1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "osContainer_linux.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.inline.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/threadSMR.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/elfFile.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 // put OS-includes here
  78 # include <sys/types.h>
  79 # include <sys/mman.h>
  80 # include <sys/stat.h>
  81 # include <sys/select.h>
  82 # include <pthread.h>
  83 # include <signal.h>
  84 # include <errno.h>
  85 # include <dlfcn.h>
  86 # include <stdio.h>
  87 # include <unistd.h>
  88 # include <sys/resource.h>
  89 # include <pthread.h>
  90 # include <sys/stat.h>
  91 # include <sys/time.h>
  92 # include <sys/times.h>
  93 # include <sys/utsname.h>
  94 # include <sys/socket.h>
  95 # include <sys/wait.h>
  96 # include <pwd.h>
  97 # include <poll.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 #define LARGEPAGES_BIT (1 << 6)
 132 #define DAX_SHARED_BIT (1 << 8)
 133 ////////////////////////////////////////////////////////////////////////////////
 134 // global variables
 135 julong os::Linux::_physical_memory = 0;
 136 
 137 address   os::Linux::_initial_thread_stack_bottom = NULL;
 138 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 139 
 140 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 141 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 142 Mutex* os::Linux::_createThread_lock = NULL;
 143 pthread_t os::Linux::_main_thread;
 144 int os::Linux::_page_size = -1;
 145 bool os::Linux::_supports_fast_thread_cpu_time = false;
 146 uint32_t os::Linux::_os_version = 0;
 147 const char * os::Linux::_glibc_version = NULL;
 148 const char * os::Linux::_libpthread_version = NULL;
 149 
 150 static jlong initial_time_count=0;
 151 
 152 static int clock_tics_per_sec = 100;
 153 
 154 // If the VM might have been created on the primordial thread, we need to resolve the
 155 // primordial thread stack bounds and check if the current thread might be the
 156 // primordial thread in places. If we know that the primordial thread is never used,
 157 // such as when the VM was created by one of the standard java launchers, we can
 158 // avoid this
 159 static bool suppress_primordial_thread_resolution = false;
 160 
 161 // For diagnostics to print a message once. see run_periodic_checks
 162 static sigset_t check_signal_done;
 163 static bool check_signals = true;
 164 
 165 // Signal number used to suspend/resume a thread
 166 
 167 // do not use any signal number less than SIGSEGV, see 4355769
 168 static int SR_signum = SIGUSR2;
 169 sigset_t SR_sigset;
 170 
 171 // utility functions
 172 
 173 static int SR_initialize();
 174 
 175 julong os::available_memory() {
 176   return Linux::available_memory();
 177 }
 178 
 179 julong os::Linux::available_memory() {
 180   // values in struct sysinfo are "unsigned long"
 181   struct sysinfo si;
 182   julong avail_mem;
 183 
 184   if (OSContainer::is_containerized()) {
 185     jlong mem_limit, mem_usage;
 186     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 187       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 188                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 189     }
 190     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 191       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 192     }
 193     if (mem_limit > 0 && mem_usage > 0 ) {
 194       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 195       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 196       return avail_mem;
 197     }
 198   }
 199 
 200   sysinfo(&si);
 201   avail_mem = (julong)si.freeram * si.mem_unit;
 202   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 203   return avail_mem;
 204 }
 205 
 206 julong os::physical_memory() {
 207   jlong phys_mem = 0;
 208   if (OSContainer::is_containerized()) {
 209     jlong mem_limit;
 210     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 211       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 212       return mem_limit;
 213     }
 214     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 215                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 216   }
 217 
 218   phys_mem = Linux::physical_memory();
 219   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 220   return phys_mem;
 221 }
 222 
 223 // Return true if user is running as root.
 224 
 225 bool os::have_special_privileges() {
 226   static bool init = false;
 227   static bool privileges = false;
 228   if (!init) {
 229     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 230     init = true;
 231   }
 232   return privileges;
 233 }
 234 
 235 
 236 #ifndef SYS_gettid
 237 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 238   #ifdef __ia64__
 239     #define SYS_gettid 1105
 240   #else
 241     #ifdef __i386__
 242       #define SYS_gettid 224
 243     #else
 244       #ifdef __amd64__
 245         #define SYS_gettid 186
 246       #else
 247         #ifdef __sparc__
 248           #define SYS_gettid 143
 249         #else
 250           #error define gettid for the arch
 251         #endif
 252       #endif
 253     #endif
 254   #endif
 255 #endif
 256 
 257 
 258 // pid_t gettid()
 259 //
 260 // Returns the kernel thread id of the currently running thread. Kernel
 261 // thread id is used to access /proc.
 262 pid_t os::Linux::gettid() {
 263   int rslt = syscall(SYS_gettid);
 264   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 265   return (pid_t)rslt;
 266 }
 267 
 268 // Most versions of linux have a bug where the number of processors are
 269 // determined by looking at the /proc file system.  In a chroot environment,
 270 // the system call returns 1.
 271 static bool unsafe_chroot_detected = false;
 272 static const char *unstable_chroot_error = "/proc file system not found.\n"
 273                      "Java may be unstable running multithreaded in a chroot "
 274                      "environment on Linux when /proc filesystem is not mounted.";
 275 
 276 void os::Linux::initialize_system_info() {
 277   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 278   if (processor_count() == 1) {
 279     pid_t pid = os::Linux::gettid();
 280     char fname[32];
 281     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 282     FILE *fp = fopen(fname, "r");
 283     if (fp == NULL) {
 284       unsafe_chroot_detected = true;
 285     } else {
 286       fclose(fp);
 287     }
 288   }
 289   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 290   assert(processor_count() > 0, "linux error");
 291 }
 292 
 293 void os::init_system_properties_values() {
 294   // The next steps are taken in the product version:
 295   //
 296   // Obtain the JAVA_HOME value from the location of libjvm.so.
 297   // This library should be located at:
 298   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 299   //
 300   // If "/jre/lib/" appears at the right place in the path, then we
 301   // assume libjvm.so is installed in a JDK and we use this path.
 302   //
 303   // Otherwise exit with message: "Could not create the Java virtual machine."
 304   //
 305   // The following extra steps are taken in the debugging version:
 306   //
 307   // If "/jre/lib/" does NOT appear at the right place in the path
 308   // instead of exit check for $JAVA_HOME environment variable.
 309   //
 310   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 311   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 312   // it looks like libjvm.so is installed there
 313   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 314   //
 315   // Otherwise exit.
 316   //
 317   // Important note: if the location of libjvm.so changes this
 318   // code needs to be changed accordingly.
 319 
 320   // See ld(1):
 321   //      The linker uses the following search paths to locate required
 322   //      shared libraries:
 323   //        1: ...
 324   //        ...
 325   //        7: The default directories, normally /lib and /usr/lib.
 326 #ifndef OVERRIDE_LIBPATH
 327   #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 328     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 329   #else
 330     #define DEFAULT_LIBPATH "/lib:/usr/lib"
 331   #endif
 332 #else
 333   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 334 #endif
 335 
 336 // Base path of extensions installed on the system.
 337 #define SYS_EXT_DIR     "/usr/java/packages"
 338 #define EXTENSIONS_DIR  "/lib/ext"
 339 
 340   // Buffer that fits several sprintfs.
 341   // Note that the space for the colon and the trailing null are provided
 342   // by the nulls included by the sizeof operator.
 343   const size_t bufsize =
 344     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 345          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 346   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 347 
 348   // sysclasspath, java_home, dll_dir
 349   {
 350     char *pslash;
 351     os::jvm_path(buf, bufsize);
 352 
 353     // Found the full path to libjvm.so.
 354     // Now cut the path to <java_home>/jre if we can.
 355     pslash = strrchr(buf, '/');
 356     if (pslash != NULL) {
 357       *pslash = '\0';            // Get rid of /libjvm.so.
 358     }
 359     pslash = strrchr(buf, '/');
 360     if (pslash != NULL) {
 361       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 362     }
 363     Arguments::set_dll_dir(buf);
 364 
 365     if (pslash != NULL) {
 366       pslash = strrchr(buf, '/');
 367       if (pslash != NULL) {
 368         *pslash = '\0';        // Get rid of /lib.
 369       }
 370     }
 371     Arguments::set_java_home(buf);
 372     if (!set_boot_path('/', ':')) {
 373       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 374     }
 375   }
 376 
 377   // Where to look for native libraries.
 378   //
 379   // Note: Due to a legacy implementation, most of the library path
 380   // is set in the launcher. This was to accomodate linking restrictions
 381   // on legacy Linux implementations (which are no longer supported).
 382   // Eventually, all the library path setting will be done here.
 383   //
 384   // However, to prevent the proliferation of improperly built native
 385   // libraries, the new path component /usr/java/packages is added here.
 386   // Eventually, all the library path setting will be done here.
 387   {
 388     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 389     // should always exist (until the legacy problem cited above is
 390     // addressed).
 391     const char *v = ::getenv("LD_LIBRARY_PATH");
 392     const char *v_colon = ":";
 393     if (v == NULL) { v = ""; v_colon = ""; }
 394     // That's +1 for the colon and +1 for the trailing '\0'.
 395     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 396                                                      strlen(v) + 1 +
 397                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 398                                                      mtInternal);
 399     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 400     Arguments::set_library_path(ld_library_path);
 401     FREE_C_HEAP_ARRAY(char, ld_library_path);
 402   }
 403 
 404   // Extensions directories.
 405   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 406   Arguments::set_ext_dirs(buf);
 407 
 408   FREE_C_HEAP_ARRAY(char, buf);
 409 
 410 #undef DEFAULT_LIBPATH
 411 #undef SYS_EXT_DIR
 412 #undef EXTENSIONS_DIR
 413 }
 414 
 415 ////////////////////////////////////////////////////////////////////////////////
 416 // breakpoint support
 417 
 418 void os::breakpoint() {
 419   BREAKPOINT;
 420 }
 421 
 422 extern "C" void breakpoint() {
 423   // use debugger to set breakpoint here
 424 }
 425 
 426 ////////////////////////////////////////////////////////////////////////////////
 427 // signal support
 428 
 429 debug_only(static bool signal_sets_initialized = false);
 430 static sigset_t unblocked_sigs, vm_sigs;
 431 
 432 void os::Linux::signal_sets_init() {
 433   // Should also have an assertion stating we are still single-threaded.
 434   assert(!signal_sets_initialized, "Already initialized");
 435   // Fill in signals that are necessarily unblocked for all threads in
 436   // the VM. Currently, we unblock the following signals:
 437   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 438   //                         by -Xrs (=ReduceSignalUsage));
 439   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 440   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 441   // the dispositions or masks wrt these signals.
 442   // Programs embedding the VM that want to use the above signals for their
 443   // own purposes must, at this time, use the "-Xrs" option to prevent
 444   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 445   // (See bug 4345157, and other related bugs).
 446   // In reality, though, unblocking these signals is really a nop, since
 447   // these signals are not blocked by default.
 448   sigemptyset(&unblocked_sigs);
 449   sigaddset(&unblocked_sigs, SIGILL);
 450   sigaddset(&unblocked_sigs, SIGSEGV);
 451   sigaddset(&unblocked_sigs, SIGBUS);
 452   sigaddset(&unblocked_sigs, SIGFPE);
 453 #if defined(PPC64)
 454   sigaddset(&unblocked_sigs, SIGTRAP);
 455 #endif
 456   sigaddset(&unblocked_sigs, SR_signum);
 457 
 458   if (!ReduceSignalUsage) {
 459     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 460       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 461     }
 462     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 463       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 464     }
 465     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 466       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 467     }
 468   }
 469   // Fill in signals that are blocked by all but the VM thread.
 470   sigemptyset(&vm_sigs);
 471   if (!ReduceSignalUsage) {
 472     sigaddset(&vm_sigs, BREAK_SIGNAL);
 473   }
 474   debug_only(signal_sets_initialized = true);
 475 
 476 }
 477 
 478 // These are signals that are unblocked while a thread is running Java.
 479 // (For some reason, they get blocked by default.)
 480 sigset_t* os::Linux::unblocked_signals() {
 481   assert(signal_sets_initialized, "Not initialized");
 482   return &unblocked_sigs;
 483 }
 484 
 485 // These are the signals that are blocked while a (non-VM) thread is
 486 // running Java. Only the VM thread handles these signals.
 487 sigset_t* os::Linux::vm_signals() {
 488   assert(signal_sets_initialized, "Not initialized");
 489   return &vm_sigs;
 490 }
 491 
 492 void os::Linux::hotspot_sigmask(Thread* thread) {
 493 
 494   //Save caller's signal mask before setting VM signal mask
 495   sigset_t caller_sigmask;
 496   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 497 
 498   OSThread* osthread = thread->osthread();
 499   osthread->set_caller_sigmask(caller_sigmask);
 500 
 501   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 502 
 503   if (!ReduceSignalUsage) {
 504     if (thread->is_VM_thread()) {
 505       // Only the VM thread handles BREAK_SIGNAL ...
 506       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 507     } else {
 508       // ... all other threads block BREAK_SIGNAL
 509       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 510     }
 511   }
 512 }
 513 
 514 //////////////////////////////////////////////////////////////////////////////
 515 // detecting pthread library
 516 
 517 void os::Linux::libpthread_init() {
 518   // Save glibc and pthread version strings.
 519 #if !defined(_CS_GNU_LIBC_VERSION) || \
 520     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 521   #error "glibc too old (< 2.3.2)"
 522 #endif
 523 
 524   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 525   assert(n > 0, "cannot retrieve glibc version");
 526   char *str = (char *)malloc(n, mtInternal);
 527   confstr(_CS_GNU_LIBC_VERSION, str, n);
 528   os::Linux::set_glibc_version(str);
 529 
 530   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 531   assert(n > 0, "cannot retrieve pthread version");
 532   str = (char *)malloc(n, mtInternal);
 533   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 534   os::Linux::set_libpthread_version(str);
 535 }
 536 
 537 /////////////////////////////////////////////////////////////////////////////
 538 // thread stack expansion
 539 
 540 // os::Linux::manually_expand_stack() takes care of expanding the thread
 541 // stack. Note that this is normally not needed: pthread stacks allocate
 542 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 543 // committed. Therefore it is not necessary to expand the stack manually.
 544 //
 545 // Manually expanding the stack was historically needed on LinuxThreads
 546 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 547 // it is kept to deal with very rare corner cases:
 548 //
 549 // For one, user may run the VM on an own implementation of threads
 550 // whose stacks are - like the old LinuxThreads - implemented using
 551 // mmap(MAP_GROWSDOWN).
 552 //
 553 // Also, this coding may be needed if the VM is running on the primordial
 554 // thread. Normally we avoid running on the primordial thread; however,
 555 // user may still invoke the VM on the primordial thread.
 556 //
 557 // The following historical comment describes the details about running
 558 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 559 
 560 
 561 // Force Linux kernel to expand current thread stack. If "bottom" is close
 562 // to the stack guard, caller should block all signals.
 563 //
 564 // MAP_GROWSDOWN:
 565 //   A special mmap() flag that is used to implement thread stacks. It tells
 566 //   kernel that the memory region should extend downwards when needed. This
 567 //   allows early versions of LinuxThreads to only mmap the first few pages
 568 //   when creating a new thread. Linux kernel will automatically expand thread
 569 //   stack as needed (on page faults).
 570 //
 571 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 572 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 573 //   region, it's hard to tell if the fault is due to a legitimate stack
 574 //   access or because of reading/writing non-exist memory (e.g. buffer
 575 //   overrun). As a rule, if the fault happens below current stack pointer,
 576 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 577 //   application (see Linux kernel fault.c).
 578 //
 579 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 580 //   stack overflow detection.
 581 //
 582 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 583 //   not use MAP_GROWSDOWN.
 584 //
 585 // To get around the problem and allow stack banging on Linux, we need to
 586 // manually expand thread stack after receiving the SIGSEGV.
 587 //
 588 // There are two ways to expand thread stack to address "bottom", we used
 589 // both of them in JVM before 1.5:
 590 //   1. adjust stack pointer first so that it is below "bottom", and then
 591 //      touch "bottom"
 592 //   2. mmap() the page in question
 593 //
 594 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 595 // if current sp is already near the lower end of page 101, and we need to
 596 // call mmap() to map page 100, it is possible that part of the mmap() frame
 597 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 598 // That will destroy the mmap() frame and cause VM to crash.
 599 //
 600 // The following code works by adjusting sp first, then accessing the "bottom"
 601 // page to force a page fault. Linux kernel will then automatically expand the
 602 // stack mapping.
 603 //
 604 // _expand_stack_to() assumes its frame size is less than page size, which
 605 // should always be true if the function is not inlined.
 606 
 607 static void NOINLINE _expand_stack_to(address bottom) {
 608   address sp;
 609   size_t size;
 610   volatile char *p;
 611 
 612   // Adjust bottom to point to the largest address within the same page, it
 613   // gives us a one-page buffer if alloca() allocates slightly more memory.
 614   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 615   bottom += os::Linux::page_size() - 1;
 616 
 617   // sp might be slightly above current stack pointer; if that's the case, we
 618   // will alloca() a little more space than necessary, which is OK. Don't use
 619   // os::current_stack_pointer(), as its result can be slightly below current
 620   // stack pointer, causing us to not alloca enough to reach "bottom".
 621   sp = (address)&sp;
 622 
 623   if (sp > bottom) {
 624     size = sp - bottom;
 625     p = (volatile char *)alloca(size);
 626     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 627     p[0] = '\0';
 628   }
 629 }
 630 
 631 void os::Linux::expand_stack_to(address bottom) {
 632   _expand_stack_to(bottom);
 633 }
 634 
 635 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 636   assert(t!=NULL, "just checking");
 637   assert(t->osthread()->expanding_stack(), "expand should be set");
 638   assert(t->stack_base() != NULL, "stack_base was not initialized");
 639 
 640   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 641     sigset_t mask_all, old_sigset;
 642     sigfillset(&mask_all);
 643     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 644     _expand_stack_to(addr);
 645     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 646     return true;
 647   }
 648   return false;
 649 }
 650 
 651 //////////////////////////////////////////////////////////////////////////////
 652 // create new thread
 653 
 654 // Thread start routine for all newly created threads
 655 static void *thread_native_entry(Thread *thread) {
 656 
 657   thread->record_stack_base_and_size();
 658 
 659   // Try to randomize the cache line index of hot stack frames.
 660   // This helps when threads of the same stack traces evict each other's
 661   // cache lines. The threads can be either from the same JVM instance, or
 662   // from different JVM instances. The benefit is especially true for
 663   // processors with hyperthreading technology.
 664   static int counter = 0;
 665   int pid = os::current_process_id();
 666   alloca(((pid ^ counter++) & 7) * 128);
 667 
 668   thread->initialize_thread_current();
 669 
 670   OSThread* osthread = thread->osthread();
 671   Monitor* sync = osthread->startThread_lock();
 672 
 673   osthread->set_thread_id(os::current_thread_id());
 674 
 675   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 676     os::current_thread_id(), (uintx) pthread_self());
 677 
 678   if (UseNUMA) {
 679     int lgrp_id = os::numa_get_group_id();
 680     if (lgrp_id != -1) {
 681       thread->set_lgrp_id(lgrp_id);
 682     }
 683   }
 684   // initialize signal mask for this thread
 685   os::Linux::hotspot_sigmask(thread);
 686 
 687   // initialize floating point control register
 688   os::Linux::init_thread_fpu_state();
 689 
 690   // handshaking with parent thread
 691   {
 692     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 693 
 694     // notify parent thread
 695     osthread->set_state(INITIALIZED);
 696     sync->notify_all();
 697 
 698     // wait until os::start_thread()
 699     while (osthread->get_state() == INITIALIZED) {
 700       sync->wait(Mutex::_no_safepoint_check_flag);
 701     }
 702   }
 703 
 704   // call one more level start routine
 705   thread->call_run();
 706 
 707   // Note: at this point the thread object may already have deleted itself.
 708   // Prevent dereferencing it from here on out.
 709   thread = NULL;
 710 
 711   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 712     os::current_thread_id(), (uintx) pthread_self());
 713 
 714   return 0;
 715 }
 716 
 717 bool os::create_thread(Thread* thread, ThreadType thr_type,
 718                        size_t req_stack_size) {
 719   assert(thread->osthread() == NULL, "caller responsible");
 720 
 721   // Allocate the OSThread object
 722   OSThread* osthread = new OSThread(NULL, NULL);
 723   if (osthread == NULL) {
 724     return false;
 725   }
 726 
 727   // set the correct thread state
 728   osthread->set_thread_type(thr_type);
 729 
 730   // Initial state is ALLOCATED but not INITIALIZED
 731   osthread->set_state(ALLOCATED);
 732 
 733   thread->set_osthread(osthread);
 734 
 735   // init thread attributes
 736   pthread_attr_t attr;
 737   pthread_attr_init(&attr);
 738   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 739 
 740   // Calculate stack size if it's not specified by caller.
 741   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 742   // In the Linux NPTL pthread implementation the guard size mechanism
 743   // is not implemented properly. The posix standard requires adding
 744   // the size of the guard pages to the stack size, instead Linux
 745   // takes the space out of 'stacksize'. Thus we adapt the requested
 746   // stack_size by the size of the guard pages to mimick proper
 747   // behaviour. However, be careful not to end up with a size
 748   // of zero due to overflow. Don't add the guard page in that case.
 749   size_t guard_size = os::Linux::default_guard_size(thr_type);
 750   if (stack_size <= SIZE_MAX - guard_size) {
 751     stack_size += guard_size;
 752   }
 753   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 754 
 755   int status = pthread_attr_setstacksize(&attr, stack_size);
 756   assert_status(status == 0, status, "pthread_attr_setstacksize");
 757 
 758   // Configure glibc guard page.
 759   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 760 
 761   ThreadState state;
 762 
 763   {
 764     pthread_t tid;
 765     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 766 
 767     char buf[64];
 768     if (ret == 0) {
 769       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 770         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 771     } else {
 772       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 773         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 774     }
 775 
 776     pthread_attr_destroy(&attr);
 777 
 778     if (ret != 0) {
 779       // Need to clean up stuff we've allocated so far
 780       thread->set_osthread(NULL);
 781       delete osthread;
 782       return false;
 783     }
 784 
 785     // Store pthread info into the OSThread
 786     osthread->set_pthread_id(tid);
 787 
 788     // Wait until child thread is either initialized or aborted
 789     {
 790       Monitor* sync_with_child = osthread->startThread_lock();
 791       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 792       while ((state = osthread->get_state()) == ALLOCATED) {
 793         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 794       }
 795     }
 796   }
 797 
 798   // Aborted due to thread limit being reached
 799   if (state == ZOMBIE) {
 800     thread->set_osthread(NULL);
 801     delete osthread;
 802     return false;
 803   }
 804 
 805   // The thread is returned suspended (in state INITIALIZED),
 806   // and is started higher up in the call chain
 807   assert(state == INITIALIZED, "race condition");
 808   return true;
 809 }
 810 
 811 /////////////////////////////////////////////////////////////////////////////
 812 // attach existing thread
 813 
 814 // bootstrap the main thread
 815 bool os::create_main_thread(JavaThread* thread) {
 816   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 817   return create_attached_thread(thread);
 818 }
 819 
 820 bool os::create_attached_thread(JavaThread* thread) {
 821 #ifdef ASSERT
 822   thread->verify_not_published();
 823 #endif
 824 
 825   // Allocate the OSThread object
 826   OSThread* osthread = new OSThread(NULL, NULL);
 827 
 828   if (osthread == NULL) {
 829     return false;
 830   }
 831 
 832   // Store pthread info into the OSThread
 833   osthread->set_thread_id(os::Linux::gettid());
 834   osthread->set_pthread_id(::pthread_self());
 835 
 836   // initialize floating point control register
 837   os::Linux::init_thread_fpu_state();
 838 
 839   // Initial thread state is RUNNABLE
 840   osthread->set_state(RUNNABLE);
 841 
 842   thread->set_osthread(osthread);
 843 
 844   if (UseNUMA) {
 845     int lgrp_id = os::numa_get_group_id();
 846     if (lgrp_id != -1) {
 847       thread->set_lgrp_id(lgrp_id);
 848     }
 849   }
 850 
 851   if (os::is_primordial_thread()) {
 852     // If current thread is primordial thread, its stack is mapped on demand,
 853     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 854     // the entire stack region to avoid SEGV in stack banging.
 855     // It is also useful to get around the heap-stack-gap problem on SuSE
 856     // kernel (see 4821821 for details). We first expand stack to the top
 857     // of yellow zone, then enable stack yellow zone (order is significant,
 858     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 859     // is no gap between the last two virtual memory regions.
 860 
 861     JavaThread *jt = (JavaThread *)thread;
 862     address addr = jt->stack_reserved_zone_base();
 863     assert(addr != NULL, "initialization problem?");
 864     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 865 
 866     osthread->set_expanding_stack();
 867     os::Linux::manually_expand_stack(jt, addr);
 868     osthread->clear_expanding_stack();
 869   }
 870 
 871   // initialize signal mask for this thread
 872   // and save the caller's signal mask
 873   os::Linux::hotspot_sigmask(thread);
 874 
 875   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 876     os::current_thread_id(), (uintx) pthread_self());
 877 
 878   return true;
 879 }
 880 
 881 void os::pd_start_thread(Thread* thread) {
 882   OSThread * osthread = thread->osthread();
 883   assert(osthread->get_state() != INITIALIZED, "just checking");
 884   Monitor* sync_with_child = osthread->startThread_lock();
 885   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 886   sync_with_child->notify();
 887 }
 888 
 889 // Free Linux resources related to the OSThread
 890 void os::free_thread(OSThread* osthread) {
 891   assert(osthread != NULL, "osthread not set");
 892 
 893   // We are told to free resources of the argument thread,
 894   // but we can only really operate on the current thread.
 895   assert(Thread::current()->osthread() == osthread,
 896          "os::free_thread but not current thread");
 897 
 898 #ifdef ASSERT
 899   sigset_t current;
 900   sigemptyset(&current);
 901   pthread_sigmask(SIG_SETMASK, NULL, &current);
 902   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 903 #endif
 904 
 905   // Restore caller's signal mask
 906   sigset_t sigmask = osthread->caller_sigmask();
 907   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 908 
 909   delete osthread;
 910 }
 911 
 912 //////////////////////////////////////////////////////////////////////////////
 913 // primordial thread
 914 
 915 // Check if current thread is the primordial thread, similar to Solaris thr_main.
 916 bool os::is_primordial_thread(void) {
 917   if (suppress_primordial_thread_resolution) {
 918     return false;
 919   }
 920   char dummy;
 921   // If called before init complete, thread stack bottom will be null.
 922   // Can be called if fatal error occurs before initialization.
 923   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
 924   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
 925          os::Linux::initial_thread_stack_size()   != 0,
 926          "os::init did not locate primordial thread's stack region");
 927   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
 928       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
 929                         os::Linux::initial_thread_stack_size()) {
 930     return true;
 931   } else {
 932     return false;
 933   }
 934 }
 935 
 936 // Find the virtual memory area that contains addr
 937 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 938   FILE *fp = fopen("/proc/self/maps", "r");
 939   if (fp) {
 940     address low, high;
 941     while (!feof(fp)) {
 942       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 943         if (low <= addr && addr < high) {
 944           if (vma_low)  *vma_low  = low;
 945           if (vma_high) *vma_high = high;
 946           fclose(fp);
 947           return true;
 948         }
 949       }
 950       for (;;) {
 951         int ch = fgetc(fp);
 952         if (ch == EOF || ch == (int)'\n') break;
 953       }
 954     }
 955     fclose(fp);
 956   }
 957   return false;
 958 }
 959 
 960 // Locate primordial thread stack. This special handling of primordial thread stack
 961 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 962 // bogus value for the primordial process thread. While the launcher has created
 963 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 964 // JNI invocation API from a primordial thread.
 965 void os::Linux::capture_initial_stack(size_t max_size) {
 966 
 967   // max_size is either 0 (which means accept OS default for thread stacks) or
 968   // a user-specified value known to be at least the minimum needed. If we
 969   // are actually on the primordial thread we can make it appear that we have a
 970   // smaller max_size stack by inserting the guard pages at that location. But we
 971   // cannot do anything to emulate a larger stack than what has been provided by
 972   // the OS or threading library. In fact if we try to use a stack greater than
 973   // what is set by rlimit then we will crash the hosting process.
 974 
 975   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 976   // If this is "unlimited" then it will be a huge value.
 977   struct rlimit rlim;
 978   getrlimit(RLIMIT_STACK, &rlim);
 979   size_t stack_size = rlim.rlim_cur;
 980 
 981   // 6308388: a bug in ld.so will relocate its own .data section to the
 982   //   lower end of primordial stack; reduce ulimit -s value a little bit
 983   //   so we won't install guard page on ld.so's data section.
 984   //   But ensure we don't underflow the stack size - allow 1 page spare
 985   if (stack_size >= (size_t)(3 * page_size())) {
 986     stack_size -= 2 * page_size();
 987   }
 988 
 989   // Try to figure out where the stack base (top) is. This is harder.
 990   //
 991   // When an application is started, glibc saves the initial stack pointer in
 992   // a global variable "__libc_stack_end", which is then used by system
 993   // libraries. __libc_stack_end should be pretty close to stack top. The
 994   // variable is available since the very early days. However, because it is
 995   // a private interface, it could disappear in the future.
 996   //
 997   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 998   // to __libc_stack_end, it is very close to stack top, but isn't the real
 999   // stack top. Note that /proc may not exist if VM is running as a chroot
1000   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1001   // /proc/<pid>/stat could change in the future (though unlikely).
1002   //
1003   // We try __libc_stack_end first. If that doesn't work, look for
1004   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1005   // as a hint, which should work well in most cases.
1006 
1007   uintptr_t stack_start;
1008 
1009   // try __libc_stack_end first
1010   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1011   if (p && *p) {
1012     stack_start = *p;
1013   } else {
1014     // see if we can get the start_stack field from /proc/self/stat
1015     FILE *fp;
1016     int pid;
1017     char state;
1018     int ppid;
1019     int pgrp;
1020     int session;
1021     int nr;
1022     int tpgrp;
1023     unsigned long flags;
1024     unsigned long minflt;
1025     unsigned long cminflt;
1026     unsigned long majflt;
1027     unsigned long cmajflt;
1028     unsigned long utime;
1029     unsigned long stime;
1030     long cutime;
1031     long cstime;
1032     long prio;
1033     long nice;
1034     long junk;
1035     long it_real;
1036     uintptr_t start;
1037     uintptr_t vsize;
1038     intptr_t rss;
1039     uintptr_t rsslim;
1040     uintptr_t scodes;
1041     uintptr_t ecode;
1042     int i;
1043 
1044     // Figure what the primordial thread stack base is. Code is inspired
1045     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1046     // followed by command name surrounded by parentheses, state, etc.
1047     char stat[2048];
1048     int statlen;
1049 
1050     fp = fopen("/proc/self/stat", "r");
1051     if (fp) {
1052       statlen = fread(stat, 1, 2047, fp);
1053       stat[statlen] = '\0';
1054       fclose(fp);
1055 
1056       // Skip pid and the command string. Note that we could be dealing with
1057       // weird command names, e.g. user could decide to rename java launcher
1058       // to "java 1.4.2 :)", then the stat file would look like
1059       //                1234 (java 1.4.2 :)) R ... ...
1060       // We don't really need to know the command string, just find the last
1061       // occurrence of ")" and then start parsing from there. See bug 4726580.
1062       char * s = strrchr(stat, ')');
1063 
1064       i = 0;
1065       if (s) {
1066         // Skip blank chars
1067         do { s++; } while (s && isspace(*s));
1068 
1069 #define _UFM UINTX_FORMAT
1070 #define _DFM INTX_FORMAT
1071 
1072         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1073         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1074         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1075                    &state,          // 3  %c
1076                    &ppid,           // 4  %d
1077                    &pgrp,           // 5  %d
1078                    &session,        // 6  %d
1079                    &nr,             // 7  %d
1080                    &tpgrp,          // 8  %d
1081                    &flags,          // 9  %lu
1082                    &minflt,         // 10 %lu
1083                    &cminflt,        // 11 %lu
1084                    &majflt,         // 12 %lu
1085                    &cmajflt,        // 13 %lu
1086                    &utime,          // 14 %lu
1087                    &stime,          // 15 %lu
1088                    &cutime,         // 16 %ld
1089                    &cstime,         // 17 %ld
1090                    &prio,           // 18 %ld
1091                    &nice,           // 19 %ld
1092                    &junk,           // 20 %ld
1093                    &it_real,        // 21 %ld
1094                    &start,          // 22 UINTX_FORMAT
1095                    &vsize,          // 23 UINTX_FORMAT
1096                    &rss,            // 24 INTX_FORMAT
1097                    &rsslim,         // 25 UINTX_FORMAT
1098                    &scodes,         // 26 UINTX_FORMAT
1099                    &ecode,          // 27 UINTX_FORMAT
1100                    &stack_start);   // 28 UINTX_FORMAT
1101       }
1102 
1103 #undef _UFM
1104 #undef _DFM
1105 
1106       if (i != 28 - 2) {
1107         assert(false, "Bad conversion from /proc/self/stat");
1108         // product mode - assume we are the primordial thread, good luck in the
1109         // embedded case.
1110         warning("Can't detect primordial thread stack location - bad conversion");
1111         stack_start = (uintptr_t) &rlim;
1112       }
1113     } else {
1114       // For some reason we can't open /proc/self/stat (for example, running on
1115       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1116       // most cases, so don't abort:
1117       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1118       stack_start = (uintptr_t) &rlim;
1119     }
1120   }
1121 
1122   // Now we have a pointer (stack_start) very close to the stack top, the
1123   // next thing to do is to figure out the exact location of stack top. We
1124   // can find out the virtual memory area that contains stack_start by
1125   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1126   // and its upper limit is the real stack top. (again, this would fail if
1127   // running inside chroot, because /proc may not exist.)
1128 
1129   uintptr_t stack_top;
1130   address low, high;
1131   if (find_vma((address)stack_start, &low, &high)) {
1132     // success, "high" is the true stack top. (ignore "low", because initial
1133     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1134     stack_top = (uintptr_t)high;
1135   } else {
1136     // failed, likely because /proc/self/maps does not exist
1137     warning("Can't detect primordial thread stack location - find_vma failed");
1138     // best effort: stack_start is normally within a few pages below the real
1139     // stack top, use it as stack top, and reduce stack size so we won't put
1140     // guard page outside stack.
1141     stack_top = stack_start;
1142     stack_size -= 16 * page_size();
1143   }
1144 
1145   // stack_top could be partially down the page so align it
1146   stack_top = align_up(stack_top, page_size());
1147 
1148   // Allowed stack value is minimum of max_size and what we derived from rlimit
1149   if (max_size > 0) {
1150     _initial_thread_stack_size = MIN2(max_size, stack_size);
1151   } else {
1152     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1153     // clamp it at 8MB as we do on Solaris
1154     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1155   }
1156   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1157   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1158 
1159   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1160 
1161   if (log_is_enabled(Info, os, thread)) {
1162     // See if we seem to be on primordial process thread
1163     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1164                       uintptr_t(&rlim) < stack_top;
1165 
1166     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1167                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1168                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1169                          stack_top, intptr_t(_initial_thread_stack_bottom));
1170   }
1171 }
1172 
1173 ////////////////////////////////////////////////////////////////////////////////
1174 // time support
1175 
1176 #ifndef SUPPORTS_CLOCK_MONOTONIC
1177 #error "Build platform doesn't support clock_gettime and related functionality"
1178 #endif
1179 
1180 // Time since start-up in seconds to a fine granularity.
1181 // Used by VMSelfDestructTimer and the MemProfiler.
1182 double os::elapsedTime() {
1183 
1184   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1185 }
1186 
1187 jlong os::elapsed_counter() {
1188   return javaTimeNanos() - initial_time_count;
1189 }
1190 
1191 jlong os::elapsed_frequency() {
1192   return NANOSECS_PER_SEC; // nanosecond resolution
1193 }
1194 
1195 bool os::supports_vtime() { return true; }
1196 bool os::enable_vtime()   { return false; }
1197 bool os::vtime_enabled()  { return false; }
1198 
1199 double os::elapsedVTime() {
1200   struct rusage usage;
1201   int retval = getrusage(RUSAGE_THREAD, &usage);
1202   if (retval == 0) {
1203     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1204   } else {
1205     // better than nothing, but not much
1206     return elapsedTime();
1207   }
1208 }
1209 
1210 jlong os::javaTimeMillis() {
1211   timeval time;
1212   int status = gettimeofday(&time, NULL);
1213   assert(status != -1, "linux error");
1214   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1215 }
1216 
1217 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1218   timeval time;
1219   int status = gettimeofday(&time, NULL);
1220   assert(status != -1, "linux error");
1221   seconds = jlong(time.tv_sec);
1222   nanos = jlong(time.tv_usec) * 1000;
1223 }
1224 
1225 void os::Linux::fast_thread_clock_init() {
1226   if (!UseLinuxPosixThreadCPUClocks) {
1227     return;
1228   }
1229   clockid_t clockid;
1230   struct timespec tp;
1231   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1232       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1233 
1234   // Switch to using fast clocks for thread cpu time if
1235   // the clock_getres() returns 0 error code.
1236   // Note, that some kernels may support the current thread
1237   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1238   // returned by the pthread_getcpuclockid().
1239   // If the fast Posix clocks are supported then the clock_getres()
1240   // must return at least tp.tv_sec == 0 which means a resolution
1241   // better than 1 sec. This is extra check for reliability.
1242 
1243   if (pthread_getcpuclockid_func &&
1244       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1245       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1246     _supports_fast_thread_cpu_time = true;
1247     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1248   }
1249 }
1250 
1251 jlong os::javaTimeNanos() {
1252   if (os::supports_monotonic_clock()) {
1253     struct timespec tp;
1254     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1255     assert(status == 0, "gettime error");
1256     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1257     return result;
1258   } else {
1259     timeval time;
1260     int status = gettimeofday(&time, NULL);
1261     assert(status != -1, "linux error");
1262     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1263     return 1000 * usecs;
1264   }
1265 }
1266 
1267 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1268   if (os::supports_monotonic_clock()) {
1269     info_ptr->max_value = ALL_64_BITS;
1270 
1271     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1272     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1273     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1274   } else {
1275     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1276     info_ptr->max_value = ALL_64_BITS;
1277 
1278     // gettimeofday is a real time clock so it skips
1279     info_ptr->may_skip_backward = true;
1280     info_ptr->may_skip_forward = true;
1281   }
1282 
1283   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1284 }
1285 
1286 // Return the real, user, and system times in seconds from an
1287 // arbitrary fixed point in the past.
1288 bool os::getTimesSecs(double* process_real_time,
1289                       double* process_user_time,
1290                       double* process_system_time) {
1291   struct tms ticks;
1292   clock_t real_ticks = times(&ticks);
1293 
1294   if (real_ticks == (clock_t) (-1)) {
1295     return false;
1296   } else {
1297     double ticks_per_second = (double) clock_tics_per_sec;
1298     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1299     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1300     *process_real_time = ((double) real_ticks) / ticks_per_second;
1301 
1302     return true;
1303   }
1304 }
1305 
1306 
1307 char * os::local_time_string(char *buf, size_t buflen) {
1308   struct tm t;
1309   time_t long_time;
1310   time(&long_time);
1311   localtime_r(&long_time, &t);
1312   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1313                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1314                t.tm_hour, t.tm_min, t.tm_sec);
1315   return buf;
1316 }
1317 
1318 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1319   return localtime_r(clock, res);
1320 }
1321 
1322 ////////////////////////////////////////////////////////////////////////////////
1323 // runtime exit support
1324 
1325 // Note: os::shutdown() might be called very early during initialization, or
1326 // called from signal handler. Before adding something to os::shutdown(), make
1327 // sure it is async-safe and can handle partially initialized VM.
1328 void os::shutdown() {
1329 
1330   // allow PerfMemory to attempt cleanup of any persistent resources
1331   perfMemory_exit();
1332 
1333   // needs to remove object in file system
1334   AttachListener::abort();
1335 
1336   // flush buffered output, finish log files
1337   ostream_abort();
1338 
1339   // Check for abort hook
1340   abort_hook_t abort_hook = Arguments::abort_hook();
1341   if (abort_hook != NULL) {
1342     abort_hook();
1343   }
1344 
1345 }
1346 
1347 // Note: os::abort() might be called very early during initialization, or
1348 // called from signal handler. Before adding something to os::abort(), make
1349 // sure it is async-safe and can handle partially initialized VM.
1350 void os::abort(bool dump_core, void* siginfo, const void* context) {
1351   os::shutdown();
1352   if (dump_core) {
1353 #ifndef PRODUCT
1354     fdStream out(defaultStream::output_fd());
1355     out.print_raw("Current thread is ");
1356     char buf[16];
1357     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1358     out.print_raw_cr(buf);
1359     out.print_raw_cr("Dumping core ...");
1360 #endif
1361     ::abort(); // dump core
1362   }
1363 
1364   ::exit(1);
1365 }
1366 
1367 // Die immediately, no exit hook, no abort hook, no cleanup.
1368 void os::die() {
1369   ::abort();
1370 }
1371 
1372 // thread_id is kernel thread id (similar to Solaris LWP id)
1373 intx os::current_thread_id() { return os::Linux::gettid(); }
1374 int os::current_process_id() {
1375   return ::getpid();
1376 }
1377 
1378 // DLL functions
1379 
1380 const char* os::dll_file_extension() { return ".so"; }
1381 
1382 // This must be hard coded because it's the system's temporary
1383 // directory not the java application's temp directory, ala java.io.tmpdir.
1384 const char* os::get_temp_directory() { return "/tmp"; }
1385 
1386 static bool file_exists(const char* filename) {
1387   struct stat statbuf;
1388   if (filename == NULL || strlen(filename) == 0) {
1389     return false;
1390   }
1391   return os::stat(filename, &statbuf) == 0;
1392 }
1393 
1394 // check if addr is inside libjvm.so
1395 bool os::address_is_in_vm(address addr) {
1396   static address libjvm_base_addr;
1397   Dl_info dlinfo;
1398 
1399   if (libjvm_base_addr == NULL) {
1400     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1401       libjvm_base_addr = (address)dlinfo.dli_fbase;
1402     }
1403     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1404   }
1405 
1406   if (dladdr((void *)addr, &dlinfo) != 0) {
1407     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1408   }
1409 
1410   return false;
1411 }
1412 
1413 bool os::dll_address_to_function_name(address addr, char *buf,
1414                                       int buflen, int *offset,
1415                                       bool demangle) {
1416   // buf is not optional, but offset is optional
1417   assert(buf != NULL, "sanity check");
1418 
1419   Dl_info dlinfo;
1420 
1421   if (dladdr((void*)addr, &dlinfo) != 0) {
1422     // see if we have a matching symbol
1423     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1424       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1425         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1426       }
1427       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1428       return true;
1429     }
1430     // no matching symbol so try for just file info
1431     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1432       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1433                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1434         return true;
1435       }
1436     }
1437   }
1438 
1439   buf[0] = '\0';
1440   if (offset != NULL) *offset = -1;
1441   return false;
1442 }
1443 
1444 struct _address_to_library_name {
1445   address addr;          // input : memory address
1446   size_t  buflen;        //         size of fname
1447   char*   fname;         // output: library name
1448   address base;          //         library base addr
1449 };
1450 
1451 static int address_to_library_name_callback(struct dl_phdr_info *info,
1452                                             size_t size, void *data) {
1453   int i;
1454   bool found = false;
1455   address libbase = NULL;
1456   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1457 
1458   // iterate through all loadable segments
1459   for (i = 0; i < info->dlpi_phnum; i++) {
1460     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1461     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1462       // base address of a library is the lowest address of its loaded
1463       // segments.
1464       if (libbase == NULL || libbase > segbase) {
1465         libbase = segbase;
1466       }
1467       // see if 'addr' is within current segment
1468       if (segbase <= d->addr &&
1469           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1470         found = true;
1471       }
1472     }
1473   }
1474 
1475   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1476   // so dll_address_to_library_name() can fall through to use dladdr() which
1477   // can figure out executable name from argv[0].
1478   if (found && info->dlpi_name && info->dlpi_name[0]) {
1479     d->base = libbase;
1480     if (d->fname) {
1481       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1482     }
1483     return 1;
1484   }
1485   return 0;
1486 }
1487 
1488 bool os::dll_address_to_library_name(address addr, char* buf,
1489                                      int buflen, int* offset) {
1490   // buf is not optional, but offset is optional
1491   assert(buf != NULL, "sanity check");
1492 
1493   Dl_info dlinfo;
1494   struct _address_to_library_name data;
1495 
1496   // There is a bug in old glibc dladdr() implementation that it could resolve
1497   // to wrong library name if the .so file has a base address != NULL. Here
1498   // we iterate through the program headers of all loaded libraries to find
1499   // out which library 'addr' really belongs to. This workaround can be
1500   // removed once the minimum requirement for glibc is moved to 2.3.x.
1501   data.addr = addr;
1502   data.fname = buf;
1503   data.buflen = buflen;
1504   data.base = NULL;
1505   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1506 
1507   if (rslt) {
1508     // buf already contains library name
1509     if (offset) *offset = addr - data.base;
1510     return true;
1511   }
1512   if (dladdr((void*)addr, &dlinfo) != 0) {
1513     if (dlinfo.dli_fname != NULL) {
1514       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1515     }
1516     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1517       *offset = addr - (address)dlinfo.dli_fbase;
1518     }
1519     return true;
1520   }
1521 
1522   buf[0] = '\0';
1523   if (offset) *offset = -1;
1524   return false;
1525 }
1526 
1527 // Loads .dll/.so and
1528 // in case of error it checks if .dll/.so was built for the
1529 // same architecture as Hotspot is running on
1530 
1531 
1532 // Remember the stack's state. The Linux dynamic linker will change
1533 // the stack to 'executable' at most once, so we must safepoint only once.
1534 bool os::Linux::_stack_is_executable = false;
1535 
1536 // VM operation that loads a library.  This is necessary if stack protection
1537 // of the Java stacks can be lost during loading the library.  If we
1538 // do not stop the Java threads, they can stack overflow before the stacks
1539 // are protected again.
1540 class VM_LinuxDllLoad: public VM_Operation {
1541  private:
1542   const char *_filename;
1543   char *_ebuf;
1544   int _ebuflen;
1545   void *_lib;
1546  public:
1547   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1548     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1549   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1550   void doit() {
1551     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1552     os::Linux::_stack_is_executable = true;
1553   }
1554   void* loaded_library() { return _lib; }
1555 };
1556 
1557 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1558   void * result = NULL;
1559   bool load_attempted = false;
1560 
1561   // Check whether the library to load might change execution rights
1562   // of the stack. If they are changed, the protection of the stack
1563   // guard pages will be lost. We need a safepoint to fix this.
1564   //
1565   // See Linux man page execstack(8) for more info.
1566   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1567     if (!ElfFile::specifies_noexecstack(filename)) {
1568       if (!is_init_completed()) {
1569         os::Linux::_stack_is_executable = true;
1570         // This is OK - No Java threads have been created yet, and hence no
1571         // stack guard pages to fix.
1572         //
1573         // Dynamic loader will make all stacks executable after
1574         // this function returns, and will not do that again.
1575         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1576       } else {
1577         warning("You have loaded library %s which might have disabled stack guard. "
1578                 "The VM will try to fix the stack guard now.\n"
1579                 "It's highly recommended that you fix the library with "
1580                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1581                 filename);
1582 
1583         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1584         JavaThread *jt = JavaThread::current();
1585         if (jt->thread_state() != _thread_in_native) {
1586           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1587           // that requires ExecStack. Cannot enter safe point. Let's give up.
1588           warning("Unable to fix stack guard. Giving up.");
1589         } else {
1590           if (!LoadExecStackDllInVMThread) {
1591             // This is for the case where the DLL has an static
1592             // constructor function that executes JNI code. We cannot
1593             // load such DLLs in the VMThread.
1594             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1595           }
1596 
1597           ThreadInVMfromNative tiv(jt);
1598           debug_only(VMNativeEntryWrapper vew;)
1599 
1600           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1601           VMThread::execute(&op);
1602           if (LoadExecStackDllInVMThread) {
1603             result = op.loaded_library();
1604           }
1605           load_attempted = true;
1606         }
1607       }
1608     }
1609   }
1610 
1611   if (!load_attempted) {
1612     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1613   }
1614 
1615   if (result != NULL) {
1616     // Successful loading
1617     return result;
1618   }
1619 
1620   Elf32_Ehdr elf_head;
1621   int diag_msg_max_length=ebuflen-strlen(ebuf);
1622   char* diag_msg_buf=ebuf+strlen(ebuf);
1623 
1624   if (diag_msg_max_length==0) {
1625     // No more space in ebuf for additional diagnostics message
1626     return NULL;
1627   }
1628 
1629 
1630   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1631 
1632   if (file_descriptor < 0) {
1633     // Can't open library, report dlerror() message
1634     return NULL;
1635   }
1636 
1637   bool failed_to_read_elf_head=
1638     (sizeof(elf_head)!=
1639      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1640 
1641   ::close(file_descriptor);
1642   if (failed_to_read_elf_head) {
1643     // file i/o error - report dlerror() msg
1644     return NULL;
1645   }
1646 
1647   typedef struct {
1648     Elf32_Half    code;         // Actual value as defined in elf.h
1649     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1650     unsigned char elf_class;    // 32 or 64 bit
1651     unsigned char endianess;    // MSB or LSB
1652     char*         name;         // String representation
1653   } arch_t;
1654 
1655 #ifndef EM_486
1656   #define EM_486          6               /* Intel 80486 */
1657 #endif
1658 #ifndef EM_AARCH64
1659   #define EM_AARCH64    183               /* ARM AARCH64 */
1660 #endif
1661 
1662   static const arch_t arch_array[]={
1663     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1664     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1665     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1666     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1667     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1668     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1669     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1670     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1671 #if defined(VM_LITTLE_ENDIAN)
1672     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1673     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1674 #else
1675     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1676     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1677 #endif
1678     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1679     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1680     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1681     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1682     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1683     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1684     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1685     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1686   };
1687 
1688 #if  (defined IA32)
1689   static  Elf32_Half running_arch_code=EM_386;
1690 #elif   (defined AMD64) || (defined X32)
1691   static  Elf32_Half running_arch_code=EM_X86_64;
1692 #elif  (defined IA64)
1693   static  Elf32_Half running_arch_code=EM_IA_64;
1694 #elif  (defined __sparc) && (defined _LP64)
1695   static  Elf32_Half running_arch_code=EM_SPARCV9;
1696 #elif  (defined __sparc) && (!defined _LP64)
1697   static  Elf32_Half running_arch_code=EM_SPARC;
1698 #elif  (defined __powerpc64__)
1699   static  Elf32_Half running_arch_code=EM_PPC64;
1700 #elif  (defined __powerpc__)
1701   static  Elf32_Half running_arch_code=EM_PPC;
1702 #elif  (defined AARCH64)
1703   static  Elf32_Half running_arch_code=EM_AARCH64;
1704 #elif  (defined ARM)
1705   static  Elf32_Half running_arch_code=EM_ARM;
1706 #elif  (defined S390)
1707   static  Elf32_Half running_arch_code=EM_S390;
1708 #elif  (defined ALPHA)
1709   static  Elf32_Half running_arch_code=EM_ALPHA;
1710 #elif  (defined MIPSEL)
1711   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1712 #elif  (defined PARISC)
1713   static  Elf32_Half running_arch_code=EM_PARISC;
1714 #elif  (defined MIPS)
1715   static  Elf32_Half running_arch_code=EM_MIPS;
1716 #elif  (defined M68K)
1717   static  Elf32_Half running_arch_code=EM_68K;
1718 #elif  (defined SH)
1719   static  Elf32_Half running_arch_code=EM_SH;
1720 #else
1721     #error Method os::dll_load requires that one of following is defined:\
1722         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1723 #endif
1724 
1725   // Identify compatability class for VM's architecture and library's architecture
1726   // Obtain string descriptions for architectures
1727 
1728   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1729   int running_arch_index=-1;
1730 
1731   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1732     if (running_arch_code == arch_array[i].code) {
1733       running_arch_index    = i;
1734     }
1735     if (lib_arch.code == arch_array[i].code) {
1736       lib_arch.compat_class = arch_array[i].compat_class;
1737       lib_arch.name         = arch_array[i].name;
1738     }
1739   }
1740 
1741   assert(running_arch_index != -1,
1742          "Didn't find running architecture code (running_arch_code) in arch_array");
1743   if (running_arch_index == -1) {
1744     // Even though running architecture detection failed
1745     // we may still continue with reporting dlerror() message
1746     return NULL;
1747   }
1748 
1749   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1750     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1751     return NULL;
1752   }
1753 
1754 #ifndef S390
1755   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1756     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1757     return NULL;
1758   }
1759 #endif // !S390
1760 
1761   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1762     if (lib_arch.name!=NULL) {
1763       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1764                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1765                  lib_arch.name, arch_array[running_arch_index].name);
1766     } else {
1767       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1768                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1769                  lib_arch.code,
1770                  arch_array[running_arch_index].name);
1771     }
1772   }
1773 
1774   return NULL;
1775 }
1776 
1777 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1778                                 int ebuflen) {
1779   void * result = ::dlopen(filename, RTLD_LAZY);
1780   if (result == NULL) {
1781     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1782     ebuf[ebuflen-1] = '\0';
1783   }
1784   return result;
1785 }
1786 
1787 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1788                                        int ebuflen) {
1789   void * result = NULL;
1790   if (LoadExecStackDllInVMThread) {
1791     result = dlopen_helper(filename, ebuf, ebuflen);
1792   }
1793 
1794   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1795   // library that requires an executable stack, or which does not have this
1796   // stack attribute set, dlopen changes the stack attribute to executable. The
1797   // read protection of the guard pages gets lost.
1798   //
1799   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1800   // may have been queued at the same time.
1801 
1802   if (!_stack_is_executable) {
1803     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1804       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1805           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1806         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1807           warning("Attempt to reguard stack yellow zone failed.");
1808         }
1809       }
1810     }
1811   }
1812 
1813   return result;
1814 }
1815 
1816 void* os::dll_lookup(void* handle, const char* name) {
1817   void* res = dlsym(handle, name);
1818   return res;
1819 }
1820 
1821 void* os::get_default_process_handle() {
1822   return (void*)::dlopen(NULL, RTLD_LAZY);
1823 }
1824 
1825 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
1826   int fd = ::open(filename, O_RDONLY);
1827   if (fd == -1) {
1828     return false;
1829   }
1830 
1831   if (hdr != NULL) {
1832     st->print_cr("%s", hdr);
1833   }
1834 
1835   char buf[33];
1836   int bytes;
1837   buf[32] = '\0';
1838   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1839     st->print_raw(buf, bytes);
1840   }
1841 
1842   ::close(fd);
1843 
1844   return true;
1845 }
1846 
1847 void os::print_dll_info(outputStream *st) {
1848   st->print_cr("Dynamic libraries:");
1849 
1850   char fname[32];
1851   pid_t pid = os::Linux::gettid();
1852 
1853   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1854 
1855   if (!_print_ascii_file(fname, st)) {
1856     st->print("Can not get library information for pid = %d\n", pid);
1857   }
1858 }
1859 
1860 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1861   FILE *procmapsFile = NULL;
1862 
1863   // Open the procfs maps file for the current process
1864   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1865     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1866     char line[PATH_MAX + 100];
1867 
1868     // Read line by line from 'file'
1869     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1870       u8 base, top, offset, inode;
1871       char permissions[5];
1872       char device[6];
1873       char name[PATH_MAX + 1];
1874 
1875       // Parse fields from line
1876       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1877              &base, &top, permissions, &offset, device, &inode, name);
1878 
1879       // Filter by device id '00:00' so that we only get file system mapped files.
1880       if (strcmp(device, "00:00") != 0) {
1881 
1882         // Call callback with the fields of interest
1883         if(callback(name, (address)base, (address)top, param)) {
1884           // Oops abort, callback aborted
1885           fclose(procmapsFile);
1886           return 1;
1887         }
1888       }
1889     }
1890     fclose(procmapsFile);
1891   }
1892   return 0;
1893 }
1894 
1895 void os::print_os_info_brief(outputStream* st) {
1896   os::Linux::print_distro_info(st);
1897 
1898   os::Posix::print_uname_info(st);
1899 
1900   os::Linux::print_libversion_info(st);
1901 
1902 }
1903 
1904 void os::print_os_info(outputStream* st) {
1905   st->print("OS:");
1906 
1907   os::Linux::print_distro_info(st);
1908 
1909   os::Posix::print_uname_info(st);
1910 
1911   // Print warning if unsafe chroot environment detected
1912   if (unsafe_chroot_detected) {
1913     st->print("WARNING!! ");
1914     st->print_cr("%s", unstable_chroot_error);
1915   }
1916 
1917   os::Linux::print_libversion_info(st);
1918 
1919   os::Posix::print_rlimit_info(st);
1920 
1921   os::Posix::print_load_average(st);
1922 
1923   os::Linux::print_full_memory_info(st);
1924 
1925   os::Linux::print_proc_sys_info(st);
1926 
1927   os::Linux::print_ld_preload_file(st);
1928 
1929   os::Linux::print_container_info(st);
1930 }
1931 
1932 // Try to identify popular distros.
1933 // Most Linux distributions have a /etc/XXX-release file, which contains
1934 // the OS version string. Newer Linux distributions have a /etc/lsb-release
1935 // file that also contains the OS version string. Some have more than one
1936 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1937 // /etc/redhat-release.), so the order is important.
1938 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1939 // their own specific XXX-release file as well as a redhat-release file.
1940 // Because of this the XXX-release file needs to be searched for before the
1941 // redhat-release file.
1942 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
1943 // search for redhat-release / SuSE-release needs to be before lsb-release.
1944 // Since the lsb-release file is the new standard it needs to be searched
1945 // before the older style release files.
1946 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
1947 // next to last resort.  The os-release file is a new standard that contains
1948 // distribution information and the system-release file seems to be an old
1949 // standard that has been replaced by the lsb-release and os-release files.
1950 // Searching for the debian_version file is the last resort.  It contains
1951 // an informative string like "6.0.6" or "wheezy/sid". Because of this
1952 // "Debian " is printed before the contents of the debian_version file.
1953 
1954 const char* distro_files[] = {
1955   "/etc/oracle-release",
1956   "/etc/mandriva-release",
1957   "/etc/mandrake-release",
1958   "/etc/sun-release",
1959   "/etc/redhat-release",
1960   "/etc/SuSE-release",
1961   "/etc/lsb-release",
1962   "/etc/turbolinux-release",
1963   "/etc/gentoo-release",
1964   "/etc/ltib-release",
1965   "/etc/angstrom-version",
1966   "/etc/system-release",
1967   "/etc/os-release",
1968   NULL };
1969 
1970 void os::Linux::print_distro_info(outputStream* st) {
1971   for (int i = 0;; i++) {
1972     const char* file = distro_files[i];
1973     if (file == NULL) {
1974       break;  // done
1975     }
1976     // If file prints, we found it.
1977     if (_print_ascii_file(file, st)) {
1978       return;
1979     }
1980   }
1981 
1982   if (file_exists("/etc/debian_version")) {
1983     st->print("Debian ");
1984     _print_ascii_file("/etc/debian_version", st);
1985   } else {
1986     st->print("Linux");
1987   }
1988   st->cr();
1989 }
1990 
1991 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
1992   char buf[256];
1993   while (fgets(buf, sizeof(buf), fp)) {
1994     // Edit out extra stuff in expected format
1995     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
1996       char* ptr = strstr(buf, "\"");  // the name is in quotes
1997       if (ptr != NULL) {
1998         ptr++; // go beyond first quote
1999         char* nl = strchr(ptr, '\"');
2000         if (nl != NULL) *nl = '\0';
2001         strncpy(distro, ptr, length);
2002       } else {
2003         ptr = strstr(buf, "=");
2004         ptr++; // go beyond equals then
2005         char* nl = strchr(ptr, '\n');
2006         if (nl != NULL) *nl = '\0';
2007         strncpy(distro, ptr, length);
2008       }
2009       return;
2010     } else if (get_first_line) {
2011       char* nl = strchr(buf, '\n');
2012       if (nl != NULL) *nl = '\0';
2013       strncpy(distro, buf, length);
2014       return;
2015     }
2016   }
2017   // print last line and close
2018   char* nl = strchr(buf, '\n');
2019   if (nl != NULL) *nl = '\0';
2020   strncpy(distro, buf, length);
2021 }
2022 
2023 static void parse_os_info(char* distro, size_t length, const char* file) {
2024   FILE* fp = fopen(file, "r");
2025   if (fp != NULL) {
2026     // if suse format, print out first line
2027     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2028     parse_os_info_helper(fp, distro, length, get_first_line);
2029     fclose(fp);
2030   }
2031 }
2032 
2033 void os::get_summary_os_info(char* buf, size_t buflen) {
2034   for (int i = 0;; i++) {
2035     const char* file = distro_files[i];
2036     if (file == NULL) {
2037       break; // ran out of distro_files
2038     }
2039     if (file_exists(file)) {
2040       parse_os_info(buf, buflen, file);
2041       return;
2042     }
2043   }
2044   // special case for debian
2045   if (file_exists("/etc/debian_version")) {
2046     strncpy(buf, "Debian ", buflen);
2047     if (buflen > 7) {
2048       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2049     }
2050   } else {
2051     strncpy(buf, "Linux", buflen);
2052   }
2053 }
2054 
2055 void os::Linux::print_libversion_info(outputStream* st) {
2056   // libc, pthread
2057   st->print("libc:");
2058   st->print("%s ", os::Linux::glibc_version());
2059   st->print("%s ", os::Linux::libpthread_version());
2060   st->cr();
2061 }
2062 
2063 void os::Linux::print_proc_sys_info(outputStream* st) {
2064   st->cr();
2065   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2066   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2067   st->cr();
2068   st->cr();
2069 
2070   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2071   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2072   st->cr();
2073   st->cr();
2074 
2075   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2076   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2077   st->cr();
2078   st->cr();
2079 }
2080 
2081 void os::Linux::print_full_memory_info(outputStream* st) {
2082   st->print("\n/proc/meminfo:\n");
2083   _print_ascii_file("/proc/meminfo", st);
2084   st->cr();
2085 }
2086 
2087 void os::Linux::print_ld_preload_file(outputStream* st) {
2088   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2089   st->cr();
2090 }
2091 
2092 void os::Linux::print_container_info(outputStream* st) {
2093   if (!OSContainer::is_containerized()) {
2094     return;
2095   }
2096 
2097   st->print("container (cgroup) information:\n");
2098 
2099   const char *p_ct = OSContainer::container_type();
2100   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2101 
2102   char *p = OSContainer::cpu_cpuset_cpus();
2103   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2104   free(p);
2105 
2106   p = OSContainer::cpu_cpuset_memory_nodes();
2107   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2108   free(p);
2109 
2110   int i = OSContainer::active_processor_count();
2111   if (i > 0) {
2112     st->print("active_processor_count: %d\n", i);
2113   } else {
2114     st->print("active_processor_count: failed\n");
2115   }
2116 
2117   i = OSContainer::cpu_quota();
2118   st->print("cpu_quota: %d\n", i);
2119 
2120   i = OSContainer::cpu_period();
2121   st->print("cpu_period: %d\n", i);
2122 
2123   i = OSContainer::cpu_shares();
2124   st->print("cpu_shares: %d\n", i);
2125 
2126   jlong j = OSContainer::memory_limit_in_bytes();
2127   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2128 
2129   j = OSContainer::memory_and_swap_limit_in_bytes();
2130   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2131 
2132   j = OSContainer::memory_soft_limit_in_bytes();
2133   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2134 
2135   j = OSContainer::OSContainer::memory_usage_in_bytes();
2136   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2137 
2138   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2139   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2140   st->cr();
2141 }
2142 
2143 void os::print_memory_info(outputStream* st) {
2144 
2145   st->print("Memory:");
2146   st->print(" %dk page", os::vm_page_size()>>10);
2147 
2148   // values in struct sysinfo are "unsigned long"
2149   struct sysinfo si;
2150   sysinfo(&si);
2151 
2152   st->print(", physical " UINT64_FORMAT "k",
2153             os::physical_memory() >> 10);
2154   st->print("(" UINT64_FORMAT "k free)",
2155             os::available_memory() >> 10);
2156   st->print(", swap " UINT64_FORMAT "k",
2157             ((jlong)si.totalswap * si.mem_unit) >> 10);
2158   st->print("(" UINT64_FORMAT "k free)",
2159             ((jlong)si.freeswap * si.mem_unit) >> 10);
2160   st->cr();
2161 }
2162 
2163 // Print the first "model name" line and the first "flags" line
2164 // that we find and nothing more. We assume "model name" comes
2165 // before "flags" so if we find a second "model name", then the
2166 // "flags" field is considered missing.
2167 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2168 #if defined(IA32) || defined(AMD64)
2169   // Other platforms have less repetitive cpuinfo files
2170   FILE *fp = fopen("/proc/cpuinfo", "r");
2171   if (fp) {
2172     while (!feof(fp)) {
2173       if (fgets(buf, buflen, fp)) {
2174         // Assume model name comes before flags
2175         bool model_name_printed = false;
2176         if (strstr(buf, "model name") != NULL) {
2177           if (!model_name_printed) {
2178             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2179             st->print_raw(buf);
2180             model_name_printed = true;
2181           } else {
2182             // model name printed but not flags?  Odd, just return
2183             fclose(fp);
2184             return true;
2185           }
2186         }
2187         // print the flags line too
2188         if (strstr(buf, "flags") != NULL) {
2189           st->print_raw(buf);
2190           fclose(fp);
2191           return true;
2192         }
2193       }
2194     }
2195     fclose(fp);
2196   }
2197 #endif // x86 platforms
2198   return false;
2199 }
2200 
2201 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2202   // Only print the model name if the platform provides this as a summary
2203   if (!print_model_name_and_flags(st, buf, buflen)) {
2204     st->print("\n/proc/cpuinfo:\n");
2205     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2206       st->print_cr("  <Not Available>");
2207     }
2208   }
2209 }
2210 
2211 #if defined(AMD64) || defined(IA32) || defined(X32)
2212 const char* search_string = "model name";
2213 #elif defined(M68K)
2214 const char* search_string = "CPU";
2215 #elif defined(PPC64)
2216 const char* search_string = "cpu";
2217 #elif defined(S390)
2218 const char* search_string = "processor";
2219 #elif defined(SPARC)
2220 const char* search_string = "cpu";
2221 #else
2222 const char* search_string = "Processor";
2223 #endif
2224 
2225 // Parses the cpuinfo file for string representing the model name.
2226 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2227   FILE* fp = fopen("/proc/cpuinfo", "r");
2228   if (fp != NULL) {
2229     while (!feof(fp)) {
2230       char buf[256];
2231       if (fgets(buf, sizeof(buf), fp)) {
2232         char* start = strstr(buf, search_string);
2233         if (start != NULL) {
2234           char *ptr = start + strlen(search_string);
2235           char *end = buf + strlen(buf);
2236           while (ptr != end) {
2237              // skip whitespace and colon for the rest of the name.
2238              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2239                break;
2240              }
2241              ptr++;
2242           }
2243           if (ptr != end) {
2244             // reasonable string, get rid of newline and keep the rest
2245             char* nl = strchr(buf, '\n');
2246             if (nl != NULL) *nl = '\0';
2247             strncpy(cpuinfo, ptr, length);
2248             fclose(fp);
2249             return;
2250           }
2251         }
2252       }
2253     }
2254     fclose(fp);
2255   }
2256   // cpuinfo not found or parsing failed, just print generic string.  The entire
2257   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2258 #if   defined(AARCH64)
2259   strncpy(cpuinfo, "AArch64", length);
2260 #elif defined(AMD64)
2261   strncpy(cpuinfo, "x86_64", length);
2262 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2263   strncpy(cpuinfo, "ARM", length);
2264 #elif defined(IA32)
2265   strncpy(cpuinfo, "x86_32", length);
2266 #elif defined(IA64)
2267   strncpy(cpuinfo, "IA64", length);
2268 #elif defined(PPC)
2269   strncpy(cpuinfo, "PPC64", length);
2270 #elif defined(S390)
2271   strncpy(cpuinfo, "S390", length);
2272 #elif defined(SPARC)
2273   strncpy(cpuinfo, "sparcv9", length);
2274 #elif defined(ZERO_LIBARCH)
2275   strncpy(cpuinfo, ZERO_LIBARCH, length);
2276 #else
2277   strncpy(cpuinfo, "unknown", length);
2278 #endif
2279 }
2280 
2281 static void print_signal_handler(outputStream* st, int sig,
2282                                  char* buf, size_t buflen);
2283 
2284 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2285   st->print_cr("Signal Handlers:");
2286   print_signal_handler(st, SIGSEGV, buf, buflen);
2287   print_signal_handler(st, SIGBUS , buf, buflen);
2288   print_signal_handler(st, SIGFPE , buf, buflen);
2289   print_signal_handler(st, SIGPIPE, buf, buflen);
2290   print_signal_handler(st, SIGXFSZ, buf, buflen);
2291   print_signal_handler(st, SIGILL , buf, buflen);
2292   print_signal_handler(st, SR_signum, buf, buflen);
2293   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2294   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2295   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2296   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2297 #if defined(PPC64)
2298   print_signal_handler(st, SIGTRAP, buf, buflen);
2299 #endif
2300 }
2301 
2302 static char saved_jvm_path[MAXPATHLEN] = {0};
2303 
2304 // Find the full path to the current module, libjvm.so
2305 void os::jvm_path(char *buf, jint buflen) {
2306   // Error checking.
2307   if (buflen < MAXPATHLEN) {
2308     assert(false, "must use a large-enough buffer");
2309     buf[0] = '\0';
2310     return;
2311   }
2312   // Lazy resolve the path to current module.
2313   if (saved_jvm_path[0] != 0) {
2314     strcpy(buf, saved_jvm_path);
2315     return;
2316   }
2317 
2318   char dli_fname[MAXPATHLEN];
2319   bool ret = dll_address_to_library_name(
2320                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2321                                          dli_fname, sizeof(dli_fname), NULL);
2322   assert(ret, "cannot locate libjvm");
2323   char *rp = NULL;
2324   if (ret && dli_fname[0] != '\0') {
2325     rp = os::Posix::realpath(dli_fname, buf, buflen);
2326   }
2327   if (rp == NULL) {
2328     return;
2329   }
2330 
2331   if (Arguments::sun_java_launcher_is_altjvm()) {
2332     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2333     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2334     // If "/jre/lib/" appears at the right place in the string, then
2335     // assume we are installed in a JDK and we're done. Otherwise, check
2336     // for a JAVA_HOME environment variable and fix up the path so it
2337     // looks like libjvm.so is installed there (append a fake suffix
2338     // hotspot/libjvm.so).
2339     const char *p = buf + strlen(buf) - 1;
2340     for (int count = 0; p > buf && count < 5; ++count) {
2341       for (--p; p > buf && *p != '/'; --p)
2342         /* empty */ ;
2343     }
2344 
2345     if (strncmp(p, "/jre/lib/", 9) != 0) {
2346       // Look for JAVA_HOME in the environment.
2347       char* java_home_var = ::getenv("JAVA_HOME");
2348       if (java_home_var != NULL && java_home_var[0] != 0) {
2349         char* jrelib_p;
2350         int len;
2351 
2352         // Check the current module name "libjvm.so".
2353         p = strrchr(buf, '/');
2354         if (p == NULL) {
2355           return;
2356         }
2357         assert(strstr(p, "/libjvm") == p, "invalid library name");
2358 
2359         rp = os::Posix::realpath(java_home_var, buf, buflen);
2360         if (rp == NULL) {
2361           return;
2362         }
2363 
2364         // determine if this is a legacy image or modules image
2365         // modules image doesn't have "jre" subdirectory
2366         len = strlen(buf);
2367         assert(len < buflen, "Ran out of buffer room");
2368         jrelib_p = buf + len;
2369         snprintf(jrelib_p, buflen-len, "/jre/lib");
2370         if (0 != access(buf, F_OK)) {
2371           snprintf(jrelib_p, buflen-len, "/lib");
2372         }
2373 
2374         if (0 == access(buf, F_OK)) {
2375           // Use current module name "libjvm.so"
2376           len = strlen(buf);
2377           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2378         } else {
2379           // Go back to path of .so
2380           rp = os::Posix::realpath(dli_fname, buf, buflen);
2381           if (rp == NULL) {
2382             return;
2383           }
2384         }
2385       }
2386     }
2387   }
2388 
2389   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2390   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2391 }
2392 
2393 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2394   // no prefix required, not even "_"
2395 }
2396 
2397 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2398   // no suffix required
2399 }
2400 
2401 ////////////////////////////////////////////////////////////////////////////////
2402 // sun.misc.Signal support
2403 
2404 static volatile jint sigint_count = 0;
2405 
2406 static void UserHandler(int sig, void *siginfo, void *context) {
2407   // 4511530 - sem_post is serialized and handled by the manager thread. When
2408   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2409   // don't want to flood the manager thread with sem_post requests.
2410   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2411     return;
2412   }
2413 
2414   // Ctrl-C is pressed during error reporting, likely because the error
2415   // handler fails to abort. Let VM die immediately.
2416   if (sig == SIGINT && VMError::is_error_reported()) {
2417     os::die();
2418   }
2419 
2420   os::signal_notify(sig);
2421 }
2422 
2423 void* os::user_handler() {
2424   return CAST_FROM_FN_PTR(void*, UserHandler);
2425 }
2426 
2427 static struct timespec create_semaphore_timespec(unsigned int sec, int nsec) {
2428   struct timespec ts;
2429   // Semaphore's are always associated with CLOCK_REALTIME
2430   os::Posix::clock_gettime(CLOCK_REALTIME, &ts);
2431   // see os_posix.cpp for discussion on overflow checking
2432   if (sec >= MAX_SECS) {
2433     ts.tv_sec += MAX_SECS;
2434     ts.tv_nsec = 0;
2435   } else {
2436     ts.tv_sec += sec;
2437     ts.tv_nsec += nsec;
2438     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2439       ts.tv_nsec -= NANOSECS_PER_SEC;
2440       ++ts.tv_sec; // note: this must be <= max_secs
2441     }
2442   }
2443 
2444   return ts;
2445 }
2446 
2447 extern "C" {
2448   typedef void (*sa_handler_t)(int);
2449   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2450 }
2451 
2452 void* os::signal(int signal_number, void* handler) {
2453   struct sigaction sigAct, oldSigAct;
2454 
2455   sigfillset(&(sigAct.sa_mask));
2456   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2457   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2458 
2459   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2460     // -1 means registration failed
2461     return (void *)-1;
2462   }
2463 
2464   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2465 }
2466 
2467 void os::signal_raise(int signal_number) {
2468   ::raise(signal_number);
2469 }
2470 
2471 // The following code is moved from os.cpp for making this
2472 // code platform specific, which it is by its very nature.
2473 
2474 // Will be modified when max signal is changed to be dynamic
2475 int os::sigexitnum_pd() {
2476   return NSIG;
2477 }
2478 
2479 // a counter for each possible signal value
2480 static volatile jint pending_signals[NSIG+1] = { 0 };
2481 
2482 // Linux(POSIX) specific hand shaking semaphore.
2483 static Semaphore* sig_sem = NULL;
2484 static PosixSemaphore sr_semaphore;
2485 
2486 static void jdk_misc_signal_init() {
2487   // Initialize signal structures
2488   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2489 
2490   // Initialize signal semaphore
2491   sig_sem = new Semaphore();
2492 }
2493 
2494 void os::signal_notify(int sig) {
2495   if (sig_sem != NULL) {
2496     Atomic::inc(&pending_signals[sig]);
2497     sig_sem->signal();
2498   } else {
2499     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2500     // initialization isn't called.
2501     assert(ReduceSignalUsage, "signal semaphore should be created");
2502   }
2503 }
2504 
2505 static int check_pending_signals() {
2506   Atomic::store(0, &sigint_count);
2507   for (;;) {
2508     for (int i = 0; i < NSIG + 1; i++) {
2509       jint n = pending_signals[i];
2510       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2511         return i;
2512       }
2513     }
2514     JavaThread *thread = JavaThread::current();
2515     ThreadBlockInVM tbivm(thread);
2516 
2517     bool threadIsSuspended;
2518     do {
2519       thread->set_suspend_equivalent();
2520       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2521       sig_sem->wait();
2522 
2523       // were we externally suspended while we were waiting?
2524       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2525       if (threadIsSuspended) {
2526         // The semaphore has been incremented, but while we were waiting
2527         // another thread suspended us. We don't want to continue running
2528         // while suspended because that would surprise the thread that
2529         // suspended us.
2530         sig_sem->signal();
2531 
2532         thread->java_suspend_self();
2533       }
2534     } while (threadIsSuspended);
2535   }
2536 }
2537 
2538 int os::signal_wait() {
2539   return check_pending_signals();
2540 }
2541 
2542 ////////////////////////////////////////////////////////////////////////////////
2543 // Virtual Memory
2544 
2545 int os::vm_page_size() {
2546   // Seems redundant as all get out
2547   assert(os::Linux::page_size() != -1, "must call os::init");
2548   return os::Linux::page_size();
2549 }
2550 
2551 // Solaris allocates memory by pages.
2552 int os::vm_allocation_granularity() {
2553   assert(os::Linux::page_size() != -1, "must call os::init");
2554   return os::Linux::page_size();
2555 }
2556 
2557 // Rationale behind this function:
2558 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2559 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2560 //  samples for JITted code. Here we create private executable mapping over the code cache
2561 //  and then we can use standard (well, almost, as mapping can change) way to provide
2562 //  info for the reporting script by storing timestamp and location of symbol
2563 void linux_wrap_code(char* base, size_t size) {
2564   static volatile jint cnt = 0;
2565 
2566   if (!UseOprofile) {
2567     return;
2568   }
2569 
2570   char buf[PATH_MAX+1];
2571   int num = Atomic::add(1, &cnt);
2572 
2573   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2574            os::get_temp_directory(), os::current_process_id(), num);
2575   unlink(buf);
2576 
2577   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2578 
2579   if (fd != -1) {
2580     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2581     if (rv != (off_t)-1) {
2582       if (::write(fd, "", 1) == 1) {
2583         mmap(base, size,
2584              PROT_READ|PROT_WRITE|PROT_EXEC,
2585              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2586       }
2587     }
2588     ::close(fd);
2589     unlink(buf);
2590   }
2591 }
2592 
2593 static bool recoverable_mmap_error(int err) {
2594   // See if the error is one we can let the caller handle. This
2595   // list of errno values comes from JBS-6843484. I can't find a
2596   // Linux man page that documents this specific set of errno
2597   // values so while this list currently matches Solaris, it may
2598   // change as we gain experience with this failure mode.
2599   switch (err) {
2600   case EBADF:
2601   case EINVAL:
2602   case ENOTSUP:
2603     // let the caller deal with these errors
2604     return true;
2605 
2606   default:
2607     // Any remaining errors on this OS can cause our reserved mapping
2608     // to be lost. That can cause confusion where different data
2609     // structures think they have the same memory mapped. The worst
2610     // scenario is if both the VM and a library think they have the
2611     // same memory mapped.
2612     return false;
2613   }
2614 }
2615 
2616 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2617                                     int err) {
2618   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2619           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2620           os::strerror(err), err);
2621 }
2622 
2623 static void warn_fail_commit_memory(char* addr, size_t size,
2624                                     size_t alignment_hint, bool exec,
2625                                     int err) {
2626   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2627           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2628           alignment_hint, exec, os::strerror(err), err);
2629 }
2630 
2631 // NOTE: Linux kernel does not really reserve the pages for us.
2632 //       All it does is to check if there are enough free pages
2633 //       left at the time of mmap(). This could be a potential
2634 //       problem.
2635 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2636   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2637   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2638                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2639   if (res != (uintptr_t) MAP_FAILED) {
2640     if (UseNUMAInterleaving) {
2641       numa_make_global(addr, size);
2642     }
2643     return 0;
2644   }
2645 
2646   int err = errno;  // save errno from mmap() call above
2647 
2648   if (!recoverable_mmap_error(err)) {
2649     warn_fail_commit_memory(addr, size, exec, err);
2650     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2651   }
2652 
2653   return err;
2654 }
2655 
2656 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2657   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2658 }
2659 
2660 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2661                                   const char* mesg) {
2662   assert(mesg != NULL, "mesg must be specified");
2663   int err = os::Linux::commit_memory_impl(addr, size, exec);
2664   if (err != 0) {
2665     // the caller wants all commit errors to exit with the specified mesg:
2666     warn_fail_commit_memory(addr, size, exec, err);
2667     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2668   }
2669 }
2670 
2671 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2672 #ifndef MAP_HUGETLB
2673   #define MAP_HUGETLB 0x40000
2674 #endif
2675 
2676 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2677 #ifndef MADV_HUGEPAGE
2678   #define MADV_HUGEPAGE 14
2679 #endif
2680 
2681 int os::Linux::commit_memory_impl(char* addr, size_t size,
2682                                   size_t alignment_hint, bool exec) {
2683   int err = os::Linux::commit_memory_impl(addr, size, exec);
2684   if (err == 0) {
2685     realign_memory(addr, size, alignment_hint);
2686   }
2687   return err;
2688 }
2689 
2690 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2691                           bool exec) {
2692   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2693 }
2694 
2695 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2696                                   size_t alignment_hint, bool exec,
2697                                   const char* mesg) {
2698   assert(mesg != NULL, "mesg must be specified");
2699   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2700   if (err != 0) {
2701     // the caller wants all commit errors to exit with the specified mesg:
2702     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2703     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2704   }
2705 }
2706 
2707 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2708   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2709     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2710     // be supported or the memory may already be backed by huge pages.
2711     ::madvise(addr, bytes, MADV_HUGEPAGE);
2712   }
2713 }
2714 
2715 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2716   // This method works by doing an mmap over an existing mmaping and effectively discarding
2717   // the existing pages. However it won't work for SHM-based large pages that cannot be
2718   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2719   // small pages on top of the SHM segment. This method always works for small pages, so we
2720   // allow that in any case.
2721   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2722     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2723   }
2724 }
2725 
2726 void os::numa_make_global(char *addr, size_t bytes) {
2727   Linux::numa_interleave_memory(addr, bytes);
2728 }
2729 
2730 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2731 // bind policy to MPOL_PREFERRED for the current thread.
2732 #define USE_MPOL_PREFERRED 0
2733 
2734 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2735   // To make NUMA and large pages more robust when both enabled, we need to ease
2736   // the requirements on where the memory should be allocated. MPOL_BIND is the
2737   // default policy and it will force memory to be allocated on the specified
2738   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2739   // the specified node, but will not force it. Using this policy will prevent
2740   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2741   // free large pages.
2742   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2743   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2744 }
2745 
2746 bool os::numa_topology_changed() { return false; }
2747 
2748 size_t os::numa_get_groups_num() {
2749   // Return just the number of nodes in which it's possible to allocate memory
2750   // (in numa terminology, configured nodes).
2751   return Linux::numa_num_configured_nodes();
2752 }
2753 
2754 int os::numa_get_group_id() {
2755   int cpu_id = Linux::sched_getcpu();
2756   if (cpu_id != -1) {
2757     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2758     if (lgrp_id != -1) {
2759       return lgrp_id;
2760     }
2761   }
2762   return 0;
2763 }
2764 
2765 int os::Linux::get_existing_num_nodes() {
2766   int node;
2767   int highest_node_number = Linux::numa_max_node();
2768   int num_nodes = 0;
2769 
2770   // Get the total number of nodes in the system including nodes without memory.
2771   for (node = 0; node <= highest_node_number; node++) {
2772     if (isnode_in_existing_nodes(node)) {
2773       num_nodes++;
2774     }
2775   }
2776   return num_nodes;
2777 }
2778 
2779 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2780   int highest_node_number = Linux::numa_max_node();
2781   size_t i = 0;
2782 
2783   // Map all node ids in which it is possible to allocate memory. Also nodes are
2784   // not always consecutively available, i.e. available from 0 to the highest
2785   // node number. If the nodes have been bound explicitly using numactl membind,
2786   // then allocate memory from those nodes only.
2787   for (int node = 0; node <= highest_node_number; node++) {
2788     if (Linux::isnode_in_bound_nodes((unsigned int)node)) {
2789       ids[i++] = node;
2790     }
2791   }
2792   return i;
2793 }
2794 
2795 bool os::get_page_info(char *start, page_info* info) {
2796   return false;
2797 }
2798 
2799 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2800                      page_info* page_found) {
2801   return end;
2802 }
2803 
2804 
2805 int os::Linux::sched_getcpu_syscall(void) {
2806   unsigned int cpu = 0;
2807   int retval = -1;
2808 
2809 #if defined(IA32)
2810   #ifndef SYS_getcpu
2811     #define SYS_getcpu 318
2812   #endif
2813   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2814 #elif defined(AMD64)
2815 // Unfortunately we have to bring all these macros here from vsyscall.h
2816 // to be able to compile on old linuxes.
2817   #define __NR_vgetcpu 2
2818   #define VSYSCALL_START (-10UL << 20)
2819   #define VSYSCALL_SIZE 1024
2820   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2821   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2822   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2823   retval = vgetcpu(&cpu, NULL, NULL);
2824 #endif
2825 
2826   return (retval == -1) ? retval : cpu;
2827 }
2828 
2829 void os::Linux::sched_getcpu_init() {
2830   // sched_getcpu() should be in libc.
2831   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2832                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2833 
2834   // If it's not, try a direct syscall.
2835   if (sched_getcpu() == -1) {
2836     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2837                                     (void*)&sched_getcpu_syscall));
2838   }
2839 
2840   if (sched_getcpu() == -1) {
2841     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
2842   }
2843 }
2844 
2845 // Something to do with the numa-aware allocator needs these symbols
2846 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2847 extern "C" JNIEXPORT void numa_error(char *where) { }
2848 
2849 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2850 // load symbol from base version instead.
2851 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2852   void *f = dlvsym(handle, name, "libnuma_1.1");
2853   if (f == NULL) {
2854     f = dlsym(handle, name);
2855   }
2856   return f;
2857 }
2858 
2859 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2860 // Return NULL if the symbol is not defined in this particular version.
2861 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2862   return dlvsym(handle, name, "libnuma_1.2");
2863 }
2864 
2865 bool os::Linux::libnuma_init() {
2866   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2867     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2868     if (handle != NULL) {
2869       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2870                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2871       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2872                                        libnuma_dlsym(handle, "numa_max_node")));
2873       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2874                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2875       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2876                                         libnuma_dlsym(handle, "numa_available")));
2877       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2878                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2879       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2880                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2881       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2882                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2883       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2884                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2885       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2886                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2887       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2888                                        libnuma_dlsym(handle, "numa_distance")));
2889       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
2890                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
2891 
2892       if (numa_available() != -1) {
2893         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2894         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2895         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2896         // Create an index -> node mapping, since nodes are not always consecutive
2897         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2898         rebuild_nindex_to_node_map();
2899         // Create a cpu -> node mapping
2900         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2901         rebuild_cpu_to_node_map();
2902         return true;
2903       }
2904     }
2905   }
2906   return false;
2907 }
2908 
2909 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2910   // Creating guard page is very expensive. Java thread has HotSpot
2911   // guard pages, only enable glibc guard page for non-Java threads.
2912   // (Remember: compiler thread is a Java thread, too!)
2913   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2914 }
2915 
2916 void os::Linux::rebuild_nindex_to_node_map() {
2917   int highest_node_number = Linux::numa_max_node();
2918 
2919   nindex_to_node()->clear();
2920   for (int node = 0; node <= highest_node_number; node++) {
2921     if (Linux::isnode_in_existing_nodes(node)) {
2922       nindex_to_node()->append(node);
2923     }
2924   }
2925 }
2926 
2927 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2928 // The table is later used in get_node_by_cpu().
2929 void os::Linux::rebuild_cpu_to_node_map() {
2930   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2931                               // in libnuma (possible values are starting from 16,
2932                               // and continuing up with every other power of 2, but less
2933                               // than the maximum number of CPUs supported by kernel), and
2934                               // is a subject to change (in libnuma version 2 the requirements
2935                               // are more reasonable) we'll just hardcode the number they use
2936                               // in the library.
2937   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2938 
2939   size_t cpu_num = processor_count();
2940   size_t cpu_map_size = NCPUS / BitsPerCLong;
2941   size_t cpu_map_valid_size =
2942     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2943 
2944   cpu_to_node()->clear();
2945   cpu_to_node()->at_grow(cpu_num - 1);
2946 
2947   size_t node_num = get_existing_num_nodes();
2948 
2949   int distance = 0;
2950   int closest_distance = INT_MAX;
2951   int closest_node = 0;
2952   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2953   for (size_t i = 0; i < node_num; i++) {
2954     // Check if node is configured (not a memory-less node). If it is not, find
2955     // the closest configured node. Check also if node is bound, i.e. it's allowed
2956     // to allocate memory from the node. If it's not allowed, map cpus in that node
2957     // to the closest node from which memory allocation is allowed.
2958     if (!isnode_in_configured_nodes(nindex_to_node()->at(i)) ||
2959         !isnode_in_bound_nodes(nindex_to_node()->at(i))) {
2960       closest_distance = INT_MAX;
2961       // Check distance from all remaining nodes in the system. Ignore distance
2962       // from itself, from another non-configured node, and from another non-bound
2963       // node.
2964       for (size_t m = 0; m < node_num; m++) {
2965         if (m != i &&
2966             isnode_in_configured_nodes(nindex_to_node()->at(m)) &&
2967             isnode_in_bound_nodes(nindex_to_node()->at(m))) {
2968           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2969           // If a closest node is found, update. There is always at least one
2970           // configured and bound node in the system so there is always at least
2971           // one node close.
2972           if (distance != 0 && distance < closest_distance) {
2973             closest_distance = distance;
2974             closest_node = nindex_to_node()->at(m);
2975           }
2976         }
2977       }
2978      } else {
2979        // Current node is already a configured node.
2980        closest_node = nindex_to_node()->at(i);
2981      }
2982 
2983     // Get cpus from the original node and map them to the closest node. If node
2984     // is a configured node (not a memory-less node), then original node and
2985     // closest node are the same.
2986     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2987       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2988         if (cpu_map[j] != 0) {
2989           for (size_t k = 0; k < BitsPerCLong; k++) {
2990             if (cpu_map[j] & (1UL << k)) {
2991               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2992             }
2993           }
2994         }
2995       }
2996     }
2997   }
2998   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2999 }
3000 
3001 int os::Linux::get_node_by_cpu(int cpu_id) {
3002   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3003     return cpu_to_node()->at(cpu_id);
3004   }
3005   return -1;
3006 }
3007 
3008 GrowableArray<int>* os::Linux::_cpu_to_node;
3009 GrowableArray<int>* os::Linux::_nindex_to_node;
3010 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3011 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3012 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3013 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3014 os::Linux::numa_available_func_t os::Linux::_numa_available;
3015 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3016 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3017 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3018 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3019 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3020 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3021 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3022 unsigned long* os::Linux::_numa_all_nodes;
3023 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3024 struct bitmask* os::Linux::_numa_nodes_ptr;
3025 
3026 bool os::pd_uncommit_memory(char* addr, size_t size) {
3027   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3028                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3029   return res  != (uintptr_t) MAP_FAILED;
3030 }
3031 
3032 static address get_stack_commited_bottom(address bottom, size_t size) {
3033   address nbot = bottom;
3034   address ntop = bottom + size;
3035 
3036   size_t page_sz = os::vm_page_size();
3037   unsigned pages = size / page_sz;
3038 
3039   unsigned char vec[1];
3040   unsigned imin = 1, imax = pages + 1, imid;
3041   int mincore_return_value = 0;
3042 
3043   assert(imin <= imax, "Unexpected page size");
3044 
3045   while (imin < imax) {
3046     imid = (imax + imin) / 2;
3047     nbot = ntop - (imid * page_sz);
3048 
3049     // Use a trick with mincore to check whether the page is mapped or not.
3050     // mincore sets vec to 1 if page resides in memory and to 0 if page
3051     // is swapped output but if page we are asking for is unmapped
3052     // it returns -1,ENOMEM
3053     mincore_return_value = mincore(nbot, page_sz, vec);
3054 
3055     if (mincore_return_value == -1) {
3056       // Page is not mapped go up
3057       // to find first mapped page
3058       if (errno != EAGAIN) {
3059         assert(errno == ENOMEM, "Unexpected mincore errno");
3060         imax = imid;
3061       }
3062     } else {
3063       // Page is mapped go down
3064       // to find first not mapped page
3065       imin = imid + 1;
3066     }
3067   }
3068 
3069   nbot = nbot + page_sz;
3070 
3071   // Adjust stack bottom one page up if last checked page is not mapped
3072   if (mincore_return_value == -1) {
3073     nbot = nbot + page_sz;
3074   }
3075 
3076   return nbot;
3077 }
3078 
3079 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3080   int mincore_return_value;
3081   const size_t stripe = 1024;  // query this many pages each time
3082   unsigned char vec[stripe + 1];
3083   // set a guard
3084   vec[stripe] = 'X';
3085 
3086   const size_t page_sz = os::vm_page_size();
3087   size_t pages = size / page_sz;
3088 
3089   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3090   assert(is_aligned(size, page_sz), "Size must be page aligned");
3091 
3092   committed_start = NULL;
3093 
3094   int loops = (pages + stripe - 1) / stripe;
3095   int committed_pages = 0;
3096   address loop_base = start;
3097   bool found_range = false;
3098 
3099   for (int index = 0; index < loops && !found_range; index ++) {
3100     assert(pages > 0, "Nothing to do");
3101     int pages_to_query = (pages >= stripe) ? stripe : pages;
3102     pages -= pages_to_query;
3103 
3104     // Get stable read
3105     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3106 
3107     // During shutdown, some memory goes away without properly notifying NMT,
3108     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3109     // Bailout and return as not committed for now.
3110     if (mincore_return_value == -1 && errno == ENOMEM) {
3111       return false;
3112     }
3113 
3114     assert(vec[stripe] == 'X', "overflow guard");
3115     assert(mincore_return_value == 0, "Range must be valid");
3116     // Process this stripe
3117     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3118       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3119         // End of current contiguous region
3120         if (committed_start != NULL) {
3121           found_range = true;
3122           break;
3123         }
3124       } else { // committed
3125         // Start of region
3126         if (committed_start == NULL) {
3127           committed_start = loop_base + page_sz * vecIdx;
3128         }
3129         committed_pages ++;
3130       }
3131     }
3132 
3133     loop_base += pages_to_query * page_sz;
3134   }
3135 
3136   if (committed_start != NULL) {
3137     assert(committed_pages > 0, "Must have committed region");
3138     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3139     assert(committed_start >= start && committed_start < start + size, "Out of range");
3140     committed_size = page_sz * committed_pages;
3141     return true;
3142   } else {
3143     assert(committed_pages == 0, "Should not have committed region");
3144     return false;
3145   }
3146 }
3147 
3148 
3149 // Linux uses a growable mapping for the stack, and if the mapping for
3150 // the stack guard pages is not removed when we detach a thread the
3151 // stack cannot grow beyond the pages where the stack guard was
3152 // mapped.  If at some point later in the process the stack expands to
3153 // that point, the Linux kernel cannot expand the stack any further
3154 // because the guard pages are in the way, and a segfault occurs.
3155 //
3156 // However, it's essential not to split the stack region by unmapping
3157 // a region (leaving a hole) that's already part of the stack mapping,
3158 // so if the stack mapping has already grown beyond the guard pages at
3159 // the time we create them, we have to truncate the stack mapping.
3160 // So, we need to know the extent of the stack mapping when
3161 // create_stack_guard_pages() is called.
3162 
3163 // We only need this for stacks that are growable: at the time of
3164 // writing thread stacks don't use growable mappings (i.e. those
3165 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3166 // only applies to the main thread.
3167 
3168 // If the (growable) stack mapping already extends beyond the point
3169 // where we're going to put our guard pages, truncate the mapping at
3170 // that point by munmap()ping it.  This ensures that when we later
3171 // munmap() the guard pages we don't leave a hole in the stack
3172 // mapping. This only affects the main/primordial thread
3173 
3174 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3175   if (os::is_primordial_thread()) {
3176     // As we manually grow stack up to bottom inside create_attached_thread(),
3177     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3178     // we don't need to do anything special.
3179     // Check it first, before calling heavy function.
3180     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3181     unsigned char vec[1];
3182 
3183     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3184       // Fallback to slow path on all errors, including EAGAIN
3185       stack_extent = (uintptr_t) get_stack_commited_bottom(
3186                                                            os::Linux::initial_thread_stack_bottom(),
3187                                                            (size_t)addr - stack_extent);
3188     }
3189 
3190     if (stack_extent < (uintptr_t)addr) {
3191       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3192     }
3193   }
3194 
3195   return os::commit_memory(addr, size, !ExecMem);
3196 }
3197 
3198 // If this is a growable mapping, remove the guard pages entirely by
3199 // munmap()ping them.  If not, just call uncommit_memory(). This only
3200 // affects the main/primordial thread, but guard against future OS changes.
3201 // It's safe to always unmap guard pages for primordial thread because we
3202 // always place it right after end of the mapped region.
3203 
3204 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3205   uintptr_t stack_extent, stack_base;
3206 
3207   if (os::is_primordial_thread()) {
3208     return ::munmap(addr, size) == 0;
3209   }
3210 
3211   return os::uncommit_memory(addr, size);
3212 }
3213 
3214 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3215 // at 'requested_addr'. If there are existing memory mappings at the same
3216 // location, however, they will be overwritten. If 'fixed' is false,
3217 // 'requested_addr' is only treated as a hint, the return value may or
3218 // may not start from the requested address. Unlike Linux mmap(), this
3219 // function returns NULL to indicate failure.
3220 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3221   char * addr;
3222   int flags;
3223 
3224   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3225   if (fixed) {
3226     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3227     flags |= MAP_FIXED;
3228   }
3229 
3230   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3231   // touch an uncommitted page. Otherwise, the read/write might
3232   // succeed if we have enough swap space to back the physical page.
3233   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3234                        flags, -1, 0);
3235 
3236   return addr == MAP_FAILED ? NULL : addr;
3237 }
3238 
3239 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3240 //   (req_addr != NULL) or with a given alignment.
3241 //  - bytes shall be a multiple of alignment.
3242 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3243 //  - alignment sets the alignment at which memory shall be allocated.
3244 //     It must be a multiple of allocation granularity.
3245 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3246 //  req_addr or NULL.
3247 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3248 
3249   size_t extra_size = bytes;
3250   if (req_addr == NULL && alignment > 0) {
3251     extra_size += alignment;
3252   }
3253 
3254   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3255     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3256     -1, 0);
3257   if (start == MAP_FAILED) {
3258     start = NULL;
3259   } else {
3260     if (req_addr != NULL) {
3261       if (start != req_addr) {
3262         ::munmap(start, extra_size);
3263         start = NULL;
3264       }
3265     } else {
3266       char* const start_aligned = align_up(start, alignment);
3267       char* const end_aligned = start_aligned + bytes;
3268       char* const end = start + extra_size;
3269       if (start_aligned > start) {
3270         ::munmap(start, start_aligned - start);
3271       }
3272       if (end_aligned < end) {
3273         ::munmap(end_aligned, end - end_aligned);
3274       }
3275       start = start_aligned;
3276     }
3277   }
3278   return start;
3279 }
3280 
3281 static int anon_munmap(char * addr, size_t size) {
3282   return ::munmap(addr, size) == 0;
3283 }
3284 
3285 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3286                             size_t alignment_hint) {
3287   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3288 }
3289 
3290 bool os::pd_release_memory(char* addr, size_t size) {
3291   return anon_munmap(addr, size);
3292 }
3293 
3294 static bool linux_mprotect(char* addr, size_t size, int prot) {
3295   // Linux wants the mprotect address argument to be page aligned.
3296   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3297 
3298   // According to SUSv3, mprotect() should only be used with mappings
3299   // established by mmap(), and mmap() always maps whole pages. Unaligned
3300   // 'addr' likely indicates problem in the VM (e.g. trying to change
3301   // protection of malloc'ed or statically allocated memory). Check the
3302   // caller if you hit this assert.
3303   assert(addr == bottom, "sanity check");
3304 
3305   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3306   return ::mprotect(bottom, size, prot) == 0;
3307 }
3308 
3309 // Set protections specified
3310 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3311                         bool is_committed) {
3312   unsigned int p = 0;
3313   switch (prot) {
3314   case MEM_PROT_NONE: p = PROT_NONE; break;
3315   case MEM_PROT_READ: p = PROT_READ; break;
3316   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3317   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3318   default:
3319     ShouldNotReachHere();
3320   }
3321   // is_committed is unused.
3322   return linux_mprotect(addr, bytes, p);
3323 }
3324 
3325 bool os::guard_memory(char* addr, size_t size) {
3326   return linux_mprotect(addr, size, PROT_NONE);
3327 }
3328 
3329 bool os::unguard_memory(char* addr, size_t size) {
3330   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3331 }
3332 
3333 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3334                                                     size_t page_size) {
3335   bool result = false;
3336   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3337                  MAP_ANONYMOUS|MAP_PRIVATE,
3338                  -1, 0);
3339   if (p != MAP_FAILED) {
3340     void *aligned_p = align_up(p, page_size);
3341 
3342     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3343 
3344     munmap(p, page_size * 2);
3345   }
3346 
3347   if (warn && !result) {
3348     warning("TransparentHugePages is not supported by the operating system.");
3349   }
3350 
3351   return result;
3352 }
3353 
3354 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3355   bool result = false;
3356   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3357                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3358                  -1, 0);
3359 
3360   if (p != MAP_FAILED) {
3361     // We don't know if this really is a huge page or not.
3362     FILE *fp = fopen("/proc/self/maps", "r");
3363     if (fp) {
3364       while (!feof(fp)) {
3365         char chars[257];
3366         long x = 0;
3367         if (fgets(chars, sizeof(chars), fp)) {
3368           if (sscanf(chars, "%lx-%*x", &x) == 1
3369               && x == (long)p) {
3370             if (strstr (chars, "hugepage")) {
3371               result = true;
3372               break;
3373             }
3374           }
3375         }
3376       }
3377       fclose(fp);
3378     }
3379     munmap(p, page_size);
3380   }
3381 
3382   if (warn && !result) {
3383     warning("HugeTLBFS is not supported by the operating system.");
3384   }
3385 
3386   return result;
3387 }
3388 
3389 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3390 //
3391 // From the coredump_filter documentation:
3392 //
3393 // - (bit 0) anonymous private memory
3394 // - (bit 1) anonymous shared memory
3395 // - (bit 2) file-backed private memory
3396 // - (bit 3) file-backed shared memory
3397 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3398 //           effective only if the bit 2 is cleared)
3399 // - (bit 5) hugetlb private memory
3400 // - (bit 6) hugetlb shared memory
3401 // - (bit 7) dax private memory
3402 // - (bit 8) dax shared memory
3403 //
3404 static void set_coredump_filter(bool largepages, bool dax_shared) {
3405   FILE *f;
3406   long cdm;
3407   bool filter_changed = false;
3408 
3409   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3410     return;
3411   }
3412 
3413   if (fscanf(f, "%lx", &cdm) != 1) {
3414     fclose(f);
3415     return;
3416   }
3417 
3418   rewind(f);
3419 
3420   if (largepages && (cdm & LARGEPAGES_BIT) == 0) {
3421     cdm |= LARGEPAGES_BIT;
3422     filter_changed = true;
3423   }
3424   if (dax_shared && (cdm & DAX_SHARED_BIT) == 0) {
3425     cdm |= DAX_SHARED_BIT;
3426     filter_changed = true;
3427   }
3428   if (filter_changed) {
3429     fprintf(f, "%#lx", cdm);
3430   }
3431 
3432   fclose(f);
3433 }
3434 
3435 // Large page support
3436 
3437 static size_t _large_page_size = 0;
3438 
3439 size_t os::Linux::find_large_page_size() {
3440   size_t large_page_size = 0;
3441 
3442   // large_page_size on Linux is used to round up heap size. x86 uses either
3443   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3444   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3445   // page as large as 256M.
3446   //
3447   // Here we try to figure out page size by parsing /proc/meminfo and looking
3448   // for a line with the following format:
3449   //    Hugepagesize:     2048 kB
3450   //
3451   // If we can't determine the value (e.g. /proc is not mounted, or the text
3452   // format has been changed), we'll use the largest page size supported by
3453   // the processor.
3454 
3455 #ifndef ZERO
3456   large_page_size =
3457     AARCH64_ONLY(2 * M)
3458     AMD64_ONLY(2 * M)
3459     ARM32_ONLY(2 * M)
3460     IA32_ONLY(4 * M)
3461     IA64_ONLY(256 * M)
3462     PPC_ONLY(4 * M)
3463     S390_ONLY(1 * M)
3464     SPARC_ONLY(4 * M);
3465 #endif // ZERO
3466 
3467   FILE *fp = fopen("/proc/meminfo", "r");
3468   if (fp) {
3469     while (!feof(fp)) {
3470       int x = 0;
3471       char buf[16];
3472       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3473         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3474           large_page_size = x * K;
3475           break;
3476         }
3477       } else {
3478         // skip to next line
3479         for (;;) {
3480           int ch = fgetc(fp);
3481           if (ch == EOF || ch == (int)'\n') break;
3482         }
3483       }
3484     }
3485     fclose(fp);
3486   }
3487 
3488   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3489     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3490             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3491             proper_unit_for_byte_size(large_page_size));
3492   }
3493 
3494   return large_page_size;
3495 }
3496 
3497 size_t os::Linux::setup_large_page_size() {
3498   _large_page_size = Linux::find_large_page_size();
3499   const size_t default_page_size = (size_t)Linux::page_size();
3500   if (_large_page_size > default_page_size) {
3501     _page_sizes[0] = _large_page_size;
3502     _page_sizes[1] = default_page_size;
3503     _page_sizes[2] = 0;
3504   }
3505 
3506   return _large_page_size;
3507 }
3508 
3509 bool os::Linux::setup_large_page_type(size_t page_size) {
3510   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3511       FLAG_IS_DEFAULT(UseSHM) &&
3512       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3513 
3514     // The type of large pages has not been specified by the user.
3515 
3516     // Try UseHugeTLBFS and then UseSHM.
3517     UseHugeTLBFS = UseSHM = true;
3518 
3519     // Don't try UseTransparentHugePages since there are known
3520     // performance issues with it turned on. This might change in the future.
3521     UseTransparentHugePages = false;
3522   }
3523 
3524   if (UseTransparentHugePages) {
3525     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3526     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3527       UseHugeTLBFS = false;
3528       UseSHM = false;
3529       return true;
3530     }
3531     UseTransparentHugePages = false;
3532   }
3533 
3534   if (UseHugeTLBFS) {
3535     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3536     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3537       UseSHM = false;
3538       return true;
3539     }
3540     UseHugeTLBFS = false;
3541   }
3542 
3543   return UseSHM;
3544 }
3545 
3546 void os::large_page_init() {
3547   if (!UseLargePages &&
3548       !UseTransparentHugePages &&
3549       !UseHugeTLBFS &&
3550       !UseSHM) {
3551     // Not using large pages.
3552     return;
3553   }
3554 
3555   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3556     // The user explicitly turned off large pages.
3557     // Ignore the rest of the large pages flags.
3558     UseTransparentHugePages = false;
3559     UseHugeTLBFS = false;
3560     UseSHM = false;
3561     return;
3562   }
3563 
3564   size_t large_page_size = Linux::setup_large_page_size();
3565   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3566 
3567   set_coredump_filter(true /*largepages*/, false /*dax_shared*/);
3568 }
3569 
3570 #ifndef SHM_HUGETLB
3571   #define SHM_HUGETLB 04000
3572 #endif
3573 
3574 #define shm_warning_format(format, ...)              \
3575   do {                                               \
3576     if (UseLargePages &&                             \
3577         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3578          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3579          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3580       warning(format, __VA_ARGS__);                  \
3581     }                                                \
3582   } while (0)
3583 
3584 #define shm_warning(str) shm_warning_format("%s", str)
3585 
3586 #define shm_warning_with_errno(str)                \
3587   do {                                             \
3588     int err = errno;                               \
3589     shm_warning_format(str " (error = %d)", err);  \
3590   } while (0)
3591 
3592 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3593   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3594 
3595   if (!is_aligned(alignment, SHMLBA)) {
3596     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3597     return NULL;
3598   }
3599 
3600   // To ensure that we get 'alignment' aligned memory from shmat,
3601   // we pre-reserve aligned virtual memory and then attach to that.
3602 
3603   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3604   if (pre_reserved_addr == NULL) {
3605     // Couldn't pre-reserve aligned memory.
3606     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3607     return NULL;
3608   }
3609 
3610   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3611   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3612 
3613   if ((intptr_t)addr == -1) {
3614     int err = errno;
3615     shm_warning_with_errno("Failed to attach shared memory.");
3616 
3617     assert(err != EACCES, "Unexpected error");
3618     assert(err != EIDRM,  "Unexpected error");
3619     assert(err != EINVAL, "Unexpected error");
3620 
3621     // Since we don't know if the kernel unmapped the pre-reserved memory area
3622     // we can't unmap it, since that would potentially unmap memory that was
3623     // mapped from other threads.
3624     return NULL;
3625   }
3626 
3627   return addr;
3628 }
3629 
3630 static char* shmat_at_address(int shmid, char* req_addr) {
3631   if (!is_aligned(req_addr, SHMLBA)) {
3632     assert(false, "Requested address needs to be SHMLBA aligned");
3633     return NULL;
3634   }
3635 
3636   char* addr = (char*)shmat(shmid, req_addr, 0);
3637 
3638   if ((intptr_t)addr == -1) {
3639     shm_warning_with_errno("Failed to attach shared memory.");
3640     return NULL;
3641   }
3642 
3643   return addr;
3644 }
3645 
3646 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3647   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3648   if (req_addr != NULL) {
3649     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3650     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3651     return shmat_at_address(shmid, req_addr);
3652   }
3653 
3654   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3655   // return large page size aligned memory addresses when req_addr == NULL.
3656   // However, if the alignment is larger than the large page size, we have
3657   // to manually ensure that the memory returned is 'alignment' aligned.
3658   if (alignment > os::large_page_size()) {
3659     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3660     return shmat_with_alignment(shmid, bytes, alignment);
3661   } else {
3662     return shmat_at_address(shmid, NULL);
3663   }
3664 }
3665 
3666 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3667                                             char* req_addr, bool exec) {
3668   // "exec" is passed in but not used.  Creating the shared image for
3669   // the code cache doesn't have an SHM_X executable permission to check.
3670   assert(UseLargePages && UseSHM, "only for SHM large pages");
3671   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3672   assert(is_aligned(req_addr, alignment), "Unaligned address");
3673 
3674   if (!is_aligned(bytes, os::large_page_size())) {
3675     return NULL; // Fallback to small pages.
3676   }
3677 
3678   // Create a large shared memory region to attach to based on size.
3679   // Currently, size is the total size of the heap.
3680   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3681   if (shmid == -1) {
3682     // Possible reasons for shmget failure:
3683     // 1. shmmax is too small for Java heap.
3684     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3685     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3686     // 2. not enough large page memory.
3687     //    > check available large pages: cat /proc/meminfo
3688     //    > increase amount of large pages:
3689     //          echo new_value > /proc/sys/vm/nr_hugepages
3690     //      Note 1: different Linux may use different name for this property,
3691     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3692     //      Note 2: it's possible there's enough physical memory available but
3693     //            they are so fragmented after a long run that they can't
3694     //            coalesce into large pages. Try to reserve large pages when
3695     //            the system is still "fresh".
3696     shm_warning_with_errno("Failed to reserve shared memory.");
3697     return NULL;
3698   }
3699 
3700   // Attach to the region.
3701   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3702 
3703   // Remove shmid. If shmat() is successful, the actual shared memory segment
3704   // will be deleted when it's detached by shmdt() or when the process
3705   // terminates. If shmat() is not successful this will remove the shared
3706   // segment immediately.
3707   shmctl(shmid, IPC_RMID, NULL);
3708 
3709   return addr;
3710 }
3711 
3712 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3713                                         int error) {
3714   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3715 
3716   bool warn_on_failure = UseLargePages &&
3717       (!FLAG_IS_DEFAULT(UseLargePages) ||
3718        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3719        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3720 
3721   if (warn_on_failure) {
3722     char msg[128];
3723     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3724                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3725     warning("%s", msg);
3726   }
3727 }
3728 
3729 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3730                                                         char* req_addr,
3731                                                         bool exec) {
3732   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3733   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3734   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3735 
3736   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3737   char* addr = (char*)::mmap(req_addr, bytes, prot,
3738                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3739                              -1, 0);
3740 
3741   if (addr == MAP_FAILED) {
3742     warn_on_large_pages_failure(req_addr, bytes, errno);
3743     return NULL;
3744   }
3745 
3746   assert(is_aligned(addr, os::large_page_size()), "Must be");
3747 
3748   return addr;
3749 }
3750 
3751 // Reserve memory using mmap(MAP_HUGETLB).
3752 //  - bytes shall be a multiple of alignment.
3753 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3754 //  - alignment sets the alignment at which memory shall be allocated.
3755 //     It must be a multiple of allocation granularity.
3756 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3757 //  req_addr or NULL.
3758 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3759                                                          size_t alignment,
3760                                                          char* req_addr,
3761                                                          bool exec) {
3762   size_t large_page_size = os::large_page_size();
3763   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3764 
3765   assert(is_aligned(req_addr, alignment), "Must be");
3766   assert(is_aligned(bytes, alignment), "Must be");
3767 
3768   // First reserve - but not commit - the address range in small pages.
3769   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3770 
3771   if (start == NULL) {
3772     return NULL;
3773   }
3774 
3775   assert(is_aligned(start, alignment), "Must be");
3776 
3777   char* end = start + bytes;
3778 
3779   // Find the regions of the allocated chunk that can be promoted to large pages.
3780   char* lp_start = align_up(start, large_page_size);
3781   char* lp_end   = align_down(end, large_page_size);
3782 
3783   size_t lp_bytes = lp_end - lp_start;
3784 
3785   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3786 
3787   if (lp_bytes == 0) {
3788     // The mapped region doesn't even span the start and the end of a large page.
3789     // Fall back to allocate a non-special area.
3790     ::munmap(start, end - start);
3791     return NULL;
3792   }
3793 
3794   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3795 
3796   void* result;
3797 
3798   // Commit small-paged leading area.
3799   if (start != lp_start) {
3800     result = ::mmap(start, lp_start - start, prot,
3801                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3802                     -1, 0);
3803     if (result == MAP_FAILED) {
3804       ::munmap(lp_start, end - lp_start);
3805       return NULL;
3806     }
3807   }
3808 
3809   // Commit large-paged area.
3810   result = ::mmap(lp_start, lp_bytes, prot,
3811                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3812                   -1, 0);
3813   if (result == MAP_FAILED) {
3814     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3815     // If the mmap above fails, the large pages region will be unmapped and we
3816     // have regions before and after with small pages. Release these regions.
3817     //
3818     // |  mapped  |  unmapped  |  mapped  |
3819     // ^          ^            ^          ^
3820     // start      lp_start     lp_end     end
3821     //
3822     ::munmap(start, lp_start - start);
3823     ::munmap(lp_end, end - lp_end);
3824     return NULL;
3825   }
3826 
3827   // Commit small-paged trailing area.
3828   if (lp_end != end) {
3829     result = ::mmap(lp_end, end - lp_end, prot,
3830                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3831                     -1, 0);
3832     if (result == MAP_FAILED) {
3833       ::munmap(start, lp_end - start);
3834       return NULL;
3835     }
3836   }
3837 
3838   return start;
3839 }
3840 
3841 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3842                                                    size_t alignment,
3843                                                    char* req_addr,
3844                                                    bool exec) {
3845   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3846   assert(is_aligned(req_addr, alignment), "Must be");
3847   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3848   assert(is_power_of_2(os::large_page_size()), "Must be");
3849   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3850 
3851   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3852     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3853   } else {
3854     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3855   }
3856 }
3857 
3858 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3859                                  char* req_addr, bool exec) {
3860   assert(UseLargePages, "only for large pages");
3861 
3862   char* addr;
3863   if (UseSHM) {
3864     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3865   } else {
3866     assert(UseHugeTLBFS, "must be");
3867     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3868   }
3869 
3870   if (addr != NULL) {
3871     if (UseNUMAInterleaving) {
3872       numa_make_global(addr, bytes);
3873     }
3874 
3875     // The memory is committed
3876     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3877   }
3878 
3879   return addr;
3880 }
3881 
3882 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3883   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3884   return shmdt(base) == 0;
3885 }
3886 
3887 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3888   return pd_release_memory(base, bytes);
3889 }
3890 
3891 bool os::release_memory_special(char* base, size_t bytes) {
3892   bool res;
3893   if (MemTracker::tracking_level() > NMT_minimal) {
3894     Tracker tkr(Tracker::release);
3895     res = os::Linux::release_memory_special_impl(base, bytes);
3896     if (res) {
3897       tkr.record((address)base, bytes);
3898     }
3899 
3900   } else {
3901     res = os::Linux::release_memory_special_impl(base, bytes);
3902   }
3903   return res;
3904 }
3905 
3906 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3907   assert(UseLargePages, "only for large pages");
3908   bool res;
3909 
3910   if (UseSHM) {
3911     res = os::Linux::release_memory_special_shm(base, bytes);
3912   } else {
3913     assert(UseHugeTLBFS, "must be");
3914     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3915   }
3916   return res;
3917 }
3918 
3919 size_t os::large_page_size() {
3920   return _large_page_size;
3921 }
3922 
3923 // With SysV SHM the entire memory region must be allocated as shared
3924 // memory.
3925 // HugeTLBFS allows application to commit large page memory on demand.
3926 // However, when committing memory with HugeTLBFS fails, the region
3927 // that was supposed to be committed will lose the old reservation
3928 // and allow other threads to steal that memory region. Because of this
3929 // behavior we can't commit HugeTLBFS memory.
3930 bool os::can_commit_large_page_memory() {
3931   return UseTransparentHugePages;
3932 }
3933 
3934 bool os::can_execute_large_page_memory() {
3935   return UseTransparentHugePages || UseHugeTLBFS;
3936 }
3937 
3938 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3939   assert(file_desc >= 0, "file_desc is not valid");
3940   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
3941   if (result != NULL) {
3942     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
3943       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3944     }
3945   }
3946   return result;
3947 }
3948 
3949 // Reserve memory at an arbitrary address, only if that area is
3950 // available (and not reserved for something else).
3951 
3952 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3953   const int max_tries = 10;
3954   char* base[max_tries];
3955   size_t size[max_tries];
3956   const size_t gap = 0x000000;
3957 
3958   // Assert only that the size is a multiple of the page size, since
3959   // that's all that mmap requires, and since that's all we really know
3960   // about at this low abstraction level.  If we need higher alignment,
3961   // we can either pass an alignment to this method or verify alignment
3962   // in one of the methods further up the call chain.  See bug 5044738.
3963   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3964 
3965   // Repeatedly allocate blocks until the block is allocated at the
3966   // right spot.
3967 
3968   // Linux mmap allows caller to pass an address as hint; give it a try first,
3969   // if kernel honors the hint then we can return immediately.
3970   char * addr = anon_mmap(requested_addr, bytes, false);
3971   if (addr == requested_addr) {
3972     return requested_addr;
3973   }
3974 
3975   if (addr != NULL) {
3976     // mmap() is successful but it fails to reserve at the requested address
3977     anon_munmap(addr, bytes);
3978   }
3979 
3980   int i;
3981   for (i = 0; i < max_tries; ++i) {
3982     base[i] = reserve_memory(bytes);
3983 
3984     if (base[i] != NULL) {
3985       // Is this the block we wanted?
3986       if (base[i] == requested_addr) {
3987         size[i] = bytes;
3988         break;
3989       }
3990 
3991       // Does this overlap the block we wanted? Give back the overlapped
3992       // parts and try again.
3993 
3994       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3995       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3996         unmap_memory(base[i], top_overlap);
3997         base[i] += top_overlap;
3998         size[i] = bytes - top_overlap;
3999       } else {
4000         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
4001         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
4002           unmap_memory(requested_addr, bottom_overlap);
4003           size[i] = bytes - bottom_overlap;
4004         } else {
4005           size[i] = bytes;
4006         }
4007       }
4008     }
4009   }
4010 
4011   // Give back the unused reserved pieces.
4012 
4013   for (int j = 0; j < i; ++j) {
4014     if (base[j] != NULL) {
4015       unmap_memory(base[j], size[j]);
4016     }
4017   }
4018 
4019   if (i < max_tries) {
4020     return requested_addr;
4021   } else {
4022     return NULL;
4023   }
4024 }
4025 
4026 size_t os::read(int fd, void *buf, unsigned int nBytes) {
4027   return ::read(fd, buf, nBytes);
4028 }
4029 
4030 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4031   return ::pread(fd, buf, nBytes, offset);
4032 }
4033 
4034 // Short sleep, direct OS call.
4035 //
4036 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4037 // sched_yield(2) will actually give up the CPU:
4038 //
4039 //   * Alone on this pariticular CPU, keeps running.
4040 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4041 //     (pre 2.6.39).
4042 //
4043 // So calling this with 0 is an alternative.
4044 //
4045 void os::naked_short_sleep(jlong ms) {
4046   struct timespec req;
4047 
4048   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4049   req.tv_sec = 0;
4050   if (ms > 0) {
4051     req.tv_nsec = (ms % 1000) * 1000000;
4052   } else {
4053     req.tv_nsec = 1;
4054   }
4055 
4056   nanosleep(&req, NULL);
4057 
4058   return;
4059 }
4060 
4061 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4062 void os::infinite_sleep() {
4063   while (true) {    // sleep forever ...
4064     ::sleep(100);   // ... 100 seconds at a time
4065   }
4066 }
4067 
4068 // Used to convert frequent JVM_Yield() to nops
4069 bool os::dont_yield() {
4070   return DontYieldALot;
4071 }
4072 
4073 void os::naked_yield() {
4074   sched_yield();
4075 }
4076 
4077 ////////////////////////////////////////////////////////////////////////////////
4078 // thread priority support
4079 
4080 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4081 // only supports dynamic priority, static priority must be zero. For real-time
4082 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4083 // However, for large multi-threaded applications, SCHED_RR is not only slower
4084 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4085 // of 5 runs - Sep 2005).
4086 //
4087 // The following code actually changes the niceness of kernel-thread/LWP. It
4088 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4089 // not the entire user process, and user level threads are 1:1 mapped to kernel
4090 // threads. It has always been the case, but could change in the future. For
4091 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4092 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4093 
4094 int os::java_to_os_priority[CriticalPriority + 1] = {
4095   19,              // 0 Entry should never be used
4096 
4097    4,              // 1 MinPriority
4098    3,              // 2
4099    2,              // 3
4100 
4101    1,              // 4
4102    0,              // 5 NormPriority
4103   -1,              // 6
4104 
4105   -2,              // 7
4106   -3,              // 8
4107   -4,              // 9 NearMaxPriority
4108 
4109   -5,              // 10 MaxPriority
4110 
4111   -5               // 11 CriticalPriority
4112 };
4113 
4114 static int prio_init() {
4115   if (ThreadPriorityPolicy == 1) {
4116     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4117     // if effective uid is not root. Perhaps, a more elegant way of doing
4118     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4119     if (geteuid() != 0) {
4120       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4121         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4122       }
4123       ThreadPriorityPolicy = 0;
4124     }
4125   }
4126   if (UseCriticalJavaThreadPriority) {
4127     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4128   }
4129   return 0;
4130 }
4131 
4132 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4133   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4134 
4135   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4136   return (ret == 0) ? OS_OK : OS_ERR;
4137 }
4138 
4139 OSReturn os::get_native_priority(const Thread* const thread,
4140                                  int *priority_ptr) {
4141   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4142     *priority_ptr = java_to_os_priority[NormPriority];
4143     return OS_OK;
4144   }
4145 
4146   errno = 0;
4147   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4148   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4149 }
4150 
4151 ////////////////////////////////////////////////////////////////////////////////
4152 // suspend/resume support
4153 
4154 //  The low-level signal-based suspend/resume support is a remnant from the
4155 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4156 //  within hotspot. Currently used by JFR's OSThreadSampler
4157 //
4158 //  The remaining code is greatly simplified from the more general suspension
4159 //  code that used to be used.
4160 //
4161 //  The protocol is quite simple:
4162 //  - suspend:
4163 //      - sends a signal to the target thread
4164 //      - polls the suspend state of the osthread using a yield loop
4165 //      - target thread signal handler (SR_handler) sets suspend state
4166 //        and blocks in sigsuspend until continued
4167 //  - resume:
4168 //      - sets target osthread state to continue
4169 //      - sends signal to end the sigsuspend loop in the SR_handler
4170 //
4171 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4172 //  but is checked for NULL in SR_handler as a thread termination indicator.
4173 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4174 //
4175 //  Note that resume_clear_context() and suspend_save_context() are needed
4176 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4177 //  which in part is used by:
4178 //    - Forte Analyzer: AsyncGetCallTrace()
4179 //    - StackBanging: get_frame_at_stack_banging_point()
4180 
4181 static void resume_clear_context(OSThread *osthread) {
4182   osthread->set_ucontext(NULL);
4183   osthread->set_siginfo(NULL);
4184 }
4185 
4186 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4187                                  ucontext_t* context) {
4188   osthread->set_ucontext(context);
4189   osthread->set_siginfo(siginfo);
4190 }
4191 
4192 // Handler function invoked when a thread's execution is suspended or
4193 // resumed. We have to be careful that only async-safe functions are
4194 // called here (Note: most pthread functions are not async safe and
4195 // should be avoided.)
4196 //
4197 // Note: sigwait() is a more natural fit than sigsuspend() from an
4198 // interface point of view, but sigwait() prevents the signal hander
4199 // from being run. libpthread would get very confused by not having
4200 // its signal handlers run and prevents sigwait()'s use with the
4201 // mutex granting granting signal.
4202 //
4203 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4204 //
4205 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4206   // Save and restore errno to avoid confusing native code with EINTR
4207   // after sigsuspend.
4208   int old_errno = errno;
4209 
4210   Thread* thread = Thread::current_or_null_safe();
4211   assert(thread != NULL, "Missing current thread in SR_handler");
4212 
4213   // On some systems we have seen signal delivery get "stuck" until the signal
4214   // mask is changed as part of thread termination. Check that the current thread
4215   // has not already terminated (via SR_lock()) - else the following assertion
4216   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4217   // destructor has completed.
4218 
4219   if (thread->SR_lock() == NULL) {
4220     return;
4221   }
4222 
4223   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4224 
4225   OSThread* osthread = thread->osthread();
4226 
4227   os::SuspendResume::State current = osthread->sr.state();
4228   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4229     suspend_save_context(osthread, siginfo, context);
4230 
4231     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4232     os::SuspendResume::State state = osthread->sr.suspended();
4233     if (state == os::SuspendResume::SR_SUSPENDED) {
4234       sigset_t suspend_set;  // signals for sigsuspend()
4235       sigemptyset(&suspend_set);
4236       // get current set of blocked signals and unblock resume signal
4237       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4238       sigdelset(&suspend_set, SR_signum);
4239 
4240       sr_semaphore.signal();
4241       // wait here until we are resumed
4242       while (1) {
4243         sigsuspend(&suspend_set);
4244 
4245         os::SuspendResume::State result = osthread->sr.running();
4246         if (result == os::SuspendResume::SR_RUNNING) {
4247           sr_semaphore.signal();
4248           break;
4249         }
4250       }
4251 
4252     } else if (state == os::SuspendResume::SR_RUNNING) {
4253       // request was cancelled, continue
4254     } else {
4255       ShouldNotReachHere();
4256     }
4257 
4258     resume_clear_context(osthread);
4259   } else if (current == os::SuspendResume::SR_RUNNING) {
4260     // request was cancelled, continue
4261   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4262     // ignore
4263   } else {
4264     // ignore
4265   }
4266 
4267   errno = old_errno;
4268 }
4269 
4270 static int SR_initialize() {
4271   struct sigaction act;
4272   char *s;
4273 
4274   // Get signal number to use for suspend/resume
4275   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4276     int sig = ::strtol(s, 0, 10);
4277     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4278         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4279       SR_signum = sig;
4280     } else {
4281       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4282               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4283     }
4284   }
4285 
4286   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4287          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4288 
4289   sigemptyset(&SR_sigset);
4290   sigaddset(&SR_sigset, SR_signum);
4291 
4292   // Set up signal handler for suspend/resume
4293   act.sa_flags = SA_RESTART|SA_SIGINFO;
4294   act.sa_handler = (void (*)(int)) SR_handler;
4295 
4296   // SR_signum is blocked by default.
4297   // 4528190 - We also need to block pthread restart signal (32 on all
4298   // supported Linux platforms). Note that LinuxThreads need to block
4299   // this signal for all threads to work properly. So we don't have
4300   // to use hard-coded signal number when setting up the mask.
4301   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4302 
4303   if (sigaction(SR_signum, &act, 0) == -1) {
4304     return -1;
4305   }
4306 
4307   // Save signal flag
4308   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4309   return 0;
4310 }
4311 
4312 static int sr_notify(OSThread* osthread) {
4313   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4314   assert_status(status == 0, status, "pthread_kill");
4315   return status;
4316 }
4317 
4318 // "Randomly" selected value for how long we want to spin
4319 // before bailing out on suspending a thread, also how often
4320 // we send a signal to a thread we want to resume
4321 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4322 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4323 
4324 // returns true on success and false on error - really an error is fatal
4325 // but this seems the normal response to library errors
4326 static bool do_suspend(OSThread* osthread) {
4327   assert(osthread->sr.is_running(), "thread should be running");
4328   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4329 
4330   // mark as suspended and send signal
4331   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4332     // failed to switch, state wasn't running?
4333     ShouldNotReachHere();
4334     return false;
4335   }
4336 
4337   if (sr_notify(osthread) != 0) {
4338     ShouldNotReachHere();
4339   }
4340 
4341   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4342   while (true) {
4343     if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4344       break;
4345     } else {
4346       // timeout
4347       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4348       if (cancelled == os::SuspendResume::SR_RUNNING) {
4349         return false;
4350       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4351         // make sure that we consume the signal on the semaphore as well
4352         sr_semaphore.wait();
4353         break;
4354       } else {
4355         ShouldNotReachHere();
4356         return false;
4357       }
4358     }
4359   }
4360 
4361   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4362   return true;
4363 }
4364 
4365 static void do_resume(OSThread* osthread) {
4366   assert(osthread->sr.is_suspended(), "thread should be suspended");
4367   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4368 
4369   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4370     // failed to switch to WAKEUP_REQUEST
4371     ShouldNotReachHere();
4372     return;
4373   }
4374 
4375   while (true) {
4376     if (sr_notify(osthread) == 0) {
4377       if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4378         if (osthread->sr.is_running()) {
4379           return;
4380         }
4381       }
4382     } else {
4383       ShouldNotReachHere();
4384     }
4385   }
4386 
4387   guarantee(osthread->sr.is_running(), "Must be running!");
4388 }
4389 
4390 ///////////////////////////////////////////////////////////////////////////////////
4391 // signal handling (except suspend/resume)
4392 
4393 // This routine may be used by user applications as a "hook" to catch signals.
4394 // The user-defined signal handler must pass unrecognized signals to this
4395 // routine, and if it returns true (non-zero), then the signal handler must
4396 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4397 // routine will never retun false (zero), but instead will execute a VM panic
4398 // routine kill the process.
4399 //
4400 // If this routine returns false, it is OK to call it again.  This allows
4401 // the user-defined signal handler to perform checks either before or after
4402 // the VM performs its own checks.  Naturally, the user code would be making
4403 // a serious error if it tried to handle an exception (such as a null check
4404 // or breakpoint) that the VM was generating for its own correct operation.
4405 //
4406 // This routine may recognize any of the following kinds of signals:
4407 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4408 // It should be consulted by handlers for any of those signals.
4409 //
4410 // The caller of this routine must pass in the three arguments supplied
4411 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4412 // field of the structure passed to sigaction().  This routine assumes that
4413 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4414 //
4415 // Note that the VM will print warnings if it detects conflicting signal
4416 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4417 //
4418 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4419                                                  siginfo_t* siginfo,
4420                                                  void* ucontext,
4421                                                  int abort_if_unrecognized);
4422 
4423 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4424   assert(info != NULL && uc != NULL, "it must be old kernel");
4425   int orig_errno = errno;  // Preserve errno value over signal handler.
4426   JVM_handle_linux_signal(sig, info, uc, true);
4427   errno = orig_errno;
4428 }
4429 
4430 
4431 // This boolean allows users to forward their own non-matching signals
4432 // to JVM_handle_linux_signal, harmlessly.
4433 bool os::Linux::signal_handlers_are_installed = false;
4434 
4435 // For signal-chaining
4436 struct sigaction sigact[NSIG];
4437 uint64_t sigs = 0;
4438 #if (64 < NSIG-1)
4439 #error "Not all signals can be encoded in sigs. Adapt its type!"
4440 #endif
4441 bool os::Linux::libjsig_is_loaded = false;
4442 typedef struct sigaction *(*get_signal_t)(int);
4443 get_signal_t os::Linux::get_signal_action = NULL;
4444 
4445 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4446   struct sigaction *actp = NULL;
4447 
4448   if (libjsig_is_loaded) {
4449     // Retrieve the old signal handler from libjsig
4450     actp = (*get_signal_action)(sig);
4451   }
4452   if (actp == NULL) {
4453     // Retrieve the preinstalled signal handler from jvm
4454     actp = get_preinstalled_handler(sig);
4455   }
4456 
4457   return actp;
4458 }
4459 
4460 static bool call_chained_handler(struct sigaction *actp, int sig,
4461                                  siginfo_t *siginfo, void *context) {
4462   // Call the old signal handler
4463   if (actp->sa_handler == SIG_DFL) {
4464     // It's more reasonable to let jvm treat it as an unexpected exception
4465     // instead of taking the default action.
4466     return false;
4467   } else if (actp->sa_handler != SIG_IGN) {
4468     if ((actp->sa_flags & SA_NODEFER) == 0) {
4469       // automaticlly block the signal
4470       sigaddset(&(actp->sa_mask), sig);
4471     }
4472 
4473     sa_handler_t hand = NULL;
4474     sa_sigaction_t sa = NULL;
4475     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4476     // retrieve the chained handler
4477     if (siginfo_flag_set) {
4478       sa = actp->sa_sigaction;
4479     } else {
4480       hand = actp->sa_handler;
4481     }
4482 
4483     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4484       actp->sa_handler = SIG_DFL;
4485     }
4486 
4487     // try to honor the signal mask
4488     sigset_t oset;
4489     sigemptyset(&oset);
4490     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4491 
4492     // call into the chained handler
4493     if (siginfo_flag_set) {
4494       (*sa)(sig, siginfo, context);
4495     } else {
4496       (*hand)(sig);
4497     }
4498 
4499     // restore the signal mask
4500     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4501   }
4502   // Tell jvm's signal handler the signal is taken care of.
4503   return true;
4504 }
4505 
4506 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4507   bool chained = false;
4508   // signal-chaining
4509   if (UseSignalChaining) {
4510     struct sigaction *actp = get_chained_signal_action(sig);
4511     if (actp != NULL) {
4512       chained = call_chained_handler(actp, sig, siginfo, context);
4513     }
4514   }
4515   return chained;
4516 }
4517 
4518 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4519   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4520     return &sigact[sig];
4521   }
4522   return NULL;
4523 }
4524 
4525 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4526   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4527   sigact[sig] = oldAct;
4528   sigs |= (uint64_t)1 << (sig-1);
4529 }
4530 
4531 // for diagnostic
4532 int sigflags[NSIG];
4533 
4534 int os::Linux::get_our_sigflags(int sig) {
4535   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4536   return sigflags[sig];
4537 }
4538 
4539 void os::Linux::set_our_sigflags(int sig, int flags) {
4540   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4541   if (sig > 0 && sig < NSIG) {
4542     sigflags[sig] = flags;
4543   }
4544 }
4545 
4546 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4547   // Check for overwrite.
4548   struct sigaction oldAct;
4549   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4550 
4551   void* oldhand = oldAct.sa_sigaction
4552                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4553                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4554   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4555       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4556       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4557     if (AllowUserSignalHandlers || !set_installed) {
4558       // Do not overwrite; user takes responsibility to forward to us.
4559       return;
4560     } else if (UseSignalChaining) {
4561       // save the old handler in jvm
4562       save_preinstalled_handler(sig, oldAct);
4563       // libjsig also interposes the sigaction() call below and saves the
4564       // old sigaction on it own.
4565     } else {
4566       fatal("Encountered unexpected pre-existing sigaction handler "
4567             "%#lx for signal %d.", (long)oldhand, sig);
4568     }
4569   }
4570 
4571   struct sigaction sigAct;
4572   sigfillset(&(sigAct.sa_mask));
4573   sigAct.sa_handler = SIG_DFL;
4574   if (!set_installed) {
4575     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4576   } else {
4577     sigAct.sa_sigaction = signalHandler;
4578     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4579   }
4580   // Save flags, which are set by ours
4581   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4582   sigflags[sig] = sigAct.sa_flags;
4583 
4584   int ret = sigaction(sig, &sigAct, &oldAct);
4585   assert(ret == 0, "check");
4586 
4587   void* oldhand2  = oldAct.sa_sigaction
4588                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4589                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4590   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4591 }
4592 
4593 // install signal handlers for signals that HotSpot needs to
4594 // handle in order to support Java-level exception handling.
4595 
4596 void os::Linux::install_signal_handlers() {
4597   if (!signal_handlers_are_installed) {
4598     signal_handlers_are_installed = true;
4599 
4600     // signal-chaining
4601     typedef void (*signal_setting_t)();
4602     signal_setting_t begin_signal_setting = NULL;
4603     signal_setting_t end_signal_setting = NULL;
4604     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4605                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4606     if (begin_signal_setting != NULL) {
4607       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4608                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4609       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4610                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4611       libjsig_is_loaded = true;
4612       assert(UseSignalChaining, "should enable signal-chaining");
4613     }
4614     if (libjsig_is_loaded) {
4615       // Tell libjsig jvm is setting signal handlers
4616       (*begin_signal_setting)();
4617     }
4618 
4619     set_signal_handler(SIGSEGV, true);
4620     set_signal_handler(SIGPIPE, true);
4621     set_signal_handler(SIGBUS, true);
4622     set_signal_handler(SIGILL, true);
4623     set_signal_handler(SIGFPE, true);
4624 #if defined(PPC64)
4625     set_signal_handler(SIGTRAP, true);
4626 #endif
4627     set_signal_handler(SIGXFSZ, true);
4628 
4629     if (libjsig_is_loaded) {
4630       // Tell libjsig jvm finishes setting signal handlers
4631       (*end_signal_setting)();
4632     }
4633 
4634     // We don't activate signal checker if libjsig is in place, we trust ourselves
4635     // and if UserSignalHandler is installed all bets are off.
4636     // Log that signal checking is off only if -verbose:jni is specified.
4637     if (CheckJNICalls) {
4638       if (libjsig_is_loaded) {
4639         if (PrintJNIResolving) {
4640           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4641         }
4642         check_signals = false;
4643       }
4644       if (AllowUserSignalHandlers) {
4645         if (PrintJNIResolving) {
4646           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4647         }
4648         check_signals = false;
4649       }
4650     }
4651   }
4652 }
4653 
4654 // This is the fastest way to get thread cpu time on Linux.
4655 // Returns cpu time (user+sys) for any thread, not only for current.
4656 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4657 // It might work on 2.6.10+ with a special kernel/glibc patch.
4658 // For reference, please, see IEEE Std 1003.1-2004:
4659 //   http://www.unix.org/single_unix_specification
4660 
4661 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4662   struct timespec tp;
4663   int rc = os::Posix::clock_gettime(clockid, &tp);
4664   assert(rc == 0, "clock_gettime is expected to return 0 code");
4665 
4666   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4667 }
4668 
4669 void os::Linux::initialize_os_info() {
4670   assert(_os_version == 0, "OS info already initialized");
4671 
4672   struct utsname _uname;
4673 
4674   uint32_t major;
4675   uint32_t minor;
4676   uint32_t fix;
4677 
4678   int rc;
4679 
4680   // Kernel version is unknown if
4681   // verification below fails.
4682   _os_version = 0x01000000;
4683 
4684   rc = uname(&_uname);
4685   if (rc != -1) {
4686 
4687     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4688     if (rc == 3) {
4689 
4690       if (major < 256 && minor < 256 && fix < 256) {
4691         // Kernel version format is as expected,
4692         // set it overriding unknown state.
4693         _os_version = (major << 16) |
4694                       (minor << 8 ) |
4695                       (fix   << 0 ) ;
4696       }
4697     }
4698   }
4699 }
4700 
4701 uint32_t os::Linux::os_version() {
4702   assert(_os_version != 0, "not initialized");
4703   return _os_version & 0x00FFFFFF;
4704 }
4705 
4706 bool os::Linux::os_version_is_known() {
4707   assert(_os_version != 0, "not initialized");
4708   return _os_version & 0x01000000 ? false : true;
4709 }
4710 
4711 /////
4712 // glibc on Linux platform uses non-documented flag
4713 // to indicate, that some special sort of signal
4714 // trampoline is used.
4715 // We will never set this flag, and we should
4716 // ignore this flag in our diagnostic
4717 #ifdef SIGNIFICANT_SIGNAL_MASK
4718   #undef SIGNIFICANT_SIGNAL_MASK
4719 #endif
4720 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4721 
4722 static const char* get_signal_handler_name(address handler,
4723                                            char* buf, int buflen) {
4724   int offset = 0;
4725   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4726   if (found) {
4727     // skip directory names
4728     const char *p1, *p2;
4729     p1 = buf;
4730     size_t len = strlen(os::file_separator());
4731     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4732     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4733   } else {
4734     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4735   }
4736   return buf;
4737 }
4738 
4739 static void print_signal_handler(outputStream* st, int sig,
4740                                  char* buf, size_t buflen) {
4741   struct sigaction sa;
4742 
4743   sigaction(sig, NULL, &sa);
4744 
4745   // See comment for SIGNIFICANT_SIGNAL_MASK define
4746   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4747 
4748   st->print("%s: ", os::exception_name(sig, buf, buflen));
4749 
4750   address handler = (sa.sa_flags & SA_SIGINFO)
4751     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4752     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4753 
4754   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4755     st->print("SIG_DFL");
4756   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4757     st->print("SIG_IGN");
4758   } else {
4759     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4760   }
4761 
4762   st->print(", sa_mask[0]=");
4763   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4764 
4765   address rh = VMError::get_resetted_sighandler(sig);
4766   // May be, handler was resetted by VMError?
4767   if (rh != NULL) {
4768     handler = rh;
4769     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4770   }
4771 
4772   st->print(", sa_flags=");
4773   os::Posix::print_sa_flags(st, sa.sa_flags);
4774 
4775   // Check: is it our handler?
4776   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4777       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4778     // It is our signal handler
4779     // check for flags, reset system-used one!
4780     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4781       st->print(
4782                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4783                 os::Linux::get_our_sigflags(sig));
4784     }
4785   }
4786   st->cr();
4787 }
4788 
4789 
4790 #define DO_SIGNAL_CHECK(sig)                      \
4791   do {                                            \
4792     if (!sigismember(&check_signal_done, sig)) {  \
4793       os::Linux::check_signal_handler(sig);       \
4794     }                                             \
4795   } while (0)
4796 
4797 // This method is a periodic task to check for misbehaving JNI applications
4798 // under CheckJNI, we can add any periodic checks here
4799 
4800 void os::run_periodic_checks() {
4801   if (check_signals == false) return;
4802 
4803   // SEGV and BUS if overridden could potentially prevent
4804   // generation of hs*.log in the event of a crash, debugging
4805   // such a case can be very challenging, so we absolutely
4806   // check the following for a good measure:
4807   DO_SIGNAL_CHECK(SIGSEGV);
4808   DO_SIGNAL_CHECK(SIGILL);
4809   DO_SIGNAL_CHECK(SIGFPE);
4810   DO_SIGNAL_CHECK(SIGBUS);
4811   DO_SIGNAL_CHECK(SIGPIPE);
4812   DO_SIGNAL_CHECK(SIGXFSZ);
4813 #if defined(PPC64)
4814   DO_SIGNAL_CHECK(SIGTRAP);
4815 #endif
4816 
4817   // ReduceSignalUsage allows the user to override these handlers
4818   // see comments at the very top and jvm_md.h
4819   if (!ReduceSignalUsage) {
4820     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4821     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4822     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4823     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4824   }
4825 
4826   DO_SIGNAL_CHECK(SR_signum);
4827 }
4828 
4829 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4830 
4831 static os_sigaction_t os_sigaction = NULL;
4832 
4833 void os::Linux::check_signal_handler(int sig) {
4834   char buf[O_BUFLEN];
4835   address jvmHandler = NULL;
4836 
4837 
4838   struct sigaction act;
4839   if (os_sigaction == NULL) {
4840     // only trust the default sigaction, in case it has been interposed
4841     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4842     if (os_sigaction == NULL) return;
4843   }
4844 
4845   os_sigaction(sig, (struct sigaction*)NULL, &act);
4846 
4847 
4848   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4849 
4850   address thisHandler = (act.sa_flags & SA_SIGINFO)
4851     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4852     : CAST_FROM_FN_PTR(address, act.sa_handler);
4853 
4854 
4855   switch (sig) {
4856   case SIGSEGV:
4857   case SIGBUS:
4858   case SIGFPE:
4859   case SIGPIPE:
4860   case SIGILL:
4861   case SIGXFSZ:
4862     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4863     break;
4864 
4865   case SHUTDOWN1_SIGNAL:
4866   case SHUTDOWN2_SIGNAL:
4867   case SHUTDOWN3_SIGNAL:
4868   case BREAK_SIGNAL:
4869     jvmHandler = (address)user_handler();
4870     break;
4871 
4872   default:
4873     if (sig == SR_signum) {
4874       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4875     } else {
4876       return;
4877     }
4878     break;
4879   }
4880 
4881   if (thisHandler != jvmHandler) {
4882     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4883     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4884     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4885     // No need to check this sig any longer
4886     sigaddset(&check_signal_done, sig);
4887     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4888     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4889       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4890                     exception_name(sig, buf, O_BUFLEN));
4891     }
4892   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4893     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4894     tty->print("expected:");
4895     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4896     tty->cr();
4897     tty->print("  found:");
4898     os::Posix::print_sa_flags(tty, act.sa_flags);
4899     tty->cr();
4900     // No need to check this sig any longer
4901     sigaddset(&check_signal_done, sig);
4902   }
4903 
4904   // Dump all the signal
4905   if (sigismember(&check_signal_done, sig)) {
4906     print_signal_handlers(tty, buf, O_BUFLEN);
4907   }
4908 }
4909 
4910 extern void report_error(char* file_name, int line_no, char* title,
4911                          char* format, ...);
4912 
4913 // this is called _before_ most of the global arguments have been parsed
4914 void os::init(void) {
4915   char dummy;   // used to get a guess on initial stack address
4916 
4917   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4918 
4919   init_random(1234567);
4920 
4921   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4922   if (Linux::page_size() == -1) {
4923     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4924           os::strerror(errno));
4925   }
4926   init_page_sizes((size_t) Linux::page_size());
4927 
4928   Linux::initialize_system_info();
4929 
4930   Linux::initialize_os_info();
4931 
4932   // _main_thread points to the thread that created/loaded the JVM.
4933   Linux::_main_thread = pthread_self();
4934 
4935   // retrieve entry point for pthread_setname_np
4936   Linux::_pthread_setname_np =
4937     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4938 
4939   os::Posix::init();
4940 
4941   initial_time_count = javaTimeNanos();
4942 
4943   // Always warn if no monotonic clock available
4944   if (!os::Posix::supports_monotonic_clock()) {
4945     warning("No monotonic clock was available - timed services may "    \
4946             "be adversely affected if the time-of-day clock changes");
4947   }
4948 }
4949 
4950 // To install functions for atexit system call
4951 extern "C" {
4952   static void perfMemory_exit_helper() {
4953     perfMemory_exit();
4954   }
4955 }
4956 
4957 void os::pd_init_container_support() {
4958   OSContainer::init();
4959 }
4960 
4961 // this is called _after_ the global arguments have been parsed
4962 jint os::init_2(void) {
4963 
4964   // This could be set after os::Posix::init() but all platforms
4965   // have to set it the same so we have to mirror Solaris.
4966   DEBUG_ONLY(os::set_mutex_init_done();)
4967 
4968   os::Posix::init_2();
4969 
4970   Linux::fast_thread_clock_init();
4971 
4972   // initialize suspend/resume support - must do this before signal_sets_init()
4973   if (SR_initialize() != 0) {
4974     perror("SR_initialize failed");
4975     return JNI_ERR;
4976   }
4977 
4978   Linux::signal_sets_init();
4979   Linux::install_signal_handlers();
4980   // Initialize data for jdk.internal.misc.Signal
4981   if (!ReduceSignalUsage) {
4982     jdk_misc_signal_init();
4983   }
4984 
4985   // Check and sets minimum stack sizes against command line options
4986   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4987     return JNI_ERR;
4988   }
4989 
4990   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
4991   if (!suppress_primordial_thread_resolution) {
4992     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4993   }
4994 
4995 #if defined(IA32)
4996   workaround_expand_exec_shield_cs_limit();
4997 #endif
4998 
4999   Linux::libpthread_init();
5000   Linux::sched_getcpu_init();
5001   log_info(os)("HotSpot is running with %s, %s",
5002                Linux::glibc_version(), Linux::libpthread_version());
5003 
5004   if (UseNUMA) {
5005     if (!Linux::libnuma_init()) {
5006       UseNUMA = false;
5007     } else {
5008       if ((Linux::numa_max_node() < 1) || Linux::isbound_to_single_node()) {
5009         // If there's only one node (they start from 0) or if the process
5010         // is bound explicitly to a single node using membind, disable NUMA.
5011         UseNUMA = false;
5012       }
5013     }
5014 
5015     if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5016       // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5017       // we can make the adaptive lgrp chunk resizing work. If the user specified both
5018       // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5019       // and disable adaptive resizing.
5020       if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5021         warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5022                 "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5023         UseAdaptiveSizePolicy = false;
5024         UseAdaptiveNUMAChunkSizing = false;
5025       }
5026     }
5027 
5028     if (!UseNUMA && ForceNUMA) {
5029       UseNUMA = true;
5030     }
5031   }
5032 
5033   if (MaxFDLimit) {
5034     // set the number of file descriptors to max. print out error
5035     // if getrlimit/setrlimit fails but continue regardless.
5036     struct rlimit nbr_files;
5037     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5038     if (status != 0) {
5039       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5040     } else {
5041       nbr_files.rlim_cur = nbr_files.rlim_max;
5042       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5043       if (status != 0) {
5044         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5045       }
5046     }
5047   }
5048 
5049   // Initialize lock used to serialize thread creation (see os::create_thread)
5050   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5051 
5052   // at-exit methods are called in the reverse order of their registration.
5053   // atexit functions are called on return from main or as a result of a
5054   // call to exit(3C). There can be only 32 of these functions registered
5055   // and atexit() does not set errno.
5056 
5057   if (PerfAllowAtExitRegistration) {
5058     // only register atexit functions if PerfAllowAtExitRegistration is set.
5059     // atexit functions can be delayed until process exit time, which
5060     // can be problematic for embedded VM situations. Embedded VMs should
5061     // call DestroyJavaVM() to assure that VM resources are released.
5062 
5063     // note: perfMemory_exit_helper atexit function may be removed in
5064     // the future if the appropriate cleanup code can be added to the
5065     // VM_Exit VMOperation's doit method.
5066     if (atexit(perfMemory_exit_helper) != 0) {
5067       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5068     }
5069   }
5070 
5071   // initialize thread priority policy
5072   prio_init();
5073 
5074   if (!FLAG_IS_DEFAULT(AllocateHeapAt)) {
5075     set_coredump_filter(false /*largepages*/, true /*dax_shared*/);
5076   }
5077   return JNI_OK;
5078 }
5079 
5080 // Mark the polling page as unreadable
5081 void os::make_polling_page_unreadable(void) {
5082   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5083     fatal("Could not disable polling page");
5084   }
5085 }
5086 
5087 // Mark the polling page as readable
5088 void os::make_polling_page_readable(void) {
5089   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5090     fatal("Could not enable polling page");
5091   }
5092 }
5093 
5094 // older glibc versions don't have this macro (which expands to
5095 // an optimized bit-counting function) so we have to roll our own
5096 #ifndef CPU_COUNT
5097 
5098 static int _cpu_count(const cpu_set_t* cpus) {
5099   int count = 0;
5100   // only look up to the number of configured processors
5101   for (int i = 0; i < os::processor_count(); i++) {
5102     if (CPU_ISSET(i, cpus)) {
5103       count++;
5104     }
5105   }
5106   return count;
5107 }
5108 
5109 #define CPU_COUNT(cpus) _cpu_count(cpus)
5110 
5111 #endif // CPU_COUNT
5112 
5113 // Get the current number of available processors for this process.
5114 // This value can change at any time during a process's lifetime.
5115 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5116 // If it appears there may be more than 1024 processors then we do a
5117 // dynamic check - see 6515172 for details.
5118 // If anything goes wrong we fallback to returning the number of online
5119 // processors - which can be greater than the number available to the process.
5120 int os::Linux::active_processor_count() {
5121   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5122   cpu_set_t* cpus_p = &cpus;
5123   int cpus_size = sizeof(cpu_set_t);
5124 
5125   int configured_cpus = os::processor_count();  // upper bound on available cpus
5126   int cpu_count = 0;
5127 
5128 // old build platforms may not support dynamic cpu sets
5129 #ifdef CPU_ALLOC
5130 
5131   // To enable easy testing of the dynamic path on different platforms we
5132   // introduce a diagnostic flag: UseCpuAllocPath
5133   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5134     // kernel may use a mask bigger than cpu_set_t
5135     log_trace(os)("active_processor_count: using dynamic path %s"
5136                   "- configured processors: %d",
5137                   UseCpuAllocPath ? "(forced) " : "",
5138                   configured_cpus);
5139     cpus_p = CPU_ALLOC(configured_cpus);
5140     if (cpus_p != NULL) {
5141       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5142       // zero it just to be safe
5143       CPU_ZERO_S(cpus_size, cpus_p);
5144     }
5145     else {
5146        // failed to allocate so fallback to online cpus
5147        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5148        log_trace(os)("active_processor_count: "
5149                      "CPU_ALLOC failed (%s) - using "
5150                      "online processor count: %d",
5151                      os::strerror(errno), online_cpus);
5152        return online_cpus;
5153     }
5154   }
5155   else {
5156     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5157                   configured_cpus);
5158   }
5159 #else // CPU_ALLOC
5160 // these stubs won't be executed
5161 #define CPU_COUNT_S(size, cpus) -1
5162 #define CPU_FREE(cpus)
5163 
5164   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5165                 configured_cpus);
5166 #endif // CPU_ALLOC
5167 
5168   // pid 0 means the current thread - which we have to assume represents the process
5169   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5170     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5171       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5172     }
5173     else {
5174       cpu_count = CPU_COUNT(cpus_p);
5175     }
5176     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5177   }
5178   else {
5179     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5180     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5181             "which may exceed available processors", os::strerror(errno), cpu_count);
5182   }
5183 
5184   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5185     CPU_FREE(cpus_p);
5186   }
5187 
5188   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5189   return cpu_count;
5190 }
5191 
5192 // Determine the active processor count from one of
5193 // three different sources:
5194 //
5195 // 1. User option -XX:ActiveProcessorCount
5196 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5197 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5198 //
5199 // Option 1, if specified, will always override.
5200 // If the cgroup subsystem is active and configured, we
5201 // will return the min of the cgroup and option 2 results.
5202 // This is required since tools, such as numactl, that
5203 // alter cpu affinity do not update cgroup subsystem
5204 // cpuset configuration files.
5205 int os::active_processor_count() {
5206   // User has overridden the number of active processors
5207   if (ActiveProcessorCount > 0) {
5208     log_trace(os)("active_processor_count: "
5209                   "active processor count set by user : %d",
5210                   ActiveProcessorCount);
5211     return ActiveProcessorCount;
5212   }
5213 
5214   int active_cpus;
5215   if (OSContainer::is_containerized()) {
5216     active_cpus = OSContainer::active_processor_count();
5217     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5218                    active_cpus);
5219   } else {
5220     active_cpus = os::Linux::active_processor_count();
5221   }
5222 
5223   return active_cpus;
5224 }
5225 
5226 uint os::processor_id() {
5227   const int id = Linux::sched_getcpu();
5228   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5229   return (uint)id;
5230 }
5231 
5232 void os::set_native_thread_name(const char *name) {
5233   if (Linux::_pthread_setname_np) {
5234     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5235     snprintf(buf, sizeof(buf), "%s", name);
5236     buf[sizeof(buf) - 1] = '\0';
5237     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5238     // ERANGE should not happen; all other errors should just be ignored.
5239     assert(rc != ERANGE, "pthread_setname_np failed");
5240   }
5241 }
5242 
5243 bool os::distribute_processes(uint length, uint* distribution) {
5244   // Not yet implemented.
5245   return false;
5246 }
5247 
5248 bool os::bind_to_processor(uint processor_id) {
5249   // Not yet implemented.
5250   return false;
5251 }
5252 
5253 ///
5254 
5255 void os::SuspendedThreadTask::internal_do_task() {
5256   if (do_suspend(_thread->osthread())) {
5257     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5258     do_task(context);
5259     do_resume(_thread->osthread());
5260   }
5261 }
5262 
5263 ////////////////////////////////////////////////////////////////////////////////
5264 // debug support
5265 
5266 bool os::find(address addr, outputStream* st) {
5267   Dl_info dlinfo;
5268   memset(&dlinfo, 0, sizeof(dlinfo));
5269   if (dladdr(addr, &dlinfo) != 0) {
5270     st->print(PTR_FORMAT ": ", p2i(addr));
5271     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5272       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5273                 p2i(addr) - p2i(dlinfo.dli_saddr));
5274     } else if (dlinfo.dli_fbase != NULL) {
5275       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5276     } else {
5277       st->print("<absolute address>");
5278     }
5279     if (dlinfo.dli_fname != NULL) {
5280       st->print(" in %s", dlinfo.dli_fname);
5281     }
5282     if (dlinfo.dli_fbase != NULL) {
5283       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5284     }
5285     st->cr();
5286 
5287     if (Verbose) {
5288       // decode some bytes around the PC
5289       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5290       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5291       address       lowest = (address) dlinfo.dli_sname;
5292       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5293       if (begin < lowest)  begin = lowest;
5294       Dl_info dlinfo2;
5295       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5296           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5297         end = (address) dlinfo2.dli_saddr;
5298       }
5299       Disassembler::decode(begin, end, st);
5300     }
5301     return true;
5302   }
5303   return false;
5304 }
5305 
5306 ////////////////////////////////////////////////////////////////////////////////
5307 // misc
5308 
5309 // This does not do anything on Linux. This is basically a hook for being
5310 // able to use structured exception handling (thread-local exception filters)
5311 // on, e.g., Win32.
5312 void
5313 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5314                          JavaCallArguments* args, Thread* thread) {
5315   f(value, method, args, thread);
5316 }
5317 
5318 void os::print_statistics() {
5319 }
5320 
5321 bool os::message_box(const char* title, const char* message) {
5322   int i;
5323   fdStream err(defaultStream::error_fd());
5324   for (i = 0; i < 78; i++) err.print_raw("=");
5325   err.cr();
5326   err.print_raw_cr(title);
5327   for (i = 0; i < 78; i++) err.print_raw("-");
5328   err.cr();
5329   err.print_raw_cr(message);
5330   for (i = 0; i < 78; i++) err.print_raw("=");
5331   err.cr();
5332 
5333   char buf[16];
5334   // Prevent process from exiting upon "read error" without consuming all CPU
5335   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5336 
5337   return buf[0] == 'y' || buf[0] == 'Y';
5338 }
5339 
5340 // Is a (classpath) directory empty?
5341 bool os::dir_is_empty(const char* path) {
5342   DIR *dir = NULL;
5343   struct dirent *ptr;
5344 
5345   dir = opendir(path);
5346   if (dir == NULL) return true;
5347 
5348   // Scan the directory
5349   bool result = true;
5350   while (result && (ptr = readdir(dir)) != NULL) {
5351     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5352       result = false;
5353     }
5354   }
5355   closedir(dir);
5356   return result;
5357 }
5358 
5359 // This code originates from JDK's sysOpen and open64_w
5360 // from src/solaris/hpi/src/system_md.c
5361 
5362 int os::open(const char *path, int oflag, int mode) {
5363   if (strlen(path) > MAX_PATH - 1) {
5364     errno = ENAMETOOLONG;
5365     return -1;
5366   }
5367 
5368   // All file descriptors that are opened in the Java process and not
5369   // specifically destined for a subprocess should have the close-on-exec
5370   // flag set.  If we don't set it, then careless 3rd party native code
5371   // might fork and exec without closing all appropriate file descriptors
5372   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5373   // turn might:
5374   //
5375   // - cause end-of-file to fail to be detected on some file
5376   //   descriptors, resulting in mysterious hangs, or
5377   //
5378   // - might cause an fopen in the subprocess to fail on a system
5379   //   suffering from bug 1085341.
5380   //
5381   // (Yes, the default setting of the close-on-exec flag is a Unix
5382   // design flaw)
5383   //
5384   // See:
5385   // 1085341: 32-bit stdio routines should support file descriptors >255
5386   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5387   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5388   //
5389   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5390   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5391   // because it saves a system call and removes a small window where the flag
5392   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5393   // and we fall back to using FD_CLOEXEC (see below).
5394 #ifdef O_CLOEXEC
5395   oflag |= O_CLOEXEC;
5396 #endif
5397 
5398   int fd = ::open64(path, oflag, mode);
5399   if (fd == -1) return -1;
5400 
5401   //If the open succeeded, the file might still be a directory
5402   {
5403     struct stat64 buf64;
5404     int ret = ::fstat64(fd, &buf64);
5405     int st_mode = buf64.st_mode;
5406 
5407     if (ret != -1) {
5408       if ((st_mode & S_IFMT) == S_IFDIR) {
5409         errno = EISDIR;
5410         ::close(fd);
5411         return -1;
5412       }
5413     } else {
5414       ::close(fd);
5415       return -1;
5416     }
5417   }
5418 
5419 #ifdef FD_CLOEXEC
5420   // Validate that the use of the O_CLOEXEC flag on open above worked.
5421   // With recent kernels, we will perform this check exactly once.
5422   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5423   if (!O_CLOEXEC_is_known_to_work) {
5424     int flags = ::fcntl(fd, F_GETFD);
5425     if (flags != -1) {
5426       if ((flags & FD_CLOEXEC) != 0)
5427         O_CLOEXEC_is_known_to_work = 1;
5428       else
5429         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5430     }
5431   }
5432 #endif
5433 
5434   return fd;
5435 }
5436 
5437 
5438 // create binary file, rewriting existing file if required
5439 int os::create_binary_file(const char* path, bool rewrite_existing) {
5440   int oflags = O_WRONLY | O_CREAT;
5441   if (!rewrite_existing) {
5442     oflags |= O_EXCL;
5443   }
5444   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5445 }
5446 
5447 // return current position of file pointer
5448 jlong os::current_file_offset(int fd) {
5449   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5450 }
5451 
5452 // move file pointer to the specified offset
5453 jlong os::seek_to_file_offset(int fd, jlong offset) {
5454   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5455 }
5456 
5457 // This code originates from JDK's sysAvailable
5458 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5459 
5460 int os::available(int fd, jlong *bytes) {
5461   jlong cur, end;
5462   int mode;
5463   struct stat64 buf64;
5464 
5465   if (::fstat64(fd, &buf64) >= 0) {
5466     mode = buf64.st_mode;
5467     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5468       int n;
5469       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5470         *bytes = n;
5471         return 1;
5472       }
5473     }
5474   }
5475   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5476     return 0;
5477   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5478     return 0;
5479   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5480     return 0;
5481   }
5482   *bytes = end - cur;
5483   return 1;
5484 }
5485 
5486 // Map a block of memory.
5487 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5488                         char *addr, size_t bytes, bool read_only,
5489                         bool allow_exec) {
5490   int prot;
5491   int flags = MAP_PRIVATE;
5492 
5493   if (read_only) {
5494     prot = PROT_READ;
5495   } else {
5496     prot = PROT_READ | PROT_WRITE;
5497   }
5498 
5499   if (allow_exec) {
5500     prot |= PROT_EXEC;
5501   }
5502 
5503   if (addr != NULL) {
5504     flags |= MAP_FIXED;
5505   }
5506 
5507   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5508                                      fd, file_offset);
5509   if (mapped_address == MAP_FAILED) {
5510     return NULL;
5511   }
5512   return mapped_address;
5513 }
5514 
5515 
5516 // Remap a block of memory.
5517 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5518                           char *addr, size_t bytes, bool read_only,
5519                           bool allow_exec) {
5520   // same as map_memory() on this OS
5521   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5522                         allow_exec);
5523 }
5524 
5525 
5526 // Unmap a block of memory.
5527 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5528   return munmap(addr, bytes) == 0;
5529 }
5530 
5531 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5532 
5533 static jlong fast_cpu_time(Thread *thread) {
5534     clockid_t clockid;
5535     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5536                                               &clockid);
5537     if (rc == 0) {
5538       return os::Linux::fast_thread_cpu_time(clockid);
5539     } else {
5540       // It's possible to encounter a terminated native thread that failed
5541       // to detach itself from the VM - which should result in ESRCH.
5542       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5543       return -1;
5544     }
5545 }
5546 
5547 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5548 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5549 // of a thread.
5550 //
5551 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5552 // the fast estimate available on the platform.
5553 
5554 jlong os::current_thread_cpu_time() {
5555   if (os::Linux::supports_fast_thread_cpu_time()) {
5556     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5557   } else {
5558     // return user + sys since the cost is the same
5559     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5560   }
5561 }
5562 
5563 jlong os::thread_cpu_time(Thread* thread) {
5564   // consistent with what current_thread_cpu_time() returns
5565   if (os::Linux::supports_fast_thread_cpu_time()) {
5566     return fast_cpu_time(thread);
5567   } else {
5568     return slow_thread_cpu_time(thread, true /* user + sys */);
5569   }
5570 }
5571 
5572 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5573   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5574     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5575   } else {
5576     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5577   }
5578 }
5579 
5580 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5581   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5582     return fast_cpu_time(thread);
5583   } else {
5584     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5585   }
5586 }
5587 
5588 //  -1 on error.
5589 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5590   pid_t  tid = thread->osthread()->thread_id();
5591   char *s;
5592   char stat[2048];
5593   int statlen;
5594   char proc_name[64];
5595   int count;
5596   long sys_time, user_time;
5597   char cdummy;
5598   int idummy;
5599   long ldummy;
5600   FILE *fp;
5601 
5602   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5603   fp = fopen(proc_name, "r");
5604   if (fp == NULL) return -1;
5605   statlen = fread(stat, 1, 2047, fp);
5606   stat[statlen] = '\0';
5607   fclose(fp);
5608 
5609   // Skip pid and the command string. Note that we could be dealing with
5610   // weird command names, e.g. user could decide to rename java launcher
5611   // to "java 1.4.2 :)", then the stat file would look like
5612   //                1234 (java 1.4.2 :)) R ... ...
5613   // We don't really need to know the command string, just find the last
5614   // occurrence of ")" and then start parsing from there. See bug 4726580.
5615   s = strrchr(stat, ')');
5616   if (s == NULL) return -1;
5617 
5618   // Skip blank chars
5619   do { s++; } while (s && isspace(*s));
5620 
5621   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5622                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5623                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5624                  &user_time, &sys_time);
5625   if (count != 13) return -1;
5626   if (user_sys_cpu_time) {
5627     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5628   } else {
5629     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5630   }
5631 }
5632 
5633 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5634   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5635   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5636   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5637   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5638 }
5639 
5640 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5641   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5642   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5643   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5644   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5645 }
5646 
5647 bool os::is_thread_cpu_time_supported() {
5648   return true;
5649 }
5650 
5651 // System loadavg support.  Returns -1 if load average cannot be obtained.
5652 // Linux doesn't yet have a (official) notion of processor sets,
5653 // so just return the system wide load average.
5654 int os::loadavg(double loadavg[], int nelem) {
5655   return ::getloadavg(loadavg, nelem);
5656 }
5657 
5658 void os::pause() {
5659   char filename[MAX_PATH];
5660   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5661     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5662   } else {
5663     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5664   }
5665 
5666   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5667   if (fd != -1) {
5668     struct stat buf;
5669     ::close(fd);
5670     while (::stat(filename, &buf) == 0) {
5671       (void)::poll(NULL, 0, 100);
5672     }
5673   } else {
5674     jio_fprintf(stderr,
5675                 "Could not open pause file '%s', continuing immediately.\n", filename);
5676   }
5677 }
5678 
5679 extern char** environ;
5680 
5681 // Run the specified command in a separate process. Return its exit value,
5682 // or -1 on failure (e.g. can't fork a new process).
5683 // Unlike system(), this function can be called from signal handler. It
5684 // doesn't block SIGINT et al.
5685 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5686   const char * argv[4] = {"sh", "-c", cmd, NULL};
5687 
5688   pid_t pid ;
5689 
5690   if (use_vfork_if_available) {
5691     pid = vfork();
5692   } else {
5693     pid = fork();
5694   }
5695 
5696   if (pid < 0) {
5697     // fork failed
5698     return -1;
5699 
5700   } else if (pid == 0) {
5701     // child process
5702 
5703     execve("/bin/sh", (char* const*)argv, environ);
5704 
5705     // execve failed
5706     _exit(-1);
5707 
5708   } else  {
5709     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5710     // care about the actual exit code, for now.
5711 
5712     int status;
5713 
5714     // Wait for the child process to exit.  This returns immediately if
5715     // the child has already exited. */
5716     while (waitpid(pid, &status, 0) < 0) {
5717       switch (errno) {
5718       case ECHILD: return 0;
5719       case EINTR: break;
5720       default: return -1;
5721       }
5722     }
5723 
5724     if (WIFEXITED(status)) {
5725       // The child exited normally; get its exit code.
5726       return WEXITSTATUS(status);
5727     } else if (WIFSIGNALED(status)) {
5728       // The child exited because of a signal
5729       // The best value to return is 0x80 + signal number,
5730       // because that is what all Unix shells do, and because
5731       // it allows callers to distinguish between process exit and
5732       // process death by signal.
5733       return 0x80 + WTERMSIG(status);
5734     } else {
5735       // Unknown exit code; pass it through
5736       return status;
5737     }
5738   }
5739 }
5740 
5741 // Get the default path to the core file
5742 // Returns the length of the string
5743 int os::get_core_path(char* buffer, size_t bufferSize) {
5744   /*
5745    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5746    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5747    */
5748   const int core_pattern_len = 129;
5749   char core_pattern[core_pattern_len] = {0};
5750 
5751   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5752   if (core_pattern_file == -1) {
5753     return -1;
5754   }
5755 
5756   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5757   ::close(core_pattern_file);
5758   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5759     return -1;
5760   }
5761   if (core_pattern[ret-1] == '\n') {
5762     core_pattern[ret-1] = '\0';
5763   } else {
5764     core_pattern[ret] = '\0';
5765   }
5766 
5767   // Replace the %p in the core pattern with the process id. NOTE: we do this
5768   // only if the pattern doesn't start with "|", and we support only one %p in
5769   // the pattern.
5770   char *pid_pos = strstr(core_pattern, "%p");
5771   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
5772   int written;
5773 
5774   if (core_pattern[0] == '/') {
5775     if (pid_pos != NULL) {
5776       *pid_pos = '\0';
5777       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
5778                              current_process_id(), tail);
5779     } else {
5780       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5781     }
5782   } else {
5783     char cwd[PATH_MAX];
5784 
5785     const char* p = get_current_directory(cwd, PATH_MAX);
5786     if (p == NULL) {
5787       return -1;
5788     }
5789 
5790     if (core_pattern[0] == '|') {
5791       written = jio_snprintf(buffer, bufferSize,
5792                              "\"%s\" (or dumping to %s/core.%d)",
5793                              &core_pattern[1], p, current_process_id());
5794     } else if (pid_pos != NULL) {
5795       *pid_pos = '\0';
5796       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
5797                              current_process_id(), tail);
5798     } else {
5799       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5800     }
5801   }
5802 
5803   if (written < 0) {
5804     return -1;
5805   }
5806 
5807   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5808     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5809 
5810     if (core_uses_pid_file != -1) {
5811       char core_uses_pid = 0;
5812       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5813       ::close(core_uses_pid_file);
5814 
5815       if (core_uses_pid == '1') {
5816         jio_snprintf(buffer + written, bufferSize - written,
5817                                           ".%d", current_process_id());
5818       }
5819     }
5820   }
5821 
5822   return strlen(buffer);
5823 }
5824 
5825 bool os::start_debugging(char *buf, int buflen) {
5826   int len = (int)strlen(buf);
5827   char *p = &buf[len];
5828 
5829   jio_snprintf(p, buflen-len,
5830                "\n\n"
5831                "Do you want to debug the problem?\n\n"
5832                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5833                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5834                "Otherwise, press RETURN to abort...",
5835                os::current_process_id(), os::current_process_id(),
5836                os::current_thread_id(), os::current_thread_id());
5837 
5838   bool yes = os::message_box("Unexpected Error", buf);
5839 
5840   if (yes) {
5841     // yes, user asked VM to launch debugger
5842     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5843                  os::current_process_id(), os::current_process_id());
5844 
5845     os::fork_and_exec(buf);
5846     yes = false;
5847   }
5848   return yes;
5849 }
5850 
5851 
5852 // Java/Compiler thread:
5853 //
5854 //   Low memory addresses
5855 // P0 +------------------------+
5856 //    |                        |\  Java thread created by VM does not have glibc
5857 //    |    glibc guard page    | - guard page, attached Java thread usually has
5858 //    |                        |/  1 glibc guard page.
5859 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5860 //    |                        |\
5861 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5862 //    |                        |/
5863 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5864 //    |                        |\
5865 //    |      Normal Stack      | -
5866 //    |                        |/
5867 // P2 +------------------------+ Thread::stack_base()
5868 //
5869 // Non-Java thread:
5870 //
5871 //   Low memory addresses
5872 // P0 +------------------------+
5873 //    |                        |\
5874 //    |  glibc guard page      | - usually 1 page
5875 //    |                        |/
5876 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5877 //    |                        |\
5878 //    |      Normal Stack      | -
5879 //    |                        |/
5880 // P2 +------------------------+ Thread::stack_base()
5881 //
5882 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5883 //    returned from pthread_attr_getstack().
5884 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5885 //    of the stack size given in pthread_attr. We work around this for
5886 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5887 //
5888 #ifndef ZERO
5889 static void current_stack_region(address * bottom, size_t * size) {
5890   if (os::is_primordial_thread()) {
5891     // primordial thread needs special handling because pthread_getattr_np()
5892     // may return bogus value.
5893     *bottom = os::Linux::initial_thread_stack_bottom();
5894     *size   = os::Linux::initial_thread_stack_size();
5895   } else {
5896     pthread_attr_t attr;
5897 
5898     int rslt = pthread_getattr_np(pthread_self(), &attr);
5899 
5900     // JVM needs to know exact stack location, abort if it fails
5901     if (rslt != 0) {
5902       if (rslt == ENOMEM) {
5903         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5904       } else {
5905         fatal("pthread_getattr_np failed with error = %d", rslt);
5906       }
5907     }
5908 
5909     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5910       fatal("Cannot locate current stack attributes!");
5911     }
5912 
5913     // Work around NPTL stack guard error.
5914     size_t guard_size = 0;
5915     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5916     if (rslt != 0) {
5917       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5918     }
5919     *bottom += guard_size;
5920     *size   -= guard_size;
5921 
5922     pthread_attr_destroy(&attr);
5923 
5924   }
5925   assert(os::current_stack_pointer() >= *bottom &&
5926          os::current_stack_pointer() < *bottom + *size, "just checking");
5927 }
5928 
5929 address os::current_stack_base() {
5930   address bottom;
5931   size_t size;
5932   current_stack_region(&bottom, &size);
5933   return (bottom + size);
5934 }
5935 
5936 size_t os::current_stack_size() {
5937   // This stack size includes the usable stack and HotSpot guard pages
5938   // (for the threads that have Hotspot guard pages).
5939   address bottom;
5940   size_t size;
5941   current_stack_region(&bottom, &size);
5942   return size;
5943 }
5944 #endif
5945 
5946 static inline struct timespec get_mtime(const char* filename) {
5947   struct stat st;
5948   int ret = os::stat(filename, &st);
5949   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5950   return st.st_mtim;
5951 }
5952 
5953 int os::compare_file_modified_times(const char* file1, const char* file2) {
5954   struct timespec filetime1 = get_mtime(file1);
5955   struct timespec filetime2 = get_mtime(file2);
5956   int diff = filetime1.tv_sec - filetime2.tv_sec;
5957   if (diff == 0) {
5958     return filetime1.tv_nsec - filetime2.tv_nsec;
5959   }
5960   return diff;
5961 }
5962 
5963 /////////////// Unit tests ///////////////
5964 
5965 #ifndef PRODUCT
5966 
5967 class TestReserveMemorySpecial : AllStatic {
5968  public:
5969   static void small_page_write(void* addr, size_t size) {
5970     size_t page_size = os::vm_page_size();
5971 
5972     char* end = (char*)addr + size;
5973     for (char* p = (char*)addr; p < end; p += page_size) {
5974       *p = 1;
5975     }
5976   }
5977 
5978   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5979     if (!UseHugeTLBFS) {
5980       return;
5981     }
5982 
5983     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5984 
5985     if (addr != NULL) {
5986       small_page_write(addr, size);
5987 
5988       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5989     }
5990   }
5991 
5992   static void test_reserve_memory_special_huge_tlbfs_only() {
5993     if (!UseHugeTLBFS) {
5994       return;
5995     }
5996 
5997     size_t lp = os::large_page_size();
5998 
5999     for (size_t size = lp; size <= lp * 10; size += lp) {
6000       test_reserve_memory_special_huge_tlbfs_only(size);
6001     }
6002   }
6003 
6004   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6005     size_t lp = os::large_page_size();
6006     size_t ag = os::vm_allocation_granularity();
6007 
6008     // sizes to test
6009     const size_t sizes[] = {
6010       lp, lp + ag, lp + lp / 2, lp * 2,
6011       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6012       lp * 10, lp * 10 + lp / 2
6013     };
6014     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6015 
6016     // For each size/alignment combination, we test three scenarios:
6017     // 1) with req_addr == NULL
6018     // 2) with a non-null req_addr at which we expect to successfully allocate
6019     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6020     //    expect the allocation to either fail or to ignore req_addr
6021 
6022     // Pre-allocate two areas; they shall be as large as the largest allocation
6023     //  and aligned to the largest alignment we will be testing.
6024     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6025     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6026       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6027       -1, 0);
6028     assert(mapping1 != MAP_FAILED, "should work");
6029 
6030     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6031       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6032       -1, 0);
6033     assert(mapping2 != MAP_FAILED, "should work");
6034 
6035     // Unmap the first mapping, but leave the second mapping intact: the first
6036     // mapping will serve as a value for a "good" req_addr (case 2). The second
6037     // mapping, still intact, as "bad" req_addr (case 3).
6038     ::munmap(mapping1, mapping_size);
6039 
6040     // Case 1
6041     for (int i = 0; i < num_sizes; i++) {
6042       const size_t size = sizes[i];
6043       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6044         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6045         if (p != NULL) {
6046           assert(is_aligned(p, alignment), "must be");
6047           small_page_write(p, size);
6048           os::Linux::release_memory_special_huge_tlbfs(p, size);
6049         }
6050       }
6051     }
6052 
6053     // Case 2
6054     for (int i = 0; i < num_sizes; i++) {
6055       const size_t size = sizes[i];
6056       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6057         char* const req_addr = align_up(mapping1, alignment);
6058         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6059         if (p != NULL) {
6060           assert(p == req_addr, "must be");
6061           small_page_write(p, size);
6062           os::Linux::release_memory_special_huge_tlbfs(p, size);
6063         }
6064       }
6065     }
6066 
6067     // Case 3
6068     for (int i = 0; i < num_sizes; i++) {
6069       const size_t size = sizes[i];
6070       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6071         char* const req_addr = align_up(mapping2, alignment);
6072         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6073         // as the area around req_addr contains already existing mappings, the API should always
6074         // return NULL (as per contract, it cannot return another address)
6075         assert(p == NULL, "must be");
6076       }
6077     }
6078 
6079     ::munmap(mapping2, mapping_size);
6080 
6081   }
6082 
6083   static void test_reserve_memory_special_huge_tlbfs() {
6084     if (!UseHugeTLBFS) {
6085       return;
6086     }
6087 
6088     test_reserve_memory_special_huge_tlbfs_only();
6089     test_reserve_memory_special_huge_tlbfs_mixed();
6090   }
6091 
6092   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6093     if (!UseSHM) {
6094       return;
6095     }
6096 
6097     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6098 
6099     if (addr != NULL) {
6100       assert(is_aligned(addr, alignment), "Check");
6101       assert(is_aligned(addr, os::large_page_size()), "Check");
6102 
6103       small_page_write(addr, size);
6104 
6105       os::Linux::release_memory_special_shm(addr, size);
6106     }
6107   }
6108 
6109   static void test_reserve_memory_special_shm() {
6110     size_t lp = os::large_page_size();
6111     size_t ag = os::vm_allocation_granularity();
6112 
6113     for (size_t size = ag; size < lp * 3; size += ag) {
6114       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6115         test_reserve_memory_special_shm(size, alignment);
6116       }
6117     }
6118   }
6119 
6120   static void test() {
6121     test_reserve_memory_special_huge_tlbfs();
6122     test_reserve_memory_special_shm();
6123   }
6124 };
6125 
6126 void TestReserveMemorySpecial_test() {
6127   TestReserveMemorySpecial::test();
6128 }
6129 
6130 #endif