1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_PHASEX_HPP
  26 #define SHARE_VM_OPTO_PHASEX_HPP
  27 
  28 #include "libadt/dict.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "opto/memnode.hpp"
  32 #include "opto/node.hpp"
  33 #include "opto/phase.hpp"
  34 #include "opto/type.hpp"
  35 
  36 class Compile;
  37 class ConINode;
  38 class ConLNode;
  39 class Node;
  40 class Type;
  41 class PhaseTransform;
  42 class   PhaseGVN;
  43 class     PhaseIterGVN;
  44 class       PhaseCCP;
  45 class   PhasePeephole;
  46 class   PhaseRegAlloc;
  47 
  48 
  49 //-----------------------------------------------------------------------------
  50 // Expandable closed hash-table of nodes, initialized to NULL.
  51 // Note that the constructor just zeros things
  52 // Storage is reclaimed when the Arena's lifetime is over.
  53 class NodeHash : public StackObj {
  54 protected:
  55   Arena *_a;                    // Arena to allocate in
  56   uint   _max;                  // Size of table (power of 2)
  57   uint   _inserts;              // For grow and debug, count of hash_inserts
  58   uint   _insert_limit;         // 'grow' when _inserts reaches _insert_limit
  59   Node **_table;                // Hash table of Node pointers
  60   Node  *_sentinel;             // Replaces deleted entries in hash table
  61 
  62 public:
  63   NodeHash(uint est_max_size);
  64   NodeHash(Arena *arena, uint est_max_size);
  65   NodeHash(NodeHash *use_this_state);
  66 #ifdef ASSERT
  67   ~NodeHash();                  // Unlock all nodes upon destruction of table.
  68   void operator=(const NodeHash&); // Unlock all nodes upon replacement of table.
  69 #endif
  70   Node  *hash_find(const Node*);// Find an equivalent version in hash table
  71   Node  *hash_find_insert(Node*);// If not in table insert else return found node
  72   void   hash_insert(Node*);    // Insert into hash table
  73   bool   hash_delete(const Node*);// Replace with _sentinel in hash table
  74   void   check_grow() {
  75     _inserts++;
  76     if( _inserts == _insert_limit ) { grow(); }
  77     assert( _inserts <= _insert_limit, "hash table overflow");
  78     assert( _inserts < _max, "hash table overflow" );
  79   }
  80   static uint round_up(uint);   // Round up to nearest power of 2
  81   void   grow();                // Grow _table to next power of 2 and rehash
  82   // Return 75% of _max, rounded up.
  83   uint   insert_limit() const { return _max - (_max>>2); }
  84 
  85   void   clear();               // Set all entries to NULL, keep storage.
  86   // Size of hash table
  87   uint   size()         const { return _max; }
  88   // Return Node* at index in table
  89   Node  *at(uint table_index) {
  90     assert(table_index < _max, "Must be within table");
  91     return _table[table_index];
  92   }
  93 
  94   void   remove_useless_nodes(VectorSet &useful); // replace with sentinel
  95 
  96   Node  *sentinel() { return _sentinel; }
  97 
  98 #ifndef PRODUCT
  99   Node  *find_index(uint idx);  // For debugging
 100   void   dump();                // For debugging, dump statistics
 101 #endif
 102   uint   _grows;                // For debugging, count of table grow()s
 103   uint   _look_probes;          // For debugging, count of hash probes
 104   uint   _lookup_hits;          // For debugging, count of hash_finds
 105   uint   _lookup_misses;        // For debugging, count of hash_finds
 106   uint   _insert_probes;        // For debugging, count of hash probes
 107   uint   _delete_probes;        // For debugging, count of hash probes for deletes
 108   uint   _delete_hits;          // For debugging, count of hash probes for deletes
 109   uint   _delete_misses;        // For debugging, count of hash probes for deletes
 110   uint   _total_inserts;        // For debugging, total inserts into hash table
 111   uint   _total_insert_probes;  // For debugging, total probes while inserting
 112 };
 113 
 114 
 115 //-----------------------------------------------------------------------------
 116 // Map dense integer indices to Types.  Uses classic doubling-array trick.
 117 // Abstractly provides an infinite array of Type*'s, initialized to NULL.
 118 // Note that the constructor just zeros things, and since I use Arena
 119 // allocation I do not need a destructor to reclaim storage.
 120 // Despite the general name, this class is customized for use by PhaseTransform.
 121 class Type_Array : public StackObj {
 122   Arena *_a;                    // Arena to allocate in
 123   uint   _max;
 124   const Type **_types;
 125   void grow( uint i );          // Grow array node to fit
 126   const Type *operator[] ( uint i ) const // Lookup, or NULL for not mapped
 127   { return (i<_max) ? _types[i] : (Type*)NULL; }
 128   friend class PhaseTransform;
 129 public:
 130   Type_Array(Arena *a) : _a(a), _max(0), _types(0) {}
 131   Type_Array(Type_Array *ta) : _a(ta->_a), _max(ta->_max), _types(ta->_types) { }
 132   const Type *fast_lookup(uint i) const{assert(i<_max,"oob");return _types[i];}
 133   // Extend the mapping: index i maps to Type *n.
 134   void map( uint i, const Type *n ) { if( i>=_max ) grow(i); _types[i] = n; }
 135   uint Size() const { return _max; }
 136 #ifndef PRODUCT
 137   void dump() const;
 138 #endif
 139 };
 140 
 141 
 142 //------------------------------PhaseRemoveUseless-----------------------------
 143 // Remove useless nodes from GVN hash-table, worklist, and graph
 144 class PhaseRemoveUseless : public Phase {
 145 protected:
 146   Unique_Node_List _useful;   // Nodes reachable from root
 147                               // list is allocated from current resource area
 148 public:
 149   PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist );
 150 
 151   Unique_Node_List *get_useful() { return &_useful; }
 152 };
 153 
 154 
 155 //------------------------------PhaseTransform---------------------------------
 156 // Phases that analyze, then transform.  Constructing the Phase object does any
 157 // global or slow analysis.  The results are cached later for a fast
 158 // transformation pass.  When the Phase object is deleted the cached analysis
 159 // results are deleted.
 160 class PhaseTransform : public Phase {
 161 protected:
 162   Arena*     _arena;
 163   Node_Array _nodes;           // Map old node indices to new nodes.
 164   Type_Array _types;           // Map old node indices to Types.
 165 
 166   // ConNode caches:
 167   enum { _icon_min = -1 * HeapWordSize,
 168          _icon_max = 16 * HeapWordSize,
 169          _lcon_min = _icon_min,
 170          _lcon_max = _icon_max,
 171          _zcon_max = (uint)T_CONFLICT
 172   };
 173   ConINode* _icons[_icon_max - _icon_min + 1];   // cached jint constant nodes
 174   ConLNode* _lcons[_lcon_max - _lcon_min + 1];   // cached jlong constant nodes
 175   ConNode*  _zcons[_zcon_max + 1];               // cached is_zero_type nodes
 176   void init_con_caches();
 177 
 178   // Support both int and long caches because either might be an intptr_t,
 179   // so they show up frequently in address computations.
 180 
 181 public:
 182   PhaseTransform( PhaseNumber pnum );
 183   PhaseTransform( Arena *arena, PhaseNumber pnum );
 184   PhaseTransform( PhaseTransform *phase, PhaseNumber pnum );
 185 
 186   Arena*      arena()   { return _arena; }
 187   Type_Array& types()   { return _types; }
 188   // _nodes is used in varying ways by subclasses, which define local accessors
 189 
 190 public:
 191   // Get a previously recorded type for the node n.
 192   // This type must already have been recorded.
 193   // If you want the type of a very new (untransformed) node,
 194   // you must use type_or_null, and test the result for NULL.
 195   const Type* type(const Node* n) const {
 196     const Type* t = _types.fast_lookup(n->_idx);
 197     assert(t != NULL, "must set before get");
 198     return t;
 199   }
 200   // Get a previously recorded type for the node n,
 201   // or else return NULL if there is none.
 202   const Type* type_or_null(const Node* n) const {
 203     return _types.fast_lookup(n->_idx);
 204   }
 205   // Record a type for a node.
 206   void    set_type(const Node* n, const Type *t) {
 207     assert(t != NULL, "type must not be null");
 208     _types.map(n->_idx, t);
 209   }
 210   // Record an initial type for a node, the node's bottom type.
 211   void    set_type_bottom(const Node* n) {
 212     // Use this for initialization when bottom_type() (or better) is not handy.
 213     // Usually the initialization shoudl be to n->Value(this) instead,
 214     // or a hand-optimized value like Type::MEMORY or Type::CONTROL.
 215     assert(_types[n->_idx] == NULL, "must set the initial type just once");
 216     _types.map(n->_idx, n->bottom_type());
 217   }
 218   // Make sure the types array is big enough to record a size for the node n.
 219   // (In product builds, we never want to do range checks on the types array!)
 220   void ensure_type_or_null(const Node* n) {
 221     if (n->_idx >= _types.Size())
 222       _types.map(n->_idx, NULL);   // Grow the types array as needed.
 223   }
 224 
 225   // Utility functions:
 226   const TypeInt*  find_int_type( Node* n);
 227   const TypeLong* find_long_type(Node* n);
 228   jint  find_int_con( Node* n, jint  value_if_unknown) {
 229     const TypeInt* t = find_int_type(n);
 230     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 231   }
 232   jlong find_long_con(Node* n, jlong value_if_unknown) {
 233     const TypeLong* t = find_long_type(n);
 234     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 235   }
 236 
 237   // Make an idealized constant, i.e., one of ConINode, ConPNode, ConFNode, etc.
 238   // Same as transform(ConNode::make(t)).
 239   ConNode* makecon(const Type* t);
 240   virtual ConNode* uncached_makecon(const Type* t)  // override in PhaseValues
 241   { ShouldNotCallThis(); return NULL; }
 242 
 243   // Fast int or long constant.  Same as TypeInt::make(i) or TypeLong::make(l).
 244   ConINode* intcon(jint i);
 245   ConLNode* longcon(jlong l);
 246 
 247   // Fast zero or null constant.  Same as makecon(Type::get_zero_type(bt)).
 248   ConNode* zerocon(BasicType bt);
 249 
 250   // Return a node which computes the same function as this node, but
 251   // in a faster or cheaper fashion.
 252   virtual Node *transform( Node *n ) = 0;
 253 
 254   // Return whether two Nodes are equivalent.
 255   // Must not be recursive, since the recursive version is built from this.
 256   // For pessimistic optimizations this is simply pointer equivalence.
 257   bool eqv(const Node* n1, const Node* n2) const { return n1 == n2; }
 258 
 259   // For pessimistic passes, the return type must monotonically narrow.
 260   // For optimistic  passes, the return type must monotonically widen.
 261   // It is possible to get into a "death march" in either type of pass,
 262   // where the types are continually moving but it will take 2**31 or
 263   // more steps to converge.  This doesn't happen on most normal loops.
 264   //
 265   // Here is an example of a deadly loop for an optimistic pass, along
 266   // with a partial trace of inferred types:
 267   //    x = phi(0,x'); L: x' = x+1; if (x' >= 0) goto L;
 268   //    0                 1                join([0..max], 1)
 269   //    [0..1]            [1..2]           join([0..max], [1..2])
 270   //    [0..2]            [1..3]           join([0..max], [1..3])
 271   //      ... ... ...
 272   //    [0..max]          [min]u[1..max]   join([0..max], [min..max])
 273   //    [0..max] ==> fixpoint
 274   // We would have proven, the hard way, that the iteration space is all
 275   // non-negative ints, with the loop terminating due to 32-bit overflow.
 276   //
 277   // Here is the corresponding example for a pessimistic pass:
 278   //    x = phi(0,x'); L: x' = x-1; if (x' >= 0) goto L;
 279   //    int               int              join([0..max], int)
 280   //    [0..max]          [-1..max-1]      join([0..max], [-1..max-1])
 281   //    [0..max-1]        [-1..max-2]      join([0..max], [-1..max-2])
 282   //      ... ... ...
 283   //    [0..1]            [-1..0]          join([0..max], [-1..0])
 284   //    0                 -1               join([0..max], -1)
 285   //    0 == fixpoint
 286   // We would have proven, the hard way, that the iteration space is {0}.
 287   // (Usually, other optimizations will make the "if (x >= 0)" fold up
 288   // before we get into trouble.  But not always.)
 289   //
 290   // It's a pleasant thing to observe that the pessimistic pass
 291   // will make short work of the optimistic pass's deadly loop,
 292   // and vice versa.  That is a good example of the complementary
 293   // purposes of the CCP (optimistic) vs. GVN (pessimistic) phases.
 294   //
 295   // In any case, only widen or narrow a few times before going to the
 296   // correct flavor of top or bottom.
 297   //
 298   // This call only needs to be made once as the data flows around any
 299   // given cycle.  We do it at Phis, and nowhere else.
 300   // The types presented are the new type of a phi (computed by PhiNode::Value)
 301   // and the previously computed type, last time the phi was visited.
 302   //
 303   // The third argument is upper limit for the saturated value,
 304   // if the phase wishes to widen the new_type.
 305   // If the phase is narrowing, the old type provides a lower limit.
 306   // Caller guarantees that old_type and new_type are no higher than limit_type.
 307   virtual const Type* saturate(const Type* new_type, const Type* old_type,
 308                                const Type* limit_type) const
 309   { ShouldNotCallThis(); return NULL; }
 310 
 311 #ifndef PRODUCT
 312   void dump_old2new_map() const;
 313   void dump_new( uint new_lidx ) const;
 314   void dump_types() const;
 315   void dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl = true);
 316   void dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited);
 317 
 318   uint   _count_progress;       // For profiling, count transforms that make progress
 319   void   set_progress()        { ++_count_progress; assert( allow_progress(),"No progress allowed during verification"); }
 320   void   clear_progress()      { _count_progress = 0; }
 321   uint   made_progress() const { return _count_progress; }
 322 
 323   uint   _count_transforms;     // For profiling, count transforms performed
 324   void   set_transforms()      { ++_count_transforms; }
 325   void   clear_transforms()    { _count_transforms = 0; }
 326   uint   made_transforms() const{ return _count_transforms; }
 327 
 328   bool   _allow_progress;      // progress not allowed during verification pass
 329   void   set_allow_progress(bool allow) { _allow_progress = allow; }
 330   bool   allow_progress()               { return _allow_progress; }
 331 #endif
 332 };
 333 
 334 //------------------------------PhaseValues------------------------------------
 335 // Phase infrastructure to support values
 336 class PhaseValues : public PhaseTransform {
 337 protected:
 338   NodeHash  _table;             // Hash table for value-numbering
 339 
 340 public:
 341   PhaseValues( Arena *arena, uint est_max_size );
 342   PhaseValues( PhaseValues *pt );
 343   PhaseValues( PhaseValues *ptv, const char *dummy );
 344   NOT_PRODUCT( ~PhaseValues(); )
 345   virtual PhaseIterGVN *is_IterGVN() { return 0; }
 346 
 347   // Some Ideal and other transforms delete --> modify --> insert values
 348   bool   hash_delete(Node *n)     { return _table.hash_delete(n); }
 349   void   hash_insert(Node *n)     { _table.hash_insert(n); }
 350   Node  *hash_find_insert(Node *n){ return _table.hash_find_insert(n); }
 351   Node  *hash_find(const Node *n) { return _table.hash_find(n); }
 352 
 353   // Used after parsing to eliminate values that are no longer in program
 354   void   remove_useless_nodes(VectorSet &useful) {
 355     _table.remove_useless_nodes(useful);
 356     // this may invalidate cached cons so reset the cache
 357     init_con_caches();
 358   }
 359 
 360   virtual ConNode* uncached_makecon(const Type* t);  // override from PhaseTransform
 361 
 362   virtual const Type* saturate(const Type* new_type, const Type* old_type,
 363                                const Type* limit_type) const
 364   { return new_type; }
 365 
 366 #ifndef PRODUCT
 367   uint   _count_new_values;     // For profiling, count new values produced
 368   void    inc_new_values()        { ++_count_new_values; }
 369   void    clear_new_values()      { _count_new_values = 0; }
 370   uint    made_new_values() const { return _count_new_values; }
 371 #endif
 372 };
 373 
 374 
 375 //------------------------------PhaseGVN---------------------------------------
 376 // Phase for performing local, pessimistic GVN-style optimizations.
 377 class PhaseGVN : public PhaseValues {
 378 public:
 379   PhaseGVN( Arena *arena, uint est_max_size ) : PhaseValues( arena, est_max_size ) {}
 380   PhaseGVN( PhaseGVN *gvn ) : PhaseValues( gvn ) {}
 381   PhaseGVN( PhaseGVN *gvn, const char *dummy ) : PhaseValues( gvn, dummy ) {}
 382 
 383   // Return a node which computes the same function as this node, but
 384   // in a faster or cheaper fashion.
 385   Node  *transform( Node *n );
 386   Node  *transform_no_reclaim( Node *n );
 387 
 388   // Check for a simple dead loop when a data node references itself.
 389   DEBUG_ONLY(void dead_loop_check(Node *n);)
 390 };
 391 
 392 //------------------------------PhaseIterGVN-----------------------------------
 393 // Phase for iteratively performing local, pessimistic GVN-style optimizations.
 394 // and ideal transformations on the graph.
 395 class PhaseIterGVN : public PhaseGVN {
 396  private:
 397   bool _delay_transform;  // When true simply register the node when calling transform
 398                           // instead of actually optimizing it
 399 
 400   // Idealize old Node 'n' with respect to its inputs and its value
 401   virtual Node *transform_old( Node *a_node );
 402 
 403   // Subsume users of node 'old' into node 'nn'
 404   void subsume_node( Node *old, Node *nn );
 405 
 406   Node_Stack _stack;      // Stack used to avoid recursion
 407 
 408 protected:
 409 
 410   // Idealize new Node 'n' with respect to its inputs and its value
 411   virtual Node *transform( Node *a_node );
 412 
 413   // Warm up hash table, type table and initial worklist
 414   void init_worklist( Node *a_root );
 415 
 416   virtual const Type* saturate(const Type* new_type, const Type* old_type,
 417                                const Type* limit_type) const;
 418   // Usually returns new_type.  Returns old_type if new_type is only a slight
 419   // improvement, such that it would take many (>>10) steps to reach 2**32.
 420 
 421 public:
 422   PhaseIterGVN( PhaseIterGVN *igvn ); // Used by CCP constructor
 423   PhaseIterGVN( PhaseGVN *gvn ); // Used after Parser
 424   PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ); // Used after +VerifyOpto
 425 
 426   virtual PhaseIterGVN *is_IterGVN() { return this; }
 427 
 428   Unique_Node_List _worklist;       // Iterative worklist
 429 
 430   // Given def-use info and an initial worklist, apply Node::Ideal,
 431   // Node::Value, Node::Identity, hash-based value numbering, Node::Ideal_DU
 432   // and dominator info to a fixed point.
 433   void optimize();
 434 
 435   // Register a new node with the iter GVN pass without transforming it.
 436   // Used when we need to restructure a Region/Phi area and all the Regions
 437   // and Phis need to complete this one big transform before any other
 438   // transforms can be triggered on the region.
 439   // Optional 'orig' is an earlier version of this node.
 440   // It is significant only for debugging and profiling.
 441   Node* register_new_node_with_optimizer(Node* n, Node* orig = NULL);
 442 
 443   // Kill a globally dead Node.  All uses are also globally dead and are
 444   // aggressively trimmed.
 445   void remove_globally_dead_node( Node *dead );
 446 
 447   // Kill all inputs to a dead node, recursively making more dead nodes.
 448   // The Node must be dead locally, i.e., have no uses.
 449   void remove_dead_node( Node *dead ) {
 450     assert(dead->outcnt() == 0 && !dead->is_top(), "node must be dead");
 451     remove_globally_dead_node(dead);
 452   }
 453 
 454   // Add users of 'n' to worklist
 455   void add_users_to_worklist0( Node *n );
 456   void add_users_to_worklist ( Node *n );
 457 
 458   // Replace old node with new one.
 459   void replace_node( Node *old, Node *nn ) {
 460     add_users_to_worklist(old);
 461     hash_delete(old); // Yank from hash before hacking edges
 462     subsume_node(old, nn);
 463   }
 464 
 465   // Delayed node rehash: remove a node from the hash table and rehash it during
 466   // next optimizing pass
 467   void rehash_node_delayed(Node* n) {
 468     hash_delete(n);
 469     _worklist.push(n);
 470   }
 471 
 472   // Replace ith edge of "n" with "in"
 473   void replace_input_of(Node* n, int i, Node* in) {
 474     rehash_node_delayed(n);
 475     n->set_req(i, in);
 476   }
 477 
 478   // Delete ith edge of "n"
 479   void delete_input_of(Node* n, int i) {
 480     rehash_node_delayed(n);
 481     n->del_req(i);
 482   }
 483 
 484   bool delay_transform() const { return _delay_transform; }
 485 
 486   void set_delay_transform(bool delay) {
 487     _delay_transform = delay;
 488   }
 489 
 490   // Clone loop predicates. Defined in loopTransform.cpp.
 491   Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
 492   // Create a new if below new_entry for the predicate to be cloned
 493   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
 494                                         Deoptimization::DeoptReason reason);
 495 
 496 #ifndef PRODUCT
 497 protected:
 498   // Sub-quadratic implementation of VerifyIterativeGVN.
 499   unsigned long _verify_counter;
 500   unsigned long _verify_full_passes;
 501   enum { _verify_window_size = 30 };
 502   Node* _verify_window[_verify_window_size];
 503   void verify_step(Node* n);
 504 #endif
 505 };
 506 
 507 //------------------------------PhaseCCP---------------------------------------
 508 // Phase for performing global Conditional Constant Propagation.
 509 // Should be replaced with combined CCP & GVN someday.
 510 class PhaseCCP : public PhaseIterGVN {
 511   // Non-recursive.  Use analysis to transform single Node.
 512   virtual Node *transform_once( Node *n );
 513 
 514 public:
 515   PhaseCCP( PhaseIterGVN *igvn ); // Compute conditional constants
 516   NOT_PRODUCT( ~PhaseCCP(); )
 517 
 518   // Worklist algorithm identifies constants
 519   void analyze();
 520   // Recursive traversal of program.  Used analysis to modify program.
 521   virtual Node *transform( Node *n );
 522   // Do any transformation after analysis
 523   void          do_transform();
 524 
 525   virtual const Type* saturate(const Type* new_type, const Type* old_type,
 526                                const Type* limit_type) const;
 527   // Returns new_type->widen(old_type), which increments the widen bits until
 528   // giving up with TypeInt::INT or TypeLong::LONG.
 529   // Result is clipped to limit_type if necessary.
 530 
 531 #ifndef PRODUCT
 532   static uint _total_invokes;    // For profiling, count invocations
 533   void    inc_invokes()          { ++PhaseCCP::_total_invokes; }
 534 
 535   static uint _total_constants;  // For profiling, count constants found
 536   uint   _count_constants;
 537   void    clear_constants()      { _count_constants = 0; }
 538   void    inc_constants()        { ++_count_constants; }
 539   uint    count_constants() const { return _count_constants; }
 540 
 541   static void print_statistics();
 542 #endif
 543 };
 544 
 545 
 546 //------------------------------PhasePeephole----------------------------------
 547 // Phase for performing peephole optimizations on register allocated basic blocks.
 548 class PhasePeephole : public PhaseTransform {
 549   PhaseRegAlloc *_regalloc;
 550   PhaseCFG     &_cfg;
 551   // Recursive traversal of program.  Pure function is unused in this phase
 552   virtual Node *transform( Node *n );
 553 
 554 public:
 555   PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg );
 556   NOT_PRODUCT( ~PhasePeephole(); )
 557 
 558   // Do any transformation after analysis
 559   void          do_transform();
 560 
 561 #ifndef PRODUCT
 562   static uint _total_peepholes;  // For profiling, count peephole rules applied
 563   uint   _count_peepholes;
 564   void    clear_peepholes()      { _count_peepholes = 0; }
 565   void    inc_peepholes()        { ++_count_peepholes; }
 566   uint    count_peepholes() const { return _count_peepholes; }
 567 
 568   static void print_statistics();
 569 #endif
 570 };
 571 
 572 #endif // SHARE_VM_OPTO_PHASEX_HPP