = buf + len;
2378         snprintf(jrelib_p, buflen-len, "/jre/lib");
2379         if (0 != access(buf, F_OK)) {
2380           snprintf(jrelib_p, buflen-len, "/lib");
2381         }
2382 
2383         if (0 == access(buf, F_OK)) {
2384           // Use current module name "libjvm.so"
2385           len = strlen(buf);
2386           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2387         } else {
2388           // Go back to path of .so
2389           rp = os::Posix::realpath(dli_fname, buf, buflen);
2390           if (rp == NULL) {
2391             return;
2392           }
2393         }
2394       }
2395     }
2396   }
2397 
2398   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2399   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2400 }
2401 
2402 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2403   // no prefix required, not even "_"
2404 }
2405 
2406 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2407   // no suffix required
2408 }
2409 
2410 ////////////////////////////////////////////////////////////////////////////////
2411 // sun.misc.Signal support
2412 
2413 static volatile jint sigint_count = 0;
2414 
2415 static void UserHandler(int sig, void *siginfo, void *context) {
2416   // 4511530 - sem_post is serialized and handled by the manager thread. When
2417   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2418   // don't want to flood the manager thread with sem_post requests.
2419   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2420     return;
2421   }
2422 
2423   // Ctrl-C is pressed during error reporting, likely because the error
2424   // handler fails to abort. Let VM die immediately.
2425   if (sig == SIGINT && VMError::is_error_reported()) {
2426     os::die();
2427   }
2428 
2429   os::signal_notify(sig);
2430 }
2431 
2432 void* os::user_handler() {
2433   return CAST_FROM_FN_PTR(void*, UserHandler);
2434 }
2435 
2436 static struct timespec create_semaphore_timespec(unsigned int sec, int nsec) {
2437   struct timespec ts;
2438   // Semaphore's are always associated with CLOCK_REALTIME
2439   os::Posix::clock_gettime(CLOCK_REALTIME, &ts);
2440   // see os_posix.cpp for discussion on overflow checking
2441   if (sec >= MAX_SECS) {
2442     ts.tv_sec += MAX_SECS;
2443     ts.tv_nsec = 0;
2444   } else {
2445     ts.tv_sec += sec;
2446     ts.tv_nsec += nsec;
2447     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2448       ts.tv_nsec -= NANOSECS_PER_SEC;
2449       ++ts.tv_sec; // note: this must be <= max_secs
2450     }
2451   }
2452 
2453   return ts;
2454 }
2455 
2456 extern "C" {
2457   typedef void (*sa_handler_t)(int);
2458   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2459 }
2460 
2461 void* os::signal(int signal_number, void* handler) {
2462   struct sigaction sigAct, oldSigAct;
2463 
2464   sigfillset(&(sigAct.sa_mask));
2465   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2466   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2467 
2468   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2469     // -1 means registration failed
2470     return (void *)-1;
2471   }
2472 
2473   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2474 }
2475 
2476 void os::signal_raise(int signal_number) {
2477   ::raise(signal_number);
2478 }
2479 
2480 // The following code is moved from os.cpp for making this
2481 // code platform specific, which it is by its very nature.
2482 
2483 // Will be modified when max signal is changed to be dynamic
2484 int os::sigexitnum_pd() {
2485   return NSIG;
2486 }
2487 
2488 // a counter for each possible signal value
2489 static volatile jint pending_signals[NSIG+1] = { 0 };
2490 
2491 // Linux(POSIX) specific hand shaking semaphore.
2492 static Semaphore* sig_sem = NULL;
2493 static PosixSemaphore sr_semaphore;
2494 
2495 static void jdk_misc_signal_init() {
2496   // Initialize signal structures
2497   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2498 
2499   // Initialize signal semaphore
2500   sig_sem = new Semaphore();
2501 }
2502 
2503 void os::signal_notify(int sig) {
2504   if (sig_sem != NULL) {
2505     Atomic::inc(&pending_signals[sig]);
2506     sig_sem->signal();
2507   } else {
2508     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2509     // initialization isn't called.
2510     assert(ReduceSignalUsage, "signal semaphore should be created");
2511   }
2512 }
2513 
2514 static int check_pending_signals() {
2515   Atomic::store(0, &sigint_count);
2516   for (;;) {
2517     for (int i = 0; i < NSIG + 1; i++) {
2518       jint n = pending_signals[i];
2519       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2520         return i;
2521       }
2522     }
2523     JavaThread *thread = JavaThread::current();
2524     ThreadBlockInVM tbivm(thread);
2525 
2526     bool threadIsSuspended;
2527     do {
2528       thread->set_suspend_equivalent();
2529       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2530       sig_sem->wait();
2531 
2532       // were we externally suspended while we were waiting?
2533       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2534       if (threadIsSuspended) {
2535         // The semaphore has been incremented, but while we were waiting
2536         // another thread suspended us. We don't want to continue running
2537         // while suspended because that would surprise the thread that
2538         // suspended us.
2539         sig_sem->signal();
2540 
2541         thread->java_suspend_self();
2542       }
2543     } while (threadIsSuspended);
2544   }
2545 }
2546 
2547 int os::signal_wait() {
2548   return check_pending_signals();
2549 }
2550 
2551 ////////////////////////////////////////////////////////////////////////////////
2552 // Virtual Memory
2553 
2554 int os::vm_page_size() {
2555   // Seems redundant as all get out
2556   assert(os::Linux::page_size() != -1, "must call os::init");
2557   return os::Linux::page_size();
2558 }
2559 
2560 // Solaris allocates memory by pages.
2561 int os::vm_allocation_granularity() {
2562   assert(os::Linux::page_size() != -1, "must call os::init");
2563   return os::Linux::page_size();
2564 }
2565 
2566 // Rationale behind this function:
2567 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2568 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2569 //  samples for JITted code. Here we create private executable mapping over the code cache
2570 //  and then we can use standard (well, almost, as mapping can change) way to provide
2571 //  info for the reporting script by storing timestamp and location of symbol
2572 void linux_wrap_code(char* base, size_t size) {
2573   static volatile jint cnt = 0;
2574 
2575   if (!UseOprofile) {
2576     return;
2577   }
2578 
2579   char buf[PATH_MAX+1];
2580   int num = Atomic::add(1, &cnt);
2581 
2582   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2583            os::get_temp_directory(), os::current_process_id(), num);
2584   unlink(buf);
2585 
2586   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2587 
2588   if (fd != -1) {
2589     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2590     if (rv != (off_t)-1) {
2591       if (::write(fd, "", 1) == 1) {
2592         mmap(base, size,
2593              PROT_READ|PROT_WRITE|PROT_EXEC,
2594              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2595       }
2596     }
2597     ::close(fd);
2598     unlink(buf);
2599   }
2600 }
2601 
2602 static bool recoverable_mmap_error(int err) {
2603   // See if the error is one we can let the caller handle. This
2604   // list of errno values comes from JBS-6843484. I can't find a
2605   // Linux man page that documents this specific set of errno
2606   // values so while this list currently matches Solaris, it may
2607   // change as we gain experience with this failure mode.
2608   switch (err) {
2609   case EBADF:
2610   case EINVAL:
2611   case ENOTSUP:
2612     // let the caller deal with these errors
2613     return true;
2614 
2615   default:
2616     // Any remaining errors on this OS can cause our reserved mapping
2617     // to be lost. That can cause confusion where different data
2618     // structures think they have the same memory mapped. The worst
2619     // scenario is if both the VM and a library think they have the
2620     // same memory mapped.
2621     return false;
2622   }
2623 }
2624 
2625 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2626                                     int err) {
2627   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2628           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2629           os::strerror(err), err);
2630 }
2631 
2632 static void warn_fail_commit_memory(char* addr, size_t size,
2633                                     size_t alignment_hint, bool exec,
2634                                     int err) {
2635   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2636           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2637           alignment_hint, exec, os::strerror(err), err);
2638 }
2639 
2640 // NOTE: Linux kernel does not really reserve the pages for us.
2641 //       All it does is to check if there are enough free pages
2642 //       left at the time of mmap(). This could be a potential
2643 //       problem.
2644 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2645   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2646   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2647                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2648   if (res != (uintptr_t) MAP_FAILED) {
2649     if (UseNUMAInterleaving) {
2650       numa_make_global(addr, size);
2651     }
2652     return 0;
2653   }
2654 
2655   int err = errno;  // save errno from mmap() call above
2656 
2657   if (!recoverable_mmap_error(err)) {
2658     warn_fail_commit_memory(addr, size, exec, err);
2659     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2660   }
2661 
2662   return err;
2663 }
2664 
2665 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2666   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2667 }
2668 
2669 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2670                                   const char* mesg) {
2671   assert(mesg != NULL, "mesg must be specified");
2672   int err = os::Linux::commit_memory_impl(addr, size, exec);
2673   if (err != 0) {
2674     // the caller wants all commit errors to exit with the specified mesg:
2675     warn_fail_commit_memory(addr, size, exec, err);
2676     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2677   }
2678 }
2679 
2680 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2681 #ifndef MAP_HUGETLB
2682   #define MAP_HUGETLB 0x40000
2683 #endif
2684 
2685 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2686 #ifndef MADV_HUGEPAGE
2687   #define MADV_HUGEPAGE 14
2688 #endif
2689 
2690 int os::Linux::commit_memory_impl(char* addr, size_t size,
2691                                   size_t alignment_hint, bool exec) {
2692   int err = os::Linux::commit_memory_impl(addr, size, exec);
2693   if (err == 0) {
2694     realign_memory(addr, size, alignment_hint);
2695   }
2696   return err;
2697 }
2698 
2699 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2700                           bool exec) {
2701   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2702 }
2703 
2704 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2705                                   size_t alignment_hint, bool exec,
2706                                   const char* mesg) {
2707   assert(mesg != NULL, "mesg must be specified");
2708   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2709   if (err != 0) {
2710     // the caller wants all commit errors to exit with the specified mesg:
2711     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2712     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2713   }
2714 }
2715 
2716 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2717   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2718     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2719     // be supported or the memory may already be backed by huge pages.
2720     ::madvise(addr, bytes, MADV_HUGEPAGE);
2721   }
2722 }
2723 
2724 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2725   // This method works by doing an mmap over an existing mmaping and effectively discarding
2726   // the existing pages. However it won't work for SHM-based large pages that cannot be
2727   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2728   // small pages on top of the SHM segment. This method always works for small pages, so we
2729   // allow that in any case.
2730   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2731     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2732   }
2733 }
2734 
2735 void os::numa_make_global(char *addr, size_t bytes) {
2736   Linux::numa_interleave_memory(addr, bytes);
2737 }
2738 
2739 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2740 // bind policy to MPOL_PREFERRED for the current thread.
2741 #define USE_MPOL_PREFERRED 0
2742 
2743 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2744   // To make NUMA and large pages more robust when both enabled, we need to ease
2745   // the requirements on where the memory should be allocated. MPOL_BIND is the
2746   // default policy and it will force memory to be allocated on the specified
2747   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2748   // the specified node, but will not force it. Using this policy will prevent
2749   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2750   // free large pages.
2751   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2752   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2753 }
2754 
2755 bool os::numa_topology_changed() { return false; }
2756 
2757 size_t os::numa_get_groups_num() {
2758   // Return just the number of nodes in which it's possible to allocate memory
2759   // (in numa terminology, configured nodes).
2760   return Linux::numa_num_configured_nodes();
2761 }
2762 
2763 int os::numa_get_group_id() {
2764   int cpu_id = Linux::sched_getcpu();
2765   if (cpu_id != -1) {
2766     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2767     if (lgrp_id != -1) {
2768       return lgrp_id;
2769     }
2770   }
2771   return 0;
2772 }
2773 
2774 int os::Linux::get_existing_num_nodes() {
2775   int node;
2776   int highest_node_number = Linux::numa_max_node();
2777   int num_nodes = 0;
2778 
2779   // Get the total number of nodes in the system including nodes without memory.
2780   for (node = 0; node <= highest_node_number; node++) {
2781     if (isnode_in_existing_nodes(node)) {
2782       num_nodes++;
2783     }
2784   }
2785   return num_nodes;
2786 }
2787 
2788 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2789   int highest_node_number = Linux::numa_max_node();
2790   size_t i = 0;
2791 
2792   // Map all node ids in which it is possible to allocate memory. Also nodes are
2793   // not always consecutively available, i.e. available from 0 to the highest
2794   // node number. If the nodes have been bound explicitly using numactl membind,
2795   // then allocate memory from those nodes only.
2796   for (int node = 0; node <= highest_node_number; node++) {
2797     if (Linux::isnode_in_bound_nodes((unsigned int)node)) {
2798       ids[i++] = node;
2799     }
2800   }
2801   return i;
2802 }
2803 
2804 bool os::get_page_info(char *start, page_info* info) {
2805   return false;
2806 }
2807 
2808 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2809                      page_info* page_found) {
2810   return end;
2811 }
2812 
2813 
2814 int os::Linux::sched_getcpu_syscall(void) {
2815   unsigned int cpu = 0;
2816   int retval = -1;
2817 
2818 #if defined(IA32)
2819   #ifndef SYS_getcpu
2820     #define SYS_getcpu 318
2821   #endif
2822   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2823 #elif defined(AMD64)
2824 // Unfortunately we have to bring all these macros here from vsyscall.h
2825 // to be able to compile on old linuxes.
2826   #define __NR_vgetcpu 2
2827   #define VSYSCALL_START (-10UL << 20)
2828   #define VSYSCALL_SIZE 1024
2829   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2830   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2831   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2832   retval = vgetcpu(&cpu, NULL, NULL);
2833 #endif
2834 
2835   return (retval == -1) ? retval : cpu;
2836 }
2837 
2838 void os::Linux::sched_getcpu_init() {
2839   // sched_getcpu() should be in libc.
2840   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2841                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2842 
2843   // If it's not, try a direct syscall.
2844   if (sched_getcpu() == -1) {
2845     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2846                                     (void*)&sched_getcpu_syscall));
2847   }
2848 
2849   if (sched_getcpu() == -1) {
2850     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
2851   }
2852 }
2853 
2854 // Something to do with the numa-aware allocator needs these symbols
2855 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2856 extern "C" JNIEXPORT void numa_error(char *where) { }
2857 
2858 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2859 // load symbol from base version instead.
2860 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2861   void *f = dlvsym(handle, name, "libnuma_1.1");
2862   if (f == NULL) {
2863     f = dlsym(handle, name);
2864   }
2865   return f;
2866 }
2867 
2868 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2869 // Return NULL if the symbol is not defined in this particular version.
2870 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2871   return dlvsym(handle, name, "libnuma_1.2");
2872 }
2873 
2874 bool os::Linux::libnuma_init() {
2875   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2876     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2877     if (handle != NULL) {
2878       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2879                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2880       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2881                                        libnuma_dlsym(handle, "numa_max_node")));
2882       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2883                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2884       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2885                                         libnuma_dlsym(handle, "numa_available")));
2886       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2887                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2888       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2889                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2890       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2891                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2892       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2893                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2894       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2895                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2896       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2897                                        libnuma_dlsym(handle, "numa_distance")));
2898       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
2899                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
2900 
2901       if (numa_available() != -1) {
2902         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2903         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2904         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2905         // Create an index -> node mapping, since nodes are not always consecutive
2906         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2907         rebuild_nindex_to_node_map();
2908         // Create a cpu -> node mapping
2909         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2910         rebuild_cpu_to_node_map();
2911         return true;
2912       }
2913     }
2914   }
2915   return false;
2916 }
2917 
2918 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2919   // Creating guard page is very expensive. Java thread has HotSpot
2920   // guard pages, only enable glibc guard page for non-Java threads.
2921   // (Remember: compiler thread is a Java thread, too!)
2922   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2923 }
2924 
2925 void os::Linux::rebuild_nindex_to_node_map() {
2926   int highest_node_number = Linux::numa_max_node();
2927 
2928   nindex_to_node()->clear();
2929   for (int node = 0; node <= highest_node_number; node++) {
2930     if (Linux::isnode_in_existing_nodes(node)) {
2931       nindex_to_node()->append(node);
2932     }
2933   }
2934 }
2935 
2936 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2937 // The table is later used in get_node_by_cpu().
2938 void os::Linux::rebuild_cpu_to_node_map() {
2939   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2940                               // in libnuma (possible values are starting from 16,
2941                               // and continuing up with every other power of 2, but less
2942                               // than the maximum number of CPUs supported by kernel), and
2943                               // is a subject to change (in libnuma version 2 the requirements
2944                               // are more reasonable) we'll just hardcode the number they use
2945                               // in the library.
2946   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2947 
2948   size_t cpu_num = processor_count();
2949   size_t cpu_map_size = NCPUS / BitsPerCLong;
2950   size_t cpu_map_valid_size =
2951     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2952 
2953   cpu_to_node()->clear();
2954   cpu_to_node()->at_grow(cpu_num - 1);
2955 
2956   size_t node_num = get_existing_num_nodes();
2957 
2958   int distance = 0;
2959   int closest_distance = INT_MAX;
2960   int closest_node = 0;
2961   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2962   for (size_t i = 0; i < node_num; i++) {
2963     // Check if node is configured (not a memory-less node). If it is not, find
2964     // the closest configured node. Check also if node is bound, i.e. it's allowed
2965     // to allocate memory from the node. If it's not allowed, map cpus in that node
2966     // to the closest node from which memory allocation is allowed.
2967     if (!isnode_in_configured_nodes(nindex_to_node()->at(i)) ||
2968         !isnode_in_bound_nodes(nindex_to_node()->at(i))) {
2969       closest_distance = INT_MAX;
2970       // Check distance from all remaining nodes in the system. Ignore distance
2971       // from itself, from another non-configured node, and from another non-bound
2972       // node.
2973       for (size_t m = 0; m < node_num; m++) {
2974         if (m != i &&
2975             isnode_in_configured_nodes(nindex_to_node()->at(m)) &&
2976             isnode_in_bound_nodes(nindex_to_node()->at(m))) {
2977           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2978           // If a closest node is found, update. There is always at least one
2979           // configured and bound node in the system so there is always at least
2980           // one node close.
2981           if (distance != 0 && distance < closest_distance) {
2982             closest_distance = distance;
2983             closest_node = nindex_to_node()->at(m);
2984           }
2985         }
2986       }
2987      } else {
2988        // Current node is already a configured node.
2989        closest_node = nindex_to_node()->at(i);
2990      }
2991 
2992     // Get cpus from the original node and map them to the closest node. If node
2993     // is a configured node (not a memory-less node), then original node and
2994     // closest node are the same.
2995     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2996       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2997         if (cpu_map[j] != 0) {
2998           for (size_t k = 0; k < BitsPerCLong; k++) {
2999             if (cpu_map[j] & (1UL << k)) {
3000               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3001             }
3002           }
3003         }
3004       }
3005     }
3006   }
3007   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3008 }
3009 
3010 int os::Linux::get_node_by_cpu(int cpu_id) {
3011   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3012     return cpu_to_node()->at(cpu_id);
3013   }
3014   return -1;
3015 }
3016 
3017 GrowableArray<int>* os::Linux::_cpu_to_node;
3018 GrowableArray<int>* os::Linux::_nindex_to_node;
3019 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3020 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3021 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3022 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3023 os::Linux::numa_available_func_t os::Linux::_numa_available;
3024 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3025 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3026 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3027 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3028 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3029 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3030 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3031 unsigned long* os::Linux::_numa_all_nodes;
3032 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3033 struct bitmask* os::Linux::_numa_nodes_ptr;
3034 
3035 bool os::pd_uncommit_memory(char* addr, size_t size) {
3036   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3037                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3038   return res  != (uintptr_t) MAP_FAILED;
3039 }
3040 
3041 static address get_stack_commited_bottom(address bottom, size_t size) {
3042   address nbot = bottom;
3043   address ntop = bottom + size;
3044 
3045   size_t page_sz = os::vm_page_size();
3046   unsigned pages = size / page_sz;
3047 
3048   unsigned char vec[1];
3049   unsigned imin = 1, imax = pages + 1, imid;
3050   int mincore_return_value = 0;
3051 
3052   assert(imin <= imax, "Unexpected page size");
3053 
3054   while (imin < imax) {
3055     imid = (imax + imin) / 2;
3056     nbot = ntop - (imid * page_sz);
3057 
3058     // Use a trick with mincore to check whether the page is mapped or not.
3059     // mincore sets vec to 1 if page resides in memory and to 0 if page
3060     // is swapped output but if page we are asking for is unmapped
3061     // it returns -1,ENOMEM
3062     mincore_return_value = mincore(nbot, page_sz, vec);
3063 
3064     if (mincore_return_value == -1) {
3065       // Page is not mapped go up
3066       // to find first mapped page
3067       if (errno != EAGAIN) {
3068         assert(errno == ENOMEM, "Unexpected mincore errno");
3069         imax = imid;
3070       }
3071     } else {
3072       // Page is mapped go down
3073       // to find first not mapped page
3074       imin = imid + 1;
3075     }
3076   }
3077 
3078   nbot = nbot + page_sz;
3079 
3080   // Adjust stack bottom one page up if last checked page is not mapped
3081   if (mincore_return_value == -1) {
3082     nbot = nbot + page_sz;
3083   }
3084 
3085   return nbot;
3086 }
3087 
3088 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3089   int mincore_return_value;
3090   const size_t stripe = 1024;  // query this many pages each time
3091   unsigned char vec[stripe + 1];
3092   // set a guard
3093   vec[stripe] = 'X';
3094 
3095   const size_t page_sz = os::vm_page_size();
3096   size_t pages = size / page_sz;
3097 
3098   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3099   assert(is_aligned(size, page_sz), "Size must be page aligned");
3100 
3101   committed_start = NULL;
3102 
3103   int loops = (pages + stripe - 1) / stripe;
3104   int committed_pages = 0;
3105   address loop_base = start;
3106   bool found_range = false;
3107 
3108   for (int index = 0; index < loops && !found_range; index ++) {
3109     assert(pages > 0, "Nothing to do");
3110     int pages_to_query = (pages >= stripe) ? stripe : pages;
3111     pages -= pages_to_query;
3112 
3113     // Get stable read
3114     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3115 
3116     // During shutdown, some memory goes away without properly notifying NMT,
3117     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3118     // Bailout and return as not committed for now.
3119     if (mincore_return_value == -1 && errno == ENOMEM) {
3120       return false;
3121     }
3122 
3123     assert(vec[stripe] == 'X', "overflow guard");
3124     assert(mincore_return_value == 0, "Range must be valid");
3125     // Process this stripe
3126     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3127       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3128         // End of current contiguous region
3129         if (committed_start != NULL) {
3130           found_range = true;
3131           break;
3132         }
3133       } else { // committed
3134         // Start of region
3135         if (committed_start == NULL) {
3136           committed_start = loop_base + page_sz * vecIdx;
3137         }
3138         committed_pages ++;
3139       }
3140     }
3141 
3142     loop_base += pages_to_query * page_sz;
3143   }
3144 
3145   if (committed_start != NULL) {
3146     assert(committed_pages > 0, "Must have committed region");
3147     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3148     assert(committed_start >= start && committed_start < start + size, "Out of range");
3149     committed_size = page_sz * committed_pages;
3150     return true;
3151   } else {
3152     assert(committed_pages == 0, "Should not have committed region");
3153     return false;
3154   }
3155 }
3156 
3157 
3158 // Linux uses a growable mapping for the stack, and if the mapping for
3159 // the stack guard pages is not removed when we detach a thread the
3160 // stack cannot grow beyond the pages where the stack guard was
3161 // mapped.  If at some point later in the process the stack expands to
3162 // that point, the Linux kernel cannot expand the stack any further
3163 // because the guard pages are in the way, and a segfault occurs.
3164 //
3165 // However, it's essential not to split the stack region by unmapping
3166 // a region (leaving a hole) that's already part of the stack mapping,
3167 // so if the stack mapping has already grown beyond the guard pages at
3168 // the time we create them, we have to truncate the stack mapping.
3169 // So, we need to know the extent of the stack mapping when
3170 // create_stack_guard_pages() is called.
3171 
3172 // We only need this for stacks that are growable: at the time of
3173 // writing thread stacks don't use growable mappings (i.e. those
3174 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3175 // only applies to the main thread.
3176 
3177 // If the (growable) stack mapping already extends beyond the point
3178 // where we're going to put our guard pages, truncate the mapping at
3179 // that point by munmap()ping it.  This ensures that when we later
3180 // munmap() the guard pages we don't leave a hole in the stack
3181 // mapping. This only affects the main/primordial thread
3182 
3183 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3184   if (os::is_primordial_thread()) {
3185     // As we manually grow stack up to bottom inside create_attached_thread(),
3186     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3187     // we don't need to do anything special.
3188     // Check it first, before calling heavy function.
3189     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3190     unsigned char vec[1];
3191 
3192     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3193       // Fallback to slow path on all errors, including EAGAIN
3194       stack_extent = (uintptr_t) get_stack_commited_bottom(
3195                                                            os::Linux::initial_thread_stack_bottom(),
3196                                                            (size_t)addr - stack_extent);
3197     }
3198 
3199     if (stack_extent < (uintptr_t)addr) {
3200       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3201     }
3202   }
3203 
3204   return os::commit_memory(addr, size, !ExecMem);
3205 }
3206 
3207 // If this is a growable mapping, remove the guard pages entirely by
3208 // munmap()ping them.  If not, just call uncommit_memory(). This only
3209 // affects the main/primordial thread, but guard against future OS changes.
3210 // It's safe to always unmap guard pages for primordial thread because we
3211 // always place it right after end of the mapped region.
3212 
3213 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3214   uintptr_t stack_extent, stack_base;
3215 
3216   if (os::is_primordial_thread()) {
3217     return ::munmap(addr, size) == 0;
3218   }
3219 
3220   return os::uncommit_memory(addr, size);
3221 }
3222 
3223 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3224 // at 'requested_addr'. If there are existing memory mappings at the same
3225 // location, however, they will be overwritten. If 'fixed' is false,
3226 // 'requested_addr' is only treated as a hint, the return value may or
3227 // may not start from the requested address. Unlike Linux mmap(), this
3228 // function returns NULL to indicate failure.
3229 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3230   char * addr;
3231   int flags;
3232 
3233   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3234   if (fixed) {
3235     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3236     flags |= MAP_FIXED;
3237   }
3238 
3239   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3240   // touch an uncommitted page. Otherwise, the read/write might
3241   // succeed if we have enough swap space to back the physical page.
3242   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3243                        flags, -1, 0);
3244 
3245   return addr == MAP_FAILED ? NULL : addr;
3246 }
3247 
3248 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3249 //   (req_addr != NULL) or with a given alignment.
3250 //  - bytes shall be a multiple of alignment.
3251 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3252 //  - alignment sets the alignment at which memory shall be allocated.
3253 //     It must be a multiple of allocation granularity.
3254 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3255 //  req_addr or NULL.
3256 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3257 
3258   size_t extra_size = bytes;
3259   if (req_addr == NULL && alignment > 0) {
3260     extra_size += alignment;
3261   }
3262 
3263   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3264     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3265     -1, 0);
3266   if (start == MAP_FAILED) {
3267     start = NULL;
3268   } else {
3269     if (req_addr != NULL) {
3270       if (start != req_addr) {
3271         ::munmap(start, extra_size);
3272         start = NULL;
3273       }
3274     } else {
3275       char* const start_aligned = align_up(start, alignment);
3276       char* const end_aligned = start_aligned + bytes;
3277       char* const end = start + extra_size;
3278       if (start_aligned > start) {
3279         ::munmap(start, start_aligned - start);
3280       }
3281       if (end_aligned < end) {
3282         ::munmap(end_aligned, end - end_aligned);
3283       }
3284       start = start_aligned;
3285     }
3286   }
3287   return start;
3288 }
3289 
3290 static int anon_munmap(char * addr, size_t size) {
3291   return ::munmap(addr, size) == 0;
3292 }
3293 
3294 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3295                             size_t alignment_hint) {
3296   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3297 }
3298 
3299 bool os::pd_release_memory(char* addr, size_t size) {
3300   return anon_munmap(addr, size);
3301 }
3302 
3303 static bool linux_mprotect(char* addr, size_t size, int prot) {
3304   // Linux wants the mprotect address argument to be page aligned.
3305   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3306 
3307   // According to SUSv3, mprotect() should only be used with mappings
3308   // established by mmap(), and mmap() always maps whole pages. Unaligned
3309   // 'addr' likely indicates problem in the VM (e.g. trying to change
3310   // protection of malloc'ed or statically allocated memory). Check the
3311   // caller if you hit this assert.
3312   assert(addr == bottom, "sanity check");
3313 
3314   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3315   return ::mprotect(bottom, size, prot) == 0;
3316 }
3317 
3318 // Set protections specified
3319 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3320                         bool is_committed) {
3321   unsigned int p = 0;
3322   switch (prot) {
3323   case MEM_PROT_NONE: p = PROT_NONE; break;
3324   case MEM_PROT_READ: p = PROT_READ; break;
3325   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3326   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3327   default:
3328     ShouldNotReachHere();
3329   }
3330   // is_committed is unused.
3331   return linux_mprotect(addr, bytes, p);
3332 }
3333 
3334 bool os::guard_memory(char* addr, size_t size) {
3335   return linux_mprotect(addr, size, PROT_NONE);
3336 }
3337 
3338 bool os::unguard_memory(char* addr, size_t size) {
3339   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3340 }
3341 
3342 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3343                                                     size_t page_size) {
3344   bool result = false;
3345   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3346                  MAP_ANONYMOUS|MAP_PRIVATE,
3347                  -1, 0);
3348   if (p != MAP_FAILED) {
3349     void *aligned_p = align_up(p, page_size);
3350 
3351     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3352 
3353     munmap(p, page_size * 2);
3354   }
3355 
3356   if (warn && !result) {
3357     warning("TransparentHugePages is not supported by the operating system.");
3358   }
3359 
3360   return result;
3361 }
3362 
3363 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3364   bool result = false;
3365   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3366                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3367                  -1, 0);
3368 
3369   if (p != MAP_FAILED) {
3370     // We don't know if this really is a huge page or not.
3371     FILE *fp = fopen("/proc/self/maps", "r");
3372     if (fp) {
3373       while (!feof(fp)) {
3374         char chars[257];
3375         long x = 0;
3376         if (fgets(chars, sizeof(chars), fp)) {
3377           if (sscanf(chars, "%lx-%*x", &x) == 1
3378               && x == (long)p) {
3379             if (strstr (chars, "hugepage")) {
3380               result = true;
3381               break;
3382             }
3383           }
3384         }
3385       }
3386       fclose(fp);
3387     }
3388     munmap(p, page_size);
3389   }
3390 
3391   if (warn && !result) {
3392     warning("HugeTLBFS is not supported by the operating system.");
3393   }
3394 
3395   return result;
3396 }
3397 
3398 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3399 //
3400 // From the coredump_filter documentation:
3401 //
3402 // - (bit 0) anonymous private memory
3403 // - (bit 1) anonymous shared memory
3404 // - (bit 2) file-backed private memory
3405 // - (bit 3) file-backed shared memory
3406 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3407 //           effective only if the bit 2 is cleared)
3408 // - (bit 5) hugetlb private memory
3409 // - (bit 6) hugetlb shared memory
3410 // - (bit 7) dax private memory
3411 // - (bit 8) dax shared memory
3412 //
3413 static void set_coredump_filter(CoredumpFilterBit bit) {
3414   FILE *f;
3415   long cdm;
3416 
3417   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3418     return;
3419   }
3420 
3421   if (fscanf(f, "%lx", &cdm) != 1) {
3422     fclose(f);
3423     return;
3424   }
3425 
3426   long saved_cdm = cdm;
3427   rewind(f);
3428   cdm |= bit;
3429 
3430   if (cdm != saved_cdm) {
3431     fprintf(f, "%#lx", cdm);
3432   }
3433 
3434   fclose(f);
3435 }
3436 
3437 // Large page support
3438 
3439 static size_t _large_page_size = 0;
3440 
3441 size_t os::Linux::find_large_page_size() {
3442   size_t large_page_size = 0;
3443 
3444   // large_page_size on Linux is used to round up heap size. x86 uses either
3445   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3446   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3447   // page as large as 256M.
3448   //
3449   // Here we try to figure out page size by parsing /proc/meminfo and looking
3450   // for a line with the following format:
3451   //    Hugepagesize:     2048 kB
3452   //
3453   // If we can't determine the value (e.g. /proc is not mounted, or the text
3454   // format has been changed), we'll use the largest page size supported by
3455   // the processor.
3456 
3457 #ifndef ZERO
3458   large_page_size =
3459     AARCH64_ONLY(2 * M)
3460     AMD64_ONLY(2 * M)
3461     ARM32_ONLY(2 * M)
3462     IA32_ONLY(4 * M)
3463     IA64_ONLY(256 * M)
3464     PPC_ONLY(4 * M)
3465     S390_ONLY(1 * M)
3466     SPARC_ONLY(4 * M);
3467 #endif // ZERO
3468 
3469   FILE *fp = fopen("/proc/meminfo", "r");
3470   if (fp) {
3471     while (!feof(fp)) {
3472       int x = 0;
3473       char buf[16];
3474       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3475         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3476           large_page_size = x * K;
3477           break;
3478         }
3479       } else {
3480         // skip to next line
3481         for (;;) {
3482           int ch = fgetc(fp);
3483           if (ch == EOF || ch == (int)'\n') break;
3484         }
3485       }
3486     }
3487     fclose(fp);
3488   }
3489 
3490   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3491     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3492             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3493             proper_unit_for_byte_size(large_page_size));
3494   }
3495 
3496   return large_page_size;
3497 }
3498 
3499 size_t os::Linux::setup_large_page_size() {
3500   _large_page_size = Linux::find_large_page_size();
3501   const size_t default_page_size = (size_t)Linux::page_size();
3502   if (_large_page_size > default_page_size) {
3503     _page_sizes[0] = _large_page_size;
3504     _page_sizes[1] = default_page_size;
3505     _page_sizes[2] = 0;
3506   }
3507 
3508   return _large_page_size;
3509 }
3510 
3511 bool os::Linux::setup_large_page_type(size_t page_size) {
3512   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3513       FLAG_IS_DEFAULT(UseSHM) &&
3514       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3515 
3516     // The type of large pages has not been specified by the user.
3517 
3518     // Try UseHugeTLBFS and then UseSHM.
3519     UseHugeTLBFS = UseSHM = true;
3520 
3521     // Don't try UseTransparentHugePages since there are known
3522     // performance issues with it turned on. This might change in the future.
3523     UseTransparentHugePages = false;
3524   }
3525 
3526   if (UseTransparentHugePages) {
3527     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3528     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3529       UseHugeTLBFS = false;
3530       UseSHM = false;
3531       return true;
3532     }
3533     UseTransparentHugePages = false;
3534   }
3535 
3536   if (UseHugeTLBFS) {
3537     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3538     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3539       UseSHM = false;
3540       return true;
3541     }
3542     UseHugeTLBFS = false;
3543   }
3544 
3545   return UseSHM;
3546 }
3547 
3548 void os::large_page_init() {
3549   if (!UseLargePages &&
3550       !UseTransparentHugePages &&
3551       !UseHugeTLBFS &&
3552       !UseSHM) {
3553     // Not using large pages.
3554     return;
3555   }
3556 
3557   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3558     // The user explicitly turned off large pages.
3559     // Ignore the rest of the large pages flags.
3560     UseTransparentHugePages = false;
3561     UseHugeTLBFS = false;
3562     UseSHM = false;
3563     return;
3564   }
3565 
3566   size_t large_page_size = Linux::setup_large_page_size();
3567   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3568 
3569   set_coredump_filter(LARGEPAGES_BIT);
3570 }
3571 
3572 #ifndef SHM_HUGETLB
3573   #define SHM_HUGETLB 04000
3574 #endif
3575 
3576 #define shm_warning_format(format, ...)              \
3577   do {                                               \
3578     if (UseLargePages &&                             \
3579         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3580          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3581          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3582       warning(format, __VA_ARGS__);                  \
3583     }                                                \
3584   } while (0)
3585 
3586 #define shm_warning(str) shm_warning_format("%s", str)
3587 
3588 #define shm_warning_with_errno(str)                \
3589   do {                                             \
3590     int err = errno;                               \
3591     shm_warning_format(str " (error = %d)", err);  \
3592   } while (0)
3593 
3594 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3595   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3596 
3597   if (!is_aligned(alignment, SHMLBA)) {
3598     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3599     return NULL;
3600   }
3601 
3602   // To ensure that we get 'alignment' aligned memory from shmat,
3603   // we pre-reserve aligned virtual memory and then attach to that.
3604 
3605   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3606   if (pre_reserved_addr == NULL) {
3607     // Couldn't pre-reserve aligned memory.
3608     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3609     return NULL;
3610   }
3611 
3612   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3613   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3614 
3615   if ((intptr_t)addr == -1) {
3616     int err = errno;
3617     shm_warning_with_errno("Failed to attach shared memory.");
3618 
3619     assert(err != EACCES, "Unexpected error");
3620     assert(err != EIDRM,  "Unexpected error");
3621     assert(err != EINVAL, "Unexpected error");
3622 
3623     // Since we don't know if the kernel unmapped the pre-reserved memory area
3624     // we can't unmap it, since that would potentially unmap memory that was
3625     // mapped from other threads.
3626     return NULL;
3627   }
3628 
3629   return addr;
3630 }
3631 
3632 static char* shmat_at_address(int shmid, char* req_addr) {
3633   if (!is_aligned(req_addr, SHMLBA)) {
3634     assert(false, "Requested address needs to be SHMLBA aligned");
3635     return NULL;
3636   }
3637 
3638   char* addr = (char*)shmat(shmid, req_addr, 0);
3639 
3640   if ((intptr_t)addr == -1) {
3641     shm_warning_with_errno("Failed to attach shared memory.");
3642     return NULL;
3643   }
3644 
3645   return addr;
3646 }
3647 
3648 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3649   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3650   if (req_addr != NULL) {
3651     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3652     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3653     return shmat_at_address(shmid, req_addr);
3654   }
3655 
3656   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3657   // return large page size aligned memory addresses when req_addr == NULL.
3658   // However, if the alignment is larger than the large page size, we have
3659   // to manually ensure that the memory returned is 'alignment' aligned.
3660   if (alignment > os::large_page_size()) {
3661     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3662     return shmat_with_alignment(shmid, bytes, alignment);
3663   } else {
3664     return shmat_at_address(shmid, NULL);
3665   }
3666 }
3667 
3668 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3669                                             char* req_addr, bool exec) {
3670   // "exec" is passed in but not used.  Creating the shared image for
3671   // the code cache doesn't have an SHM_X executable permission to check.
3672   assert(UseLargePages && UseSHM, "only for SHM large pages");
3673   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3674   assert(is_aligned(req_addr, alignment), "Unaligned address");
3675 
3676   if (!is_aligned(bytes, os::large_page_size())) {
3677     return NULL; // Fallback to small pages.
3678   }
3679 
3680   // Create a large shared memory region to attach to based on size.
3681   // Currently, size is the total size of the heap.
3682   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3683   if (shmid == -1) {
3684     // Possible reasons for shmget failure:
3685     // 1. shmmax is too small for Java heap.
3686     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3687     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3688     // 2. not enough large page memory.
3689     //    > check available large pages: cat /proc/meminfo
3690     //    > increase amount of large pages:
3691     //          echo new_value > /proc/sys/vm/nr_hugepages
3692     //      Note 1: different Linux may use different name for this property,
3693     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3694     //      Note 2: it's possible there's enough physical memory available but
3695     //            they are so fragmented after a long run that they can't
3696     //            coalesce into large pages. Try to reserve large pages when
3697     //            the system is still "fresh".
3698     shm_warning_with_errno("Failed to reserve shared memory.");
3699     return NULL;
3700   }
3701 
3702   // Attach to the region.
3703   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3704 
3705   // Remove shmid. If shmat() is successful, the actual shared memory segment
3706   // will be deleted when it's detached by shmdt() or when the process
3707   // terminates. If shmat() is not successful this will remove the shared
3708   // segment immediately.
3709   shmctl(shmid, IPC_RMID, NULL);
3710 
3711   return addr;
3712 }
3713 
3714 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3715                                         int error) {
3716   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3717 
3718   bool warn_on_failure = UseLargePages &&
3719       (!FLAG_IS_DEFAULT(UseLargePages) ||
3720        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3721        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3722 
3723   if (warn_on_failure) {
3724     char msg[128];
3725     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3726                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3727     warning("%s", msg);
3728   }
3729 }
3730 
3731 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3732                                                         char* req_addr,
3733                                                         bool exec) {
3734   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3735   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3736   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3737 
3738   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3739   char* addr = (char*)::mmap(req_addr, bytes, prot,
3740                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3741                              -1, 0);
3742 
3743   if (addr == MAP_FAILED) {
3744     warn_on_large_pages_failure(req_addr, bytes, errno);
3745     return NULL;
3746   }
3747 
3748   assert(is_aligned(addr, os::large_page_size()), "Must be");
3749 
3750   return addr;
3751 }
3752 
3753 // Reserve memory using mmap(MAP_HUGETLB).
3754 //  - bytes shall be a multiple of alignment.
3755 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3756 //  - alignment sets the alignment at which memory shall be allocated.
3757 //     It must be a multiple of allocation granularity.
3758 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3759 //  req_addr or NULL.
3760 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3761                                                          size_t alignment,
3762                                                          char* req_addr,
3763                                                          bool exec) {
3764   size_t large_page_size = os::large_page_size();
3765   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3766 
3767   assert(is_aligned(req_addr, alignment), "Must be");
3768   assert(is_aligned(bytes, alignment), "Must be");
3769 
3770   // First reserve - but not commit - the address range in small pages.
3771   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3772 
3773   if (start == NULL) {
3774     return NULL;
3775   }
3776 
3777   assert(is_aligned(start, alignment), "Must be");
3778 
3779   char* end = start + bytes;
3780 
3781   // Find the regions of the allocated chunk that can be promoted to large pages.
3782   char* lp_start = align_up(start, large_page_size);
3783   char* lp_end   = align_down(end, large_page_size);
3784 
3785   size_t lp_bytes = lp_end - lp_start;
3786 
3787   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3788 
3789   if (lp_bytes == 0) {
3790     // The mapped region doesn't even span the start and the end of a large page.
3791     // Fall back to allocate a non-special area.
3792     ::munmap(start, end - start);
3793     return NULL;
3794   }
3795 
3796   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3797 
3798   void* result;
3799 
3800   // Commit small-paged leading area.
3801   if (start != lp_start) {
3802     result = ::mmap(start, lp_start - start, prot,
3803                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3804                     -1, 0);
3805     if (result == MAP_FAILED) {
3806       ::munmap(lp_start, end - lp_start);
3807       return NULL;
3808     }
3809   }
3810 
3811   // Commit large-paged area.
3812   result = ::mmap(lp_start, lp_bytes, prot,
3813                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3814                   -1, 0);
3815   if (result == MAP_FAILED) {
3816     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3817     // If the mmap above fails, the large pages region will be unmapped and we
3818     // have regions before and after with small pages. Release these regions.
3819     //
3820     // |  mapped  |  unmapped  |  mapped  |
3821     // ^          ^            ^          ^
3822     // start      lp_start     lp_end     end
3823     //
3824     ::munmap(start, lp_start - start);
3825     ::munmap(lp_end, end - lp_end);
3826     return NULL;
3827   }
3828 
3829   // Commit small-paged trailing area.
3830   if (lp_end != end) {
3831     result = ::mmap(lp_end, end - lp_end, prot,
3832                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3833                     -1, 0);
3834     if (result == MAP_FAILED) {
3835       ::munmap(start, lp_end - start);
3836       return NULL;
3837     }
3838   }
3839 
3840   return start;
3841 }
3842 
3843 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3844                                                    size_t alignment,
3845                                                    char* req_addr,
3846                                                    bool exec) {
3847   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3848   assert(is_aligned(req_addr, alignment), "Must be");
3849   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3850   assert(is_power_of_2(os::large_page_size()), "Must be");
3851   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3852 
3853   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3854     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3855   } else {
3856     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3857   }
3858 }
3859 
3860 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3861                                  char* req_addr, bool exec) {
3862   assert(UseLargePages, "only for large pages");
3863 
3864   char* addr;
3865   if (UseSHM) {
3866     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3867   } else {
3868     assert(UseHugeTLBFS, "must be");
3869     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3870   }
3871 
3872   if (addr != NULL) {
3873     if (UseNUMAInterleaving) {
3874       numa_make_global(addr, bytes);
3875     }
3876 
3877     // The memory is committed
3878     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3879   }
3880 
3881   return addr;
3882 }
3883 
3884 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3885   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3886   return shmdt(base) == 0;
3887 }
3888 
3889 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3890   return pd_release_memory(base, bytes);
3891 }
3892 
3893 bool os::release_memory_special(char* base, size_t bytes) {
3894   bool res;
3895   if (MemTracker::tracking_level() > NMT_minimal) {
3896     Tracker tkr(Tracker::release);
3897     res = os::Linux::release_memory_special_impl(base, bytes);
3898     if (res) {
3899       tkr.record((address)base, bytes);
3900     }
3901 
3902   } else {
3903     res = os::Linux::release_memory_special_impl(base, bytes);
3904   }
3905   return res;
3906 }
3907 
3908 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3909   assert(UseLargePages, "only for large pages");
3910   bool res;
3911 
3912   if (UseSHM) {
3913     res = os::Linux::release_memory_special_shm(base, bytes);
3914   } else {
3915     assert(UseHugeTLBFS, "must be");
3916     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3917   }
3918   return res;
3919 }
3920 
3921 size_t os::large_page_size() {
3922   return _large_page_size;
3923 }
3924 
3925 // With SysV SHM the entire memory region must be allocated as shared
3926 // memory.
3927 // HugeTLBFS allows application to commit large page memory on demand.
3928 // However, when committing memory with HugeTLBFS fails, the region
3929 // that was supposed to be committed will lose the old reservation
3930 // and allow other threads to steal that memory region. Because of this
3931 // behavior we can't commit HugeTLBFS memory.
3932 bool os::can_commit_large_page_memory() {
3933   return UseTransparentHugePages;
3934 }
3935 
3936 bool os::can_execute_large_page_memory() {
3937   return UseTransparentHugePages || UseHugeTLBFS;
3938 }
3939 
3940 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3941   assert(file_desc >= 0, "file_desc is not valid");
3942   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
3943   if (result != NULL) {
3944     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
3945       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3946     }
3947   }
3948   return result;
3949 }
3950 
3951 // Reserve memory at an arbitrary address, only if that area is
3952 // available (and not reserved for something else).
3953 
3954 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3955   const int max_tries = 10;
3956   char* base[max_tries];
3957   size_t size[max_tries];
3958   const size_t gap = 0x000000;
3959 
3960   // Assert only that the size is a multiple of the page size, since
3961   // that's all that mmap requires, and since that's all we really know
3962   // about at this low abstraction level.  If we need higher alignment,
3963   // we can either pass an alignment to this method or verify alignment
3964   // in one of the methods further up the call chain.  See bug 5044738.
3965   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3966 
3967   // Repeatedly allocate blocks until the block is allocated at the
3968   // right spot.
3969 
3970   // Linux mmap allows caller to pass an address as hint; give it a try first,
3971   // if kernel honors the hint then we can return immediately.
3972   char * addr = anon_mmap(requested_addr, bytes, false);
3973   if (addr == requested_addr) {
3974     return requested_addr;
3975   }
3976 
3977   if (addr != NULL) {
3978     // mmap() is successful but it fails to reserve at the requested address
3979     anon_munmap(addr, bytes);
3980   }
3981 
3982   int i;
3983   for (i = 0; i < max_tries; ++i) {
3984     base[i] = reserve_memory(bytes);
3985 
3986     if (base[i] != NULL) {
3987       // Is this the block we wanted?
3988       if (base[i] == requested_addr) {
3989         size[i] = bytes;
3990         break;
3991       }
3992 
3993       // Does this overlap the block we wanted? Give back the overlapped
3994       // parts and try again.
3995 
3996       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3997       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3998         unmap_memory(base[i], top_overlap);
3999         base[i] += top_overlap;
4000         size[i] = bytes - top_overlap;
4001       } else {
4002         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
4003         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
4004           unmap_memory(requested_addr, bottom_overlap);
4005           size[i] = bytes - bottom_overlap;
4006         } else {
4007           size[i] = bytes;
4008         }
4009       }
4010     }
4011   }
4012 
4013   // Give back the unused reserved pieces.
4014 
4015   for (int j = 0; j < i; ++j) {
4016     if (base[j] != NULL) {
4017       unmap_memory(base[j], size[j]);
4018     }
4019   }
4020 
4021   if (i < max_tries) {
4022     return requested_addr;
4023   } else {
4024     return NULL;
4025   }
4026 }
4027 
4028 size_t os::read(int fd, void *buf, unsigned int nBytes) {
4029   return ::read(fd, buf, nBytes);
4030 }
4031 
4032 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4033   return ::pread(fd, buf, nBytes, offset);
4034 }
4035 
4036 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4037 void os::infinite_sleep() {
4038   while (true) {    // sleep forever ...
4039     ::sleep(100);   // ... 100 seconds at a time
4040   }
4041 }
4042 
4043 // Used to convert frequent JVM_Yield() to nops
4044 bool os::dont_yield() {
4045   return DontYieldALot;
4046 }
4047 
4048 // Linux CFS scheduler (since 2.6.23) does not guarantee sched_yield(2) will
4049 // actually give up the CPU. Since skip buddy (v2.6.28):
4050 //
4051 // * Sets the yielding task as skip buddy for current CPU's run queue.
4052 // * Picks next from run queue, if empty, picks a skip buddy (can be the yielding task).
4053 // * Clears skip buddies for this run queue (yielding task no longer a skip buddy).
4054 //
4055 // An alternative is calling os::naked_short_nanosleep with a small number to avoid
4056 // getting re-scheduled immediately.
4057 //
4058 void os::naked_yield() {
4059   sched_yield();
4060 }
4061 
4062 ////////////////////////////////////////////////////////////////////////////////
4063 // thread priority support
4064 
4065 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4066 // only supports dynamic priority, static priority must be zero. For real-time
4067 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4068 // However, for large multi-threaded applications, SCHED_RR is not only slower
4069 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4070 // of 5 runs - Sep 2005).
4071 //
4072 // The following code actually changes the niceness of kernel-thread/LWP. It
4073 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4074 // not the entire user process, and user level threads are 1:1 mapped to kernel
4075 // threads. It has always been the case, but could change in the future. For
4076 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4077 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4078 
4079 int os::java_to_os_priority[CriticalPriority + 1] = {
4080   19,              // 0 Entry should never be used
4081 
4082    4,              // 1 MinPriority
4083    3,              // 2
4084    2,              // 3
4085 
4086    1,              // 4
4087    0,              // 5 NormPriority
4088   -1,              // 6
4089 
4090   -2,              // 7
4091   -3,              // 8
4092   -4,              // 9 NearMaxPriority
4093 
4094   -5,              // 10 MaxPriority
4095 
4096   -5               // 11 CriticalPriority
4097 };
4098 
4099 static int prio_init() {
4100   if (ThreadPriorityPolicy == 1) {
4101     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4102     // if effective uid is not root. Perhaps, a more elegant way of doing
4103     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4104     if (geteuid() != 0) {
4105       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4106         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4107       }
4108       ThreadPriorityPolicy = 0;
4109     }
4110   }
4111   if (UseCriticalJavaThreadPriority) {
4112     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4113   }
4114   return 0;
4115 }
4116 
4117 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4118   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4119 
4120   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4121   return (ret == 0) ? OS_OK : OS_ERR;
4122 }
4123 
4124 OSReturn os::get_native_priority(const Thread* const thread,
4125                                  int *priority_ptr) {
4126   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4127     *priority_ptr = java_to_os_priority[NormPriority];
4128     return OS_OK;
4129   }
4130 
4131   errno = 0;
4132   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4133   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4134 }
4135 
4136 ////////////////////////////////////////////////////////////////////////////////
4137 // suspend/resume support
4138 
4139 //  The low-level signal-based suspend/resume support is a remnant from the
4140 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4141 //  within hotspot. Currently used by JFR's OSThreadSampler
4142 //
4143 //  The remaining code is greatly simplified from the more general suspension
4144 //  code that used to be used.
4145 //
4146 //  The protocol is quite simple:
4147 //  - suspend:
4148 //      - sends a signal to the target thread
4149 //      - polls the suspend state of the osthread using a yield loop
4150 //      - target thread signal handler (SR_handler) sets suspend state
4151 //        and blocks in sigsuspend until continued
4152 //  - resume:
4153 //      - sets target osthread state to continue
4154 //      - sends signal to end the sigsuspend loop in the SR_handler
4155 //
4156 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4157 //  but is checked for NULL in SR_handler as a thread termination indicator.
4158 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4159 //
4160 //  Note that resume_clear_context() and suspend_save_context() are needed
4161 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4162 //  which in part is used by:
4163 //    - Forte Analyzer: AsyncGetCallTrace()
4164 //    - StackBanging: get_frame_at_stack_banging_point()
4165 
4166 static void resume_clear_context(OSThread *osthread) {
4167   osthread->set_ucontext(NULL);
4168   osthread->set_siginfo(NULL);
4169 }
4170 
4171 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4172                                  ucontext_t* context) {
4173   osthread->set_ucontext(context);
4174   osthread->set_siginfo(siginfo);
4175 }
4176 
4177 // Handler function invoked when a thread's execution is suspended or
4178 // resumed. We have to be careful that only async-safe functions are
4179 // called here (Note: most pthread functions are not async safe and
4180 // should be avoided.)
4181 //
4182 // Note: sigwait() is a more natural fit than sigsuspend() from an
4183 // interface point of view, but sigwait() prevents the signal hander
4184 // from being run. libpthread would get very confused by not having
4185 // its signal handlers run and prevents sigwait()'s use with the
4186 // mutex granting granting signal.
4187 //
4188 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4189 //
4190 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4191   // Save and restore errno to avoid confusing native code with EINTR
4192   // after sigsuspend.
4193   int old_errno = errno;
4194 
4195   Thread* thread = Thread::current_or_null_safe();
4196   assert(thread != NULL, "Missing current thread in SR_handler");
4197 
4198   // On some systems we have seen signal delivery get "stuck" until the signal
4199   // mask is changed as part of thread termination. Check that the current thread
4200   // has not already terminated (via SR_lock()) - else the following assertion
4201   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4202   // destructor has completed.
4203 
4204   if (thread->SR_lock() == NULL) {
4205     return;
4206   }
4207 
4208   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4209 
4210   OSThread* osthread = thread->osthread();
4211 
4212   os::SuspendResume::State current = osthread->sr.state();
4213   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4214     suspend_save_context(osthread, siginfo, context);
4215 
4216     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4217     os::SuspendResume::State state = osthread->sr.suspended();
4218     if (state == os::SuspendResume::SR_SUSPENDED) {
4219       sigset_t suspend_set;  // signals for sigsuspend()
4220       sigemptyset(&suspend_set);
4221       // get current set of blocked signals and unblock resume signal
4222       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4223       sigdelset(&suspend_set, SR_signum);
4224 
4225       sr_semaphore.signal();
4226       // wait here until we are resumed
4227       while (1) {
4228         sigsuspend(&suspend_set);
4229 
4230         os::SuspendResume::State result = osthread->sr.running();
4231         if (result == os::SuspendResume::SR_RUNNING) {
4232           sr_semaphore.signal();
4233           break;
4234         }
4235       }
4236 
4237     } else if (state == os::SuspendResume::SR_RUNNING) {
4238       // request was cancelled, continue
4239     } else {
4240       ShouldNotReachHere();
4241     }
4242 
4243     resume_clear_context(osthread);
4244   } else if (current == os::SuspendResume::SR_RUNNING) {
4245     // request was cancelled, continue
4246   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4247     // ignore
4248   } else {
4249     // ignore
4250   }
4251 
4252   errno = old_errno;
4253 }
4254 
4255 static int SR_initialize() {
4256   struct sigaction act;
4257   char *s;
4258 
4259   // Get signal number to use for suspend/resume
4260   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4261     int sig = ::strtol(s, 0, 10);
4262     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4263         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4264       SR_signum = sig;
4265     } else {
4266       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4267               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4268     }
4269   }
4270 
4271   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4272          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4273 
4274   sigemptyset(&SR_sigset);
4275   sigaddset(&SR_sigset, SR_signum);
4276 
4277   // Set up signal handler for suspend/resume
4278   act.sa_flags = SA_RESTART|SA_SIGINFO;
4279   act.sa_handler = (void (*)(int)) SR_handler;
4280 
4281   // SR_signum is blocked by default.
4282   // 4528190 - We also need to block pthread restart signal (32 on all
4283   // supported Linux platforms). Note that LinuxThreads need to block
4284   // this signal for all threads to work properly. So we don't have
4285   // to use hard-coded signal number when setting up the mask.
4286   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4287 
4288   if (sigaction(SR_signum, &act, 0) == -1) {
4289     return -1;
4290   }
4291 
4292   // Save signal flag
4293   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4294   return 0;
4295 }
4296 
4297 static int sr_notify(OSThread* osthread) {
4298   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4299   assert_status(status == 0, status, "pthread_kill");
4300   return status;
4301 }
4302 
4303 // "Randomly" selected value for how long we want to spin
4304 // before bailing out on suspending a thread, also how often
4305 // we send a signal to a thread we want to resume
4306 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4307 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4308 
4309 // returns true on success and false on error - really an error is fatal
4310 // but this seems the normal response to library errors
4311 static bool do_suspend(OSThread* osthread) {
4312   assert(osthread->sr.is_running(), "thread should be running");
4313   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4314 
4315   // mark as suspended and send signal
4316   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4317     // failed to switch, state wasn't running?
4318     ShouldNotReachHere();
4319     return false;
4320   }
4321 
4322   if (sr_notify(osthread) != 0) {
4323     ShouldNotReachHere();
4324   }
4325 
4326   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4327   while (true) {
4328     if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4329       break;
4330     } else {
4331       // timeout
4332       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4333       if (cancelled == os::SuspendResume::SR_RUNNING) {
4334         return false;
4335       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4336         // make sure that we consume the signal on the semaphore as well
4337         sr_semaphore.wait();
4338         break;
4339       } else {
4340         ShouldNotReachHere();
4341         return false;
4342       }
4343     }
4344   }
4345 
4346   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4347   return true;
4348 }
4349 
4350 static void do_resume(OSThread* osthread) {
4351   assert(osthread->sr.is_suspended(), "thread should be suspended");
4352   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4353 
4354   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4355     // failed to switch to WAKEUP_REQUEST
4356     ShouldNotReachHere();
4357     return;
4358   }
4359 
4360   while (true) {
4361     if (sr_notify(osthread) == 0) {
4362       if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4363         if (osthread->sr.is_running()) {
4364           return;
4365         }
4366       }
4367     } else {
4368       ShouldNotReachHere();
4369     }
4370   }
4371 
4372   guarantee(osthread->sr.is_running(), "Must be running!");
4373 }
4374 
4375 ///////////////////////////////////////////////////////////////////////////////////
4376 // signal handling (except suspend/resume)
4377 
4378 // This routine may be used by user applications as a "hook" to catch signals.
4379 // The user-defined signal handler must pass unrecognized signals to this
4380 // routine, and if it returns true (non-zero), then the signal handler must
4381 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4382 // routine will never retun false (zero), but instead will execute a VM panic
4383 // routine kill the process.
4384 //
4385 // If this routine returns false, it is OK to call it again.  This allows
4386 // the user-defined signal handler to perform checks either before or after
4387 // the VM performs its own checks.  Naturally, the user code would be making
4388 // a serious error if it tried to handle an exception (such as a null check
4389 // or breakpoint) that the VM was generating for its own correct operation.
4390 //
4391 // This routine may recognize any of the following kinds of signals:
4392 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4393 // It should be consulted by handlers for any of those signals.
4394 //
4395 // The caller of this routine must pass in the three arguments supplied
4396 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4397 // field of the structure passed to sigaction().  This routine assumes that
4398 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4399 //
4400 // Note that the VM will print warnings if it detects conflicting signal
4401 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4402 //
4403 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4404                                                  siginfo_t* siginfo,
4405                                                  void* ucontext,
4406                                                  int abort_if_unrecognized);
4407 
4408 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4409   assert(info != NULL && uc != NULL, "it must be old kernel");
4410   int orig_errno = errno;  // Preserve errno value over signal handler.
4411   JVM_handle_linux_signal(sig, info, uc, true);
4412   errno = orig_errno;
4413 }
4414 
4415 
4416 // This boolean allows users to forward their own non-matching signals
4417 // to JVM_handle_linux_signal, harmlessly.
4418 bool os::Linux::signal_handlers_are_installed = false;
4419 
4420 // For signal-chaining
4421 struct sigaction sigact[NSIG];
4422 uint64_t sigs = 0;
4423 #if (64 < NSIG-1)
4424 #error "Not all signals can be encoded in sigs. Adapt its type!"
4425 #endif
4426 bool os::Linux::libjsig_is_loaded = false;
4427 typedef struct sigaction *(*get_signal_t)(int);
4428 get_signal_t os::Linux::get_signal_action = NULL;
4429 
4430 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4431   struct sigaction *actp = NULL;
4432 
4433   if (libjsig_is_loaded) {
4434     // Retrieve the old signal handler from libjsig
4435     actp = (*get_signal_action)(sig);
4436   }
4437   if (actp == NULL) {
4438     // Retrieve the preinstalled signal handler from jvm
4439     actp = get_preinstalled_handler(sig);
4440   }
4441 
4442   return actp;
4443 }
4444 
4445 static bool call_chained_handler(struct sigaction *actp, int sig,
4446                                  siginfo_t *siginfo, void *context) {
4447   // Call the old signal handler
4448   if (actp->sa_handler == SIG_DFL) {
4449     // It's more reasonable to let jvm treat it as an unexpected exception
4450     // instead of taking the default action.
4451     return false;
4452   } else if (actp->sa_handler != SIG_IGN) {
4453     if ((actp->sa_flags & SA_NODEFER) == 0) {
4454       // automaticlly block the signal
4455       sigaddset(&(actp->sa_mask), sig);
4456     }
4457 
4458     sa_handler_t hand = NULL;
4459     sa_sigaction_t sa = NULL;
4460     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4461     // retrieve the chained handler
4462     if (siginfo_flag_set) {
4463       sa = actp->sa_sigaction;
4464     } else {
4465       hand = actp->sa_handler;
4466     }
4467 
4468     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4469       actp->sa_handler = SIG_DFL;
4470     }
4471 
4472     // try to honor the signal mask
4473     sigset_t oset;
4474     sigemptyset(&oset);
4475     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4476 
4477     // call into the chained handler
4478     if (siginfo_flag_set) {
4479       (*sa)(sig, siginfo, context);
4480     } else {
4481       (*hand)(sig);
4482     }
4483 
4484     // restore the signal mask
4485     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4486   }
4487   // Tell jvm's signal handler the signal is taken care of.
4488   return true;
4489 }
4490 
4491 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4492   bool chained = false;
4493   // signal-chaining
4494   if (UseSignalChaining) {
4495     struct sigaction *actp = get_chained_signal_action(sig);
4496     if (actp != NULL) {
4497       chained = call_chained_handler(actp, sig, siginfo, context);
4498     }
4499   }
4500   return chained;
4501 }
4502 
4503 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4504   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4505     return &sigact[sig];
4506   }
4507   return NULL;
4508 }
4509 
4510 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4511   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4512   sigact[sig] = oldAct;
4513   sigs |= (uint64_t)1 << (sig-1);
4514 }
4515 
4516 // for diagnostic
4517 int sigflags[NSIG];
4518 
4519 int os::Linux::get_our_sigflags(int sig) {
4520   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4521   return sigflags[sig];
4522 }
4523 
4524 void os::Linux::set_our_sigflags(int sig, int flags) {
4525   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4526   if (sig > 0 && sig < NSIG) {
4527     sigflags[sig] = flags;
4528   }
4529 }
4530 
4531 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4532   // Check for overwrite.
4533   struct sigaction oldAct;
4534   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4535 
4536   void* oldhand = oldAct.sa_sigaction
4537                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4538                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4539   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4540       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4541       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4542     if (AllowUserSignalHandlers || !set_installed) {
4543       // Do not overwrite; user takes responsibility to forward to us.
4544       return;
4545     } else if (UseSignalChaining) {
4546       // save the old handler in jvm
4547       save_preinstalled_handler(sig, oldAct);
4548       // libjsig also interposes the sigaction() call below and saves the
4549       // old sigaction on it own.
4550     } else {
4551       fatal("Encountered unexpected pre-existing sigaction handler "
4552             "%#lx for signal %d.", (long)oldhand, sig);
4553     }
4554   }
4555 
4556   struct sigaction sigAct;
4557   sigfillset(&(sigAct.sa_mask));
4558   sigAct.sa_handler = SIG_DFL;
4559   if (!set_installed) {
4560     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4561   } else {
4562     sigAct.sa_sigaction = signalHandler;
4563     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4564   }
4565   // Save flags, which are set by ours
4566   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4567   sigflags[sig] = sigAct.sa_flags;
4568 
4569   int ret = sigaction(sig, &sigAct, &oldAct);
4570   assert(ret == 0, "check");
4571 
4572   void* oldhand2  = oldAct.sa_sigaction
4573                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4574                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4575   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4576 }
4577 
4578 // install signal handlers for signals that HotSpot needs to
4579 // handle in order to support Java-level exception handling.
4580 
4581 void os::Linux::install_signal_handlers() {
4582   if (!signal_handlers_are_installed) {
4583     signal_handlers_are_installed = true;
4584 
4585     // signal-chaining
4586     typedef void (*signal_setting_t)();
4587     signal_setting_t begin_signal_setting = NULL;
4588     signal_setting_t end_signal_setting = NULL;
4589     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4590                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4591     if (begin_signal_setting != NULL) {
4592       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4593                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4594       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4595                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4596       libjsig_is_loaded = true;
4597       assert(UseSignalChaining, "should enable signal-chaining");
4598     }
4599     if (libjsig_is_loaded) {
4600       // Tell libjsig jvm is setting signal handlers
4601       (*begin_signal_setting)();
4602     }
4603 
4604     set_signal_handler(SIGSEGV, true);
4605     set_signal_handler(SIGPIPE, true);
4606     set_signal_handler(SIGBUS, true);
4607     set_signal_handler(SIGILL, true);
4608     set_signal_handler(SIGFPE, true);
4609 #if defined(PPC64)
4610     set_signal_handler(SIGTRAP, true);
4611 #endif
4612     set_signal_handler(SIGXFSZ, true);
4613 
4614     if (libjsig_is_loaded) {
4615       // Tell libjsig jvm finishes setting signal handlers
4616       (*end_signal_setting)();
4617     }
4618 
4619     // We don't activate signal checker if libjsig is in place, we trust ourselves
4620     // and if UserSignalHandler is installed all bets are off.
4621     // Log that signal checking is off only if -verbose:jni is specified.
4622     if (CheckJNICalls) {
4623       if (libjsig_is_loaded) {
4624         if (PrintJNIResolving) {
4625           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4626         }
4627         check_signals = false;
4628       }
4629       if (AllowUserSignalHandlers) {
4630         if (PrintJNIResolving) {
4631           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4632         }
4633         check_signals = false;
4634       }
4635     }
4636   }
4637 }
4638 
4639 // This is the fastest way to get thread cpu time on Linux.
4640 // Returns cpu time (user+sys) for any thread, not only for current.
4641 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4642 // It might work on 2.6.10+ with a special kernel/glibc patch.
4643 // For reference, please, see IEEE Std 1003.1-2004:
4644 //   http://www.unix.org/single_unix_specification
4645 
4646 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4647   struct timespec tp;
4648   int rc = os::Posix::clock_gettime(clockid, &tp);
4649   assert(rc == 0, "clock_gettime is expected to return 0 code");
4650 
4651   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4652 }
4653 
4654 void os::Linux::initialize_os_info() {
4655   assert(_os_version == 0, "OS info already initialized");
4656 
4657   struct utsname _uname;
4658 
4659   uint32_t major;
4660   uint32_t minor;
4661   uint32_t fix;
4662 
4663   int rc;
4664 
4665   // Kernel version is unknown if
4666   // verification below fails.
4667   _os_version = 0x01000000;
4668 
4669   rc = uname(&_uname);
4670   if (rc != -1) {
4671 
4672     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4673     if (rc == 3) {
4674 
4675       if (major < 256 && minor < 256 && fix < 256) {
4676         // Kernel version format is as expected,
4677         // set it overriding unknown state.
4678         _os_version = (major << 16) |
4679                       (minor << 8 ) |
4680                       (fix   << 0 ) ;
4681       }
4682     }
4683   }
4684 }
4685 
4686 uint32_t os::Linux::os_version() {
4687   assert(_os_version != 0, "not initialized");
4688   return _os_version & 0x00FFFFFF;
4689 }
4690 
4691 bool os::Linux::os_version_is_known() {
4692   assert(_os_version != 0, "not initialized");
4693   return _os_version & 0x01000000 ? false : true;
4694 }
4695 
4696 /////
4697 // glibc on Linux platform uses non-documented flag
4698 // to indicate, that some special sort of signal
4699 // trampoline is used.
4700 // We will never set this flag, and we should
4701 // ignore this flag in our diagnostic
4702 #ifdef SIGNIFICANT_SIGNAL_MASK
4703   #undef SIGNIFICANT_SIGNAL_MASK
4704 #endif
4705 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4706 
4707 static const char* get_signal_handler_name(address handler,
4708                                            char* buf, int buflen) {
4709   int offset = 0;
4710   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4711   if (found) {
4712     // skip directory names
4713     const char *p1, *p2;
4714     p1 = buf;
4715     size_t len = strlen(os::file_separator());
4716     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4717     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4718   } else {
4719     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4720   }
4721   return buf;
4722 }
4723 
4724 static void print_signal_handler(outputStream* st, int sig,
4725                                  char* buf, size_t buflen) {
4726   struct sigaction sa;
4727 
4728   sigaction(sig, NULL, &sa);
4729 
4730   // See comment for SIGNIFICANT_SIGNAL_MASK define
4731   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4732 
4733   st->print("%s: ", os::exception_name(sig, buf, buflen));
4734 
4735   address handler = (sa.sa_flags & SA_SIGINFO)
4736     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4737     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4738 
4739   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4740     st->print("SIG_DFL");
4741   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4742     st->print("SIG_IGN");
4743   } else {
4744     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4745   }
4746 
4747   st->print(", sa_mask[0]=");
4748   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4749 
4750   address rh = VMError::get_resetted_sighandler(sig);
4751   // May be, handler was resetted by VMError?
4752   if (rh != NULL) {
4753     handler = rh;
4754     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4755   }
4756 
4757   st->print(", sa_flags=");
4758   os::Posix::print_sa_flags(st, sa.sa_flags);
4759 
4760   // Check: is it our handler?
4761   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4762       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4763     // It is our signal handler
4764     // check for flags, reset system-used one!
4765     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4766       st->print(
4767                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4768                 os::Linux::get_our_sigflags(sig));
4769     }
4770   }
4771   st->cr();
4772 }
4773 
4774 
4775 #define DO_SIGNAL_CHECK(sig)                      \
4776   do {                                            \
4777     if (!sigismember(&check_signal_done, sig)) {  \
4778       os::Linux::check_signal_handler(sig);       \
4779     }                                             \
4780   } while (0)
4781 
4782 // This method is a periodic task to check for misbehaving JNI applications
4783 // under CheckJNI, we can add any periodic checks here
4784 
4785 void os::run_periodic_checks() {
4786   if (check_signals == false) return;
4787 
4788   // SEGV and BUS if overridden could potentially prevent
4789   // generation of hs*.log in the event of a crash, debugging
4790   // such a case can be very challenging, so we absolutely
4791   // check the following for a good measure:
4792   DO_SIGNAL_CHECK(SIGSEGV);
4793   DO_SIGNAL_CHECK(SIGILL);
4794   DO_SIGNAL_CHECK(SIGFPE);
4795   DO_SIGNAL_CHECK(SIGBUS);
4796   DO_SIGNAL_CHECK(SIGPIPE);
4797   DO_SIGNAL_CHECK(SIGXFSZ);
4798 #if defined(PPC64)
4799   DO_SIGNAL_CHECK(SIGTRAP);
4800 #endif
4801 
4802   // ReduceSignalUsage allows the user to override these handlers
4803   // see comments at the very top and jvm_md.h
4804   if (!ReduceSignalUsage) {
4805     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4806     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4807     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4808     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4809   }
4810 
4811   DO_SIGNAL_CHECK(SR_signum);
4812 }
4813 
4814 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4815 
4816 static os_sigaction_t os_sigaction = NULL;
4817 
4818 void os::Linux::check_signal_handler(int sig) {
4819   char buf[O_BUFLEN];
4820   address jvmHandler = NULL;
4821 
4822 
4823   struct sigaction act;
4824   if (os_sigaction == NULL) {
4825     // only trust the default sigaction, in case it has been interposed
4826     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4827     if (os_sigaction == NULL) return;
4828   }
4829 
4830   os_sigaction(sig, (struct sigaction*)NULL, &act);
4831 
4832 
4833   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4834 
4835   address thisHandler = (act.sa_flags & SA_SIGINFO)
4836     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4837     : CAST_FROM_FN_PTR(address, act.sa_handler);
4838 
4839 
4840   switch (sig) {
4841   case SIGSEGV:
4842   case SIGBUS:
4843   case SIGFPE:
4844   case SIGPIPE:
4845   case SIGILL:
4846   case SIGXFSZ:
4847     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4848     break;
4849 
4850   case SHUTDOWN1_SIGNAL:
4851   case SHUTDOWN2_SIGNAL:
4852   case SHUTDOWN3_SIGNAL:
4853   case BREAK_SIGNAL:
4854     jvmHandler = (address)user_handler();
4855     break;
4856 
4857   default:
4858     if (sig == SR_signum) {
4859       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4860     } else {
4861       return;
4862     }
4863     break;
4864   }
4865 
4866   if (thisHandler != jvmHandler) {
4867     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4868     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4869     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4870     // No need to check this sig any longer
4871     sigaddset(&check_signal_done, sig);
4872     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4873     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4874       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4875                     exception_name(sig, buf, O_BUFLEN));
4876     }
4877   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4878     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4879     tty->print("expected:");
4880     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4881     tty->cr();
4882     tty->print("  found:");
4883     os::Posix::print_sa_flags(tty, act.sa_flags);
4884     tty->cr();
4885     // No need to check this sig any longer
4886     sigaddset(&check_signal_done, sig);
4887   }
4888 
4889   // Dump all the signal
4890   if (sigismember(&check_signal_done, sig)) {
4891     print_signal_handlers(tty, buf, O_BUFLEN);
4892   }
4893 }
4894 
4895 extern void report_error(char* file_name, int line_no, char* title,
4896                          char* format, ...);
4897 
4898 // this is called _before_ most of the global arguments have been parsed
4899 void os::init(void) {
4900   char dummy;   // used to get a guess on initial stack address
4901 
4902   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4903 
4904   init_random(1234567);
4905 
4906   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4907   if (Linux::page_size() == -1) {
4908     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4909           os::strerror(errno));
4910   }
4911   init_page_sizes((size_t) Linux::page_size());
4912 
4913   Linux::initialize_system_info();
4914 
4915   Linux::initialize_os_info();
4916 
4917   // _main_thread points to the thread that created/loaded the JVM.
4918   Linux::_main_thread = pthread_self();
4919 
4920   // retrieve entry point for pthread_setname_np
4921   Linux::_pthread_setname_np =
4922     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4923 
4924   os::Posix::init();
4925 
4926   initial_time_count = javaTimeNanos();
4927 
4928   // Always warn if no monotonic clock available
4929   if (!os::Posix::supports_monotonic_clock()) {
4930     warning("No monotonic clock was available - timed services may "    \
4931             "be adversely affected if the time-of-day clock changes");
4932   }
4933 }
4934 
4935 // To install functions for atexit system call
4936 extern "C" {
4937   static void perfMemory_exit_helper() {
4938     perfMemory_exit();
4939   }
4940 }
4941 
4942 void os::pd_init_container_support() {
4943   OSContainer::init();
4944 }
4945 
4946 // this is called _after_ the global arguments have been parsed
4947 jint os::init_2(void) {
4948 
4949   // This could be set after os::Posix::init() but all platforms
4950   // have to set it the same so we have to mirror Solaris.
4951   DEBUG_ONLY(os::set_mutex_init_done();)
4952 
4953   os::Posix::init_2();
4954 
4955   Linux::fast_thread_clock_init();
4956 
4957   // initialize suspend/resume support - must do this before signal_sets_init()
4958   if (SR_initialize() != 0) {
4959     perror("SR_initialize failed");
4960     return JNI_ERR;
4961   }
4962 
4963   Linux::signal_sets_init();
4964   Linux::install_signal_handlers();
4965   // Initialize data for jdk.internal.misc.Signal
4966   if (!ReduceSignalUsage) {
4967     jdk_misc_signal_init();
4968   }
4969 
4970   // Check and sets minimum stack sizes against command line options
4971   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4972     return JNI_ERR;
4973   }
4974 
4975   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
4976   if (!suppress_primordial_thread_resolution) {
4977     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4978   }
4979 
4980 #if defined(IA32)
4981   workaround_expand_exec_shield_cs_limit();
4982 #endif
4983 
4984   Linux::libpthread_init();
4985   Linux::sched_getcpu_init();
4986   log_info(os)("HotSpot is running with %s, %s",
4987                Linux::glibc_version(), Linux::libpthread_version());
4988 
4989   if (UseNUMA) {
4990     if (!Linux::libnuma_init()) {
4991       UseNUMA = false;
4992     } else {
4993       if ((Linux::numa_max_node() < 1) || Linux::isbound_to_single_node()) {
4994         // If there's only one node (they start from 0) or if the process
4995         // is bound explicitly to a single node using membind, disable NUMA.
4996         UseNUMA = false;
4997       }
4998     }
4999 
5000     if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5001       // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5002       // we can make the adaptive lgrp chunk resizing work. If the user specified both
5003       // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5004       // and disable adaptive resizing.
5005       if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5006         warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5007                 "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5008         UseAdaptiveSizePolicy = false;
5009         UseAdaptiveNUMAChunkSizing = false;
5010       }
5011     }
5012 
5013     if (!UseNUMA && ForceNUMA) {
5014       UseNUMA = true;
5015     }
5016   }
5017 
5018   if (MaxFDLimit) {
5019     // set the number of file descriptors to max. print out error
5020     // if getrlimit/setrlimit fails but continue regardless.
5021     struct rlimit nbr_files;
5022     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5023     if (status != 0) {
5024       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5025     } else {
5026       nbr_files.rlim_cur = nbr_files.rlim_max;
5027       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5028       if (status != 0) {
5029         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5030       }
5031     }
5032   }
5033 
5034   // Initialize lock used to serialize thread creation (see os::create_thread)
5035   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5036 
5037   // at-exit methods are called in the reverse order of their registration.
5038   // atexit functions are called on return from main or as a result of a
5039   // call to exit(3C). There can be only 32 of these functions registered
5040   // and atexit() does not set errno.
5041 
5042   if (PerfAllowAtExitRegistration) {
5043     // only register atexit functions if PerfAllowAtExitRegistration is set.
5044     // atexit functions can be delayed until process exit time, which
5045     // can be problematic for embedded VM situations. Embedded VMs should
5046     // call DestroyJavaVM() to assure that VM resources are released.
5047 
5048     // note: perfMemory_exit_helper atexit function may be removed in
5049     // the future if the appropriate cleanup code can be added to the
5050     // VM_Exit VMOperation's doit method.
5051     if (atexit(perfMemory_exit_helper) != 0) {
5052       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5053     }
5054   }
5055 
5056   // initialize thread priority policy
5057   prio_init();
5058 
5059   if (!FLAG_IS_DEFAULT(AllocateHeapAt)) {
5060     set_coredump_filter(DAX_SHARED_BIT);
5061   }
5062 
5063 #if INCLUDE_CDS
5064   if (UseSharedSpaces && DumpPrivateMappingsInCore) {
5065     set_coredump_filter(FILE_BACKED_PVT_BIT);
5066   }
5067 #endif
5068 
5069   return JNI_OK;
5070 }
5071 
5072 // Mark the polling page as unreadable
5073 void os::make_polling_page_unreadable(void) {
5074   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5075     fatal("Could not disable polling page");
5076   }
5077 }
5078 
5079 // Mark the polling page as readable
5080 void os::make_polling_page_readable(void) {
5081   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5082     fatal("Could not enable polling page");
5083   }
5084 }
5085 
5086 // older glibc versions don't have this macro (which expands to
5087 // an optimized bit-counting function) so we have to roll our own
5088 #ifndef CPU_COUNT
5089 
5090 static int _cpu_count(const cpu_set_t* cpus) {
5091   int count = 0;
5092   // only look up to the number of configured processors
5093   for (int i = 0; i < os::processor_count(); i++) {
5094     if (CPU_ISSET(i, cpus)) {
5095       count++;
5096     }
5097   }
5098   return count;
5099 }
5100 
5101 #define CPU_COUNT(cpus) _cpu_count(cpus)
5102 
5103 #endif // CPU_COUNT
5104 
5105 // Get the current number of available processors for this process.
5106 // This value can change at any time during a process's lifetime.
5107 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5108 // If it appears there may be more than 1024 processors then we do a
5109 // dynamic check - see 6515172 for details.
5110 // If anything goes wrong we fallback to returning the number of online
5111 // processors - which can be greater than the number available to the process.
5112 int os::Linux::active_processor_count() {
5113   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5114   cpu_set_t* cpus_p = &cpus;
5115   int cpus_size = sizeof(cpu_set_t);
5116 
5117   int configured_cpus = os::processor_count();  // upper bound on available cpus
5118   int cpu_count = 0;
5119 
5120 // old build platforms may not support dynamic cpu sets
5121 #ifdef CPU_ALLOC
5122 
5123   // To enable easy testing of the dynamic path on different platforms we
5124   // introduce a diagnostic flag: UseCpuAllocPath
5125   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5126     // kernel may use a mask bigger than cpu_set_t
5127     log_trace(os)("active_processor_count: using dynamic path %s"
5128                   "- configured processors: %d",
5129                   UseCpuAllocPath ? "(forced) " : "",
5130                   configured_cpus);
5131     cpus_p = CPU_ALLOC(configured_cpus);
5132     if (cpus_p != NULL) {
5133       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5134       // zero it just to be safe
5135       CPU_ZERO_S(cpus_size, cpus_p);
5136     }
5137     else {
5138        // failed to allocate so fallback to online cpus
5139        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5140        log_trace(os)("active_processor_count: "
5141                      "CPU_ALLOC failed (%s) - using "
5142                      "online processor count: %d",
5143                      os::strerror(errno), online_cpus);
5144        return online_cpus;
5145     }
5146   }
5147   else {
5148     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5149                   configured_cpus);
5150   }
5151 #else // CPU_ALLOC
5152 // these stubs won't be executed
5153 #define CPU_COUNT_S(size, cpus) -1
5154 #define CPU_FREE(cpus)
5155 
5156   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5157                 configured_cpus);
5158 #endif // CPU_ALLOC
5159 
5160   // pid 0 means the current thread - which we have to assume represents the process
5161   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5162     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5163       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5164     }
5165     else {
5166       cpu_count = CPU_COUNT(cpus_p);
5167     }
5168     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5169   }
5170   else {
5171     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5172     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5173             "which may exceed available processors", os::strerror(errno), cpu_count);
5174   }
5175 
5176   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5177     CPU_FREE(cpus_p);
5178   }
5179 
5180   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5181   return cpu_count;
5182 }
5183 
5184 // Determine the active processor count from one of
5185 // three different sources:
5186 //
5187 // 1. User option -XX:ActiveProcessorCount
5188 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5189 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5190 //
5191 // Option 1, if specified, will always override.
5192 // If the cgroup subsystem is active and configured, we
5193 // will return the min of the cgroup and option 2 results.
5194 // This is required since tools, such as numactl, that
5195 // alter cpu affinity do not update cgroup subsystem
5196 // cpuset configuration files.
5197 int os::active_processor_count() {
5198   // User has overridden the number of active processors
5199   if (ActiveProcessorCount > 0) {
5200     log_trace(os)("active_processor_count: "
5201                   "active processor count set by user : %d",
5202                   ActiveProcessorCount);
5203     return ActiveProcessorCount;
5204   }
5205 
5206   int active_cpus;
5207   if (OSContainer::is_containerized()) {
5208     active_cpus = OSContainer::active_processor_count();
5209     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5210                    active_cpus);
5211   } else {
5212     active_cpus = os::Linux::active_processor_count();
5213   }
5214 
5215   return active_cpus;
5216 }
5217 
5218 uint os::processor_id() {
5219   const int id = Linux::sched_getcpu();
5220   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5221   return (uint)id;
5222 }
5223 
5224 void os::set_native_thread_name(const char *name) {
5225   if (Linux::_pthread_setname_np) {
5226     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5227     snprintf(buf, sizeof(buf), "%s", name);
5228     buf[sizeof(buf) - 1] = '\0';
5229     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5230     // ERANGE should not happen; all other errors should just be ignored.
5231     assert(rc != ERANGE, "pthread_setname_np failed");
5232   }
5233 }
5234 
5235 bool os::distribute_processes(uint length, uint* distribution) {
5236   // Not yet implemented.
5237   return false;
5238 }
5239 
5240 bool os::bind_to_processor(uint processor_id) {
5241   // Not yet implemented.
5242   return false;
5243 }
5244 
5245 ///
5246 
5247 void os::SuspendedThreadTask::internal_do_task() {
5248   if (do_suspend(_thread->osthread())) {
5249     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5250     do_task(context);
5251     do_resume(_thread->osthread());
5252   }
5253 }
5254 
5255 ////////////////////////////////////////////////////////////////////////////////
5256 // debug support
5257 
5258 bool os::find(address addr, outputStream* st) {
5259   Dl_info dlinfo;
5260   memset(&dlinfo, 0, sizeof(dlinfo));
5261   if (dladdr(addr, &dlinfo) != 0) {
5262     st->print(PTR_FORMAT ": ", p2i(addr));
5263     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5264       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5265                 p2i(addr) - p2i(dlinfo.dli_saddr));
5266     } else if (dlinfo.dli_fbase != NULL) {
5267       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5268     } else {
5269       st->print("<absolute address>");
5270     }
5271     if (dlinfo.dli_fname != NULL) {
5272       st->print(" in %s", dlinfo.dli_fname);
5273     }
5274     if (dlinfo.dli_fbase != NULL) {
5275       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5276     }
5277     st->cr();
5278 
5279     if (Verbose) {
5280       // decode some bytes around the PC
5281       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5282       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5283       address       lowest = (address) dlinfo.dli_sname;
5284       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5285       if (begin < lowest)  begin = lowest;
5286       Dl_info dlinfo2;
5287       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5288           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5289         end = (address) dlinfo2.dli_saddr;
5290       }
5291       Disassembler::decode(begin, end, st);
5292     }
5293     return true;
5294   }
5295   return false;
5296 }
5297 
5298 ////////////////////////////////////////////////////////////////////////////////
5299 // misc
5300 
5301 // This does not do anything on Linux. This is basically a hook for being
5302 // able to use structured exception handling (thread-local exception filters)
5303 // on, e.g., Win32.
5304 void
5305 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5306                          JavaCallArguments* args, Thread* thread) {
5307   f(value, method, args, thread);
5308 }
5309 
5310 void os::print_statistics() {
5311 }
5312 
5313 bool os::message_box(const char* title, const char* message) {
5314   int i;
5315   fdStream err(defaultStream::error_fd());
5316   for (i = 0; i < 78; i++) err.print_raw("=");
5317   err.cr();
5318   err.print_raw_cr(title);
5319   for (i = 0; i < 78; i++) err.print_raw("-");
5320   err.cr();
5321   err.print_raw_cr(message);
5322   for (i = 0; i < 78; i++) err.print_raw("=");
5323   err.cr();
5324 
5325   char buf[16];
5326   // Prevent process from exiting upon "read error" without consuming all CPU
5327   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5328 
5329   return buf[0] == 'y' || buf[0] == 'Y';
5330 }
5331 
5332 // Is a (classpath) directory empty?
5333 bool os::dir_is_empty(const char* path) {
5334   DIR *dir = NULL;
5335   struct dirent *ptr;
5336 
5337   dir = opendir(path);
5338   if (dir == NULL) return true;
5339 
5340   // Scan the directory
5341   bool result = true;
5342   while (result && (ptr = readdir(dir)) != NULL) {
5343     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5344       result = false;
5345     }
5346   }
5347   closedir(dir);
5348   return result;
5349 }
5350 
5351 // This code originates from JDK's sysOpen and open64_w
5352 // from src/solaris/hpi/src/system_md.c
5353 
5354 int os::open(const char *path, int oflag, int mode) {
5355   if (strlen(path) > MAX_PATH - 1) {
5356     errno = ENAMETOOLONG;
5357     return -1;
5358   }
5359 
5360   // All file descriptors that are opened in the Java process and not
5361   // specifically destined for a subprocess should have the close-on-exec
5362   // flag set.  If we don't set it, then careless 3rd party native code
5363   // might fork and exec without closing all appropriate file descriptors
5364   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5365   // turn might:
5366   //
5367   // - cause end-of-file to fail to be detected on some file
5368   //   descriptors, resulting in mysterious hangs, or
5369   //
5370   // - might cause an fopen in the subprocess to fail on a system
5371   //   suffering from bug 1085341.
5372   //
5373   // (Yes, the default setting of the close-on-exec flag is a Unix
5374   // design flaw)
5375   //
5376   // See:
5377   // 1085341: 32-bit stdio routines should support file descriptors >255
5378   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5379   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5380   //
5381   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5382   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5383   // because it saves a system call and removes a small window where the flag
5384   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5385   // and we fall back to using FD_CLOEXEC (see below).
5386 #ifdef O_CLOEXEC
5387   oflag |= O_CLOEXEC;
5388 #endif
5389 
5390   int fd = ::open64(path, oflag, mode);
5391   if (fd == -1) return -1;
5392 
5393   //If the open succeeded, the file might still be a directory
5394   {
5395     struct stat64 buf64;
5396     int ret = ::fstat64(fd, &buf64);
5397     int st_mode = buf64.st_mode;
5398 
5399     if (ret != -1) {
5400       if ((st_mode & S_IFMT) == S_IFDIR) {
5401         errno = EISDIR;
5402         ::close(fd);
5403         return -1;
5404       }
5405     } else {
5406       ::close(fd);
5407       return -1;
5408     }
5409   }
5410 
5411 #ifdef FD_CLOEXEC
5412   // Validate that the use of the O_CLOEXEC flag on open above worked.
5413   // With recent kernels, we will perform this check exactly once.
5414   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5415   if (!O_CLOEXEC_is_known_to_work) {
5416     int flags = ::fcntl(fd, F_GETFD);
5417     if (flags != -1) {
5418       if ((flags & FD_CLOEXEC) != 0)
5419         O_CLOEXEC_is_known_to_work = 1;
5420       else
5421         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5422     }
5423   }
5424 #endif
5425 
5426   return fd;
5427 }
5428 
5429 
5430 // create binary file, rewriting existing file if required
5431 int os::create_binary_file(const char* path, bool rewrite_existing) {
5432   int oflags = O_WRONLY | O_CREAT;
5433   if (!rewrite_existing) {
5434     oflags |= O_EXCL;
5435   }
5436   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5437 }
5438 
5439 // return current position of file pointer
5440 jlong os::current_file_offset(int fd) {
5441   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5442 }
5443 
5444 // move file pointer to the specified offset
5445 jlong os::seek_to_file_offset(int fd, jlong offset) {
5446   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5447 }
5448 
5449 // This code originates from JDK's sysAvailable
5450 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5451 
5452 int os::available(int fd, jlong *bytes) {
5453   jlong cur, end;
5454   int mode;
5455   struct stat64 buf64;
5456 
5457   if (::fstat64(fd, &buf64) >= 0) {
5458     mode = buf64.st_mode;
5459     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5460       int n;
5461       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5462         *bytes = n;
5463         return 1;
5464       }
5465     }
5466   }
5467   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5468     return 0;
5469   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5470     return 0;
5471   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5472     return 0;
5473   }
5474   *bytes = end - cur;
5475   return 1;
5476 }
5477 
5478 // Map a block of memory.
5479 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5480                         char *addr, size_t bytes, bool read_only,
5481                         bool allow_exec) {
5482   int prot;
5483   int flags = MAP_PRIVATE;
5484 
5485   if (read_only) {
5486     prot = PROT_READ;
5487   } else {
5488     prot = PROT_READ | PROT_WRITE;
5489   }
5490 
5491   if (allow_exec) {
5492     prot |= PROT_EXEC;
5493   }
5494 
5495   if (addr != NULL) {
5496     flags |= MAP_FIXED;
5497   }
5498 
5499   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5500                                      fd, file_offset);
5501   if (mapped_address == MAP_FAILED) {
5502     return NULL;
5503   }
5504   return mapped_address;
5505 }
5506 
5507 
5508 // Remap a block of memory.
5509 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5510                           char *addr, size_t bytes, bool read_only,
5511                           bool allow_exec) {
5512   // same as map_memory() on this OS
5513   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5514                         allow_exec);
5515 }
5516 
5517 
5518 // Unmap a block of memory.
5519 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5520   return munmap(addr, bytes) == 0;
5521 }
5522 
5523 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5524 
5525 static jlong fast_cpu_time(Thread *thread) {
5526     clockid_t clockid;
5527     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5528                                               &clockid);
5529     if (rc == 0) {
5530       return os::Linux::fast_thread_cpu_time(clockid);
5531     } else {
5532       // It's possible to encounter a terminated native thread that failed
5533       // to detach itself from the VM - which should result in ESRCH.
5534       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5535       return -1;
5536     }
5537 }
5538 
5539 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5540 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5541 // of a thread.
5542 //
5543 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5544 // the fast estimate available on the platform.
5545 
5546 jlong os::current_thread_cpu_time() {
5547   if (os::Linux::supports_fast_thread_cpu_time()) {
5548     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5549   } else {
5550     // return user + sys since the cost is the same
5551     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5552   }
5553 }
5554 
5555 jlong os::thread_cpu_time(Thread* thread) {
5556   // consistent with what current_thread_cpu_time() returns
5557   if (os::Linux::supports_fast_thread_cpu_time()) {
5558     return fast_cpu_time(thread);
5559   } else {
5560     return slow_thread_cpu_time(thread, true /* user + sys */);
5561   }
5562 }
5563 
5564 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5565   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5566     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5567   } else {
5568     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5569   }
5570 }
5571 
5572 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5573   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5574     return fast_cpu_time(thread);
5575   } else {
5576     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5577   }
5578 }
5579 
5580 //  -1 on error.
5581 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5582   pid_t  tid = thread->osthread()->thread_id();
5583   char *s;
5584   char stat[2048];
5585   int statlen;
5586   char proc_name[64];
5587   int count;
5588   long sys_time, user_time;
5589   char cdummy;
5590   int idummy;
5591   long ldummy;
5592   FILE *fp;
5593 
5594   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5595   fp = fopen(proc_name, "r");
5596   if (fp == NULL) return -1;
5597   statlen = fread(stat, 1, 2047, fp);
5598   stat[statlen] = '\0';
5599   fclose(fp);
5600 
5601   // Skip pid and the command string. Note that we could be dealing with
5602   // weird command names, e.g. user could decide to rename java launcher
5603   // to "java 1.4.2 :)", then the stat file would look like
5604   //                1234 (java 1.4.2 :)) R ... ...
5605   // We don't really need to know the command string, just find the last
5606   // occurrence of ")" and then start parsing from there. See bug 4726580.
5607   s = strrchr(stat, ')');
5608   if (s == NULL) return -1;
5609 
5610   // Skip blank chars
5611   do { s++; } while (s && isspace(*s));
5612 
5613   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5614                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5615                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5616                  &user_time, &sys_time);
5617   if (count != 13) return -1;
5618   if (user_sys_cpu_time) {
5619     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5620   } else {
5621     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5622   }
5623 }
5624 
5625 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5626   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5627   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5628   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5629   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5630 }
5631 
5632 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5633   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5634   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5635   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5636   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5637 }
5638 
5639 bool os::is_thread_cpu_time_supported() {
5640   return true;
5641 }
5642 
5643 // System loadavg support.  Returns -1 if load average cannot be obtained.
5644 // Linux doesn't yet have a (official) notion of processor sets,
5645 // so just return the system wide load average.
5646 int os::loadavg(double loadavg[], int nelem) {
5647   return ::getloadavg(loadavg, nelem);
5648 }
5649 
5650 void os::pause() {
5651   char filename[MAX_PATH];
5652   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5653     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5654   } else {
5655     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5656   }
5657 
5658   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5659   if (fd != -1) {
5660     struct stat buf;
5661     ::close(fd);
5662     while (::stat(filename, &buf) == 0) {
5663       (void)::poll(NULL, 0, 100);
5664     }
5665   } else {
5666     jio_fprintf(stderr,
5667                 "Could not open pause file '%s', continuing immediately.\n", filename);
5668   }
5669 }
5670 
5671 extern char** environ;
5672 
5673 // Run the specified command in a separate process. Return its exit value,
5674 // or -1 on failure (e.g. can't fork a new process).
5675 // Unlike system(), this function can be called from signal handler. It
5676 // doesn't block SIGINT et al.
5677 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5678   const char * argv[4] = {"sh", "-c", cmd, NULL};
5679 
5680   pid_t pid ;
5681 
5682   if (use_vfork_if_available) {
5683     pid = vfork();
5684   } else {
5685     pid = fork();
5686   }
5687 
5688   if (pid < 0) {
5689     // fork failed
5690     return -1;
5691 
5692   } else if (pid == 0) {
5693     // child process
5694 
5695     execve("/bin/sh", (char* const*)argv, environ);
5696 
5697     // execve failed
5698     _exit(-1);
5699 
5700   } else  {
5701     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5702     // care about the actual exit code, for now.
5703 
5704     int status;
5705 
5706     // Wait for the child process to exit.  This returns immediately if
5707     // the child has already exited. */
5708     while (waitpid(pid, &status, 0) < 0) {
5709       switch (errno) {
5710       case ECHILD: return 0;
5711       case EINTR: break;
5712       default: return -1;
5713       }
5714     }
5715 
5716     if (WIFEXITED(status)) {
5717       // The child exited normally; get its exit code.
5718       return WEXITSTATUS(status);
5719     } else if (WIFSIGNALED(status)) {
5720       // The child exited because of a signal
5721       // The best value to return is 0x80 + signal number,
5722       // because that is what all Unix shells do, and because
5723       // it allows callers to distinguish between process exit and
5724       // process death by signal.
5725       return 0x80 + WTERMSIG(status);
5726     } else {
5727       // Unknown exit code; pass it through
5728       return status;
5729     }
5730   }
5731 }
5732 
5733 // Get the default path to the core file
5734 // Returns the length of the string
5735 int os::get_core_path(char* buffer, size_t bufferSize) {
5736   /*
5737    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5738    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5739    */
5740   const int core_pattern_len = 129;
5741   char core_pattern[core_pattern_len] = {0};
5742 
5743   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5744   if (core_pattern_file == -1) {
5745     return -1;
5746   }
5747 
5748   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5749   ::close(core_pattern_file);
5750   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5751     return -1;
5752   }
5753   if (core_pattern[ret-1] == '\n') {
5754     core_pattern[ret-1] = '\0';
5755   } else {
5756     core_pattern[ret] = '\0';
5757   }
5758 
5759   // Replace the %p in the core pattern with the process id. NOTE: we do this
5760   // only if the pattern doesn't start with "|", and we support only one %p in
5761   // the pattern.
5762   char *pid_pos = strstr(core_pattern, "%p");
5763   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
5764   int written;
5765 
5766   if (core_pattern[0] == '/') {
5767     if (pid_pos != NULL) {
5768       *pid_pos = '\0';
5769       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
5770                              current_process_id(), tail);
5771     } else {
5772       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5773     }
5774   } else {
5775     char cwd[PATH_MAX];
5776 
5777     const char* p = get_current_directory(cwd, PATH_MAX);
5778     if (p == NULL) {
5779       return -1;
5780     }
5781 
5782     if (core_pattern[0] == '|') {
5783       written = jio_snprintf(buffer, bufferSize,
5784                              "\"%s\" (or dumping to %s/core.%d)",
5785                              &core_pattern[1], p, current_process_id());
5786     } else if (pid_pos != NULL) {
5787       *pid_pos = '\0';
5788       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
5789                              current_process_id(), tail);
5790     } else {
5791       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5792     }
5793   }
5794 
5795   if (written < 0) {
5796     return -1;
5797   }
5798 
5799   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5800     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5801 
5802     if (core_uses_pid_file != -1) {
5803       char core_uses_pid = 0;
5804       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5805       ::close(core_uses_pid_file);
5806 
5807       if (core_uses_pid == '1') {
5808         jio_snprintf(buffer + written, bufferSize - written,
5809                                           ".%d", current_process_id());
5810       }
5811     }
5812   }
5813 
5814   return strlen(buffer);
5815 }
5816 
5817 bool os::start_debugging(char *buf, int buflen) {
5818   int len = (int)strlen(buf);
5819   char *p = &buf[len];
5820 
5821   jio_snprintf(p, buflen-len,
5822                "\n\n"
5823                "Do you want to debug the problem?\n\n"
5824                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5825                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5826                "Otherwise, press RETURN to abort...",
5827                os::current_process_id(), os::current_process_id(),
5828                os::current_thread_id(), os::current_thread_id());
5829 
5830   bool yes = os::message_box("Unexpected Error", buf);
5831 
5832   if (yes) {
5833     // yes, user asked VM to launch debugger
5834     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5835                  os::current_process_id(), os::current_process_id());
5836 
5837     os::fork_and_exec(buf);
5838     yes = false;
5839   }
5840   return yes;
5841 }
5842 
5843 
5844 // Java/Compiler thread:
5845 //
5846 //   Low memory addresses
5847 // P0 +------------------------+
5848 //    |                        |\  Java thread created by VM does not have glibc
5849 //    |    glibc guard page    | - guard page, attached Java thread usually has
5850 //    |                        |/  1 glibc guard page.
5851 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5852 //    |                        |\
5853 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5854 //    |                        |/
5855 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5856 //    |                        |\
5857 //    |      Normal Stack      | -
5858 //    |                        |/
5859 // P2 +------------------------+ Thread::stack_base()
5860 //
5861 // Non-Java thread:
5862 //
5863 //   Low memory addresses
5864 // P0 +------------------------+
5865 //    |                        |\
5866 //    |  glibc guard page      | - usually 1 page
5867 //    |                        |/
5868 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5869 //    |                        |\
5870 //    |      Normal Stack      | -
5871 //    |                        |/
5872 // P2 +------------------------+ Thread::stack_base()
5873 //
5874 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5875 //    returned from pthread_attr_getstack().
5876 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5877 //    of the stack size given in pthread_attr. We work around this for
5878 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5879 //
5880 #ifndef ZERO
5881 static void current_stack_region(address * bottom, size_t * size) {
5882   if (os::is_primordial_thread()) {
5883     // primordial thread needs special handling because pthread_getattr_np()
5884     // may return bogus value.
5885     *bottom = os::Linux::initial_thread_stack_bottom();
5886     *size   = os::Linux::initial_thread_stack_size();
5887   } else {
5888     pthread_attr_t attr;
5889 
5890     int rslt = pthread_getattr_np(pthread_self(), &attr);
5891 
5892     // JVM needs to know exact stack location, abort if it fails
5893     if (rslt != 0) {
5894       if (rslt == ENOMEM) {
5895         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5896       } else {
5897         fatal("pthread_getattr_np failed with error = %d", rslt);
5898       }
5899     }
5900 
5901     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5902       fatal("Cannot locate current stack attributes!");
5903     }
5904 
5905     // Work around NPTL stack guard error.
5906     size_t guard_size = 0;
5907     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5908     if (rslt != 0) {
5909       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5910     }
5911     *bottom += guard_size;
5912     *size   -= guard_size;
5913 
5914     pthread_attr_destroy(&attr);
5915 
5916   }
5917   assert(os::current_stack_pointer() >= *bottom &&
5918          os::current_stack_pointer() < *bottom + *size, "just checking");
5919 }
5920 
5921 address os::current_stack_base() {
5922   address bottom;
5923   size_t size;
5924   current_stack_region(&bottom, &size);
5925   return (bottom + size);
5926 }
5927 
5928 size_t os::current_stack_size() {
5929   // This stack size includes the usable stack and HotSpot guard pages
5930   // (for the threads that have Hotspot guard pages).
5931   address bottom;
5932   size_t size;
5933   current_stack_region(&bottom, &size);
5934   return size;
5935 }
5936 #endif
5937 
5938 static inline struct timespec get_mtime(const char* filename) {
5939   struct stat st;
5940   int ret = os::stat(filename, &st);
5941   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
5942   return st.st_mtim;
5943 }
5944 
5945 int os::compare_file_modified_times(const char* file1, const char* file2) {
5946   struct timespec filetime1 = get_mtime(file1);
5947   struct timespec filetime2 = get_mtime(file2);
5948   int diff = filetime1.tv_sec - filetime2.tv_sec;
5949   if (diff == 0) {
5950     return filetime1.tv_nsec - filetime2.tv_nsec;
5951   }
5952   return diff;
5953 }
5954 
5955 /////////////// Unit tests ///////////////
5956 
5957 #ifndef PRODUCT
5958 
5959 class TestReserveMemorySpecial : AllStatic {
5960  public:
5961   static void small_page_write(void* addr, size_t size) {
5962     size_t page_size = os::vm_page_size();
5963 
5964     char* end = (char*)addr + size;
5965     for (char* p = (char*)addr; p < end; p += page_size) {
5966       *p = 1;
5967     }
5968   }
5969 
5970   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5971     if (!UseHugeTLBFS) {
5972       return;
5973     }
5974 
5975     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5976 
5977     if (addr != NULL) {
5978       small_page_write(addr, size);
5979 
5980       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5981     }
5982   }
5983 
5984   static void test_reserve_memory_special_huge_tlbfs_only() {
5985     if (!UseHugeTLBFS) {
5986       return;
5987     }
5988 
5989     size_t lp = os::large_page_size();
5990 
5991     for (size_t size = lp; size <= lp * 10; size += lp) {
5992       test_reserve_memory_special_huge_tlbfs_only(size);
5993     }
5994   }
5995 
5996   static void test_reserve_memory_special_huge_tlbfs_mixed() {
5997     size_t lp = os::large_page_size();
5998     size_t ag = os::vm_allocation_granularity();
5999 
6000     // sizes to test
6001     const size_t sizes[] = {
6002       lp, lp + ag, lp + lp / 2, lp * 2,
6003       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6004       lp * 10, lp * 10 + lp / 2
6005     };
6006     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6007 
6008     // For each size/alignment combination, we test three scenarios:
6009     // 1) with req_addr == NULL
6010     // 2) with a non-null req_addr at which we expect to successfully allocate
6011     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6012     //    expect the allocation to either fail or to ignore req_addr
6013 
6014     // Pre-allocate two areas; they shall be as large as the largest allocation
6015     //  and aligned to the largest alignment we will be testing.
6016     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6017     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6018       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6019       -1, 0);
6020     assert(mapping1 != MAP_FAILED, "should work");
6021 
6022     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6023       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6024       -1, 0);
6025     assert(mapping2 != MAP_FAILED, "should work");
6026 
6027     // Unmap the first mapping, but leave the second mapping intact: the first
6028     // mapping will serve as a value for a "good" req_addr (case 2). The second
6029     // mapping, still intact, as "bad" req_addr (case 3).
6030     ::munmap(mapping1, mapping_size);
6031 
6032     // Case 1
6033     for (int i = 0; i < num_sizes; i++) {
6034       const size_t size = sizes[i];
6035       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6036         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6037         if (p != NULL) {
6038           assert(is_aligned(p, alignment), "must be");
6039           small_page_write(p, size);
6040           os::Linux::release_memory_special_huge_tlbfs(p, size);
6041         }
6042       }
6043     }
6044 
6045     // Case 2
6046     for (int i = 0; i < num_sizes; i++) {
6047       const size_t size = sizes[i];
6048       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6049         char* const req_addr = align_up(mapping1, alignment);
6050         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6051         if (p != NULL) {
6052           assert(p == req_addr, "must be");
6053           small_page_write(p, size);
6054           os::Linux::release_memory_special_huge_tlbfs(p, size);
6055         }
6056       }
6057     }
6058 
6059     // Case 3
6060     for (int i = 0; i < num_sizes; i++) {
6061       const size_t size = sizes[i];
6062       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6063         char* const req_addr = align_up(mapping2, alignment);
6064         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6065         // as the area around req_addr contains already existing mappings, the API should always
6066         // return NULL (as per contract, it cannot return another address)
6067         assert(p == NULL, "must be");
6068       }
6069     }
6070 
6071     ::munmap(mapping2, mapping_size);
6072 
6073   }
6074 
6075   static void test_reserve_memory_special_huge_tlbfs() {
6076     if (!UseHugeTLBFS) {
6077       return;
6078     }
6079 
6080     test_reserve_memory_special_huge_tlbfs_only();
6081     test_reserve_memory_special_huge_tlbfs_mixed();
6082   }
6083 
6084   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6085     if (!UseSHM) {
6086       return;
6087     }
6088 
6089     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6090 
6091     if (addr != NULL) {
6092       assert(is_aligned(addr, alignment), "Check");
6093       assert(is_aligned(addr, os::large_page_size()), "Check");
6094 
6095       small_page_write(addr, size);
6096 
6097       os::Linux::release_memory_special_shm(addr, size);
6098     }
6099   }
6100 
6101   static void test_reserve_memory_special_shm() {
6102     size_t lp = os::large_page_size();
6103     size_t ag = os::vm_allocation_granularity();
6104 
6105     for (size_t size = ag; size < lp * 3; size += ag) {
6106       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6107         test_reserve_memory_special_shm(size, alignment);
6108       }
6109     }
6110   }
6111 
6112   static void test() {
6113     test_reserve_memory_special_huge_tlbfs();
6114     test_reserve_memory_special_shm();
6115   }
6116 };
6117 
6118 void TestReserveMemorySpecial_test() {
6119   TestReserveMemorySpecial::test();
6120 }
6121 
6122 #endif