1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "memory/universe.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "os_share_solaris.hpp"
  42 #include "os_solaris.inline.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/atomic.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.inline.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "runtime/vm_version.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/macros.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 // put OS-includes here
  77 # include <dlfcn.h>
  78 # include <errno.h>
  79 # include <exception>
  80 # include <link.h>
  81 # include <poll.h>
  82 # include <pthread.h>
  83 # include <setjmp.h>
  84 # include <signal.h>
  85 # include <stdio.h>
  86 # include <alloca.h>
  87 # include <sys/filio.h>
  88 # include <sys/ipc.h>
  89 # include <sys/lwp.h>
  90 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
  91 # include <sys/mman.h>
  92 # include <sys/processor.h>
  93 # include <sys/procset.h>
  94 # include <sys/pset.h>
  95 # include <sys/resource.h>
  96 # include <sys/shm.h>
  97 # include <sys/socket.h>
  98 # include <sys/stat.h>
  99 # include <sys/systeminfo.h>
 100 # include <sys/time.h>
 101 # include <sys/times.h>
 102 # include <sys/types.h>
 103 # include <sys/wait.h>
 104 # include <sys/utsname.h>
 105 # include <thread.h>
 106 # include <unistd.h>
 107 # include <sys/priocntl.h>
 108 # include <sys/rtpriocntl.h>
 109 # include <sys/tspriocntl.h>
 110 # include <sys/iapriocntl.h>
 111 # include <sys/fxpriocntl.h>
 112 # include <sys/loadavg.h>
 113 # include <string.h>
 114 # include <stdio.h>
 115 
 116 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
 117 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
 118 
 119 #define MAX_PATH (2 * K)
 120 
 121 // for timer info max values which include all bits
 122 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 123 
 124 
 125 // Here are some liblgrp types from sys/lgrp_user.h to be able to
 126 // compile on older systems without this header file.
 127 
 128 #ifndef MADV_ACCESS_LWP
 129   #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
 130 #endif
 131 #ifndef MADV_ACCESS_MANY
 132   #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
 133 #endif
 134 
 135 #ifndef LGRP_RSRC_CPU
 136   #define LGRP_RSRC_CPU      0       /* CPU resources */
 137 #endif
 138 #ifndef LGRP_RSRC_MEM
 139   #define LGRP_RSRC_MEM      1       /* memory resources */
 140 #endif
 141 
 142 // Values for ThreadPriorityPolicy == 1
 143 int prio_policy1[CriticalPriority+1] = {
 144   -99999,  0, 16,  32,  48,  64,
 145           80, 96, 112, 124, 127, 127 };
 146 
 147 // System parameters used internally
 148 static clock_t clock_tics_per_sec = 100;
 149 
 150 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
 151 static bool enabled_extended_FILE_stdio = false;
 152 
 153 // For diagnostics to print a message once. see run_periodic_checks
 154 static bool check_addr0_done = false;
 155 static sigset_t check_signal_done;
 156 static bool check_signals = true;
 157 
 158 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
 159 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
 160 
 161 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
 162 
 163 os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
 164 
 165 // "default" initializers for missing libc APIs
 166 extern "C" {
 167   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 168   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
 169 
 170   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 171   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
 172 }
 173 
 174 // "default" initializers for pthread-based synchronization
 175 extern "C" {
 176   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 177   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 178 }
 179 
 180 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 181 
 182 static inline size_t adjust_stack_size(address base, size_t size) {
 183   if ((ssize_t)size < 0) {
 184     // 4759953: Compensate for ridiculous stack size.
 185     size = max_intx;
 186   }
 187   if (size > (size_t)base) {
 188     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
 189     size = (size_t)base;
 190   }
 191   return size;
 192 }
 193 
 194 static inline stack_t get_stack_info() {
 195   stack_t st;
 196   int retval = thr_stksegment(&st);
 197   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
 198   assert(retval == 0, "incorrect return value from thr_stksegment");
 199   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
 200   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
 201   return st;
 202 }
 203 
 204 static void _handle_uncaught_cxx_exception() {
 205   VMError::report_and_die("An uncaught C++ exception");
 206 }
 207 
 208 bool os::is_primordial_thread(void) {
 209   int r = thr_main();
 210   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 211   return r == 1;
 212 }
 213 
 214 address os::current_stack_base() {
 215   bool _is_primordial_thread = is_primordial_thread();
 216 
 217   // Workaround 4352906, avoid calls to thr_stksegment by
 218   // thr_main after the first one (it looks like we trash
 219   // some data, causing the value for ss_sp to be incorrect).
 220   if (!_is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
 221     stack_t st = get_stack_info();
 222     if (_is_primordial_thread) {
 223       // cache initial value of stack base
 224       os::Solaris::_main_stack_base = (address)st.ss_sp;
 225     }
 226     return (address)st.ss_sp;
 227   } else {
 228     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
 229     return os::Solaris::_main_stack_base;
 230   }
 231 }
 232 
 233 size_t os::current_stack_size() {
 234   size_t size;
 235 
 236   if (!is_primordial_thread()) {
 237     size = get_stack_info().ss_size;
 238   } else {
 239     struct rlimit limits;
 240     getrlimit(RLIMIT_STACK, &limits);
 241     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
 242   }
 243   // base may not be page aligned
 244   address base = current_stack_base();
 245   address bottom = align_up(base - size, os::vm_page_size());;
 246   return (size_t)(base - bottom);
 247 }
 248 
 249 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
 250   return localtime_r(clock, res);
 251 }
 252 
 253 void os::Solaris::try_enable_extended_io() {
 254   typedef int (*enable_extended_FILE_stdio_t)(int, int);
 255 
 256   if (!UseExtendedFileIO) {
 257     return;
 258   }
 259 
 260   enable_extended_FILE_stdio_t enabler =
 261     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
 262                                          "enable_extended_FILE_stdio");
 263   if (enabler) {
 264     enabler(-1, -1);
 265   }
 266 }
 267 
 268 jint os::Solaris::_os_thread_limit = 0;
 269 volatile jint os::Solaris::_os_thread_count = 0;
 270 
 271 julong os::available_memory() {
 272   return Solaris::available_memory();
 273 }
 274 
 275 julong os::Solaris::available_memory() {
 276   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
 277 }
 278 
 279 julong os::Solaris::_physical_memory = 0;
 280 
 281 julong os::physical_memory() {
 282   return Solaris::physical_memory();
 283 }
 284 
 285 static hrtime_t first_hrtime = 0;
 286 static const hrtime_t hrtime_hz = 1000*1000*1000;
 287 static volatile hrtime_t max_hrtime = 0;
 288 
 289 
 290 void os::Solaris::initialize_system_info() {
 291   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 292   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
 293                                      (julong)sysconf(_SC_PAGESIZE);
 294 }
 295 
 296 uint os::processor_id() {
 297   const processorid_t id = ::getcpuid();
 298   assert(id >= 0 && id < _processor_count, "Invalid processor id");
 299   return (uint)id;
 300 }
 301 
 302 int os::active_processor_count() {
 303   // User has overridden the number of active processors
 304   if (ActiveProcessorCount > 0) {
 305     log_trace(os)("active_processor_count: "
 306                   "active processor count set by user : %d",
 307                   ActiveProcessorCount);
 308     return ActiveProcessorCount;
 309   }
 310 
 311   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
 312   pid_t pid = getpid();
 313   psetid_t pset = PS_NONE;
 314   // Are we running in a processor set or is there any processor set around?
 315   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
 316     uint_t pset_cpus;
 317     // Query the number of cpus available to us.
 318     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
 319       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
 320       return pset_cpus;
 321     }
 322   }
 323   // Otherwise return number of online cpus
 324   return online_cpus;
 325 }
 326 
 327 void os::set_native_thread_name(const char *name) {
 328   if (Solaris::_pthread_setname_np != NULL) {
 329     // Only the first 31 bytes of 'name' are processed by pthread_setname_np
 330     // but we explicitly copy into a size-limited buffer to avoid any
 331     // possible overflow.
 332     char buf[32];
 333     snprintf(buf, sizeof(buf), "%s", name);
 334     buf[sizeof(buf) - 1] = '\0';
 335     Solaris::_pthread_setname_np(pthread_self(), buf);
 336   }
 337 }
 338 
 339 bool os::bind_to_processor(uint processor_id) {
 340   // We assume that a processorid_t can be stored in a uint.
 341   assert(sizeof(uint) == sizeof(processorid_t),
 342          "can't convert uint to processorid_t");
 343   int bind_result =
 344     processor_bind(P_LWPID,                       // bind LWP.
 345                    P_MYID,                        // bind current LWP.
 346                    (processorid_t) processor_id,  // id.
 347                    NULL);                         // don't return old binding.
 348   return (bind_result == 0);
 349 }
 350 
 351 // Return true if user is running as root.
 352 
 353 bool os::have_special_privileges() {
 354   static bool init = false;
 355   static bool privileges = false;
 356   if (!init) {
 357     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 358     init = true;
 359   }
 360   return privileges;
 361 }
 362 
 363 
 364 void os::init_system_properties_values() {
 365   // The next steps are taken in the product version:
 366   //
 367   // Obtain the JAVA_HOME value from the location of libjvm.so.
 368   // This library should be located at:
 369   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 370   //
 371   // If "/jre/lib/" appears at the right place in the path, then we
 372   // assume libjvm.so is installed in a JDK and we use this path.
 373   //
 374   // Otherwise exit with message: "Could not create the Java virtual machine."
 375   //
 376   // The following extra steps are taken in the debugging version:
 377   //
 378   // If "/jre/lib/" does NOT appear at the right place in the path
 379   // instead of exit check for $JAVA_HOME environment variable.
 380   //
 381   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 382   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 383   // it looks like libjvm.so is installed there
 384   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 385   //
 386   // Otherwise exit.
 387   //
 388   // Important note: if the location of libjvm.so changes this
 389   // code needs to be changed accordingly.
 390 
 391 // Base path of extensions installed on the system.
 392 #define SYS_EXT_DIR     "/usr/jdk/packages"
 393 #define EXTENSIONS_DIR  "/lib/ext"
 394 
 395   // Buffer that fits several sprintfs.
 396   // Note that the space for the colon and the trailing null are provided
 397   // by the nulls included by the sizeof operator.
 398   const size_t bufsize =
 399     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 400          sizeof(SYS_EXT_DIR) + sizeof("/lib/"), // invariant ld_library_path
 401          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 402   char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 403 
 404   // sysclasspath, java_home, dll_dir
 405   {
 406     char *pslash;
 407     os::jvm_path(buf, bufsize);
 408 
 409     // Found the full path to libjvm.so.
 410     // Now cut the path to <java_home>/jre if we can.
 411     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 412     pslash = strrchr(buf, '/');
 413     if (pslash != NULL) {
 414       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 415     }
 416     Arguments::set_dll_dir(buf);
 417 
 418     if (pslash != NULL) {
 419       pslash = strrchr(buf, '/');
 420       if (pslash != NULL) {
 421         *pslash = '\0';        // Get rid of /lib.
 422       }
 423     }
 424     Arguments::set_java_home(buf);
 425     if (!set_boot_path('/', ':')) {
 426       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 427     }
 428   }
 429 
 430   // Where to look for native libraries.
 431   {
 432     // Use dlinfo() to determine the correct java.library.path.
 433     //
 434     // If we're launched by the Java launcher, and the user
 435     // does not set java.library.path explicitly on the commandline,
 436     // the Java launcher sets LD_LIBRARY_PATH for us and unsets
 437     // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
 438     // dlinfo returns LD_LIBRARY_PATH + crle settings (including
 439     // /usr/lib), which is exactly what we want.
 440     //
 441     // If the user does set java.library.path, it completely
 442     // overwrites this setting, and always has.
 443     //
 444     // If we're not launched by the Java launcher, we may
 445     // get here with any/all of the LD_LIBRARY_PATH[_32|64]
 446     // settings.  Again, dlinfo does exactly what we want.
 447 
 448     Dl_serinfo     info_sz, *info = &info_sz;
 449     Dl_serpath     *path;
 450     char           *library_path;
 451     char           *common_path = buf;
 452 
 453     // Determine search path count and required buffer size.
 454     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
 455       FREE_C_HEAP_ARRAY(char, buf);
 456       vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
 457     }
 458 
 459     // Allocate new buffer and initialize.
 460     info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
 461     info->dls_size = info_sz.dls_size;
 462     info->dls_cnt = info_sz.dls_cnt;
 463 
 464     // Obtain search path information.
 465     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
 466       FREE_C_HEAP_ARRAY(char, buf);
 467       FREE_C_HEAP_ARRAY(char, info);
 468       vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
 469     }
 470 
 471     path = &info->dls_serpath[0];
 472 
 473     // Note: Due to a legacy implementation, most of the library path
 474     // is set in the launcher. This was to accomodate linking restrictions
 475     // on legacy Solaris implementations (which are no longer supported).
 476     // Eventually, all the library path setting will be done here.
 477     //
 478     // However, to prevent the proliferation of improperly built native
 479     // libraries, the new path component /usr/jdk/packages is added here.
 480 
 481     // Construct the invariant part of ld_library_path.
 482     sprintf(common_path, SYS_EXT_DIR "/lib");
 483 
 484     // Struct size is more than sufficient for the path components obtained
 485     // through the dlinfo() call, so only add additional space for the path
 486     // components explicitly added here.
 487     size_t library_path_size = info->dls_size + strlen(common_path);
 488     library_path = NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
 489     library_path[0] = '\0';
 490 
 491     // Construct the desired Java library path from the linker's library
 492     // search path.
 493     //
 494     // For compatibility, it is optimal that we insert the additional path
 495     // components specific to the Java VM after those components specified
 496     // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
 497     // infrastructure.
 498     if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
 499       strcpy(library_path, common_path);
 500     } else {
 501       int inserted = 0;
 502       int i;
 503       for (i = 0; i < info->dls_cnt; i++, path++) {
 504         uint_t flags = path->dls_flags & LA_SER_MASK;
 505         if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
 506           strcat(library_path, common_path);
 507           strcat(library_path, os::path_separator());
 508           inserted = 1;
 509         }
 510         strcat(library_path, path->dls_name);
 511         strcat(library_path, os::path_separator());
 512       }
 513       // Eliminate trailing path separator.
 514       library_path[strlen(library_path)-1] = '\0';
 515     }
 516 
 517     // happens before argument parsing - can't use a trace flag
 518     // tty->print_raw("init_system_properties_values: native lib path: ");
 519     // tty->print_raw_cr(library_path);
 520 
 521     // Callee copies into its own buffer.
 522     Arguments::set_library_path(library_path);
 523 
 524     FREE_C_HEAP_ARRAY(char, library_path);
 525     FREE_C_HEAP_ARRAY(char, info);
 526   }
 527 
 528   // Extensions directories.
 529   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 530   Arguments::set_ext_dirs(buf);
 531 
 532   FREE_C_HEAP_ARRAY(char, buf);
 533 
 534 #undef SYS_EXT_DIR
 535 #undef EXTENSIONS_DIR
 536 }
 537 
 538 void os::breakpoint() {
 539   BREAKPOINT;
 540 }
 541 
 542 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
 543   address  stackStart  = (address)thread->stack_base();
 544   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
 545   if (sp < stackStart && sp >= stackEnd) return true;
 546   return false;
 547 }
 548 
 549 extern "C" void breakpoint() {
 550   // use debugger to set breakpoint here
 551 }
 552 
 553 static thread_t main_thread;
 554 
 555 // Thread start routine for all newly created threads
 556 extern "C" void* thread_native_entry(void* thread_addr) {
 557 
 558   Thread* thread = (Thread*)thread_addr;
 559 
 560   thread->record_stack_base_and_size();
 561 
 562   // Try to randomize the cache line index of hot stack frames.
 563   // This helps when threads of the same stack traces evict each other's
 564   // cache lines. The threads can be either from the same JVM instance, or
 565   // from different JVM instances. The benefit is especially true for
 566   // processors with hyperthreading technology.
 567   static int counter = 0;
 568   int pid = os::current_process_id();
 569   alloca(((pid ^ counter++) & 7) * 128);
 570 
 571   int prio;
 572 
 573   thread->initialize_thread_current();
 574 
 575   OSThread* osthr = thread->osthread();
 576 
 577   osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
 578 
 579   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
 580     os::current_thread_id());
 581 
 582   if (UseNUMA) {
 583     int lgrp_id = os::numa_get_group_id();
 584     if (lgrp_id != -1) {
 585       thread->set_lgrp_id(lgrp_id);
 586     }
 587   }
 588 
 589   // Our priority was set when we were created, and stored in the
 590   // osthread, but couldn't be passed through to our LWP until now.
 591   // So read back the priority and set it again.
 592 
 593   if (osthr->thread_id() != -1) {
 594     if (UseThreadPriorities) {
 595       int prio = osthr->native_priority();
 596       if (ThreadPriorityVerbose) {
 597         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
 598                       INTPTR_FORMAT ", setting priority: %d\n",
 599                       osthr->thread_id(), osthr->lwp_id(), prio);
 600       }
 601       os::set_native_priority(thread, prio);
 602     }
 603   } else if (ThreadPriorityVerbose) {
 604     warning("Can't set priority in _start routine, thread id hasn't been set\n");
 605   }
 606 
 607   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 608 
 609   // initialize signal mask for this thread
 610   os::Solaris::hotspot_sigmask(thread);
 611 
 612   os::Solaris::init_thread_fpu_state();
 613   std::set_terminate(_handle_uncaught_cxx_exception);
 614 
 615   thread->call_run();
 616 
 617   // Note: at this point the thread object may already have deleted itself.
 618   // Do not dereference it from here on out.
 619 
 620   // One less thread is executing
 621   // When the VMThread gets here, the main thread may have already exited
 622   // which frees the CodeHeap containing the Atomic::dec code
 623   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 624     Atomic::dec(&os::Solaris::_os_thread_count);
 625   }
 626 
 627   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 628 
 629   if (UseDetachedThreads) {
 630     thr_exit(NULL);
 631     ShouldNotReachHere();
 632   }
 633   return NULL;
 634 }
 635 
 636 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
 637   // Allocate the OSThread object
 638   OSThread* osthread = new OSThread(NULL, NULL);
 639   if (osthread == NULL) return NULL;
 640 
 641   // Store info on the Solaris thread into the OSThread
 642   osthread->set_thread_id(thread_id);
 643   osthread->set_lwp_id(_lwp_self());
 644 
 645   if (UseNUMA) {
 646     int lgrp_id = os::numa_get_group_id();
 647     if (lgrp_id != -1) {
 648       thread->set_lgrp_id(lgrp_id);
 649     }
 650   }
 651 
 652   if (ThreadPriorityVerbose) {
 653     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
 654                   osthread->thread_id(), osthread->lwp_id());
 655   }
 656 
 657   // Initial thread state is INITIALIZED, not SUSPENDED
 658   osthread->set_state(INITIALIZED);
 659 
 660   return osthread;
 661 }
 662 
 663 void os::Solaris::hotspot_sigmask(Thread* thread) {
 664   //Save caller's signal mask
 665   sigset_t sigmask;
 666   pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
 667   OSThread *osthread = thread->osthread();
 668   osthread->set_caller_sigmask(sigmask);
 669 
 670   pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
 671   if (!ReduceSignalUsage) {
 672     if (thread->is_VM_thread()) {
 673       // Only the VM thread handles BREAK_SIGNAL ...
 674       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 675     } else {
 676       // ... all other threads block BREAK_SIGNAL
 677       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
 678       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 679     }
 680   }
 681 }
 682 
 683 bool os::create_attached_thread(JavaThread* thread) {
 684 #ifdef ASSERT
 685   thread->verify_not_published();
 686 #endif
 687   OSThread* osthread = create_os_thread(thread, thr_self());
 688   if (osthread == NULL) {
 689     return false;
 690   }
 691 
 692   // Initial thread state is RUNNABLE
 693   osthread->set_state(RUNNABLE);
 694   thread->set_osthread(osthread);
 695 
 696   // initialize signal mask for this thread
 697   // and save the caller's signal mask
 698   os::Solaris::hotspot_sigmask(thread);
 699 
 700   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 701     os::current_thread_id());
 702 
 703   return true;
 704 }
 705 
 706 bool os::create_main_thread(JavaThread* thread) {
 707 #ifdef ASSERT
 708   thread->verify_not_published();
 709 #endif
 710   if (_starting_thread == NULL) {
 711     _starting_thread = create_os_thread(thread, main_thread);
 712     if (_starting_thread == NULL) {
 713       return false;
 714     }
 715   }
 716 
 717   // The primodial thread is runnable from the start
 718   _starting_thread->set_state(RUNNABLE);
 719 
 720   thread->set_osthread(_starting_thread);
 721 
 722   // initialize signal mask for this thread
 723   // and save the caller's signal mask
 724   os::Solaris::hotspot_sigmask(thread);
 725 
 726   return true;
 727 }
 728 
 729 // Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
 730 static char* describe_thr_create_attributes(char* buf, size_t buflen,
 731                                             size_t stacksize, long flags) {
 732   stringStream ss(buf, buflen);
 733   ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 734   ss.print("flags: ");
 735   #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
 736   #define ALL(X) \
 737     X(THR_SUSPENDED) \
 738     X(THR_DETACHED) \
 739     X(THR_BOUND) \
 740     X(THR_NEW_LWP) \
 741     X(THR_DAEMON)
 742   ALL(PRINT_FLAG)
 743   #undef ALL
 744   #undef PRINT_FLAG
 745   return buf;
 746 }
 747 
 748 // return default stack size for thr_type
 749 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
 750   // default stack size when not specified by caller is 1M (2M for LP64)
 751   size_t s = (BytesPerWord >> 2) * K * K;
 752   return s;
 753 }
 754 
 755 bool os::create_thread(Thread* thread, ThreadType thr_type,
 756                        size_t req_stack_size) {
 757   // Allocate the OSThread object
 758   OSThread* osthread = new OSThread(NULL, NULL);
 759   if (osthread == NULL) {
 760     return false;
 761   }
 762 
 763   if (ThreadPriorityVerbose) {
 764     char *thrtyp;
 765     switch (thr_type) {
 766     case vm_thread:
 767       thrtyp = (char *)"vm";
 768       break;
 769     case cgc_thread:
 770       thrtyp = (char *)"cgc";
 771       break;
 772     case pgc_thread:
 773       thrtyp = (char *)"pgc";
 774       break;
 775     case java_thread:
 776       thrtyp = (char *)"java";
 777       break;
 778     case compiler_thread:
 779       thrtyp = (char *)"compiler";
 780       break;
 781     case watcher_thread:
 782       thrtyp = (char *)"watcher";
 783       break;
 784     default:
 785       thrtyp = (char *)"unknown";
 786       break;
 787     }
 788     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
 789   }
 790 
 791   // calculate stack size if it's not specified by caller
 792   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 793 
 794   // Initial state is ALLOCATED but not INITIALIZED
 795   osthread->set_state(ALLOCATED);
 796 
 797   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
 798     // We got lots of threads. Check if we still have some address space left.
 799     // Need to be at least 5Mb of unreserved address space. We do check by
 800     // trying to reserve some.
 801     const size_t VirtualMemoryBangSize = 20*K*K;
 802     char* mem = os::reserve_memory(VirtualMemoryBangSize);
 803     if (mem == NULL) {
 804       delete osthread;
 805       return false;
 806     } else {
 807       // Release the memory again
 808       os::release_memory(mem, VirtualMemoryBangSize);
 809     }
 810   }
 811 
 812   // Setup osthread because the child thread may need it.
 813   thread->set_osthread(osthread);
 814 
 815   // Create the Solaris thread
 816   thread_t tid = 0;
 817   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
 818   int      status;
 819 
 820   // Mark that we don't have an lwp or thread id yet.
 821   // In case we attempt to set the priority before the thread starts.
 822   osthread->set_lwp_id(-1);
 823   osthread->set_thread_id(-1);
 824 
 825   status = thr_create(NULL, stack_size, thread_native_entry, thread, flags, &tid);
 826 
 827   char buf[64];
 828   if (status == 0) {
 829     log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
 830       (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
 831   } else {
 832     log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
 833       os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
 834     // Log some OS information which might explain why creating the thread failed.
 835     log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 836     LogStream st(Log(os, thread)::info());
 837     os::Posix::print_rlimit_info(&st);
 838     os::print_memory_info(&st);
 839   }
 840 
 841   if (status != 0) {
 842     thread->set_osthread(NULL);
 843     // Need to clean up stuff we've allocated so far
 844     delete osthread;
 845     return false;
 846   }
 847 
 848   Atomic::inc(&os::Solaris::_os_thread_count);
 849 
 850   // Store info on the Solaris thread into the OSThread
 851   osthread->set_thread_id(tid);
 852 
 853   // Remember that we created this thread so we can set priority on it
 854   osthread->set_vm_created();
 855 
 856   // Most thread types will set an explicit priority before starting the thread,
 857   // but for those that don't we need a valid value to read back in thread_native_entry.
 858   osthread->set_native_priority(NormPriority);
 859 
 860   // Initial thread state is INITIALIZED, not SUSPENDED
 861   osthread->set_state(INITIALIZED);
 862 
 863   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 864   return true;
 865 }
 866 
 867 debug_only(static bool signal_sets_initialized = false);
 868 static sigset_t unblocked_sigs, vm_sigs;
 869 
 870 void os::Solaris::signal_sets_init() {
 871   // Should also have an assertion stating we are still single-threaded.
 872   assert(!signal_sets_initialized, "Already initialized");
 873   // Fill in signals that are necessarily unblocked for all threads in
 874   // the VM. Currently, we unblock the following signals:
 875   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 876   //                         by -Xrs (=ReduceSignalUsage));
 877   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 878   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 879   // the dispositions or masks wrt these signals.
 880   // Programs embedding the VM that want to use the above signals for their
 881   // own purposes must, at this time, use the "-Xrs" option to prevent
 882   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 883   // (See bug 4345157, and other related bugs).
 884   // In reality, though, unblocking these signals is really a nop, since
 885   // these signals are not blocked by default.
 886   sigemptyset(&unblocked_sigs);
 887   sigaddset(&unblocked_sigs, SIGILL);
 888   sigaddset(&unblocked_sigs, SIGSEGV);
 889   sigaddset(&unblocked_sigs, SIGBUS);
 890   sigaddset(&unblocked_sigs, SIGFPE);
 891   sigaddset(&unblocked_sigs, ASYNC_SIGNAL);
 892 
 893   if (!ReduceSignalUsage) {
 894     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 895       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 896     }
 897     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 898       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 899     }
 900     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 901       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 902     }
 903   }
 904   // Fill in signals that are blocked by all but the VM thread.
 905   sigemptyset(&vm_sigs);
 906   if (!ReduceSignalUsage) {
 907     sigaddset(&vm_sigs, BREAK_SIGNAL);
 908   }
 909   debug_only(signal_sets_initialized = true);
 910 
 911   // For diagnostics only used in run_periodic_checks
 912   sigemptyset(&check_signal_done);
 913 }
 914 
 915 // These are signals that are unblocked while a thread is running Java.
 916 // (For some reason, they get blocked by default.)
 917 sigset_t* os::Solaris::unblocked_signals() {
 918   assert(signal_sets_initialized, "Not initialized");
 919   return &unblocked_sigs;
 920 }
 921 
 922 // These are the signals that are blocked while a (non-VM) thread is
 923 // running Java. Only the VM thread handles these signals.
 924 sigset_t* os::Solaris::vm_signals() {
 925   assert(signal_sets_initialized, "Not initialized");
 926   return &vm_sigs;
 927 }
 928 
 929 // CR 7190089: on Solaris, primordial thread's stack needs adjusting.
 930 // Without the adjustment, stack size is incorrect if stack is set to unlimited (ulimit -s unlimited).
 931 void os::Solaris::correct_stack_boundaries_for_primordial_thread(Thread* thr) {
 932   assert(is_primordial_thread(), "Call only for primordial thread");
 933 
 934   JavaThread* jt = (JavaThread *)thr;
 935   assert(jt != NULL, "Sanity check");
 936   size_t stack_size;
 937   address base = jt->stack_base();
 938   if (Arguments::created_by_java_launcher()) {
 939     // Use 2MB to allow for Solaris 7 64 bit mode.
 940     stack_size = JavaThread::stack_size_at_create() == 0
 941       ? 2048*K : JavaThread::stack_size_at_create();
 942 
 943     // There are rare cases when we may have already used more than
 944     // the basic stack size allotment before this method is invoked.
 945     // Attempt to allow for a normally sized java_stack.
 946     size_t current_stack_offset = (size_t)(base - (address)&stack_size);
 947     stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
 948   } else {
 949     // 6269555: If we were not created by a Java launcher, i.e. if we are
 950     // running embedded in a native application, treat the primordial thread
 951     // as much like a native attached thread as possible.  This means using
 952     // the current stack size from thr_stksegment(), unless it is too large
 953     // to reliably setup guard pages.  A reasonable max size is 8MB.
 954     size_t current_size = os::current_stack_size();
 955     // This should never happen, but just in case....
 956     if (current_size == 0) current_size = 2 * K * K;
 957     stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
 958   }
 959   address bottom = align_up(base - stack_size, os::vm_page_size());;
 960   stack_size = (size_t)(base - bottom);
 961 
 962   assert(stack_size > 0, "Stack size calculation problem");
 963 
 964   if (stack_size > jt->stack_size()) {
 965 #ifndef PRODUCT
 966     struct rlimit limits;
 967     getrlimit(RLIMIT_STACK, &limits);
 968     size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
 969     assert(size >= jt->stack_size(), "Stack size problem in main thread");
 970 #endif
 971     tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
 972                   "(Stack sizes are rounded up to a multiple of the system page size.)\n"
 973                   "See limit(1) to increase the stack size limit.",
 974                   stack_size / K, jt->stack_size() / K);
 975     vm_exit(1);
 976   }
 977   assert(jt->stack_size() >= stack_size,
 978          "Attempt to map more stack than was allocated");
 979   jt->set_stack_size(stack_size);
 980 
 981 }
 982 
 983 
 984 
 985 // Free Solaris resources related to the OSThread
 986 void os::free_thread(OSThread* osthread) {
 987   assert(osthread != NULL, "os::free_thread but osthread not set");
 988 
 989   // We are told to free resources of the argument thread,
 990   // but we can only really operate on the current thread.
 991   assert(Thread::current()->osthread() == osthread,
 992          "os::free_thread but not current thread");
 993 
 994   // Restore caller's signal mask
 995   sigset_t sigmask = osthread->caller_sigmask();
 996   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 997 
 998   delete osthread;
 999 }
1000 
1001 void os::pd_start_thread(Thread* thread) {
1002   int status = thr_continue(thread->osthread()->thread_id());
1003   assert_status(status == 0, status, "thr_continue failed");
1004 }
1005 
1006 
1007 intx os::current_thread_id() {
1008   return (intx)thr_self();
1009 }
1010 
1011 static pid_t _initial_pid = 0;
1012 
1013 int os::current_process_id() {
1014   return (int)(_initial_pid ? _initial_pid : getpid());
1015 }
1016 
1017 // gethrtime() should be monotonic according to the documentation,
1018 // but some virtualized platforms are known to break this guarantee.
1019 // getTimeNanos() must be guaranteed not to move backwards, so we
1020 // are forced to add a check here.
1021 inline hrtime_t getTimeNanos() {
1022   const hrtime_t now = gethrtime();
1023   const hrtime_t prev = max_hrtime;
1024   if (now <= prev) {
1025     return prev;   // same or retrograde time;
1026   }
1027   const hrtime_t obsv = Atomic::cmpxchg(now, &max_hrtime, prev);
1028   assert(obsv >= prev, "invariant");   // Monotonicity
1029   // If the CAS succeeded then we're done and return "now".
1030   // If the CAS failed and the observed value "obsv" is >= now then
1031   // we should return "obsv".  If the CAS failed and now > obsv > prv then
1032   // some other thread raced this thread and installed a new value, in which case
1033   // we could either (a) retry the entire operation, (b) retry trying to install now
1034   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1035   // we might discard a higher "now" value in deference to a slightly lower but freshly
1036   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1037   // to (a) or (b) -- and greatly reduces coherence traffic.
1038   // We might also condition (c) on the magnitude of the delta between obsv and now.
1039   // Avoiding excessive CAS operations to hot RW locations is critical.
1040   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1041   return (prev == obsv) ? now : obsv;
1042 }
1043 
1044 // Time since start-up in seconds to a fine granularity.
1045 // Used by VMSelfDestructTimer and the MemProfiler.
1046 double os::elapsedTime() {
1047   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1048 }
1049 
1050 jlong os::elapsed_counter() {
1051   return (jlong)(getTimeNanos() - first_hrtime);
1052 }
1053 
1054 jlong os::elapsed_frequency() {
1055   return hrtime_hz;
1056 }
1057 
1058 // Return the real, user, and system times in seconds from an
1059 // arbitrary fixed point in the past.
1060 bool os::getTimesSecs(double* process_real_time,
1061                       double* process_user_time,
1062                       double* process_system_time) {
1063   struct tms ticks;
1064   clock_t real_ticks = times(&ticks);
1065 
1066   if (real_ticks == (clock_t) (-1)) {
1067     return false;
1068   } else {
1069     double ticks_per_second = (double) clock_tics_per_sec;
1070     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1071     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1072     // For consistency return the real time from getTimeNanos()
1073     // converted to seconds.
1074     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1075 
1076     return true;
1077   }
1078 }
1079 
1080 bool os::supports_vtime() { return true; }
1081 
1082 double os::elapsedVTime() {
1083   return (double)gethrvtime() / (double)hrtime_hz;
1084 }
1085 
1086 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1087 jlong os::javaTimeMillis() {
1088   timeval t;
1089   if (gettimeofday(&t, NULL) == -1) {
1090     fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1091   }
1092   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1093 }
1094 
1095 // Must return seconds+nanos since Jan 1 1970. This must use the same
1096 // time source as javaTimeMillis and can't use get_nsec_fromepoch as
1097 // we need better than 1ms accuracy
1098 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1099   timeval t;
1100   if (gettimeofday(&t, NULL) == -1) {
1101     fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1102   }
1103   seconds = jlong(t.tv_sec);
1104   nanos = jlong(t.tv_usec) * 1000;
1105 }
1106 
1107 
1108 jlong os::javaTimeNanos() {
1109   return (jlong)getTimeNanos();
1110 }
1111 
1112 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1113   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1114   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1115   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1116   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1117 }
1118 
1119 char * os::local_time_string(char *buf, size_t buflen) {
1120   struct tm t;
1121   time_t long_time;
1122   time(&long_time);
1123   localtime_r(&long_time, &t);
1124   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1125                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1126                t.tm_hour, t.tm_min, t.tm_sec);
1127   return buf;
1128 }
1129 
1130 // Note: os::shutdown() might be called very early during initialization, or
1131 // called from signal handler. Before adding something to os::shutdown(), make
1132 // sure it is async-safe and can handle partially initialized VM.
1133 void os::shutdown() {
1134 
1135   // allow PerfMemory to attempt cleanup of any persistent resources
1136   perfMemory_exit();
1137 
1138   // needs to remove object in file system
1139   AttachListener::abort();
1140 
1141   // flush buffered output, finish log files
1142   ostream_abort();
1143 
1144   // Check for abort hook
1145   abort_hook_t abort_hook = Arguments::abort_hook();
1146   if (abort_hook != NULL) {
1147     abort_hook();
1148   }
1149 }
1150 
1151 // Note: os::abort() might be called very early during initialization, or
1152 // called from signal handler. Before adding something to os::abort(), make
1153 // sure it is async-safe and can handle partially initialized VM.
1154 void os::abort(bool dump_core, void* siginfo, const void* context) {
1155   os::shutdown();
1156   if (dump_core) {
1157 #ifndef PRODUCT
1158     fdStream out(defaultStream::output_fd());
1159     out.print_raw("Current thread is ");
1160     char buf[16];
1161     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1162     out.print_raw_cr(buf);
1163     out.print_raw_cr("Dumping core ...");
1164 #endif
1165     ::abort(); // dump core (for debugging)
1166   }
1167 
1168   ::exit(1);
1169 }
1170 
1171 // Die immediately, no exit hook, no abort hook, no cleanup.
1172 // Dump a core file, if possible, for debugging.
1173 void os::die() {
1174   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1175     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1176     // and don't take the time to generate a core file.
1177     os::signal_raise(SIGKILL);
1178   } else {
1179     ::abort();
1180   }
1181 }
1182 
1183 // DLL functions
1184 
1185 const char* os::dll_file_extension() { return ".so"; }
1186 
1187 // This must be hard coded because it's the system's temporary
1188 // directory not the java application's temp directory, ala java.io.tmpdir.
1189 const char* os::get_temp_directory() { return "/tmp"; }
1190 
1191 // check if addr is inside libjvm.so
1192 bool os::address_is_in_vm(address addr) {
1193   static address libjvm_base_addr;
1194   Dl_info dlinfo;
1195 
1196   if (libjvm_base_addr == NULL) {
1197     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1198       libjvm_base_addr = (address)dlinfo.dli_fbase;
1199     }
1200     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1201   }
1202 
1203   if (dladdr((void *)addr, &dlinfo) != 0) {
1204     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1205   }
1206 
1207   return false;
1208 }
1209 
1210 typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1211 static dladdr1_func_type dladdr1_func = NULL;
1212 
1213 bool os::dll_address_to_function_name(address addr, char *buf,
1214                                       int buflen, int * offset,
1215                                       bool demangle) {
1216   // buf is not optional, but offset is optional
1217   assert(buf != NULL, "sanity check");
1218 
1219   Dl_info dlinfo;
1220 
1221   // dladdr1_func was initialized in os::init()
1222   if (dladdr1_func != NULL) {
1223     // yes, we have dladdr1
1224 
1225     // Support for dladdr1 is checked at runtime; it may be
1226     // available even if the vm is built on a machine that does
1227     // not have dladdr1 support.  Make sure there is a value for
1228     // RTLD_DL_SYMENT.
1229 #ifndef RTLD_DL_SYMENT
1230   #define RTLD_DL_SYMENT 1
1231 #endif
1232 #ifdef _LP64
1233     Elf64_Sym * info;
1234 #else
1235     Elf32_Sym * info;
1236 #endif
1237     if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1238                      RTLD_DL_SYMENT) != 0) {
1239       // see if we have a matching symbol that covers our address
1240       if (dlinfo.dli_saddr != NULL &&
1241           (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1242         if (dlinfo.dli_sname != NULL) {
1243           if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1244             jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1245           }
1246           if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1247           return true;
1248         }
1249       }
1250       // no matching symbol so try for just file info
1251       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1252         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1253                             buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1254           return true;
1255         }
1256       }
1257     }
1258     buf[0] = '\0';
1259     if (offset != NULL) *offset  = -1;
1260     return false;
1261   }
1262 
1263   // no, only dladdr is available
1264   if (dladdr((void *)addr, &dlinfo) != 0) {
1265     // see if we have a matching symbol
1266     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1267       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1268         jio_snprintf(buf, buflen, dlinfo.dli_sname);
1269       }
1270       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1271       return true;
1272     }
1273     // no matching symbol so try for just file info
1274     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1275       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1276                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1277         return true;
1278       }
1279     }
1280   }
1281   buf[0] = '\0';
1282   if (offset != NULL) *offset  = -1;
1283   return false;
1284 }
1285 
1286 bool os::dll_address_to_library_name(address addr, char* buf,
1287                                      int buflen, int* offset) {
1288   // buf is not optional, but offset is optional
1289   assert(buf != NULL, "sanity check");
1290 
1291   Dl_info dlinfo;
1292 
1293   if (dladdr((void*)addr, &dlinfo) != 0) {
1294     if (dlinfo.dli_fname != NULL) {
1295       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1296     }
1297     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1298       *offset = addr - (address)dlinfo.dli_fbase;
1299     }
1300     return true;
1301   }
1302 
1303   buf[0] = '\0';
1304   if (offset) *offset = -1;
1305   return false;
1306 }
1307 
1308 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1309   Dl_info dli;
1310   // Sanity check?
1311   if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1312       dli.dli_fname == NULL) {
1313     return 1;
1314   }
1315 
1316   void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1317   if (handle == NULL) {
1318     return 1;
1319   }
1320 
1321   Link_map *map;
1322   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1323   if (map == NULL) {
1324     dlclose(handle);
1325     return 1;
1326   }
1327 
1328   while (map->l_prev != NULL) {
1329     map = map->l_prev;
1330   }
1331 
1332   while (map != NULL) {
1333     // Iterate through all map entries and call callback with fields of interest
1334     if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1335       dlclose(handle);
1336       return 1;
1337     }
1338     map = map->l_next;
1339   }
1340 
1341   dlclose(handle);
1342   return 0;
1343 }
1344 
1345 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1346   outputStream * out = (outputStream *) param;
1347   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1348   return 0;
1349 }
1350 
1351 void os::print_dll_info(outputStream * st) {
1352   st->print_cr("Dynamic libraries:"); st->flush();
1353   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1354     st->print_cr("Error: Cannot print dynamic libraries.");
1355   }
1356 }
1357 
1358 static void change_endianness(Elf32_Half& val) {
1359   unsigned char *ptr = (unsigned char *)&val;
1360   unsigned char swp = ptr[0];
1361   ptr[0] = ptr[1];
1362   ptr[1] = swp;
1363 }
1364 
1365 // Loads .dll/.so and
1366 // in case of error it checks if .dll/.so was built for the
1367 // same architecture as Hotspot is running on
1368 
1369 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1370   log_info(os)("attempting shared library load of %s", filename);
1371 
1372   void * result= ::dlopen(filename, RTLD_LAZY);
1373   if (result != NULL) {
1374     // Successful loading
1375     Events::log(NULL, "Loaded shared library %s", filename);
1376     log_info(os)("shared library load of %s was successful", filename);
1377     return result;
1378   }
1379 
1380   Elf32_Ehdr elf_head;
1381   const char* error_report = ::dlerror();
1382   if (error_report == NULL) {
1383     error_report = "dlerror returned no error description";
1384   }
1385   if (ebuf != NULL && ebuflen > 0) {
1386     ::strncpy(ebuf, error_report, ebuflen-1);
1387     ebuf[ebuflen-1]='\0';
1388   }
1389 
1390   Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1391   log_info(os)("shared library load of %s failed, %s", filename, error_report);
1392 
1393   int diag_msg_max_length=ebuflen-strlen(ebuf);
1394   char* diag_msg_buf=ebuf+strlen(ebuf);
1395 
1396   if (diag_msg_max_length==0) {
1397     // No more space in ebuf for additional diagnostics message
1398     return NULL;
1399   }
1400 
1401 
1402   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1403 
1404   if (file_descriptor < 0) {
1405     // Can't open library, report dlerror() message
1406     return NULL;
1407   }
1408 
1409   bool failed_to_read_elf_head=
1410     (sizeof(elf_head)!=
1411      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1412 
1413   ::close(file_descriptor);
1414   if (failed_to_read_elf_head) {
1415     // file i/o error - report dlerror() msg
1416     return NULL;
1417   }
1418 
1419   if (elf_head.e_ident[EI_DATA] != LITTLE_ENDIAN_ONLY(ELFDATA2LSB) BIG_ENDIAN_ONLY(ELFDATA2MSB)) {
1420     // handle invalid/out of range endianness values
1421     if (elf_head.e_ident[EI_DATA] == 0 || elf_head.e_ident[EI_DATA] > 2) {
1422       return NULL;
1423     }
1424     change_endianness(elf_head.e_machine);
1425   }
1426 
1427   typedef struct {
1428     Elf32_Half    code;         // Actual value as defined in elf.h
1429     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1430     unsigned char elf_class;    // 32 or 64 bit
1431     unsigned char endianess;    // MSB or LSB
1432     char*         name;         // String representation
1433   } arch_t;
1434 
1435 #ifndef EM_AARCH64
1436   #define EM_AARCH64    183               /* ARM AARCH64 */
1437 #endif
1438 
1439   static const arch_t arch_array[]={
1440     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1441     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1442     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1443     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1444     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1445     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1446     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1447     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1448     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1449     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
1450     // we only support 64 bit z architecture
1451     {EM_S390,        EM_S390,    ELFCLASS64, ELFDATA2MSB, (char*)"IBM System/390"},
1452     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"}
1453   };
1454 
1455 #if  (defined IA32)
1456   static  Elf32_Half running_arch_code=EM_386;
1457 #elif   (defined AMD64)
1458   static  Elf32_Half running_arch_code=EM_X86_64;
1459 #elif  (defined IA64)
1460   static  Elf32_Half running_arch_code=EM_IA_64;
1461 #elif  (defined __sparc) && (defined _LP64)
1462   static  Elf32_Half running_arch_code=EM_SPARCV9;
1463 #elif  (defined __sparc) && (!defined _LP64)
1464   static  Elf32_Half running_arch_code=EM_SPARC;
1465 #elif  (defined __powerpc64__)
1466   static  Elf32_Half running_arch_code=EM_PPC64;
1467 #elif  (defined __powerpc__)
1468   static  Elf32_Half running_arch_code=EM_PPC;
1469 #elif (defined ARM)
1470   static  Elf32_Half running_arch_code=EM_ARM;
1471 #else
1472   #error Method os::dll_load requires that one of following is defined:\
1473        IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1474 #endif
1475 
1476   // Identify compatibility class for VM's architecture and library's architecture
1477   // Obtain string descriptions for architectures
1478 
1479   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1480   int running_arch_index=-1;
1481 
1482   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1483     if (running_arch_code == arch_array[i].code) {
1484       running_arch_index    = i;
1485     }
1486     if (lib_arch.code == arch_array[i].code) {
1487       lib_arch.compat_class = arch_array[i].compat_class;
1488       lib_arch.name         = arch_array[i].name;
1489     }
1490   }
1491 
1492   assert(running_arch_index != -1,
1493          "Didn't find running architecture code (running_arch_code) in arch_array");
1494   if (running_arch_index == -1) {
1495     // Even though running architecture detection failed
1496     // we may still continue with reporting dlerror() message
1497     return NULL;
1498   }
1499 
1500   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1501     if (lib_arch.name != NULL) {
1502       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1503                  " (Possible cause: can't load %s .so on a %s platform)",
1504                  lib_arch.name, arch_array[running_arch_index].name);
1505     } else {
1506       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1507                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s platform)",
1508                  lib_arch.code, arch_array[running_arch_index].name);
1509     }
1510     return NULL;
1511   }
1512 
1513   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1514     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1515     return NULL;
1516   }
1517 
1518   // ELF file class/capacity : 0 - invalid, 1 - 32bit, 2 - 64bit
1519   if (lib_arch.elf_class > 2 || lib_arch.elf_class < 1) {
1520     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: invalid ELF file class)");
1521     return NULL;
1522   }
1523 
1524   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1525     ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1526                " (Possible cause: architecture word width mismatch, can't load %d-bit .so on a %d-bit platform)",
1527                (int) lib_arch.elf_class * 32, arch_array[running_arch_index].elf_class * 32);
1528     return NULL;
1529   }
1530 
1531   return NULL;
1532 }
1533 
1534 void* os::dll_lookup(void* handle, const char* name) {
1535   return dlsym(handle, name);
1536 }
1537 
1538 void* os::get_default_process_handle() {
1539   return (void*)::dlopen(NULL, RTLD_LAZY);
1540 }
1541 
1542 static inline time_t get_mtime(const char* filename) {
1543   struct stat st;
1544   int ret = os::stat(filename, &st);
1545   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
1546   return st.st_mtime;
1547 }
1548 
1549 int os::compare_file_modified_times(const char* file1, const char* file2) {
1550   time_t t1 = get_mtime(file1);
1551   time_t t2 = get_mtime(file2);
1552   return t1 - t2;
1553 }
1554 
1555 static bool _print_ascii_file(const char* filename, outputStream* st) {
1556   int fd = ::open(filename, O_RDONLY);
1557   if (fd == -1) {
1558     return false;
1559   }
1560 
1561   char buf[32];
1562   int bytes;
1563   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1564     st->print_raw(buf, bytes);
1565   }
1566 
1567   ::close(fd);
1568 
1569   return true;
1570 }
1571 
1572 void os::print_os_info_brief(outputStream* st) {
1573   os::Solaris::print_distro_info(st);
1574 
1575   os::Posix::print_uname_info(st);
1576 
1577   os::Solaris::print_libversion_info(st);
1578 }
1579 
1580 void os::print_os_info(outputStream* st) {
1581   st->print("OS:");
1582 
1583   os::Solaris::print_distro_info(st);
1584 
1585   os::Posix::print_uname_info(st);
1586 
1587   os::Solaris::print_libversion_info(st);
1588 
1589   os::Posix::print_rlimit_info(st);
1590 
1591   os::Posix::print_load_average(st);
1592 }
1593 
1594 void os::Solaris::print_distro_info(outputStream* st) {
1595   if (!_print_ascii_file("/etc/release", st)) {
1596     st->print("Solaris");
1597   }
1598   st->cr();
1599 }
1600 
1601 void os::get_summary_os_info(char* buf, size_t buflen) {
1602   strncpy(buf, "Solaris", buflen);  // default to plain solaris
1603   FILE* fp = fopen("/etc/release", "r");
1604   if (fp != NULL) {
1605     char tmp[256];
1606     // Only get the first line and chop out everything but the os name.
1607     if (fgets(tmp, sizeof(tmp), fp)) {
1608       char* ptr = tmp;
1609       // skip past whitespace characters
1610       while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1611       if (*ptr != '\0') {
1612         char* nl = strchr(ptr, '\n');
1613         if (nl != NULL) *nl = '\0';
1614         strncpy(buf, ptr, buflen);
1615       }
1616     }
1617     fclose(fp);
1618   }
1619 }
1620 
1621 void os::Solaris::print_libversion_info(outputStream* st) {
1622   st->print("  (T2 libthread)");
1623   st->cr();
1624 }
1625 
1626 static bool check_addr0(outputStream* st) {
1627   jboolean status = false;
1628   const int read_chunk = 200;
1629   int ret = 0;
1630   int nmap = 0;
1631   int fd = ::open("/proc/self/map",O_RDONLY);
1632   if (fd >= 0) {
1633     prmap_t *p = NULL;
1634     char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1635     if (NULL == mbuff) {
1636       ::close(fd);
1637       return status;
1638     }
1639     while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1640       //check if read() has not read partial data
1641       if( 0 != ret % sizeof(prmap_t)){
1642         break;
1643       }
1644       nmap = ret / sizeof(prmap_t);
1645       p = (prmap_t *)mbuff;
1646       for(int i = 0; i < nmap; i++){
1647         if (p->pr_vaddr == 0x0) {
1648           st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1649           st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1650           st->print("Access: ");
1651           st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
1652           st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1653           st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
1654           st->cr();
1655           status = true;
1656         }
1657         p++;
1658       }
1659     }
1660     free(mbuff);
1661     ::close(fd);
1662   }
1663   return status;
1664 }
1665 
1666 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1667   // Get MHz with system call. We don't seem to already have this.
1668   processor_info_t stats;
1669   processorid_t id = getcpuid();
1670   int clock = 0;
1671   if (processor_info(id, &stats) != -1) {
1672     clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1673   }
1674 #ifdef AMD64
1675   snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1676 #else
1677   // must be sparc
1678   snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1679 #endif
1680 }
1681 
1682 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1683   // Nothing to do for now.
1684 }
1685 
1686 void os::print_memory_info(outputStream* st) {
1687   st->print("Memory:");
1688   st->print(" %dk page", os::vm_page_size()>>10);
1689   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1690   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1691   st->cr();
1692   (void) check_addr0(st);
1693 }
1694 
1695 // Moved from whole group, because we need them here for diagnostic
1696 // prints.
1697 static int Maxsignum = 0;
1698 static int *ourSigFlags = NULL;
1699 
1700 int os::Solaris::get_our_sigflags(int sig) {
1701   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1702   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1703   return ourSigFlags[sig];
1704 }
1705 
1706 void os::Solaris::set_our_sigflags(int sig, int flags) {
1707   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1708   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1709   ourSigFlags[sig] = flags;
1710 }
1711 
1712 
1713 static const char* get_signal_handler_name(address handler,
1714                                            char* buf, int buflen) {
1715   int offset;
1716   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1717   if (found) {
1718     // skip directory names
1719     const char *p1, *p2;
1720     p1 = buf;
1721     size_t len = strlen(os::file_separator());
1722     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1723     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1724   } else {
1725     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1726   }
1727   return buf;
1728 }
1729 
1730 static void print_signal_handler(outputStream* st, int sig,
1731                                  char* buf, size_t buflen) {
1732   struct sigaction sa;
1733 
1734   sigaction(sig, NULL, &sa);
1735 
1736   st->print("%s: ", os::exception_name(sig, buf, buflen));
1737 
1738   address handler = (sa.sa_flags & SA_SIGINFO)
1739                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
1740                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
1741 
1742   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
1743     st->print("SIG_DFL");
1744   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
1745     st->print("SIG_IGN");
1746   } else {
1747     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
1748   }
1749 
1750   st->print(", sa_mask[0]=");
1751   os::Posix::print_signal_set_short(st, &sa.sa_mask);
1752 
1753   address rh = VMError::get_resetted_sighandler(sig);
1754   // May be, handler was resetted by VMError?
1755   if (rh != NULL) {
1756     handler = rh;
1757     sa.sa_flags = VMError::get_resetted_sigflags(sig);
1758   }
1759 
1760   st->print(", sa_flags=");
1761   os::Posix::print_sa_flags(st, sa.sa_flags);
1762 
1763   // Check: is it our handler?
1764   if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
1765     // It is our signal handler
1766     // check for flags
1767     if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
1768       st->print(
1769                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
1770                 os::Solaris::get_our_sigflags(sig));
1771     }
1772   }
1773   st->cr();
1774 }
1775 
1776 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1777   st->print_cr("Signal Handlers:");
1778   print_signal_handler(st, SIGSEGV, buf, buflen);
1779   print_signal_handler(st, SIGBUS , buf, buflen);
1780   print_signal_handler(st, SIGFPE , buf, buflen);
1781   print_signal_handler(st, SIGPIPE, buf, buflen);
1782   print_signal_handler(st, SIGXFSZ, buf, buflen);
1783   print_signal_handler(st, SIGILL , buf, buflen);
1784   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
1785   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1786   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
1787   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1788   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
1789 }
1790 
1791 static char saved_jvm_path[MAXPATHLEN] = { 0 };
1792 
1793 // Find the full path to the current module, libjvm.so
1794 void os::jvm_path(char *buf, jint buflen) {
1795   // Error checking.
1796   if (buflen < MAXPATHLEN) {
1797     assert(false, "must use a large-enough buffer");
1798     buf[0] = '\0';
1799     return;
1800   }
1801   // Lazy resolve the path to current module.
1802   if (saved_jvm_path[0] != 0) {
1803     strcpy(buf, saved_jvm_path);
1804     return;
1805   }
1806 
1807   Dl_info dlinfo;
1808   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1809   assert(ret != 0, "cannot locate libjvm");
1810   if (ret != 0 && dlinfo.dli_fname != NULL) {
1811     if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
1812       return;
1813     }
1814   } else {
1815     buf[0] = '\0';
1816     return;
1817   }
1818 
1819   if (Arguments::sun_java_launcher_is_altjvm()) {
1820     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1821     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
1822     // If "/jre/lib/" appears at the right place in the string, then
1823     // assume we are installed in a JDK and we're done.  Otherwise, check
1824     // for a JAVA_HOME environment variable and fix up the path so it
1825     // looks like libjvm.so is installed there (append a fake suffix
1826     // hotspot/libjvm.so).
1827     const char *p = buf + strlen(buf) - 1;
1828     for (int count = 0; p > buf && count < 5; ++count) {
1829       for (--p; p > buf && *p != '/'; --p)
1830         /* empty */ ;
1831     }
1832 
1833     if (strncmp(p, "/jre/lib/", 9) != 0) {
1834       // Look for JAVA_HOME in the environment.
1835       char* java_home_var = ::getenv("JAVA_HOME");
1836       if (java_home_var != NULL && java_home_var[0] != 0) {
1837         char* jrelib_p;
1838         int   len;
1839 
1840         // Check the current module name "libjvm.so".
1841         p = strrchr(buf, '/');
1842         assert(strstr(p, "/libjvm") == p, "invalid library name");
1843 
1844         if (os::Posix::realpath(java_home_var, buf, buflen) == NULL) {
1845           return;
1846         }
1847         // determine if this is a legacy image or modules image
1848         // modules image doesn't have "jre" subdirectory
1849         len = strlen(buf);
1850         assert(len < buflen, "Ran out of buffer space");
1851         jrelib_p = buf + len;
1852         snprintf(jrelib_p, buflen-len, "/jre/lib");
1853         if (0 != access(buf, F_OK)) {
1854           snprintf(jrelib_p, buflen-len, "/lib");
1855         }
1856 
1857         if (0 == access(buf, F_OK)) {
1858           // Use current module name "libjvm.so"
1859           len = strlen(buf);
1860           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
1861         } else {
1862           // Go back to path of .so
1863           if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
1864             return;
1865           }
1866         }
1867       }
1868     }
1869   }
1870 
1871   strncpy(saved_jvm_path, buf, MAXPATHLEN);
1872   saved_jvm_path[MAXPATHLEN - 1] = '\0';
1873 }
1874 
1875 
1876 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1877   // no prefix required, not even "_"
1878 }
1879 
1880 
1881 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1882   // no suffix required
1883 }
1884 
1885 // sun.misc.Signal
1886 
1887 extern "C" {
1888   static void UserHandler(int sig, void *siginfo, void *context) {
1889     // Ctrl-C is pressed during error reporting, likely because the error
1890     // handler fails to abort. Let VM die immediately.
1891     if (sig == SIGINT && VMError::is_error_reported()) {
1892       os::die();
1893     }
1894 
1895     os::signal_notify(sig);
1896     // We do not need to reinstate the signal handler each time...
1897   }
1898 }
1899 
1900 void* os::user_handler() {
1901   return CAST_FROM_FN_PTR(void*, UserHandler);
1902 }
1903 
1904 extern "C" {
1905   typedef void (*sa_handler_t)(int);
1906   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1907 }
1908 
1909 void* os::signal(int signal_number, void* handler) {
1910   struct sigaction sigAct, oldSigAct;
1911   sigfillset(&(sigAct.sa_mask));
1912   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
1913   sigAct.sa_flags |= SA_SIGINFO;
1914   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1915 
1916   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1917     // -1 means registration failed
1918     return (void *)-1;
1919   }
1920 
1921   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1922 }
1923 
1924 void os::signal_raise(int signal_number) {
1925   raise(signal_number);
1926 }
1927 
1928 // The following code is moved from os.cpp for making this
1929 // code platform specific, which it is by its very nature.
1930 
1931 // a counter for each possible signal value
1932 static int Sigexit = 0;
1933 static jint *pending_signals = NULL;
1934 static int *preinstalled_sigs = NULL;
1935 static struct sigaction *chainedsigactions = NULL;
1936 static Semaphore* sig_sem = NULL;
1937 
1938 int os::sigexitnum_pd() {
1939   assert(Sigexit > 0, "signal memory not yet initialized");
1940   return Sigexit;
1941 }
1942 
1943 void os::Solaris::init_signal_mem() {
1944   // Initialize signal structures
1945   Maxsignum = SIGRTMAX;
1946   Sigexit = Maxsignum+1;
1947   assert(Maxsignum >0, "Unable to obtain max signal number");
1948 
1949   // Initialize signal structures
1950   // pending_signals has one int per signal
1951   // The additional signal is for SIGEXIT - exit signal to signal_thread
1952   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
1953   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
1954 
1955   if (UseSignalChaining) {
1956     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
1957                                                    * (Maxsignum + 1), mtInternal);
1958     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
1959     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
1960     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
1961   }
1962   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
1963   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
1964 }
1965 
1966 static void jdk_misc_signal_init() {
1967   // Initialize signal semaphore
1968   sig_sem = new Semaphore();
1969 }
1970 
1971 void os::signal_notify(int sig) {
1972   if (sig_sem != NULL) {
1973     Atomic::inc(&pending_signals[sig]);
1974     sig_sem->signal();
1975   } else {
1976     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
1977     // initialization isn't called.
1978     assert(ReduceSignalUsage, "signal semaphore should be created");
1979   }
1980 }
1981 
1982 static int check_pending_signals() {
1983   int ret;
1984   while (true) {
1985     for (int i = 0; i < Sigexit + 1; i++) {
1986       jint n = pending_signals[i];
1987       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1988         return i;
1989       }
1990     }
1991     JavaThread *thread = JavaThread::current();
1992     ThreadBlockInVM tbivm(thread);
1993 
1994     bool threadIsSuspended;
1995     do {
1996       thread->set_suspend_equivalent();
1997       sig_sem->wait();
1998 
1999       // were we externally suspended while we were waiting?
2000       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2001       if (threadIsSuspended) {
2002         // The semaphore has been incremented, but while we were waiting
2003         // another thread suspended us. We don't want to continue running
2004         // while suspended because that would surprise the thread that
2005         // suspended us.
2006         sig_sem->signal();
2007 
2008         thread->java_suspend_self();
2009       }
2010     } while (threadIsSuspended);
2011   }
2012 }
2013 
2014 int os::signal_wait() {
2015   return check_pending_signals();
2016 }
2017 
2018 ////////////////////////////////////////////////////////////////////////////////
2019 // Virtual Memory
2020 
2021 static int page_size = -1;
2022 
2023 int os::vm_page_size() {
2024   assert(page_size != -1, "must call os::init");
2025   return page_size;
2026 }
2027 
2028 // Solaris allocates memory by pages.
2029 int os::vm_allocation_granularity() {
2030   assert(page_size != -1, "must call os::init");
2031   return page_size;
2032 }
2033 
2034 static bool recoverable_mmap_error(int err) {
2035   // See if the error is one we can let the caller handle. This
2036   // list of errno values comes from the Solaris mmap(2) man page.
2037   switch (err) {
2038   case EBADF:
2039   case EINVAL:
2040   case ENOTSUP:
2041     // let the caller deal with these errors
2042     return true;
2043 
2044   default:
2045     // Any remaining errors on this OS can cause our reserved mapping
2046     // to be lost. That can cause confusion where different data
2047     // structures think they have the same memory mapped. The worst
2048     // scenario is if both the VM and a library think they have the
2049     // same memory mapped.
2050     return false;
2051   }
2052 }
2053 
2054 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2055                                     int err) {
2056   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2057           ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2058           os::strerror(err), err);
2059 }
2060 
2061 static void warn_fail_commit_memory(char* addr, size_t bytes,
2062                                     size_t alignment_hint, bool exec,
2063                                     int err) {
2064   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2065           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2066           alignment_hint, exec, os::strerror(err), err);
2067 }
2068 
2069 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2070   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2071   size_t size = bytes;
2072   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2073   if (res != NULL) {
2074     if (UseNUMAInterleaving) {
2075       numa_make_global(addr, bytes);
2076     }
2077     return 0;
2078   }
2079 
2080   int err = errno;  // save errno from mmap() call in mmap_chunk()
2081 
2082   if (!recoverable_mmap_error(err)) {
2083     warn_fail_commit_memory(addr, bytes, exec, err);
2084     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2085   }
2086 
2087   return err;
2088 }
2089 
2090 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2091   return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2092 }
2093 
2094 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2095                                   const char* mesg) {
2096   assert(mesg != NULL, "mesg must be specified");
2097   int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2098   if (err != 0) {
2099     // the caller wants all commit errors to exit with the specified mesg:
2100     warn_fail_commit_memory(addr, bytes, exec, err);
2101     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2102   }
2103 }
2104 
2105 size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2106   assert(is_aligned(alignment, (size_t) vm_page_size()),
2107          SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2108          alignment, (size_t) vm_page_size());
2109 
2110   for (int i = 0; _page_sizes[i] != 0; i++) {
2111     if (is_aligned(alignment, _page_sizes[i])) {
2112       return _page_sizes[i];
2113     }
2114   }
2115 
2116   return (size_t) vm_page_size();
2117 }
2118 
2119 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2120                                     size_t alignment_hint, bool exec) {
2121   int err = Solaris::commit_memory_impl(addr, bytes, exec);
2122   if (err == 0 && UseLargePages && alignment_hint > 0) {
2123     assert(is_aligned(bytes, alignment_hint),
2124            SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2125 
2126     // The syscall memcntl requires an exact page size (see man memcntl for details).
2127     size_t page_size = page_size_for_alignment(alignment_hint);
2128     if (page_size > (size_t) vm_page_size()) {
2129       (void)Solaris::setup_large_pages(addr, bytes, page_size);
2130     }
2131   }
2132   return err;
2133 }
2134 
2135 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2136                           bool exec) {
2137   return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2138 }
2139 
2140 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2141                                   size_t alignment_hint, bool exec,
2142                                   const char* mesg) {
2143   assert(mesg != NULL, "mesg must be specified");
2144   int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2145   if (err != 0) {
2146     // the caller wants all commit errors to exit with the specified mesg:
2147     warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2148     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2149   }
2150 }
2151 
2152 // Uncommit the pages in a specified region.
2153 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2154   if (madvise(addr, bytes, MADV_FREE) < 0) {
2155     debug_only(warning("MADV_FREE failed."));
2156     return;
2157   }
2158 }
2159 
2160 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2161   return os::commit_memory(addr, size, !ExecMem);
2162 }
2163 
2164 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2165   return os::uncommit_memory(addr, size);
2166 }
2167 
2168 // Change the page size in a given range.
2169 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2170   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2171   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2172   if (UseLargePages) {
2173     size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2174     if (page_size > (size_t) vm_page_size()) {
2175       Solaris::setup_large_pages(addr, bytes, page_size);
2176     }
2177   }
2178 }
2179 
2180 // Tell the OS to make the range local to the first-touching LWP
2181 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2182   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2183   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2184     debug_only(warning("MADV_ACCESS_LWP failed."));
2185   }
2186 }
2187 
2188 // Tell the OS that this range would be accessed from different LWPs.
2189 void os::numa_make_global(char *addr, size_t bytes) {
2190   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2191   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2192     debug_only(warning("MADV_ACCESS_MANY failed."));
2193   }
2194 }
2195 
2196 // Get the number of the locality groups.
2197 size_t os::numa_get_groups_num() {
2198   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2199   return n != -1 ? n : 1;
2200 }
2201 
2202 // Get a list of leaf locality groups. A leaf lgroup is group that
2203 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2204 // board. An LWP is assigned to one of these groups upon creation.
2205 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2206   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2207     ids[0] = 0;
2208     return 1;
2209   }
2210   int result_size = 0, top = 1, bottom = 0, cur = 0;
2211   for (int k = 0; k < size; k++) {
2212     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2213                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2214     if (r == -1) {
2215       ids[0] = 0;
2216       return 1;
2217     }
2218     if (!r) {
2219       // That's a leaf node.
2220       assert(bottom <= cur, "Sanity check");
2221       // Check if the node has memory
2222       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2223                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2224         ids[bottom++] = ids[cur];
2225       }
2226     }
2227     top += r;
2228     cur++;
2229   }
2230   if (bottom == 0) {
2231     // Handle a situation, when the OS reports no memory available.
2232     // Assume UMA architecture.
2233     ids[0] = 0;
2234     return 1;
2235   }
2236   return bottom;
2237 }
2238 
2239 // Detect the topology change. Typically happens during CPU plugging-unplugging.
2240 bool os::numa_topology_changed() {
2241   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2242   if (is_stale != -1 && is_stale) {
2243     Solaris::lgrp_fini(Solaris::lgrp_cookie());
2244     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2245     assert(c != 0, "Failure to initialize LGRP API");
2246     Solaris::set_lgrp_cookie(c);
2247     return true;
2248   }
2249   return false;
2250 }
2251 
2252 // Get the group id of the current LWP.
2253 int os::numa_get_group_id() {
2254   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2255   if (lgrp_id == -1) {
2256     return 0;
2257   }
2258   const int size = os::numa_get_groups_num();
2259   int *ids = (int*)alloca(size * sizeof(int));
2260 
2261   // Get the ids of all lgroups with memory; r is the count.
2262   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2263                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2264   if (r <= 0) {
2265     return 0;
2266   }
2267   return ids[os::random() % r];
2268 }
2269 
2270 // Request information about the page.
2271 bool os::get_page_info(char *start, page_info* info) {
2272   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2273   uint64_t addr = (uintptr_t)start;
2274   uint64_t outdata[2];
2275   uint_t validity = 0;
2276 
2277   if (meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2278     return false;
2279   }
2280 
2281   info->size = 0;
2282   info->lgrp_id = -1;
2283 
2284   if ((validity & 1) != 0) {
2285     if ((validity & 2) != 0) {
2286       info->lgrp_id = outdata[0];
2287     }
2288     if ((validity & 4) != 0) {
2289       info->size = outdata[1];
2290     }
2291     return true;
2292   }
2293   return false;
2294 }
2295 
2296 // Scan the pages from start to end until a page different than
2297 // the one described in the info parameter is encountered.
2298 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2299                      page_info* page_found) {
2300   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2301   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2302   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2303   uint_t validity[MAX_MEMINFO_CNT];
2304 
2305   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2306   uint64_t p = (uint64_t)start;
2307   while (p < (uint64_t)end) {
2308     addrs[0] = p;
2309     size_t addrs_count = 1;
2310     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2311       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2312       addrs_count++;
2313     }
2314 
2315     if (meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2316       return NULL;
2317     }
2318 
2319     size_t i = 0;
2320     for (; i < addrs_count; i++) {
2321       if ((validity[i] & 1) != 0) {
2322         if ((validity[i] & 4) != 0) {
2323           if (outdata[types * i + 1] != page_expected->size) {
2324             break;
2325           }
2326         } else if (page_expected->size != 0) {
2327           break;
2328         }
2329 
2330         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2331           if (outdata[types * i] != page_expected->lgrp_id) {
2332             break;
2333           }
2334         }
2335       } else {
2336         return NULL;
2337       }
2338     }
2339 
2340     if (i < addrs_count) {
2341       if ((validity[i] & 2) != 0) {
2342         page_found->lgrp_id = outdata[types * i];
2343       } else {
2344         page_found->lgrp_id = -1;
2345       }
2346       if ((validity[i] & 4) != 0) {
2347         page_found->size = outdata[types * i + 1];
2348       } else {
2349         page_found->size = 0;
2350       }
2351       return (char*)addrs[i];
2352     }
2353 
2354     p = addrs[addrs_count - 1] + page_size;
2355   }
2356   return end;
2357 }
2358 
2359 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2360   size_t size = bytes;
2361   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2362   // uncommitted page. Otherwise, the read/write might succeed if we
2363   // have enough swap space to back the physical page.
2364   return
2365     NULL != Solaris::mmap_chunk(addr, size,
2366                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2367                                 PROT_NONE);
2368 }
2369 
2370 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2371   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2372 
2373   if (b == MAP_FAILED) {
2374     return NULL;
2375   }
2376   return b;
2377 }
2378 
2379 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2380                              size_t alignment_hint, bool fixed) {
2381   char* addr = requested_addr;
2382   int flags = MAP_PRIVATE | MAP_NORESERVE;
2383 
2384   assert(!(fixed && (alignment_hint > 0)),
2385          "alignment hint meaningless with fixed mmap");
2386 
2387   if (fixed) {
2388     flags |= MAP_FIXED;
2389   } else if (alignment_hint > (size_t) vm_page_size()) {
2390     flags |= MAP_ALIGN;
2391     addr = (char*) alignment_hint;
2392   }
2393 
2394   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2395   // uncommitted page. Otherwise, the read/write might succeed if we
2396   // have enough swap space to back the physical page.
2397   return mmap_chunk(addr, bytes, flags, PROT_NONE);
2398 }
2399 
2400 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2401                             size_t alignment_hint) {
2402   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2403                                   (requested_addr != NULL));
2404 
2405   guarantee(requested_addr == NULL || requested_addr == addr,
2406             "OS failed to return requested mmap address.");
2407   return addr;
2408 }
2409 
2410 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
2411   assert(file_desc >= 0, "file_desc is not valid");
2412   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
2413   if (result != NULL) {
2414     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
2415       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
2416     }
2417   }
2418   return result;
2419 }
2420 
2421 // Reserve memory at an arbitrary address, only if that area is
2422 // available (and not reserved for something else).
2423 
2424 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2425   // Assert only that the size is a multiple of the page size, since
2426   // that's all that mmap requires, and since that's all we really know
2427   // about at this low abstraction level.  If we need higher alignment,
2428   // we can either pass an alignment to this method or verify alignment
2429   // in one of the methods further up the call chain.  See bug 5044738.
2430   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2431 
2432   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2433   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2434 
2435   volatile int err = errno;
2436   if (addr == requested_addr) {
2437     return addr;
2438   }
2439 
2440   if (addr != NULL) {
2441     pd_unmap_memory(addr, bytes);
2442   }
2443 
2444   return NULL;
2445 }
2446 
2447 bool os::pd_release_memory(char* addr, size_t bytes) {
2448   size_t size = bytes;
2449   return munmap(addr, size) == 0;
2450 }
2451 
2452 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2453   assert(addr == (char*)align_down((uintptr_t)addr, os::vm_page_size()),
2454          "addr must be page aligned");
2455   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(addr), p2i(addr+bytes), prot);
2456   int retVal = mprotect(addr, bytes, prot);
2457   return retVal == 0;
2458 }
2459 
2460 // Protect memory (Used to pass readonly pages through
2461 // JNI GetArray<type>Elements with empty arrays.)
2462 // Also, used for serialization page and for compressed oops null pointer
2463 // checking.
2464 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2465                         bool is_committed) {
2466   unsigned int p = 0;
2467   switch (prot) {
2468   case MEM_PROT_NONE: p = PROT_NONE; break;
2469   case MEM_PROT_READ: p = PROT_READ; break;
2470   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2471   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2472   default:
2473     ShouldNotReachHere();
2474   }
2475   // is_committed is unused.
2476   return solaris_mprotect(addr, bytes, p);
2477 }
2478 
2479 // guard_memory and unguard_memory only happens within stack guard pages.
2480 // Since ISM pertains only to the heap, guard and unguard memory should not
2481 /// happen with an ISM region.
2482 bool os::guard_memory(char* addr, size_t bytes) {
2483   return solaris_mprotect(addr, bytes, PROT_NONE);
2484 }
2485 
2486 bool os::unguard_memory(char* addr, size_t bytes) {
2487   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2488 }
2489 
2490 // Large page support
2491 static size_t _large_page_size = 0;
2492 
2493 // Insertion sort for small arrays (descending order).
2494 static void insertion_sort_descending(size_t* array, int len) {
2495   for (int i = 0; i < len; i++) {
2496     size_t val = array[i];
2497     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2498       size_t tmp = array[key];
2499       array[key] = array[key - 1];
2500       array[key - 1] = tmp;
2501     }
2502   }
2503 }
2504 
2505 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2506   const unsigned int usable_count = VM_Version::page_size_count();
2507   if (usable_count == 1) {
2508     return false;
2509   }
2510 
2511   // Find the right getpagesizes interface.  When solaris 11 is the minimum
2512   // build platform, getpagesizes() (without the '2') can be called directly.
2513   typedef int (*gps_t)(size_t[], int);
2514   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2515   if (gps_func == NULL) {
2516     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2517     if (gps_func == NULL) {
2518       if (warn) {
2519         warning("MPSS is not supported by the operating system.");
2520       }
2521       return false;
2522     }
2523   }
2524 
2525   // Fill the array of page sizes.
2526   int n = (*gps_func)(_page_sizes, page_sizes_max);
2527   assert(n > 0, "Solaris bug?");
2528 
2529   if (n == page_sizes_max) {
2530     // Add a sentinel value (necessary only if the array was completely filled
2531     // since it is static (zeroed at initialization)).
2532     _page_sizes[--n] = 0;
2533     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2534   }
2535   assert(_page_sizes[n] == 0, "missing sentinel");
2536   trace_page_sizes("available page sizes", _page_sizes, n);
2537 
2538   if (n == 1) return false;     // Only one page size available.
2539 
2540   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2541   // select up to usable_count elements.  First sort the array, find the first
2542   // acceptable value, then copy the usable sizes to the top of the array and
2543   // trim the rest.  Make sure to include the default page size :-).
2544   //
2545   // A better policy could get rid of the 4M limit by taking the sizes of the
2546   // important VM memory regions (java heap and possibly the code cache) into
2547   // account.
2548   insertion_sort_descending(_page_sizes, n);
2549   const size_t size_limit =
2550     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2551   int beg;
2552   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2553   const int end = MIN2((int)usable_count, n) - 1;
2554   for (int cur = 0; cur < end; ++cur, ++beg) {
2555     _page_sizes[cur] = _page_sizes[beg];
2556   }
2557   _page_sizes[end] = vm_page_size();
2558   _page_sizes[end + 1] = 0;
2559 
2560   if (_page_sizes[end] > _page_sizes[end - 1]) {
2561     // Default page size is not the smallest; sort again.
2562     insertion_sort_descending(_page_sizes, end + 1);
2563   }
2564   *page_size = _page_sizes[0];
2565 
2566   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2567   return true;
2568 }
2569 
2570 void os::large_page_init() {
2571   if (UseLargePages) {
2572     // print a warning if any large page related flag is specified on command line
2573     bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2574                            !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2575 
2576     UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2577   }
2578 }
2579 
2580 bool os::Solaris::is_valid_page_size(size_t bytes) {
2581   for (int i = 0; _page_sizes[i] != 0; i++) {
2582     if (_page_sizes[i] == bytes) {
2583       return true;
2584     }
2585   }
2586   return false;
2587 }
2588 
2589 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2590   assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2591   assert(is_aligned((void*) start, align),
2592          PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2593   assert(is_aligned(bytes, align),
2594          SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2595 
2596   // Signal to OS that we want large pages for addresses
2597   // from addr, addr + bytes
2598   struct memcntl_mha mpss_struct;
2599   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2600   mpss_struct.mha_pagesize = align;
2601   mpss_struct.mha_flags = 0;
2602   // Upon successful completion, memcntl() returns 0
2603   if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2604     debug_only(warning("Attempt to use MPSS failed."));
2605     return false;
2606   }
2607   return true;
2608 }
2609 
2610 char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
2611   fatal("os::reserve_memory_special should not be called on Solaris.");
2612   return NULL;
2613 }
2614 
2615 bool os::release_memory_special(char* base, size_t bytes) {
2616   fatal("os::release_memory_special should not be called on Solaris.");
2617   return false;
2618 }
2619 
2620 size_t os::large_page_size() {
2621   return _large_page_size;
2622 }
2623 
2624 // MPSS allows application to commit large page memory on demand; with ISM
2625 // the entire memory region must be allocated as shared memory.
2626 bool os::can_commit_large_page_memory() {
2627   return true;
2628 }
2629 
2630 bool os::can_execute_large_page_memory() {
2631   return true;
2632 }
2633 
2634 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2635 void os::infinite_sleep() {
2636   while (true) {    // sleep forever ...
2637     ::sleep(100);   // ... 100 seconds at a time
2638   }
2639 }
2640 
2641 // Used to convert frequent JVM_Yield() to nops
2642 bool os::dont_yield() {
2643   if (DontYieldALot) {
2644     static hrtime_t last_time = 0;
2645     hrtime_t diff = getTimeNanos() - last_time;
2646 
2647     if (diff < DontYieldALotInterval * 1000000) {
2648       return true;
2649     }
2650 
2651     last_time += diff;
2652 
2653     return false;
2654   } else {
2655     return false;
2656   }
2657 }
2658 
2659 // Note that yield semantics are defined by the scheduling class to which
2660 // the thread currently belongs.  Typically, yield will _not yield to
2661 // other equal or higher priority threads that reside on the dispatch queues
2662 // of other CPUs.
2663 
2664 void os::naked_yield() {
2665   thr_yield();
2666 }
2667 
2668 // Interface for setting lwp priorities.  We are using T2 libthread,
2669 // which forces the use of bound threads, so all of our threads will
2670 // be assigned to real lwp's.  Using the thr_setprio function is
2671 // meaningless in this mode so we must adjust the real lwp's priority.
2672 // The routines below implement the getting and setting of lwp priorities.
2673 //
2674 // Note: There are three priority scales used on Solaris.  Java priotities
2675 //       which range from 1 to 10, libthread "thr_setprio" scale which range
2676 //       from 0 to 127, and the current scheduling class of the process we
2677 //       are running in.  This is typically from -60 to +60.
2678 //       The setting of the lwp priorities in done after a call to thr_setprio
2679 //       so Java priorities are mapped to libthread priorities and we map from
2680 //       the latter to lwp priorities.  We don't keep priorities stored in
2681 //       Java priorities since some of our worker threads want to set priorities
2682 //       higher than all Java threads.
2683 //
2684 // For related information:
2685 // (1)  man -s 2 priocntl
2686 // (2)  man -s 4 priocntl
2687 // (3)  man dispadmin
2688 // =    librt.so
2689 // =    libthread/common/rtsched.c - thrp_setlwpprio().
2690 // =    ps -cL <pid> ... to validate priority.
2691 // =    sched_get_priority_min and _max
2692 //              pthread_create
2693 //              sched_setparam
2694 //              pthread_setschedparam
2695 //
2696 // Assumptions:
2697 // +    We assume that all threads in the process belong to the same
2698 //              scheduling class.   IE. an homogenous process.
2699 // +    Must be root or in IA group to change change "interactive" attribute.
2700 //              Priocntl() will fail silently.  The only indication of failure is when
2701 //              we read-back the value and notice that it hasn't changed.
2702 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
2703 // +    For RT, change timeslice as well.  Invariant:
2704 //              constant "priority integral"
2705 //              Konst == TimeSlice * (60-Priority)
2706 //              Given a priority, compute appropriate timeslice.
2707 // +    Higher numerical values have higher priority.
2708 
2709 // sched class attributes
2710 typedef struct {
2711   int   schedPolicy;              // classID
2712   int   maxPrio;
2713   int   minPrio;
2714 } SchedInfo;
2715 
2716 
2717 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
2718 
2719 #ifdef ASSERT
2720 static int  ReadBackValidate = 1;
2721 #endif
2722 static int  myClass     = 0;
2723 static int  myMin       = 0;
2724 static int  myMax       = 0;
2725 static int  myCur       = 0;
2726 static bool priocntl_enable = false;
2727 
2728 static const int criticalPrio = FXCriticalPriority;
2729 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
2730 
2731 
2732 // lwp_priocntl_init
2733 //
2734 // Try to determine the priority scale for our process.
2735 //
2736 // Return errno or 0 if OK.
2737 //
2738 static int lwp_priocntl_init() {
2739   int rslt;
2740   pcinfo_t ClassInfo;
2741   pcparms_t ParmInfo;
2742   int i;
2743 
2744   if (!UseThreadPriorities) return 0;
2745 
2746   // If ThreadPriorityPolicy is 1, switch tables
2747   if (ThreadPriorityPolicy == 1) {
2748     for (i = 0; i < CriticalPriority+1; i++)
2749       os::java_to_os_priority[i] = prio_policy1[i];
2750   }
2751   if (UseCriticalJavaThreadPriority) {
2752     // MaxPriority always maps to the FX scheduling class and criticalPrio.
2753     // See set_native_priority() and set_lwp_class_and_priority().
2754     // Save original MaxPriority mapping in case attempt to
2755     // use critical priority fails.
2756     java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
2757     // Set negative to distinguish from other priorities
2758     os::java_to_os_priority[MaxPriority] = -criticalPrio;
2759   }
2760 
2761   // Get IDs for a set of well-known scheduling classes.
2762   // TODO-FIXME: GETCLINFO returns the current # of classes in the
2763   // the system.  We should have a loop that iterates over the
2764   // classID values, which are known to be "small" integers.
2765 
2766   strcpy(ClassInfo.pc_clname, "TS");
2767   ClassInfo.pc_cid = -1;
2768   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2769   if (rslt < 0) return errno;
2770   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
2771   tsLimits.schedPolicy = ClassInfo.pc_cid;
2772   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
2773   tsLimits.minPrio = -tsLimits.maxPrio;
2774 
2775   strcpy(ClassInfo.pc_clname, "IA");
2776   ClassInfo.pc_cid = -1;
2777   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2778   if (rslt < 0) return errno;
2779   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
2780   iaLimits.schedPolicy = ClassInfo.pc_cid;
2781   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
2782   iaLimits.minPrio = -iaLimits.maxPrio;
2783 
2784   strcpy(ClassInfo.pc_clname, "RT");
2785   ClassInfo.pc_cid = -1;
2786   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2787   if (rslt < 0) return errno;
2788   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
2789   rtLimits.schedPolicy = ClassInfo.pc_cid;
2790   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
2791   rtLimits.minPrio = 0;
2792 
2793   strcpy(ClassInfo.pc_clname, "FX");
2794   ClassInfo.pc_cid = -1;
2795   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2796   if (rslt < 0) return errno;
2797   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
2798   fxLimits.schedPolicy = ClassInfo.pc_cid;
2799   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
2800   fxLimits.minPrio = 0;
2801 
2802   // Query our "current" scheduling class.
2803   // This will normally be IA, TS or, rarely, FX or RT.
2804   memset(&ParmInfo, 0, sizeof(ParmInfo));
2805   ParmInfo.pc_cid = PC_CLNULL;
2806   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
2807   if (rslt < 0) return errno;
2808   myClass = ParmInfo.pc_cid;
2809 
2810   // We now know our scheduling classId, get specific information
2811   // about the class.
2812   ClassInfo.pc_cid = myClass;
2813   ClassInfo.pc_clname[0] = 0;
2814   rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
2815   if (rslt < 0) return errno;
2816 
2817   if (ThreadPriorityVerbose) {
2818     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
2819   }
2820 
2821   memset(&ParmInfo, 0, sizeof(pcparms_t));
2822   ParmInfo.pc_cid = PC_CLNULL;
2823   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
2824   if (rslt < 0) return errno;
2825 
2826   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
2827     myMin = rtLimits.minPrio;
2828     myMax = rtLimits.maxPrio;
2829   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
2830     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
2831     myMin = iaLimits.minPrio;
2832     myMax = iaLimits.maxPrio;
2833     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
2834   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
2835     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
2836     myMin = tsLimits.minPrio;
2837     myMax = tsLimits.maxPrio;
2838     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
2839   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
2840     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
2841     myMin = fxLimits.minPrio;
2842     myMax = fxLimits.maxPrio;
2843     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
2844   } else {
2845     // No clue - punt
2846     if (ThreadPriorityVerbose) {
2847       tty->print_cr("Unknown scheduling class: %s ... \n",
2848                     ClassInfo.pc_clname);
2849     }
2850     return EINVAL;      // no clue, punt
2851   }
2852 
2853   if (ThreadPriorityVerbose) {
2854     tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
2855   }
2856 
2857   priocntl_enable = true;  // Enable changing priorities
2858   return 0;
2859 }
2860 
2861 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
2862 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
2863 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
2864 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
2865 
2866 
2867 // scale_to_lwp_priority
2868 //
2869 // Convert from the libthread "thr_setprio" scale to our current
2870 // lwp scheduling class scale.
2871 //
2872 static int scale_to_lwp_priority(int rMin, int rMax, int x) {
2873   int v;
2874 
2875   if (x == 127) return rMax;            // avoid round-down
2876   v = (((x*(rMax-rMin)))/128)+rMin;
2877   return v;
2878 }
2879 
2880 
2881 // set_lwp_class_and_priority
2882 int set_lwp_class_and_priority(int ThreadID, int lwpid,
2883                                int newPrio, int new_class, bool scale) {
2884   int rslt;
2885   int Actual, Expected, prv;
2886   pcparms_t ParmInfo;                   // for GET-SET
2887 #ifdef ASSERT
2888   pcparms_t ReadBack;                   // for readback
2889 #endif
2890 
2891   // Set priority via PC_GETPARMS, update, PC_SETPARMS
2892   // Query current values.
2893   // TODO: accelerate this by eliminating the PC_GETPARMS call.
2894   // Cache "pcparms_t" in global ParmCache.
2895   // TODO: elide set-to-same-value
2896 
2897   // If something went wrong on init, don't change priorities.
2898   if (!priocntl_enable) {
2899     if (ThreadPriorityVerbose) {
2900       tty->print_cr("Trying to set priority but init failed, ignoring");
2901     }
2902     return EINVAL;
2903   }
2904 
2905   // If lwp hasn't started yet, just return
2906   // the _start routine will call us again.
2907   if (lwpid <= 0) {
2908     if (ThreadPriorityVerbose) {
2909       tty->print_cr("deferring the set_lwp_class_and_priority of thread "
2910                     INTPTR_FORMAT " to %d, lwpid not set",
2911                     ThreadID, newPrio);
2912     }
2913     return 0;
2914   }
2915 
2916   if (ThreadPriorityVerbose) {
2917     tty->print_cr ("set_lwp_class_and_priority("
2918                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
2919                    ThreadID, lwpid, newPrio);
2920   }
2921 
2922   memset(&ParmInfo, 0, sizeof(pcparms_t));
2923   ParmInfo.pc_cid = PC_CLNULL;
2924   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
2925   if (rslt < 0) return errno;
2926 
2927   int cur_class = ParmInfo.pc_cid;
2928   ParmInfo.pc_cid = (id_t)new_class;
2929 
2930   if (new_class == rtLimits.schedPolicy) {
2931     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
2932     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
2933                                                        rtLimits.maxPrio, newPrio)
2934                                : newPrio;
2935     rtInfo->rt_tqsecs  = RT_NOCHANGE;
2936     rtInfo->rt_tqnsecs = RT_NOCHANGE;
2937     if (ThreadPriorityVerbose) {
2938       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
2939     }
2940   } else if (new_class == iaLimits.schedPolicy) {
2941     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
2942     int maxClamped     = MIN2(iaLimits.maxPrio,
2943                               cur_class == new_class
2944                               ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
2945     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
2946                                                        maxClamped, newPrio)
2947                                : newPrio;
2948     iaInfo->ia_uprilim = cur_class == new_class
2949                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
2950     iaInfo->ia_mode    = IA_NOCHANGE;
2951     if (ThreadPriorityVerbose) {
2952       tty->print_cr("IA: [%d...%d] %d->%d\n",
2953                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
2954     }
2955   } else if (new_class == tsLimits.schedPolicy) {
2956     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
2957     int maxClamped     = MIN2(tsLimits.maxPrio,
2958                               cur_class == new_class
2959                               ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
2960     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
2961                                                        maxClamped, newPrio)
2962                                : newPrio;
2963     tsInfo->ts_uprilim = cur_class == new_class
2964                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
2965     if (ThreadPriorityVerbose) {
2966       tty->print_cr("TS: [%d...%d] %d->%d\n",
2967                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
2968     }
2969   } else if (new_class == fxLimits.schedPolicy) {
2970     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
2971     int maxClamped     = MIN2(fxLimits.maxPrio,
2972                               cur_class == new_class
2973                               ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
2974     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
2975                                                        maxClamped, newPrio)
2976                                : newPrio;
2977     fxInfo->fx_uprilim = cur_class == new_class
2978                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
2979     fxInfo->fx_tqsecs  = FX_NOCHANGE;
2980     fxInfo->fx_tqnsecs = FX_NOCHANGE;
2981     if (ThreadPriorityVerbose) {
2982       tty->print_cr("FX: [%d...%d] %d->%d\n",
2983                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
2984     }
2985   } else {
2986     if (ThreadPriorityVerbose) {
2987       tty->print_cr("Unknown new scheduling class %d\n", new_class);
2988     }
2989     return EINVAL;    // no clue, punt
2990   }
2991 
2992   rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
2993   if (ThreadPriorityVerbose && rslt) {
2994     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
2995   }
2996   if (rslt < 0) return errno;
2997 
2998 #ifdef ASSERT
2999   // Sanity check: read back what we just attempted to set.
3000   // In theory it could have changed in the interim ...
3001   //
3002   // The priocntl system call is tricky.
3003   // Sometimes it'll validate the priority value argument and
3004   // return EINVAL if unhappy.  At other times it fails silently.
3005   // Readbacks are prudent.
3006 
3007   if (!ReadBackValidate) return 0;
3008 
3009   memset(&ReadBack, 0, sizeof(pcparms_t));
3010   ReadBack.pc_cid = PC_CLNULL;
3011   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3012   assert(rslt >= 0, "priocntl failed");
3013   Actual = Expected = 0xBAD;
3014   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3015   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3016     Actual   = RTPRI(ReadBack)->rt_pri;
3017     Expected = RTPRI(ParmInfo)->rt_pri;
3018   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3019     Actual   = IAPRI(ReadBack)->ia_upri;
3020     Expected = IAPRI(ParmInfo)->ia_upri;
3021   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3022     Actual   = TSPRI(ReadBack)->ts_upri;
3023     Expected = TSPRI(ParmInfo)->ts_upri;
3024   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3025     Actual   = FXPRI(ReadBack)->fx_upri;
3026     Expected = FXPRI(ParmInfo)->fx_upri;
3027   } else {
3028     if (ThreadPriorityVerbose) {
3029       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3030                     ParmInfo.pc_cid);
3031     }
3032   }
3033 
3034   if (Actual != Expected) {
3035     if (ThreadPriorityVerbose) {
3036       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3037                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3038     }
3039   }
3040 #endif
3041 
3042   return 0;
3043 }
3044 
3045 // Solaris only gives access to 128 real priorities at a time,
3046 // so we expand Java's ten to fill this range.  This would be better
3047 // if we dynamically adjusted relative priorities.
3048 //
3049 // The ThreadPriorityPolicy option allows us to select 2 different
3050 // priority scales.
3051 //
3052 // ThreadPriorityPolicy=0
3053 // Since the Solaris' default priority is MaximumPriority, we do not
3054 // set a priority lower than Max unless a priority lower than
3055 // NormPriority is requested.
3056 //
3057 // ThreadPriorityPolicy=1
3058 // This mode causes the priority table to get filled with
3059 // linear values.  NormPriority get's mapped to 50% of the
3060 // Maximum priority an so on.  This will cause VM threads
3061 // to get unfair treatment against other Solaris processes
3062 // which do not explicitly alter their thread priorities.
3063 
3064 int os::java_to_os_priority[CriticalPriority + 1] = {
3065   -99999,         // 0 Entry should never be used
3066 
3067   0,              // 1 MinPriority
3068   32,             // 2
3069   64,             // 3
3070 
3071   96,             // 4
3072   127,            // 5 NormPriority
3073   127,            // 6
3074 
3075   127,            // 7
3076   127,            // 8
3077   127,            // 9 NearMaxPriority
3078 
3079   127,            // 10 MaxPriority
3080 
3081   -criticalPrio   // 11 CriticalPriority
3082 };
3083 
3084 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3085   OSThread* osthread = thread->osthread();
3086 
3087   // Save requested priority in case the thread hasn't been started
3088   osthread->set_native_priority(newpri);
3089 
3090   // Check for critical priority request
3091   bool fxcritical = false;
3092   if (newpri == -criticalPrio) {
3093     fxcritical = true;
3094     newpri = criticalPrio;
3095   }
3096 
3097   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3098   if (!UseThreadPriorities) return OS_OK;
3099 
3100   int status = 0;
3101 
3102   if (!fxcritical) {
3103     // Use thr_setprio only if we have a priority that thr_setprio understands
3104     status = thr_setprio(thread->osthread()->thread_id(), newpri);
3105   }
3106 
3107   int lwp_status =
3108           set_lwp_class_and_priority(osthread->thread_id(),
3109                                      osthread->lwp_id(),
3110                                      newpri,
3111                                      fxcritical ? fxLimits.schedPolicy : myClass,
3112                                      !fxcritical);
3113   if (lwp_status != 0 && fxcritical) {
3114     // Try again, this time without changing the scheduling class
3115     newpri = java_MaxPriority_to_os_priority;
3116     lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3117                                             osthread->lwp_id(),
3118                                             newpri, myClass, false);
3119   }
3120   status |= lwp_status;
3121   return (status == 0) ? OS_OK : OS_ERR;
3122 }
3123 
3124 
3125 OSReturn os::get_native_priority(const Thread* const thread,
3126                                  int *priority_ptr) {
3127   int p;
3128   if (!UseThreadPriorities) {
3129     *priority_ptr = NormalPriority;
3130     return OS_OK;
3131   }
3132   int status = thr_getprio(thread->osthread()->thread_id(), &p);
3133   if (status != 0) {
3134     return OS_ERR;
3135   }
3136   *priority_ptr = p;
3137   return OS_OK;
3138 }
3139 
3140 ////////////////////////////////////////////////////////////////////////////////
3141 // suspend/resume support
3142 
3143 //  The low-level signal-based suspend/resume support is a remnant from the
3144 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3145 //  within hotspot. Currently used by JFR's OSThreadSampler
3146 //
3147 //  The remaining code is greatly simplified from the more general suspension
3148 //  code that used to be used.
3149 //
3150 //  The protocol is quite simple:
3151 //  - suspend:
3152 //      - sends a signal to the target thread
3153 //      - polls the suspend state of the osthread using a yield loop
3154 //      - target thread signal handler (SR_handler) sets suspend state
3155 //        and blocks in sigsuspend until continued
3156 //  - resume:
3157 //      - sets target osthread state to continue
3158 //      - sends signal to end the sigsuspend loop in the SR_handler
3159 //
3160 //  Note that the SR_lock plays no role in this suspend/resume protocol,
3161 //  but is checked for NULL in SR_handler as a thread termination indicator.
3162 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
3163 //
3164 //  Note that resume_clear_context() and suspend_save_context() are needed
3165 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
3166 //  which in part is used by:
3167 //    - Forte Analyzer: AsyncGetCallTrace()
3168 //    - StackBanging: get_frame_at_stack_banging_point()
3169 //    - JFR: get_topframe()-->....-->get_valid_uc_in_signal_handler()
3170 
3171 static void resume_clear_context(OSThread *osthread) {
3172   osthread->set_ucontext(NULL);
3173 }
3174 
3175 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3176   osthread->set_ucontext(context);
3177 }
3178 
3179 static PosixSemaphore sr_semaphore;
3180 
3181 void os::Solaris::SR_handler(Thread* thread, ucontext_t* context) {
3182   // Save and restore errno to avoid confusing native code with EINTR
3183   // after sigsuspend.
3184   int old_errno = errno;
3185 
3186   OSThread* osthread = thread->osthread();
3187   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3188 
3189   os::SuspendResume::State current = osthread->sr.state();
3190   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3191     suspend_save_context(osthread, context);
3192 
3193     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3194     os::SuspendResume::State state = osthread->sr.suspended();
3195     if (state == os::SuspendResume::SR_SUSPENDED) {
3196       sigset_t suspend_set;  // signals for sigsuspend()
3197 
3198       // get current set of blocked signals and unblock resume signal
3199       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3200       sigdelset(&suspend_set, ASYNC_SIGNAL);
3201 
3202       sr_semaphore.signal();
3203       // wait here until we are resumed
3204       while (1) {
3205         sigsuspend(&suspend_set);
3206 
3207         os::SuspendResume::State result = osthread->sr.running();
3208         if (result == os::SuspendResume::SR_RUNNING) {
3209           sr_semaphore.signal();
3210           break;
3211         }
3212       }
3213 
3214     } else if (state == os::SuspendResume::SR_RUNNING) {
3215       // request was cancelled, continue
3216     } else {
3217       ShouldNotReachHere();
3218     }
3219 
3220     resume_clear_context(osthread);
3221   } else if (current == os::SuspendResume::SR_RUNNING) {
3222     // request was cancelled, continue
3223   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3224     // ignore
3225   } else {
3226     // ignore
3227   }
3228 
3229   errno = old_errno;
3230 }
3231 
3232 void os::print_statistics() {
3233 }
3234 
3235 bool os::message_box(const char* title, const char* message) {
3236   int i;
3237   fdStream err(defaultStream::error_fd());
3238   for (i = 0; i < 78; i++) err.print_raw("=");
3239   err.cr();
3240   err.print_raw_cr(title);
3241   for (i = 0; i < 78; i++) err.print_raw("-");
3242   err.cr();
3243   err.print_raw_cr(message);
3244   for (i = 0; i < 78; i++) err.print_raw("=");
3245   err.cr();
3246 
3247   char buf[16];
3248   // Prevent process from exiting upon "read error" without consuming all CPU
3249   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3250 
3251   return buf[0] == 'y' || buf[0] == 'Y';
3252 }
3253 
3254 static int sr_notify(OSThread* osthread) {
3255   int status = thr_kill(osthread->thread_id(), ASYNC_SIGNAL);
3256   assert_status(status == 0, status, "thr_kill");
3257   return status;
3258 }
3259 
3260 // "Randomly" selected value for how long we want to spin
3261 // before bailing out on suspending a thread, also how often
3262 // we send a signal to a thread we want to resume
3263 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3264 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3265 
3266 static bool do_suspend(OSThread* osthread) {
3267   assert(osthread->sr.is_running(), "thread should be running");
3268   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3269 
3270   // mark as suspended and send signal
3271   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3272     // failed to switch, state wasn't running?
3273     ShouldNotReachHere();
3274     return false;
3275   }
3276 
3277   if (sr_notify(osthread) != 0) {
3278     ShouldNotReachHere();
3279   }
3280 
3281   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3282   while (true) {
3283     if (sr_semaphore.timedwait(2000)) {
3284       break;
3285     } else {
3286       // timeout
3287       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3288       if (cancelled == os::SuspendResume::SR_RUNNING) {
3289         return false;
3290       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3291         // make sure that we consume the signal on the semaphore as well
3292         sr_semaphore.wait();
3293         break;
3294       } else {
3295         ShouldNotReachHere();
3296         return false;
3297       }
3298     }
3299   }
3300 
3301   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3302   return true;
3303 }
3304 
3305 static void do_resume(OSThread* osthread) {
3306   assert(osthread->sr.is_suspended(), "thread should be suspended");
3307   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3308 
3309   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3310     // failed to switch to WAKEUP_REQUEST
3311     ShouldNotReachHere();
3312     return;
3313   }
3314 
3315   while (true) {
3316     if (sr_notify(osthread) == 0) {
3317       if (sr_semaphore.timedwait(2)) {
3318         if (osthread->sr.is_running()) {
3319           return;
3320         }
3321       }
3322     } else {
3323       ShouldNotReachHere();
3324     }
3325   }
3326 
3327   guarantee(osthread->sr.is_running(), "Must be running!");
3328 }
3329 
3330 void os::SuspendedThreadTask::internal_do_task() {
3331   if (do_suspend(_thread->osthread())) {
3332     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3333     do_task(context);
3334     do_resume(_thread->osthread());
3335   }
3336 }
3337 
3338 // This does not do anything on Solaris. This is basically a hook for being
3339 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3340 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3341                               const methodHandle& method, JavaCallArguments* args,
3342                               Thread* thread) {
3343   f(value, method, args, thread);
3344 }
3345 
3346 // This routine may be used by user applications as a "hook" to catch signals.
3347 // The user-defined signal handler must pass unrecognized signals to this
3348 // routine, and if it returns true (non-zero), then the signal handler must
3349 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3350 // routine will never retun false (zero), but instead will execute a VM panic
3351 // routine kill the process.
3352 //
3353 // If this routine returns false, it is OK to call it again.  This allows
3354 // the user-defined signal handler to perform checks either before or after
3355 // the VM performs its own checks.  Naturally, the user code would be making
3356 // a serious error if it tried to handle an exception (such as a null check
3357 // or breakpoint) that the VM was generating for its own correct operation.
3358 //
3359 // This routine may recognize any of the following kinds of signals:
3360 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3361 // ASYNC_SIGNAL.
3362 // It should be consulted by handlers for any of those signals.
3363 //
3364 // The caller of this routine must pass in the three arguments supplied
3365 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3366 // field of the structure passed to sigaction().  This routine assumes that
3367 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3368 //
3369 // Note that the VM will print warnings if it detects conflicting signal
3370 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3371 //
3372 extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3373                                                    siginfo_t* siginfo,
3374                                                    void* ucontext,
3375                                                    int abort_if_unrecognized);
3376 
3377 
3378 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3379   int orig_errno = errno;  // Preserve errno value over signal handler.
3380   JVM_handle_solaris_signal(sig, info, ucVoid, true);
3381   errno = orig_errno;
3382 }
3383 
3384 // This boolean allows users to forward their own non-matching signals
3385 // to JVM_handle_solaris_signal, harmlessly.
3386 bool os::Solaris::signal_handlers_are_installed = false;
3387 
3388 // For signal-chaining
3389 bool os::Solaris::libjsig_is_loaded = false;
3390 typedef struct sigaction *(*get_signal_t)(int);
3391 get_signal_t os::Solaris::get_signal_action = NULL;
3392 
3393 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3394   struct sigaction *actp = NULL;
3395 
3396   if ((libjsig_is_loaded)  && (sig <= Maxsignum)) {
3397     // Retrieve the old signal handler from libjsig
3398     actp = (*get_signal_action)(sig);
3399   }
3400   if (actp == NULL) {
3401     // Retrieve the preinstalled signal handler from jvm
3402     actp = get_preinstalled_handler(sig);
3403   }
3404 
3405   return actp;
3406 }
3407 
3408 static bool call_chained_handler(struct sigaction *actp, int sig,
3409                                  siginfo_t *siginfo, void *context) {
3410   // Call the old signal handler
3411   if (actp->sa_handler == SIG_DFL) {
3412     // It's more reasonable to let jvm treat it as an unexpected exception
3413     // instead of taking the default action.
3414     return false;
3415   } else if (actp->sa_handler != SIG_IGN) {
3416     if ((actp->sa_flags & SA_NODEFER) == 0) {
3417       // automaticlly block the signal
3418       sigaddset(&(actp->sa_mask), sig);
3419     }
3420 
3421     sa_handler_t hand;
3422     sa_sigaction_t sa;
3423     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3424     // retrieve the chained handler
3425     if (siginfo_flag_set) {
3426       sa = actp->sa_sigaction;
3427     } else {
3428       hand = actp->sa_handler;
3429     }
3430 
3431     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3432       actp->sa_handler = SIG_DFL;
3433     }
3434 
3435     // try to honor the signal mask
3436     sigset_t oset;
3437     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3438 
3439     // call into the chained handler
3440     if (siginfo_flag_set) {
3441       (*sa)(sig, siginfo, context);
3442     } else {
3443       (*hand)(sig);
3444     }
3445 
3446     // restore the signal mask
3447     pthread_sigmask(SIG_SETMASK, &oset, 0);
3448   }
3449   // Tell jvm's signal handler the signal is taken care of.
3450   return true;
3451 }
3452 
3453 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3454   bool chained = false;
3455   // signal-chaining
3456   if (UseSignalChaining) {
3457     struct sigaction *actp = get_chained_signal_action(sig);
3458     if (actp != NULL) {
3459       chained = call_chained_handler(actp, sig, siginfo, context);
3460     }
3461   }
3462   return chained;
3463 }
3464 
3465 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3466   assert((chainedsigactions != (struct sigaction *)NULL) &&
3467          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3468   if (preinstalled_sigs[sig] != 0) {
3469     return &chainedsigactions[sig];
3470   }
3471   return NULL;
3472 }
3473 
3474 void os::Solaris::save_preinstalled_handler(int sig,
3475                                             struct sigaction& oldAct) {
3476   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3477   assert((chainedsigactions != (struct sigaction *)NULL) &&
3478          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3479   chainedsigactions[sig] = oldAct;
3480   preinstalled_sigs[sig] = 1;
3481 }
3482 
3483 void os::Solaris::set_signal_handler(int sig, bool set_installed,
3484                                      bool oktochain) {
3485   // Check for overwrite.
3486   struct sigaction oldAct;
3487   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3488   void* oldhand =
3489       oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3490                           : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3491   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3492       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3493       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3494     if (AllowUserSignalHandlers || !set_installed) {
3495       // Do not overwrite; user takes responsibility to forward to us.
3496       return;
3497     } else if (UseSignalChaining) {
3498       if (oktochain) {
3499         // save the old handler in jvm
3500         save_preinstalled_handler(sig, oldAct);
3501       } else {
3502         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3503       }
3504       // libjsig also interposes the sigaction() call below and saves the
3505       // old sigaction on it own.
3506     } else {
3507       fatal("Encountered unexpected pre-existing sigaction handler "
3508             "%#lx for signal %d.", (long)oldhand, sig);
3509     }
3510   }
3511 
3512   struct sigaction sigAct;
3513   sigfillset(&(sigAct.sa_mask));
3514   sigAct.sa_handler = SIG_DFL;
3515 
3516   sigAct.sa_sigaction = signalHandler;
3517   // Handle SIGSEGV on alternate signal stack if
3518   // not using stack banging
3519   if (!UseStackBanging && sig == SIGSEGV) {
3520     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3521   } else {
3522     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3523   }
3524   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3525 
3526   sigaction(sig, &sigAct, &oldAct);
3527 
3528   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3529                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3530   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3531 }
3532 
3533 
3534 #define DO_SIGNAL_CHECK(sig)                      \
3535   do {                                            \
3536     if (!sigismember(&check_signal_done, sig)) {  \
3537       os::Solaris::check_signal_handler(sig);     \
3538     }                                             \
3539   } while (0)
3540 
3541 // This method is a periodic task to check for misbehaving JNI applications
3542 // under CheckJNI, we can add any periodic checks here
3543 
3544 void os::run_periodic_checks() {
3545   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3546   // thereby preventing a NULL checks.
3547   if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3548 
3549   if (check_signals == false) return;
3550 
3551   // SEGV and BUS if overridden could potentially prevent
3552   // generation of hs*.log in the event of a crash, debugging
3553   // such a case can be very challenging, so we absolutely
3554   // check for the following for a good measure:
3555   DO_SIGNAL_CHECK(SIGSEGV);
3556   DO_SIGNAL_CHECK(SIGILL);
3557   DO_SIGNAL_CHECK(SIGFPE);
3558   DO_SIGNAL_CHECK(SIGBUS);
3559   DO_SIGNAL_CHECK(SIGPIPE);
3560   DO_SIGNAL_CHECK(SIGXFSZ);
3561   DO_SIGNAL_CHECK(ASYNC_SIGNAL);
3562 
3563   // ReduceSignalUsage allows the user to override these handlers
3564   // see comments at the very top and jvm_solaris.h
3565   if (!ReduceSignalUsage) {
3566     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3567     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3568     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3569     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3570   }
3571 }
3572 
3573 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3574 
3575 static os_sigaction_t os_sigaction = NULL;
3576 
3577 void os::Solaris::check_signal_handler(int sig) {
3578   char buf[O_BUFLEN];
3579   address jvmHandler = NULL;
3580 
3581   struct sigaction act;
3582   if (os_sigaction == NULL) {
3583     // only trust the default sigaction, in case it has been interposed
3584     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3585     if (os_sigaction == NULL) return;
3586   }
3587 
3588   os_sigaction(sig, (struct sigaction*)NULL, &act);
3589 
3590   address thisHandler = (act.sa_flags & SA_SIGINFO)
3591     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3592     : CAST_FROM_FN_PTR(address, act.sa_handler);
3593 
3594 
3595   switch (sig) {
3596   case SIGSEGV:
3597   case SIGBUS:
3598   case SIGFPE:
3599   case SIGPIPE:
3600   case SIGXFSZ:
3601   case SIGILL:
3602   case ASYNC_SIGNAL:
3603     jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
3604     break;
3605 
3606   case SHUTDOWN1_SIGNAL:
3607   case SHUTDOWN2_SIGNAL:
3608   case SHUTDOWN3_SIGNAL:
3609   case BREAK_SIGNAL:
3610     jvmHandler = (address)user_handler();
3611     break;
3612 
3613   default:
3614       return;
3615   }
3616 
3617   if (thisHandler != jvmHandler) {
3618     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3619     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3620     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3621     // No need to check this sig any longer
3622     sigaddset(&check_signal_done, sig);
3623     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3624     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3625       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3626                     exception_name(sig, buf, O_BUFLEN));
3627     }
3628   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
3629     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3630     tty->print("expected:");
3631     os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
3632     tty->cr();
3633     tty->print("  found:");
3634     os::Posix::print_sa_flags(tty, act.sa_flags);
3635     tty->cr();
3636     // No need to check this sig any longer
3637     sigaddset(&check_signal_done, sig);
3638   }
3639 
3640   // Print all the signal handler state
3641   if (sigismember(&check_signal_done, sig)) {
3642     print_signal_handlers(tty, buf, O_BUFLEN);
3643   }
3644 
3645 }
3646 
3647 void os::Solaris::install_signal_handlers() {
3648   signal_handlers_are_installed = true;
3649 
3650   // signal-chaining
3651   typedef void (*signal_setting_t)();
3652   signal_setting_t begin_signal_setting = NULL;
3653   signal_setting_t end_signal_setting = NULL;
3654   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3655                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3656   if (begin_signal_setting != NULL) {
3657     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3658                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3659     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3660                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3661     libjsig_is_loaded = true;
3662     assert(UseSignalChaining, "should enable signal-chaining");
3663   }
3664   if (libjsig_is_loaded) {
3665     // Tell libjsig jvm is setting signal handlers
3666     (*begin_signal_setting)();
3667   }
3668 
3669   set_signal_handler(SIGSEGV, true, true);
3670   set_signal_handler(SIGPIPE, true, true);
3671   set_signal_handler(SIGXFSZ, true, true);
3672   set_signal_handler(SIGBUS, true, true);
3673   set_signal_handler(SIGILL, true, true);
3674   set_signal_handler(SIGFPE, true, true);
3675   set_signal_handler(ASYNC_SIGNAL, true, true);
3676 
3677   if (libjsig_is_loaded) {
3678     // Tell libjsig jvm finishes setting signal handlers
3679     (*end_signal_setting)();
3680   }
3681 
3682   // We don't activate signal checker if libjsig is in place, we trust ourselves
3683   // and if UserSignalHandler is installed all bets are off.
3684   // Log that signal checking is off only if -verbose:jni is specified.
3685   if (CheckJNICalls) {
3686     if (libjsig_is_loaded) {
3687       log_debug(jni, resolve)("Info: libjsig is activated, all active signal checking is disabled");
3688       check_signals = false;
3689     }
3690     if (AllowUserSignalHandlers) {
3691       log_debug(jni, resolve)("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3692       check_signals = false;
3693     }
3694   }
3695 }
3696 
3697 
3698 void report_error(const char* file_name, int line_no, const char* title,
3699                   const char* format, ...);
3700 
3701 // (Static) wrappers for the liblgrp API
3702 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
3703 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
3704 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
3705 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
3706 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
3707 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
3708 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
3709 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
3710 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
3711 
3712 static address resolve_symbol_lazy(const char* name) {
3713   address addr = (address) dlsym(RTLD_DEFAULT, name);
3714   if (addr == NULL) {
3715     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
3716     addr = (address) dlsym(RTLD_NEXT, name);
3717   }
3718   return addr;
3719 }
3720 
3721 static address resolve_symbol(const char* name) {
3722   address addr = resolve_symbol_lazy(name);
3723   if (addr == NULL) {
3724     fatal(dlerror());
3725   }
3726   return addr;
3727 }
3728 
3729 void os::Solaris::libthread_init() {
3730   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
3731 
3732   lwp_priocntl_init();
3733 
3734   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
3735   if (func == NULL) {
3736     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
3737     // Guarantee that this VM is running on an new enough OS (5.6 or
3738     // later) that it will have a new enough libthread.so.
3739     guarantee(func != NULL, "libthread.so is too old.");
3740   }
3741 
3742   int size;
3743   void (*handler_info_func)(address *, int *);
3744   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
3745   handler_info_func(&handler_start, &size);
3746   handler_end = handler_start + size;
3747 }
3748 
3749 
3750 int_fnP_mutex_tP os::Solaris::_mutex_lock;
3751 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
3752 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
3753 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
3754 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
3755 int os::Solaris::_mutex_scope = USYNC_THREAD;
3756 
3757 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
3758 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
3759 int_fnP_cond_tP os::Solaris::_cond_signal;
3760 int_fnP_cond_tP os::Solaris::_cond_broadcast;
3761 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
3762 int_fnP_cond_tP os::Solaris::_cond_destroy;
3763 int os::Solaris::_cond_scope = USYNC_THREAD;
3764 bool os::Solaris::_synchronization_initialized;
3765 
3766 void os::Solaris::synchronization_init() {
3767   if (UseLWPSynchronization) {
3768     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
3769     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
3770     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
3771     os::Solaris::set_mutex_init(lwp_mutex_init);
3772     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
3773     os::Solaris::set_mutex_scope(USYNC_THREAD);
3774 
3775     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
3776     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
3777     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
3778     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
3779     os::Solaris::set_cond_init(lwp_cond_init);
3780     os::Solaris::set_cond_destroy(lwp_cond_destroy);
3781     os::Solaris::set_cond_scope(USYNC_THREAD);
3782   } else {
3783     os::Solaris::set_mutex_scope(USYNC_THREAD);
3784     os::Solaris::set_cond_scope(USYNC_THREAD);
3785 
3786     if (UsePthreads) {
3787       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
3788       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
3789       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
3790       os::Solaris::set_mutex_init(pthread_mutex_default_init);
3791       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
3792 
3793       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
3794       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
3795       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
3796       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
3797       os::Solaris::set_cond_init(pthread_cond_default_init);
3798       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
3799     } else {
3800       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
3801       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
3802       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
3803       os::Solaris::set_mutex_init(::mutex_init);
3804       os::Solaris::set_mutex_destroy(::mutex_destroy);
3805 
3806       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
3807       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
3808       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
3809       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
3810       os::Solaris::set_cond_init(::cond_init);
3811       os::Solaris::set_cond_destroy(::cond_destroy);
3812     }
3813   }
3814   _synchronization_initialized = true;
3815 }
3816 
3817 bool os::Solaris::liblgrp_init() {
3818   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
3819   if (handle != NULL) {
3820     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
3821     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
3822     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
3823     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
3824     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
3825     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
3826     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
3827     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
3828                                                       dlsym(handle, "lgrp_cookie_stale")));
3829 
3830     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
3831     set_lgrp_cookie(c);
3832     return true;
3833   }
3834   return false;
3835 }
3836 
3837 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
3838 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
3839 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
3840 
3841 void init_pset_getloadavg_ptr(void) {
3842   pset_getloadavg_ptr =
3843     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
3844   if (pset_getloadavg_ptr == NULL) {
3845     log_warning(os)("pset_getloadavg function not found");
3846   }
3847 }
3848 
3849 int os::Solaris::_dev_zero_fd = -1;
3850 
3851 // this is called _before_ the global arguments have been parsed
3852 void os::init(void) {
3853   _initial_pid = getpid();
3854 
3855   max_hrtime = first_hrtime = gethrtime();
3856 
3857   init_random(1234567);
3858 
3859   page_size = sysconf(_SC_PAGESIZE);
3860   if (page_size == -1) {
3861     fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
3862   }
3863   init_page_sizes((size_t) page_size);
3864 
3865   Solaris::initialize_system_info();
3866 
3867   int fd = ::open("/dev/zero", O_RDWR);
3868   if (fd < 0) {
3869     fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
3870   } else {
3871     Solaris::set_dev_zero_fd(fd);
3872 
3873     // Close on exec, child won't inherit.
3874     fcntl(fd, F_SETFD, FD_CLOEXEC);
3875   }
3876 
3877   clock_tics_per_sec = CLK_TCK;
3878 
3879   // check if dladdr1() exists; dladdr1 can provide more information than
3880   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
3881   // and is available on linker patches for 5.7 and 5.8.
3882   // libdl.so must have been loaded, this call is just an entry lookup
3883   void * hdl = dlopen("libdl.so", RTLD_NOW);
3884   if (hdl) {
3885     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
3886   }
3887 
3888   // main_thread points to the thread that created/loaded the JVM.
3889   main_thread = thr_self();
3890 
3891   // dynamic lookup of functions that may not be available in our lowest
3892   // supported Solaris release
3893   void * handle = dlopen("libc.so.1", RTLD_LAZY);
3894   if (handle != NULL) {
3895     Solaris::_pthread_setname_np =  // from 11.3
3896         (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
3897   }
3898 
3899   // Shared Posix initialization
3900   os::Posix::init();
3901 }
3902 
3903 // To install functions for atexit system call
3904 extern "C" {
3905   static void perfMemory_exit_helper() {
3906     perfMemory_exit();
3907   }
3908 }
3909 
3910 // this is called _after_ the global arguments have been parsed
3911 jint os::init_2(void) {
3912   // try to enable extended file IO ASAP, see 6431278
3913   os::Solaris::try_enable_extended_io();
3914 
3915   // Check and sets minimum stack sizes against command line options
3916   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3917     return JNI_ERR;
3918   }
3919 
3920   Solaris::libthread_init();
3921 
3922   if (UseNUMA) {
3923     if (!Solaris::liblgrp_init()) {
3924       UseNUMA = false;
3925     } else {
3926       size_t lgrp_limit = os::numa_get_groups_num();
3927       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
3928       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
3929       FREE_C_HEAP_ARRAY(int, lgrp_ids);
3930       if (lgrp_num < 2) {
3931         // There's only one locality group, disable NUMA.
3932         UseNUMA = false;
3933       }
3934     }
3935     if (!UseNUMA && ForceNUMA) {
3936       UseNUMA = true;
3937     }
3938   }
3939 
3940   Solaris::signal_sets_init();
3941   Solaris::init_signal_mem();
3942   Solaris::install_signal_handlers();
3943   // Initialize data for jdk.internal.misc.Signal
3944   if (!ReduceSignalUsage) {
3945     jdk_misc_signal_init();
3946   }
3947 
3948   // initialize synchronization primitives to use either thread or
3949   // lwp synchronization (controlled by UseLWPSynchronization)
3950   Solaris::synchronization_init();
3951   DEBUG_ONLY(os::set_mutex_init_done();)
3952 
3953   if (MaxFDLimit) {
3954     // set the number of file descriptors to max. print out error
3955     // if getrlimit/setrlimit fails but continue regardless.
3956     struct rlimit nbr_files;
3957     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3958     if (status != 0) {
3959       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3960     } else {
3961       nbr_files.rlim_cur = nbr_files.rlim_max;
3962       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3963       if (status != 0) {
3964         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3965       }
3966     }
3967   }
3968 
3969   // Calculate theoretical max. size of Threads to guard gainst
3970   // artifical out-of-memory situations, where all available address-
3971   // space has been reserved by thread stacks. Default stack size is 1Mb.
3972   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
3973     JavaThread::stack_size_at_create() : (1*K*K);
3974   assert(pre_thread_stack_size != 0, "Must have a stack");
3975   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
3976   // we should start doing Virtual Memory banging. Currently when the threads will
3977   // have used all but 200Mb of space.
3978   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
3979   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
3980 
3981   // at-exit methods are called in the reverse order of their registration.
3982   // In Solaris 7 and earlier, atexit functions are called on return from
3983   // main or as a result of a call to exit(3C). There can be only 32 of
3984   // these functions registered and atexit() does not set errno. In Solaris
3985   // 8 and later, there is no limit to the number of functions registered
3986   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
3987   // functions are called upon dlclose(3DL) in addition to return from main
3988   // and exit(3C).
3989 
3990   if (PerfAllowAtExitRegistration) {
3991     // only register atexit functions if PerfAllowAtExitRegistration is set.
3992     // atexit functions can be delayed until process exit time, which
3993     // can be problematic for embedded VM situations. Embedded VMs should
3994     // call DestroyJavaVM() to assure that VM resources are released.
3995 
3996     // note: perfMemory_exit_helper atexit function may be removed in
3997     // the future if the appropriate cleanup code can be added to the
3998     // VM_Exit VMOperation's doit method.
3999     if (atexit(perfMemory_exit_helper) != 0) {
4000       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4001     }
4002   }
4003 
4004   // Init pset_loadavg function pointer
4005   init_pset_getloadavg_ptr();
4006 
4007   // Shared Posix initialization
4008   os::Posix::init_2();
4009 
4010   return JNI_OK;
4011 }
4012 
4013 // Mark the polling page as unreadable
4014 void os::make_polling_page_unreadable(void) {
4015   Events::log(NULL, "Protecting polling page " INTPTR_FORMAT " with PROT_NONE", p2i(_polling_page));
4016   if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4017     fatal("Could not disable polling page");
4018   }
4019 }
4020 
4021 // Mark the polling page as readable
4022 void os::make_polling_page_readable(void) {
4023   Events::log(NULL, "Protecting polling page " INTPTR_FORMAT " with PROT_READ", p2i(_polling_page));
4024   if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4025     fatal("Could not enable polling page");
4026   }
4027 }
4028 
4029 // Is a (classpath) directory empty?
4030 bool os::dir_is_empty(const char* path) {
4031   DIR *dir = NULL;
4032   struct dirent *ptr;
4033 
4034   dir = opendir(path);
4035   if (dir == NULL) return true;
4036 
4037   // Scan the directory
4038   bool result = true;
4039   while (result && (ptr = readdir(dir)) != NULL) {
4040     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4041       result = false;
4042     }
4043   }
4044   closedir(dir);
4045   return result;
4046 }
4047 
4048 // This code originates from JDK's sysOpen and open64_w
4049 // from src/solaris/hpi/src/system_md.c
4050 
4051 int os::open(const char *path, int oflag, int mode) {
4052   if (strlen(path) > MAX_PATH - 1) {
4053     errno = ENAMETOOLONG;
4054     return -1;
4055   }
4056   int fd;
4057 
4058   fd = ::open64(path, oflag, mode);
4059   if (fd == -1) return -1;
4060 
4061   // If the open succeeded, the file might still be a directory
4062   {
4063     struct stat64 buf64;
4064     int ret = ::fstat64(fd, &buf64);
4065     int st_mode = buf64.st_mode;
4066 
4067     if (ret != -1) {
4068       if ((st_mode & S_IFMT) == S_IFDIR) {
4069         errno = EISDIR;
4070         ::close(fd);
4071         return -1;
4072       }
4073     } else {
4074       ::close(fd);
4075       return -1;
4076     }
4077   }
4078 
4079   // 32-bit Solaris systems suffer from:
4080   //
4081   // - an historical default soft limit of 256 per-process file
4082   //   descriptors that is too low for many Java programs.
4083   //
4084   // - a design flaw where file descriptors created using stdio
4085   //   fopen must be less than 256, _even_ when the first limit above
4086   //   has been raised.  This can cause calls to fopen (but not calls to
4087   //   open, for example) to fail mysteriously, perhaps in 3rd party
4088   //   native code (although the JDK itself uses fopen).  One can hardly
4089   //   criticize them for using this most standard of all functions.
4090   //
4091   // We attempt to make everything work anyways by:
4092   //
4093   // - raising the soft limit on per-process file descriptors beyond
4094   //   256
4095   //
4096   // - As of Solaris 10u4, we can request that Solaris raise the 256
4097   //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4098   //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4099   //
4100   // - If we are stuck on an old (pre 10u4) Solaris system, we can
4101   //   workaround the bug by remapping non-stdio file descriptors below
4102   //   256 to ones beyond 256, which is done below.
4103   //
4104   // See:
4105   // 1085341: 32-bit stdio routines should support file descriptors >255
4106   // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4107   // 6431278: Netbeans crash on 32 bit Solaris: need to call
4108   //          enable_extended_FILE_stdio() in VM initialisation
4109   // Giri Mandalika's blog
4110   // http://technopark02.blogspot.com/2005_05_01_archive.html
4111   //
4112 #ifndef  _LP64
4113   if ((!enabled_extended_FILE_stdio) && fd < 256) {
4114     int newfd = ::fcntl(fd, F_DUPFD, 256);
4115     if (newfd != -1) {
4116       ::close(fd);
4117       fd = newfd;
4118     }
4119   }
4120 #endif // 32-bit Solaris
4121 
4122   // All file descriptors that are opened in the JVM and not
4123   // specifically destined for a subprocess should have the
4124   // close-on-exec flag set.  If we don't set it, then careless 3rd
4125   // party native code might fork and exec without closing all
4126   // appropriate file descriptors (e.g. as we do in closeDescriptors in
4127   // UNIXProcess.c), and this in turn might:
4128   //
4129   // - cause end-of-file to fail to be detected on some file
4130   //   descriptors, resulting in mysterious hangs, or
4131   //
4132   // - might cause an fopen in the subprocess to fail on a system
4133   //   suffering from bug 1085341.
4134   //
4135   // (Yes, the default setting of the close-on-exec flag is a Unix
4136   // design flaw)
4137   //
4138   // See:
4139   // 1085341: 32-bit stdio routines should support file descriptors >255
4140   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4141   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4142   //
4143 #ifdef FD_CLOEXEC
4144   {
4145     int flags = ::fcntl(fd, F_GETFD);
4146     if (flags != -1) {
4147       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4148     }
4149   }
4150 #endif
4151 
4152   return fd;
4153 }
4154 
4155 // create binary file, rewriting existing file if required
4156 int os::create_binary_file(const char* path, bool rewrite_existing) {
4157   int oflags = O_WRONLY | O_CREAT;
4158   if (!rewrite_existing) {
4159     oflags |= O_EXCL;
4160   }
4161   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4162 }
4163 
4164 // return current position of file pointer
4165 jlong os::current_file_offset(int fd) {
4166   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4167 }
4168 
4169 // move file pointer to the specified offset
4170 jlong os::seek_to_file_offset(int fd, jlong offset) {
4171   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4172 }
4173 
4174 jlong os::lseek(int fd, jlong offset, int whence) {
4175   return (jlong) ::lseek64(fd, offset, whence);
4176 }
4177 
4178 int os::ftruncate(int fd, jlong length) {
4179   return ::ftruncate64(fd, length);
4180 }
4181 
4182 int os::fsync(int fd)  {
4183   RESTARTABLE_RETURN_INT(::fsync(fd));
4184 }
4185 
4186 int os::available(int fd, jlong *bytes) {
4187   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4188          "Assumed _thread_in_native");
4189   jlong cur, end;
4190   int mode;
4191   struct stat64 buf64;
4192 
4193   if (::fstat64(fd, &buf64) >= 0) {
4194     mode = buf64.st_mode;
4195     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4196       int n,ioctl_return;
4197 
4198       RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4199       if (ioctl_return>= 0) {
4200         *bytes = n;
4201         return 1;
4202       }
4203     }
4204   }
4205   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4206     return 0;
4207   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4208     return 0;
4209   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4210     return 0;
4211   }
4212   *bytes = end - cur;
4213   return 1;
4214 }
4215 
4216 // Map a block of memory.
4217 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4218                         char *addr, size_t bytes, bool read_only,
4219                         bool allow_exec) {
4220   int prot;
4221   int flags;
4222 
4223   if (read_only) {
4224     prot = PROT_READ;
4225     flags = MAP_SHARED;
4226   } else {
4227     prot = PROT_READ | PROT_WRITE;
4228     flags = MAP_PRIVATE;
4229   }
4230 
4231   if (allow_exec) {
4232     prot |= PROT_EXEC;
4233   }
4234 
4235   if (addr != NULL) {
4236     flags |= MAP_FIXED;
4237   }
4238 
4239   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4240                                      fd, file_offset);
4241   if (mapped_address == MAP_FAILED) {
4242     return NULL;
4243   }
4244   return mapped_address;
4245 }
4246 
4247 
4248 // Remap a block of memory.
4249 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4250                           char *addr, size_t bytes, bool read_only,
4251                           bool allow_exec) {
4252   // same as map_memory() on this OS
4253   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4254                         allow_exec);
4255 }
4256 
4257 
4258 // Unmap a block of memory.
4259 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4260   return munmap(addr, bytes) == 0;
4261 }
4262 
4263 void os::pause() {
4264   char filename[MAX_PATH];
4265   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4266     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
4267   } else {
4268     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4269   }
4270 
4271   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4272   if (fd != -1) {
4273     struct stat buf;
4274     ::close(fd);
4275     while (::stat(filename, &buf) == 0) {
4276       (void)::poll(NULL, 0, 100);
4277     }
4278   } else {
4279     jio_fprintf(stderr,
4280                 "Could not open pause file '%s', continuing immediately.\n", filename);
4281   }
4282 }
4283 
4284 #ifndef PRODUCT
4285 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4286 // Turn this on if you need to trace synch operations.
4287 // Set RECORD_SYNCH_LIMIT to a large-enough value,
4288 // and call record_synch_enable and record_synch_disable
4289 // around the computation of interest.
4290 
4291 void record_synch(char* name, bool returning);  // defined below
4292 
4293 class RecordSynch {
4294   char* _name;
4295  public:
4296   RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4297   ~RecordSynch()                       { record_synch(_name, true); }
4298 };
4299 
4300 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4301 extern "C" ret name params {                                    \
4302   typedef ret name##_t params;                                  \
4303   static name##_t* implem = NULL;                               \
4304   static int callcount = 0;                                     \
4305   if (implem == NULL) {                                         \
4306     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4307     if (implem == NULL)  fatal(dlerror());                      \
4308   }                                                             \
4309   ++callcount;                                                  \
4310   RecordSynch _rs(#name);                                       \
4311   inner;                                                        \
4312   return implem args;                                           \
4313 }
4314 // in dbx, examine callcounts this way:
4315 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4316 
4317 #define CHECK_POINTER_OK(p) \
4318   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4319 #define CHECK_MU \
4320   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4321 #define CHECK_CV \
4322   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4323 #define CHECK_P(p) \
4324   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4325 
4326 #define CHECK_MUTEX(mutex_op) \
4327   CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4328 
4329 CHECK_MUTEX(   mutex_lock)
4330 CHECK_MUTEX(  _mutex_lock)
4331 CHECK_MUTEX( mutex_unlock)
4332 CHECK_MUTEX(_mutex_unlock)
4333 CHECK_MUTEX( mutex_trylock)
4334 CHECK_MUTEX(_mutex_trylock)
4335 
4336 #define CHECK_COND(cond_op) \
4337   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4338 
4339 CHECK_COND( cond_wait);
4340 CHECK_COND(_cond_wait);
4341 CHECK_COND(_cond_wait_cancel);
4342 
4343 #define CHECK_COND2(cond_op) \
4344   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4345 
4346 CHECK_COND2( cond_timedwait);
4347 CHECK_COND2(_cond_timedwait);
4348 CHECK_COND2(_cond_timedwait_cancel);
4349 
4350 // do the _lwp_* versions too
4351 #define mutex_t lwp_mutex_t
4352 #define cond_t  lwp_cond_t
4353 CHECK_MUTEX(  _lwp_mutex_lock)
4354 CHECK_MUTEX(  _lwp_mutex_unlock)
4355 CHECK_MUTEX(  _lwp_mutex_trylock)
4356 CHECK_MUTEX( __lwp_mutex_lock)
4357 CHECK_MUTEX( __lwp_mutex_unlock)
4358 CHECK_MUTEX( __lwp_mutex_trylock)
4359 CHECK_MUTEX(___lwp_mutex_lock)
4360 CHECK_MUTEX(___lwp_mutex_unlock)
4361 
4362 CHECK_COND(  _lwp_cond_wait);
4363 CHECK_COND( __lwp_cond_wait);
4364 CHECK_COND(___lwp_cond_wait);
4365 
4366 CHECK_COND2(  _lwp_cond_timedwait);
4367 CHECK_COND2( __lwp_cond_timedwait);
4368 #undef mutex_t
4369 #undef cond_t
4370 
4371 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4372 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4373 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4374 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4375 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4376 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4377 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4378 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4379 
4380 
4381 // recording machinery:
4382 
4383 enum { RECORD_SYNCH_LIMIT = 200 };
4384 char* record_synch_name[RECORD_SYNCH_LIMIT];
4385 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4386 bool record_synch_returning[RECORD_SYNCH_LIMIT];
4387 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4388 int record_synch_count = 0;
4389 bool record_synch_enabled = false;
4390 
4391 // in dbx, examine recorded data this way:
4392 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4393 
4394 void record_synch(char* name, bool returning) {
4395   if (record_synch_enabled) {
4396     if (record_synch_count < RECORD_SYNCH_LIMIT) {
4397       record_synch_name[record_synch_count] = name;
4398       record_synch_returning[record_synch_count] = returning;
4399       record_synch_thread[record_synch_count] = thr_self();
4400       record_synch_arg0ptr[record_synch_count] = &name;
4401       record_synch_count++;
4402     }
4403     // put more checking code here:
4404     // ...
4405   }
4406 }
4407 
4408 void record_synch_enable() {
4409   // start collecting trace data, if not already doing so
4410   if (!record_synch_enabled)  record_synch_count = 0;
4411   record_synch_enabled = true;
4412 }
4413 
4414 void record_synch_disable() {
4415   // stop collecting trace data
4416   record_synch_enabled = false;
4417 }
4418 
4419 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4420 #endif // PRODUCT
4421 
4422 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4423 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4424                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4425 
4426 
4427 // JVMTI & JVM monitoring and management support
4428 // The thread_cpu_time() and current_thread_cpu_time() are only
4429 // supported if is_thread_cpu_time_supported() returns true.
4430 // They are not supported on Solaris T1.
4431 
4432 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4433 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4434 // of a thread.
4435 //
4436 // current_thread_cpu_time() and thread_cpu_time(Thread *)
4437 // returns the fast estimate available on the platform.
4438 
4439 // hrtime_t gethrvtime() return value includes
4440 // user time but does not include system time
4441 jlong os::current_thread_cpu_time() {
4442   return (jlong) gethrvtime();
4443 }
4444 
4445 jlong os::thread_cpu_time(Thread *thread) {
4446   // return user level CPU time only to be consistent with
4447   // what current_thread_cpu_time returns.
4448   // thread_cpu_time_info() must be changed if this changes
4449   return os::thread_cpu_time(thread, false /* user time only */);
4450 }
4451 
4452 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4453   if (user_sys_cpu_time) {
4454     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4455   } else {
4456     return os::current_thread_cpu_time();
4457   }
4458 }
4459 
4460 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4461   char proc_name[64];
4462   int count;
4463   prusage_t prusage;
4464   jlong lwp_time;
4465   int fd;
4466 
4467   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
4468           getpid(),
4469           thread->osthread()->lwp_id());
4470   fd = ::open(proc_name, O_RDONLY);
4471   if (fd == -1) return -1;
4472 
4473   do {
4474     count = ::pread(fd,
4475                     (void *)&prusage.pr_utime,
4476                     thr_time_size,
4477                     thr_time_off);
4478   } while (count < 0 && errno == EINTR);
4479   ::close(fd);
4480   if (count < 0) return -1;
4481 
4482   if (user_sys_cpu_time) {
4483     // user + system CPU time
4484     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
4485                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
4486                  (jlong)prusage.pr_stime.tv_nsec +
4487                  (jlong)prusage.pr_utime.tv_nsec;
4488   } else {
4489     // user level CPU time only
4490     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
4491                 (jlong)prusage.pr_utime.tv_nsec;
4492   }
4493 
4494   return (lwp_time);
4495 }
4496 
4497 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4498   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4499   info_ptr->may_skip_backward = false;    // elapsed time not wall time
4500   info_ptr->may_skip_forward = false;     // elapsed time not wall time
4501   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4502 }
4503 
4504 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4505   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4506   info_ptr->may_skip_backward = false;    // elapsed time not wall time
4507   info_ptr->may_skip_forward = false;     // elapsed time not wall time
4508   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4509 }
4510 
4511 bool os::is_thread_cpu_time_supported() {
4512   return true;
4513 }
4514 
4515 // System loadavg support.  Returns -1 if load average cannot be obtained.
4516 // Return the load average for our processor set if the primitive exists
4517 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
4518 int os::loadavg(double loadavg[], int nelem) {
4519   if (pset_getloadavg_ptr != NULL) {
4520     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
4521   } else {
4522     return ::getloadavg(loadavg, nelem);
4523   }
4524 }
4525 
4526 //---------------------------------------------------------------------------------
4527 
4528 bool os::find(address addr, outputStream* st) {
4529   Dl_info dlinfo;
4530   memset(&dlinfo, 0, sizeof(dlinfo));
4531   if (dladdr(addr, &dlinfo) != 0) {
4532     st->print(PTR_FORMAT ": ", addr);
4533     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4534       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
4535     } else if (dlinfo.dli_fbase != NULL) {
4536       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
4537     } else {
4538       st->print("<absolute address>");
4539     }
4540     if (dlinfo.dli_fname != NULL) {
4541       st->print(" in %s", dlinfo.dli_fname);
4542     }
4543     if (dlinfo.dli_fbase != NULL) {
4544       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4545     }
4546     st->cr();
4547 
4548     if (Verbose) {
4549       // decode some bytes around the PC
4550       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4551       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4552       address       lowest = (address) dlinfo.dli_sname;
4553       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4554       if (begin < lowest)  begin = lowest;
4555       Dl_info dlinfo2;
4556       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4557           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4558         end = (address) dlinfo2.dli_saddr;
4559       }
4560       Disassembler::decode(begin, end, st);
4561     }
4562     return true;
4563   }
4564   return false;
4565 }
4566 
4567 // Following function has been added to support HotSparc's libjvm.so running
4568 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
4569 // src/solaris/hpi/native_threads in the EVM codebase.
4570 //
4571 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
4572 // libraries and should thus be removed. We will leave it behind for a while
4573 // until we no longer want to able to run on top of 1.3.0 Solaris production
4574 // JDK. See 4341971.
4575 
4576 #define STACK_SLACK 0x800
4577 
4578 extern "C" {
4579   intptr_t sysThreadAvailableStackWithSlack() {
4580     stack_t st;
4581     intptr_t retval, stack_top;
4582     retval = thr_stksegment(&st);
4583     assert(retval == 0, "incorrect return value from thr_stksegment");
4584     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
4585     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
4586     stack_top=(intptr_t)st.ss_sp-st.ss_size;
4587     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
4588   }
4589 }
4590 
4591 // ObjectMonitor park-unpark infrastructure ...
4592 //
4593 // We implement Solaris and Linux PlatformEvents with the
4594 // obvious condvar-mutex-flag triple.
4595 // Another alternative that works quite well is pipes:
4596 // Each PlatformEvent consists of a pipe-pair.
4597 // The thread associated with the PlatformEvent
4598 // calls park(), which reads from the input end of the pipe.
4599 // Unpark() writes into the other end of the pipe.
4600 // The write-side of the pipe must be set NDELAY.
4601 // Unfortunately pipes consume a large # of handles.
4602 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
4603 // Using pipes for the 1st few threads might be workable, however.
4604 //
4605 // park() is permitted to return spuriously.
4606 // Callers of park() should wrap the call to park() in
4607 // an appropriate loop.  A litmus test for the correct
4608 // usage of park is the following: if park() were modified
4609 // to immediately return 0 your code should still work,
4610 // albeit degenerating to a spin loop.
4611 //
4612 // In a sense, park()-unpark() just provides more polite spinning
4613 // and polling with the key difference over naive spinning being
4614 // that a parked thread needs to be explicitly unparked() in order
4615 // to wake up and to poll the underlying condition.
4616 //
4617 // Assumption:
4618 //    Only one parker can exist on an event, which is why we allocate
4619 //    them per-thread. Multiple unparkers can coexist.
4620 //
4621 // _Event transitions in park()
4622 //   -1 => -1 : illegal
4623 //    1 =>  0 : pass - return immediately
4624 //    0 => -1 : block; then set _Event to 0 before returning
4625 //
4626 // _Event transitions in unpark()
4627 //    0 => 1 : just return
4628 //    1 => 1 : just return
4629 //   -1 => either 0 or 1; must signal target thread
4630 //         That is, we can safely transition _Event from -1 to either
4631 //         0 or 1.
4632 //
4633 // _Event serves as a restricted-range semaphore.
4634 //   -1 : thread is blocked, i.e. there is a waiter
4635 //    0 : neutral: thread is running or ready,
4636 //        could have been signaled after a wait started
4637 //    1 : signaled - thread is running or ready
4638 //
4639 // Another possible encoding of _Event would be with
4640 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4641 //
4642 // TODO-FIXME: add DTRACE probes for:
4643 // 1.   Tx parks
4644 // 2.   Ty unparks Tx
4645 // 3.   Tx resumes from park
4646 
4647 
4648 // value determined through experimentation
4649 #define ROUNDINGFIX 11
4650 
4651 // utility to compute the abstime argument to timedwait.
4652 // TODO-FIXME: switch from compute_abstime() to unpackTime().
4653 
4654 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
4655   // millis is the relative timeout time
4656   // abstime will be the absolute timeout time
4657   if (millis < 0)  millis = 0;
4658   struct timeval now;
4659   int status = gettimeofday(&now, NULL);
4660   assert(status == 0, "gettimeofday");
4661   jlong seconds = millis / 1000;
4662   jlong max_wait_period;
4663 
4664   if (UseLWPSynchronization) {
4665     // forward port of fix for 4275818 (not sleeping long enough)
4666     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
4667     // _lwp_cond_timedwait() used a round_down algorithm rather
4668     // than a round_up. For millis less than our roundfactor
4669     // it rounded down to 0 which doesn't meet the spec.
4670     // For millis > roundfactor we may return a bit sooner, but
4671     // since we can not accurately identify the patch level and
4672     // this has already been fixed in Solaris 9 and 8 we will
4673     // leave it alone rather than always rounding down.
4674 
4675     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
4676     // It appears that when we go directly through Solaris _lwp_cond_timedwait()
4677     // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
4678     max_wait_period = 21000000;
4679   } else {
4680     max_wait_period = 50000000;
4681   }
4682   millis %= 1000;
4683   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
4684     seconds = max_wait_period;
4685   }
4686   abstime->tv_sec = now.tv_sec  + seconds;
4687   long       usec = now.tv_usec + millis * 1000;
4688   if (usec >= 1000000) {
4689     abstime->tv_sec += 1;
4690     usec -= 1000000;
4691   }
4692   abstime->tv_nsec = usec * 1000;
4693   return abstime;
4694 }
4695 
4696 void os::PlatformEvent::park() {           // AKA: down()
4697   // Transitions for _Event:
4698   //   -1 => -1 : illegal
4699   //    1 =>  0 : pass - return immediately
4700   //    0 => -1 : block; then set _Event to 0 before returning
4701 
4702   // Invariant: Only the thread associated with the Event/PlatformEvent
4703   // may call park().
4704   assert(_nParked == 0, "invariant");
4705 
4706   int v;
4707   for (;;) {
4708     v = _Event;
4709     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4710   }
4711   guarantee(v >= 0, "invariant");
4712   if (v == 0) {
4713     // Do this the hard way by blocking ...
4714     // See http://monaco.sfbay/detail.jsf?cr=5094058.
4715     int status = os::Solaris::mutex_lock(_mutex);
4716     assert_status(status == 0, status, "mutex_lock");
4717     guarantee(_nParked == 0, "invariant");
4718     ++_nParked;
4719     while (_Event < 0) {
4720       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4721       // Treat this the same as if the wait was interrupted
4722       // With usr/lib/lwp going to kernel, always handle ETIME
4723       status = os::Solaris::cond_wait(_cond, _mutex);
4724       if (status == ETIME) status = EINTR;
4725       assert_status(status == 0 || status == EINTR, status, "cond_wait");
4726     }
4727     --_nParked;
4728     _Event = 0;
4729     status = os::Solaris::mutex_unlock(_mutex);
4730     assert_status(status == 0, status, "mutex_unlock");
4731     // Paranoia to ensure our locked and lock-free paths interact
4732     // correctly with each other.
4733     OrderAccess::fence();
4734   }
4735 }
4736 
4737 int os::PlatformEvent::park(jlong millis) {
4738   // Transitions for _Event:
4739   //   -1 => -1 : illegal
4740   //    1 =>  0 : pass - return immediately
4741   //    0 => -1 : block; then set _Event to 0 before returning
4742 
4743   guarantee(_nParked == 0, "invariant");
4744   int v;
4745   for (;;) {
4746     v = _Event;
4747     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4748   }
4749   guarantee(v >= 0, "invariant");
4750   if (v != 0) return OS_OK;
4751 
4752   int ret = OS_TIMEOUT;
4753   timestruc_t abst;
4754   compute_abstime(&abst, millis);
4755 
4756   // See http://monaco.sfbay/detail.jsf?cr=5094058.
4757   int status = os::Solaris::mutex_lock(_mutex);
4758   assert_status(status == 0, status, "mutex_lock");
4759   guarantee(_nParked == 0, "invariant");
4760   ++_nParked;
4761   while (_Event < 0) {
4762     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
4763     assert_status(status == 0 || status == EINTR ||
4764                   status == ETIME || status == ETIMEDOUT,
4765                   status, "cond_timedwait");
4766     if (!FilterSpuriousWakeups) break;                // previous semantics
4767     if (status == ETIME || status == ETIMEDOUT) break;
4768     // We consume and ignore EINTR and spurious wakeups.
4769   }
4770   --_nParked;
4771   if (_Event >= 0) ret = OS_OK;
4772   _Event = 0;
4773   status = os::Solaris::mutex_unlock(_mutex);
4774   assert_status(status == 0, status, "mutex_unlock");
4775   // Paranoia to ensure our locked and lock-free paths interact
4776   // correctly with each other.
4777   OrderAccess::fence();
4778   return ret;
4779 }
4780 
4781 void os::PlatformEvent::unpark() {
4782   // Transitions for _Event:
4783   //    0 => 1 : just return
4784   //    1 => 1 : just return
4785   //   -1 => either 0 or 1; must signal target thread
4786   //         That is, we can safely transition _Event from -1 to either
4787   //         0 or 1.
4788   // See also: "Semaphores in Plan 9" by Mullender & Cox
4789   //
4790   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4791   // that it will take two back-to-back park() calls for the owning
4792   // thread to block. This has the benefit of forcing a spurious return
4793   // from the first park() call after an unpark() call which will help
4794   // shake out uses of park() and unpark() without condition variables.
4795 
4796   if (Atomic::xchg(1, &_Event) >= 0) return;
4797 
4798   // If the thread associated with the event was parked, wake it.
4799   // Wait for the thread assoc with the PlatformEvent to vacate.
4800   int status = os::Solaris::mutex_lock(_mutex);
4801   assert_status(status == 0, status, "mutex_lock");
4802   int AnyWaiters = _nParked;
4803   status = os::Solaris::mutex_unlock(_mutex);
4804   assert_status(status == 0, status, "mutex_unlock");
4805   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4806   if (AnyWaiters != 0) {
4807     // Note that we signal() *after* dropping the lock for "immortal" Events.
4808     // This is safe and avoids a common class of  futile wakeups.  In rare
4809     // circumstances this can cause a thread to return prematurely from
4810     // cond_{timed}wait() but the spurious wakeup is benign and the victim
4811     // will simply re-test the condition and re-park itself.
4812     // This provides particular benefit if the underlying platform does not
4813     // provide wait morphing.
4814     status = os::Solaris::cond_signal(_cond);
4815     assert_status(status == 0, status, "cond_signal");
4816   }
4817 }
4818 
4819 // JSR166
4820 // -------------------------------------------------------
4821 
4822 // The solaris and linux implementations of park/unpark are fairly
4823 // conservative for now, but can be improved. They currently use a
4824 // mutex/condvar pair, plus _counter.
4825 // Park decrements _counter if > 0, else does a condvar wait.  Unpark
4826 // sets count to 1 and signals condvar.  Only one thread ever waits
4827 // on the condvar. Contention seen when trying to park implies that someone
4828 // is unparking you, so don't wait. And spurious returns are fine, so there
4829 // is no need to track notifications.
4830 
4831 #define MAX_SECS 100000000
4832 
4833 // This code is common to linux and solaris and will be moved to a
4834 // common place in dolphin.
4835 //
4836 // The passed in time value is either a relative time in nanoseconds
4837 // or an absolute time in milliseconds. Either way it has to be unpacked
4838 // into suitable seconds and nanoseconds components and stored in the
4839 // given timespec structure.
4840 // Given time is a 64-bit value and the time_t used in the timespec is only
4841 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
4842 // overflow if times way in the future are given. Further on Solaris versions
4843 // prior to 10 there is a restriction (see cond_timedwait) that the specified
4844 // number of seconds, in abstime, is less than current_time  + 100,000,000.
4845 // As it will be 28 years before "now + 100000000" will overflow we can
4846 // ignore overflow and just impose a hard-limit on seconds using the value
4847 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
4848 // years from "now".
4849 //
4850 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4851   assert(time > 0, "convertTime");
4852 
4853   struct timeval now;
4854   int status = gettimeofday(&now, NULL);
4855   assert(status == 0, "gettimeofday");
4856 
4857   time_t max_secs = now.tv_sec + MAX_SECS;
4858 
4859   if (isAbsolute) {
4860     jlong secs = time / 1000;
4861     if (secs > max_secs) {
4862       absTime->tv_sec = max_secs;
4863     } else {
4864       absTime->tv_sec = secs;
4865     }
4866     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4867   } else {
4868     jlong secs = time / NANOSECS_PER_SEC;
4869     if (secs >= MAX_SECS) {
4870       absTime->tv_sec = max_secs;
4871       absTime->tv_nsec = 0;
4872     } else {
4873       absTime->tv_sec = now.tv_sec + secs;
4874       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4875       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4876         absTime->tv_nsec -= NANOSECS_PER_SEC;
4877         ++absTime->tv_sec; // note: this must be <= max_secs
4878       }
4879     }
4880   }
4881   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4882   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4883   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4884   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4885 }
4886 
4887 void Parker::park(bool isAbsolute, jlong time) {
4888   // Ideally we'd do something useful while spinning, such
4889   // as calling unpackTime().
4890 
4891   // Optional fast-path check:
4892   // Return immediately if a permit is available.
4893   // We depend on Atomic::xchg() having full barrier semantics
4894   // since we are doing a lock-free update to _counter.
4895   if (Atomic::xchg(0, &_counter) > 0) return;
4896 
4897   // Optional fast-exit: Check interrupt before trying to wait
4898   Thread* thread = Thread::current();
4899   assert(thread->is_Java_thread(), "Must be JavaThread");
4900   JavaThread *jt = (JavaThread *)thread;
4901   if (jt->is_interrupted(false)) {
4902     return;
4903   }
4904 
4905   // First, demultiplex/decode time arguments
4906   timespec absTime;
4907   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4908     return;
4909   }
4910   if (time > 0) {
4911     // Warning: this code might be exposed to the old Solaris time
4912     // round-down bugs.  Grep "roundingFix" for details.
4913     unpackTime(&absTime, isAbsolute, time);
4914   }
4915 
4916   // Enter safepoint region
4917   // Beware of deadlocks such as 6317397.
4918   // The per-thread Parker:: _mutex is a classic leaf-lock.
4919   // In particular a thread must never block on the Threads_lock while
4920   // holding the Parker:: mutex.  If safepoints are pending both the
4921   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4922   ThreadBlockInVM tbivm(jt);
4923 
4924   // Don't wait if cannot get lock since interference arises from
4925   // unblocking.  Also. check interrupt before trying wait
4926   if (jt->is_interrupted(false) ||
4927       os::Solaris::mutex_trylock(_mutex) != 0) {
4928     return;
4929   }
4930 
4931   int status;
4932 
4933   if (_counter > 0)  { // no wait needed
4934     _counter = 0;
4935     status = os::Solaris::mutex_unlock(_mutex);
4936     assert(status == 0, "invariant");
4937     // Paranoia to ensure our locked and lock-free paths interact
4938     // correctly with each other and Java-level accesses.
4939     OrderAccess::fence();
4940     return;
4941   }
4942 
4943   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4944   jt->set_suspend_equivalent();
4945   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4946 
4947   // Do this the hard way by blocking ...
4948   // See http://monaco.sfbay/detail.jsf?cr=5094058.
4949   if (time == 0) {
4950     status = os::Solaris::cond_wait(_cond, _mutex);
4951   } else {
4952     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
4953   }
4954   // Note that an untimed cond_wait() can sometimes return ETIME on older
4955   // versions of the Solaris.
4956   assert_status(status == 0 || status == EINTR ||
4957                 status == ETIME || status == ETIMEDOUT,
4958                 status, "cond_timedwait");
4959 
4960   _counter = 0;
4961   status = os::Solaris::mutex_unlock(_mutex);
4962   assert_status(status == 0, status, "mutex_unlock");
4963   // Paranoia to ensure our locked and lock-free paths interact
4964   // correctly with each other and Java-level accesses.
4965   OrderAccess::fence();
4966 
4967   // If externally suspended while waiting, re-suspend
4968   if (jt->handle_special_suspend_equivalent_condition()) {
4969     jt->java_suspend_self();
4970   }
4971 }
4972 
4973 void Parker::unpark() {
4974   int status = os::Solaris::mutex_lock(_mutex);
4975   assert(status == 0, "invariant");
4976   const int s = _counter;
4977   _counter = 1;
4978   status = os::Solaris::mutex_unlock(_mutex);
4979   assert(status == 0, "invariant");
4980 
4981   if (s < 1) {
4982     status = os::Solaris::cond_signal(_cond);
4983     assert(status == 0, "invariant");
4984   }
4985 }
4986 
4987 // Platform Mutex/Monitor implementations
4988 
4989 os::PlatformMutex::PlatformMutex() {
4990   int status = os::Solaris::mutex_init(&_mutex);
4991   assert_status(status == 0, status, "mutex_init");
4992 }
4993 
4994 os::PlatformMutex::~PlatformMutex() {
4995   int status = os::Solaris::mutex_destroy(&_mutex);
4996   assert_status(status == 0, status, "mutex_destroy");
4997 }
4998 
4999 void os::PlatformMutex::lock() {
5000   int status = os::Solaris::mutex_lock(&_mutex);
5001   assert_status(status == 0, status, "mutex_lock");
5002 }
5003 
5004 void os::PlatformMutex::unlock() {
5005   int status = os::Solaris::mutex_unlock(&_mutex);
5006   assert_status(status == 0, status, "mutex_unlock");
5007 }
5008 
5009 bool os::PlatformMutex::try_lock() {
5010   int status = os::Solaris::mutex_trylock(&_mutex);
5011   assert_status(status == 0 || status == EBUSY, status, "mutex_trylock");
5012   return status == 0;
5013 }
5014 
5015 os::PlatformMonitor::PlatformMonitor() {
5016   int status = os::Solaris::cond_init(&_cond);
5017   assert_status(status == 0, status, "cond_init");
5018 }
5019 
5020 os::PlatformMonitor::~PlatformMonitor() {
5021   int status = os::Solaris::cond_destroy(&_cond);
5022   assert_status(status == 0, status, "cond_destroy");
5023 }
5024 
5025 // Must already be locked
5026 int os::PlatformMonitor::wait(jlong millis) {
5027   assert(millis >= 0, "negative timeout");
5028   if (millis > 0) {
5029     timestruc_t abst;
5030     int ret = OS_TIMEOUT;
5031     compute_abstime(&abst, millis);
5032     int status = os::Solaris::cond_timedwait(&_cond, &_mutex, &abst);
5033     assert_status(status == 0 || status == EINTR ||
5034                   status == ETIME || status == ETIMEDOUT,
5035                   status, "cond_timedwait");
5036     // EINTR acts as spurious wakeup - which is permitted anyway
5037     if (status == 0 || status == EINTR) {
5038       ret = OS_OK;
5039     }
5040     return ret;
5041   } else {
5042     int status = os::Solaris::cond_wait(&_cond, &_mutex);
5043     assert_status(status == 0 || status == EINTR,
5044                   status, "cond_wait");
5045     return OS_OK;
5046   }
5047 }
5048 
5049 void os::PlatformMonitor::notify() {
5050   int status = os::Solaris::cond_signal(&_cond);
5051   assert_status(status == 0, status, "cond_signal");
5052 }
5053 
5054 void os::PlatformMonitor::notify_all() {
5055   int status = os::Solaris::cond_broadcast(&_cond);
5056   assert_status(status == 0, status, "cond_broadcast");
5057 }
5058 
5059 extern char** environ;
5060 
5061 // Run the specified command in a separate process. Return its exit value,
5062 // or -1 on failure (e.g. can't fork a new process).
5063 // Unlike system(), this function can be called from signal handler. It
5064 // doesn't block SIGINT et al.
5065 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5066   char * argv[4];
5067   argv[0] = (char *)"sh";
5068   argv[1] = (char *)"-c";
5069   argv[2] = cmd;
5070   argv[3] = NULL;
5071 
5072   // fork is async-safe, fork1 is not so can't use in signal handler
5073   pid_t pid;
5074   Thread* t = Thread::current_or_null_safe();
5075   if (t != NULL && t->is_inside_signal_handler()) {
5076     pid = fork();
5077   } else {
5078     pid = fork1();
5079   }
5080 
5081   if (pid < 0) {
5082     // fork failed
5083     warning("fork failed: %s", os::strerror(errno));
5084     return -1;
5085 
5086   } else if (pid == 0) {
5087     // child process
5088 
5089     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5090     execve("/usr/bin/sh", argv, environ);
5091 
5092     // execve failed
5093     _exit(-1);
5094 
5095   } else  {
5096     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5097     // care about the actual exit code, for now.
5098 
5099     int status;
5100 
5101     // Wait for the child process to exit.  This returns immediately if
5102     // the child has already exited. */
5103     while (waitpid(pid, &status, 0) < 0) {
5104       switch (errno) {
5105       case ECHILD: return 0;
5106       case EINTR: break;
5107       default: return -1;
5108       }
5109     }
5110 
5111     if (WIFEXITED(status)) {
5112       // The child exited normally; get its exit code.
5113       return WEXITSTATUS(status);
5114     } else if (WIFSIGNALED(status)) {
5115       // The child exited because of a signal
5116       // The best value to return is 0x80 + signal number,
5117       // because that is what all Unix shells do, and because
5118       // it allows callers to distinguish between process exit and
5119       // process death by signal.
5120       return 0x80 + WTERMSIG(status);
5121     } else {
5122       // Unknown exit code; pass it through
5123       return status;
5124     }
5125   }
5126 }
5127 
5128 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5129   size_t res;
5130   RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5131   return res;
5132 }
5133 
5134 int os::close(int fd) {
5135   return ::close(fd);
5136 }
5137 
5138 int os::socket_close(int fd) {
5139   return ::close(fd);
5140 }
5141 
5142 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5143   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5144          "Assumed _thread_in_native");
5145   RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5146 }
5147 
5148 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5149   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5150          "Assumed _thread_in_native");
5151   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5152 }
5153 
5154 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5155   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5156 }
5157 
5158 // As both poll and select can be interrupted by signals, we have to be
5159 // prepared to restart the system call after updating the timeout, unless
5160 // a poll() is done with timeout == -1, in which case we repeat with this
5161 // "wait forever" value.
5162 
5163 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5164   int _result;
5165   _result = ::connect(fd, him, len);
5166 
5167   // On Solaris, when a connect() call is interrupted, the connection
5168   // can be established asynchronously (see 6343810). Subsequent calls
5169   // to connect() must check the errno value which has the semantic
5170   // described below (copied from the connect() man page). Handling
5171   // of asynchronously established connections is required for both
5172   // blocking and non-blocking sockets.
5173   //     EINTR            The  connection  attempt  was   interrupted
5174   //                      before  any data arrived by the delivery of
5175   //                      a signal. The connection, however, will  be
5176   //                      established asynchronously.
5177   //
5178   //     EINPROGRESS      The socket is non-blocking, and the connec-
5179   //                      tion  cannot  be completed immediately.
5180   //
5181   //     EALREADY         The socket is non-blocking,  and a previous
5182   //                      connection  attempt  has  not yet been com-
5183   //                      pleted.
5184   //
5185   //     EISCONN          The socket is already connected.
5186   if (_result == OS_ERR && errno == EINTR) {
5187     // restarting a connect() changes its errno semantics
5188     RESTARTABLE(::connect(fd, him, len), _result);
5189     // undo these changes
5190     if (_result == OS_ERR) {
5191       if (errno == EALREADY) {
5192         errno = EINPROGRESS; // fall through
5193       } else if (errno == EISCONN) {
5194         errno = 0;
5195         return OS_OK;
5196       }
5197     }
5198   }
5199   return _result;
5200 }
5201 
5202 // Get the default path to the core file
5203 // Returns the length of the string
5204 int os::get_core_path(char* buffer, size_t bufferSize) {
5205   const char* p = get_current_directory(buffer, bufferSize);
5206 
5207   if (p == NULL) {
5208     assert(p != NULL, "failed to get current directory");
5209     return 0;
5210   }
5211 
5212   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5213                                               p, current_process_id());
5214 
5215   return strlen(buffer);
5216 }
5217 
5218 bool os::supports_map_sync() {
5219   return false;
5220 }
5221 
5222 #ifndef PRODUCT
5223 void TestReserveMemorySpecial_test() {
5224   // No tests available for this platform
5225 }
5226 #endif
5227 
5228 bool os::start_debugging(char *buf, int buflen) {
5229   int len = (int)strlen(buf);
5230   char *p = &buf[len];
5231 
5232   jio_snprintf(p, buflen-len,
5233                "\n\n"
5234                "Do you want to debug the problem?\n\n"
5235                "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5236                "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5237                "Otherwise, press RETURN to abort...",
5238                os::current_process_id(), os::current_thread_id());
5239 
5240   bool yes = os::message_box("Unexpected Error", buf);
5241 
5242   if (yes) {
5243     // yes, user asked VM to launch debugger
5244     jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5245 
5246     os::fork_and_exec(buf);
5247     yes = false;
5248   }
5249   return yes;
5250 }