1 /*
   2  * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.misc.JavaLangAccess;
  29 import jdk.internal.misc.SharedSecrets;
  30 import jdk.internal.module.IllegalAccessLogger;
  31 import jdk.internal.org.objectweb.asm.ClassReader;
  32 import jdk.internal.reflect.CallerSensitive;
  33 import jdk.internal.reflect.Reflection;
  34 import jdk.internal.vm.annotation.ForceInline;
  35 import sun.invoke.util.ValueConversions;
  36 import sun.invoke.util.VerifyAccess;
  37 import sun.invoke.util.Wrapper;
  38 import sun.reflect.misc.ReflectUtil;
  39 import sun.security.util.SecurityConstants;
  40 
  41 import java.lang.invoke.LambdaForm.BasicType;
  42 import java.lang.reflect.Constructor;
  43 import java.lang.reflect.Field;
  44 import java.lang.reflect.Member;
  45 import java.lang.reflect.Method;
  46 import java.lang.reflect.Modifier;
  47 import java.lang.reflect.ReflectPermission;
  48 import java.nio.ByteOrder;
  49 import java.security.ProtectionDomain;
  50 import java.util.ArrayList;
  51 import java.util.Arrays;
  52 import java.util.BitSet;
  53 import java.util.Iterator;
  54 import java.util.List;
  55 import java.util.Objects;
  56 import java.util.Set;
  57 import java.util.WeakHashMap;
  58 import java.util.concurrent.ConcurrentHashMap;
  59 import java.util.stream.Collectors;
  60 import java.util.stream.Stream;
  61 
  62 import static java.lang.invoke.MethodHandles.Lookup.ClassProperty.*;
  63 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
  64 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  65 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  66 import static java.lang.invoke.MethodType.methodType;
  67 
  68 /**
  69  * This class consists exclusively of static methods that operate on or return
  70  * method handles. They fall into several categories:
  71  * <ul>
  72  * <li>Lookup methods which help create method handles for methods and fields.
  73  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  74  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  75  * </ul>
  76  * A lookup, combinator, or factory method will fail and throw an
  77  * {@code IllegalArgumentException} if the created method handle's type
  78  * would have <a href="MethodHandle.html#maxarity">too many parameters</a>.
  79  *
  80  * @author John Rose, JSR 292 EG
  81  * @since 1.7
  82  */
  83 public class MethodHandles {
  84 
  85     private MethodHandles() { }  // do not instantiate
  86 
  87     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  88 
  89     // See IMPL_LOOKUP below.
  90 
  91     //// Method handle creation from ordinary methods.
  92 
  93     /**
  94      * Returns a {@link Lookup lookup object} with
  95      * full capabilities to emulate all supported bytecode behaviors of the caller.
  96      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
  97      * Factory methods on the lookup object can create
  98      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  99      * for any member that the caller has access to via bytecodes,
 100      * including protected and private fields and methods.
 101      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
 102      * Do not store it in place where untrusted code can access it.
 103      * <p>
 104      * This method is caller sensitive, which means that it may return different
 105      * values to different callers.
 106      * @return a lookup object for the caller of this method, with private access
 107      */
 108     @CallerSensitive
 109     @ForceInline // to ensure Reflection.getCallerClass optimization
 110     public static Lookup lookup() {
 111         return new Lookup(Reflection.getCallerClass());
 112     }
 113 
 114     /**
 115      * This reflected$lookup method is the alternate implementation of
 116      * the lookup method when being invoked by reflection.
 117      */
 118     @CallerSensitive
 119     private static Lookup reflected$lookup() {
 120         Class<?> caller = Reflection.getCallerClass();
 121         if (caller.getClassLoader() == null) {
 122             throw newIllegalArgumentException("illegal lookupClass: "+caller);
 123         }
 124         return new Lookup(caller);
 125     }
 126 
 127     /**
 128      * Returns a {@link Lookup lookup object} which is trusted minimally.
 129      * The lookup has the {@code PUBLIC} and {@code UNCONDITIONAL} modes.
 130      * It can only be used to create method handles to public members of
 131      * public classes in packages that are exported unconditionally.
 132      * <p>
 133      * As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class}
 134      * of this lookup object will be {@link java.lang.Object}.
 135      *
 136      * @apiNote The use of Object is conventional, and because the lookup modes are
 137      * limited, there is no special access provided to the internals of Object, its package
 138      * or its module. Consequently, the lookup context of this lookup object will be the
 139      * bootstrap class loader, which means it cannot find user classes.
 140      *
 141      * <p style="font-size:smaller;">
 142      * <em>Discussion:</em>
 143      * The lookup class can be changed to any other class {@code C} using an expression of the form
 144      * {@link Lookup#in publicLookup().in(C.class)}.
 145      * but may change the lookup context by virtue of changing the class loader.
 146      * A public lookup object is always subject to
 147      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 148      * Also, it cannot access
 149      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 150      * @return a lookup object which is trusted minimally
 151      *
 152      * @revised 9
 153      * @spec JPMS
 154      */
 155     public static Lookup publicLookup() {
 156         return Lookup.PUBLIC_LOOKUP;
 157     }
 158 
 159     /**
 160      * Returns a {@link Lookup lookup object} with full capabilities to emulate all
 161      * supported bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">
 162      * private access</a>, on a target class.
 163      * This method checks that a caller, specified as a {@code Lookup} object, is allowed to
 164      * do <em>deep reflection</em> on the target class. If {@code m1} is the module containing
 165      * the {@link Lookup#lookupClass() lookup class}, and {@code m2} is the module containing
 166      * the target class, then this check ensures that
 167      * <ul>
 168      *     <li>{@code m1} {@link Module#canRead reads} {@code m2}.</li>
 169      *     <li>{@code m2} {@link Module#isOpen(String,Module) opens} the package containing
 170      *     the target class to at least {@code m1}.</li>
 171      *     <li>The lookup has the {@link Lookup#MODULE MODULE} lookup mode.</li>
 172      * </ul>
 173      * <p>
 174      * If there is a security manager, its {@code checkPermission} method is called to
 175      * check {@code ReflectPermission("suppressAccessChecks")}.
 176      * @apiNote The {@code MODULE} lookup mode serves to authenticate that the lookup object
 177      * was created by code in the caller module (or derived from a lookup object originally
 178      * created by the caller). A lookup object with the {@code MODULE} lookup mode can be
 179      * shared with trusted parties without giving away {@code PRIVATE} and {@code PACKAGE}
 180      * access to the caller.
 181      * @param targetClass the target class
 182      * @param lookup the caller lookup object
 183      * @return a lookup object for the target class, with private access
 184      * @throws IllegalArgumentException if {@code targetClass} is a primitive type or array class
 185      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
 186      * @throws IllegalAccessException if the access check specified above fails
 187      * @throws SecurityException if denied by the security manager
 188      * @since 9
 189      * @spec JPMS
 190      * @see Lookup#dropLookupMode
 191      */
 192     public static Lookup privateLookupIn(Class<?> targetClass, Lookup lookup) throws IllegalAccessException {
 193         if (lookup.allowedModes == Lookup.TRUSTED) {
 194             return new Lookup(targetClass);
 195         }
 196 
 197         SecurityManager sm = System.getSecurityManager();
 198         if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
 199         if (targetClass.isPrimitive())
 200             throw new IllegalArgumentException(targetClass + " is a primitive class");
 201         if (targetClass.isArray())
 202             throw new IllegalArgumentException(targetClass + " is an array class");
 203         Module targetModule = targetClass.getModule();
 204         Module callerModule = lookup.lookupClass().getModule();
 205         if (!callerModule.canRead(targetModule))
 206             throw new IllegalAccessException(callerModule + " does not read " + targetModule);
 207         if (targetModule.isNamed()) {
 208             String pn = targetClass.getPackageName();
 209             assert pn.length() > 0 : "unnamed package cannot be in named module";
 210             if (!targetModule.isOpen(pn, callerModule))
 211                 throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
 212         }
 213         if ((lookup.lookupModes() & Lookup.MODULE) == 0)
 214             throw new IllegalAccessException("lookup does not have MODULE lookup mode");
 215         if (!callerModule.isNamed() && targetModule.isNamed()) {
 216             IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger();
 217             if (logger != null) {
 218                 logger.logIfOpenedForIllegalAccess(lookup, targetClass);
 219             }
 220         }
 221         return new Lookup(targetClass);
 222     }
 223 
 224     /**
 225      * Performs an unchecked "crack" of a
 226      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 227      * The result is as if the user had obtained a lookup object capable enough
 228      * to crack the target method handle, called
 229      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 230      * on the target to obtain its symbolic reference, and then called
 231      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 232      * to resolve the symbolic reference to a member.
 233      * <p>
 234      * If there is a security manager, its {@code checkPermission} method
 235      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 236      * @param <T> the desired type of the result, either {@link Member} or a subtype
 237      * @param target a direct method handle to crack into symbolic reference components
 238      * @param expected a class object representing the desired result type {@code T}
 239      * @return a reference to the method, constructor, or field object
 240      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
 241      * @exception NullPointerException if either argument is {@code null}
 242      * @exception IllegalArgumentException if the target is not a direct method handle
 243      * @exception ClassCastException if the member is not of the expected type
 244      * @since 1.8
 245      */
 246     public static <T extends Member> T
 247     reflectAs(Class<T> expected, MethodHandle target) {
 248         SecurityManager smgr = System.getSecurityManager();
 249         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 250         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 251         return lookup.revealDirect(target).reflectAs(expected, lookup);
 252     }
 253     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 254     private static final java.security.Permission ACCESS_PERMISSION =
 255         new ReflectPermission("suppressAccessChecks");
 256 
 257     /**
 258      * A <em>lookup object</em> is a factory for creating method handles,
 259      * when the creation requires access checking.
 260      * Method handles do not perform
 261      * access checks when they are called, but rather when they are created.
 262      * Therefore, method handle access
 263      * restrictions must be enforced when a method handle is created.
 264      * The caller class against which those restrictions are enforced
 265      * is known as the {@linkplain #lookupClass() lookup class}.
 266      * <p>
 267      * A lookup class which needs to create method handles will call
 268      * {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself.
 269      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 270      * determined, and securely stored in the {@code Lookup} object.
 271      * The lookup class (or its delegates) may then use factory methods
 272      * on the {@code Lookup} object to create method handles for access-checked members.
 273      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 274      * even private ones.
 275      *
 276      * <h1><a id="lookups"></a>Lookup Factory Methods</h1>
 277      * The factory methods on a {@code Lookup} object correspond to all major
 278      * use cases for methods, constructors, and fields.
 279      * Each method handle created by a factory method is the functional
 280      * equivalent of a particular <em>bytecode behavior</em>.
 281      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
 282      * Here is a summary of the correspondence between these factory methods and
 283      * the behavior of the resulting method handles:
 284      * <table class="striped">
 285      * <caption style="display:none">lookup method behaviors</caption>
 286      * <thead>
 287      * <tr>
 288      *     <th scope="col"><a id="equiv"></a>lookup expression</th>
 289      *     <th scope="col">member</th>
 290      *     <th scope="col">bytecode behavior</th>
 291      * </tr>
 292      * </thead>
 293      * <tbody>
 294      * <tr>
 295      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th>
 296      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 297      * </tr>
 298      * <tr>
 299      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th>
 300      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
 301      * </tr>
 302      * <tr>
 303      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th>
 304      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 305      * </tr>
 306      * <tr>
 307      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th>
 308      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 309      * </tr>
 310      * <tr>
 311      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th>
 312      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 313      * </tr>
 314      * <tr>
 315      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th>
 316      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 317      * </tr>
 318      * <tr>
 319      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th>
 320      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 321      * </tr>
 322      * <tr>
 323      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th>
 324      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 325      * </tr>
 326      * <tr>
 327      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th>
 328      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 329      * </tr>
 330      * <tr>
 331      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th>
 332      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 333      * </tr>
 334      * <tr>
 335      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
 336      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 337      * </tr>
 338      * <tr>
 339      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th>
 340      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 341      * </tr>
 342      * <tr>
 343      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
 344      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 345      * </tr>
 346      * <tr>
 347      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th>
 348      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 349      * </tr>
 350      * </tbody>
 351      * </table>
 352      *
 353      * Here, the type {@code C} is the class or interface being searched for a member,
 354      * documented as a parameter named {@code refc} in the lookup methods.
 355      * The method type {@code MT} is composed from the return type {@code T}
 356      * and the sequence of argument types {@code A*}.
 357      * The constructor also has a sequence of argument types {@code A*} and
 358      * is deemed to return the newly-created object of type {@code C}.
 359      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 360      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 361      * if it is present, it is always the leading argument to the method handle invocation.
 362      * (In the case of some {@code protected} members, {@code this} may be
 363      * restricted in type to the lookup class; see below.)
 364      * The name {@code arg} stands for all the other method handle arguments.
 365      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 366      * stands for a null reference if the accessed method or field is static,
 367      * and {@code this} otherwise.
 368      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 369      * for reflective objects corresponding to the given members.
 370      * <p>
 371      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 372      * as if by {@code ldc CONSTANT_Class}.
 373      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 374      * <p>
 375      * In cases where the given member is of variable arity (i.e., a method or constructor)
 376      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 377      * In all other cases, the returned method handle will be of fixed arity.
 378      * <p style="font-size:smaller;">
 379      * <em>Discussion:</em>
 380      * The equivalence between looked-up method handles and underlying
 381      * class members and bytecode behaviors
 382      * can break down in a few ways:
 383      * <ul style="font-size:smaller;">
 384      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 385      * the lookup can still succeed, even when there is no equivalent
 386      * Java expression or bytecoded constant.
 387      * <li>Likewise, if {@code T} or {@code MT}
 388      * is not symbolically accessible from the lookup class's loader,
 389      * the lookup can still succeed.
 390      * For example, lookups for {@code MethodHandle.invokeExact} and
 391      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 392      * <li>If there is a security manager installed, it can forbid the lookup
 393      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 394      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 395      * constant is not subject to security manager checks.
 396      * <li>If the looked-up method has a
 397      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 398      * the method handle creation may fail with an
 399      * {@code IllegalArgumentException}, due to the method handle type having
 400      * <a href="MethodHandle.html#maxarity">too many parameters.</a>
 401      * </ul>
 402      *
 403      * <h1><a id="access"></a>Access checking</h1>
 404      * Access checks are applied in the factory methods of {@code Lookup},
 405      * when a method handle is created.
 406      * This is a key difference from the Core Reflection API, since
 407      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 408      * performs access checking against every caller, on every call.
 409      * <p>
 410      * All access checks start from a {@code Lookup} object, which
 411      * compares its recorded lookup class against all requests to
 412      * create method handles.
 413      * A single {@code Lookup} object can be used to create any number
 414      * of access-checked method handles, all checked against a single
 415      * lookup class.
 416      * <p>
 417      * A {@code Lookup} object can be shared with other trusted code,
 418      * such as a metaobject protocol.
 419      * A shared {@code Lookup} object delegates the capability
 420      * to create method handles on private members of the lookup class.
 421      * Even if privileged code uses the {@code Lookup} object,
 422      * the access checking is confined to the privileges of the
 423      * original lookup class.
 424      * <p>
 425      * A lookup can fail, because
 426      * the containing class is not accessible to the lookup class, or
 427      * because the desired class member is missing, or because the
 428      * desired class member is not accessible to the lookup class, or
 429      * because the lookup object is not trusted enough to access the member.
 430      * In any of these cases, a {@code ReflectiveOperationException} will be
 431      * thrown from the attempted lookup.  The exact class will be one of
 432      * the following:
 433      * <ul>
 434      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 435      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 436      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 437      * </ul>
 438      * <p>
 439      * In general, the conditions under which a method handle may be
 440      * looked up for a method {@code M} are no more restrictive than the conditions
 441      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 442      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 443      * a method handle lookup will generally raise a corresponding
 444      * checked exception, such as {@code NoSuchMethodException}.
 445      * And the effect of invoking the method handle resulting from the lookup
 446      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 447      * to executing the compiled, verified, and resolved call to {@code M}.
 448      * The same point is true of fields and constructors.
 449      * <p style="font-size:smaller;">
 450      * <em>Discussion:</em>
 451      * Access checks only apply to named and reflected methods,
 452      * constructors, and fields.
 453      * Other method handle creation methods, such as
 454      * {@link MethodHandle#asType MethodHandle.asType},
 455      * do not require any access checks, and are used
 456      * independently of any {@code Lookup} object.
 457      * <p>
 458      * If the desired member is {@code protected}, the usual JVM rules apply,
 459      * including the requirement that the lookup class must either be in the
 460      * same package as the desired member, or must inherit that member.
 461      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
 462      * In addition, if the desired member is a non-static field or method
 463      * in a different package, the resulting method handle may only be applied
 464      * to objects of the lookup class or one of its subclasses.
 465      * This requirement is enforced by narrowing the type of the leading
 466      * {@code this} parameter from {@code C}
 467      * (which will necessarily be a superclass of the lookup class)
 468      * to the lookup class itself.
 469      * <p>
 470      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 471      * that the receiver argument must match both the resolved method <em>and</em>
 472      * the current class.  Again, this requirement is enforced by narrowing the
 473      * type of the leading parameter to the resulting method handle.
 474      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
 475      * <p>
 476      * The JVM represents constructors and static initializer blocks as internal methods
 477      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 478      * The internal syntax of invocation instructions allows them to refer to such internal
 479      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 480      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 481      * <p>
 482      * If the relationship between nested types is expressed directly through the
 483      * {@code NestHost} and {@code NestMembers} attributes
 484      * (see the Java Virtual Machine Specification, sections 4.7.28 and 4.7.29),
 485      * then the associated {@code Lookup} object provides direct access to
 486      * the lookup class and all of its nestmates
 487      * (see {@link java.lang.Class#getNestHost Class.getNestHost}).
 488      * Otherwise, access between nested classes is obtained by the Java compiler creating
 489      * a wrapper method to access a private method of another class in the same nest.
 490      * For example, a nested class {@code C.D}
 491      * can access private members within other related classes such as
 492      * {@code C}, {@code C.D.E}, or {@code C.B},
 493      * but the Java compiler may need to generate wrapper methods in
 494      * those related classes.  In such cases, a {@code Lookup} object on
 495      * {@code C.E} would be unable to access those private members.
 496      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 497      * which can transform a lookup on {@code C.E} into one on any of those other
 498      * classes, without special elevation of privilege.
 499      * <p>
 500      * The accesses permitted to a given lookup object may be limited,
 501      * according to its set of {@link #lookupModes lookupModes},
 502      * to a subset of members normally accessible to the lookup class.
 503      * For example, the {@link MethodHandles#publicLookup publicLookup}
 504      * method produces a lookup object which is only allowed to access
 505      * public members in public classes of exported packages.
 506      * The caller sensitive method {@link MethodHandles#lookup lookup}
 507      * produces a lookup object with full capabilities relative to
 508      * its caller class, to emulate all supported bytecode behaviors.
 509      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 510      * with fewer access modes than the original lookup object.
 511      *
 512      * <p style="font-size:smaller;">
 513      * <a id="privacc"></a>
 514      * <em>Discussion of private access:</em>
 515      * We say that a lookup has <em>private access</em>
 516      * if its {@linkplain #lookupModes lookup modes}
 517      * include the possibility of accessing {@code private} members
 518      * (which includes the private members of nestmates).
 519      * As documented in the relevant methods elsewhere,
 520      * only lookups with private access possess the following capabilities:
 521      * <ul style="font-size:smaller;">
 522      * <li>access private fields, methods, and constructors of the lookup class and its nestmates
 523      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 524      *     such as {@code Class.forName}
 525      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 526      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 527      *     for classes accessible to the lookup class
 528      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 529      *     within the same package member
 530      * </ul>
 531      * <p style="font-size:smaller;">
 532      * Each of these permissions is a consequence of the fact that a lookup object
 533      * with private access can be securely traced back to an originating class,
 534      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 535      * can be reliably determined and emulated by method handles.
 536      *
 537      * <h1><a id="secmgr"></a>Security manager interactions</h1>
 538      * Although bytecode instructions can only refer to classes in
 539      * a related class loader, this API can search for methods in any
 540      * class, as long as a reference to its {@code Class} object is
 541      * available.  Such cross-loader references are also possible with the
 542      * Core Reflection API, and are impossible to bytecode instructions
 543      * such as {@code invokestatic} or {@code getfield}.
 544      * There is a {@linkplain java.lang.SecurityManager security manager API}
 545      * to allow applications to check such cross-loader references.
 546      * These checks apply to both the {@code MethodHandles.Lookup} API
 547      * and the Core Reflection API
 548      * (as found on {@link java.lang.Class Class}).
 549      * <p>
 550      * If a security manager is present, member and class lookups are subject to
 551      * additional checks.
 552      * From one to three calls are made to the security manager.
 553      * Any of these calls can refuse access by throwing a
 554      * {@link java.lang.SecurityException SecurityException}.
 555      * Define {@code smgr} as the security manager,
 556      * {@code lookc} as the lookup class of the current lookup object,
 557      * {@code refc} as the containing class in which the member
 558      * is being sought, and {@code defc} as the class in which the
 559      * member is actually defined.
 560      * (If a class or other type is being accessed,
 561      * the {@code refc} and {@code defc} values are the class itself.)
 562      * The value {@code lookc} is defined as <em>not present</em>
 563      * if the current lookup object does not have
 564      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
 565      * The calls are made according to the following rules:
 566      * <ul>
 567      * <li><b>Step 1:</b>
 568      *     If {@code lookc} is not present, or if its class loader is not
 569      *     the same as or an ancestor of the class loader of {@code refc},
 570      *     then {@link SecurityManager#checkPackageAccess
 571      *     smgr.checkPackageAccess(refcPkg)} is called,
 572      *     where {@code refcPkg} is the package of {@code refc}.
 573      * <li><b>Step 2a:</b>
 574      *     If the retrieved member is not public and
 575      *     {@code lookc} is not present, then
 576      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 577      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
 578      * <li><b>Step 2b:</b>
 579      *     If the retrieved class has a {@code null} class loader,
 580      *     and {@code lookc} is not present, then
 581      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 582      *     with {@code RuntimePermission("getClassLoader")} is called.
 583      * <li><b>Step 3:</b>
 584      *     If the retrieved member is not public,
 585      *     and if {@code lookc} is not present,
 586      *     and if {@code defc} and {@code refc} are different,
 587      *     then {@link SecurityManager#checkPackageAccess
 588      *     smgr.checkPackageAccess(defcPkg)} is called,
 589      *     where {@code defcPkg} is the package of {@code defc}.
 590      * </ul>
 591      * Security checks are performed after other access checks have passed.
 592      * Therefore, the above rules presuppose a member or class that is public,
 593      * or else that is being accessed from a lookup class that has
 594      * rights to access the member or class.
 595      *
 596      * <h1><a id="callsens"></a>Caller sensitive methods</h1>
 597      * A small number of Java methods have a special property called caller sensitivity.
 598      * A <em>caller-sensitive</em> method can behave differently depending on the
 599      * identity of its immediate caller.
 600      * <p>
 601      * If a method handle for a caller-sensitive method is requested,
 602      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
 603      * but they take account of the lookup class in a special way.
 604      * The resulting method handle behaves as if it were called
 605      * from an instruction contained in the lookup class,
 606      * so that the caller-sensitive method detects the lookup class.
 607      * (By contrast, the invoker of the method handle is disregarded.)
 608      * Thus, in the case of caller-sensitive methods,
 609      * different lookup classes may give rise to
 610      * differently behaving method handles.
 611      * <p>
 612      * In cases where the lookup object is
 613      * {@link MethodHandles#publicLookup() publicLookup()},
 614      * or some other lookup object without
 615      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
 616      * the lookup class is disregarded.
 617      * In such cases, no caller-sensitive method handle can be created,
 618      * access is forbidden, and the lookup fails with an
 619      * {@code IllegalAccessException}.
 620      * <p style="font-size:smaller;">
 621      * <em>Discussion:</em>
 622      * For example, the caller-sensitive method
 623      * {@link java.lang.Class#forName(String) Class.forName(x)}
 624      * can return varying classes or throw varying exceptions,
 625      * depending on the class loader of the class that calls it.
 626      * A public lookup of {@code Class.forName} will fail, because
 627      * there is no reasonable way to determine its bytecode behavior.
 628      * <p style="font-size:smaller;">
 629      * If an application caches method handles for broad sharing,
 630      * it should use {@code publicLookup()} to create them.
 631      * If there is a lookup of {@code Class.forName}, it will fail,
 632      * and the application must take appropriate action in that case.
 633      * It may be that a later lookup, perhaps during the invocation of a
 634      * bootstrap method, can incorporate the specific identity
 635      * of the caller, making the method accessible.
 636      * <p style="font-size:smaller;">
 637      * The function {@code MethodHandles.lookup} is caller sensitive
 638      * so that there can be a secure foundation for lookups.
 639      * Nearly all other methods in the JSR 292 API rely on lookup
 640      * objects to check access requests.
 641      *
 642      * @revised 9
 643      */
 644     public static final
 645     class Lookup {
 646         /** The class on behalf of whom the lookup is being performed. */
 647         private final Class<?> lookupClass;
 648 
 649         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
 650         private final int allowedModes;
 651 
 652         static {
 653             Reflection.registerFieldsToFilter(Lookup.class, Set.of("lookupClass", "allowedModes"));
 654         }
 655 
 656         /** A single-bit mask representing {@code public} access,
 657          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 658          *  The value, {@code 0x01}, happens to be the same as the value of the
 659          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
 660          */
 661         public static final int PUBLIC = Modifier.PUBLIC;
 662 
 663         /** A single-bit mask representing {@code private} access,
 664          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 665          *  The value, {@code 0x02}, happens to be the same as the value of the
 666          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
 667          */
 668         public static final int PRIVATE = Modifier.PRIVATE;
 669 
 670         /** A single-bit mask representing {@code protected} access,
 671          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 672          *  The value, {@code 0x04}, happens to be the same as the value of the
 673          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
 674          */
 675         public static final int PROTECTED = Modifier.PROTECTED;
 676 
 677         /** A single-bit mask representing {@code package} access (default access),
 678          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 679          *  The value is {@code 0x08}, which does not correspond meaningfully to
 680          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 681          */
 682         public static final int PACKAGE = Modifier.STATIC;
 683 
 684         /** A single-bit mask representing {@code module} access (default access),
 685          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 686          *  The value is {@code 0x10}, which does not correspond meaningfully to
 687          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 688          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
 689          *  with this lookup mode can access all public types in the module of the
 690          *  lookup class and public types in packages exported by other modules
 691          *  to the module of the lookup class.
 692          *  @since 9
 693          *  @spec JPMS
 694          */
 695         public static final int MODULE = PACKAGE << 1;
 696 
 697         /** A single-bit mask representing {@code unconditional} access
 698          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 699          *  The value is {@code 0x20}, which does not correspond meaningfully to
 700          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 701          *  A {@code Lookup} with this lookup mode assumes {@linkplain
 702          *  java.lang.Module#canRead(java.lang.Module) readability}.
 703          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
 704          *  with this lookup mode can access all public members of public types
 705          *  of all modules where the type is in a package that is {@link
 706          *  java.lang.Module#isExported(String) exported unconditionally}.
 707          *  @since 9
 708          *  @spec JPMS
 709          *  @see #publicLookup()
 710          */
 711         public static final int UNCONDITIONAL = PACKAGE << 2;
 712 
 713         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL);
 714         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);
 715         private static final int TRUSTED   = -1;
 716 
 717         private static int fixmods(int mods) {
 718             mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL);
 719             return (mods != 0) ? mods : (PACKAGE | MODULE | UNCONDITIONAL);
 720         }
 721 
 722         /** Tells which class is performing the lookup.  It is this class against
 723          *  which checks are performed for visibility and access permissions.
 724          *  <p>
 725          *  The class implies a maximum level of access permission,
 726          *  but the permissions may be additionally limited by the bitmask
 727          *  {@link #lookupModes lookupModes}, which controls whether non-public members
 728          *  can be accessed.
 729          *  @return the lookup class, on behalf of which this lookup object finds members
 730          */
 731         public Class<?> lookupClass() {
 732             return lookupClass;
 733         }
 734 
 735         // This is just for calling out to MethodHandleImpl.
 736         private Class<?> lookupClassOrNull() {
 737             return (allowedModes == TRUSTED) ? null : lookupClass;
 738         }
 739 
 740         /** Tells which access-protection classes of members this lookup object can produce.
 741          *  The result is a bit-mask of the bits
 742          *  {@linkplain #PUBLIC PUBLIC (0x01)},
 743          *  {@linkplain #PRIVATE PRIVATE (0x02)},
 744          *  {@linkplain #PROTECTED PROTECTED (0x04)},
 745          *  {@linkplain #PACKAGE PACKAGE (0x08)},
 746          *  {@linkplain #MODULE MODULE (0x10)},
 747          *  and {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}.
 748          *  <p>
 749          *  A freshly-created lookup object
 750          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
 751          *  all possible bits set, except {@code UNCONDITIONAL}.
 752          *  A lookup object on a new lookup class
 753          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
 754          *  may have some mode bits set to zero.
 755          *  Mode bits can also be
 756          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
 757          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
 758          *  The purpose of this is to restrict access via the new lookup object,
 759          *  so that it can access only names which can be reached by the original
 760          *  lookup object, and also by the new lookup class.
 761          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
 762          *  @see #in
 763          *  @see #dropLookupMode
 764          *
 765          *  @revised 9
 766          *  @spec JPMS
 767          */
 768         public int lookupModes() {
 769             return allowedModes & ALL_MODES;
 770         }
 771 
 772         /** Embody the current class (the lookupClass) as a lookup class
 773          * for method handle creation.
 774          * Must be called by from a method in this package,
 775          * which in turn is called by a method not in this package.
 776          */
 777         Lookup(Class<?> lookupClass) {
 778             this(lookupClass, FULL_POWER_MODES);
 779         }
 780 
 781         private Lookup(Class<?> lookupClass, int allowedModes) {
 782             this.lookupClass = lookupClass;
 783             this.allowedModes = allowedModes;
 784             assert !lookupClass.isPrimitive() && !lookupClass.isArray();
 785         }
 786 
 787         /**
 788          * Creates a lookup on the specified new lookup class.
 789          * The resulting object will report the specified
 790          * class as its own {@link #lookupClass() lookupClass}.
 791          * <p>
 792          * However, the resulting {@code Lookup} object is guaranteed
 793          * to have no more access capabilities than the original.
 794          * In particular, access capabilities can be lost as follows:<ul>
 795          * <li>If the old lookup class is in a {@link Module#isNamed() named} module, and
 796          * the new lookup class is in a different module {@code M}, then no members, not
 797          * even public members in {@code M}'s exported packages, will be accessible.
 798          * The exception to this is when this lookup is {@link #publicLookup()
 799          * publicLookup}, in which case {@code PUBLIC} access is not lost.
 800          * <li>If the old lookup class is in an unnamed module, and the new lookup class
 801          * is a different module then {@link #MODULE MODULE} access is lost.
 802          * <li>If the new lookup class differs from the old one then {@code UNCONDITIONAL} is lost.
 803          * <li>If the new lookup class is in a different package
 804          * than the old one, protected and default (package) members will not be accessible.
 805          * <li>If the new lookup class is not within the same package member
 806          * as the old one, private members will not be accessible, and protected members
 807          * will not be accessible by virtue of inheritance.
 808          * (Protected members may continue to be accessible because of package sharing.)
 809          * <li>If the new lookup class is not accessible to the old lookup class,
 810          * then no members, not even public members, will be accessible.
 811          * (In all other cases, public members will continue to be accessible.)
 812          * </ul>
 813          * <p>
 814          * The resulting lookup's capabilities for loading classes
 815          * (used during {@link #findClass} invocations)
 816          * are determined by the lookup class' loader,
 817          * which may change due to this operation.
 818          *
 819          * @param requestedLookupClass the desired lookup class for the new lookup object
 820          * @return a lookup object which reports the desired lookup class, or the same object
 821          * if there is no change
 822          * @throws IllegalArgumentException if {@code requestedLookupClass} is
 823          * a primitive type or array class
 824          * @throws NullPointerException if the argument is null
 825          *
 826          * @revised 9
 827          * @spec JPMS
 828          */
 829         public Lookup in(Class<?> requestedLookupClass) {
 830             Objects.requireNonNull(requestedLookupClass);
 831             if (requestedLookupClass.isPrimitive())
 832                 throw new IllegalArgumentException(requestedLookupClass + " is a primitive class");
 833             if (requestedLookupClass.isArray())
 834                 throw new IllegalArgumentException(requestedLookupClass + " is an array class");
 835 
 836             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
 837                 return new Lookup(requestedLookupClass, FULL_POWER_MODES);
 838             if (requestedLookupClass == this.lookupClass)
 839                 return this;  // keep same capabilities
 840             int newModes = (allowedModes & FULL_POWER_MODES);
 841             if (!VerifyAccess.isSameModule(this.lookupClass, requestedLookupClass)) {
 842                 // Need to drop all access when teleporting from a named module to another
 843                 // module. The exception is publicLookup where PUBLIC is not lost.
 844                 if (this.lookupClass.getModule().isNamed()
 845                     && (this.allowedModes & UNCONDITIONAL) == 0)
 846                     newModes = 0;
 847                 else
 848                     newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
 849             }
 850             if ((newModes & PACKAGE) != 0
 851                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
 852                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
 853             }
 854             // Allow nestmate lookups to be created without special privilege:
 855             if ((newModes & PRIVATE) != 0
 856                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
 857                 newModes &= ~(PRIVATE|PROTECTED);
 858             }
 859             if ((newModes & PUBLIC) != 0
 860                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
 861                 // The requested class it not accessible from the lookup class.
 862                 // No permissions.
 863                 newModes = 0;
 864             }
 865 
 866             checkUnprivilegedlookupClass(requestedLookupClass);
 867             return new Lookup(requestedLookupClass, newModes);
 868         }
 869 
 870 
 871         /**
 872          * Creates a lookup on the same lookup class which this lookup object
 873          * finds members, but with a lookup mode that has lost the given lookup mode.
 874          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
 875          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED} or {@link #PRIVATE PRIVATE}.
 876          * {@link #PROTECTED PROTECTED} and {@link #UNCONDITIONAL UNCONDITIONAL} are always
 877          * dropped and so the resulting lookup mode will never have these access capabilities.
 878          * When dropping {@code PACKAGE} then the resulting lookup will not have {@code PACKAGE}
 879          * or {@code PRIVATE} access. When dropping {@code MODULE} then the resulting lookup will
 880          * not have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. If {@code PUBLIC}
 881          * is dropped then the resulting lookup has no access.
 882          * @param modeToDrop the lookup mode to drop
 883          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
 884          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
 885          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL}
 886          * @see MethodHandles#privateLookupIn
 887          * @since 9
 888          */
 889         public Lookup dropLookupMode(int modeToDrop) {
 890             int oldModes = lookupModes();
 891             int newModes = oldModes & ~(modeToDrop | PROTECTED | UNCONDITIONAL);
 892             switch (modeToDrop) {
 893                 case PUBLIC: newModes &= ~(ALL_MODES); break;
 894                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
 895                 case PACKAGE: newModes &= ~(PRIVATE); break;
 896                 case PROTECTED:
 897                 case PRIVATE:
 898                 case UNCONDITIONAL: break;
 899                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
 900             }
 901             if (newModes == oldModes) return this;  // return self if no change
 902             return new Lookup(lookupClass(), newModes);
 903         }
 904 
 905         /**
 906          * Defines a class to the same class loader and in the same runtime package and
 907          * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's
 908          * {@linkplain #lookupClass() lookup class}.
 909          *
 910          * This method is equivalent to calling
 911          * {@link #defineClass(byte[], ClassProperty[])
 912          * defineClass(bytes, (ClassProperty[])null)}.
 913          *
 914          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include
 915          * {@link #PACKAGE PACKAGE} access as default (package) members will be
 916          * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate
 917          * that the lookup object was created by a caller in the runtime package (or derived
 918          * from a lookup originally created by suitably privileged code to a target class in
 919          * the runtime package). </p>
 920          *
 921          * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined
 922          * by the <em>The Java Virtual Machine Specification</em>) with a class name in the
 923          * same package as the lookup class. </p>
 924          *
 925          * <p> This method does not run the class initializer. The class initializer may
 926          * run at a later time, as detailed in section 12.4 of the <em>The Java Language
 927          * Specification</em>. </p>
 928          *
 929          * <p> If there is a security manager, its {@code checkPermission} method is first called
 930          * to check {@code RuntimePermission("defineClass")}. </p>
 931          *
 932          * @param bytes the class bytes
 933          * @return the {@code Class} object for the class
 934          * @throws IllegalArgumentException the bytes are for a class in a different package
 935          * to the lookup class
 936          * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access
 937          * @throws LinkageError if the class is malformed ({@code ClassFormatError}), cannot be
 938          * verified ({@code VerifyError}), is already defined, or another linkage error occurs
 939          * @throws SecurityException if denied by the security manager
 940          * @throws NullPointerException if {@code bytes} is {@code null}
 941          * @since 9
 942          * @spec JPMS
 943          * @see Lookup#privateLookupIn
 944          * @see Lookup#dropLookupMode
 945          * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
 946          */
 947         public Class<?> defineClass(byte[] bytes) throws IllegalAccessException {
 948             return defineClass(bytes, (ClassProperty[])null);
 949         }
 950 
 951         /**
 952          * Defines a class to the same class loader and in the same runtime package
 953          * and {@linkplain java.security.ProtectionDomain protection domain} as
 954          * this lookup's {@linkplain #lookupClass() lookup class}.
 955          * The {@code props} parameter specifies the properties of the class.
 956          *
 957          * <p> A class can be defined with the following properties:
 958          * <ul>
 959          * <li>A {@linkplain ClassProperty#NESTMATE <em>nestmate</em>} of the lookup class,
 960          *     i.e. in the same {@linkplain Class#getNestHost nest}
 961          *     of the lookup class.  The class will have access to the private members
 962          *     of all classes and interfaces in the same nest.
 963          *     </li>
 964          * <li>A {@linkplain ClassProperty#HIDDEN <em>hidden</em>} class,
 965          *     i.e. a class cannot be referenced by other classes.
 966          *     A hidden class has the following properties:
 967          *     <ul>
 968          *     <li>Naming:
 969          *     The name of this class is derived from the name of
 970          *     the class in the class bytes so that the class name does not
 971          *     collide with other classes defined to the same class loader.
 972          *     <li>Class resolution:
 973          *     The Java virtual machine does not find a hidden class with
 974          *     its name.  A hidden class can reference its members
 975          *     locally with the name of the class in the class bytes as if
 976          *     a non-hidden class. The name returned by {@link Class#getName()}
 977          *     is not known when the class bytes are generated.
 978          *     <li>Class retransformation:
 979          *     The class is not modifiable by Java agents or tool agents using
 980          *     the <a href="{@docRoot}/../specs/jvmti.html">JVM Tool Interface</a>.
 981          *     </ul>
 982          *     </li>
 983          * <li>A {@linkplain ClassProperty#WEAK <em>weak</em>} class,
 984          *     i.e. a class may be unloaded even if its defining class loader is
 985          *     <a href="../ref/package.html#reachability">reachable</a>,
 986          *     as if the defining class loader would only hold a
 987          *     {@linkplain java.lang.ref.WeakReference weak reference} of
 988          *     the class.
 989          *     A weak class is hidden.  If the {@code WEAK} property is set,
 990          *     then it implies that {@code HIDDEN} property is also set.</li>
 991          * </ul>
 992          *
 993          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must
 994          * include {@link #PACKAGE PACKAGE} access as default (package) members
 995          * will be accessible to the class. The {@code PACKAGE} lookup mode serves
 996          * to authenticate that the lookup object was created by a caller in
 997          * the runtime package (or derived from a lookup originally created by
 998          * suitably privileged code to a target class in the runtime package).
 999          * If the class is defined as a {@linkplain ClassProperty#NESTMATE nestmate}
1000          * then the {@linkplain #lookupModes() lookup modes} for this lookup must
1001          * include {@link #PRIVATE PRIVATE} access. </p>
1002          *
1003          * <p> The {@code bytes} parameter is the class bytes of a valid class file
1004          * (as defined by the <em>The Java Virtual Machine Specification</em>)
1005          * with a class name in the same package as the lookup class.
1006          * The class bytes of a nestmate class must not contain
1007          * the {@code NestHost} attribute nor the {@code NestMembers} attribute. </p>
1008          *
1009          * <p> If there is a security manager, its {@code checkPermission} method is first called
1010          * to check {@code RuntimePermission("defineClass")}. </p>
1011          *
1012          * <p> This method does not run the class initializer. The class initializer
1013          * may run at a later time, as detailed in section 12.4 of the The Java Language Specification.
1014          *
1015          * <p> The class can obtain {@code classData} by calling
1016          * the {@link Lookup#classData()} method of its {@code Lookup} object.
1017          *
1018          * @apiNote  An implementation of the Java Progamming Language may
1019          * unload classes as specified in section 12.7 of the Java Language Specification.
1020          * A class or interface may be unloaded if and only if
1021          * its defining class loader may be reclaimed by the garbage collector.
1022          * If the implementation supports class loading, a weak class
1023          * may become weakly reachable as if the defining class loader would
1024          * only hold a {@linkplain java.lang.ref.WeakReference weak reference}
1025          * of the class.
1026          *
1027          * @param bytes      the class bytes
1028          * @param props {@linkplain ClassProperty class properties}
1029          * @return the {@code Class} object for the class
1030          *
1031          * @throws IllegalArgumentException the bytes are for a class in a different package
1032          *                                  to the lookup class
1033          * @throws IllegalAccessException   if this lookup does not have {@code PACKAGE} access, or
1034          *                                  if {@code properties} contains {@code NESTMATE} but this lookup
1035          *                                  does not have {@code PRIVATE} access
1036          * @throws LinkageError             if the class is malformed ({@code ClassFormatError}), cannot be
1037          *                                  verified ({@code VerifyError}), is already defined,
1038          *                                  or another linkage error occurs
1039          * @throws SecurityException        if denied by the security manager
1040          * @throws NullPointerException     if {@code bytes} is {@code null}
1041          *
1042          * @since 12
1043          * @jls 12.7 Unloading of Classes and Interfaces
1044          * @see Lookup#privateLookupIn(Class, Lookup)
1045          * @see Lookup#dropLookupMode(int)
1046          */
1047         public Class<?> defineClass(byte[] bytes, ClassProperty... props) throws IllegalAccessException {
1048             Objects.requireNonNull(bytes);
1049 
1050             // clone the properties before access
1051             Set<ClassProperty> properties;
1052             if (props == null || props.length == 0) {
1053                 properties = EMPTY_PROPS;
1054             } else {
1055                 properties = Set.of(props);
1056             }
1057 
1058             // Is it ever possible to create Lookup for int.class or Object[].class?
1059             assert !lookupClass.isPrimitive() && !lookupClass.isArray();
1060 
1061             if ((lookupModes() & PACKAGE) == 0){
1062                 throw new IllegalAccessException("Lookup does not have PACKAGE access");
1063             }
1064 
1065             if (properties.contains(NESTMATE) && (lookupModes() & PRIVATE) == 0){
1066                 throw new IllegalAccessException("Lookup does not have PRIVATE access");
1067             }
1068 
1069             assert (lookupModes() & (MODULE | PUBLIC)) != 0;
1070 
1071             SecurityManager sm = System.getSecurityManager();
1072             if (sm != null)
1073                 sm.checkPermission(new RuntimePermission("defineClass"));
1074 
1075             return defineClassWithNoCheck(bytes, classPropertiesToFlags(properties));
1076         }
1077 
1078         /**
1079          * Defines a class to the same class loader and in the same runtime package
1080          * and {@linkplain java.security.ProtectionDomain protection domain} as
1081          * this lookup's {@linkplain #lookupClass() lookup class} with
1082          * the given class properties and {@code classData}.
1083          *
1084          * <p> This method defines a class as if calling
1085          * {@link #defineClass(byte[], ClassProperty...) defineClass(bytes, props)}
1086          * and then the class initializer with an injected the {@code classData}
1087          * as a pre-initialized static unnamed field.
1088          * The injected pre-initialized static unnamed field can be
1089          * obtained by calling the {@link Lookup#classData()} method of
1090          * its {@code Lookup} object.
1091          *
1092          * <p> If there is a security manager, its {@code checkPermission} method is first called
1093          * to check {@code RuntimePermission("defineClass")}. </p>
1094          *
1095          * @apiNote
1096          * This method initializes the class, as opposed to the {@link #defineClass(byte[], ClassProperty...)}
1097          * method which does not invoke {@code <clinit>}, because the returned {@code Class}
1098          * is as if it contains a private static unnamed field that is initialized to
1099          * the given {@code classData} along with other declared static fields
1100          * via {@code <clinit>}.
1101          *
1102          * @param bytes      the class bytes
1103          * @param classData pre-initialized class data
1104          * @param props {@linkplain ClassProperty class properties}
1105          * @return the {@code Class} object for the class
1106          *
1107          * @throws IllegalArgumentException the bytes are for a class in a different package
1108          *                                  to the lookup class
1109          * @throws IllegalAccessException   if this lookup does not have {@code PACKAGE} access, or
1110          *                                  if {@code properties} contains {@code NESTMATE} but this lookup
1111          *                                  does not have {@code PRIVATE} access
1112          * @throws LinkageError             if the class is malformed ({@code ClassFormatError}), cannot be
1113          *                                  verified ({@code VerifyError}), is already defined,
1114          *                                  or another linkage error occurs
1115          * @throws SecurityException        if denied by the security manager
1116          * @throws NullPointerException     if {@code bytes} or {@code classData} is {@code null}
1117          *
1118          * @since 12
1119          * @jls 12.7 Unloading of Classes and Interfaces
1120          * @see Lookup#privateLookupIn(Class, Lookup)
1121          * @see Lookup#dropLookupMode(int)
1122          */
1123         public Class<?> defineClassWithClassData(byte[] bytes, Object classData, ClassProperty... props)
1124                 throws IllegalAccessException
1125         {
1126             Objects.requireNonNull(bytes);
1127             Objects.requireNonNull(classData);
1128 
1129             // Is it ever possible to create Lookup for int.class or Object[].class?
1130             assert !lookupClass.isPrimitive() && !lookupClass.isArray();
1131 
1132             if ((lookupModes() & PACKAGE) == 0){
1133                 throw new IllegalAccessException("Lookup does not have PACKAGE access");
1134             }
1135 
1136             Set<ClassProperty> properties;
1137             if (props == null || props.length == 0) {
1138                 properties = EMPTY_PROPS;
1139             } else {
1140                 properties = Set.of(props);
1141             }
1142 
1143             if (properties.contains(NESTMATE) && (lookupModes() & PRIVATE) == 0){
1144                 throw new IllegalAccessException("Lookup does not have PRIVATE access");
1145             }
1146 
1147             assert (lookupModes() & (MODULE | PUBLIC)) != 0;
1148 
1149             SecurityManager sm = System.getSecurityManager();
1150             if (sm != null)
1151                 sm.checkPermission(new RuntimePermission("defineClass"));
1152 
1153             return defineClassWithNoCheck(bytes, classPropertiesToFlags(properties), classData);
1154         }
1155 
1156         private static int classPropertiesToFlags(Set<ClassProperty> props) {
1157             if (props.isEmpty()) return 0;
1158 
1159             int flags = 0;
1160             for (ClassProperty cp : props) {
1161                 flags |= cp.flag;
1162                 if (cp == WEAK) {
1163                     // weak class property implies hidden
1164                     flags |= HIDDEN.flag;
1165                 }
1166             }
1167             return flags;
1168         }
1169 
1170         /**
1171          * Returns the class data associated with this lookup class.
1172          * If this lookup class was defined via
1173          * {@link #defineClassWithClassData(byte[], Object, ClassProperty...)
1174          * defineClassWithClassData(bytes, classData, properties)}
1175          * then the supplied {@code classData} object is returned; otherwise,
1176          * {@code null}.
1177          *
1178          * <p> This method will invoke the static class initializer of
1179          * this lookup class if it has not been initialized.
1180          *
1181          * @apiNote
1182          * A class data can be considered as
1183          * private static unnamed field that has been pre-initialized
1184          * and supplied at define class time.
1185          *
1186          * <p> For example a class can pack one or more pre-initialized objects
1187          * in a {@code List} as the class data and at class initialization
1188          * time unpack them for subsequent access.
1189          * The class data is {@code List.of(o1, o2, o3....)}
1190          * passed to {@link #defineClassWithClassData(byte[], Object, ClassProperty...)} where
1191          * {@code <clinit>} of the class bytes does the following:
1192          *
1193          * <pre>{@code
1194          *     private static final T t;
1195          *     private static final R r;
1196          *     static {
1197          *        List<Object> data = (List<Object>) MethodHandles.lookup().classData();
1198          *        t = (T)data.get(0);
1199          *        r = (R)data.get(1);
1200          *     }
1201          *}</pre>
1202          *
1203          * @return the class data if this lookup class was defined via
1204          * {@link #defineClassWithClassData(byte[], Object, ClassProperty...)}; otherwise {@code null}.
1205          *
1206          * @throws IllegalAccessException if this lookup does not have {@code PRIVATE} access
1207          * @since 12
1208          */
1209         public Object classData() throws IllegalAccessException {
1210             if ((lookupModes() & PRIVATE) == 0){
1211                 throw new IllegalAccessException("Lookup does not have PRIVATE access");
1212             }
1213 
1214             // should we allow clearing?  getAndClearClassData
1215             return CLASS_DATA_MAP.get(lookupClass);
1216         }
1217 
1218         // package-private
1219         static final int HIDDEN_NESTMATE = NESTMATE_CLASS|NONFINDABLE_CLASS|ACCESS_VM_ANNOTATIONS;
1220         static final int WEAK_HIDDEN_NESTMATE =  WEAK_CLASS|NESTMATE_CLASS|NONFINDABLE_CLASS|ACCESS_VM_ANNOTATIONS;
1221         static final Set<ClassProperty> EMPTY_PROPS = Set.of();
1222 
1223         Class<?> defineClassWithNoCheck(byte[] bytes, int flags) {
1224             return defineClassWithNoCheck(bytes, flags, null);
1225         }
1226 
1227         Class<?> defineClassWithNoCheck(byte[] bytes, int flags, Object classData) {
1228             // Can't use lambda during bootstrapping
1229             // parse class bytes to get class name (in internal form)
1230             bytes = bytes.clone();
1231             String name;
1232             try {
1233                 ClassReader reader = new ClassReader(bytes);
1234                 name = reader.getClassName();
1235             } catch (RuntimeException e) {
1236                 // ASM exceptions are poorly specified
1237                 ClassFormatError cfe = new ClassFormatError();
1238                 cfe.initCause(e);
1239                 throw cfe;
1240             }
1241 
1242             // get package and class name in binary form
1243             String cn, pn;
1244             int index = name.lastIndexOf('/');
1245             if (index == -1) {
1246                 cn = name;
1247                 pn = "";
1248             } else {
1249                 cn = name.replace('/', '.');
1250                 pn = cn.substring(0, index);
1251             }
1252             if (!pn.equals(lookupClass.getPackageName())) {
1253                 throw new IllegalArgumentException(cn + " not in same package as lookup class: " + lookupClass.getName());
1254             }
1255 
1256             if ((flags & NONFINDABLE_CLASS) != 0) {
1257                 // ## TODO use '/' as in the name of the VM anonymous class.
1258                 cn = cn + '\\' + ++seq;
1259             }
1260 
1261             // invoke the class loader's defineClass method
1262             ClassLoader loader = lookupClass.getClassLoader();
1263             ProtectionDomain pd = (loader != null) ? lookupClassProtectionDomain() : null;
1264             Class<?> clazz = JLA.defineClass(loader, lookupClass, cn, bytes, pd, flags, classData);
1265             assert clazz.getClassLoader() == lookupClass.getClassLoader()
1266                    && clazz.getPackageName().equals(lookupClass.getPackageName());
1267 
1268             // ## TBD what if multiple threads defining this same class??
1269             // may need VM to inject the classData in a Class itself at define class time
1270             if (classData != null) {
1271                 CLASS_DATA_MAP.putIfAbsent(clazz, classData);
1272             }
1273             return clazz;
1274         }
1275 
1276         private static volatile int seq = 0;
1277 
1278         private ProtectionDomain lookupClassProtectionDomain() {
1279             ProtectionDomain pd = cachedProtectionDomain;
1280             if (pd == null) {
1281                 cachedProtectionDomain = pd = JLA.protectionDomain(lookupClass);
1282             }
1283             return pd;
1284         }
1285 
1286         // cached protection domain
1287         private volatile ProtectionDomain cachedProtectionDomain;
1288 
1289         // don't see the need to use ClassValue
1290         private static final WeakHashMap<Class<?>, Object> CLASS_DATA_MAP = new WeakHashMap<>();
1291 
1292         // Make sure outer class is initialized first.
1293         static { IMPL_NAMES.getClass(); }
1294 
1295         /** Package-private version of lookup which is trusted. */
1296         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
1297 
1298         /** Version of lookup which is trusted minimally.
1299          *  It can only be used to create method handles to publicly accessible
1300          *  members in packages that are exported unconditionally.
1301          */
1302         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, (PUBLIC|UNCONDITIONAL));
1303 
1304         static final JavaLangAccess JLA = SharedSecrets.getJavaLangAccess();
1305 
1306         private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
1307             String name = lookupClass.getName();
1308             if (name.startsWith("java.lang.invoke."))
1309                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
1310         }
1311 
1312         /**
1313          * Displays the name of the class from which lookups are to be made.
1314          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
1315          * If there are restrictions on the access permitted to this lookup,
1316          * this is indicated by adding a suffix to the class name, consisting
1317          * of a slash and a keyword.  The keyword represents the strongest
1318          * allowed access, and is chosen as follows:
1319          * <ul>
1320          * <li>If no access is allowed, the suffix is "/noaccess".
1321          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
1322          * <li>If only public access and unconditional access are allowed, the suffix is "/publicLookup".
1323          * <li>If only public and module access are allowed, the suffix is "/module".
1324          * <li>If only public, module and package access are allowed, the suffix is "/package".
1325          * <li>If only public, module, package, and private access are allowed, the suffix is "/private".
1326          * </ul>
1327          * If none of the above cases apply, it is the case that full
1328          * access (public, module, package, private, and protected) is allowed.
1329          * In this case, no suffix is added.
1330          * This is true only of an object obtained originally from
1331          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
1332          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
1333          * always have restricted access, and will display a suffix.
1334          * <p>
1335          * (It may seem strange that protected access should be
1336          * stronger than private access.  Viewed independently from
1337          * package access, protected access is the first to be lost,
1338          * because it requires a direct subclass relationship between
1339          * caller and callee.)
1340          * @see #in
1341          *
1342          * @revised 9
1343          * @spec JPMS
1344          */
1345         @Override
1346         public String toString() {
1347             String cname = lookupClass.getName();
1348             switch (allowedModes) {
1349             case 0:  // no privileges
1350                 return cname + "/noaccess";
1351             case PUBLIC:
1352                 return cname + "/public";
1353             case PUBLIC|UNCONDITIONAL:
1354                 return cname  + "/publicLookup";
1355             case PUBLIC|MODULE:
1356                 return cname + "/module";
1357             case PUBLIC|MODULE|PACKAGE:
1358                 return cname + "/package";
1359             case FULL_POWER_MODES & ~PROTECTED:
1360                 return cname + "/private";
1361             case FULL_POWER_MODES:
1362                 return cname;
1363             case TRUSTED:
1364                 return "/trusted";  // internal only; not exported
1365             default:  // Should not happen, but it's a bitfield...
1366                 cname = cname + "/" + Integer.toHexString(allowedModes);
1367                 assert(false) : cname;
1368                 return cname;
1369             }
1370         }
1371 
1372         /**
1373          * Produces a method handle for a static method.
1374          * The type of the method handle will be that of the method.
1375          * (Since static methods do not take receivers, there is no
1376          * additional receiver argument inserted into the method handle type,
1377          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
1378          * The method and all its argument types must be accessible to the lookup object.
1379          * <p>
1380          * The returned method handle will have
1381          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1382          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1383          * <p>
1384          * If the returned method handle is invoked, the method's class will
1385          * be initialized, if it has not already been initialized.
1386          * <p><b>Example:</b>
1387          * <blockquote><pre>{@code
1388 import static java.lang.invoke.MethodHandles.*;
1389 import static java.lang.invoke.MethodType.*;
1390 ...
1391 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
1392   "asList", methodType(List.class, Object[].class));
1393 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
1394          * }</pre></blockquote>
1395          * @param refc the class from which the method is accessed
1396          * @param name the name of the method
1397          * @param type the type of the method
1398          * @return the desired method handle
1399          * @throws NoSuchMethodException if the method does not exist
1400          * @throws IllegalAccessException if access checking fails,
1401          *                                or if the method is not {@code static},
1402          *                                or if the method's variable arity modifier bit
1403          *                                is set and {@code asVarargsCollector} fails
1404          * @exception SecurityException if a security manager is present and it
1405          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1406          * @throws NullPointerException if any argument is null
1407          */
1408         public
1409         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1410             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
1411             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
1412         }
1413 
1414         /**
1415          * Produces a method handle for a virtual method.
1416          * The type of the method handle will be that of the method,
1417          * with the receiver type (usually {@code refc}) prepended.
1418          * The method and all its argument types must be accessible to the lookup object.
1419          * <p>
1420          * When called, the handle will treat the first argument as a receiver
1421          * and, for non-private methods, dispatch on the receiver's type to determine which method
1422          * implementation to enter.
1423          * For private methods the named method in {@code refc} will be invoked on the receiver.
1424          * (The dispatching action is identical with that performed by an
1425          * {@code invokevirtual} or {@code invokeinterface} instruction.)
1426          * <p>
1427          * The first argument will be of type {@code refc} if the lookup
1428          * class has full privileges to access the member.  Otherwise
1429          * the member must be {@code protected} and the first argument
1430          * will be restricted in type to the lookup class.
1431          * <p>
1432          * The returned method handle will have
1433          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1434          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1435          * <p>
1436          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
1437          * instructions and method handles produced by {@code findVirtual},
1438          * if the class is {@code MethodHandle} and the name string is
1439          * {@code invokeExact} or {@code invoke}, the resulting
1440          * method handle is equivalent to one produced by
1441          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
1442          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
1443          * with the same {@code type} argument.
1444          * <p>
1445          * If the class is {@code VarHandle} and the name string corresponds to
1446          * the name of a signature-polymorphic access mode method, the resulting
1447          * method handle is equivalent to one produced by
1448          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
1449          * the access mode corresponding to the name string and with the same
1450          * {@code type} arguments.
1451          * <p>
1452          * <b>Example:</b>
1453          * <blockquote><pre>{@code
1454 import static java.lang.invoke.MethodHandles.*;
1455 import static java.lang.invoke.MethodType.*;
1456 ...
1457 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
1458   "concat", methodType(String.class, String.class));
1459 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
1460   "hashCode", methodType(int.class));
1461 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
1462   "hashCode", methodType(int.class));
1463 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
1464 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
1465 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
1466 // interface method:
1467 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
1468   "subSequence", methodType(CharSequence.class, int.class, int.class));
1469 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
1470 // constructor "internal method" must be accessed differently:
1471 MethodType MT_newString = methodType(void.class); //()V for new String()
1472 try { assertEquals("impossible", lookup()
1473         .findVirtual(String.class, "<init>", MT_newString));
1474  } catch (NoSuchMethodException ex) { } // OK
1475 MethodHandle MH_newString = publicLookup()
1476   .findConstructor(String.class, MT_newString);
1477 assertEquals("", (String) MH_newString.invokeExact());
1478          * }</pre></blockquote>
1479          *
1480          * @param refc the class or interface from which the method is accessed
1481          * @param name the name of the method
1482          * @param type the type of the method, with the receiver argument omitted
1483          * @return the desired method handle
1484          * @throws NoSuchMethodException if the method does not exist
1485          * @throws IllegalAccessException if access checking fails,
1486          *                                or if the method is {@code static},
1487          *                                or if the method's variable arity modifier bit
1488          *                                is set and {@code asVarargsCollector} fails
1489          * @exception SecurityException if a security manager is present and it
1490          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1491          * @throws NullPointerException if any argument is null
1492          */
1493         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1494             if (refc == MethodHandle.class) {
1495                 MethodHandle mh = findVirtualForMH(name, type);
1496                 if (mh != null)  return mh;
1497             } else if (refc == VarHandle.class) {
1498                 MethodHandle mh = findVirtualForVH(name, type);
1499                 if (mh != null)  return mh;
1500             }
1501             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
1502             MemberName method = resolveOrFail(refKind, refc, name, type);
1503             return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
1504         }
1505         private MethodHandle findVirtualForMH(String name, MethodType type) {
1506             // these names require special lookups because of the implicit MethodType argument
1507             if ("invoke".equals(name))
1508                 return invoker(type);
1509             if ("invokeExact".equals(name))
1510                 return exactInvoker(type);
1511             assert(!MemberName.isMethodHandleInvokeName(name));
1512             return null;
1513         }
1514         private MethodHandle findVirtualForVH(String name, MethodType type) {
1515             try {
1516                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
1517             } catch (IllegalArgumentException e) {
1518                 return null;
1519             }
1520         }
1521 
1522         /**
1523          * Produces a method handle which creates an object and initializes it, using
1524          * the constructor of the specified type.
1525          * The parameter types of the method handle will be those of the constructor,
1526          * while the return type will be a reference to the constructor's class.
1527          * The constructor and all its argument types must be accessible to the lookup object.
1528          * <p>
1529          * The requested type must have a return type of {@code void}.
1530          * (This is consistent with the JVM's treatment of constructor type descriptors.)
1531          * <p>
1532          * The returned method handle will have
1533          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1534          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1535          * <p>
1536          * If the returned method handle is invoked, the constructor's class will
1537          * be initialized, if it has not already been initialized.
1538          * <p><b>Example:</b>
1539          * <blockquote><pre>{@code
1540 import static java.lang.invoke.MethodHandles.*;
1541 import static java.lang.invoke.MethodType.*;
1542 ...
1543 MethodHandle MH_newArrayList = publicLookup().findConstructor(
1544   ArrayList.class, methodType(void.class, Collection.class));
1545 Collection orig = Arrays.asList("x", "y");
1546 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
1547 assert(orig != copy);
1548 assertEquals(orig, copy);
1549 // a variable-arity constructor:
1550 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
1551   ProcessBuilder.class, methodType(void.class, String[].class));
1552 ProcessBuilder pb = (ProcessBuilder)
1553   MH_newProcessBuilder.invoke("x", "y", "z");
1554 assertEquals("[x, y, z]", pb.command().toString());
1555          * }</pre></blockquote>
1556          * @param refc the class or interface from which the method is accessed
1557          * @param type the type of the method, with the receiver argument omitted, and a void return type
1558          * @return the desired method handle
1559          * @throws NoSuchMethodException if the constructor does not exist
1560          * @throws IllegalAccessException if access checking fails
1561          *                                or if the method's variable arity modifier bit
1562          *                                is set and {@code asVarargsCollector} fails
1563          * @exception SecurityException if a security manager is present and it
1564          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1565          * @throws NullPointerException if any argument is null
1566          */
1567         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1568             if (refc.isArray()) {
1569                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
1570             }
1571             String name = "<init>";
1572             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
1573             return getDirectConstructor(refc, ctor);
1574         }
1575 
1576         /**
1577          * Looks up a class by name from the lookup context defined by this {@code Lookup} object. The static
1578          * initializer of the class is not run.
1579          * <p>
1580          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, its class
1581          * loader, and the {@linkplain #lookupModes() lookup modes}. In particular, the method first attempts to
1582          * load the requested class, and then determines whether the class is accessible to this lookup object.
1583          *
1584          * @param targetName the fully qualified name of the class to be looked up.
1585          * @return the requested class.
1586          * @exception SecurityException if a security manager is present and it
1587          * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1588          * @throws LinkageError if the linkage fails
1589          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader
1590          *                                or the class is not {@linkplain Class#isHidden hidden}
1591          * @throws IllegalAccessException if the class is not accessible, using the allowed access modes.
1592 
1593          * @since 9
1594          * @see Class#isHidden
1595          */
1596         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
1597             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
1598             return accessClass(targetClass);
1599         }
1600 
1601         /**
1602          * Determines if a class can be accessed from the lookup context defined by this {@code Lookup} object. The
1603          * static initializer of the class is not run.
1604          * <p>
1605          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class} and the
1606          * {@linkplain #lookupModes() lookup modes}.
1607          *
1608          * @param targetClass the class to be access-checked
1609          *
1610          * @return the class that has been access-checked
1611          *
1612          * @throws IllegalAccessException if the class is not accessible from the lookup class, using the allowed access
1613          * modes.
1614          * @exception SecurityException if a security manager is present and it
1615          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1616          * @since 9
1617          */
1618         public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
1619             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, allowedModes)) {
1620                 throw new MemberName(targetClass).makeAccessException("access violation", this);
1621             }
1622             checkSecurityManager(targetClass, null);
1623             return targetClass;
1624         }
1625 
1626         /**
1627          * Produces an early-bound method handle for a virtual method.
1628          * It will bypass checks for overriding methods on the receiver,
1629          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1630          * instruction from within the explicitly specified {@code specialCaller}.
1631          * The type of the method handle will be that of the method,
1632          * with a suitably restricted receiver type prepended.
1633          * (The receiver type will be {@code specialCaller} or a subtype.)
1634          * The method and all its argument types must be accessible
1635          * to the lookup object.
1636          * <p>
1637          * Before method resolution,
1638          * if the explicitly specified caller class is not identical with the
1639          * lookup class, or if this lookup object does not have
1640          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1641          * privileges, the access fails.
1642          * <p>
1643          * The returned method handle will have
1644          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1645          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1646          * <p style="font-size:smaller;">
1647          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
1648          * even though the {@code invokespecial} instruction can refer to them
1649          * in special circumstances.  Use {@link #findConstructor findConstructor}
1650          * to access instance initialization methods in a safe manner.)</em>
1651          * <p><b>Example:</b>
1652          * <blockquote><pre>{@code
1653 import static java.lang.invoke.MethodHandles.*;
1654 import static java.lang.invoke.MethodType.*;
1655 ...
1656 static class Listie extends ArrayList {
1657   public String toString() { return "[wee Listie]"; }
1658   static Lookup lookup() { return MethodHandles.lookup(); }
1659 }
1660 ...
1661 // no access to constructor via invokeSpecial:
1662 MethodHandle MH_newListie = Listie.lookup()
1663   .findConstructor(Listie.class, methodType(void.class));
1664 Listie l = (Listie) MH_newListie.invokeExact();
1665 try { assertEquals("impossible", Listie.lookup().findSpecial(
1666         Listie.class, "<init>", methodType(void.class), Listie.class));
1667  } catch (NoSuchMethodException ex) { } // OK
1668 // access to super and self methods via invokeSpecial:
1669 MethodHandle MH_super = Listie.lookup().findSpecial(
1670   ArrayList.class, "toString" , methodType(String.class), Listie.class);
1671 MethodHandle MH_this = Listie.lookup().findSpecial(
1672   Listie.class, "toString" , methodType(String.class), Listie.class);
1673 MethodHandle MH_duper = Listie.lookup().findSpecial(
1674   Object.class, "toString" , methodType(String.class), Listie.class);
1675 assertEquals("[]", (String) MH_super.invokeExact(l));
1676 assertEquals(""+l, (String) MH_this.invokeExact(l));
1677 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
1678 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
1679         String.class, "toString", methodType(String.class), Listie.class));
1680  } catch (IllegalAccessException ex) { } // OK
1681 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
1682 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
1683          * }</pre></blockquote>
1684          *
1685          * @param refc the class or interface from which the method is accessed
1686          * @param name the name of the method (which must not be "&lt;init&gt;")
1687          * @param type the type of the method, with the receiver argument omitted
1688          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
1689          * @return the desired method handle
1690          * @throws NoSuchMethodException if the method does not exist
1691          * @throws IllegalAccessException if access checking fails,
1692          *                                or if the method is {@code static},
1693          *                                or if the method's variable arity modifier bit
1694          *                                is set and {@code asVarargsCollector} fails
1695          * @exception SecurityException if a security manager is present and it
1696          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1697          * @throws NullPointerException if any argument is null
1698          */
1699         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
1700                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
1701             checkSpecialCaller(specialCaller, refc);
1702             Lookup specialLookup = this.in(specialCaller);
1703             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
1704             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1705         }
1706 
1707         /**
1708          * Produces a method handle giving read access to a non-static field.
1709          * The type of the method handle will have a return type of the field's
1710          * value type.
1711          * The method handle's single argument will be the instance containing
1712          * the field.
1713          * Access checking is performed immediately on behalf of the lookup class.
1714          * @param refc the class or interface from which the method is accessed
1715          * @param name the field's name
1716          * @param type the field's type
1717          * @return a method handle which can load values from the field
1718          * @throws NoSuchFieldException if the field does not exist
1719          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1720          * @exception SecurityException if a security manager is present and it
1721          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1722          * @throws NullPointerException if any argument is null
1723          * @see #findVarHandle(Class, String, Class)
1724          */
1725         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1726             MemberName field = resolveOrFail(REF_getField, refc, name, type);
1727             return getDirectField(REF_getField, refc, field);
1728         }
1729 
1730         /**
1731          * Produces a method handle giving write access to a non-static field.
1732          * The type of the method handle will have a void return type.
1733          * The method handle will take two arguments, the instance containing
1734          * the field, and the value to be stored.
1735          * The second argument will be of the field's value type.
1736          * Access checking is performed immediately on behalf of the lookup class.
1737          * @param refc the class or interface from which the method is accessed
1738          * @param name the field's name
1739          * @param type the field's type
1740          * @return a method handle which can store values into the field
1741          * @throws NoSuchFieldException if the field does not exist
1742          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1743          * @exception SecurityException if a security manager is present and it
1744          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1745          * @throws NullPointerException if any argument is null
1746          * @see #findVarHandle(Class, String, Class)
1747          */
1748         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1749             MemberName field = resolveOrFail(REF_putField, refc, name, type);
1750             return getDirectField(REF_putField, refc, field);
1751         }
1752 
1753         /**
1754          * Produces a VarHandle giving access to a non-static field {@code name}
1755          * of type {@code type} declared in a class of type {@code recv}.
1756          * The VarHandle's variable type is {@code type} and it has one
1757          * coordinate type, {@code recv}.
1758          * <p>
1759          * Access checking is performed immediately on behalf of the lookup
1760          * class.
1761          * <p>
1762          * Certain access modes of the returned VarHandle are unsupported under
1763          * the following conditions:
1764          * <ul>
1765          * <li>if the field is declared {@code final}, then the write, atomic
1766          *     update, numeric atomic update, and bitwise atomic update access
1767          *     modes are unsupported.
1768          * <li>if the field type is anything other than {@code byte},
1769          *     {@code short}, {@code char}, {@code int}, {@code long},
1770          *     {@code float}, or {@code double} then numeric atomic update
1771          *     access modes are unsupported.
1772          * <li>if the field type is anything other than {@code boolean},
1773          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1774          *     {@code long} then bitwise atomic update access modes are
1775          *     unsupported.
1776          * </ul>
1777          * <p>
1778          * If the field is declared {@code volatile} then the returned VarHandle
1779          * will override access to the field (effectively ignore the
1780          * {@code volatile} declaration) in accordance to its specified
1781          * access modes.
1782          * <p>
1783          * If the field type is {@code float} or {@code double} then numeric
1784          * and atomic update access modes compare values using their bitwise
1785          * representation (see {@link Float#floatToRawIntBits} and
1786          * {@link Double#doubleToRawLongBits}, respectively).
1787          * @apiNote
1788          * Bitwise comparison of {@code float} values or {@code double} values,
1789          * as performed by the numeric and atomic update access modes, differ
1790          * from the primitive {@code ==} operator and the {@link Float#equals}
1791          * and {@link Double#equals} methods, specifically with respect to
1792          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1793          * Care should be taken when performing a compare and set or a compare
1794          * and exchange operation with such values since the operation may
1795          * unexpectedly fail.
1796          * There are many possible NaN values that are considered to be
1797          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1798          * provided by Java can distinguish between them.  Operation failure can
1799          * occur if the expected or witness value is a NaN value and it is
1800          * transformed (perhaps in a platform specific manner) into another NaN
1801          * value, and thus has a different bitwise representation (see
1802          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1803          * details).
1804          * The values {@code -0.0} and {@code +0.0} have different bitwise
1805          * representations but are considered equal when using the primitive
1806          * {@code ==} operator.  Operation failure can occur if, for example, a
1807          * numeric algorithm computes an expected value to be say {@code -0.0}
1808          * and previously computed the witness value to be say {@code +0.0}.
1809          * @param recv the receiver class, of type {@code R}, that declares the
1810          * non-static field
1811          * @param name the field's name
1812          * @param type the field's type, of type {@code T}
1813          * @return a VarHandle giving access to non-static fields.
1814          * @throws NoSuchFieldException if the field does not exist
1815          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1816          * @exception SecurityException if a security manager is present and it
1817          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1818          * @throws NullPointerException if any argument is null
1819          * @since 9
1820          */
1821         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1822             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
1823             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
1824             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
1825         }
1826 
1827         /**
1828          * Produces a method handle giving read access to a static field.
1829          * The type of the method handle will have a return type of the field's
1830          * value type.
1831          * The method handle will take no arguments.
1832          * Access checking is performed immediately on behalf of the lookup class.
1833          * <p>
1834          * If the returned method handle is invoked, the field's class will
1835          * be initialized, if it has not already been initialized.
1836          * @param refc the class or interface from which the method is accessed
1837          * @param name the field's name
1838          * @param type the field's type
1839          * @return a method handle which can load values from the field
1840          * @throws NoSuchFieldException if the field does not exist
1841          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1842          * @exception SecurityException if a security manager is present and it
1843          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1844          * @throws NullPointerException if any argument is null
1845          */
1846         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1847             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
1848             return getDirectField(REF_getStatic, refc, field);
1849         }
1850 
1851         /**
1852          * Produces a method handle giving write access to a static field.
1853          * The type of the method handle will have a void return type.
1854          * The method handle will take a single
1855          * argument, of the field's value type, the value to be stored.
1856          * Access checking is performed immediately on behalf of the lookup class.
1857          * <p>
1858          * If the returned method handle is invoked, the field's class will
1859          * be initialized, if it has not already been initialized.
1860          * @param refc the class or interface from which the method is accessed
1861          * @param name the field's name
1862          * @param type the field's type
1863          * @return a method handle which can store values into the field
1864          * @throws NoSuchFieldException if the field does not exist
1865          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1866          * @exception SecurityException if a security manager is present and it
1867          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1868          * @throws NullPointerException if any argument is null
1869          */
1870         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1871             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
1872             return getDirectField(REF_putStatic, refc, field);
1873         }
1874 
1875         /**
1876          * Produces a VarHandle giving access to a static field {@code name} of
1877          * type {@code type} declared in a class of type {@code decl}.
1878          * The VarHandle's variable type is {@code type} and it has no
1879          * coordinate types.
1880          * <p>
1881          * Access checking is performed immediately on behalf of the lookup
1882          * class.
1883          * <p>
1884          * If the returned VarHandle is operated on, the declaring class will be
1885          * initialized, if it has not already been initialized.
1886          * <p>
1887          * Certain access modes of the returned VarHandle are unsupported under
1888          * the following conditions:
1889          * <ul>
1890          * <li>if the field is declared {@code final}, then the write, atomic
1891          *     update, numeric atomic update, and bitwise atomic update access
1892          *     modes are unsupported.
1893          * <li>if the field type is anything other than {@code byte},
1894          *     {@code short}, {@code char}, {@code int}, {@code long},
1895          *     {@code float}, or {@code double}, then numeric atomic update
1896          *     access modes are unsupported.
1897          * <li>if the field type is anything other than {@code boolean},
1898          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1899          *     {@code long} then bitwise atomic update access modes are
1900          *     unsupported.
1901          * </ul>
1902          * <p>
1903          * If the field is declared {@code volatile} then the returned VarHandle
1904          * will override access to the field (effectively ignore the
1905          * {@code volatile} declaration) in accordance to its specified
1906          * access modes.
1907          * <p>
1908          * If the field type is {@code float} or {@code double} then numeric
1909          * and atomic update access modes compare values using their bitwise
1910          * representation (see {@link Float#floatToRawIntBits} and
1911          * {@link Double#doubleToRawLongBits}, respectively).
1912          * @apiNote
1913          * Bitwise comparison of {@code float} values or {@code double} values,
1914          * as performed by the numeric and atomic update access modes, differ
1915          * from the primitive {@code ==} operator and the {@link Float#equals}
1916          * and {@link Double#equals} methods, specifically with respect to
1917          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1918          * Care should be taken when performing a compare and set or a compare
1919          * and exchange operation with such values since the operation may
1920          * unexpectedly fail.
1921          * There are many possible NaN values that are considered to be
1922          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1923          * provided by Java can distinguish between them.  Operation failure can
1924          * occur if the expected or witness value is a NaN value and it is
1925          * transformed (perhaps in a platform specific manner) into another NaN
1926          * value, and thus has a different bitwise representation (see
1927          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1928          * details).
1929          * The values {@code -0.0} and {@code +0.0} have different bitwise
1930          * representations but are considered equal when using the primitive
1931          * {@code ==} operator.  Operation failure can occur if, for example, a
1932          * numeric algorithm computes an expected value to be say {@code -0.0}
1933          * and previously computed the witness value to be say {@code +0.0}.
1934          * @param decl the class that declares the static field
1935          * @param name the field's name
1936          * @param type the field's type, of type {@code T}
1937          * @return a VarHandle giving access to a static field
1938          * @throws NoSuchFieldException if the field does not exist
1939          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1940          * @exception SecurityException if a security manager is present and it
1941          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1942          * @throws NullPointerException if any argument is null
1943          * @since 9
1944          */
1945         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1946             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
1947             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
1948             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
1949         }
1950 
1951         /**
1952          * Produces an early-bound method handle for a non-static method.
1953          * The receiver must have a supertype {@code defc} in which a method
1954          * of the given name and type is accessible to the lookup class.
1955          * The method and all its argument types must be accessible to the lookup object.
1956          * The type of the method handle will be that of the method,
1957          * without any insertion of an additional receiver parameter.
1958          * The given receiver will be bound into the method handle,
1959          * so that every call to the method handle will invoke the
1960          * requested method on the given receiver.
1961          * <p>
1962          * The returned method handle will have
1963          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1964          * the method's variable arity modifier bit ({@code 0x0080}) is set
1965          * <em>and</em> the trailing array argument is not the only argument.
1966          * (If the trailing array argument is the only argument,
1967          * the given receiver value will be bound to it.)
1968          * <p>
1969          * This is almost equivalent to the following code, with some differences noted below:
1970          * <blockquote><pre>{@code
1971 import static java.lang.invoke.MethodHandles.*;
1972 import static java.lang.invoke.MethodType.*;
1973 ...
1974 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
1975 MethodHandle mh1 = mh0.bindTo(receiver);
1976 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
1977 return mh1;
1978          * }</pre></blockquote>
1979          * where {@code defc} is either {@code receiver.getClass()} or a super
1980          * type of that class, in which the requested method is accessible
1981          * to the lookup class.
1982          * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity.
1983          * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would
1984          * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and
1985          * the receiver is restricted by {@code findVirtual} to the lookup class.)
1986          * @param receiver the object from which the method is accessed
1987          * @param name the name of the method
1988          * @param type the type of the method, with the receiver argument omitted
1989          * @return the desired method handle
1990          * @throws NoSuchMethodException if the method does not exist
1991          * @throws IllegalAccessException if access checking fails
1992          *                                or if the method's variable arity modifier bit
1993          *                                is set and {@code asVarargsCollector} fails
1994          * @exception SecurityException if a security manager is present and it
1995          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1996          * @throws NullPointerException if any argument is null
1997          * @see MethodHandle#bindTo
1998          * @see #findVirtual
1999          */
2000         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2001             Class<? extends Object> refc = receiver.getClass(); // may get NPE
2002             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
2003             MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerClass(method));
2004             if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) {
2005                 throw new IllegalAccessException("The restricted defining class " +
2006                                                  mh.type().leadingReferenceParameter().getName() +
2007                                                  " is not assignable from receiver class " +
2008                                                  receiver.getClass().getName());
2009             }
2010             return mh.bindArgumentL(0, receiver).setVarargs(method);
2011         }
2012 
2013         /**
2014          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
2015          * to <i>m</i>, if the lookup class has permission.
2016          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
2017          * If <i>m</i> is virtual, overriding is respected on every call.
2018          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
2019          * The type of the method handle will be that of the method,
2020          * with the receiver type prepended (but only if it is non-static).
2021          * If the method's {@code accessible} flag is not set,
2022          * access checking is performed immediately on behalf of the lookup class.
2023          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
2024          * <p>
2025          * The returned method handle will have
2026          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2027          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2028          * <p>
2029          * If <i>m</i> is static, and
2030          * if the returned method handle is invoked, the method's class will
2031          * be initialized, if it has not already been initialized.
2032          * @param m the reflected method
2033          * @return a method handle which can invoke the reflected method
2034          * @throws IllegalAccessException if access checking fails
2035          *                                or if the method's variable arity modifier bit
2036          *                                is set and {@code asVarargsCollector} fails
2037          * @throws NullPointerException if the argument is null
2038          */
2039         public MethodHandle unreflect(Method m) throws IllegalAccessException {
2040             if (m.getDeclaringClass() == MethodHandle.class) {
2041                 MethodHandle mh = unreflectForMH(m);
2042                 if (mh != null)  return mh;
2043             }
2044             if (m.getDeclaringClass() == VarHandle.class) {
2045                 MethodHandle mh = unreflectForVH(m);
2046                 if (mh != null)  return mh;
2047             }
2048             MemberName method = new MemberName(m);
2049             byte refKind = method.getReferenceKind();
2050             if (refKind == REF_invokeSpecial)
2051                 refKind = REF_invokeVirtual;
2052             assert(method.isMethod());
2053             @SuppressWarnings("deprecation")
2054             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
2055             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
2056         }
2057         private MethodHandle unreflectForMH(Method m) {
2058             // these names require special lookups because they throw UnsupportedOperationException
2059             if (MemberName.isMethodHandleInvokeName(m.getName()))
2060                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
2061             return null;
2062         }
2063         private MethodHandle unreflectForVH(Method m) {
2064             // these names require special lookups because they throw UnsupportedOperationException
2065             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
2066                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
2067             return null;
2068         }
2069 
2070         /**
2071          * Produces a method handle for a reflected method.
2072          * It will bypass checks for overriding methods on the receiver,
2073          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
2074          * instruction from within the explicitly specified {@code specialCaller}.
2075          * The type of the method handle will be that of the method,
2076          * with a suitably restricted receiver type prepended.
2077          * (The receiver type will be {@code specialCaller} or a subtype.)
2078          * If the method's {@code accessible} flag is not set,
2079          * access checking is performed immediately on behalf of the lookup class,
2080          * as if {@code invokespecial} instruction were being linked.
2081          * <p>
2082          * Before method resolution,
2083          * if the explicitly specified caller class is not identical with the
2084          * lookup class, or if this lookup object does not have
2085          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
2086          * privileges, the access fails.
2087          * <p>
2088          * The returned method handle will have
2089          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2090          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2091          * @param m the reflected method
2092          * @param specialCaller the class nominally calling the method
2093          * @return a method handle which can invoke the reflected method
2094          * @throws IllegalAccessException if access checking fails,
2095          *                                or if the method is {@code static},
2096          *                                or if the method's variable arity modifier bit
2097          *                                is set and {@code asVarargsCollector} fails
2098          * @throws NullPointerException if any argument is null
2099          */
2100         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
2101             checkSpecialCaller(specialCaller, null);
2102             Lookup specialLookup = this.in(specialCaller);
2103             MemberName method = new MemberName(m, true);
2104             assert(method.isMethod());
2105             // ignore m.isAccessible:  this is a new kind of access
2106             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
2107         }
2108 
2109         /**
2110          * Produces a method handle for a reflected constructor.
2111          * The type of the method handle will be that of the constructor,
2112          * with the return type changed to the declaring class.
2113          * The method handle will perform a {@code newInstance} operation,
2114          * creating a new instance of the constructor's class on the
2115          * arguments passed to the method handle.
2116          * <p>
2117          * If the constructor's {@code accessible} flag is not set,
2118          * access checking is performed immediately on behalf of the lookup class.
2119          * <p>
2120          * The returned method handle will have
2121          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2122          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
2123          * <p>
2124          * If the returned method handle is invoked, the constructor's class will
2125          * be initialized, if it has not already been initialized.
2126          * @param c the reflected constructor
2127          * @return a method handle which can invoke the reflected constructor
2128          * @throws IllegalAccessException if access checking fails
2129          *                                or if the method's variable arity modifier bit
2130          *                                is set and {@code asVarargsCollector} fails
2131          * @throws NullPointerException if the argument is null
2132          */
2133         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
2134             MemberName ctor = new MemberName(c);
2135             assert(ctor.isConstructor());
2136             @SuppressWarnings("deprecation")
2137             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
2138             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
2139         }
2140 
2141         /**
2142          * Produces a method handle giving read access to a reflected field.
2143          * The type of the method handle will have a return type of the field's
2144          * value type.
2145          * If the field is static, the method handle will take no arguments.
2146          * Otherwise, its single argument will be the instance containing
2147          * the field.
2148          * If the field's {@code accessible} flag is not set,
2149          * access checking is performed immediately on behalf of the lookup class.
2150          * <p>
2151          * If the field is static, and
2152          * if the returned method handle is invoked, the field's class will
2153          * be initialized, if it has not already been initialized.
2154          * @param f the reflected field
2155          * @return a method handle which can load values from the reflected field
2156          * @throws IllegalAccessException if access checking fails
2157          * @throws NullPointerException if the argument is null
2158          */
2159         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
2160             return unreflectField(f, false);
2161         }
2162         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
2163             MemberName field = new MemberName(f, isSetter);
2164             assert(isSetter
2165                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
2166                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
2167             @SuppressWarnings("deprecation")
2168             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
2169             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
2170         }
2171 
2172         /**
2173          * Produces a method handle giving write access to a reflected field.
2174          * The type of the method handle will have a void return type.
2175          * If the field is static, the method handle will take a single
2176          * argument, of the field's value type, the value to be stored.
2177          * Otherwise, the two arguments will be the instance containing
2178          * the field, and the value to be stored.
2179          * If the field's {@code accessible} flag is not set,
2180          * access checking is performed immediately on behalf of the lookup class.
2181          * <p>
2182          * If the field is static, and
2183          * if the returned method handle is invoked, the field's class will
2184          * be initialized, if it has not already been initialized.
2185          * @param f the reflected field
2186          * @return a method handle which can store values into the reflected field
2187          * @throws IllegalAccessException if access checking fails
2188          * @throws NullPointerException if the argument is null
2189          */
2190         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
2191             return unreflectField(f, true);
2192         }
2193 
2194         /**
2195          * Produces a VarHandle giving access to a reflected field {@code f}
2196          * of type {@code T} declared in a class of type {@code R}.
2197          * The VarHandle's variable type is {@code T}.
2198          * If the field is non-static the VarHandle has one coordinate type,
2199          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
2200          * coordinate types.
2201          * <p>
2202          * Access checking is performed immediately on behalf of the lookup
2203          * class, regardless of the value of the field's {@code accessible}
2204          * flag.
2205          * <p>
2206          * If the field is static, and if the returned VarHandle is operated
2207          * on, the field's declaring class will be initialized, if it has not
2208          * already been initialized.
2209          * <p>
2210          * Certain access modes of the returned VarHandle are unsupported under
2211          * the following conditions:
2212          * <ul>
2213          * <li>if the field is declared {@code final}, then the write, atomic
2214          *     update, numeric atomic update, and bitwise atomic update access
2215          *     modes are unsupported.
2216          * <li>if the field type is anything other than {@code byte},
2217          *     {@code short}, {@code char}, {@code int}, {@code long},
2218          *     {@code float}, or {@code double} then numeric atomic update
2219          *     access modes are unsupported.
2220          * <li>if the field type is anything other than {@code boolean},
2221          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2222          *     {@code long} then bitwise atomic update access modes are
2223          *     unsupported.
2224          * </ul>
2225          * <p>
2226          * If the field is declared {@code volatile} then the returned VarHandle
2227          * will override access to the field (effectively ignore the
2228          * {@code volatile} declaration) in accordance to its specified
2229          * access modes.
2230          * <p>
2231          * If the field type is {@code float} or {@code double} then numeric
2232          * and atomic update access modes compare values using their bitwise
2233          * representation (see {@link Float#floatToRawIntBits} and
2234          * {@link Double#doubleToRawLongBits}, respectively).
2235          * @apiNote
2236          * Bitwise comparison of {@code float} values or {@code double} values,
2237          * as performed by the numeric and atomic update access modes, differ
2238          * from the primitive {@code ==} operator and the {@link Float#equals}
2239          * and {@link Double#equals} methods, specifically with respect to
2240          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2241          * Care should be taken when performing a compare and set or a compare
2242          * and exchange operation with such values since the operation may
2243          * unexpectedly fail.
2244          * There are many possible NaN values that are considered to be
2245          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2246          * provided by Java can distinguish between them.  Operation failure can
2247          * occur if the expected or witness value is a NaN value and it is
2248          * transformed (perhaps in a platform specific manner) into another NaN
2249          * value, and thus has a different bitwise representation (see
2250          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2251          * details).
2252          * The values {@code -0.0} and {@code +0.0} have different bitwise
2253          * representations but are considered equal when using the primitive
2254          * {@code ==} operator.  Operation failure can occur if, for example, a
2255          * numeric algorithm computes an expected value to be say {@code -0.0}
2256          * and previously computed the witness value to be say {@code +0.0}.
2257          * @param f the reflected field, with a field of type {@code T}, and
2258          * a declaring class of type {@code R}
2259          * @return a VarHandle giving access to non-static fields or a static
2260          * field
2261          * @throws IllegalAccessException if access checking fails
2262          * @throws NullPointerException if the argument is null
2263          * @since 9
2264          */
2265         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
2266             MemberName getField = new MemberName(f, false);
2267             MemberName putField = new MemberName(f, true);
2268             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
2269                                                       f.getDeclaringClass(), getField, putField);
2270         }
2271 
2272         /**
2273          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
2274          * created by this lookup object or a similar one.
2275          * Security and access checks are performed to ensure that this lookup object
2276          * is capable of reproducing the target method handle.
2277          * This means that the cracking may fail if target is a direct method handle
2278          * but was created by an unrelated lookup object.
2279          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
2280          * and was created by a lookup object for a different class.
2281          * @param target a direct method handle to crack into symbolic reference components
2282          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
2283          * @exception SecurityException if a security manager is present and it
2284          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2285          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
2286          * @exception NullPointerException if the target is {@code null}
2287          * @see MethodHandleInfo
2288          * @since 1.8
2289          */
2290         public MethodHandleInfo revealDirect(MethodHandle target) {
2291             MemberName member = target.internalMemberName();
2292             if (member == null || (!member.isResolved() &&
2293                                    !member.isMethodHandleInvoke() &&
2294                                    !member.isVarHandleMethodInvoke()))
2295                 throw newIllegalArgumentException("not a direct method handle");
2296             Class<?> defc = member.getDeclaringClass();
2297             byte refKind = member.getReferenceKind();
2298             assert(MethodHandleNatives.refKindIsValid(refKind));
2299             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
2300                 // Devirtualized method invocation is usually formally virtual.
2301                 // To avoid creating extra MemberName objects for this common case,
2302                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
2303                 refKind = REF_invokeVirtual;
2304             if (refKind == REF_invokeVirtual && defc.isInterface())
2305                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
2306                 refKind = REF_invokeInterface;
2307             // Check SM permissions and member access before cracking.
2308             try {
2309                 checkAccess(refKind, defc, member);
2310                 checkSecurityManager(defc, member);
2311             } catch (IllegalAccessException ex) {
2312                 throw new IllegalArgumentException(ex);
2313             }
2314             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
2315                 Class<?> callerClass = target.internalCallerClass();
2316                 if (!hasPrivateAccess() || callerClass != lookupClass())
2317                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
2318             }
2319             // Produce the handle to the results.
2320             return new InfoFromMemberName(this, member, refKind);
2321         }
2322 
2323         /// Helper methods, all package-private.
2324 
2325         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2326             checkSymbolicClass(refc);  // do this before attempting to resolve
2327             Objects.requireNonNull(name);
2328             Objects.requireNonNull(type);
2329             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2330                                             NoSuchFieldException.class);
2331         }
2332 
2333         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2334             checkSymbolicClass(refc);  // do this before attempting to resolve
2335             Objects.requireNonNull(name);
2336             Objects.requireNonNull(type);
2337             checkMethodName(refKind, name);  // NPE check on name
2338             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2339                                             NoSuchMethodException.class);
2340         }
2341 
2342         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
2343             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
2344             Objects.requireNonNull(member.getName());
2345             Objects.requireNonNull(member.getType());
2346             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
2347                                             ReflectiveOperationException.class);
2348         }
2349 
2350         MemberName resolveOrNull(byte refKind, MemberName member) {
2351             // do this before attempting to resolve
2352             if (!isClassAccessible(member.getDeclaringClass())) {
2353                 return null;
2354             }
2355             Objects.requireNonNull(member.getName());
2356             Objects.requireNonNull(member.getType());
2357             return IMPL_NAMES.resolveOrNull(refKind, member, lookupClassOrNull());
2358         }
2359 
2360         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
2361             if (!isClassAccessible(refc)) {
2362                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
2363             }
2364         }
2365 
2366         boolean isClassAccessible(Class<?> refc) {
2367             Objects.requireNonNull(refc);
2368             Class<?> caller = lookupClassOrNull();
2369             return caller == null || VerifyAccess.isClassAccessible(refc, caller, allowedModes);
2370         }
2371 
2372         /** Check name for an illegal leading "&lt;" character. */
2373         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
2374             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
2375                 throw new NoSuchMethodException("illegal method name: "+name);
2376         }
2377 
2378 
2379         /**
2380          * Find my trustable caller class if m is a caller sensitive method.
2381          * If this lookup object has private access, then the caller class is the lookupClass.
2382          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
2383          */
2384         Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
2385             Class<?> callerClass = null;
2386             if (MethodHandleNatives.isCallerSensitive(m)) {
2387                 // Only lookups with private access are allowed to resolve caller-sensitive methods
2388                 if (hasPrivateAccess()) {
2389                     callerClass = lookupClass;
2390                 } else {
2391                     throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
2392                 }
2393             }
2394             return callerClass;
2395         }
2396 
2397         /**
2398          * Returns {@code true} if this lookup has {@code PRIVATE} access.
2399          * @return {@code true} if this lookup has {@code PRIVATE} access.
2400          * @since 9
2401          */
2402         public boolean hasPrivateAccess() {
2403             return (allowedModes & PRIVATE) != 0;
2404         }
2405 
2406         /**
2407          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
2408          * Determines a trustable caller class to compare with refc, the symbolic reference class.
2409          * If this lookup object has private access, then the caller class is the lookupClass.
2410          */
2411         void checkSecurityManager(Class<?> refc, MemberName m) {
2412             SecurityManager smgr = System.getSecurityManager();
2413             if (smgr == null)  return;
2414             if (allowedModes == TRUSTED)  return;
2415 
2416             // Step 1:
2417             boolean fullPowerLookup = hasPrivateAccess();
2418             if (!fullPowerLookup ||
2419                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
2420                 ReflectUtil.checkPackageAccess(refc);
2421             }
2422 
2423             if (m == null) {  // findClass or accessClass
2424                 // Step 2b:
2425                 if (!fullPowerLookup) {
2426                     smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
2427                 }
2428                 return;
2429             }
2430 
2431             // Step 2a:
2432             if (m.isPublic()) return;
2433             if (!fullPowerLookup) {
2434                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
2435             }
2436 
2437             // Step 3:
2438             Class<?> defc = m.getDeclaringClass();
2439             if (!fullPowerLookup && defc != refc) {
2440                 ReflectUtil.checkPackageAccess(defc);
2441             }
2442         }
2443 
2444         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2445             boolean wantStatic = (refKind == REF_invokeStatic);
2446             String message;
2447             if (m.isConstructor())
2448                 message = "expected a method, not a constructor";
2449             else if (!m.isMethod())
2450                 message = "expected a method";
2451             else if (wantStatic != m.isStatic())
2452                 message = wantStatic ? "expected a static method" : "expected a non-static method";
2453             else
2454                 { checkAccess(refKind, refc, m); return; }
2455             throw m.makeAccessException(message, this);
2456         }
2457 
2458         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2459             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
2460             String message;
2461             if (wantStatic != m.isStatic())
2462                 message = wantStatic ? "expected a static field" : "expected a non-static field";
2463             else
2464                 { checkAccess(refKind, refc, m); return; }
2465             throw m.makeAccessException(message, this);
2466         }
2467 
2468         /** Check public/protected/private bits on the symbolic reference class and its member. */
2469         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2470             assert(m.referenceKindIsConsistentWith(refKind) &&
2471                    MethodHandleNatives.refKindIsValid(refKind) &&
2472                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
2473             int allowedModes = this.allowedModes;
2474             if (allowedModes == TRUSTED)  return;
2475             int mods = m.getModifiers();
2476             if (Modifier.isProtected(mods) &&
2477                     refKind == REF_invokeVirtual &&
2478                     m.getDeclaringClass() == Object.class &&
2479                     m.getName().equals("clone") &&
2480                     refc.isArray()) {
2481                 // The JVM does this hack also.
2482                 // (See ClassVerifier::verify_invoke_instructions
2483                 // and LinkResolver::check_method_accessability.)
2484                 // Because the JVM does not allow separate methods on array types,
2485                 // there is no separate method for int[].clone.
2486                 // All arrays simply inherit Object.clone.
2487                 // But for access checking logic, we make Object.clone
2488                 // (normally protected) appear to be public.
2489                 // Later on, when the DirectMethodHandle is created,
2490                 // its leading argument will be restricted to the
2491                 // requested array type.
2492                 // N.B. The return type is not adjusted, because
2493                 // that is *not* the bytecode behavior.
2494                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
2495             }
2496             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
2497                 // cannot "new" a protected ctor in a different package
2498                 mods ^= Modifier.PROTECTED;
2499             }
2500             if (Modifier.isFinal(mods) &&
2501                     MethodHandleNatives.refKindIsSetter(refKind))
2502                 throw m.makeAccessException("unexpected set of a final field", this);
2503             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
2504             if ((requestedModes & allowedModes) != 0) {
2505                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
2506                                                     mods, lookupClass(), allowedModes))
2507                     return;
2508             } else {
2509                 // Protected members can also be checked as if they were package-private.
2510                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
2511                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
2512                     return;
2513             }
2514             throw m.makeAccessException(accessFailedMessage(refc, m), this);
2515         }
2516 
2517         String accessFailedMessage(Class<?> refc, MemberName m) {
2518             Class<?> defc = m.getDeclaringClass();
2519             int mods = m.getModifiers();
2520             // check the class first:
2521             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
2522                                (defc == refc ||
2523                                 Modifier.isPublic(refc.getModifiers())));
2524             if (!classOK && (allowedModes & PACKAGE) != 0) {
2525                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), FULL_POWER_MODES) &&
2526                            (defc == refc ||
2527                             VerifyAccess.isClassAccessible(refc, lookupClass(), FULL_POWER_MODES)));
2528             }
2529             if (!classOK)
2530                 return "class is not public";
2531             if (Modifier.isPublic(mods))
2532                 return "access to public member failed";  // (how?, module not readable?)
2533             if (Modifier.isPrivate(mods))
2534                 return "member is private";
2535             if (Modifier.isProtected(mods))
2536                 return "member is protected";
2537             return "member is private to package";
2538         }
2539 
2540         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
2541             int allowedModes = this.allowedModes;
2542             if (allowedModes == TRUSTED)  return;
2543             if (!hasPrivateAccess()
2544                 || (specialCaller != lookupClass()
2545                        // ensure non-abstract methods in superinterfaces can be special-invoked
2546                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))))
2547                 throw new MemberName(specialCaller).
2548                     makeAccessException("no private access for invokespecial", this);
2549         }
2550 
2551         private boolean restrictProtectedReceiver(MemberName method) {
2552             // The accessing class only has the right to use a protected member
2553             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
2554             if (!method.isProtected() || method.isStatic()
2555                 || allowedModes == TRUSTED
2556                 || method.getDeclaringClass() == lookupClass()
2557                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass()))
2558                 return false;
2559             return true;
2560         }
2561         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
2562             assert(!method.isStatic());
2563             // receiver type of mh is too wide; narrow to caller
2564             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
2565                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
2566             }
2567             MethodType rawType = mh.type();
2568             if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow
2569             MethodType narrowType = rawType.changeParameterType(0, caller);
2570             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
2571             assert(mh.viewAsTypeChecks(narrowType, true));
2572             return mh.copyWith(narrowType, mh.form);
2573         }
2574 
2575         /** Check access and get the requested method. */
2576         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
2577             final boolean doRestrict    = true;
2578             final boolean checkSecurity = true;
2579             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, boundCallerClass);
2580         }
2581         /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */
2582         private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
2583             final boolean doRestrict    = false;
2584             final boolean checkSecurity = true;
2585             return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, boundCallerClass);
2586         }
2587         /** Check access and get the requested method, eliding security manager checks. */
2588         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
2589             final boolean doRestrict    = true;
2590             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2591             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, boundCallerClass);
2592         }
2593         /** Common code for all methods; do not call directly except from immediately above. */
2594         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
2595                                                    boolean checkSecurity,
2596                                                    boolean doRestrict, Class<?> boundCallerClass) throws IllegalAccessException {
2597 
2598             checkMethod(refKind, refc, method);
2599             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2600             if (checkSecurity)
2601                 checkSecurityManager(refc, method);
2602             assert(!method.isMethodHandleInvoke());
2603 
2604             if (refKind == REF_invokeSpecial &&
2605                 refc != lookupClass() &&
2606                 !refc.isInterface() &&
2607                 refc != lookupClass().getSuperclass() &&
2608                 refc.isAssignableFrom(lookupClass())) {
2609                 assert(!method.getName().equals("<init>"));  // not this code path
2610 
2611                 // Per JVMS 6.5, desc. of invokespecial instruction:
2612                 // If the method is in a superclass of the LC,
2613                 // and if our original search was above LC.super,
2614                 // repeat the search (symbolic lookup) from LC.super
2615                 // and continue with the direct superclass of that class,
2616                 // and so forth, until a match is found or no further superclasses exist.
2617                 // FIXME: MemberName.resolve should handle this instead.
2618                 Class<?> refcAsSuper = lookupClass();
2619                 MemberName m2;
2620                 do {
2621                     refcAsSuper = refcAsSuper.getSuperclass();
2622                     m2 = new MemberName(refcAsSuper,
2623                                         method.getName(),
2624                                         method.getMethodType(),
2625                                         REF_invokeSpecial);
2626                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
2627                 } while (m2 == null &&         // no method is found yet
2628                          refc != refcAsSuper); // search up to refc
2629                 if (m2 == null)  throw new InternalError(method.toString());
2630                 method = m2;
2631                 refc = refcAsSuper;
2632                 // redo basic checks
2633                 checkMethod(refKind, refc, method);
2634             }
2635 
2636             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method, lookupClass());
2637             MethodHandle mh = dmh;
2638             // Optionally narrow the receiver argument to lookupClass using restrictReceiver.
2639             if ((doRestrict && refKind == REF_invokeSpecial) ||
2640                     (MethodHandleNatives.refKindHasReceiver(refKind) && restrictProtectedReceiver(method))) {
2641                 mh = restrictReceiver(method, dmh, lookupClass());
2642             }
2643             mh = maybeBindCaller(method, mh, boundCallerClass);
2644             mh = mh.setVarargs(method);
2645             return mh;
2646         }
2647         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
2648                                              Class<?> boundCallerClass)
2649                                              throws IllegalAccessException {
2650             if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
2651                 return mh;
2652             Class<?> hostClass = lookupClass;
2653             if (!hasPrivateAccess())  // caller must have private access
2654                 hostClass = boundCallerClass;  // boundCallerClass came from a security manager style stack walk
2655             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
2656             // Note: caller will apply varargs after this step happens.
2657             return cbmh;
2658         }
2659         /** Check access and get the requested field. */
2660         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
2661             final boolean checkSecurity = true;
2662             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
2663         }
2664         /** Check access and get the requested field, eliding security manager checks. */
2665         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
2666             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2667             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
2668         }
2669         /** Common code for all fields; do not call directly except from immediately above. */
2670         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
2671                                                   boolean checkSecurity) throws IllegalAccessException {
2672             checkField(refKind, refc, field);
2673             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2674             if (checkSecurity)
2675                 checkSecurityManager(refc, field);
2676             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
2677             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
2678                                     restrictProtectedReceiver(field));
2679             if (doRestrict)
2680                 return restrictReceiver(field, dmh, lookupClass());
2681             return dmh;
2682         }
2683         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
2684                                             Class<?> refc, MemberName getField, MemberName putField)
2685                 throws IllegalAccessException {
2686             final boolean checkSecurity = true;
2687             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2688         }
2689         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
2690                                                              Class<?> refc, MemberName getField, MemberName putField)
2691                 throws IllegalAccessException {
2692             final boolean checkSecurity = false;
2693             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2694         }
2695         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
2696                                                   Class<?> refc, MemberName getField, MemberName putField,
2697                                                   boolean checkSecurity) throws IllegalAccessException {
2698             assert getField.isStatic() == putField.isStatic();
2699             assert getField.isGetter() && putField.isSetter();
2700             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
2701             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
2702 
2703             checkField(getRefKind, refc, getField);
2704             if (checkSecurity)
2705                 checkSecurityManager(refc, getField);
2706 
2707             if (!putField.isFinal()) {
2708                 // A VarHandle does not support updates to final fields, any
2709                 // such VarHandle to a final field will be read-only and
2710                 // therefore the following write-based accessibility checks are
2711                 // only required for non-final fields
2712                 checkField(putRefKind, refc, putField);
2713                 if (checkSecurity)
2714                     checkSecurityManager(refc, putField);
2715             }
2716 
2717             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
2718                                   restrictProtectedReceiver(getField));
2719             if (doRestrict) {
2720                 assert !getField.isStatic();
2721                 // receiver type of VarHandle is too wide; narrow to caller
2722                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
2723                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
2724                 }
2725                 refc = lookupClass();
2726             }
2727             return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED);
2728         }
2729         /** Check access and get the requested constructor. */
2730         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2731             final boolean checkSecurity = true;
2732             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2733         }
2734         /** Check access and get the requested constructor, eliding security manager checks. */
2735         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2736             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2737             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2738         }
2739         /** Common code for all constructors; do not call directly except from immediately above. */
2740         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
2741                                                   boolean checkSecurity) throws IllegalAccessException {
2742             assert(ctor.isConstructor());
2743             checkAccess(REF_newInvokeSpecial, refc, ctor);
2744             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2745             if (checkSecurity)
2746                 checkSecurityManager(refc, ctor);
2747             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
2748             return DirectMethodHandle.make(ctor).setVarargs(ctor);
2749         }
2750 
2751         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
2752          */
2753         /*non-public*/
2754         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
2755             if (!(type instanceof Class || type instanceof MethodType))
2756                 throw new InternalError("unresolved MemberName");
2757             MemberName member = new MemberName(refKind, defc, name, type);
2758             MethodHandle mh = LOOKASIDE_TABLE.get(member);
2759             if (mh != null) {
2760                 checkSymbolicClass(defc);
2761                 return mh;
2762             }
2763             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
2764                 // Treat MethodHandle.invoke and invokeExact specially.
2765                 mh = findVirtualForMH(member.getName(), member.getMethodType());
2766                 if (mh != null) {
2767                     return mh;
2768                 }
2769             } else if (defc == VarHandle.class && refKind == REF_invokeVirtual) {
2770                 // Treat signature-polymorphic methods on VarHandle specially.
2771                 mh = findVirtualForVH(member.getName(), member.getMethodType());
2772                 if (mh != null) {
2773                     return mh;
2774                 }
2775             }
2776             MemberName resolved = resolveOrFail(refKind, member);
2777             mh = getDirectMethodForConstant(refKind, defc, resolved);
2778             if (mh instanceof DirectMethodHandle
2779                     && canBeCached(refKind, defc, resolved)) {
2780                 MemberName key = mh.internalMemberName();
2781                 if (key != null) {
2782                     key = key.asNormalOriginal();
2783                 }
2784                 if (member.equals(key)) {  // better safe than sorry
2785                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
2786                 }
2787             }
2788             return mh;
2789         }
2790         private
2791         boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
2792             if (refKind == REF_invokeSpecial) {
2793                 return false;
2794             }
2795             if (!Modifier.isPublic(defc.getModifiers()) ||
2796                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
2797                     !member.isPublic() ||
2798                     member.isCallerSensitive()) {
2799                 return false;
2800             }
2801             ClassLoader loader = defc.getClassLoader();
2802             if (loader != null) {
2803                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
2804                 boolean found = false;
2805                 while (sysl != null) {
2806                     if (loader == sysl) { found = true; break; }
2807                     sysl = sysl.getParent();
2808                 }
2809                 if (!found) {
2810                     return false;
2811                 }
2812             }
2813             try {
2814                 MemberName resolved2 = publicLookup().resolveOrNull(refKind,
2815                     new MemberName(refKind, defc, member.getName(), member.getType()));
2816                 if (resolved2 == null) {
2817                     return false;
2818                 }
2819                 checkSecurityManager(defc, resolved2);
2820             } catch (SecurityException ex) {
2821                 return false;
2822             }
2823             return true;
2824         }
2825         private
2826         MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
2827                 throws ReflectiveOperationException {
2828             if (MethodHandleNatives.refKindIsField(refKind)) {
2829                 return getDirectFieldNoSecurityManager(refKind, defc, member);
2830             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
2831                 return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
2832             } else if (refKind == REF_newInvokeSpecial) {
2833                 return getDirectConstructorNoSecurityManager(defc, member);
2834             }
2835             // oops
2836             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
2837         }
2838 
2839         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
2840 
2841         /**
2842          * Property of a class to be defined via the
2843          * {@link Lookup#defineClass(byte[], ClassProperty[]) Lookup.defineClass} method.
2844          *
2845          * @since 12
2846          * @see Lookup#defineClass(byte[], ClassProperty[])
2847          * @see Lookup#defineClassWithClassData(byte[], Object, ClassProperty[])
2848          */
2849         public enum ClassProperty {
2850             /**
2851              * A nestmate is a class that is in the same {@linkplain Class#getNestHost nest}
2852              * of a lookup class.  It has access to the private members of all
2853              * classes and interfaces in the same nest.
2854              *
2855              * @see Class#getNestHost()
2856              */
2857             NESTMATE(NESTMATE_CLASS),
2858 
2859             /**
2860              * A hidden class is a class that cannot be referenced by other
2861              * classes.  A Java Virtual Machine implementation may hide
2862              * the hidden frames from {@linkplain Throwable#getStackTrace()
2863              * stack traces}.
2864              *
2865              * @see Class#isHidden()
2866              * @see StackWalker.Option#SHOW_HIDDEN_FRAMES
2867              */
2868             HIDDEN(NONFINDABLE_CLASS),
2869 
2870             /**
2871              * A weak class is a class that may be unloaded even if
2872              * its defining class loader is
2873              * <a href="../ref/package.html#reachability">reachable</a>.
2874              * A weak class is {@linkplain #HIDDEN hidden}.
2875              *
2876              * @jls 12.7 Unloading of Classes and Interfaces
2877              */
2878             WEAK(WEAK_CLASS);
2879 
2880             /* the flag value is used by VM at define class time */
2881             final int flag;
2882             ClassProperty(int flag) {
2883                 this.flag = flag;
2884             }
2885         }
2886     }
2887 
2888     /**
2889      * Produces a method handle constructing arrays of a desired type,
2890      * as if by the {@code anewarray} bytecode.
2891      * The return type of the method handle will be the array type.
2892      * The type of its sole argument will be {@code int}, which specifies the size of the array.
2893      *
2894      * <p> If the returned method handle is invoked with a negative
2895      * array size, a {@code NegativeArraySizeException} will be thrown.
2896      *
2897      * @param arrayClass an array type
2898      * @return a method handle which can create arrays of the given type
2899      * @throws NullPointerException if the argument is {@code null}
2900      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
2901      * @see java.lang.reflect.Array#newInstance(Class, int)
2902      * @jvms 6.5 {@code anewarray} Instruction
2903      * @since 9
2904      */
2905     public static
2906     MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
2907         if (!arrayClass.isArray()) {
2908             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
2909         }
2910         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
2911                 bindTo(arrayClass.getComponentType());
2912         return ani.asType(ani.type().changeReturnType(arrayClass));
2913     }
2914 
2915     /**
2916      * Produces a method handle returning the length of an array,
2917      * as if by the {@code arraylength} bytecode.
2918      * The type of the method handle will have {@code int} as return type,
2919      * and its sole argument will be the array type.
2920      *
2921      * <p> If the returned method handle is invoked with a {@code null}
2922      * array reference, a {@code NullPointerException} will be thrown.
2923      *
2924      * @param arrayClass an array type
2925      * @return a method handle which can retrieve the length of an array of the given array type
2926      * @throws NullPointerException if the argument is {@code null}
2927      * @throws IllegalArgumentException if arrayClass is not an array type
2928      * @jvms 6.5 {@code arraylength} Instruction
2929      * @since 9
2930      */
2931     public static
2932     MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
2933         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
2934     }
2935 
2936     /**
2937      * Produces a method handle giving read access to elements of an array,
2938      * as if by the {@code aaload} bytecode.
2939      * The type of the method handle will have a return type of the array's
2940      * element type.  Its first argument will be the array type,
2941      * and the second will be {@code int}.
2942      *
2943      * <p> When the returned method handle is invoked,
2944      * the array reference and array index are checked.
2945      * A {@code NullPointerException} will be thrown if the array reference
2946      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
2947      * thrown if the index is negative or if it is greater than or equal to
2948      * the length of the array.
2949      *
2950      * @param arrayClass an array type
2951      * @return a method handle which can load values from the given array type
2952      * @throws NullPointerException if the argument is null
2953      * @throws  IllegalArgumentException if arrayClass is not an array type
2954      * @jvms 6.5 {@code aaload} Instruction
2955      */
2956     public static
2957     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
2958         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
2959     }
2960 
2961     /**
2962      * Produces a method handle giving write access to elements of an array,
2963      * as if by the {@code astore} bytecode.
2964      * The type of the method handle will have a void return type.
2965      * Its last argument will be the array's element type.
2966      * The first and second arguments will be the array type and int.
2967      *
2968      * <p> When the returned method handle is invoked,
2969      * the array reference and array index are checked.
2970      * A {@code NullPointerException} will be thrown if the array reference
2971      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
2972      * thrown if the index is negative or if it is greater than or equal to
2973      * the length of the array.
2974      *
2975      * @param arrayClass the class of an array
2976      * @return a method handle which can store values into the array type
2977      * @throws NullPointerException if the argument is null
2978      * @throws IllegalArgumentException if arrayClass is not an array type
2979      * @jvms 6.5 {@code aastore} Instruction
2980      */
2981     public static
2982     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
2983         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
2984     }
2985 
2986     /**
2987      * Produces a VarHandle giving access to elements of an array of type
2988      * {@code arrayClass}.  The VarHandle's variable type is the component type
2989      * of {@code arrayClass} and the list of coordinate types is
2990      * {@code (arrayClass, int)}, where the {@code int} coordinate type
2991      * corresponds to an argument that is an index into an array.
2992      * <p>
2993      * Certain access modes of the returned VarHandle are unsupported under
2994      * the following conditions:
2995      * <ul>
2996      * <li>if the component type is anything other than {@code byte},
2997      *     {@code short}, {@code char}, {@code int}, {@code long},
2998      *     {@code float}, or {@code double} then numeric atomic update access
2999      *     modes are unsupported.
3000      * <li>if the field type is anything other than {@code boolean},
3001      *     {@code byte}, {@code short}, {@code char}, {@code int} or
3002      *     {@code long} then bitwise atomic update access modes are
3003      *     unsupported.
3004      * </ul>
3005      * <p>
3006      * If the component type is {@code float} or {@code double} then numeric
3007      * and atomic update access modes compare values using their bitwise
3008      * representation (see {@link Float#floatToRawIntBits} and
3009      * {@link Double#doubleToRawLongBits}, respectively).
3010      *
3011      * <p> When the returned {@code VarHandle} is invoked,
3012      * the array reference and array index are checked.
3013      * A {@code NullPointerException} will be thrown if the array reference
3014      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3015      * thrown if the index is negative or if it is greater than or equal to
3016      * the length of the array.
3017      *
3018      * @apiNote
3019      * Bitwise comparison of {@code float} values or {@code double} values,
3020      * as performed by the numeric and atomic update access modes, differ
3021      * from the primitive {@code ==} operator and the {@link Float#equals}
3022      * and {@link Double#equals} methods, specifically with respect to
3023      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3024      * Care should be taken when performing a compare and set or a compare
3025      * and exchange operation with such values since the operation may
3026      * unexpectedly fail.
3027      * There are many possible NaN values that are considered to be
3028      * {@code NaN} in Java, although no IEEE 754 floating-point operation
3029      * provided by Java can distinguish between them.  Operation failure can
3030      * occur if the expected or witness value is a NaN value and it is
3031      * transformed (perhaps in a platform specific manner) into another NaN
3032      * value, and thus has a different bitwise representation (see
3033      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3034      * details).
3035      * The values {@code -0.0} and {@code +0.0} have different bitwise
3036      * representations but are considered equal when using the primitive
3037      * {@code ==} operator.  Operation failure can occur if, for example, a
3038      * numeric algorithm computes an expected value to be say {@code -0.0}
3039      * and previously computed the witness value to be say {@code +0.0}.
3040      * @param arrayClass the class of an array, of type {@code T[]}
3041      * @return a VarHandle giving access to elements of an array
3042      * @throws NullPointerException if the arrayClass is null
3043      * @throws IllegalArgumentException if arrayClass is not an array type
3044      * @since 9
3045      */
3046     public static
3047     VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
3048         return VarHandles.makeArrayElementHandle(arrayClass);
3049     }
3050 
3051     /**
3052      * Produces a VarHandle giving access to elements of a {@code byte[]} array
3053      * viewed as if it were a different primitive array type, such as
3054      * {@code int[]} or {@code long[]}.
3055      * The VarHandle's variable type is the component type of
3056      * {@code viewArrayClass} and the list of coordinate types is
3057      * {@code (byte[], int)}, where the {@code int} coordinate type
3058      * corresponds to an argument that is an index into a {@code byte[]} array.
3059      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
3060      * array, composing bytes to or from a value of the component type of
3061      * {@code viewArrayClass} according to the given endianness.
3062      * <p>
3063      * The supported component types (variables types) are {@code short},
3064      * {@code char}, {@code int}, {@code long}, {@code float} and
3065      * {@code double}.
3066      * <p>
3067      * Access of bytes at a given index will result in an
3068      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
3069      * or greater than the {@code byte[]} array length minus the size (in bytes)
3070      * of {@code T}.
3071      * <p>
3072      * Access of bytes at an index may be aligned or misaligned for {@code T},
3073      * with respect to the underlying memory address, {@code A} say, associated
3074      * with the array and index.
3075      * If access is misaligned then access for anything other than the
3076      * {@code get} and {@code set} access modes will result in an
3077      * {@code IllegalStateException}.  In such cases atomic access is only
3078      * guaranteed with respect to the largest power of two that divides the GCD
3079      * of {@code A} and the size (in bytes) of {@code T}.
3080      * If access is aligned then following access modes are supported and are
3081      * guaranteed to support atomic access:
3082      * <ul>
3083      * <li>read write access modes for all {@code T}, with the exception of
3084      *     access modes {@code get} and {@code set} for {@code long} and
3085      *     {@code double} on 32-bit platforms.
3086      * <li>atomic update access modes for {@code int}, {@code long},
3087      *     {@code float} or {@code double}.
3088      *     (Future major platform releases of the JDK may support additional
3089      *     types for certain currently unsupported access modes.)
3090      * <li>numeric atomic update access modes for {@code int} and {@code long}.
3091      *     (Future major platform releases of the JDK may support additional
3092      *     numeric types for certain currently unsupported access modes.)
3093      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
3094      *     (Future major platform releases of the JDK may support additional
3095      *     numeric types for certain currently unsupported access modes.)
3096      * </ul>
3097      * <p>
3098      * Misaligned access, and therefore atomicity guarantees, may be determined
3099      * for {@code byte[]} arrays without operating on a specific array.  Given
3100      * an {@code index}, {@code T} and it's corresponding boxed type,
3101      * {@code T_BOX}, misalignment may be determined as follows:
3102      * <pre>{@code
3103      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
3104      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
3105      *     alignmentOffset(0, sizeOfT);
3106      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
3107      * boolean isMisaligned = misalignedAtIndex != 0;
3108      * }</pre>
3109      * <p>
3110      * If the variable type is {@code float} or {@code double} then atomic
3111      * update access modes compare values using their bitwise representation
3112      * (see {@link Float#floatToRawIntBits} and
3113      * {@link Double#doubleToRawLongBits}, respectively).
3114      * @param viewArrayClass the view array class, with a component type of
3115      * type {@code T}
3116      * @param byteOrder the endianness of the view array elements, as
3117      * stored in the underlying {@code byte} array
3118      * @return a VarHandle giving access to elements of a {@code byte[]} array
3119      * viewed as if elements corresponding to the components type of the view
3120      * array class
3121      * @throws NullPointerException if viewArrayClass or byteOrder is null
3122      * @throws IllegalArgumentException if viewArrayClass is not an array type
3123      * @throws UnsupportedOperationException if the component type of
3124      * viewArrayClass is not supported as a variable type
3125      * @since 9
3126      */
3127     public static
3128     VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
3129                                      ByteOrder byteOrder) throws IllegalArgumentException {
3130         Objects.requireNonNull(byteOrder);
3131         return VarHandles.byteArrayViewHandle(viewArrayClass,
3132                                               byteOrder == ByteOrder.BIG_ENDIAN);
3133     }
3134 
3135     /**
3136      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
3137      * viewed as if it were an array of elements of a different primitive
3138      * component type to that of {@code byte}, such as {@code int[]} or
3139      * {@code long[]}.
3140      * The VarHandle's variable type is the component type of
3141      * {@code viewArrayClass} and the list of coordinate types is
3142      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
3143      * corresponds to an argument that is an index into a {@code byte[]} array.
3144      * The returned VarHandle accesses bytes at an index in a
3145      * {@code ByteBuffer}, composing bytes to or from a value of the component
3146      * type of {@code viewArrayClass} according to the given endianness.
3147      * <p>
3148      * The supported component types (variables types) are {@code short},
3149      * {@code char}, {@code int}, {@code long}, {@code float} and
3150      * {@code double}.
3151      * <p>
3152      * Access will result in a {@code ReadOnlyBufferException} for anything
3153      * other than the read access modes if the {@code ByteBuffer} is read-only.
3154      * <p>
3155      * Access of bytes at a given index will result in an
3156      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
3157      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
3158      * {@code T}.
3159      * <p>
3160      * Access of bytes at an index may be aligned or misaligned for {@code T},
3161      * with respect to the underlying memory address, {@code A} say, associated
3162      * with the {@code ByteBuffer} and index.
3163      * If access is misaligned then access for anything other than the
3164      * {@code get} and {@code set} access modes will result in an
3165      * {@code IllegalStateException}.  In such cases atomic access is only
3166      * guaranteed with respect to the largest power of two that divides the GCD
3167      * of {@code A} and the size (in bytes) of {@code T}.
3168      * If access is aligned then following access modes are supported and are
3169      * guaranteed to support atomic access:
3170      * <ul>
3171      * <li>read write access modes for all {@code T}, with the exception of
3172      *     access modes {@code get} and {@code set} for {@code long} and
3173      *     {@code double} on 32-bit platforms.
3174      * <li>atomic update access modes for {@code int}, {@code long},
3175      *     {@code float} or {@code double}.
3176      *     (Future major platform releases of the JDK may support additional
3177      *     types for certain currently unsupported access modes.)
3178      * <li>numeric atomic update access modes for {@code int} and {@code long}.
3179      *     (Future major platform releases of the JDK may support additional
3180      *     numeric types for certain currently unsupported access modes.)
3181      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
3182      *     (Future major platform releases of the JDK may support additional
3183      *     numeric types for certain currently unsupported access modes.)
3184      * </ul>
3185      * <p>
3186      * Misaligned access, and therefore atomicity guarantees, may be determined
3187      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
3188      * {@code index}, {@code T} and it's corresponding boxed type,
3189      * {@code T_BOX}, as follows:
3190      * <pre>{@code
3191      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
3192      * ByteBuffer bb = ...
3193      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
3194      * boolean isMisaligned = misalignedAtIndex != 0;
3195      * }</pre>
3196      * <p>
3197      * If the variable type is {@code float} or {@code double} then atomic
3198      * update access modes compare values using their bitwise representation
3199      * (see {@link Float#floatToRawIntBits} and
3200      * {@link Double#doubleToRawLongBits}, respectively).
3201      * @param viewArrayClass the view array class, with a component type of
3202      * type {@code T}
3203      * @param byteOrder the endianness of the view array elements, as
3204      * stored in the underlying {@code ByteBuffer} (Note this overrides the
3205      * endianness of a {@code ByteBuffer})
3206      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
3207      * viewed as if elements corresponding to the components type of the view
3208      * array class
3209      * @throws NullPointerException if viewArrayClass or byteOrder is null
3210      * @throws IllegalArgumentException if viewArrayClass is not an array type
3211      * @throws UnsupportedOperationException if the component type of
3212      * viewArrayClass is not supported as a variable type
3213      * @since 9
3214      */
3215     public static
3216     VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
3217                                       ByteOrder byteOrder) throws IllegalArgumentException {
3218         Objects.requireNonNull(byteOrder);
3219         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
3220                                                    byteOrder == ByteOrder.BIG_ENDIAN);
3221     }
3222 
3223 
3224     /// method handle invocation (reflective style)
3225 
3226     /**
3227      * Produces a method handle which will invoke any method handle of the
3228      * given {@code type}, with a given number of trailing arguments replaced by
3229      * a single trailing {@code Object[]} array.
3230      * The resulting invoker will be a method handle with the following
3231      * arguments:
3232      * <ul>
3233      * <li>a single {@code MethodHandle} target
3234      * <li>zero or more leading values (counted by {@code leadingArgCount})
3235      * <li>an {@code Object[]} array containing trailing arguments
3236      * </ul>
3237      * <p>
3238      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
3239      * the indicated {@code type}.
3240      * That is, if the target is exactly of the given {@code type}, it will behave
3241      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
3242      * is used to convert the target to the required {@code type}.
3243      * <p>
3244      * The type of the returned invoker will not be the given {@code type}, but rather
3245      * will have all parameters except the first {@code leadingArgCount}
3246      * replaced by a single array of type {@code Object[]}, which will be
3247      * the final parameter.
3248      * <p>
3249      * Before invoking its target, the invoker will spread the final array, apply
3250      * reference casts as necessary, and unbox and widen primitive arguments.
3251      * If, when the invoker is called, the supplied array argument does
3252      * not have the correct number of elements, the invoker will throw
3253      * an {@link IllegalArgumentException} instead of invoking the target.
3254      * <p>
3255      * This method is equivalent to the following code (though it may be more efficient):
3256      * <blockquote><pre>{@code
3257 MethodHandle invoker = MethodHandles.invoker(type);
3258 int spreadArgCount = type.parameterCount() - leadingArgCount;
3259 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
3260 return invoker;
3261      * }</pre></blockquote>
3262      * This method throws no reflective or security exceptions.
3263      * @param type the desired target type
3264      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
3265      * @return a method handle suitable for invoking any method handle of the given type
3266      * @throws NullPointerException if {@code type} is null
3267      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
3268      *                  the range from 0 to {@code type.parameterCount()} inclusive,
3269      *                  or if the resulting method handle's type would have
3270      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3271      */
3272     public static
3273     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
3274         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
3275             throw newIllegalArgumentException("bad argument count", leadingArgCount);
3276         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
3277         return type.invokers().spreadInvoker(leadingArgCount);
3278     }
3279 
3280     /**
3281      * Produces a special <em>invoker method handle</em> which can be used to
3282      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
3283      * The resulting invoker will have a type which is
3284      * exactly equal to the desired type, except that it will accept
3285      * an additional leading argument of type {@code MethodHandle}.
3286      * <p>
3287      * This method is equivalent to the following code (though it may be more efficient):
3288      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
3289      *
3290      * <p style="font-size:smaller;">
3291      * <em>Discussion:</em>
3292      * Invoker method handles can be useful when working with variable method handles
3293      * of unknown types.
3294      * For example, to emulate an {@code invokeExact} call to a variable method
3295      * handle {@code M}, extract its type {@code T},
3296      * look up the invoker method {@code X} for {@code T},
3297      * and call the invoker method, as {@code X.invoke(T, A...)}.
3298      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
3299      * is unknown.)
3300      * If spreading, collecting, or other argument transformations are required,
3301      * they can be applied once to the invoker {@code X} and reused on many {@code M}
3302      * method handle values, as long as they are compatible with the type of {@code X}.
3303      * <p style="font-size:smaller;">
3304      * <em>(Note:  The invoker method is not available via the Core Reflection API.
3305      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
3306      * on the declared {@code invokeExact} or {@code invoke} method will raise an
3307      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
3308      * <p>
3309      * This method throws no reflective or security exceptions.
3310      * @param type the desired target type
3311      * @return a method handle suitable for invoking any method handle of the given type
3312      * @throws IllegalArgumentException if the resulting method handle's type would have
3313      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3314      */
3315     public static
3316     MethodHandle exactInvoker(MethodType type) {
3317         return type.invokers().exactInvoker();
3318     }
3319 
3320     /**
3321      * Produces a special <em>invoker method handle</em> which can be used to
3322      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
3323      * The resulting invoker will have a type which is
3324      * exactly equal to the desired type, except that it will accept
3325      * an additional leading argument of type {@code MethodHandle}.
3326      * <p>
3327      * Before invoking its target, if the target differs from the expected type,
3328      * the invoker will apply reference casts as
3329      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
3330      * Similarly, the return value will be converted as necessary.
3331      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
3332      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
3333      * <p>
3334      * This method is equivalent to the following code (though it may be more efficient):
3335      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
3336      * <p style="font-size:smaller;">
3337      * <em>Discussion:</em>
3338      * A {@linkplain MethodType#genericMethodType general method type} is one which
3339      * mentions only {@code Object} arguments and return values.
3340      * An invoker for such a type is capable of calling any method handle
3341      * of the same arity as the general type.
3342      * <p style="font-size:smaller;">
3343      * <em>(Note:  The invoker method is not available via the Core Reflection API.
3344      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
3345      * on the declared {@code invokeExact} or {@code invoke} method will raise an
3346      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
3347      * <p>
3348      * This method throws no reflective or security exceptions.
3349      * @param type the desired target type
3350      * @return a method handle suitable for invoking any method handle convertible to the given type
3351      * @throws IllegalArgumentException if the resulting method handle's type would have
3352      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3353      */
3354     public static
3355     MethodHandle invoker(MethodType type) {
3356         return type.invokers().genericInvoker();
3357     }
3358 
3359     /**
3360      * Produces a special <em>invoker method handle</em> which can be used to
3361      * invoke a signature-polymorphic access mode method on any VarHandle whose
3362      * associated access mode type is compatible with the given type.
3363      * The resulting invoker will have a type which is exactly equal to the
3364      * desired given type, except that it will accept an additional leading
3365      * argument of type {@code VarHandle}.
3366      *
3367      * @param accessMode the VarHandle access mode
3368      * @param type the desired target type
3369      * @return a method handle suitable for invoking an access mode method of
3370      *         any VarHandle whose access mode type is of the given type.
3371      * @since 9
3372      */
3373     static public
3374     MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3375         return type.invokers().varHandleMethodExactInvoker(accessMode);
3376     }
3377 
3378     /**
3379      * Produces a special <em>invoker method handle</em> which can be used to
3380      * invoke a signature-polymorphic access mode method on any VarHandle whose
3381      * associated access mode type is compatible with the given type.
3382      * The resulting invoker will have a type which is exactly equal to the
3383      * desired given type, except that it will accept an additional leading
3384      * argument of type {@code VarHandle}.
3385      * <p>
3386      * Before invoking its target, if the access mode type differs from the
3387      * desired given type, the invoker will apply reference casts as necessary
3388      * and box, unbox, or widen primitive values, as if by
3389      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
3390      * converted as necessary.
3391      * <p>
3392      * This method is equivalent to the following code (though it may be more
3393      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
3394      *
3395      * @param accessMode the VarHandle access mode
3396      * @param type the desired target type
3397      * @return a method handle suitable for invoking an access mode method of
3398      *         any VarHandle whose access mode type is convertible to the given
3399      *         type.
3400      * @since 9
3401      */
3402     static public
3403     MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3404         return type.invokers().varHandleMethodInvoker(accessMode);
3405     }
3406 
3407     static /*non-public*/
3408     MethodHandle basicInvoker(MethodType type) {
3409         return type.invokers().basicInvoker();
3410     }
3411 
3412      /// method handle modification (creation from other method handles)
3413 
3414     /**
3415      * Produces a method handle which adapts the type of the
3416      * given method handle to a new type by pairwise argument and return type conversion.
3417      * The original type and new type must have the same number of arguments.
3418      * The resulting method handle is guaranteed to report a type
3419      * which is equal to the desired new type.
3420      * <p>
3421      * If the original type and new type are equal, returns target.
3422      * <p>
3423      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
3424      * and some additional conversions are also applied if those conversions fail.
3425      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
3426      * if possible, before or instead of any conversions done by {@code asType}:
3427      * <ul>
3428      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
3429      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
3430      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
3431      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
3432      *     the boolean is converted to a byte value, 1 for true, 0 for false.
3433      *     (This treatment follows the usage of the bytecode verifier.)
3434      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
3435      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
3436      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
3437      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
3438      *     then a Java casting conversion (JLS 5.5) is applied.
3439      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
3440      *     widening and/or narrowing.)
3441      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
3442      *     conversion will be applied at runtime, possibly followed
3443      *     by a Java casting conversion (JLS 5.5) on the primitive value,
3444      *     possibly followed by a conversion from byte to boolean by testing
3445      *     the low-order bit.
3446      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
3447      *     and if the reference is null at runtime, a zero value is introduced.
3448      * </ul>
3449      * @param target the method handle to invoke after arguments are retyped
3450      * @param newType the expected type of the new method handle
3451      * @return a method handle which delegates to the target after performing
3452      *           any necessary argument conversions, and arranges for any
3453      *           necessary return value conversions
3454      * @throws NullPointerException if either argument is null
3455      * @throws WrongMethodTypeException if the conversion cannot be made
3456      * @see MethodHandle#asType
3457      */
3458     public static
3459     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
3460         explicitCastArgumentsChecks(target, newType);
3461         // use the asTypeCache when possible:
3462         MethodType oldType = target.type();
3463         if (oldType == newType)  return target;
3464         if (oldType.explicitCastEquivalentToAsType(newType)) {
3465             return target.asFixedArity().asType(newType);
3466         }
3467         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
3468     }
3469 
3470     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
3471         if (target.type().parameterCount() != newType.parameterCount()) {
3472             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
3473         }
3474     }
3475 
3476     /**
3477      * Produces a method handle which adapts the calling sequence of the
3478      * given method handle to a new type, by reordering the arguments.
3479      * The resulting method handle is guaranteed to report a type
3480      * which is equal to the desired new type.
3481      * <p>
3482      * The given array controls the reordering.
3483      * Call {@code #I} the number of incoming parameters (the value
3484      * {@code newType.parameterCount()}, and call {@code #O} the number
3485      * of outgoing parameters (the value {@code target.type().parameterCount()}).
3486      * Then the length of the reordering array must be {@code #O},
3487      * and each element must be a non-negative number less than {@code #I}.
3488      * For every {@code N} less than {@code #O}, the {@code N}-th
3489      * outgoing argument will be taken from the {@code I}-th incoming
3490      * argument, where {@code I} is {@code reorder[N]}.
3491      * <p>
3492      * No argument or return value conversions are applied.
3493      * The type of each incoming argument, as determined by {@code newType},
3494      * must be identical to the type of the corresponding outgoing parameter
3495      * or parameters in the target method handle.
3496      * The return type of {@code newType} must be identical to the return
3497      * type of the original target.
3498      * <p>
3499      * The reordering array need not specify an actual permutation.
3500      * An incoming argument will be duplicated if its index appears
3501      * more than once in the array, and an incoming argument will be dropped
3502      * if its index does not appear in the array.
3503      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
3504      * incoming arguments which are not mentioned in the reordering array
3505      * may be of any type, as determined only by {@code newType}.
3506      * <blockquote><pre>{@code
3507 import static java.lang.invoke.MethodHandles.*;
3508 import static java.lang.invoke.MethodType.*;
3509 ...
3510 MethodType intfn1 = methodType(int.class, int.class);
3511 MethodType intfn2 = methodType(int.class, int.class, int.class);
3512 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
3513 assert(sub.type().equals(intfn2));
3514 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
3515 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
3516 assert((int)rsub.invokeExact(1, 100) == 99);
3517 MethodHandle add = ... (int x, int y) -> (x+y) ...;
3518 assert(add.type().equals(intfn2));
3519 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
3520 assert(twice.type().equals(intfn1));
3521 assert((int)twice.invokeExact(21) == 42);
3522      * }</pre></blockquote>
3523      * <p>
3524      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3525      * variable-arity method handle}, even if the original target method handle was.
3526      * @param target the method handle to invoke after arguments are reordered
3527      * @param newType the expected type of the new method handle
3528      * @param reorder an index array which controls the reordering
3529      * @return a method handle which delegates to the target after it
3530      *           drops unused arguments and moves and/or duplicates the other arguments
3531      * @throws NullPointerException if any argument is null
3532      * @throws IllegalArgumentException if the index array length is not equal to
3533      *                  the arity of the target, or if any index array element
3534      *                  not a valid index for a parameter of {@code newType},
3535      *                  or if two corresponding parameter types in
3536      *                  {@code target.type()} and {@code newType} are not identical,
3537      */
3538     public static
3539     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
3540         reorder = reorder.clone();  // get a private copy
3541         MethodType oldType = target.type();
3542         permuteArgumentChecks(reorder, newType, oldType);
3543         // first detect dropped arguments and handle them separately
3544         int[] originalReorder = reorder;
3545         BoundMethodHandle result = target.rebind();
3546         LambdaForm form = result.form;
3547         int newArity = newType.parameterCount();
3548         // Normalize the reordering into a real permutation,
3549         // by removing duplicates and adding dropped elements.
3550         // This somewhat improves lambda form caching, as well
3551         // as simplifying the transform by breaking it up into steps.
3552         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
3553             if (ddIdx > 0) {
3554                 // We found a duplicated entry at reorder[ddIdx].
3555                 // Example:  (x,y,z)->asList(x,y,z)
3556                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
3557                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
3558                 // The starred element corresponds to the argument
3559                 // deleted by the dupArgumentForm transform.
3560                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
3561                 boolean killFirst = false;
3562                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
3563                     // Set killFirst if the dup is larger than an intervening position.
3564                     // This will remove at least one inversion from the permutation.
3565                     if (dupVal > val) killFirst = true;
3566                 }
3567                 if (!killFirst) {
3568                     srcPos = dstPos;
3569                     dstPos = ddIdx;
3570                 }
3571                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
3572                 assert (reorder[srcPos] == reorder[dstPos]);
3573                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
3574                 // contract the reordering by removing the element at dstPos
3575                 int tailPos = dstPos + 1;
3576                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
3577                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
3578             } else {
3579                 int dropVal = ~ddIdx, insPos = 0;
3580                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
3581                     // Find first element of reorder larger than dropVal.
3582                     // This is where we will insert the dropVal.
3583                     insPos += 1;
3584                 }
3585                 Class<?> ptype = newType.parameterType(dropVal);
3586                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
3587                 oldType = oldType.insertParameterTypes(insPos, ptype);
3588                 // expand the reordering by inserting an element at insPos
3589                 int tailPos = insPos + 1;
3590                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
3591                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
3592                 reorder[insPos] = dropVal;
3593             }
3594             assert (permuteArgumentChecks(reorder, newType, oldType));
3595         }
3596         assert (reorder.length == newArity);  // a perfect permutation
3597         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
3598         form = form.editor().permuteArgumentsForm(1, reorder);
3599         if (newType == result.type() && form == result.internalForm())
3600             return result;
3601         return result.copyWith(newType, form);
3602     }
3603 
3604     /**
3605      * Return an indication of any duplicate or omission in reorder.
3606      * If the reorder contains a duplicate entry, return the index of the second occurrence.
3607      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
3608      * Otherwise, return zero.
3609      * If an element not in [0..newArity-1] is encountered, return reorder.length.
3610      */
3611     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
3612         final int BIT_LIMIT = 63;  // max number of bits in bit mask
3613         if (newArity < BIT_LIMIT) {
3614             long mask = 0;
3615             for (int i = 0; i < reorder.length; i++) {
3616                 int arg = reorder[i];
3617                 if (arg >= newArity) {
3618                     return reorder.length;
3619                 }
3620                 long bit = 1L << arg;
3621                 if ((mask & bit) != 0) {
3622                     return i;  // >0 indicates a dup
3623                 }
3624                 mask |= bit;
3625             }
3626             if (mask == (1L << newArity) - 1) {
3627                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
3628                 return 0;
3629             }
3630             // find first zero
3631             long zeroBit = Long.lowestOneBit(~mask);
3632             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
3633             assert(zeroPos <= newArity);
3634             if (zeroPos == newArity) {
3635                 return 0;
3636             }
3637             return ~zeroPos;
3638         } else {
3639             // same algorithm, different bit set
3640             BitSet mask = new BitSet(newArity);
3641             for (int i = 0; i < reorder.length; i++) {
3642                 int arg = reorder[i];
3643                 if (arg >= newArity) {
3644                     return reorder.length;
3645                 }
3646                 if (mask.get(arg)) {
3647                     return i;  // >0 indicates a dup
3648                 }
3649                 mask.set(arg);
3650             }
3651             int zeroPos = mask.nextClearBit(0);
3652             assert(zeroPos <= newArity);
3653             if (zeroPos == newArity) {
3654                 return 0;
3655             }
3656             return ~zeroPos;
3657         }
3658     }
3659 
3660     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
3661         if (newType.returnType() != oldType.returnType())
3662             throw newIllegalArgumentException("return types do not match",
3663                     oldType, newType);
3664         if (reorder.length == oldType.parameterCount()) {
3665             int limit = newType.parameterCount();
3666             boolean bad = false;
3667             for (int j = 0; j < reorder.length; j++) {
3668                 int i = reorder[j];
3669                 if (i < 0 || i >= limit) {
3670                     bad = true; break;
3671                 }
3672                 Class<?> src = newType.parameterType(i);
3673                 Class<?> dst = oldType.parameterType(j);
3674                 if (src != dst)
3675                     throw newIllegalArgumentException("parameter types do not match after reorder",
3676                             oldType, newType);
3677             }
3678             if (!bad)  return true;
3679         }
3680         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
3681     }
3682 
3683     /**
3684      * Produces a method handle of the requested return type which returns the given
3685      * constant value every time it is invoked.
3686      * <p>
3687      * Before the method handle is returned, the passed-in value is converted to the requested type.
3688      * If the requested type is primitive, widening primitive conversions are attempted,
3689      * else reference conversions are attempted.
3690      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
3691      * @param type the return type of the desired method handle
3692      * @param value the value to return
3693      * @return a method handle of the given return type and no arguments, which always returns the given value
3694      * @throws NullPointerException if the {@code type} argument is null
3695      * @throws ClassCastException if the value cannot be converted to the required return type
3696      * @throws IllegalArgumentException if the given type is {@code void.class}
3697      */
3698     public static
3699     MethodHandle constant(Class<?> type, Object value) {
3700         if (type.isPrimitive()) {
3701             if (type == void.class)
3702                 throw newIllegalArgumentException("void type");
3703             Wrapper w = Wrapper.forPrimitiveType(type);
3704             value = w.convert(value, type);
3705             if (w.zero().equals(value))
3706                 return zero(w, type);
3707             return insertArguments(identity(type), 0, value);
3708         } else {
3709             if (value == null)
3710                 return zero(Wrapper.OBJECT, type);
3711             return identity(type).bindTo(value);
3712         }
3713     }
3714 
3715     /**
3716      * Produces a method handle which returns its sole argument when invoked.
3717      * @param type the type of the sole parameter and return value of the desired method handle
3718      * @return a unary method handle which accepts and returns the given type
3719      * @throws NullPointerException if the argument is null
3720      * @throws IllegalArgumentException if the given type is {@code void.class}
3721      */
3722     public static
3723     MethodHandle identity(Class<?> type) {
3724         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
3725         int pos = btw.ordinal();
3726         MethodHandle ident = IDENTITY_MHS[pos];
3727         if (ident == null) {
3728             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
3729         }
3730         if (ident.type().returnType() == type)
3731             return ident;
3732         // something like identity(Foo.class); do not bother to intern these
3733         assert (btw == Wrapper.OBJECT);
3734         return makeIdentity(type);
3735     }
3736 
3737     /**
3738      * Produces a constant method handle of the requested return type which
3739      * returns the default value for that type every time it is invoked.
3740      * The resulting constant method handle will have no side effects.
3741      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
3742      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
3743      * since {@code explicitCastArguments} converts {@code null} to default values.
3744      * @param type the expected return type of the desired method handle
3745      * @return a constant method handle that takes no arguments
3746      *         and returns the default value of the given type (or void, if the type is void)
3747      * @throws NullPointerException if the argument is null
3748      * @see MethodHandles#constant
3749      * @see MethodHandles#empty
3750      * @see MethodHandles#explicitCastArguments
3751      * @since 9
3752      */
3753     public static MethodHandle zero(Class<?> type) {
3754         Objects.requireNonNull(type);
3755         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
3756     }
3757 
3758     private static MethodHandle identityOrVoid(Class<?> type) {
3759         return type == void.class ? zero(type) : identity(type);
3760     }
3761 
3762     /**
3763      * Produces a method handle of the requested type which ignores any arguments, does nothing,
3764      * and returns a suitable default depending on the return type.
3765      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
3766      * <p>The returned method handle is equivalent to
3767      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
3768      *
3769      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
3770      * {@code guardWithTest(pred, target, empty(target.type())}.
3771      * @param type the type of the desired method handle
3772      * @return a constant method handle of the given type, which returns a default value of the given return type
3773      * @throws NullPointerException if the argument is null
3774      * @see MethodHandles#zero
3775      * @see MethodHandles#constant
3776      * @since 9
3777      */
3778     public static  MethodHandle empty(MethodType type) {
3779         Objects.requireNonNull(type);
3780         return dropArguments(zero(type.returnType()), 0, type.parameterList());
3781     }
3782 
3783     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
3784     private static MethodHandle makeIdentity(Class<?> ptype) {
3785         MethodType mtype = methodType(ptype, ptype);
3786         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
3787         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
3788     }
3789 
3790     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
3791         int pos = btw.ordinal();
3792         MethodHandle zero = ZERO_MHS[pos];
3793         if (zero == null) {
3794             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
3795         }
3796         if (zero.type().returnType() == rtype)
3797             return zero;
3798         assert(btw == Wrapper.OBJECT);
3799         return makeZero(rtype);
3800     }
3801     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
3802     private static MethodHandle makeZero(Class<?> rtype) {
3803         MethodType mtype = methodType(rtype);
3804         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
3805         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
3806     }
3807 
3808     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
3809         // Simulate a CAS, to avoid racy duplication of results.
3810         MethodHandle prev = cache[pos];
3811         if (prev != null) return prev;
3812         return cache[pos] = value;
3813     }
3814 
3815     /**
3816      * Provides a target method handle with one or more <em>bound arguments</em>
3817      * in advance of the method handle's invocation.
3818      * The formal parameters to the target corresponding to the bound
3819      * arguments are called <em>bound parameters</em>.
3820      * Returns a new method handle which saves away the bound arguments.
3821      * When it is invoked, it receives arguments for any non-bound parameters,
3822      * binds the saved arguments to their corresponding parameters,
3823      * and calls the original target.
3824      * <p>
3825      * The type of the new method handle will drop the types for the bound
3826      * parameters from the original target type, since the new method handle
3827      * will no longer require those arguments to be supplied by its callers.
3828      * <p>
3829      * Each given argument object must match the corresponding bound parameter type.
3830      * If a bound parameter type is a primitive, the argument object
3831      * must be a wrapper, and will be unboxed to produce the primitive value.
3832      * <p>
3833      * The {@code pos} argument selects which parameters are to be bound.
3834      * It may range between zero and <i>N-L</i> (inclusively),
3835      * where <i>N</i> is the arity of the target method handle
3836      * and <i>L</i> is the length of the values array.
3837      * <p>
3838      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3839      * variable-arity method handle}, even if the original target method handle was.
3840      * @param target the method handle to invoke after the argument is inserted
3841      * @param pos where to insert the argument (zero for the first)
3842      * @param values the series of arguments to insert
3843      * @return a method handle which inserts an additional argument,
3844      *         before calling the original method handle
3845      * @throws NullPointerException if the target or the {@code values} array is null
3846      * @throws IllegalArgumentException if (@code pos) is less than {@code 0} or greater than
3847      *         {@code N - L} where {@code N} is the arity of the target method handle and {@code L}
3848      *         is the length of the values array.
3849      * @throws ClassCastException if an argument does not match the corresponding bound parameter
3850      *         type.
3851      * @see MethodHandle#bindTo
3852      */
3853     public static
3854     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
3855         int insCount = values.length;
3856         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
3857         if (insCount == 0)  return target;
3858         BoundMethodHandle result = target.rebind();
3859         for (int i = 0; i < insCount; i++) {
3860             Object value = values[i];
3861             Class<?> ptype = ptypes[pos+i];
3862             if (ptype.isPrimitive()) {
3863                 result = insertArgumentPrimitive(result, pos, ptype, value);
3864             } else {
3865                 value = ptype.cast(value);  // throw CCE if needed
3866                 result = result.bindArgumentL(pos, value);
3867             }
3868         }
3869         return result;
3870     }
3871 
3872     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
3873                                                              Class<?> ptype, Object value) {
3874         Wrapper w = Wrapper.forPrimitiveType(ptype);
3875         // perform unboxing and/or primitive conversion
3876         value = w.convert(value, ptype);
3877         switch (w) {
3878         case INT:     return result.bindArgumentI(pos, (int)value);
3879         case LONG:    return result.bindArgumentJ(pos, (long)value);
3880         case FLOAT:   return result.bindArgumentF(pos, (float)value);
3881         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
3882         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
3883         }
3884     }
3885 
3886     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
3887         MethodType oldType = target.type();
3888         int outargs = oldType.parameterCount();
3889         int inargs  = outargs - insCount;
3890         if (inargs < 0)
3891             throw newIllegalArgumentException("too many values to insert");
3892         if (pos < 0 || pos > inargs)
3893             throw newIllegalArgumentException("no argument type to append");
3894         return oldType.ptypes();
3895     }
3896 
3897     /**
3898      * Produces a method handle which will discard some dummy arguments
3899      * before calling some other specified <i>target</i> method handle.
3900      * The type of the new method handle will be the same as the target's type,
3901      * except it will also include the dummy argument types,
3902      * at some given position.
3903      * <p>
3904      * The {@code pos} argument may range between zero and <i>N</i>,
3905      * where <i>N</i> is the arity of the target.
3906      * If {@code pos} is zero, the dummy arguments will precede
3907      * the target's real arguments; if {@code pos} is <i>N</i>
3908      * they will come after.
3909      * <p>
3910      * <b>Example:</b>
3911      * <blockquote><pre>{@code
3912 import static java.lang.invoke.MethodHandles.*;
3913 import static java.lang.invoke.MethodType.*;
3914 ...
3915 MethodHandle cat = lookup().findVirtual(String.class,
3916   "concat", methodType(String.class, String.class));
3917 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3918 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
3919 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
3920 assertEquals(bigType, d0.type());
3921 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
3922      * }</pre></blockquote>
3923      * <p>
3924      * This method is also equivalent to the following code:
3925      * <blockquote><pre>
3926      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
3927      * </pre></blockquote>
3928      * @param target the method handle to invoke after the arguments are dropped
3929      * @param valueTypes the type(s) of the argument(s) to drop
3930      * @param pos position of first argument to drop (zero for the leftmost)
3931      * @return a method handle which drops arguments of the given types,
3932      *         before calling the original method handle
3933      * @throws NullPointerException if the target is null,
3934      *                              or if the {@code valueTypes} list or any of its elements is null
3935      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3936      *                  or if {@code pos} is negative or greater than the arity of the target,
3937      *                  or if the new method handle's type would have too many parameters
3938      */
3939     public static
3940     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3941         return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
3942     }
3943 
3944     private static List<Class<?>> copyTypes(Object[] array) {
3945         return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
3946     }
3947 
3948     private static
3949     MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3950         MethodType oldType = target.type();  // get NPE
3951         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
3952         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
3953         if (dropped == 0)  return target;
3954         BoundMethodHandle result = target.rebind();
3955         LambdaForm lform = result.form;
3956         int insertFormArg = 1 + pos;
3957         for (Class<?> ptype : valueTypes) {
3958             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
3959         }
3960         result = result.copyWith(newType, lform);
3961         return result;
3962     }
3963 
3964     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
3965         int dropped = valueTypes.size();
3966         MethodType.checkSlotCount(dropped);
3967         int outargs = oldType.parameterCount();
3968         int inargs  = outargs + dropped;
3969         if (pos < 0 || pos > outargs)
3970             throw newIllegalArgumentException("no argument type to remove"
3971                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
3972                     );
3973         return dropped;
3974     }
3975 
3976     /**
3977      * Produces a method handle which will discard some dummy arguments
3978      * before calling some other specified <i>target</i> method handle.
3979      * The type of the new method handle will be the same as the target's type,
3980      * except it will also include the dummy argument types,
3981      * at some given position.
3982      * <p>
3983      * The {@code pos} argument may range between zero and <i>N</i>,
3984      * where <i>N</i> is the arity of the target.
3985      * If {@code pos} is zero, the dummy arguments will precede
3986      * the target's real arguments; if {@code pos} is <i>N</i>
3987      * they will come after.
3988      * @apiNote
3989      * <blockquote><pre>{@code
3990 import static java.lang.invoke.MethodHandles.*;
3991 import static java.lang.invoke.MethodType.*;
3992 ...
3993 MethodHandle cat = lookup().findVirtual(String.class,
3994   "concat", methodType(String.class, String.class));
3995 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3996 MethodHandle d0 = dropArguments(cat, 0, String.class);
3997 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
3998 MethodHandle d1 = dropArguments(cat, 1, String.class);
3999 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
4000 MethodHandle d2 = dropArguments(cat, 2, String.class);
4001 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
4002 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
4003 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
4004      * }</pre></blockquote>
4005      * <p>
4006      * This method is also equivalent to the following code:
4007      * <blockquote><pre>
4008      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
4009      * </pre></blockquote>
4010      * @param target the method handle to invoke after the arguments are dropped
4011      * @param valueTypes the type(s) of the argument(s) to drop
4012      * @param pos position of first argument to drop (zero for the leftmost)
4013      * @return a method handle which drops arguments of the given types,
4014      *         before calling the original method handle
4015      * @throws NullPointerException if the target is null,
4016      *                              or if the {@code valueTypes} array or any of its elements is null
4017      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
4018      *                  or if {@code pos} is negative or greater than the arity of the target,
4019      *                  or if the new method handle's type would have
4020      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
4021      */
4022     public static
4023     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
4024         return dropArguments0(target, pos, copyTypes(valueTypes));
4025     }
4026 
4027     // private version which allows caller some freedom with error handling
4028     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
4029                                       boolean nullOnFailure) {
4030         newTypes = copyTypes(newTypes.toArray());
4031         List<Class<?>> oldTypes = target.type().parameterList();
4032         int match = oldTypes.size();
4033         if (skip != 0) {
4034             if (skip < 0 || skip > match) {
4035                 throw newIllegalArgumentException("illegal skip", skip, target);
4036             }
4037             oldTypes = oldTypes.subList(skip, match);
4038             match -= skip;
4039         }
4040         List<Class<?>> addTypes = newTypes;
4041         int add = addTypes.size();
4042         if (pos != 0) {
4043             if (pos < 0 || pos > add) {
4044                 throw newIllegalArgumentException("illegal pos", pos, newTypes);
4045             }
4046             addTypes = addTypes.subList(pos, add);
4047             add -= pos;
4048             assert(addTypes.size() == add);
4049         }
4050         // Do not add types which already match the existing arguments.
4051         if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
4052             if (nullOnFailure) {
4053                 return null;
4054             }
4055             throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
4056         }
4057         addTypes = addTypes.subList(match, add);
4058         add -= match;
4059         assert(addTypes.size() == add);
4060         // newTypes:     (   P*[pos], M*[match], A*[add] )
4061         // target: ( S*[skip],        M*[match]  )
4062         MethodHandle adapter = target;
4063         if (add > 0) {
4064             adapter = dropArguments0(adapter, skip+ match, addTypes);
4065         }
4066         // adapter: (S*[skip],        M*[match], A*[add] )
4067         if (pos > 0) {
4068             adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
4069         }
4070         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
4071         return adapter;
4072     }
4073 
4074     /**
4075      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
4076      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
4077      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
4078      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
4079      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
4080      * {@link #dropArguments(MethodHandle, int, Class[])}.
4081      * <p>
4082      * The resulting handle will have the same return type as the target handle.
4083      * <p>
4084      * In more formal terms, assume these two type lists:<ul>
4085      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
4086      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
4087      * {@code newTypes}.
4088      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
4089      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
4090      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
4091      * sub-list.
4092      * </ul>
4093      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
4094      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
4095      * {@link #dropArguments(MethodHandle, int, Class[])}.
4096      *
4097      * @apiNote
4098      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
4099      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
4100      * <blockquote><pre>{@code
4101 import static java.lang.invoke.MethodHandles.*;
4102 import static java.lang.invoke.MethodType.*;
4103 ...
4104 ...
4105 MethodHandle h0 = constant(boolean.class, true);
4106 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
4107 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
4108 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
4109 if (h1.type().parameterCount() < h2.type().parameterCount())
4110     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
4111 else
4112     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
4113 MethodHandle h3 = guardWithTest(h0, h1, h2);
4114 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
4115      * }</pre></blockquote>
4116      * @param target the method handle to adapt
4117      * @param skip number of targets parameters to disregard (they will be unchanged)
4118      * @param newTypes the list of types to match {@code target}'s parameter type list to
4119      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
4120      * @return a possibly adapted method handle
4121      * @throws NullPointerException if either argument is null
4122      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
4123      *         or if {@code skip} is negative or greater than the arity of the target,
4124      *         or if {@code pos} is negative or greater than the newTypes list size,
4125      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
4126      *         {@code pos}.
4127      * @since 9
4128      */
4129     public static
4130     MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
4131         Objects.requireNonNull(target);
4132         Objects.requireNonNull(newTypes);
4133         return dropArgumentsToMatch(target, skip, newTypes, pos, false);
4134     }
4135 
4136     /**
4137      * Adapts a target method handle by pre-processing
4138      * one or more of its arguments, each with its own unary filter function,
4139      * and then calling the target with each pre-processed argument
4140      * replaced by the result of its corresponding filter function.
4141      * <p>
4142      * The pre-processing is performed by one or more method handles,
4143      * specified in the elements of the {@code filters} array.
4144      * The first element of the filter array corresponds to the {@code pos}
4145      * argument of the target, and so on in sequence.
4146      * The filter functions are invoked in left to right order.
4147      * <p>
4148      * Null arguments in the array are treated as identity functions,
4149      * and the corresponding arguments left unchanged.
4150      * (If there are no non-null elements in the array, the original target is returned.)
4151      * Each filter is applied to the corresponding argument of the adapter.
4152      * <p>
4153      * If a filter {@code F} applies to the {@code N}th argument of
4154      * the target, then {@code F} must be a method handle which
4155      * takes exactly one argument.  The type of {@code F}'s sole argument
4156      * replaces the corresponding argument type of the target
4157      * in the resulting adapted method handle.
4158      * The return type of {@code F} must be identical to the corresponding
4159      * parameter type of the target.
4160      * <p>
4161      * It is an error if there are elements of {@code filters}
4162      * (null or not)
4163      * which do not correspond to argument positions in the target.
4164      * <p><b>Example:</b>
4165      * <blockquote><pre>{@code
4166 import static java.lang.invoke.MethodHandles.*;
4167 import static java.lang.invoke.MethodType.*;
4168 ...
4169 MethodHandle cat = lookup().findVirtual(String.class,
4170   "concat", methodType(String.class, String.class));
4171 MethodHandle upcase = lookup().findVirtual(String.class,
4172   "toUpperCase", methodType(String.class));
4173 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4174 MethodHandle f0 = filterArguments(cat, 0, upcase);
4175 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
4176 MethodHandle f1 = filterArguments(cat, 1, upcase);
4177 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
4178 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
4179 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
4180      * }</pre></blockquote>
4181      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4182      * denotes the return type of both the {@code target} and resulting adapter.
4183      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
4184      * of the parameters and arguments that precede and follow the filter position
4185      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
4186      * values of the filtered parameters and arguments; they also represent the
4187      * return types of the {@code filter[i]} handles. The latter accept arguments
4188      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
4189      * the resulting adapter.
4190      * <blockquote><pre>{@code
4191      * T target(P... p, A[i]... a[i], B... b);
4192      * A[i] filter[i](V[i]);
4193      * T adapter(P... p, V[i]... v[i], B... b) {
4194      *   return target(p..., filter[i](v[i])..., b...);
4195      * }
4196      * }</pre></blockquote>
4197      * <p>
4198      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4199      * variable-arity method handle}, even if the original target method handle was.
4200      *
4201      * @param target the method handle to invoke after arguments are filtered
4202      * @param pos the position of the first argument to filter
4203      * @param filters method handles to call initially on filtered arguments
4204      * @return method handle which incorporates the specified argument filtering logic
4205      * @throws NullPointerException if the target is null
4206      *                              or if the {@code filters} array is null
4207      * @throws IllegalArgumentException if a non-null element of {@code filters}
4208      *          does not match a corresponding argument type of target as described above,
4209      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
4210      *          or if the resulting method handle's type would have
4211      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4212      */
4213     public static
4214     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
4215         filterArgumentsCheckArity(target, pos, filters);
4216         MethodHandle adapter = target;
4217         // process filters in reverse order so that the invocation of
4218         // the resulting adapter will invoke the filters in left-to-right order
4219         for (int i = filters.length - 1; i >= 0; --i) {
4220             MethodHandle filter = filters[i];
4221             if (filter == null)  continue;  // ignore null elements of filters
4222             adapter = filterArgument(adapter, pos + i, filter);
4223         }
4224         return adapter;
4225     }
4226 
4227     /*non-public*/ static
4228     MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
4229         filterArgumentChecks(target, pos, filter);
4230         MethodType targetType = target.type();
4231         MethodType filterType = filter.type();
4232         BoundMethodHandle result = target.rebind();
4233         Class<?> newParamType = filterType.parameterType(0);
4234         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
4235         MethodType newType = targetType.changeParameterType(pos, newParamType);
4236         result = result.copyWithExtendL(newType, lform, filter);
4237         return result;
4238     }
4239 
4240     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
4241         MethodType targetType = target.type();
4242         int maxPos = targetType.parameterCount();
4243         if (pos + filters.length > maxPos)
4244             throw newIllegalArgumentException("too many filters");
4245     }
4246 
4247     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
4248         MethodType targetType = target.type();
4249         MethodType filterType = filter.type();
4250         if (filterType.parameterCount() != 1
4251             || filterType.returnType() != targetType.parameterType(pos))
4252             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4253     }
4254 
4255     /**
4256      * Adapts a target method handle by pre-processing
4257      * a sub-sequence of its arguments with a filter (another method handle).
4258      * The pre-processed arguments are replaced by the result (if any) of the
4259      * filter function.
4260      * The target is then called on the modified (usually shortened) argument list.
4261      * <p>
4262      * If the filter returns a value, the target must accept that value as
4263      * its argument in position {@code pos}, preceded and/or followed by
4264      * any arguments not passed to the filter.
4265      * If the filter returns void, the target must accept all arguments
4266      * not passed to the filter.
4267      * No arguments are reordered, and a result returned from the filter
4268      * replaces (in order) the whole subsequence of arguments originally
4269      * passed to the adapter.
4270      * <p>
4271      * The argument types (if any) of the filter
4272      * replace zero or one argument types of the target, at position {@code pos},
4273      * in the resulting adapted method handle.
4274      * The return type of the filter (if any) must be identical to the
4275      * argument type of the target at position {@code pos}, and that target argument
4276      * is supplied by the return value of the filter.
4277      * <p>
4278      * In all cases, {@code pos} must be greater than or equal to zero, and
4279      * {@code pos} must also be less than or equal to the target's arity.
4280      * <p><b>Example:</b>
4281      * <blockquote><pre>{@code
4282 import static java.lang.invoke.MethodHandles.*;
4283 import static java.lang.invoke.MethodType.*;
4284 ...
4285 MethodHandle deepToString = publicLookup()
4286   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
4287 
4288 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
4289 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
4290 
4291 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
4292 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
4293 
4294 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
4295 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
4296 assertEquals("[top, [up, down], strange]",
4297              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
4298 
4299 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
4300 assertEquals("[top, [up, down], [strange]]",
4301              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
4302 
4303 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
4304 assertEquals("[top, [[up, down, strange], charm], bottom]",
4305              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
4306      * }</pre></blockquote>
4307      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4308      * represents the return type of the {@code target} and resulting adapter.
4309      * {@code V}/{@code v} stand for the return type and value of the
4310      * {@code filter}, which are also found in the signature and arguments of
4311      * the {@code target}, respectively, unless {@code V} is {@code void}.
4312      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
4313      * and values preceding and following the collection position, {@code pos},
4314      * in the {@code target}'s signature. They also turn up in the resulting
4315      * adapter's signature and arguments, where they surround
4316      * {@code B}/{@code b}, which represent the parameter types and arguments
4317      * to the {@code filter} (if any).
4318      * <blockquote><pre>{@code
4319      * T target(A...,V,C...);
4320      * V filter(B...);
4321      * T adapter(A... a,B... b,C... c) {
4322      *   V v = filter(b...);
4323      *   return target(a...,v,c...);
4324      * }
4325      * // and if the filter has no arguments:
4326      * T target2(A...,V,C...);
4327      * V filter2();
4328      * T adapter2(A... a,C... c) {
4329      *   V v = filter2();
4330      *   return target2(a...,v,c...);
4331      * }
4332      * // and if the filter has a void return:
4333      * T target3(A...,C...);
4334      * void filter3(B...);
4335      * T adapter3(A... a,B... b,C... c) {
4336      *   filter3(b...);
4337      *   return target3(a...,c...);
4338      * }
4339      * }</pre></blockquote>
4340      * <p>
4341      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
4342      * one which first "folds" the affected arguments, and then drops them, in separate
4343      * steps as follows:
4344      * <blockquote><pre>{@code
4345      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
4346      * mh = MethodHandles.foldArguments(mh, coll); //step 1
4347      * }</pre></blockquote>
4348      * If the target method handle consumes no arguments besides than the result
4349      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
4350      * is equivalent to {@code filterReturnValue(coll, mh)}.
4351      * If the filter method handle {@code coll} consumes one argument and produces
4352      * a non-void result, then {@code collectArguments(mh, N, coll)}
4353      * is equivalent to {@code filterArguments(mh, N, coll)}.
4354      * Other equivalences are possible but would require argument permutation.
4355      * <p>
4356      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4357      * variable-arity method handle}, even if the original target method handle was.
4358      *
4359      * @param target the method handle to invoke after filtering the subsequence of arguments
4360      * @param pos the position of the first adapter argument to pass to the filter,
4361      *            and/or the target argument which receives the result of the filter
4362      * @param filter method handle to call on the subsequence of arguments
4363      * @return method handle which incorporates the specified argument subsequence filtering logic
4364      * @throws NullPointerException if either argument is null
4365      * @throws IllegalArgumentException if the return type of {@code filter}
4366      *          is non-void and is not the same as the {@code pos} argument of the target,
4367      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
4368      *          or if the resulting method handle's type would have
4369      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4370      * @see MethodHandles#foldArguments
4371      * @see MethodHandles#filterArguments
4372      * @see MethodHandles#filterReturnValue
4373      */
4374     public static
4375     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
4376         MethodType newType = collectArgumentsChecks(target, pos, filter);
4377         MethodType collectorType = filter.type();
4378         BoundMethodHandle result = target.rebind();
4379         LambdaForm lform;
4380         if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) {
4381             lform = result.editor().collectArgumentArrayForm(1 + pos, filter);
4382             if (lform != null) {
4383                 return result.copyWith(newType, lform);
4384             }
4385         }
4386         lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
4387         return result.copyWithExtendL(newType, lform, filter);
4388     }
4389 
4390     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
4391         MethodType targetType = target.type();
4392         MethodType filterType = filter.type();
4393         Class<?> rtype = filterType.returnType();
4394         List<Class<?>> filterArgs = filterType.parameterList();
4395         if (rtype == void.class) {
4396             return targetType.insertParameterTypes(pos, filterArgs);
4397         }
4398         if (rtype != targetType.parameterType(pos)) {
4399             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4400         }
4401         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
4402     }
4403 
4404     /**
4405      * Adapts a target method handle by post-processing
4406      * its return value (if any) with a filter (another method handle).
4407      * The result of the filter is returned from the adapter.
4408      * <p>
4409      * If the target returns a value, the filter must accept that value as
4410      * its only argument.
4411      * If the target returns void, the filter must accept no arguments.
4412      * <p>
4413      * The return type of the filter
4414      * replaces the return type of the target
4415      * in the resulting adapted method handle.
4416      * The argument type of the filter (if any) must be identical to the
4417      * return type of the target.
4418      * <p><b>Example:</b>
4419      * <blockquote><pre>{@code
4420 import static java.lang.invoke.MethodHandles.*;
4421 import static java.lang.invoke.MethodType.*;
4422 ...
4423 MethodHandle cat = lookup().findVirtual(String.class,
4424   "concat", methodType(String.class, String.class));
4425 MethodHandle length = lookup().findVirtual(String.class,
4426   "length", methodType(int.class));
4427 System.out.println((String) cat.invokeExact("x", "y")); // xy
4428 MethodHandle f0 = filterReturnValue(cat, length);
4429 System.out.println((int) f0.invokeExact("x", "y")); // 2
4430      * }</pre></blockquote>
4431      * <p>Here is pseudocode for the resulting adapter. In the code,
4432      * {@code T}/{@code t} represent the result type and value of the
4433      * {@code target}; {@code V}, the result type of the {@code filter}; and
4434      * {@code A}/{@code a}, the types and values of the parameters and arguments
4435      * of the {@code target} as well as the resulting adapter.
4436      * <blockquote><pre>{@code
4437      * T target(A...);
4438      * V filter(T);
4439      * V adapter(A... a) {
4440      *   T t = target(a...);
4441      *   return filter(t);
4442      * }
4443      * // and if the target has a void return:
4444      * void target2(A...);
4445      * V filter2();
4446      * V adapter2(A... a) {
4447      *   target2(a...);
4448      *   return filter2();
4449      * }
4450      * // and if the filter has a void return:
4451      * T target3(A...);
4452      * void filter3(V);
4453      * void adapter3(A... a) {
4454      *   T t = target3(a...);
4455      *   filter3(t);
4456      * }
4457      * }</pre></blockquote>
4458      * <p>
4459      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4460      * variable-arity method handle}, even if the original target method handle was.
4461      * @param target the method handle to invoke before filtering the return value
4462      * @param filter method handle to call on the return value
4463      * @return method handle which incorporates the specified return value filtering logic
4464      * @throws NullPointerException if either argument is null
4465      * @throws IllegalArgumentException if the argument list of {@code filter}
4466      *          does not match the return type of target as described above
4467      */
4468     public static
4469     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
4470         MethodType targetType = target.type();
4471         MethodType filterType = filter.type();
4472         filterReturnValueChecks(targetType, filterType);
4473         BoundMethodHandle result = target.rebind();
4474         BasicType rtype = BasicType.basicType(filterType.returnType());
4475         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
4476         MethodType newType = targetType.changeReturnType(filterType.returnType());
4477         result = result.copyWithExtendL(newType, lform, filter);
4478         return result;
4479     }
4480 
4481     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
4482         Class<?> rtype = targetType.returnType();
4483         int filterValues = filterType.parameterCount();
4484         if (filterValues == 0
4485                 ? (rtype != void.class)
4486                 : (rtype != filterType.parameterType(0) || filterValues != 1))
4487             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4488     }
4489 
4490     /**
4491      * Adapts a target method handle by pre-processing
4492      * some of its arguments, and then calling the target with
4493      * the result of the pre-processing, inserted into the original
4494      * sequence of arguments.
4495      * <p>
4496      * The pre-processing is performed by {@code combiner}, a second method handle.
4497      * Of the arguments passed to the adapter, the first {@code N} arguments
4498      * are copied to the combiner, which is then called.
4499      * (Here, {@code N} is defined as the parameter count of the combiner.)
4500      * After this, control passes to the target, with any result
4501      * from the combiner inserted before the original {@code N} incoming
4502      * arguments.
4503      * <p>
4504      * If the combiner returns a value, the first parameter type of the target
4505      * must be identical with the return type of the combiner, and the next
4506      * {@code N} parameter types of the target must exactly match the parameters
4507      * of the combiner.
4508      * <p>
4509      * If the combiner has a void return, no result will be inserted,
4510      * and the first {@code N} parameter types of the target
4511      * must exactly match the parameters of the combiner.
4512      * <p>
4513      * The resulting adapter is the same type as the target, except that the
4514      * first parameter type is dropped,
4515      * if it corresponds to the result of the combiner.
4516      * <p>
4517      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
4518      * that either the combiner or the target does not wish to receive.
4519      * If some of the incoming arguments are destined only for the combiner,
4520      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
4521      * arguments will not need to be live on the stack on entry to the
4522      * target.)
4523      * <p><b>Example:</b>
4524      * <blockquote><pre>{@code
4525 import static java.lang.invoke.MethodHandles.*;
4526 import static java.lang.invoke.MethodType.*;
4527 ...
4528 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4529   "println", methodType(void.class, String.class))
4530     .bindTo(System.out);
4531 MethodHandle cat = lookup().findVirtual(String.class,
4532   "concat", methodType(String.class, String.class));
4533 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4534 MethodHandle catTrace = foldArguments(cat, trace);
4535 // also prints "boo":
4536 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4537      * }</pre></blockquote>
4538      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4539      * represents the result type of the {@code target} and resulting adapter.
4540      * {@code V}/{@code v} represent the type and value of the parameter and argument
4541      * of {@code target} that precedes the folding position; {@code V} also is
4542      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4543      * types and values of the {@code N} parameters and arguments at the folding
4544      * position. {@code B}/{@code b} represent the types and values of the
4545      * {@code target} parameters and arguments that follow the folded parameters
4546      * and arguments.
4547      * <blockquote><pre>{@code
4548      * // there are N arguments in A...
4549      * T target(V, A[N]..., B...);
4550      * V combiner(A...);
4551      * T adapter(A... a, B... b) {
4552      *   V v = combiner(a...);
4553      *   return target(v, a..., b...);
4554      * }
4555      * // and if the combiner has a void return:
4556      * T target2(A[N]..., B...);
4557      * void combiner2(A...);
4558      * T adapter2(A... a, B... b) {
4559      *   combiner2(a...);
4560      *   return target2(a..., b...);
4561      * }
4562      * }</pre></blockquote>
4563      * <p>
4564      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4565      * variable-arity method handle}, even if the original target method handle was.
4566      * @param target the method handle to invoke after arguments are combined
4567      * @param combiner method handle to call initially on the incoming arguments
4568      * @return method handle which incorporates the specified argument folding logic
4569      * @throws NullPointerException if either argument is null
4570      * @throws IllegalArgumentException if {@code combiner}'s return type
4571      *          is non-void and not the same as the first argument type of
4572      *          the target, or if the initial {@code N} argument types
4573      *          of the target
4574      *          (skipping one matching the {@code combiner}'s return type)
4575      *          are not identical with the argument types of {@code combiner}
4576      */
4577     public static
4578     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
4579         return foldArguments(target, 0, combiner);
4580     }
4581 
4582     /**
4583      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
4584      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
4585      * before the folded arguments.
4586      * <p>
4587      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
4588      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
4589      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
4590      * 0.
4591      *
4592      * @apiNote Example:
4593      * <blockquote><pre>{@code
4594     import static java.lang.invoke.MethodHandles.*;
4595     import static java.lang.invoke.MethodType.*;
4596     ...
4597     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4598     "println", methodType(void.class, String.class))
4599     .bindTo(System.out);
4600     MethodHandle cat = lookup().findVirtual(String.class,
4601     "concat", methodType(String.class, String.class));
4602     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4603     MethodHandle catTrace = foldArguments(cat, 1, trace);
4604     // also prints "jum":
4605     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4606      * }</pre></blockquote>
4607      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4608      * represents the result type of the {@code target} and resulting adapter.
4609      * {@code V}/{@code v} represent the type and value of the parameter and argument
4610      * of {@code target} that precedes the folding position; {@code V} also is
4611      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4612      * types and values of the {@code N} parameters and arguments at the folding
4613      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
4614      * and values of the {@code target} parameters and arguments that precede and
4615      * follow the folded parameters and arguments starting at {@code pos},
4616      * respectively.
4617      * <blockquote><pre>{@code
4618      * // there are N arguments in A...
4619      * T target(Z..., V, A[N]..., B...);
4620      * V combiner(A...);
4621      * T adapter(Z... z, A... a, B... b) {
4622      *   V v = combiner(a...);
4623      *   return target(z..., v, a..., b...);
4624      * }
4625      * // and if the combiner has a void return:
4626      * T target2(Z..., A[N]..., B...);
4627      * void combiner2(A...);
4628      * T adapter2(Z... z, A... a, B... b) {
4629      *   combiner2(a...);
4630      *   return target2(z..., a..., b...);
4631      * }
4632      * }</pre></blockquote>
4633      * <p>
4634      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4635      * variable-arity method handle}, even if the original target method handle was.
4636      *
4637      * @param target the method handle to invoke after arguments are combined
4638      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
4639      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
4640      * @param combiner method handle to call initially on the incoming arguments
4641      * @return method handle which incorporates the specified argument folding logic
4642      * @throws NullPointerException if either argument is null
4643      * @throws IllegalArgumentException if either of the following two conditions holds:
4644      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
4645      *              {@code pos} of the target signature;
4646      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
4647      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
4648      *
4649      * @see #foldArguments(MethodHandle, MethodHandle)
4650      * @since 9
4651      */
4652     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
4653         MethodType targetType = target.type();
4654         MethodType combinerType = combiner.type();
4655         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
4656         BoundMethodHandle result = target.rebind();
4657         boolean dropResult = rtype == void.class;
4658         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
4659         MethodType newType = targetType;
4660         if (!dropResult) {
4661             newType = newType.dropParameterTypes(pos, pos + 1);
4662         }
4663         result = result.copyWithExtendL(newType, lform, combiner);
4664         return result;
4665     }
4666 
4667     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
4668         int foldArgs   = combinerType.parameterCount();
4669         Class<?> rtype = combinerType.returnType();
4670         int foldVals = rtype == void.class ? 0 : 1;
4671         int afterInsertPos = foldPos + foldVals;
4672         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
4673         if (ok) {
4674             for (int i = 0; i < foldArgs; i++) {
4675                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
4676                     ok = false;
4677                     break;
4678                 }
4679             }
4680         }
4681         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
4682             ok = false;
4683         if (!ok)
4684             throw misMatchedTypes("target and combiner types", targetType, combinerType);
4685         return rtype;
4686     }
4687 
4688     /**
4689      * Adapts a target method handle by pre-processing some of its arguments, then calling the target with the result
4690      * of the pre-processing replacing the argument at the given position.
4691      *
4692      * @param target the method handle to invoke after arguments are combined
4693      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
4694      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
4695      * @param combiner method handle to call initially on the incoming arguments
4696      * @param argPositions indexes of the target to pick arguments sent to the combiner from
4697      * @return method handle which incorporates the specified argument folding logic
4698      * @throws NullPointerException if either argument is null
4699      * @throws IllegalArgumentException if either of the following two conditions holds:
4700      *          (1) {@code combiner}'s return type is not the same as the argument type at position
4701      *              {@code pos} of the target signature;
4702      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature are
4703      *              not identical with the argument types of {@code combiner}.
4704      */
4705     /*non-public*/ static MethodHandle filterArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
4706         return argumentsWithCombiner(true, target, position, combiner, argPositions);
4707     }
4708 
4709     /**
4710      * Adapts a target method handle by pre-processing some of its arguments, calling the target with the result of
4711      * the pre-processing inserted into the original sequence of arguments at the given position.
4712      *
4713      * @param target the method handle to invoke after arguments are combined
4714      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
4715      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
4716      * @param combiner method handle to call initially on the incoming arguments
4717      * @param argPositions indexes of the target to pick arguments sent to the combiner from
4718      * @return method handle which incorporates the specified argument folding logic
4719      * @throws NullPointerException if either argument is null
4720      * @throws IllegalArgumentException if either of the following two conditions holds:
4721      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
4722      *              {@code pos} of the target signature;
4723      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature
4724      *              (skipping {@code position} where the {@code combiner}'s return will be folded in) are not identical
4725      *              with the argument types of {@code combiner}.
4726      */
4727     /*non-public*/ static MethodHandle foldArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
4728         return argumentsWithCombiner(false, target, position, combiner, argPositions);
4729     }
4730 
4731     private static MethodHandle argumentsWithCombiner(boolean filter, MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
4732         MethodType targetType = target.type();
4733         MethodType combinerType = combiner.type();
4734         Class<?> rtype = argumentsWithCombinerChecks(position, filter, targetType, combinerType, argPositions);
4735         BoundMethodHandle result = target.rebind();
4736 
4737         MethodType newType = targetType;
4738         LambdaForm lform;
4739         if (filter) {
4740             lform = result.editor().filterArgumentsForm(1 + position, combinerType.basicType(), argPositions);
4741         } else {
4742             boolean dropResult = rtype == void.class;
4743             lform = result.editor().foldArgumentsForm(1 + position, dropResult, combinerType.basicType(), argPositions);
4744             if (!dropResult) {
4745                 newType = newType.dropParameterTypes(position, position + 1);
4746             }
4747         }
4748         result = result.copyWithExtendL(newType, lform, combiner);
4749         return result;
4750     }
4751 
4752     private static Class<?> argumentsWithCombinerChecks(int position, boolean filter, MethodType targetType, MethodType combinerType, int ... argPos) {
4753         int combinerArgs = combinerType.parameterCount();
4754         if (argPos.length != combinerArgs) {
4755             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
4756         }
4757         Class<?> rtype = combinerType.returnType();
4758 
4759         for (int i = 0; i < combinerArgs; i++) {
4760             int arg = argPos[i];
4761             if (arg < 0 || arg > targetType.parameterCount()) {
4762                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
4763             }
4764             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
4765                 throw newIllegalArgumentException("target argument type at position " + arg
4766                         + " must match combiner argument type at index " + i + ": " + targetType
4767                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
4768             }
4769         }
4770         if (filter && combinerType.returnType() != targetType.parameterType(position)) {
4771             throw misMatchedTypes("target and combiner types", targetType, combinerType);
4772         }
4773         return rtype;
4774     }
4775 
4776     /**
4777      * Makes a method handle which adapts a target method handle,
4778      * by guarding it with a test, a boolean-valued method handle.
4779      * If the guard fails, a fallback handle is called instead.
4780      * All three method handles must have the same corresponding
4781      * argument and return types, except that the return type
4782      * of the test must be boolean, and the test is allowed
4783      * to have fewer arguments than the other two method handles.
4784      * <p>
4785      * Here is pseudocode for the resulting adapter. In the code, {@code T}
4786      * represents the uniform result type of the three involved handles;
4787      * {@code A}/{@code a}, the types and values of the {@code target}
4788      * parameters and arguments that are consumed by the {@code test}; and
4789      * {@code B}/{@code b}, those types and values of the {@code target}
4790      * parameters and arguments that are not consumed by the {@code test}.
4791      * <blockquote><pre>{@code
4792      * boolean test(A...);
4793      * T target(A...,B...);
4794      * T fallback(A...,B...);
4795      * T adapter(A... a,B... b) {
4796      *   if (test(a...))
4797      *     return target(a..., b...);
4798      *   else
4799      *     return fallback(a..., b...);
4800      * }
4801      * }</pre></blockquote>
4802      * Note that the test arguments ({@code a...} in the pseudocode) cannot
4803      * be modified by execution of the test, and so are passed unchanged
4804      * from the caller to the target or fallback as appropriate.
4805      * @param test method handle used for test, must return boolean
4806      * @param target method handle to call if test passes
4807      * @param fallback method handle to call if test fails
4808      * @return method handle which incorporates the specified if/then/else logic
4809      * @throws NullPointerException if any argument is null
4810      * @throws IllegalArgumentException if {@code test} does not return boolean,
4811      *          or if all three method types do not match (with the return
4812      *          type of {@code test} changed to match that of the target).
4813      */
4814     public static
4815     MethodHandle guardWithTest(MethodHandle test,
4816                                MethodHandle target,
4817                                MethodHandle fallback) {
4818         MethodType gtype = test.type();
4819         MethodType ttype = target.type();
4820         MethodType ftype = fallback.type();
4821         if (!ttype.equals(ftype))
4822             throw misMatchedTypes("target and fallback types", ttype, ftype);
4823         if (gtype.returnType() != boolean.class)
4824             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
4825         List<Class<?>> targs = ttype.parameterList();
4826         test = dropArgumentsToMatch(test, 0, targs, 0, true);
4827         if (test == null) {
4828             throw misMatchedTypes("target and test types", ttype, gtype);
4829         }
4830         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
4831     }
4832 
4833     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
4834         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
4835     }
4836 
4837     /**
4838      * Makes a method handle which adapts a target method handle,
4839      * by running it inside an exception handler.
4840      * If the target returns normally, the adapter returns that value.
4841      * If an exception matching the specified type is thrown, the fallback
4842      * handle is called instead on the exception, plus the original arguments.
4843      * <p>
4844      * The target and handler must have the same corresponding
4845      * argument and return types, except that handler may omit trailing arguments
4846      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
4847      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
4848      * <p>
4849      * Here is pseudocode for the resulting adapter. In the code, {@code T}
4850      * represents the return type of the {@code target} and {@code handler},
4851      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
4852      * the types and values of arguments to the resulting handle consumed by
4853      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
4854      * resulting handle discarded by {@code handler}.
4855      * <blockquote><pre>{@code
4856      * T target(A..., B...);
4857      * T handler(ExType, A...);
4858      * T adapter(A... a, B... b) {
4859      *   try {
4860      *     return target(a..., b...);
4861      *   } catch (ExType ex) {
4862      *     return handler(ex, a...);
4863      *   }
4864      * }
4865      * }</pre></blockquote>
4866      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
4867      * be modified by execution of the target, and so are passed unchanged
4868      * from the caller to the handler, if the handler is invoked.
4869      * <p>
4870      * The target and handler must return the same type, even if the handler
4871      * always throws.  (This might happen, for instance, because the handler
4872      * is simulating a {@code finally} clause).
4873      * To create such a throwing handler, compose the handler creation logic
4874      * with {@link #throwException throwException},
4875      * in order to create a method handle of the correct return type.
4876      * @param target method handle to call
4877      * @param exType the type of exception which the handler will catch
4878      * @param handler method handle to call if a matching exception is thrown
4879      * @return method handle which incorporates the specified try/catch logic
4880      * @throws NullPointerException if any argument is null
4881      * @throws IllegalArgumentException if {@code handler} does not accept
4882      *          the given exception type, or if the method handle types do
4883      *          not match in their return types and their
4884      *          corresponding parameters
4885      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
4886      */
4887     public static
4888     MethodHandle catchException(MethodHandle target,
4889                                 Class<? extends Throwable> exType,
4890                                 MethodHandle handler) {
4891         MethodType ttype = target.type();
4892         MethodType htype = handler.type();
4893         if (!Throwable.class.isAssignableFrom(exType))
4894             throw new ClassCastException(exType.getName());
4895         if (htype.parameterCount() < 1 ||
4896             !htype.parameterType(0).isAssignableFrom(exType))
4897             throw newIllegalArgumentException("handler does not accept exception type "+exType);
4898         if (htype.returnType() != ttype.returnType())
4899             throw misMatchedTypes("target and handler return types", ttype, htype);
4900         handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
4901         if (handler == null) {
4902             throw misMatchedTypes("target and handler types", ttype, htype);
4903         }
4904         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
4905     }
4906 
4907     /**
4908      * Produces a method handle which will throw exceptions of the given {@code exType}.
4909      * The method handle will accept a single argument of {@code exType},
4910      * and immediately throw it as an exception.
4911      * The method type will nominally specify a return of {@code returnType}.
4912      * The return type may be anything convenient:  It doesn't matter to the
4913      * method handle's behavior, since it will never return normally.
4914      * @param returnType the return type of the desired method handle
4915      * @param exType the parameter type of the desired method handle
4916      * @return method handle which can throw the given exceptions
4917      * @throws NullPointerException if either argument is null
4918      */
4919     public static
4920     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
4921         if (!Throwable.class.isAssignableFrom(exType))
4922             throw new ClassCastException(exType.getName());
4923         return MethodHandleImpl.throwException(methodType(returnType, exType));
4924     }
4925 
4926     /**
4927      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
4928      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
4929      * delivers the loop's result, which is the return value of the resulting handle.
4930      * <p>
4931      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
4932      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
4933      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
4934      * terms of method handles, each clause will specify up to four independent actions:<ul>
4935      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
4936      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
4937      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
4938      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
4939      * </ul>
4940      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
4941      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
4942      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
4943      * <p>
4944      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
4945      * this case. See below for a detailed description.
4946      * <p>
4947      * <em>Parameters optional everywhere:</em>
4948      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
4949      * As an exception, the init functions cannot take any {@code v} parameters,
4950      * because those values are not yet computed when the init functions are executed.
4951      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
4952      * In fact, any clause function may take no arguments at all.
4953      * <p>
4954      * <em>Loop parameters:</em>
4955      * A clause function may take all the iteration variable values it is entitled to, in which case
4956      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
4957      * with their types and values notated as {@code (A...)} and {@code (a...)}.
4958      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
4959      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
4960      * init function is automatically a loop parameter {@code a}.)
4961      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
4962      * These loop parameters act as loop-invariant values visible across the whole loop.
4963      * <p>
4964      * <em>Parameters visible everywhere:</em>
4965      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
4966      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
4967      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
4968      * Most clause functions will not need all of this information, but they will be formally connected to it
4969      * as if by {@link #dropArguments}.
4970      * <a id="astar"></a>
4971      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
4972      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
4973      * In that notation, the general form of an init function parameter list
4974      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
4975      * <p>
4976      * <em>Checking clause structure:</em>
4977      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
4978      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
4979      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
4980      * met by the inputs to the loop combinator.
4981      * <p>
4982      * <em>Effectively identical sequences:</em>
4983      * <a id="effid"></a>
4984      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
4985      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
4986      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
4987      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
4988      * that longest list.
4989      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
4990      * and the same is true if more sequences of the form {@code (V... A*)} are added.
4991      * <p>
4992      * <em>Step 0: Determine clause structure.</em><ol type="a">
4993      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
4994      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
4995      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
4996      * four. Padding takes place by appending elements to the array.
4997      * <li>Clauses with all {@code null}s are disregarded.
4998      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
4999      * </ol>
5000      * <p>
5001      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
5002      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
5003      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
5004      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
5005      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
5006      * iteration variable type.
5007      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
5008      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
5009      * </ol>
5010      * <p>
5011      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
5012      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
5013      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
5014      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
5015      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
5016      * (These types will checked in step 2, along with all the clause function types.)
5017      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
5018      * <li>All of the collected parameter lists must be effectively identical.
5019      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
5020      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
5021      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
5022      * the "internal parameter list".
5023      * </ul>
5024      * <p>
5025      * <em>Step 1C: Determine loop return type.</em><ol type="a">
5026      * <li>Examine fini function return types, disregarding omitted fini functions.
5027      * <li>If there are no fini functions, the loop return type is {@code void}.
5028      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
5029      * type.
5030      * </ol>
5031      * <p>
5032      * <em>Step 1D: Check other types.</em><ol type="a">
5033      * <li>There must be at least one non-omitted pred function.
5034      * <li>Every non-omitted pred function must have a {@code boolean} return type.
5035      * </ol>
5036      * <p>
5037      * <em>Step 2: Determine parameter lists.</em><ol type="a">
5038      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
5039      * <li>The parameter list for init functions will be adjusted to the external parameter list.
5040      * (Note that their parameter lists are already effectively identical to this list.)
5041      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
5042      * effectively identical to the internal parameter list {@code (V... A...)}.
5043      * </ol>
5044      * <p>
5045      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
5046      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
5047      * type.
5048      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
5049      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
5050      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
5051      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
5052      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
5053      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
5054      * loop return type.
5055      * </ol>
5056      * <p>
5057      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
5058      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
5059      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
5060      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
5061      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
5062      * pad out the end of the list.
5063      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}.
5064      * </ol>
5065      * <p>
5066      * <em>Final observations.</em><ol type="a">
5067      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
5068      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
5069      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
5070      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
5071      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
5072      * <li>Each pair of init and step functions agrees in their return type {@code V}.
5073      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
5074      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
5075      * </ol>
5076      * <p>
5077      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
5078      * <ul>
5079      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
5080      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
5081      * (Only one {@code Pn} has to be non-{@code null}.)
5082      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
5083      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
5084      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
5085      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
5086      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
5087      * the resulting loop handle's parameter types {@code (A...)}.
5088      * </ul>
5089      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
5090      * which is natural if most of the loop computation happens in the steps.  For some loops,
5091      * the burden of computation might be heaviest in the pred functions, and so the pred functions
5092      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
5093      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
5094      * where the init functions will need the extra parameters.  For such reasons, the rules for
5095      * determining these parameters are as symmetric as possible, across all clause parts.
5096      * In general, the loop parameters function as common invariant values across the whole
5097      * loop, while the iteration variables function as common variant values, or (if there is
5098      * no step function) as internal loop invariant temporaries.
5099      * <p>
5100      * <em>Loop execution.</em><ol type="a">
5101      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
5102      * every clause function. These locals are loop invariant.
5103      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
5104      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
5105      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
5106      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
5107      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
5108      * (in argument order).
5109      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
5110      * returns {@code false}.
5111      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
5112      * sequence {@code (v...)} of loop variables.
5113      * The updated value is immediately visible to all subsequent function calls.
5114      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
5115      * (of type {@code R}) is returned from the loop as a whole.
5116      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
5117      * except by throwing an exception.
5118      * </ol>
5119      * <p>
5120      * <em>Usage tips.</em>
5121      * <ul>
5122      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
5123      * sometimes a step function only needs to observe the current value of its own variable.
5124      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
5125      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
5126      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
5127      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
5128      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
5129      * <li>If some of the clause functions are virtual methods on an instance, the instance
5130      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
5131      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
5132      * will be the first iteration variable value, and it will be easy to use virtual
5133      * methods as clause parts, since all of them will take a leading instance reference matching that value.
5134      * </ul>
5135      * <p>
5136      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
5137      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
5138      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
5139      * <blockquote><pre>{@code
5140      * V... init...(A...);
5141      * boolean pred...(V..., A...);
5142      * V... step...(V..., A...);
5143      * R fini...(V..., A...);
5144      * R loop(A... a) {
5145      *   V... v... = init...(a...);
5146      *   for (;;) {
5147      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
5148      *       v = s(v..., a...);
5149      *       if (!p(v..., a...)) {
5150      *         return f(v..., a...);
5151      *       }
5152      *     }
5153      *   }
5154      * }
5155      * }</pre></blockquote>
5156      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
5157      * to their full length, even though individual clause functions may neglect to take them all.
5158      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}.
5159      *
5160      * @apiNote Example:
5161      * <blockquote><pre>{@code
5162      * // iterative implementation of the factorial function as a loop handle
5163      * static int one(int k) { return 1; }
5164      * static int inc(int i, int acc, int k) { return i + 1; }
5165      * static int mult(int i, int acc, int k) { return i * acc; }
5166      * static boolean pred(int i, int acc, int k) { return i < k; }
5167      * static int fin(int i, int acc, int k) { return acc; }
5168      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
5169      * // null initializer for counter, should initialize to 0
5170      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5171      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5172      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
5173      * assertEquals(120, loop.invoke(5));
5174      * }</pre></blockquote>
5175      * The same example, dropping arguments and using combinators:
5176      * <blockquote><pre>{@code
5177      * // simplified implementation of the factorial function as a loop handle
5178      * static int inc(int i) { return i + 1; } // drop acc, k
5179      * static int mult(int i, int acc) { return i * acc; } //drop k
5180      * static boolean cmp(int i, int k) { return i < k; }
5181      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
5182      * // null initializer for counter, should initialize to 0
5183      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
5184      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
5185      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
5186      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5187      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5188      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
5189      * assertEquals(720, loop.invoke(6));
5190      * }</pre></blockquote>
5191      * A similar example, using a helper object to hold a loop parameter:
5192      * <blockquote><pre>{@code
5193      * // instance-based implementation of the factorial function as a loop handle
5194      * static class FacLoop {
5195      *   final int k;
5196      *   FacLoop(int k) { this.k = k; }
5197      *   int inc(int i) { return i + 1; }
5198      *   int mult(int i, int acc) { return i * acc; }
5199      *   boolean pred(int i) { return i < k; }
5200      *   int fin(int i, int acc) { return acc; }
5201      * }
5202      * // assume MH_FacLoop is a handle to the constructor
5203      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
5204      * // null initializer for counter, should initialize to 0
5205      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
5206      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
5207      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5208      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5209      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
5210      * assertEquals(5040, loop.invoke(7));
5211      * }</pre></blockquote>
5212      *
5213      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
5214      *
5215      * @return a method handle embodying the looping behavior as defined by the arguments.
5216      *
5217      * @throws IllegalArgumentException in case any of the constraints described above is violated.
5218      *
5219      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
5220      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
5221      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
5222      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
5223      * @since 9
5224      */
5225     public static MethodHandle loop(MethodHandle[]... clauses) {
5226         // Step 0: determine clause structure.
5227         loopChecks0(clauses);
5228 
5229         List<MethodHandle> init = new ArrayList<>();
5230         List<MethodHandle> step = new ArrayList<>();
5231         List<MethodHandle> pred = new ArrayList<>();
5232         List<MethodHandle> fini = new ArrayList<>();
5233 
5234         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
5235             init.add(clause[0]); // all clauses have at least length 1
5236             step.add(clause.length <= 1 ? null : clause[1]);
5237             pred.add(clause.length <= 2 ? null : clause[2]);
5238             fini.add(clause.length <= 3 ? null : clause[3]);
5239         });
5240 
5241         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
5242         final int nclauses = init.size();
5243 
5244         // Step 1A: determine iteration variables (V...).
5245         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
5246         for (int i = 0; i < nclauses; ++i) {
5247             MethodHandle in = init.get(i);
5248             MethodHandle st = step.get(i);
5249             if (in == null && st == null) {
5250                 iterationVariableTypes.add(void.class);
5251             } else if (in != null && st != null) {
5252                 loopChecks1a(i, in, st);
5253                 iterationVariableTypes.add(in.type().returnType());
5254             } else {
5255                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
5256             }
5257         }
5258         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
5259                 collect(Collectors.toList());
5260 
5261         // Step 1B: determine loop parameters (A...).
5262         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
5263         loopChecks1b(init, commonSuffix);
5264 
5265         // Step 1C: determine loop return type.
5266         // Step 1D: check other types.
5267         final Class<?> loopReturnType = fini.stream().filter(Objects::nonNull).map(MethodHandle::type).
5268                 map(MethodType::returnType).findFirst().orElse(void.class);
5269         loopChecks1cd(pred, fini, loopReturnType);
5270 
5271         // Step 2: determine parameter lists.
5272         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
5273         commonParameterSequence.addAll(commonSuffix);
5274         loopChecks2(step, pred, fini, commonParameterSequence);
5275 
5276         // Step 3: fill in omitted functions.
5277         for (int i = 0; i < nclauses; ++i) {
5278             Class<?> t = iterationVariableTypes.get(i);
5279             if (init.get(i) == null) {
5280                 init.set(i, empty(methodType(t, commonSuffix)));
5281             }
5282             if (step.get(i) == null) {
5283                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
5284             }
5285             if (pred.get(i) == null) {
5286                 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
5287             }
5288             if (fini.get(i) == null) {
5289                 fini.set(i, empty(methodType(t, commonParameterSequence)));
5290             }
5291         }
5292 
5293         // Step 4: fill in missing parameter types.
5294         // Also convert all handles to fixed-arity handles.
5295         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
5296         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
5297         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
5298         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
5299 
5300         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
5301                 allMatch(pl -> pl.equals(commonSuffix));
5302         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
5303                 allMatch(pl -> pl.equals(commonParameterSequence));
5304 
5305         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
5306     }
5307 
5308     private static void loopChecks0(MethodHandle[][] clauses) {
5309         if (clauses == null || clauses.length == 0) {
5310             throw newIllegalArgumentException("null or no clauses passed");
5311         }
5312         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
5313             throw newIllegalArgumentException("null clauses are not allowed");
5314         }
5315         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
5316             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
5317         }
5318     }
5319 
5320     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
5321         if (in.type().returnType() != st.type().returnType()) {
5322             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
5323                     st.type().returnType());
5324         }
5325     }
5326 
5327     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
5328         final List<Class<?>> empty = List.of();
5329         final List<Class<?>> longest = mhs.filter(Objects::nonNull).
5330                 // take only those that can contribute to a common suffix because they are longer than the prefix
5331                         map(MethodHandle::type).
5332                         filter(t -> t.parameterCount() > skipSize).
5333                         map(MethodType::parameterList).
5334                         reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
5335         return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
5336     }
5337 
5338     private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
5339         final List<Class<?>> empty = List.of();
5340         return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
5341     }
5342 
5343     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
5344         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
5345         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
5346         return longestParameterList(Arrays.asList(longest1, longest2));
5347     }
5348 
5349     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
5350         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
5351                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
5352             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
5353                     " (common suffix: " + commonSuffix + ")");
5354         }
5355     }
5356 
5357     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
5358         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
5359                 anyMatch(t -> t != loopReturnType)) {
5360             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
5361                     loopReturnType + ")");
5362         }
5363 
5364         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
5365             throw newIllegalArgumentException("no predicate found", pred);
5366         }
5367         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
5368                 anyMatch(t -> t != boolean.class)) {
5369             throw newIllegalArgumentException("predicates must have boolean return type", pred);
5370         }
5371     }
5372 
5373     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
5374         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
5375                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
5376             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
5377                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
5378         }
5379     }
5380 
5381     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
5382         return hs.stream().map(h -> {
5383             int pc = h.type().parameterCount();
5384             int tpsize = targetParams.size();
5385             return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
5386         }).collect(Collectors.toList());
5387     }
5388 
5389     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
5390         return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
5391     }
5392 
5393     /**
5394      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
5395      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5396      * <p>
5397      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5398      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
5399      * evaluates to {@code true}).
5400      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
5401      * <p>
5402      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5403      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5404      * and updated with the value returned from its invocation. The result of loop execution will be
5405      * the final value of the additional loop-local variable (if present).
5406      * <p>
5407      * The following rules hold for these argument handles:<ul>
5408      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5409      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5410      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5411      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5412      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5413      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5414      * It will constrain the parameter lists of the other loop parts.
5415      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5416      * list {@code (A...)} is called the <em>external parameter list</em>.
5417      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5418      * additional state variable of the loop.
5419      * The body must both accept and return a value of this type {@code V}.
5420      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5421      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5422      * <a href="MethodHandles.html#effid">effectively identical</a>
5423      * to the external parameter list {@code (A...)}.
5424      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5425      * {@linkplain #empty default value}.
5426      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5427      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5428      * effectively identical to the internal parameter list.
5429      * </ul>
5430      * <p>
5431      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5432      * <li>The loop handle's result type is the result type {@code V} of the body.
5433      * <li>The loop handle's parameter types are the types {@code (A...)},
5434      * from the external parameter list.
5435      * </ul>
5436      * <p>
5437      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5438      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5439      * passed to the loop.
5440      * <blockquote><pre>{@code
5441      * V init(A...);
5442      * boolean pred(V, A...);
5443      * V body(V, A...);
5444      * V whileLoop(A... a...) {
5445      *   V v = init(a...);
5446      *   while (pred(v, a...)) {
5447      *     v = body(v, a...);
5448      *   }
5449      *   return v;
5450      * }
5451      * }</pre></blockquote>
5452      *
5453      * @apiNote Example:
5454      * <blockquote><pre>{@code
5455      * // implement the zip function for lists as a loop handle
5456      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
5457      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
5458      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
5459      *   zip.add(a.next());
5460      *   zip.add(b.next());
5461      *   return zip;
5462      * }
5463      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
5464      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
5465      * List<String> a = Arrays.asList("a", "b", "c", "d");
5466      * List<String> b = Arrays.asList("e", "f", "g", "h");
5467      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
5468      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
5469      * }</pre></blockquote>
5470      *
5471      *
5472      * @apiNote The implementation of this method can be expressed as follows:
5473      * <blockquote><pre>{@code
5474      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5475      *     MethodHandle fini = (body.type().returnType() == void.class
5476      *                         ? null : identity(body.type().returnType()));
5477      *     MethodHandle[]
5478      *         checkExit = { null, null, pred, fini },
5479      *         varBody   = { init, body };
5480      *     return loop(checkExit, varBody);
5481      * }
5482      * }</pre></blockquote>
5483      *
5484      * @param init optional initializer, providing the initial value of the loop variable.
5485      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5486      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5487      *             above for other constraints.
5488      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5489      *             See above for other constraints.
5490      *
5491      * @return a method handle implementing the {@code while} loop as described by the arguments.
5492      * @throws IllegalArgumentException if the rules for the arguments are violated.
5493      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5494      *
5495      * @see #loop(MethodHandle[][])
5496      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
5497      * @since 9
5498      */
5499     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5500         whileLoopChecks(init, pred, body);
5501         MethodHandle fini = identityOrVoid(body.type().returnType());
5502         MethodHandle[] checkExit = { null, null, pred, fini };
5503         MethodHandle[] varBody = { init, body };
5504         return loop(checkExit, varBody);
5505     }
5506 
5507     /**
5508      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
5509      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5510      * <p>
5511      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5512      * method will, in each iteration, first execute its body and then evaluate the predicate.
5513      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
5514      * <p>
5515      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5516      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5517      * and updated with the value returned from its invocation. The result of loop execution will be
5518      * the final value of the additional loop-local variable (if present).
5519      * <p>
5520      * The following rules hold for these argument handles:<ul>
5521      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5522      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5523      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5524      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5525      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5526      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5527      * It will constrain the parameter lists of the other loop parts.
5528      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5529      * list {@code (A...)} is called the <em>external parameter list</em>.
5530      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5531      * additional state variable of the loop.
5532      * The body must both accept and return a value of this type {@code V}.
5533      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5534      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5535      * <a href="MethodHandles.html#effid">effectively identical</a>
5536      * to the external parameter list {@code (A...)}.
5537      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5538      * {@linkplain #empty default value}.
5539      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5540      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5541      * effectively identical to the internal parameter list.
5542      * </ul>
5543      * <p>
5544      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5545      * <li>The loop handle's result type is the result type {@code V} of the body.
5546      * <li>The loop handle's parameter types are the types {@code (A...)},
5547      * from the external parameter list.
5548      * </ul>
5549      * <p>
5550      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5551      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5552      * passed to the loop.
5553      * <blockquote><pre>{@code
5554      * V init(A...);
5555      * boolean pred(V, A...);
5556      * V body(V, A...);
5557      * V doWhileLoop(A... a...) {
5558      *   V v = init(a...);
5559      *   do {
5560      *     v = body(v, a...);
5561      *   } while (pred(v, a...));
5562      *   return v;
5563      * }
5564      * }</pre></blockquote>
5565      *
5566      * @apiNote Example:
5567      * <blockquote><pre>{@code
5568      * // int i = 0; while (i < limit) { ++i; } return i; => limit
5569      * static int zero(int limit) { return 0; }
5570      * static int step(int i, int limit) { return i + 1; }
5571      * static boolean pred(int i, int limit) { return i < limit; }
5572      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
5573      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
5574      * assertEquals(23, loop.invoke(23));
5575      * }</pre></blockquote>
5576      *
5577      *
5578      * @apiNote The implementation of this method can be expressed as follows:
5579      * <blockquote><pre>{@code
5580      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
5581      *     MethodHandle fini = (body.type().returnType() == void.class
5582      *                         ? null : identity(body.type().returnType()));
5583      *     MethodHandle[] clause = { init, body, pred, fini };
5584      *     return loop(clause);
5585      * }
5586      * }</pre></blockquote>
5587      *
5588      * @param init optional initializer, providing the initial value of the loop variable.
5589      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5590      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5591      *             See above for other constraints.
5592      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5593      *             above for other constraints.
5594      *
5595      * @return a method handle implementing the {@code while} loop as described by the arguments.
5596      * @throws IllegalArgumentException if the rules for the arguments are violated.
5597      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5598      *
5599      * @see #loop(MethodHandle[][])
5600      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
5601      * @since 9
5602      */
5603     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
5604         whileLoopChecks(init, pred, body);
5605         MethodHandle fini = identityOrVoid(body.type().returnType());
5606         MethodHandle[] clause = {init, body, pred, fini };
5607         return loop(clause);
5608     }
5609 
5610     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
5611         Objects.requireNonNull(pred);
5612         Objects.requireNonNull(body);
5613         MethodType bodyType = body.type();
5614         Class<?> returnType = bodyType.returnType();
5615         List<Class<?>> innerList = bodyType.parameterList();
5616         List<Class<?>> outerList = innerList;
5617         if (returnType == void.class) {
5618             // OK
5619         } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
5620             // leading V argument missing => error
5621             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5622             throw misMatchedTypes("body function", bodyType, expected);
5623         } else {
5624             outerList = innerList.subList(1, innerList.size());
5625         }
5626         MethodType predType = pred.type();
5627         if (predType.returnType() != boolean.class ||
5628                 !predType.effectivelyIdenticalParameters(0, innerList)) {
5629             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
5630         }
5631         if (init != null) {
5632             MethodType initType = init.type();
5633             if (initType.returnType() != returnType ||
5634                     !initType.effectivelyIdenticalParameters(0, outerList)) {
5635                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5636             }
5637         }
5638     }
5639 
5640     /**
5641      * Constructs a loop that runs a given number of iterations.
5642      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5643      * <p>
5644      * The number of iterations is determined by the {@code iterations} handle evaluation result.
5645      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
5646      * It will be initialized to 0 and incremented by 1 in each iteration.
5647      * <p>
5648      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5649      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5650      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5651      * <p>
5652      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5653      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5654      * iteration variable.
5655      * The result of the loop handle execution will be the final {@code V} value of that variable
5656      * (or {@code void} if there is no {@code V} variable).
5657      * <p>
5658      * The following rules hold for the argument handles:<ul>
5659      * <li>The {@code iterations} handle must not be {@code null}, and must return
5660      * the type {@code int}, referred to here as {@code I} in parameter type lists.
5661      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5662      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
5663      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5664      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
5665      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
5666      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
5667      * of types called the <em>internal parameter list</em>.
5668      * It will constrain the parameter lists of the other loop parts.
5669      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
5670      * with no additional {@code A} types, then the internal parameter list is extended by
5671      * the argument types {@code A...} of the {@code iterations} handle.
5672      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
5673      * list {@code (A...)} is called the <em>external parameter list</em>.
5674      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5675      * additional state variable of the loop.
5676      * The body must both accept a leading parameter and return a value of this type {@code V}.
5677      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5678      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5679      * <a href="MethodHandles.html#effid">effectively identical</a>
5680      * to the external parameter list {@code (A...)}.
5681      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5682      * {@linkplain #empty default value}.
5683      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
5684      * effectively identical to the external parameter list {@code (A...)}.
5685      * </ul>
5686      * <p>
5687      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5688      * <li>The loop handle's result type is the result type {@code V} of the body.
5689      * <li>The loop handle's parameter types are the types {@code (A...)},
5690      * from the external parameter list.
5691      * </ul>
5692      * <p>
5693      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5694      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
5695      * arguments passed to the loop.
5696      * <blockquote><pre>{@code
5697      * int iterations(A...);
5698      * V init(A...);
5699      * V body(V, int, A...);
5700      * V countedLoop(A... a...) {
5701      *   int end = iterations(a...);
5702      *   V v = init(a...);
5703      *   for (int i = 0; i < end; ++i) {
5704      *     v = body(v, i, a...);
5705      *   }
5706      *   return v;
5707      * }
5708      * }</pre></blockquote>
5709      *
5710      * @apiNote Example with a fully conformant body method:
5711      * <blockquote><pre>{@code
5712      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
5713      * // => a variation on a well known theme
5714      * static String step(String v, int counter, String init) { return "na " + v; }
5715      * // assume MH_step is a handle to the method above
5716      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
5717      * MethodHandle start = MethodHandles.identity(String.class);
5718      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
5719      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
5720      * }</pre></blockquote>
5721      *
5722      * @apiNote Example with the simplest possible body method type,
5723      * and passing the number of iterations to the loop invocation:
5724      * <blockquote><pre>{@code
5725      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
5726      * // => a variation on a well known theme
5727      * static String step(String v, int counter ) { return "na " + v; }
5728      * // assume MH_step is a handle to the method above
5729      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
5730      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
5731      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
5732      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
5733      * }</pre></blockquote>
5734      *
5735      * @apiNote Example that treats the number of iterations, string to append to, and string to append
5736      * as loop parameters:
5737      * <blockquote><pre>{@code
5738      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
5739      * // => a variation on a well known theme
5740      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
5741      * // assume MH_step is a handle to the method above
5742      * MethodHandle count = MethodHandles.identity(int.class);
5743      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
5744      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
5745      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
5746      * }</pre></blockquote>
5747      *
5748      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
5749      * to enforce a loop type:
5750      * <blockquote><pre>{@code
5751      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
5752      * // => a variation on a well known theme
5753      * static String step(String v, int counter, String pre) { return pre + " " + v; }
5754      * // assume MH_step is a handle to the method above
5755      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
5756      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
5757      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
5758      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
5759      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
5760      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
5761      * }</pre></blockquote>
5762      *
5763      * @apiNote The implementation of this method can be expressed as follows:
5764      * <blockquote><pre>{@code
5765      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
5766      *     return countedLoop(empty(iterations.type()), iterations, init, body);
5767      * }
5768      * }</pre></blockquote>
5769      *
5770      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
5771      *                   result type must be {@code int}. See above for other constraints.
5772      * @param init optional initializer, providing the initial value of the loop variable.
5773      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5774      * @param body body of the loop, which may not be {@code null}.
5775      *             It controls the loop parameters and result type in the standard case (see above for details).
5776      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
5777      *             and may accept any number of additional types.
5778      *             See above for other constraints.
5779      *
5780      * @return a method handle representing the loop.
5781      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
5782      * @throws IllegalArgumentException if any argument violates the rules formulated above.
5783      *
5784      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
5785      * @since 9
5786      */
5787     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
5788         return countedLoop(empty(iterations.type()), iterations, init, body);
5789     }
5790 
5791     /**
5792      * Constructs a loop that counts over a range of numbers.
5793      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5794      * <p>
5795      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
5796      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
5797      * values of the loop counter.
5798      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
5799      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
5800      * <p>
5801      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5802      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5803      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5804      * <p>
5805      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5806      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5807      * iteration variable.
5808      * The result of the loop handle execution will be the final {@code V} value of that variable
5809      * (or {@code void} if there is no {@code V} variable).
5810      * <p>
5811      * The following rules hold for the argument handles:<ul>
5812      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
5813      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
5814      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5815      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
5816      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5817      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
5818      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
5819      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
5820      * of types called the <em>internal parameter list</em>.
5821      * It will constrain the parameter lists of the other loop parts.
5822      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
5823      * with no additional {@code A} types, then the internal parameter list is extended by
5824      * the argument types {@code A...} of the {@code end} handle.
5825      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
5826      * list {@code (A...)} is called the <em>external parameter list</em>.
5827      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5828      * additional state variable of the loop.
5829      * The body must both accept a leading parameter and return a value of this type {@code V}.
5830      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5831      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5832      * <a href="MethodHandles.html#effid">effectively identical</a>
5833      * to the external parameter list {@code (A...)}.
5834      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5835      * {@linkplain #empty default value}.
5836      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
5837      * effectively identical to the external parameter list {@code (A...)}.
5838      * <li>Likewise, the parameter list of {@code end} must be effectively identical
5839      * to the external parameter list.
5840      * </ul>
5841      * <p>
5842      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5843      * <li>The loop handle's result type is the result type {@code V} of the body.
5844      * <li>The loop handle's parameter types are the types {@code (A...)},
5845      * from the external parameter list.
5846      * </ul>
5847      * <p>
5848      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5849      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
5850      * arguments passed to the loop.
5851      * <blockquote><pre>{@code
5852      * int start(A...);
5853      * int end(A...);
5854      * V init(A...);
5855      * V body(V, int, A...);
5856      * V countedLoop(A... a...) {
5857      *   int e = end(a...);
5858      *   int s = start(a...);
5859      *   V v = init(a...);
5860      *   for (int i = s; i < e; ++i) {
5861      *     v = body(v, i, a...);
5862      *   }
5863      *   return v;
5864      * }
5865      * }</pre></blockquote>
5866      *
5867      * @apiNote The implementation of this method can be expressed as follows:
5868      * <blockquote><pre>{@code
5869      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5870      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
5871      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
5872      *     // the following semantics:
5873      *     // MH_increment: (int limit, int counter) -> counter + 1
5874      *     // MH_predicate: (int limit, int counter) -> counter < limit
5875      *     Class<?> counterType = start.type().returnType();  // int
5876      *     Class<?> returnType = body.type().returnType();
5877      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
5878      *     if (returnType != void.class) {  // ignore the V variable
5879      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5880      *         pred = dropArguments(pred, 1, returnType);  // ditto
5881      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
5882      *     }
5883      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
5884      *     MethodHandle[]
5885      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5886      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
5887      *         indexVar   = { start, incr };           // i = start(); i = i + 1
5888      *     return loop(loopLimit, bodyClause, indexVar);
5889      * }
5890      * }</pre></blockquote>
5891      *
5892      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
5893      *              See above for other constraints.
5894      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
5895      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
5896      * @param init optional initializer, providing the initial value of the loop variable.
5897      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5898      * @param body body of the loop, which may not be {@code null}.
5899      *             It controls the loop parameters and result type in the standard case (see above for details).
5900      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
5901      *             and may accept any number of additional types.
5902      *             See above for other constraints.
5903      *
5904      * @return a method handle representing the loop.
5905      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
5906      * @throws IllegalArgumentException if any argument violates the rules formulated above.
5907      *
5908      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
5909      * @since 9
5910      */
5911     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5912         countedLoopChecks(start, end, init, body);
5913         Class<?> counterType = start.type().returnType();  // int, but who's counting?
5914         Class<?> limitType   = end.type().returnType();    // yes, int again
5915         Class<?> returnType  = body.type().returnType();
5916         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
5917         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
5918         MethodHandle retv = null;
5919         if (returnType != void.class) {
5920             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5921             pred = dropArguments(pred, 1, returnType);  // ditto
5922             retv = dropArguments(identity(returnType), 0, counterType);
5923         }
5924         body = dropArguments(body, 0, counterType);  // ignore the limit variable
5925         MethodHandle[]
5926             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5927             bodyClause = { init, body },            // v = init(); v = body(v, i)
5928             indexVar   = { start, incr };           // i = start(); i = i + 1
5929         return loop(loopLimit, bodyClause, indexVar);
5930     }
5931 
5932     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5933         Objects.requireNonNull(start);
5934         Objects.requireNonNull(end);
5935         Objects.requireNonNull(body);
5936         Class<?> counterType = start.type().returnType();
5937         if (counterType != int.class) {
5938             MethodType expected = start.type().changeReturnType(int.class);
5939             throw misMatchedTypes("start function", start.type(), expected);
5940         } else if (end.type().returnType() != counterType) {
5941             MethodType expected = end.type().changeReturnType(counterType);
5942             throw misMatchedTypes("end function", end.type(), expected);
5943         }
5944         MethodType bodyType = body.type();
5945         Class<?> returnType = bodyType.returnType();
5946         List<Class<?>> innerList = bodyType.parameterList();
5947         // strip leading V value if present
5948         int vsize = (returnType == void.class ? 0 : 1);
5949         if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
5950             // argument list has no "V" => error
5951             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5952             throw misMatchedTypes("body function", bodyType, expected);
5953         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
5954             // missing I type => error
5955             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
5956             throw misMatchedTypes("body function", bodyType, expected);
5957         }
5958         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
5959         if (outerList.isEmpty()) {
5960             // special case; take lists from end handle
5961             outerList = end.type().parameterList();
5962             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
5963         }
5964         MethodType expected = methodType(counterType, outerList);
5965         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
5966             throw misMatchedTypes("start parameter types", start.type(), expected);
5967         }
5968         if (end.type() != start.type() &&
5969             !end.type().effectivelyIdenticalParameters(0, outerList)) {
5970             throw misMatchedTypes("end parameter types", end.type(), expected);
5971         }
5972         if (init != null) {
5973             MethodType initType = init.type();
5974             if (initType.returnType() != returnType ||
5975                 !initType.effectivelyIdenticalParameters(0, outerList)) {
5976                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5977             }
5978         }
5979     }
5980 
5981     /**
5982      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
5983      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5984      * <p>
5985      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
5986      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
5987      * <p>
5988      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5989      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5990      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5991      * <p>
5992      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5993      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5994      * iteration variable.
5995      * The result of the loop handle execution will be the final {@code V} value of that variable
5996      * (or {@code void} if there is no {@code V} variable).
5997      * <p>
5998      * The following rules hold for the argument handles:<ul>
5999      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6000      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
6001      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6002      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
6003      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
6004      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
6005      * of types called the <em>internal parameter list</em>.
6006      * It will constrain the parameter lists of the other loop parts.
6007      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
6008      * with no additional {@code A} types, then the internal parameter list is extended by
6009      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
6010      * single type {@code Iterable} is added and constitutes the {@code A...} list.
6011      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
6012      * list {@code (A...)} is called the <em>external parameter list</em>.
6013      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6014      * additional state variable of the loop.
6015      * The body must both accept a leading parameter and return a value of this type {@code V}.
6016      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6017      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6018      * <a href="MethodHandles.html#effid">effectively identical</a>
6019      * to the external parameter list {@code (A...)}.
6020      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6021      * {@linkplain #empty default value}.
6022      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
6023      * type {@code java.util.Iterator} or a subtype thereof.
6024      * The iterator it produces when the loop is executed will be assumed
6025      * to yield values which can be converted to type {@code T}.
6026      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
6027      * effectively identical to the external parameter list {@code (A...)}.
6028      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
6029      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
6030      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
6031      * handle parameter is adjusted to accept the leading {@code A} type, as if by
6032      * the {@link MethodHandle#asType asType} conversion method.
6033      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
6034      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
6035      * </ul>
6036      * <p>
6037      * The type {@code T} may be either a primitive or reference.
6038      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
6039      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
6040      * as if by the {@link MethodHandle#asType asType} conversion method.
6041      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
6042      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
6043      * <p>
6044      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6045      * <li>The loop handle's result type is the result type {@code V} of the body.
6046      * <li>The loop handle's parameter types are the types {@code (A...)},
6047      * from the external parameter list.
6048      * </ul>
6049      * <p>
6050      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6051      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
6052      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
6053      * <blockquote><pre>{@code
6054      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
6055      * V init(A...);
6056      * V body(V,T,A...);
6057      * V iteratedLoop(A... a...) {
6058      *   Iterator<T> it = iterator(a...);
6059      *   V v = init(a...);
6060      *   while (it.hasNext()) {
6061      *     T t = it.next();
6062      *     v = body(v, t, a...);
6063      *   }
6064      *   return v;
6065      * }
6066      * }</pre></blockquote>
6067      *
6068      * @apiNote Example:
6069      * <blockquote><pre>{@code
6070      * // get an iterator from a list
6071      * static List<String> reverseStep(List<String> r, String e) {
6072      *   r.add(0, e);
6073      *   return r;
6074      * }
6075      * static List<String> newArrayList() { return new ArrayList<>(); }
6076      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
6077      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
6078      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
6079      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
6080      * assertEquals(reversedList, (List<String>) loop.invoke(list));
6081      * }</pre></blockquote>
6082      *
6083      * @apiNote The implementation of this method can be expressed approximately as follows:
6084      * <blockquote><pre>{@code
6085      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6086      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
6087      *     Class<?> returnType = body.type().returnType();
6088      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
6089      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
6090      *     MethodHandle retv = null, step = body, startIter = iterator;
6091      *     if (returnType != void.class) {
6092      *         // the simple thing first:  in (I V A...), drop the I to get V
6093      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
6094      *         // body type signature (V T A...), internal loop types (I V A...)
6095      *         step = swapArguments(body, 0, 1);  // swap V <-> T
6096      *     }
6097      *     if (startIter == null)  startIter = MH_getIter;
6098      *     MethodHandle[]
6099      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
6100      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
6101      *     return loop(iterVar, bodyClause);
6102      * }
6103      * }</pre></blockquote>
6104      *
6105      * @param iterator an optional handle to return the iterator to start the loop.
6106      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
6107      *                 See above for other constraints.
6108      * @param init optional initializer, providing the initial value of the loop variable.
6109      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6110      * @param body body of the loop, which may not be {@code null}.
6111      *             It controls the loop parameters and result type in the standard case (see above for details).
6112      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
6113      *             and may accept any number of additional types.
6114      *             See above for other constraints.
6115      *
6116      * @return a method handle embodying the iteration loop functionality.
6117      * @throws NullPointerException if the {@code body} handle is {@code null}.
6118      * @throws IllegalArgumentException if any argument violates the above requirements.
6119      *
6120      * @since 9
6121      */
6122     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6123         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
6124         Class<?> returnType = body.type().returnType();
6125         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
6126         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
6127         MethodHandle startIter;
6128         MethodHandle nextVal;
6129         {
6130             MethodType iteratorType;
6131             if (iterator == null) {
6132                 // derive argument type from body, if available, else use Iterable
6133                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
6134                 iteratorType = startIter.type().changeParameterType(0, iterableType);
6135             } else {
6136                 // force return type to the internal iterator class
6137                 iteratorType = iterator.type().changeReturnType(Iterator.class);
6138                 startIter = iterator;
6139             }
6140             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
6141             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
6142 
6143             // perform the asType transforms under an exception transformer, as per spec.:
6144             try {
6145                 startIter = startIter.asType(iteratorType);
6146                 nextVal = nextRaw.asType(nextValType);
6147             } catch (WrongMethodTypeException ex) {
6148                 throw new IllegalArgumentException(ex);
6149             }
6150         }
6151 
6152         MethodHandle retv = null, step = body;
6153         if (returnType != void.class) {
6154             // the simple thing first:  in (I V A...), drop the I to get V
6155             retv = dropArguments(identity(returnType), 0, Iterator.class);
6156             // body type signature (V T A...), internal loop types (I V A...)
6157             step = swapArguments(body, 0, 1);  // swap V <-> T
6158         }
6159 
6160         MethodHandle[]
6161             iterVar    = { startIter, null, hasNext, retv },
6162             bodyClause = { init, filterArgument(step, 0, nextVal) };
6163         return loop(iterVar, bodyClause);
6164     }
6165 
6166     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6167         Objects.requireNonNull(body);
6168         MethodType bodyType = body.type();
6169         Class<?> returnType = bodyType.returnType();
6170         List<Class<?>> internalParamList = bodyType.parameterList();
6171         // strip leading V value if present
6172         int vsize = (returnType == void.class ? 0 : 1);
6173         if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
6174             // argument list has no "V" => error
6175             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6176             throw misMatchedTypes("body function", bodyType, expected);
6177         } else if (internalParamList.size() <= vsize) {
6178             // missing T type => error
6179             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
6180             throw misMatchedTypes("body function", bodyType, expected);
6181         }
6182         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
6183         Class<?> iterableType = null;
6184         if (iterator != null) {
6185             // special case; if the body handle only declares V and T then
6186             // the external parameter list is obtained from iterator handle
6187             if (externalParamList.isEmpty()) {
6188                 externalParamList = iterator.type().parameterList();
6189             }
6190             MethodType itype = iterator.type();
6191             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
6192                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
6193             }
6194             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
6195                 MethodType expected = methodType(itype.returnType(), externalParamList);
6196                 throw misMatchedTypes("iterator parameters", itype, expected);
6197             }
6198         } else {
6199             if (externalParamList.isEmpty()) {
6200                 // special case; if the iterator handle is null and the body handle
6201                 // only declares V and T then the external parameter list consists
6202                 // of Iterable
6203                 externalParamList = Arrays.asList(Iterable.class);
6204                 iterableType = Iterable.class;
6205             } else {
6206                 // special case; if the iterator handle is null and the external
6207                 // parameter list is not empty then the first parameter must be
6208                 // assignable to Iterable
6209                 iterableType = externalParamList.get(0);
6210                 if (!Iterable.class.isAssignableFrom(iterableType)) {
6211                     throw newIllegalArgumentException(
6212                             "inferred first loop argument must inherit from Iterable: " + iterableType);
6213                 }
6214             }
6215         }
6216         if (init != null) {
6217             MethodType initType = init.type();
6218             if (initType.returnType() != returnType ||
6219                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
6220                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
6221             }
6222         }
6223         return iterableType;  // help the caller a bit
6224     }
6225 
6226     /*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
6227         // there should be a better way to uncross my wires
6228         int arity = mh.type().parameterCount();
6229         int[] order = new int[arity];
6230         for (int k = 0; k < arity; k++)  order[k] = k;
6231         order[i] = j; order[j] = i;
6232         Class<?>[] types = mh.type().parameterArray();
6233         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
6234         MethodType swapType = methodType(mh.type().returnType(), types);
6235         return permuteArguments(mh, swapType, order);
6236     }
6237 
6238     /**
6239      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
6240      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
6241      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
6242      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
6243      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
6244      * {@code try-finally} handle.
6245      * <p>
6246      * The {@code cleanup} handle will be passed one or two additional leading arguments.
6247      * The first is the exception thrown during the
6248      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
6249      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
6250      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
6251      * The second argument is not present if the {@code target} handle has a {@code void} return type.
6252      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
6253      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
6254      * <p>
6255      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
6256      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
6257      * two extra leading parameters:<ul>
6258      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
6259      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
6260      * the result from the execution of the {@code target} handle.
6261      * This parameter is not present if the {@code target} returns {@code void}.
6262      * </ul>
6263      * <p>
6264      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
6265      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
6266      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
6267      * the cleanup.
6268      * <blockquote><pre>{@code
6269      * V target(A..., B...);
6270      * V cleanup(Throwable, V, A...);
6271      * V adapter(A... a, B... b) {
6272      *   V result = (zero value for V);
6273      *   Throwable throwable = null;
6274      *   try {
6275      *     result = target(a..., b...);
6276      *   } catch (Throwable t) {
6277      *     throwable = t;
6278      *     throw t;
6279      *   } finally {
6280      *     result = cleanup(throwable, result, a...);
6281      *   }
6282      *   return result;
6283      * }
6284      * }</pre></blockquote>
6285      * <p>
6286      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
6287      * be modified by execution of the target, and so are passed unchanged
6288      * from the caller to the cleanup, if it is invoked.
6289      * <p>
6290      * The target and cleanup must return the same type, even if the cleanup
6291      * always throws.
6292      * To create such a throwing cleanup, compose the cleanup logic
6293      * with {@link #throwException throwException},
6294      * in order to create a method handle of the correct return type.
6295      * <p>
6296      * Note that {@code tryFinally} never converts exceptions into normal returns.
6297      * In rare cases where exceptions must be converted in that way, first wrap
6298      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
6299      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
6300      * <p>
6301      * It is recommended that the first parameter type of {@code cleanup} be
6302      * declared {@code Throwable} rather than a narrower subtype.  This ensures
6303      * {@code cleanup} will always be invoked with whatever exception that
6304      * {@code target} throws.  Declaring a narrower type may result in a
6305      * {@code ClassCastException} being thrown by the {@code try-finally}
6306      * handle if the type of the exception thrown by {@code target} is not
6307      * assignable to the first parameter type of {@code cleanup}.  Note that
6308      * various exception types of {@code VirtualMachineError},
6309      * {@code LinkageError}, and {@code RuntimeException} can in principle be
6310      * thrown by almost any kind of Java code, and a finally clause that
6311      * catches (say) only {@code IOException} would mask any of the others
6312      * behind a {@code ClassCastException}.
6313      *
6314      * @param target the handle whose execution is to be wrapped in a {@code try} block.
6315      * @param cleanup the handle that is invoked in the finally block.
6316      *
6317      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
6318      * @throws NullPointerException if any argument is null
6319      * @throws IllegalArgumentException if {@code cleanup} does not accept
6320      *          the required leading arguments, or if the method handle types do
6321      *          not match in their return types and their
6322      *          corresponding trailing parameters
6323      *
6324      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
6325      * @since 9
6326      */
6327     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
6328         List<Class<?>> targetParamTypes = target.type().parameterList();
6329         Class<?> rtype = target.type().returnType();
6330 
6331         tryFinallyChecks(target, cleanup);
6332 
6333         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
6334         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
6335         // target parameter list.
6336         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
6337 
6338         // Ensure that the intrinsic type checks the instance thrown by the
6339         // target against the first parameter of cleanup
6340         cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class));
6341 
6342         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
6343         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
6344     }
6345 
6346     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
6347         Class<?> rtype = target.type().returnType();
6348         if (rtype != cleanup.type().returnType()) {
6349             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
6350         }
6351         MethodType cleanupType = cleanup.type();
6352         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
6353             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
6354         }
6355         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
6356             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
6357         }
6358         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
6359         // target parameter list.
6360         int cleanupArgIndex = rtype == void.class ? 1 : 2;
6361         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
6362             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
6363                     cleanup.type(), target.type());
6364         }
6365     }
6366 
6367 }