1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_REGMASK_HPP
  26 #define SHARE_VM_OPTO_REGMASK_HPP
  27 
  28 #include "code/vmreg.hpp"
  29 #include "libadt/port.hpp"
  30 #include "opto/optoreg.hpp"
  31 #if defined ADGLOBALS_MD_HPP
  32 # include ADGLOBALS_MD_HPP
  33 #elif defined TARGET_ARCH_MODEL_x86_32
  34 # include "adfiles/adGlobals_x86_32.hpp"
  35 #elif defined TARGET_ARCH_MODEL_x86_64
  36 # include "adfiles/adGlobals_x86_64.hpp"
  37 #elif defined TARGET_ARCH_MODEL_sparc
  38 # include "adfiles/adGlobals_sparc.hpp"
  39 #elif defined TARGET_ARCH_MODEL_zero
  40 # include "adfiles/adGlobals_zero.hpp"
  41 #elif defined TARGET_ARCH_MODEL_ppc_64
  42 # include "adfiles/adGlobals_ppc_64.hpp"
  43 #endif
  44 
  45 // Some fun naming (textual) substitutions:
  46 //
  47 // RegMask::get_low_elem() ==> RegMask::find_first_elem()
  48 // RegMask::Special        ==> RegMask::Empty
  49 // RegMask::_flags         ==> RegMask::is_AllStack()
  50 // RegMask::operator<<=()  ==> RegMask::Insert()
  51 // RegMask::operator>>=()  ==> RegMask::Remove()
  52 // RegMask::Union()        ==> RegMask::OR
  53 // RegMask::Inter()        ==> RegMask::AND
  54 //
  55 // OptoRegister::RegName   ==> OptoReg::Name
  56 //
  57 // OptoReg::stack0()       ==> _last_Mach_Reg  or ZERO in core version
  58 //
  59 // numregs in chaitin      ==> proper degree in chaitin
  60 
  61 //-------------Non-zero bit search methods used by RegMask---------------------
  62 // Find lowest 1, or return 32 if empty
  63 int find_lowest_bit( uint32 mask );
  64 // Find highest 1, or return 32 if empty
  65 int find_hihghest_bit( uint32 mask );
  66 
  67 //------------------------------RegMask----------------------------------------
  68 // The ADL file describes how to print the machine-specific registers, as well
  69 // as any notion of register classes.  We provide a register mask, which is
  70 // just a collection of Register numbers.
  71 
  72 // The ADLC defines 2 macros, RM_SIZE and FORALL_BODY.
  73 // RM_SIZE is the size of a register mask in words.
  74 // FORALL_BODY replicates a BODY macro once per word in the register mask.
  75 // The usage is somewhat clumsy and limited to the regmask.[h,c]pp files.
  76 // However, it means the ADLC can redefine the unroll macro and all loops
  77 // over register masks will be unrolled by the correct amount.
  78 
  79 class RegMask VALUE_OBJ_CLASS_SPEC {
  80   union {
  81     double _dummy_force_double_alignment[RM_SIZE>>1];
  82     // Array of Register Mask bits.  This array is large enough to cover
  83     // all the machine registers and all parameters that need to be passed
  84     // on the stack (stack registers) up to some interesting limit.  Methods
  85     // that need more parameters will NOT be compiled.  On Intel, the limit
  86     // is something like 90+ parameters.
  87     int _A[RM_SIZE];
  88   };
  89 
  90   enum {
  91     _WordBits    = BitsPerInt,
  92     _LogWordBits = LogBitsPerInt,
  93     _RM_SIZE     = RM_SIZE   // local constant, imported, then hidden by #undef
  94   };
  95 
  96 public:
  97   enum { CHUNK_SIZE = RM_SIZE*_WordBits };
  98 
  99   // SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits.
 100   // Also, consider the maximum alignment size for a normally allocated
 101   // value.  Since we allocate register pairs but not register quads (at
 102   // present), this alignment is SlotsPerLong (== 2).  A normally
 103   // aligned allocated register is either a single register, or a pair
 104   // of adjacent registers, the lower-numbered being even.
 105   // See also is_aligned_Pairs() below, and the padding added before
 106   // Matcher::_new_SP to keep allocated pairs aligned properly.
 107   // If we ever go to quad-word allocations, SlotsPerQuad will become
 108   // the controlling alignment constraint.  Note that this alignment
 109   // requirement is internal to the allocator, and independent of any
 110   // particular platform.
 111   enum { SlotsPerLong = 2,
 112          SlotsPerVecS = 1,
 113          SlotsPerVecD = 2,
 114          SlotsPerVecX = 4,
 115          SlotsPerVecY = 8 };
 116 
 117   // A constructor only used by the ADLC output.  All mask fields are filled
 118   // in directly.  Calls to this look something like RM(1,2,3,4);
 119   RegMask(
 120 #   define BODY(I) int a##I,
 121     FORALL_BODY
 122 #   undef BODY
 123     int dummy = 0 ) {
 124 #   define BODY(I) _A[I] = a##I;
 125     FORALL_BODY
 126 #   undef BODY
 127   }
 128 
 129   // Handy copying constructor
 130   RegMask( RegMask *rm ) {
 131 #   define BODY(I) _A[I] = rm->_A[I];
 132     FORALL_BODY
 133 #   undef BODY
 134   }
 135 
 136   // Construct an empty mask
 137   RegMask( ) { Clear(); }
 138 
 139   // Construct a mask with a single bit
 140   RegMask( OptoReg::Name reg ) { Clear(); Insert(reg); }
 141 
 142   // Check for register being in mask
 143   int Member( OptoReg::Name reg ) const {
 144     assert( reg < CHUNK_SIZE, "" );
 145     return _A[reg>>_LogWordBits] & (1<<(reg&(_WordBits-1)));
 146   }
 147 
 148   // The last bit in the register mask indicates that the mask should repeat
 149   // indefinitely with ONE bits.  Returns TRUE if mask is infinite or
 150   // unbounded in size.  Returns FALSE if mask is finite size.
 151   int is_AllStack() const { return _A[RM_SIZE-1] >> (_WordBits-1); }
 152 
 153   // Work around an -xO3 optimization problme in WS6U1. The old way:
 154   //   void set_AllStack() { _A[RM_SIZE-1] |= (1<<(_WordBits-1)); }
 155   // will cause _A[RM_SIZE-1] to be clobbered, not updated when set_AllStack()
 156   // follows an Insert() loop, like the one found in init_spill_mask(). Using
 157   // Insert() instead works because the index into _A in computed instead of
 158   // constant.  See bug 4665841.
 159   void set_AllStack() { Insert(OptoReg::Name(CHUNK_SIZE-1)); }
 160 
 161   // Test for being a not-empty mask.
 162   int is_NotEmpty( ) const {
 163     int tmp = 0;
 164 #   define BODY(I) tmp |= _A[I];
 165     FORALL_BODY
 166 #   undef BODY
 167     return tmp;
 168   }
 169 
 170   // Find lowest-numbered register from mask, or BAD if mask is empty.
 171   OptoReg::Name find_first_elem() const {
 172     int base, bits;
 173 #   define BODY(I) if( (bits = _A[I]) != 0 ) base = I<<_LogWordBits; else
 174     FORALL_BODY
 175 #   undef BODY
 176       { base = OptoReg::Bad; bits = 1<<0; }
 177     return OptoReg::Name(base + find_lowest_bit(bits));
 178   }
 179   // Get highest-numbered register from mask, or BAD if mask is empty.
 180   OptoReg::Name find_last_elem() const {
 181     int base, bits;
 182 #   define BODY(I) if( (bits = _A[RM_SIZE-1-I]) != 0 ) base = (RM_SIZE-1-I)<<_LogWordBits; else
 183     FORALL_BODY
 184 #   undef BODY
 185       { base = OptoReg::Bad; bits = 1<<0; }
 186     return OptoReg::Name(base + find_hihghest_bit(bits));
 187   }
 188 
 189   // Find the lowest-numbered register pair in the mask.  Return the
 190   // HIGHEST register number in the pair, or BAD if no pairs.
 191   // Assert that the mask contains only bit pairs.
 192   OptoReg::Name find_first_pair() const;
 193 
 194   // Clear out partial bits; leave only aligned adjacent bit pairs.
 195   void clear_to_pairs();
 196   // Smear out partial bits; leave only aligned adjacent bit pairs.
 197   void smear_to_pairs();
 198   // Verify that the mask contains only aligned adjacent bit pairs
 199   void verify_pairs() const { assert( is_aligned_pairs(), "mask is not aligned, adjacent pairs" ); }
 200   // Test that the mask contains only aligned adjacent bit pairs
 201   bool is_aligned_pairs() const;
 202 
 203   // mask is a pair of misaligned registers
 204   bool is_misaligned_pair() const { return Size()==2 && !is_aligned_pairs(); }
 205   // Test for single register
 206   int is_bound1() const;
 207   // Test for a single adjacent pair
 208   int is_bound_pair() const;
 209   // Test for a single adjacent set of ideal register's size.
 210   int is_bound(uint ireg) const {
 211     if (is_vector(ireg)) {
 212       if (is_bound_set(num_registers(ireg)))
 213         return true;
 214     } else if (is_bound1() || is_bound_pair()) {
 215       return true;
 216     }
 217     return false;
 218   }
 219 
 220   // Find the lowest-numbered register set in the mask.  Return the
 221   // HIGHEST register number in the set, or BAD if no sets.
 222   // Assert that the mask contains only bit sets.
 223   OptoReg::Name find_first_set(const int size) const;
 224 
 225   // Clear out partial bits; leave only aligned adjacent bit sets of size.
 226   void clear_to_sets(const int size);
 227   // Smear out partial bits to aligned adjacent bit sets.
 228   void smear_to_sets(const int size);
 229   // Verify that the mask contains only aligned adjacent bit sets
 230   void verify_sets(int size) const { assert(is_aligned_sets(size), "mask is not aligned, adjacent sets"); }
 231   // Test that the mask contains only aligned adjacent bit sets
 232   bool is_aligned_sets(const int size) const;
 233 
 234   // mask is a set of misaligned registers
 235   bool is_misaligned_set(int size) const { return (int)Size()==size && !is_aligned_sets(size);}
 236 
 237   // Test for a single adjacent set
 238   int is_bound_set(const int size) const;
 239 
 240   static bool is_vector(uint ireg);
 241   static int num_registers(uint ireg);
 242 
 243   // Fast overlap test.  Non-zero if any registers in common.
 244   int overlap( const RegMask &rm ) const {
 245     return
 246 #   define BODY(I) (_A[I] & rm._A[I]) |
 247     FORALL_BODY
 248 #   undef BODY
 249     0 ;
 250   }
 251 
 252   // Special test for register pressure based splitting
 253   // UP means register only, Register plus stack, or stack only is DOWN
 254   bool is_UP() const;
 255 
 256   // Clear a register mask
 257   void Clear( ) {
 258 #   define BODY(I) _A[I] = 0;
 259     FORALL_BODY
 260 #   undef BODY
 261   }
 262 
 263   // Fill a register mask with 1's
 264   void Set_All( ) {
 265 #   define BODY(I) _A[I] = -1;
 266     FORALL_BODY
 267 #   undef BODY
 268   }
 269 
 270   // Insert register into mask
 271   void Insert( OptoReg::Name reg ) {
 272     assert( reg < CHUNK_SIZE, "" );
 273     _A[reg>>_LogWordBits] |= (1<<(reg&(_WordBits-1)));
 274   }
 275 
 276   // Remove register from mask
 277   void Remove( OptoReg::Name reg ) {
 278     assert( reg < CHUNK_SIZE, "" );
 279     _A[reg>>_LogWordBits] &= ~(1<<(reg&(_WordBits-1)));
 280   }
 281 
 282   // OR 'rm' into 'this'
 283   void OR( const RegMask &rm ) {
 284 #   define BODY(I) this->_A[I] |= rm._A[I];
 285     FORALL_BODY
 286 #   undef BODY
 287   }
 288 
 289   // AND 'rm' into 'this'
 290   void AND( const RegMask &rm ) {
 291 #   define BODY(I) this->_A[I] &= rm._A[I];
 292     FORALL_BODY
 293 #   undef BODY
 294   }
 295 
 296   // Subtract 'rm' from 'this'
 297   void SUBTRACT( const RegMask &rm ) {
 298 #   define BODY(I) _A[I] &= ~rm._A[I];
 299     FORALL_BODY
 300 #   undef BODY
 301   }
 302 
 303   // Compute size of register mask: number of bits
 304   uint Size() const;
 305 
 306 #ifndef PRODUCT
 307   void print() const { dump(); }
 308   void dump(outputStream *st = tty) const; // Print a mask
 309 #endif
 310 
 311   static const RegMask Empty;   // Common empty mask
 312 
 313   static bool can_represent(OptoReg::Name reg) {
 314     // NOTE: -1 in computation reflects the usage of the last
 315     //       bit of the regmask as an infinite stack flag and
 316     //       -7 is to keep mask aligned for largest value (VecY).
 317     return (int)reg < (int)(CHUNK_SIZE-1);
 318   }
 319   static bool can_represent_arg(OptoReg::Name reg) {
 320     // NOTE: -SlotsPerVecY in computation reflects the need
 321     //       to keep mask aligned for largest value (VecY).
 322     return (int)reg < (int)(CHUNK_SIZE-SlotsPerVecY);
 323   }
 324 };
 325 
 326 // Do not use this constant directly in client code!
 327 #undef RM_SIZE
 328 
 329 #endif // SHARE_VM_OPTO_REGMASK_HPP