1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Defs.hpp"
  27 #include "c1/c1_Compilation.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "runtime/vm_version.hpp"
  40 #include "utilities/bitMap.inline.hpp"
  41 #include "utilities/macros.hpp"
  42 #if INCLUDE_ALL_GCS
  43 #include "gc_implementation/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef ASSERT
  47 #define __ gen()->lir(__FILE__, __LINE__)->
  48 #else
  49 #define __ gen()->lir()->
  50 #endif
  51 
  52 #ifndef PATCHED_ADDR
  53 #define PATCHED_ADDR  (max_jint)
  54 #endif
  55 
  56 void PhiResolverState::reset(int max_vregs) {
  57   // Initialize array sizes
  58   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  59   _virtual_operands.trunc_to(0);
  60   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  61   _other_operands.trunc_to(0);
  62   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _vreg_table.trunc_to(0);
  64 }
  65 
  66 
  67 
  68 //--------------------------------------------------------------
  69 // PhiResolver
  70 
  71 // Resolves cycles:
  72 //
  73 //  r1 := r2  becomes  temp := r1
  74 //  r2 := r1           r1 := r2
  75 //                     r2 := temp
  76 // and orders moves:
  77 //
  78 //  r2 := r3  becomes  r1 := r2
  79 //  r1 := r2           r2 := r3
  80 
  81 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  82  : _gen(gen)
  83  , _state(gen->resolver_state())
  84  , _temp(LIR_OprFact::illegalOpr)
  85 {
  86   // reinitialize the shared state arrays
  87   _state.reset(max_vregs);
  88 }
  89 
  90 
  91 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  92   assert(src->is_valid(), "");
  93   assert(dest->is_valid(), "");
  94   __ move(src, dest);
  95 }
  96 
  97 
  98 void PhiResolver::move_temp_to(LIR_Opr dest) {
  99   assert(_temp->is_valid(), "");
 100   emit_move(_temp, dest);
 101   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 102 }
 103 
 104 
 105 void PhiResolver::move_to_temp(LIR_Opr src) {
 106   assert(_temp->is_illegal(), "");
 107   _temp = _gen->new_register(src->type());
 108   emit_move(src, _temp);
 109 }
 110 
 111 
 112 // Traverse assignment graph in depth first order and generate moves in post order
 113 // ie. two assignments: b := c, a := b start with node c:
 114 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 115 // Generates moves in this order: move b to a and move c to b
 116 // ie. cycle a := b, b := a start with node a
 117 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 118 // Generates moves in this order: move b to temp, move a to b, move temp to a
 119 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 120   if (!dest->visited()) {
 121     dest->set_visited();
 122     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 123       move(dest, dest->destination_at(i));
 124     }
 125   } else if (!dest->start_node()) {
 126     // cylce in graph detected
 127     assert(_loop == NULL, "only one loop valid!");
 128     _loop = dest;
 129     move_to_temp(src->operand());
 130     return;
 131   } // else dest is a start node
 132 
 133   if (!dest->assigned()) {
 134     if (_loop == dest) {
 135       move_temp_to(dest->operand());
 136       dest->set_assigned();
 137     } else if (src != NULL) {
 138       emit_move(src->operand(), dest->operand());
 139       dest->set_assigned();
 140     }
 141   }
 142 }
 143 
 144 
 145 PhiResolver::~PhiResolver() {
 146   int i;
 147   // resolve any cycles in moves from and to virtual registers
 148   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 149     ResolveNode* node = virtual_operands()[i];
 150     if (!node->visited()) {
 151       _loop = NULL;
 152       move(NULL, node);
 153       node->set_start_node();
 154       assert(_temp->is_illegal(), "move_temp_to() call missing");
 155     }
 156   }
 157 
 158   // generate move for move from non virtual register to abitrary destination
 159   for (i = other_operands().length() - 1; i >= 0; i --) {
 160     ResolveNode* node = other_operands()[i];
 161     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 162       emit_move(node->operand(), node->destination_at(j)->operand());
 163     }
 164   }
 165 }
 166 
 167 
 168 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 169   ResolveNode* node;
 170   if (opr->is_virtual()) {
 171     int vreg_num = opr->vreg_number();
 172     node = vreg_table().at_grow(vreg_num, NULL);
 173     assert(node == NULL || node->operand() == opr, "");
 174     if (node == NULL) {
 175       node = new ResolveNode(opr);
 176       vreg_table()[vreg_num] = node;
 177     }
 178     // Make sure that all virtual operands show up in the list when
 179     // they are used as the source of a move.
 180     if (source && !virtual_operands().contains(node)) {
 181       virtual_operands().append(node);
 182     }
 183   } else {
 184     assert(source, "");
 185     node = new ResolveNode(opr);
 186     other_operands().append(node);
 187   }
 188   return node;
 189 }
 190 
 191 
 192 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 193   assert(dest->is_virtual(), "");
 194   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 195   assert(src->is_valid(), "");
 196   assert(dest->is_valid(), "");
 197   ResolveNode* source = source_node(src);
 198   source->append(destination_node(dest));
 199 }
 200 
 201 
 202 //--------------------------------------------------------------
 203 // LIRItem
 204 
 205 void LIRItem::set_result(LIR_Opr opr) {
 206   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 207   value()->set_operand(opr);
 208 
 209   if (opr->is_virtual()) {
 210     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 211   }
 212 
 213   _result = opr;
 214 }
 215 
 216 void LIRItem::load_item() {
 217   if (result()->is_illegal()) {
 218     // update the items result
 219     _result = value()->operand();
 220   }
 221   if (!result()->is_register()) {
 222     LIR_Opr reg = _gen->new_register(value()->type());
 223     __ move(result(), reg);
 224     if (result()->is_constant()) {
 225       _result = reg;
 226     } else {
 227       set_result(reg);
 228     }
 229   }
 230 }
 231 
 232 
 233 void LIRItem::load_for_store(BasicType type) {
 234   if (_gen->can_store_as_constant(value(), type)) {
 235     _result = value()->operand();
 236     if (!_result->is_constant()) {
 237       _result = LIR_OprFact::value_type(value()->type());
 238     }
 239   } else if (type == T_BYTE || type == T_BOOLEAN) {
 240     load_byte_item();
 241   } else {
 242     load_item();
 243   }
 244 }
 245 
 246 void LIRItem::load_item_force(LIR_Opr reg) {
 247   LIR_Opr r = result();
 248   if (r != reg) {
 249 #if !defined(ARM) && !defined(E500V2)
 250     if (r->type() != reg->type()) {
 251       // moves between different types need an intervening spill slot
 252       r = _gen->force_to_spill(r, reg->type());
 253     }
 254 #endif
 255     __ move(r, reg);
 256     _result = reg;
 257   }
 258 }
 259 
 260 ciObject* LIRItem::get_jobject_constant() const {
 261   ObjectType* oc = type()->as_ObjectType();
 262   if (oc) {
 263     return oc->constant_value();
 264   }
 265   return NULL;
 266 }
 267 
 268 
 269 jint LIRItem::get_jint_constant() const {
 270   assert(is_constant() && value() != NULL, "");
 271   assert(type()->as_IntConstant() != NULL, "type check");
 272   return type()->as_IntConstant()->value();
 273 }
 274 
 275 
 276 jint LIRItem::get_address_constant() const {
 277   assert(is_constant() && value() != NULL, "");
 278   assert(type()->as_AddressConstant() != NULL, "type check");
 279   return type()->as_AddressConstant()->value();
 280 }
 281 
 282 
 283 jfloat LIRItem::get_jfloat_constant() const {
 284   assert(is_constant() && value() != NULL, "");
 285   assert(type()->as_FloatConstant() != NULL, "type check");
 286   return type()->as_FloatConstant()->value();
 287 }
 288 
 289 
 290 jdouble LIRItem::get_jdouble_constant() const {
 291   assert(is_constant() && value() != NULL, "");
 292   assert(type()->as_DoubleConstant() != NULL, "type check");
 293   return type()->as_DoubleConstant()->value();
 294 }
 295 
 296 
 297 jlong LIRItem::get_jlong_constant() const {
 298   assert(is_constant() && value() != NULL, "");
 299   assert(type()->as_LongConstant() != NULL, "type check");
 300   return type()->as_LongConstant()->value();
 301 }
 302 
 303 
 304 
 305 //--------------------------------------------------------------
 306 
 307 
 308 void LIRGenerator::init() {
 309   _bs = Universe::heap()->barrier_set();
 310 }
 311 
 312 
 313 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 314 #ifndef PRODUCT
 315   if (PrintIRWithLIR) {
 316     block->print();
 317   }
 318 #endif
 319 
 320   // set up the list of LIR instructions
 321   assert(block->lir() == NULL, "LIR list already computed for this block");
 322   _lir = new LIR_List(compilation(), block);
 323   block->set_lir(_lir);
 324 
 325   __ branch_destination(block->label());
 326 
 327   if (LIRTraceExecution &&
 328       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 329       !block->is_set(BlockBegin::exception_entry_flag)) {
 330     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 331     trace_block_entry(block);
 332   }
 333 }
 334 
 335 
 336 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 337 #ifndef PRODUCT
 338   if (PrintIRWithLIR) {
 339     tty->cr();
 340   }
 341 #endif
 342 
 343   // LIR_Opr for unpinned constants shouldn't be referenced by other
 344   // blocks so clear them out after processing the block.
 345   for (int i = 0; i < _unpinned_constants.length(); i++) {
 346     _unpinned_constants.at(i)->clear_operand();
 347   }
 348   _unpinned_constants.trunc_to(0);
 349 
 350   // clear our any registers for other local constants
 351   _constants.trunc_to(0);
 352   _reg_for_constants.trunc_to(0);
 353 }
 354 
 355 
 356 void LIRGenerator::block_do(BlockBegin* block) {
 357   CHECK_BAILOUT();
 358 
 359   block_do_prolog(block);
 360   set_block(block);
 361 
 362   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 363     if (instr->is_pinned()) do_root(instr);
 364   }
 365 
 366   set_block(NULL);
 367   block_do_epilog(block);
 368 }
 369 
 370 
 371 //-------------------------LIRGenerator-----------------------------
 372 
 373 // This is where the tree-walk starts; instr must be root;
 374 void LIRGenerator::do_root(Value instr) {
 375   CHECK_BAILOUT();
 376 
 377   InstructionMark im(compilation(), instr);
 378 
 379   assert(instr->is_pinned(), "use only with roots");
 380   assert(instr->subst() == instr, "shouldn't have missed substitution");
 381 
 382   instr->visit(this);
 383 
 384   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 385          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 386 }
 387 
 388 
 389 // This is called for each node in tree; the walk stops if a root is reached
 390 void LIRGenerator::walk(Value instr) {
 391   InstructionMark im(compilation(), instr);
 392   //stop walk when encounter a root
 393   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 394     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 395   } else {
 396     assert(instr->subst() == instr, "shouldn't have missed substitution");
 397     instr->visit(this);
 398     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 399   }
 400 }
 401 
 402 
 403 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 404   assert(state != NULL, "state must be defined");
 405 
 406 #ifndef PRODUCT
 407   state->verify();
 408 #endif
 409 
 410   ValueStack* s = state;
 411   for_each_state(s) {
 412     if (s->kind() == ValueStack::EmptyExceptionState) {
 413       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 414       continue;
 415     }
 416 
 417     int index;
 418     Value value;
 419     for_each_stack_value(s, index, value) {
 420       assert(value->subst() == value, "missed substitution");
 421       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 422         walk(value);
 423         assert(value->operand()->is_valid(), "must be evaluated now");
 424       }
 425     }
 426 
 427     int bci = s->bci();
 428     IRScope* scope = s->scope();
 429     ciMethod* method = scope->method();
 430 
 431     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 432     if (bci == SynchronizationEntryBCI) {
 433       if (x->as_ExceptionObject() || x->as_Throw()) {
 434         // all locals are dead on exit from the synthetic unlocker
 435         liveness.clear();
 436       } else {
 437         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 438       }
 439     }
 440     if (!liveness.is_valid()) {
 441       // Degenerate or breakpointed method.
 442       bailout("Degenerate or breakpointed method");
 443     } else {
 444       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 445       for_each_local_value(s, index, value) {
 446         assert(value->subst() == value, "missed substition");
 447         if (liveness.at(index) && !value->type()->is_illegal()) {
 448           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 449             walk(value);
 450             assert(value->operand()->is_valid(), "must be evaluated now");
 451           }
 452         } else {
 453           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 454           s->invalidate_local(index);
 455         }
 456       }
 457     }
 458   }
 459 
 460   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 461 }
 462 
 463 
 464 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 465   return state_for(x, x->exception_state());
 466 }
 467 
 468 
 469 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 470   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 471    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 472    * the class. */
 473   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 474     assert(info != NULL, "info must be set if class is not loaded");
 475     __ klass2reg_patch(NULL, r, info);
 476   } else {
 477     // no patching needed
 478     __ metadata2reg(obj->constant_encoding(), r);
 479   }
 480 }
 481 
 482 
 483 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 484                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 485   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 486   if (index->is_constant()) {
 487     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 488                 index->as_jint(), null_check_info);
 489     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 490   } else {
 491     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 492                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 493     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 494   }
 495 }
 496 
 497 
 498 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 499   CodeStub* stub = new RangeCheckStub(info, index, true);
 500   if (index->is_constant()) {
 501     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 502     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 503   } else {
 504     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 505                 java_nio_Buffer::limit_offset(), T_INT, info);
 506     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 507   }
 508   __ move(index, result);
 509 }
 510 
 511 
 512 
 513 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 514   LIR_Opr result_op = result;
 515   LIR_Opr left_op   = left;
 516   LIR_Opr right_op  = right;
 517 
 518   if (TwoOperandLIRForm && left_op != result_op) {
 519     assert(right_op != result_op, "malformed");
 520     __ move(left_op, result_op);
 521     left_op = result_op;
 522   }
 523 
 524   switch(code) {
 525     case Bytecodes::_dadd:
 526     case Bytecodes::_fadd:
 527     case Bytecodes::_ladd:
 528     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 529     case Bytecodes::_fmul:
 530     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 531 
 532     case Bytecodes::_dmul:
 533       {
 534         if (is_strictfp) {
 535           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 536         } else {
 537           __ mul(left_op, right_op, result_op); break;
 538         }
 539       }
 540       break;
 541 
 542     case Bytecodes::_imul:
 543       {
 544         bool    did_strength_reduce = false;
 545 
 546         if (right->is_constant()) {
 547           int c = right->as_jint();
 548           if (is_power_of_2(c)) {
 549             // do not need tmp here
 550             __ shift_left(left_op, exact_log2(c), result_op);
 551             did_strength_reduce = true;
 552           } else {
 553             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 554           }
 555         }
 556         // we couldn't strength reduce so just emit the multiply
 557         if (!did_strength_reduce) {
 558           __ mul(left_op, right_op, result_op);
 559         }
 560       }
 561       break;
 562 
 563     case Bytecodes::_dsub:
 564     case Bytecodes::_fsub:
 565     case Bytecodes::_lsub:
 566     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 567 
 568     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 569     // ldiv and lrem are implemented with a direct runtime call
 570 
 571     case Bytecodes::_ddiv:
 572       {
 573         if (is_strictfp) {
 574           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 575         } else {
 576           __ div (left_op, right_op, result_op); break;
 577         }
 578       }
 579       break;
 580 
 581     case Bytecodes::_drem:
 582     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 583 
 584     default: ShouldNotReachHere();
 585   }
 586 }
 587 
 588 
 589 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 590   arithmetic_op(code, result, left, right, false, tmp);
 591 }
 592 
 593 
 594 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 595   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 596 }
 597 
 598 
 599 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 600   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 601 }
 602 
 603 
 604 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 605   if (TwoOperandLIRForm && value != result_op) {
 606     assert(count != result_op, "malformed");
 607     __ move(value, result_op);
 608     value = result_op;
 609   }
 610 
 611   assert(count->is_constant() || count->is_register(), "must be");
 612   switch(code) {
 613   case Bytecodes::_ishl:
 614   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 615   case Bytecodes::_ishr:
 616   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 617   case Bytecodes::_iushr:
 618   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 619   default: ShouldNotReachHere();
 620   }
 621 }
 622 
 623 
 624 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 625   if (TwoOperandLIRForm && left_op != result_op) {
 626     assert(right_op != result_op, "malformed");
 627     __ move(left_op, result_op);
 628     left_op = result_op;
 629   }
 630 
 631   switch(code) {
 632     case Bytecodes::_iand:
 633     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 634 
 635     case Bytecodes::_ior:
 636     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 637 
 638     case Bytecodes::_ixor:
 639     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 640 
 641     default: ShouldNotReachHere();
 642   }
 643 }
 644 
 645 
 646 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 647   if (!GenerateSynchronizationCode) return;
 648   // for slow path, use debug info for state after successful locking
 649   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 650   __ load_stack_address_monitor(monitor_no, lock);
 651   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 652   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 653 }
 654 
 655 
 656 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 657   if (!GenerateSynchronizationCode) return;
 658   // setup registers
 659   LIR_Opr hdr = lock;
 660   lock = new_hdr;
 661   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 662   __ load_stack_address_monitor(monitor_no, lock);
 663   __ unlock_object(hdr, object, lock, scratch, slow_path);
 664 }
 665 
 666 #ifndef PRODUCT
 667 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 668   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 669     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 670   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 671     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 672   }
 673 }
 674 #endif
 675 
 676 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 677   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 678   // If klass is not loaded we do not know if the klass has finalizers:
 679   if (UseFastNewInstance && klass->is_loaded()
 680       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 681 
 682     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 683 
 684     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 685 
 686     assert(klass->is_loaded(), "must be loaded");
 687     // allocate space for instance
 688     assert(klass->size_helper() >= 0, "illegal instance size");
 689     const int instance_size = align_object_size(klass->size_helper());
 690     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 691                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 692   } else {
 693     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 694     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 695     __ branch_destination(slow_path->continuation());
 696   }
 697 }
 698 
 699 
 700 static bool is_constant_zero(Instruction* inst) {
 701   IntConstant* c = inst->type()->as_IntConstant();
 702   if (c) {
 703     return (c->value() == 0);
 704   }
 705   return false;
 706 }
 707 
 708 
 709 static bool positive_constant(Instruction* inst) {
 710   IntConstant* c = inst->type()->as_IntConstant();
 711   if (c) {
 712     return (c->value() >= 0);
 713   }
 714   return false;
 715 }
 716 
 717 
 718 static ciArrayKlass* as_array_klass(ciType* type) {
 719   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 720     return (ciArrayKlass*)type;
 721   } else {
 722     return NULL;
 723   }
 724 }
 725 
 726 static ciType* phi_declared_type(Phi* phi) {
 727   ciType* t = phi->operand_at(0)->declared_type();
 728   if (t == NULL) {
 729     return NULL;
 730   }
 731   for(int i = 1; i < phi->operand_count(); i++) {
 732     if (t != phi->operand_at(i)->declared_type()) {
 733       return NULL;
 734     }
 735   }
 736   return t;
 737 }
 738 
 739 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 740   Instruction* src     = x->argument_at(0);
 741   Instruction* src_pos = x->argument_at(1);
 742   Instruction* dst     = x->argument_at(2);
 743   Instruction* dst_pos = x->argument_at(3);
 744   Instruction* length  = x->argument_at(4);
 745 
 746   // first try to identify the likely type of the arrays involved
 747   ciArrayKlass* expected_type = NULL;
 748   bool is_exact = false, src_objarray = false, dst_objarray = false;
 749   {
 750     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 751     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 752     Phi* phi;
 753     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 754       src_declared_type = as_array_klass(phi_declared_type(phi));
 755     }
 756     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 757     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 758     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 759       dst_declared_type = as_array_klass(phi_declared_type(phi));
 760     }
 761 
 762     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 763       // the types exactly match so the type is fully known
 764       is_exact = true;
 765       expected_type = src_exact_type;
 766     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 767       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 768       ciArrayKlass* src_type = NULL;
 769       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 770         src_type = (ciArrayKlass*) src_exact_type;
 771       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 772         src_type = (ciArrayKlass*) src_declared_type;
 773       }
 774       if (src_type != NULL) {
 775         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 776           is_exact = true;
 777           expected_type = dst_type;
 778         }
 779       }
 780     }
 781     // at least pass along a good guess
 782     if (expected_type == NULL) expected_type = dst_exact_type;
 783     if (expected_type == NULL) expected_type = src_declared_type;
 784     if (expected_type == NULL) expected_type = dst_declared_type;
 785 
 786     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 787     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 788   }
 789 
 790   // if a probable array type has been identified, figure out if any
 791   // of the required checks for a fast case can be elided.
 792   int flags = LIR_OpArrayCopy::all_flags;
 793 
 794   if (!src_objarray)
 795     flags &= ~LIR_OpArrayCopy::src_objarray;
 796   if (!dst_objarray)
 797     flags &= ~LIR_OpArrayCopy::dst_objarray;
 798 
 799   if (!x->arg_needs_null_check(0))
 800     flags &= ~LIR_OpArrayCopy::src_null_check;
 801   if (!x->arg_needs_null_check(2))
 802     flags &= ~LIR_OpArrayCopy::dst_null_check;
 803 
 804 
 805   if (expected_type != NULL) {
 806     Value length_limit = NULL;
 807 
 808     IfOp* ifop = length->as_IfOp();
 809     if (ifop != NULL) {
 810       // look for expressions like min(v, a.length) which ends up as
 811       //   x > y ? y : x  or  x >= y ? y : x
 812       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 813           ifop->x() == ifop->fval() &&
 814           ifop->y() == ifop->tval()) {
 815         length_limit = ifop->y();
 816       }
 817     }
 818 
 819     // try to skip null checks and range checks
 820     NewArray* src_array = src->as_NewArray();
 821     if (src_array != NULL) {
 822       flags &= ~LIR_OpArrayCopy::src_null_check;
 823       if (length_limit != NULL &&
 824           src_array->length() == length_limit &&
 825           is_constant_zero(src_pos)) {
 826         flags &= ~LIR_OpArrayCopy::src_range_check;
 827       }
 828     }
 829 
 830     NewArray* dst_array = dst->as_NewArray();
 831     if (dst_array != NULL) {
 832       flags &= ~LIR_OpArrayCopy::dst_null_check;
 833       if (length_limit != NULL &&
 834           dst_array->length() == length_limit &&
 835           is_constant_zero(dst_pos)) {
 836         flags &= ~LIR_OpArrayCopy::dst_range_check;
 837       }
 838     }
 839 
 840     // check from incoming constant values
 841     if (positive_constant(src_pos))
 842       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 843     if (positive_constant(dst_pos))
 844       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 845     if (positive_constant(length))
 846       flags &= ~LIR_OpArrayCopy::length_positive_check;
 847 
 848     // see if the range check can be elided, which might also imply
 849     // that src or dst is non-null.
 850     ArrayLength* al = length->as_ArrayLength();
 851     if (al != NULL) {
 852       if (al->array() == src) {
 853         // it's the length of the source array
 854         flags &= ~LIR_OpArrayCopy::length_positive_check;
 855         flags &= ~LIR_OpArrayCopy::src_null_check;
 856         if (is_constant_zero(src_pos))
 857           flags &= ~LIR_OpArrayCopy::src_range_check;
 858       }
 859       if (al->array() == dst) {
 860         // it's the length of the destination array
 861         flags &= ~LIR_OpArrayCopy::length_positive_check;
 862         flags &= ~LIR_OpArrayCopy::dst_null_check;
 863         if (is_constant_zero(dst_pos))
 864           flags &= ~LIR_OpArrayCopy::dst_range_check;
 865       }
 866     }
 867     if (is_exact) {
 868       flags &= ~LIR_OpArrayCopy::type_check;
 869     }
 870   }
 871 
 872   IntConstant* src_int = src_pos->type()->as_IntConstant();
 873   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 874   if (src_int && dst_int) {
 875     int s_offs = src_int->value();
 876     int d_offs = dst_int->value();
 877     if (src_int->value() >= dst_int->value()) {
 878       flags &= ~LIR_OpArrayCopy::overlapping;
 879     }
 880     if (expected_type != NULL) {
 881       BasicType t = expected_type->element_type()->basic_type();
 882       int element_size = type2aelembytes(t);
 883       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 884           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 885         flags &= ~LIR_OpArrayCopy::unaligned;
 886       }
 887     }
 888   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 889     // src and dest positions are the same, or dst is zero so assume
 890     // nonoverlapping copy.
 891     flags &= ~LIR_OpArrayCopy::overlapping;
 892   }
 893 
 894   if (src == dst) {
 895     // moving within a single array so no type checks are needed
 896     if (flags & LIR_OpArrayCopy::type_check) {
 897       flags &= ~LIR_OpArrayCopy::type_check;
 898     }
 899   }
 900   *flagsp = flags;
 901   *expected_typep = (ciArrayKlass*)expected_type;
 902 }
 903 
 904 
 905 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 906   assert(opr->is_register(), "why spill if item is not register?");
 907 
 908   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 909     LIR_Opr result = new_register(T_FLOAT);
 910     set_vreg_flag(result, must_start_in_memory);
 911     assert(opr->is_register(), "only a register can be spilled");
 912     assert(opr->value_type()->is_float(), "rounding only for floats available");
 913     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 914     return result;
 915   }
 916   return opr;
 917 }
 918 
 919 
 920 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 921   assert(type2size[t] == type2size[value->type()],
 922          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
 923   if (!value->is_register()) {
 924     // force into a register
 925     LIR_Opr r = new_register(value->type());
 926     __ move(value, r);
 927     value = r;
 928   }
 929 
 930   // create a spill location
 931   LIR_Opr tmp = new_register(t);
 932   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 933 
 934   // move from register to spill
 935   __ move(value, tmp);
 936   return tmp;
 937 }
 938 
 939 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 940   if (if_instr->should_profile()) {
 941     ciMethod* method = if_instr->profiled_method();
 942     assert(method != NULL, "method should be set if branch is profiled");
 943     ciMethodData* md = method->method_data_or_null();
 944     assert(md != NULL, "Sanity");
 945     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 946     assert(data != NULL, "must have profiling data");
 947     assert(data->is_BranchData(), "need BranchData for two-way branches");
 948     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 949     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 950     if (if_instr->is_swapped()) {
 951       int t = taken_count_offset;
 952       taken_count_offset = not_taken_count_offset;
 953       not_taken_count_offset = t;
 954     }
 955 
 956     LIR_Opr md_reg = new_register(T_METADATA);
 957     __ metadata2reg(md->constant_encoding(), md_reg);
 958 
 959     LIR_Opr data_offset_reg = new_pointer_register();
 960     __ cmove(lir_cond(cond),
 961              LIR_OprFact::intptrConst(taken_count_offset),
 962              LIR_OprFact::intptrConst(not_taken_count_offset),
 963              data_offset_reg, as_BasicType(if_instr->x()->type()));
 964 
 965     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 966     LIR_Opr data_reg = new_pointer_register();
 967     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 968     __ move(data_addr, data_reg);
 969     // Use leal instead of add to avoid destroying condition codes on x86
 970     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 971     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 972     __ move(data_reg, data_addr);
 973   }
 974 }
 975 
 976 // Phi technique:
 977 // This is about passing live values from one basic block to the other.
 978 // In code generated with Java it is rather rare that more than one
 979 // value is on the stack from one basic block to the other.
 980 // We optimize our technique for efficient passing of one value
 981 // (of type long, int, double..) but it can be extended.
 982 // When entering or leaving a basic block, all registers and all spill
 983 // slots are release and empty. We use the released registers
 984 // and spill slots to pass the live values from one block
 985 // to the other. The topmost value, i.e., the value on TOS of expression
 986 // stack is passed in registers. All other values are stored in spilling
 987 // area. Every Phi has an index which designates its spill slot
 988 // At exit of a basic block, we fill the register(s) and spill slots.
 989 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 990 // and locks necessary registers and spilling slots.
 991 
 992 
 993 // move current value to referenced phi function
 994 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 995   Phi* phi = sux_val->as_Phi();
 996   // cur_val can be null without phi being null in conjunction with inlining
 997   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 998     LIR_Opr operand = cur_val->operand();
 999     if (cur_val->operand()->is_illegal()) {
1000       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1001              "these can be produced lazily");
1002       operand = operand_for_instruction(cur_val);
1003     }
1004     resolver->move(operand, operand_for_instruction(phi));
1005   }
1006 }
1007 
1008 
1009 // Moves all stack values into their PHI position
1010 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1011   BlockBegin* bb = block();
1012   if (bb->number_of_sux() == 1) {
1013     BlockBegin* sux = bb->sux_at(0);
1014     assert(sux->number_of_preds() > 0, "invalid CFG");
1015 
1016     // a block with only one predecessor never has phi functions
1017     if (sux->number_of_preds() > 1) {
1018       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1019       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1020 
1021       ValueStack* sux_state = sux->state();
1022       Value sux_value;
1023       int index;
1024 
1025       assert(cur_state->scope() == sux_state->scope(), "not matching");
1026       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1027       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1028 
1029       for_each_stack_value(sux_state, index, sux_value) {
1030         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1031       }
1032 
1033       for_each_local_value(sux_state, index, sux_value) {
1034         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1035       }
1036 
1037       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1038     }
1039   }
1040 }
1041 
1042 
1043 LIR_Opr LIRGenerator::new_register(BasicType type) {
1044   int vreg = _virtual_register_number;
1045   // add a little fudge factor for the bailout, since the bailout is
1046   // only checked periodically.  This gives a few extra registers to
1047   // hand out before we really run out, which helps us keep from
1048   // tripping over assertions.
1049   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1050     bailout("out of virtual registers");
1051     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1052       // wrap it around
1053       _virtual_register_number = LIR_OprDesc::vreg_base;
1054     }
1055   }
1056   _virtual_register_number += 1;
1057   return LIR_OprFact::virtual_register(vreg, type);
1058 }
1059 
1060 
1061 // Try to lock using register in hint
1062 LIR_Opr LIRGenerator::rlock(Value instr) {
1063   return new_register(instr->type());
1064 }
1065 
1066 
1067 // does an rlock and sets result
1068 LIR_Opr LIRGenerator::rlock_result(Value x) {
1069   LIR_Opr reg = rlock(x);
1070   set_result(x, reg);
1071   return reg;
1072 }
1073 
1074 
1075 // does an rlock and sets result
1076 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1077   LIR_Opr reg;
1078   switch (type) {
1079   case T_BYTE:
1080   case T_BOOLEAN:
1081     reg = rlock_byte(type);
1082     break;
1083   default:
1084     reg = rlock(x);
1085     break;
1086   }
1087 
1088   set_result(x, reg);
1089   return reg;
1090 }
1091 
1092 
1093 //---------------------------------------------------------------------
1094 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1095   ObjectType* oc = value->type()->as_ObjectType();
1096   if (oc) {
1097     return oc->constant_value();
1098   }
1099   return NULL;
1100 }
1101 
1102 
1103 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1104   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1105   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1106 
1107   // no moves are created for phi functions at the begin of exception
1108   // handlers, so assign operands manually here
1109   for_each_phi_fun(block(), phi,
1110                    operand_for_instruction(phi));
1111 
1112   LIR_Opr thread_reg = getThreadPointer();
1113   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1114                exceptionOopOpr());
1115   __ move_wide(LIR_OprFact::oopConst(NULL),
1116                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1117   __ move_wide(LIR_OprFact::oopConst(NULL),
1118                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1119 
1120   LIR_Opr result = new_register(T_OBJECT);
1121   __ move(exceptionOopOpr(), result);
1122   set_result(x, result);
1123 }
1124 
1125 
1126 //----------------------------------------------------------------------
1127 //----------------------------------------------------------------------
1128 //----------------------------------------------------------------------
1129 //----------------------------------------------------------------------
1130 //                        visitor functions
1131 //----------------------------------------------------------------------
1132 //----------------------------------------------------------------------
1133 //----------------------------------------------------------------------
1134 //----------------------------------------------------------------------
1135 
1136 void LIRGenerator::do_Phi(Phi* x) {
1137   // phi functions are never visited directly
1138   ShouldNotReachHere();
1139 }
1140 
1141 
1142 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1143 void LIRGenerator::do_Constant(Constant* x) {
1144   if (x->state_before() != NULL) {
1145     // Any constant with a ValueStack requires patching so emit the patch here
1146     LIR_Opr reg = rlock_result(x);
1147     CodeEmitInfo* info = state_for(x, x->state_before());
1148     __ oop2reg_patch(NULL, reg, info);
1149   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1150     if (!x->is_pinned()) {
1151       // unpinned constants are handled specially so that they can be
1152       // put into registers when they are used multiple times within a
1153       // block.  After the block completes their operand will be
1154       // cleared so that other blocks can't refer to that register.
1155       set_result(x, load_constant(x));
1156     } else {
1157       LIR_Opr res = x->operand();
1158       if (!res->is_valid()) {
1159         res = LIR_OprFact::value_type(x->type());
1160       }
1161       if (res->is_constant()) {
1162         LIR_Opr reg = rlock_result(x);
1163         __ move(res, reg);
1164       } else {
1165         set_result(x, res);
1166       }
1167     }
1168   } else {
1169     set_result(x, LIR_OprFact::value_type(x->type()));
1170   }
1171 }
1172 
1173 
1174 void LIRGenerator::do_Local(Local* x) {
1175   // operand_for_instruction has the side effect of setting the result
1176   // so there's no need to do it here.
1177   operand_for_instruction(x);
1178 }
1179 
1180 
1181 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1182   Unimplemented();
1183 }
1184 
1185 
1186 void LIRGenerator::do_Return(Return* x) {
1187   if (compilation()->env()->dtrace_method_probes()) {
1188     BasicTypeList signature;
1189     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1190     signature.append(T_METADATA); // Method*
1191     LIR_OprList* args = new LIR_OprList();
1192     args->append(getThreadPointer());
1193     LIR_Opr meth = new_register(T_METADATA);
1194     __ metadata2reg(method()->constant_encoding(), meth);
1195     args->append(meth);
1196     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1197   }
1198 
1199   if (x->type()->is_void()) {
1200     __ return_op(LIR_OprFact::illegalOpr);
1201   } else {
1202     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1203     LIRItem result(x->result(), this);
1204 
1205     result.load_item_force(reg);
1206     __ return_op(result.result());
1207   }
1208   set_no_result(x);
1209 }
1210 
1211 // Examble: ref.get()
1212 // Combination of LoadField and g1 pre-write barrier
1213 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1214 
1215   const int referent_offset = java_lang_ref_Reference::referent_offset;
1216   guarantee(referent_offset > 0, "referent offset not initialized");
1217 
1218   assert(x->number_of_arguments() == 1, "wrong type");
1219 
1220   LIRItem reference(x->argument_at(0), this);
1221   reference.load_item();
1222 
1223   // need to perform the null check on the reference objecy
1224   CodeEmitInfo* info = NULL;
1225   if (x->needs_null_check()) {
1226     info = state_for(x);
1227   }
1228 
1229   LIR_Address* referent_field_adr =
1230     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1231 
1232   LIR_Opr result = rlock_result(x);
1233 
1234   __ load(referent_field_adr, result, info);
1235 
1236   // Register the value in the referent field with the pre-barrier
1237   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1238               result /* pre_val */,
1239               false  /* do_load */,
1240               false  /* patch */,
1241               NULL   /* info */);
1242 }
1243 
1244 // Example: clazz.isInstance(object)
1245 void LIRGenerator::do_isInstance(Intrinsic* x) {
1246   assert(x->number_of_arguments() == 2, "wrong type");
1247 
1248   // TODO could try to substitute this node with an equivalent InstanceOf
1249   // if clazz is known to be a constant Class. This will pick up newly found
1250   // constants after HIR construction. I'll leave this to a future change.
1251 
1252   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1253   // could follow the aastore example in a future change.
1254 
1255   LIRItem clazz(x->argument_at(0), this);
1256   LIRItem object(x->argument_at(1), this);
1257   clazz.load_item();
1258   object.load_item();
1259   LIR_Opr result = rlock_result(x);
1260 
1261   // need to perform null check on clazz
1262   if (x->needs_null_check()) {
1263     CodeEmitInfo* info = state_for(x);
1264     __ null_check(clazz.result(), info);
1265   }
1266 
1267   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1268                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1269                                      x->type(),
1270                                      NULL); // NULL CodeEmitInfo results in a leaf call
1271   __ move(call_result, result);
1272 }
1273 
1274 // Example: object.getClass ()
1275 void LIRGenerator::do_getClass(Intrinsic* x) {
1276   assert(x->number_of_arguments() == 1, "wrong type");
1277 
1278   LIRItem rcvr(x->argument_at(0), this);
1279   rcvr.load_item();
1280   LIR_Opr temp = new_register(T_METADATA);
1281   LIR_Opr result = rlock_result(x);
1282 
1283   // need to perform the null check on the rcvr
1284   CodeEmitInfo* info = NULL;
1285   if (x->needs_null_check()) {
1286     info = state_for(x);
1287   }
1288 
1289   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1290   // meaning of these two is mixed up (see JDK-8026837).
1291   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1292   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1293 }
1294 
1295 
1296 // Example: Thread.currentThread()
1297 void LIRGenerator::do_currentThread(Intrinsic* x) {
1298   assert(x->number_of_arguments() == 0, "wrong type");
1299   LIR_Opr reg = rlock_result(x);
1300   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1301 }
1302 
1303 
1304 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1305   assert(x->number_of_arguments() == 1, "wrong type");
1306   LIRItem receiver(x->argument_at(0), this);
1307 
1308   receiver.load_item();
1309   BasicTypeList signature;
1310   signature.append(T_OBJECT); // receiver
1311   LIR_OprList* args = new LIR_OprList();
1312   args->append(receiver.result());
1313   CodeEmitInfo* info = state_for(x, x->state());
1314   call_runtime(&signature, args,
1315                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1316                voidType, info);
1317 
1318   set_no_result(x);
1319 }
1320 
1321 
1322 //------------------------local access--------------------------------------
1323 
1324 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1325   if (x->operand()->is_illegal()) {
1326     Constant* c = x->as_Constant();
1327     if (c != NULL) {
1328       x->set_operand(LIR_OprFact::value_type(c->type()));
1329     } else {
1330       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1331       // allocate a virtual register for this local or phi
1332       x->set_operand(rlock(x));
1333       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1334     }
1335   }
1336   return x->operand();
1337 }
1338 
1339 
1340 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1341   if (opr->is_virtual()) {
1342     return instruction_for_vreg(opr->vreg_number());
1343   }
1344   return NULL;
1345 }
1346 
1347 
1348 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1349   if (reg_num < _instruction_for_operand.length()) {
1350     return _instruction_for_operand.at(reg_num);
1351   }
1352   return NULL;
1353 }
1354 
1355 
1356 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1357   if (_vreg_flags.size_in_bits() == 0) {
1358     BitMap2D temp(100, num_vreg_flags);
1359     temp.clear();
1360     _vreg_flags = temp;
1361   }
1362   _vreg_flags.at_put_grow(vreg_num, f, true);
1363 }
1364 
1365 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1366   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1367     return false;
1368   }
1369   return _vreg_flags.at(vreg_num, f);
1370 }
1371 
1372 
1373 // Block local constant handling.  This code is useful for keeping
1374 // unpinned constants and constants which aren't exposed in the IR in
1375 // registers.  Unpinned Constant instructions have their operands
1376 // cleared when the block is finished so that other blocks can't end
1377 // up referring to their registers.
1378 
1379 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1380   assert(!x->is_pinned(), "only for unpinned constants");
1381   _unpinned_constants.append(x);
1382   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1383 }
1384 
1385 
1386 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1387   BasicType t = c->type();
1388   for (int i = 0; i < _constants.length(); i++) {
1389     LIR_Const* other = _constants.at(i);
1390     if (t == other->type()) {
1391       switch (t) {
1392       case T_INT:
1393       case T_FLOAT:
1394         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1395         break;
1396       case T_LONG:
1397       case T_DOUBLE:
1398         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1399         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1400         break;
1401       case T_OBJECT:
1402         if (c->as_jobject() != other->as_jobject()) continue;
1403         break;
1404       }
1405       return _reg_for_constants.at(i);
1406     }
1407   }
1408 
1409   LIR_Opr result = new_register(t);
1410   __ move((LIR_Opr)c, result);
1411   _constants.append(c);
1412   _reg_for_constants.append(result);
1413   return result;
1414 }
1415 
1416 // Various barriers
1417 
1418 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1419                                bool do_load, bool patch, CodeEmitInfo* info) {
1420   // Do the pre-write barrier, if any.
1421   switch (_bs->kind()) {
1422 #if INCLUDE_ALL_GCS
1423     case BarrierSet::G1SATBCT:
1424     case BarrierSet::G1SATBCTLogging:
1425       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1426       break;
1427 #endif // INCLUDE_ALL_GCS
1428     case BarrierSet::CardTableModRef:
1429     case BarrierSet::CardTableExtension:
1430       // No pre barriers
1431       break;
1432     case BarrierSet::ModRef:
1433       // No pre barriers
1434       break;
1435     default      :
1436       ShouldNotReachHere();
1437 
1438   }
1439 }
1440 
1441 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1442   switch (_bs->kind()) {
1443 #if INCLUDE_ALL_GCS
1444     case BarrierSet::G1SATBCT:
1445     case BarrierSet::G1SATBCTLogging:
1446       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1447       break;
1448 #endif // INCLUDE_ALL_GCS
1449     case BarrierSet::CardTableModRef:
1450     case BarrierSet::CardTableExtension:
1451       CardTableModRef_post_barrier(addr,  new_val);
1452       break;
1453     case BarrierSet::ModRef:
1454       // No post barriers
1455       break;
1456     default      :
1457       ShouldNotReachHere();
1458     }
1459 }
1460 
1461 ////////////////////////////////////////////////////////////////////////
1462 #if INCLUDE_ALL_GCS
1463 
1464 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1465                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1466   // First we test whether marking is in progress.
1467   BasicType flag_type;
1468   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1469     flag_type = T_INT;
1470   } else {
1471     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1472               "Assumption");
1473     flag_type = T_BYTE;
1474   }
1475   LIR_Opr thrd = getThreadPointer();
1476   LIR_Address* mark_active_flag_addr =
1477     new LIR_Address(thrd,
1478                     in_bytes(JavaThread::satb_mark_queue_offset() +
1479                              PtrQueue::byte_offset_of_active()),
1480                     flag_type);
1481   // Read the marking-in-progress flag.
1482   LIR_Opr flag_val = new_register(T_INT);
1483   __ load(mark_active_flag_addr, flag_val);
1484   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1485 
1486   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1487 
1488   CodeStub* slow;
1489 
1490   if (do_load) {
1491     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1492     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1493 
1494     if (patch)
1495       pre_val_patch_code = lir_patch_normal;
1496 
1497     pre_val = new_register(T_OBJECT);
1498 
1499     if (!addr_opr->is_address()) {
1500       assert(addr_opr->is_register(), "must be");
1501       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1502     }
1503     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1504   } else {
1505     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1506     assert(pre_val->is_register(), "must be");
1507     assert(pre_val->type() == T_OBJECT, "must be an object");
1508     assert(info == NULL, "sanity");
1509 
1510     slow = new G1PreBarrierStub(pre_val);
1511   }
1512 
1513   __ branch(lir_cond_notEqual, T_INT, slow);
1514   __ branch_destination(slow->continuation());
1515 }
1516 
1517 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1518   // If the "new_val" is a constant NULL, no barrier is necessary.
1519   if (new_val->is_constant() &&
1520       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1521 
1522   if (!new_val->is_register()) {
1523     LIR_Opr new_val_reg = new_register(T_OBJECT);
1524     if (new_val->is_constant()) {
1525       __ move(new_val, new_val_reg);
1526     } else {
1527       __ leal(new_val, new_val_reg);
1528     }
1529     new_val = new_val_reg;
1530   }
1531   assert(new_val->is_register(), "must be a register at this point");
1532 
1533   if (addr->is_address()) {
1534     LIR_Address* address = addr->as_address_ptr();
1535     LIR_Opr ptr = new_pointer_register();
1536     if (!address->index()->is_valid() && address->disp() == 0) {
1537       __ move(address->base(), ptr);
1538     } else {
1539       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1540       __ leal(addr, ptr);
1541     }
1542     addr = ptr;
1543   }
1544   assert(addr->is_register(), "must be a register at this point");
1545 
1546   LIR_Opr xor_res = new_pointer_register();
1547   LIR_Opr xor_shift_res = new_pointer_register();
1548   if (TwoOperandLIRForm ) {
1549     __ move(addr, xor_res);
1550     __ logical_xor(xor_res, new_val, xor_res);
1551     __ move(xor_res, xor_shift_res);
1552     __ unsigned_shift_right(xor_shift_res,
1553                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1554                             xor_shift_res,
1555                             LIR_OprDesc::illegalOpr());
1556   } else {
1557     __ logical_xor(addr, new_val, xor_res);
1558     __ unsigned_shift_right(xor_res,
1559                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1560                             xor_shift_res,
1561                             LIR_OprDesc::illegalOpr());
1562   }
1563 
1564   if (!new_val->is_register()) {
1565     LIR_Opr new_val_reg = new_register(T_OBJECT);
1566     __ leal(new_val, new_val_reg);
1567     new_val = new_val_reg;
1568   }
1569   assert(new_val->is_register(), "must be a register at this point");
1570 
1571   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1572 
1573   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1574   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1575   __ branch_destination(slow->continuation());
1576 }
1577 
1578 #endif // INCLUDE_ALL_GCS
1579 ////////////////////////////////////////////////////////////////////////
1580 
1581 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1582 
1583   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1584   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1585   if (addr->is_address()) {
1586     LIR_Address* address = addr->as_address_ptr();
1587     // ptr cannot be an object because we use this barrier for array card marks
1588     // and addr can point in the middle of an array.
1589     LIR_Opr ptr = new_pointer_register();
1590     if (!address->index()->is_valid() && address->disp() == 0) {
1591       __ move(address->base(), ptr);
1592     } else {
1593       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1594       __ leal(addr, ptr);
1595     }
1596     addr = ptr;
1597   }
1598   assert(addr->is_register(), "must be a register at this point");
1599 
1600 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1601   CardTableModRef_post_barrier_helper(addr, card_table_base);
1602 #else
1603   LIR_Opr tmp = new_pointer_register();
1604   if (TwoOperandLIRForm) {
1605     __ move(addr, tmp);
1606     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1607   } else {
1608     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1609   }
1610   if (can_inline_as_constant(card_table_base)) {
1611     __ move(LIR_OprFact::intConst(0),
1612               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1613   } else {
1614     __ move(LIR_OprFact::intConst(0),
1615               new LIR_Address(tmp, load_constant(card_table_base),
1616                               T_BYTE));
1617   }
1618 #endif
1619 }
1620 
1621 
1622 //------------------------field access--------------------------------------
1623 
1624 // Comment copied form templateTable_i486.cpp
1625 // ----------------------------------------------------------------------------
1626 // Volatile variables demand their effects be made known to all CPU's in
1627 // order.  Store buffers on most chips allow reads & writes to reorder; the
1628 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1629 // memory barrier (i.e., it's not sufficient that the interpreter does not
1630 // reorder volatile references, the hardware also must not reorder them).
1631 //
1632 // According to the new Java Memory Model (JMM):
1633 // (1) All volatiles are serialized wrt to each other.
1634 // ALSO reads & writes act as aquire & release, so:
1635 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1636 // the read float up to before the read.  It's OK for non-volatile memory refs
1637 // that happen before the volatile read to float down below it.
1638 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1639 // that happen BEFORE the write float down to after the write.  It's OK for
1640 // non-volatile memory refs that happen after the volatile write to float up
1641 // before it.
1642 //
1643 // We only put in barriers around volatile refs (they are expensive), not
1644 // _between_ memory refs (that would require us to track the flavor of the
1645 // previous memory refs).  Requirements (2) and (3) require some barriers
1646 // before volatile stores and after volatile loads.  These nearly cover
1647 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1648 // case is placed after volatile-stores although it could just as well go
1649 // before volatile-loads.
1650 
1651 
1652 void LIRGenerator::do_StoreField(StoreField* x) {
1653   bool needs_patching = x->needs_patching();
1654   bool is_volatile = x->field()->is_volatile();
1655   BasicType field_type = x->field_type();
1656   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1657 
1658   CodeEmitInfo* info = NULL;
1659   if (needs_patching) {
1660     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1661     info = state_for(x, x->state_before());
1662   } else if (x->needs_null_check()) {
1663     NullCheck* nc = x->explicit_null_check();
1664     if (nc == NULL) {
1665       info = state_for(x);
1666     } else {
1667       info = state_for(nc);
1668     }
1669   }
1670 
1671 
1672   LIRItem object(x->obj(), this);
1673   LIRItem value(x->value(),  this);
1674 
1675   object.load_item();
1676 
1677   if (is_volatile || needs_patching) {
1678     // load item if field is volatile (fewer special cases for volatiles)
1679     // load item if field not initialized
1680     // load item if field not constant
1681     // because of code patching we cannot inline constants
1682     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1683       value.load_byte_item();
1684     } else  {
1685       value.load_item();
1686     }
1687   } else {
1688     value.load_for_store(field_type);
1689   }
1690 
1691   set_no_result(x);
1692 
1693 #ifndef PRODUCT
1694   if (PrintNotLoaded && needs_patching) {
1695     tty->print_cr("   ###class not loaded at store_%s bci %d",
1696                   x->is_static() ?  "static" : "field", x->printable_bci());
1697   }
1698 #endif
1699 
1700   if (x->needs_null_check() &&
1701       (needs_patching ||
1702        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1703     // emit an explicit null check because the offset is too large
1704     __ null_check(object.result(), new CodeEmitInfo(info));
1705   }
1706 
1707   LIR_Address* address;
1708   if (needs_patching) {
1709     // we need to patch the offset in the instruction so don't allow
1710     // generate_address to try to be smart about emitting the -1.
1711     // Otherwise the patching code won't know how to find the
1712     // instruction to patch.
1713     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1714   } else {
1715     address = generate_address(object.result(), x->offset(), field_type);
1716   }
1717 
1718   if (is_volatile && os::is_MP()) {
1719     __ membar_release();
1720   }
1721 
1722   if (is_oop) {
1723     // Do the pre-write barrier, if any.
1724     pre_barrier(LIR_OprFact::address(address),
1725                 LIR_OprFact::illegalOpr /* pre_val */,
1726                 true /* do_load*/,
1727                 needs_patching,
1728                 (info ? new CodeEmitInfo(info) : NULL));
1729   }
1730 
1731   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1732   if (needs_atomic_access && !needs_patching) {
1733     volatile_field_store(value.result(), address, info);
1734   } else {
1735     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1736     __ store(value.result(), address, info, patch_code);
1737   }
1738 
1739   if (is_oop) {
1740     // Store to object so mark the card of the header
1741     post_barrier(object.result(), value.result());
1742   }
1743 
1744   if (is_volatile && os::is_MP()) {
1745     __ membar();
1746   }
1747 }
1748 
1749 
1750 void LIRGenerator::do_LoadField(LoadField* x) {
1751   bool needs_patching = x->needs_patching();
1752   bool is_volatile = x->field()->is_volatile();
1753   BasicType field_type = x->field_type();
1754 
1755   CodeEmitInfo* info = NULL;
1756   if (needs_patching) {
1757     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1758     info = state_for(x, x->state_before());
1759   } else if (x->needs_null_check()) {
1760     NullCheck* nc = x->explicit_null_check();
1761     if (nc == NULL) {
1762       info = state_for(x);
1763     } else {
1764       info = state_for(nc);
1765     }
1766   }
1767 
1768   LIRItem object(x->obj(), this);
1769 
1770   object.load_item();
1771 
1772 #ifndef PRODUCT
1773   if (PrintNotLoaded && needs_patching) {
1774     tty->print_cr("   ###class not loaded at load_%s bci %d",
1775                   x->is_static() ?  "static" : "field", x->printable_bci());
1776   }
1777 #endif
1778 
1779   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1780   if (x->needs_null_check() &&
1781       (needs_patching ||
1782        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1783        stress_deopt)) {
1784     LIR_Opr obj = object.result();
1785     if (stress_deopt) {
1786       obj = new_register(T_OBJECT);
1787       __ move(LIR_OprFact::oopConst(NULL), obj);
1788     }
1789     // emit an explicit null check because the offset is too large
1790     __ null_check(obj, new CodeEmitInfo(info));
1791   }
1792 
1793   LIR_Opr reg = rlock_result(x, field_type);
1794   LIR_Address* address;
1795   if (needs_patching) {
1796     // we need to patch the offset in the instruction so don't allow
1797     // generate_address to try to be smart about emitting the -1.
1798     // Otherwise the patching code won't know how to find the
1799     // instruction to patch.
1800     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1801   } else {
1802     address = generate_address(object.result(), x->offset(), field_type);
1803   }
1804 
1805   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1806   if (needs_atomic_access && !needs_patching) {
1807     volatile_field_load(address, reg, info);
1808   } else {
1809     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1810     __ load(address, reg, info, patch_code);
1811   }
1812 
1813   if (is_volatile && os::is_MP()) {
1814     __ membar_acquire();
1815   }
1816 }
1817 
1818 
1819 //------------------------java.nio.Buffer.checkIndex------------------------
1820 
1821 // int java.nio.Buffer.checkIndex(int)
1822 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1823   // NOTE: by the time we are in checkIndex() we are guaranteed that
1824   // the buffer is non-null (because checkIndex is package-private and
1825   // only called from within other methods in the buffer).
1826   assert(x->number_of_arguments() == 2, "wrong type");
1827   LIRItem buf  (x->argument_at(0), this);
1828   LIRItem index(x->argument_at(1), this);
1829   buf.load_item();
1830   index.load_item();
1831 
1832   LIR_Opr result = rlock_result(x);
1833   if (GenerateRangeChecks) {
1834     CodeEmitInfo* info = state_for(x);
1835     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1836     if (index.result()->is_constant()) {
1837       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1838       __ branch(lir_cond_belowEqual, T_INT, stub);
1839     } else {
1840       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1841                   java_nio_Buffer::limit_offset(), T_INT, info);
1842       __ branch(lir_cond_aboveEqual, T_INT, stub);
1843     }
1844     __ move(index.result(), result);
1845   } else {
1846     // Just load the index into the result register
1847     __ move(index.result(), result);
1848   }
1849 }
1850 
1851 
1852 //------------------------array access--------------------------------------
1853 
1854 
1855 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1856   LIRItem array(x->array(), this);
1857   array.load_item();
1858   LIR_Opr reg = rlock_result(x);
1859 
1860   CodeEmitInfo* info = NULL;
1861   if (x->needs_null_check()) {
1862     NullCheck* nc = x->explicit_null_check();
1863     if (nc == NULL) {
1864       info = state_for(x);
1865     } else {
1866       info = state_for(nc);
1867     }
1868     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1869       LIR_Opr obj = new_register(T_OBJECT);
1870       __ move(LIR_OprFact::oopConst(NULL), obj);
1871       __ null_check(obj, new CodeEmitInfo(info));
1872     }
1873   }
1874   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1875 }
1876 
1877 
1878 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1879   bool use_length = x->length() != NULL;
1880   LIRItem array(x->array(), this);
1881   LIRItem index(x->index(), this);
1882   LIRItem length(this);
1883   bool needs_range_check = x->compute_needs_range_check();
1884 
1885   if (use_length && needs_range_check) {
1886     length.set_instruction(x->length());
1887     length.load_item();
1888   }
1889 
1890   array.load_item();
1891   if (index.is_constant() && can_inline_as_constant(x->index())) {
1892     // let it be a constant
1893     index.dont_load_item();
1894   } else {
1895     index.load_item();
1896   }
1897 
1898   CodeEmitInfo* range_check_info = state_for(x);
1899   CodeEmitInfo* null_check_info = NULL;
1900   if (x->needs_null_check()) {
1901     NullCheck* nc = x->explicit_null_check();
1902     if (nc != NULL) {
1903       null_check_info = state_for(nc);
1904     } else {
1905       null_check_info = range_check_info;
1906     }
1907     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1908       LIR_Opr obj = new_register(T_OBJECT);
1909       __ move(LIR_OprFact::oopConst(NULL), obj);
1910       __ null_check(obj, new CodeEmitInfo(null_check_info));
1911     }
1912   }
1913 
1914   // emit array address setup early so it schedules better
1915   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1916 
1917   if (GenerateRangeChecks && needs_range_check) {
1918     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1919       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1920     } else if (use_length) {
1921       // TODO: use a (modified) version of array_range_check that does not require a
1922       //       constant length to be loaded to a register
1923       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1924       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1925     } else {
1926       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1927       // The range check performs the null check, so clear it out for the load
1928       null_check_info = NULL;
1929     }
1930   }
1931 
1932   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1933 }
1934 
1935 
1936 void LIRGenerator::do_NullCheck(NullCheck* x) {
1937   if (x->can_trap()) {
1938     LIRItem value(x->obj(), this);
1939     value.load_item();
1940     CodeEmitInfo* info = state_for(x);
1941     __ null_check(value.result(), info);
1942   }
1943 }
1944 
1945 
1946 void LIRGenerator::do_TypeCast(TypeCast* x) {
1947   LIRItem value(x->obj(), this);
1948   value.load_item();
1949   // the result is the same as from the node we are casting
1950   set_result(x, value.result());
1951 }
1952 
1953 
1954 void LIRGenerator::do_Throw(Throw* x) {
1955   LIRItem exception(x->exception(), this);
1956   exception.load_item();
1957   set_no_result(x);
1958   LIR_Opr exception_opr = exception.result();
1959   CodeEmitInfo* info = state_for(x, x->state());
1960 
1961 #ifndef PRODUCT
1962   if (PrintC1Statistics) {
1963     increment_counter(Runtime1::throw_count_address(), T_INT);
1964   }
1965 #endif
1966 
1967   // check if the instruction has an xhandler in any of the nested scopes
1968   bool unwind = false;
1969   if (info->exception_handlers()->length() == 0) {
1970     // this throw is not inside an xhandler
1971     unwind = true;
1972   } else {
1973     // get some idea of the throw type
1974     bool type_is_exact = true;
1975     ciType* throw_type = x->exception()->exact_type();
1976     if (throw_type == NULL) {
1977       type_is_exact = false;
1978       throw_type = x->exception()->declared_type();
1979     }
1980     if (throw_type != NULL && throw_type->is_instance_klass()) {
1981       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1982       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1983     }
1984   }
1985 
1986   // do null check before moving exception oop into fixed register
1987   // to avoid a fixed interval with an oop during the null check.
1988   // Use a copy of the CodeEmitInfo because debug information is
1989   // different for null_check and throw.
1990   if (GenerateCompilerNullChecks &&
1991       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1992     // if the exception object wasn't created using new then it might be null.
1993     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1994   }
1995 
1996   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1997     // we need to go through the exception lookup path to get JVMTI
1998     // notification done
1999     unwind = false;
2000   }
2001 
2002   // move exception oop into fixed register
2003   __ move(exception_opr, exceptionOopOpr());
2004 
2005   if (unwind) {
2006     __ unwind_exception(exceptionOopOpr());
2007   } else {
2008     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2009   }
2010 }
2011 
2012 
2013 void LIRGenerator::do_RoundFP(RoundFP* x) {
2014   LIRItem input(x->input(), this);
2015   input.load_item();
2016   LIR_Opr input_opr = input.result();
2017   assert(input_opr->is_register(), "why round if value is not in a register?");
2018   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2019   if (input_opr->is_single_fpu()) {
2020     set_result(x, round_item(input_opr)); // This code path not currently taken
2021   } else {
2022     LIR_Opr result = new_register(T_DOUBLE);
2023     set_vreg_flag(result, must_start_in_memory);
2024     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2025     set_result(x, result);
2026   }
2027 }
2028 
2029 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2030 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2031 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2032   LIRItem base(x->base(), this);
2033   LIRItem idx(this);
2034 
2035   base.load_item();
2036   if (x->has_index()) {
2037     idx.set_instruction(x->index());
2038     idx.load_nonconstant();
2039   }
2040 
2041   LIR_Opr reg = rlock_result(x, x->basic_type());
2042 
2043   int   log2_scale = 0;
2044   if (x->has_index()) {
2045     log2_scale = x->log2_scale();
2046   }
2047 
2048   assert(!x->has_index() || idx.value() == x->index(), "should match");
2049 
2050   LIR_Opr base_op = base.result();
2051   LIR_Opr index_op = idx.result();
2052 #ifndef _LP64
2053   if (base_op->type() == T_LONG) {
2054     base_op = new_register(T_INT);
2055     __ convert(Bytecodes::_l2i, base.result(), base_op);
2056   }
2057   if (x->has_index()) {
2058     if (index_op->type() == T_LONG) {
2059       LIR_Opr long_index_op = index_op;
2060       if (index_op->is_constant()) {
2061         long_index_op = new_register(T_LONG);
2062         __ move(index_op, long_index_op);
2063       }
2064       index_op = new_register(T_INT);
2065       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2066     } else {
2067       assert(x->index()->type()->tag() == intTag, "must be");
2068     }
2069   }
2070   // At this point base and index should be all ints.
2071   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2072   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2073 #else
2074   if (x->has_index()) {
2075     if (index_op->type() == T_INT) {
2076       if (!index_op->is_constant()) {
2077         index_op = new_register(T_LONG);
2078         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2079       }
2080     } else {
2081       assert(index_op->type() == T_LONG, "must be");
2082       if (index_op->is_constant()) {
2083         index_op = new_register(T_LONG);
2084         __ move(idx.result(), index_op);
2085       }
2086     }
2087   }
2088   // At this point base is a long non-constant
2089   // Index is a long register or a int constant.
2090   // We allow the constant to stay an int because that would allow us a more compact encoding by
2091   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2092   // move it into a register first.
2093   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2094   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2095                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2096 #endif
2097 
2098   BasicType dst_type = x->basic_type();
2099 
2100   LIR_Address* addr;
2101   if (index_op->is_constant()) {
2102     assert(log2_scale == 0, "must not have a scale");
2103     assert(index_op->type() == T_INT, "only int constants supported");
2104     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2105   } else {
2106 #ifdef X86
2107     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2108 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2109     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2110 #else
2111     if (index_op->is_illegal() || log2_scale == 0) {
2112       addr = new LIR_Address(base_op, index_op, dst_type);
2113     } else {
2114       LIR_Opr tmp = new_pointer_register();
2115       __ shift_left(index_op, log2_scale, tmp);
2116       addr = new LIR_Address(base_op, tmp, dst_type);
2117     }
2118 #endif
2119   }
2120 
2121   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2122     __ unaligned_move(addr, reg);
2123   } else {
2124     if (dst_type == T_OBJECT && x->is_wide()) {
2125       __ move_wide(addr, reg);
2126     } else {
2127       __ move(addr, reg);
2128     }
2129   }
2130 }
2131 
2132 
2133 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2134   int  log2_scale = 0;
2135   BasicType type = x->basic_type();
2136 
2137   if (x->has_index()) {
2138     log2_scale = x->log2_scale();
2139   }
2140 
2141   LIRItem base(x->base(), this);
2142   LIRItem value(x->value(), this);
2143   LIRItem idx(this);
2144 
2145   base.load_item();
2146   if (x->has_index()) {
2147     idx.set_instruction(x->index());
2148     idx.load_item();
2149   }
2150 
2151   if (type == T_BYTE || type == T_BOOLEAN) {
2152     value.load_byte_item();
2153   } else {
2154     value.load_item();
2155   }
2156 
2157   set_no_result(x);
2158 
2159   LIR_Opr base_op = base.result();
2160   LIR_Opr index_op = idx.result();
2161 
2162 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2163   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2164 #else
2165 #ifndef _LP64
2166   if (base_op->type() == T_LONG) {
2167     base_op = new_register(T_INT);
2168     __ convert(Bytecodes::_l2i, base.result(), base_op);
2169   }
2170   if (x->has_index()) {
2171     if (index_op->type() == T_LONG) {
2172       index_op = new_register(T_INT);
2173       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2174     }
2175   }
2176   // At this point base and index should be all ints and not constants
2177   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2178   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2179 #else
2180   if (x->has_index()) {
2181     if (index_op->type() == T_INT) {
2182       index_op = new_register(T_LONG);
2183       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2184     }
2185   }
2186   // At this point base and index are long and non-constant
2187   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2188   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2189 #endif
2190 
2191   if (log2_scale != 0) {
2192     // temporary fix (platform dependent code without shift on Intel would be better)
2193     // TODO: ARM also allows embedded shift in the address
2194     __ shift_left(index_op, log2_scale, index_op);
2195   }
2196 
2197   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2198 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2199   __ move(value.result(), addr);
2200 }
2201 
2202 
2203 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2204   BasicType type = x->basic_type();
2205   LIRItem src(x->object(), this);
2206   LIRItem off(x->offset(), this);
2207 
2208   off.load_item();
2209   src.load_item();
2210 
2211   LIR_Opr value = rlock_result(x, x->basic_type());
2212 
2213   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2214 
2215 #if INCLUDE_ALL_GCS
2216   // We might be reading the value of the referent field of a
2217   // Reference object in order to attach it back to the live
2218   // object graph. If G1 is enabled then we need to record
2219   // the value that is being returned in an SATB log buffer.
2220   //
2221   // We need to generate code similar to the following...
2222   //
2223   // if (offset == java_lang_ref_Reference::referent_offset) {
2224   //   if (src != NULL) {
2225   //     if (klass(src)->reference_type() != REF_NONE) {
2226   //       pre_barrier(..., value, ...);
2227   //     }
2228   //   }
2229   // }
2230 
2231   if (UseG1GC && type == T_OBJECT) {
2232     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2233     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2234     bool gen_source_check = true;    // Assume we need to check the src object for null.
2235     bool gen_type_check = true;      // Assume we need to check the reference_type.
2236 
2237     if (off.is_constant()) {
2238       jlong off_con = (off.type()->is_int() ?
2239                         (jlong) off.get_jint_constant() :
2240                         off.get_jlong_constant());
2241 
2242 
2243       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2244         // The constant offset is something other than referent_offset.
2245         // We can skip generating/checking the remaining guards and
2246         // skip generation of the code stub.
2247         gen_pre_barrier = false;
2248       } else {
2249         // The constant offset is the same as referent_offset -
2250         // we do not need to generate a runtime offset check.
2251         gen_offset_check = false;
2252       }
2253     }
2254 
2255     // We don't need to generate stub if the source object is an array
2256     if (gen_pre_barrier && src.type()->is_array()) {
2257       gen_pre_barrier = false;
2258     }
2259 
2260     if (gen_pre_barrier) {
2261       // We still need to continue with the checks.
2262       if (src.is_constant()) {
2263         ciObject* src_con = src.get_jobject_constant();
2264         guarantee(src_con != NULL, "no source constant");
2265 
2266         if (src_con->is_null_object()) {
2267           // The constant src object is null - We can skip
2268           // generating the code stub.
2269           gen_pre_barrier = false;
2270         } else {
2271           // Non-null constant source object. We still have to generate
2272           // the slow stub - but we don't need to generate the runtime
2273           // null object check.
2274           gen_source_check = false;
2275         }
2276       }
2277     }
2278     if (gen_pre_barrier && !PatchALot) {
2279       // Can the klass of object be statically determined to be
2280       // a sub-class of Reference?
2281       ciType* type = src.value()->declared_type();
2282       if ((type != NULL) && type->is_loaded()) {
2283         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2284           gen_type_check = false;
2285         } else if (type->is_klass() &&
2286                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2287           // Not Reference and not Object klass.
2288           gen_pre_barrier = false;
2289         }
2290       }
2291     }
2292 
2293     if (gen_pre_barrier) {
2294       LabelObj* Lcont = new LabelObj();
2295 
2296       // We can have generate one runtime check here. Let's start with
2297       // the offset check.
2298       if (gen_offset_check) {
2299         // if (offset != referent_offset) -> continue
2300         // If offset is an int then we can do the comparison with the
2301         // referent_offset constant; otherwise we need to move
2302         // referent_offset into a temporary register and generate
2303         // a reg-reg compare.
2304 
2305         LIR_Opr referent_off;
2306 
2307         if (off.type()->is_int()) {
2308           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2309         } else {
2310           assert(off.type()->is_long(), "what else?");
2311           referent_off = new_register(T_LONG);
2312           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2313         }
2314         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2315         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2316       }
2317       if (gen_source_check) {
2318         // offset is a const and equals referent offset
2319         // if (source == null) -> continue
2320         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2321         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2322       }
2323       LIR_Opr src_klass = new_register(T_OBJECT);
2324       if (gen_type_check) {
2325         // We have determined that offset == referent_offset && src != null.
2326         // if (src->_klass->_reference_type == REF_NONE) -> continue
2327         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2328         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2329         LIR_Opr reference_type = new_register(T_INT);
2330         __ move(reference_type_addr, reference_type);
2331         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2332         __ branch(lir_cond_equal, T_INT, Lcont->label());
2333       }
2334       {
2335         // We have determined that src->_klass->_reference_type != REF_NONE
2336         // so register the value in the referent field with the pre-barrier.
2337         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2338                     value  /* pre_val */,
2339                     false  /* do_load */,
2340                     false  /* patch */,
2341                     NULL   /* info */);
2342       }
2343       __ branch_destination(Lcont->label());
2344     }
2345   }
2346 #endif // INCLUDE_ALL_GCS
2347 
2348   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2349 }
2350 
2351 
2352 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2353   BasicType type = x->basic_type();
2354   LIRItem src(x->object(), this);
2355   LIRItem off(x->offset(), this);
2356   LIRItem data(x->value(), this);
2357 
2358   src.load_item();
2359   if (type == T_BOOLEAN || type == T_BYTE) {
2360     data.load_byte_item();
2361   } else {
2362     data.load_item();
2363   }
2364   off.load_item();
2365 
2366   set_no_result(x);
2367 
2368   if (x->is_volatile() && os::is_MP()) __ membar_release();
2369   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2370   if (x->is_volatile() && os::is_MP()) __ membar();
2371 }
2372 
2373 
2374 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2375   int lng = x->length();
2376 
2377   for (int i = 0; i < lng; i++) {
2378     SwitchRange* one_range = x->at(i);
2379     int low_key = one_range->low_key();
2380     int high_key = one_range->high_key();
2381     BlockBegin* dest = one_range->sux();
2382     if (low_key == high_key) {
2383       __ cmp(lir_cond_equal, value, low_key);
2384       __ branch(lir_cond_equal, T_INT, dest);
2385     } else if (high_key - low_key == 1) {
2386       __ cmp(lir_cond_equal, value, low_key);
2387       __ branch(lir_cond_equal, T_INT, dest);
2388       __ cmp(lir_cond_equal, value, high_key);
2389       __ branch(lir_cond_equal, T_INT, dest);
2390     } else {
2391       LabelObj* L = new LabelObj();
2392       __ cmp(lir_cond_less, value, low_key);
2393       __ branch(lir_cond_less, T_INT, L->label());
2394       __ cmp(lir_cond_lessEqual, value, high_key);
2395       __ branch(lir_cond_lessEqual, T_INT, dest);
2396       __ branch_destination(L->label());
2397     }
2398   }
2399   __ jump(default_sux);
2400 }
2401 
2402 
2403 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2404   SwitchRangeList* res = new SwitchRangeList();
2405   int len = x->length();
2406   if (len > 0) {
2407     BlockBegin* sux = x->sux_at(0);
2408     int key = x->lo_key();
2409     BlockBegin* default_sux = x->default_sux();
2410     SwitchRange* range = new SwitchRange(key, sux);
2411     for (int i = 0; i < len; i++, key++) {
2412       BlockBegin* new_sux = x->sux_at(i);
2413       if (sux == new_sux) {
2414         // still in same range
2415         range->set_high_key(key);
2416       } else {
2417         // skip tests which explicitly dispatch to the default
2418         if (sux != default_sux) {
2419           res->append(range);
2420         }
2421         range = new SwitchRange(key, new_sux);
2422       }
2423       sux = new_sux;
2424     }
2425     if (res->length() == 0 || res->last() != range)  res->append(range);
2426   }
2427   return res;
2428 }
2429 
2430 
2431 // we expect the keys to be sorted by increasing value
2432 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2433   SwitchRangeList* res = new SwitchRangeList();
2434   int len = x->length();
2435   if (len > 0) {
2436     BlockBegin* default_sux = x->default_sux();
2437     int key = x->key_at(0);
2438     BlockBegin* sux = x->sux_at(0);
2439     SwitchRange* range = new SwitchRange(key, sux);
2440     for (int i = 1; i < len; i++) {
2441       int new_key = x->key_at(i);
2442       BlockBegin* new_sux = x->sux_at(i);
2443       if (key+1 == new_key && sux == new_sux) {
2444         // still in same range
2445         range->set_high_key(new_key);
2446       } else {
2447         // skip tests which explicitly dispatch to the default
2448         if (range->sux() != default_sux) {
2449           res->append(range);
2450         }
2451         range = new SwitchRange(new_key, new_sux);
2452       }
2453       key = new_key;
2454       sux = new_sux;
2455     }
2456     if (res->length() == 0 || res->last() != range)  res->append(range);
2457   }
2458   return res;
2459 }
2460 
2461 
2462 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2463   LIRItem tag(x->tag(), this);
2464   tag.load_item();
2465   set_no_result(x);
2466 
2467   if (x->is_safepoint()) {
2468     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2469   }
2470 
2471   // move values into phi locations
2472   move_to_phi(x->state());
2473 
2474   int lo_key = x->lo_key();
2475   int hi_key = x->hi_key();
2476   int len = x->length();
2477   LIR_Opr value = tag.result();
2478   if (UseTableRanges) {
2479     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2480   } else {
2481     for (int i = 0; i < len; i++) {
2482       __ cmp(lir_cond_equal, value, i + lo_key);
2483       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2484     }
2485     __ jump(x->default_sux());
2486   }
2487 }
2488 
2489 
2490 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2491   LIRItem tag(x->tag(), this);
2492   tag.load_item();
2493   set_no_result(x);
2494 
2495   if (x->is_safepoint()) {
2496     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2497   }
2498 
2499   // move values into phi locations
2500   move_to_phi(x->state());
2501 
2502   LIR_Opr value = tag.result();
2503   if (UseTableRanges) {
2504     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2505   } else {
2506     int len = x->length();
2507     for (int i = 0; i < len; i++) {
2508       __ cmp(lir_cond_equal, value, x->key_at(i));
2509       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2510     }
2511     __ jump(x->default_sux());
2512   }
2513 }
2514 
2515 
2516 void LIRGenerator::do_Goto(Goto* x) {
2517   set_no_result(x);
2518 
2519   if (block()->next()->as_OsrEntry()) {
2520     // need to free up storage used for OSR entry point
2521     LIR_Opr osrBuffer = block()->next()->operand();
2522     BasicTypeList signature;
2523     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2524     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2525     __ move(osrBuffer, cc->args()->at(0));
2526     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2527                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2528   }
2529 
2530   if (x->is_safepoint()) {
2531     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2532 
2533     // increment backedge counter if needed
2534     CodeEmitInfo* info = state_for(x, state);
2535     increment_backedge_counter(info, x->profiled_bci());
2536     CodeEmitInfo* safepoint_info = state_for(x, state);
2537     __ safepoint(safepoint_poll_register(), safepoint_info);
2538   }
2539 
2540   // Gotos can be folded Ifs, handle this case.
2541   if (x->should_profile()) {
2542     ciMethod* method = x->profiled_method();
2543     assert(method != NULL, "method should be set if branch is profiled");
2544     ciMethodData* md = method->method_data_or_null();
2545     assert(md != NULL, "Sanity");
2546     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2547     assert(data != NULL, "must have profiling data");
2548     int offset;
2549     if (x->direction() == Goto::taken) {
2550       assert(data->is_BranchData(), "need BranchData for two-way branches");
2551       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2552     } else if (x->direction() == Goto::not_taken) {
2553       assert(data->is_BranchData(), "need BranchData for two-way branches");
2554       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2555     } else {
2556       assert(data->is_JumpData(), "need JumpData for branches");
2557       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2558     }
2559     LIR_Opr md_reg = new_register(T_METADATA);
2560     __ metadata2reg(md->constant_encoding(), md_reg);
2561 
2562     increment_counter(new LIR_Address(md_reg, offset,
2563                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2564   }
2565 
2566   // emit phi-instruction move after safepoint since this simplifies
2567   // describing the state as the safepoint.
2568   move_to_phi(x->state());
2569 
2570   __ jump(x->default_sux());
2571 }
2572 
2573 /**
2574  * Emit profiling code if needed for arguments, parameters, return value types
2575  *
2576  * @param md                    MDO the code will update at runtime
2577  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2578  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2579  * @param profiled_k            current profile
2580  * @param obj                   IR node for the object to be profiled
2581  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2582  *                              Set once we find an update to make and use for next ones.
2583  * @param not_null              true if we know obj cannot be null
2584  * @param signature_at_call_k   signature at call for obj
2585  * @param callee_signature_k    signature of callee for obj
2586  *                              at call and callee signatures differ at method handle call
2587  * @return                      the only klass we know will ever be seen at this profile point
2588  */
2589 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2590                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2591                                     ciKlass* callee_signature_k) {
2592   ciKlass* result = NULL;
2593   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2594   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2595   // known not to be null or null bit already set and already set to
2596   // unknown: nothing we can do to improve profiling
2597   if (!do_null && !do_update) {
2598     return result;
2599   }
2600 
2601   ciKlass* exact_klass = NULL;
2602   Compilation* comp = Compilation::current();
2603   if (do_update) {
2604     // try to find exact type, using CHA if possible, so that loading
2605     // the klass from the object can be avoided
2606     ciType* type = obj->exact_type();
2607     if (type == NULL) {
2608       type = obj->declared_type();
2609       type = comp->cha_exact_type(type);
2610     }
2611     assert(type == NULL || type->is_klass(), "type should be class");
2612     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2613 
2614     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2615   }
2616 
2617   if (!do_null && !do_update) {
2618     return result;
2619   }
2620 
2621   ciKlass* exact_signature_k = NULL;
2622   if (do_update) {
2623     // Is the type from the signature exact (the only one possible)?
2624     exact_signature_k = signature_at_call_k->exact_klass();
2625     if (exact_signature_k == NULL) {
2626       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2627     } else {
2628       result = exact_signature_k;
2629       // Known statically. No need to emit any code: prevent
2630       // LIR_Assembler::emit_profile_type() from emitting useless code
2631       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2632     }
2633     // exact_klass and exact_signature_k can be both non NULL but
2634     // different if exact_klass is loaded after the ciObject for
2635     // exact_signature_k is created.
2636     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2637       // sometimes the type of the signature is better than the best type
2638       // the compiler has
2639       exact_klass = exact_signature_k;
2640     }
2641     if (callee_signature_k != NULL &&
2642         callee_signature_k != signature_at_call_k) {
2643       ciKlass* improved_klass = callee_signature_k->exact_klass();
2644       if (improved_klass == NULL) {
2645         improved_klass = comp->cha_exact_type(callee_signature_k);
2646       }
2647       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2648         exact_klass = exact_signature_k;
2649       }
2650     }
2651     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2652   }
2653 
2654   if (!do_null && !do_update) {
2655     return result;
2656   }
2657 
2658   if (mdp == LIR_OprFact::illegalOpr) {
2659     mdp = new_register(T_METADATA);
2660     __ metadata2reg(md->constant_encoding(), mdp);
2661     if (md_base_offset != 0) {
2662       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2663       mdp = new_pointer_register();
2664       __ leal(LIR_OprFact::address(base_type_address), mdp);
2665     }
2666   }
2667   LIRItem value(obj, this);
2668   value.load_item();
2669   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2670                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2671   return result;
2672 }
2673 
2674 // profile parameters on entry to the root of the compilation
2675 void LIRGenerator::profile_parameters(Base* x) {
2676   if (compilation()->profile_parameters()) {
2677     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2678     ciMethodData* md = scope()->method()->method_data_or_null();
2679     assert(md != NULL, "Sanity");
2680 
2681     if (md->parameters_type_data() != NULL) {
2682       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2683       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2684       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2685       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2686         LIR_Opr src = args->at(i);
2687         assert(!src->is_illegal(), "check");
2688         BasicType t = src->type();
2689         if (t == T_OBJECT || t == T_ARRAY) {
2690           intptr_t profiled_k = parameters->type(j);
2691           Local* local = x->state()->local_at(java_index)->as_Local();
2692           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2693                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2694                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2695           // If the profile is known statically set it once for all and do not emit any code
2696           if (exact != NULL) {
2697             md->set_parameter_type(j, exact);
2698           }
2699           j++;
2700         }
2701         java_index += type2size[t];
2702       }
2703     }
2704   }
2705 }
2706 
2707 void LIRGenerator::do_Base(Base* x) {
2708   __ std_entry(LIR_OprFact::illegalOpr);
2709   // Emit moves from physical registers / stack slots to virtual registers
2710   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2711   IRScope* irScope = compilation()->hir()->top_scope();
2712   int java_index = 0;
2713   for (int i = 0; i < args->length(); i++) {
2714     LIR_Opr src = args->at(i);
2715     assert(!src->is_illegal(), "check");
2716     BasicType t = src->type();
2717 
2718     // Types which are smaller than int are passed as int, so
2719     // correct the type which passed.
2720     switch (t) {
2721     case T_BYTE:
2722     case T_BOOLEAN:
2723     case T_SHORT:
2724     case T_CHAR:
2725       t = T_INT;
2726       break;
2727     }
2728 
2729     LIR_Opr dest = new_register(t);
2730     __ move(src, dest);
2731 
2732     // Assign new location to Local instruction for this local
2733     Local* local = x->state()->local_at(java_index)->as_Local();
2734     assert(local != NULL, "Locals for incoming arguments must have been created");
2735 #ifndef __SOFTFP__
2736     // The java calling convention passes double as long and float as int.
2737     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2738 #endif // __SOFTFP__
2739     local->set_operand(dest);
2740     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2741     java_index += type2size[t];
2742   }
2743 
2744   if (compilation()->env()->dtrace_method_probes()) {
2745     BasicTypeList signature;
2746     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2747     signature.append(T_METADATA); // Method*
2748     LIR_OprList* args = new LIR_OprList();
2749     args->append(getThreadPointer());
2750     LIR_Opr meth = new_register(T_METADATA);
2751     __ metadata2reg(method()->constant_encoding(), meth);
2752     args->append(meth);
2753     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2754   }
2755 
2756   if (method()->is_synchronized()) {
2757     LIR_Opr obj;
2758     if (method()->is_static()) {
2759       obj = new_register(T_OBJECT);
2760       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2761     } else {
2762       Local* receiver = x->state()->local_at(0)->as_Local();
2763       assert(receiver != NULL, "must already exist");
2764       obj = receiver->operand();
2765     }
2766     assert(obj->is_valid(), "must be valid");
2767 
2768     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2769       LIR_Opr lock = new_register(T_INT);
2770       __ load_stack_address_monitor(0, lock);
2771 
2772       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2773       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2774 
2775       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2776       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2777     }
2778   }
2779   if (compilation()->age_code()) {
2780     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2781     decrement_age(info);
2782   }
2783   // increment invocation counters if needed
2784   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2785     profile_parameters(x);
2786     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2787     increment_invocation_counter(info);
2788   }
2789 
2790   // all blocks with a successor must end with an unconditional jump
2791   // to the successor even if they are consecutive
2792   __ jump(x->default_sux());
2793 }
2794 
2795 
2796 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2797   // construct our frame and model the production of incoming pointer
2798   // to the OSR buffer.
2799   __ osr_entry(LIR_Assembler::osrBufferPointer());
2800   LIR_Opr result = rlock_result(x);
2801   __ move(LIR_Assembler::osrBufferPointer(), result);
2802 }
2803 
2804 
2805 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2806   assert(args->length() == arg_list->length(),
2807          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
2808   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2809     LIRItem* param = args->at(i);
2810     LIR_Opr loc = arg_list->at(i);
2811     if (loc->is_register()) {
2812       param->load_item_force(loc);
2813     } else {
2814       LIR_Address* addr = loc->as_address_ptr();
2815       param->load_for_store(addr->type());
2816       if (addr->type() == T_OBJECT) {
2817         __ move_wide(param->result(), addr);
2818       } else
2819         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2820           __ unaligned_move(param->result(), addr);
2821         } else {
2822           __ move(param->result(), addr);
2823         }
2824     }
2825   }
2826 
2827   if (x->has_receiver()) {
2828     LIRItem* receiver = args->at(0);
2829     LIR_Opr loc = arg_list->at(0);
2830     if (loc->is_register()) {
2831       receiver->load_item_force(loc);
2832     } else {
2833       assert(loc->is_address(), "just checking");
2834       receiver->load_for_store(T_OBJECT);
2835       __ move_wide(receiver->result(), loc->as_address_ptr());
2836     }
2837   }
2838 }
2839 
2840 
2841 // Visits all arguments, returns appropriate items without loading them
2842 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2843   LIRItemList* argument_items = new LIRItemList();
2844   if (x->has_receiver()) {
2845     LIRItem* receiver = new LIRItem(x->receiver(), this);
2846     argument_items->append(receiver);
2847   }
2848   for (int i = 0; i < x->number_of_arguments(); i++) {
2849     LIRItem* param = new LIRItem(x->argument_at(i), this);
2850     argument_items->append(param);
2851   }
2852   return argument_items;
2853 }
2854 
2855 
2856 // The invoke with receiver has following phases:
2857 //   a) traverse and load/lock receiver;
2858 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2859 //   c) push receiver on stack
2860 //   d) load each of the items and push on stack
2861 //   e) unlock receiver
2862 //   f) move receiver into receiver-register %o0
2863 //   g) lock result registers and emit call operation
2864 //
2865 // Before issuing a call, we must spill-save all values on stack
2866 // that are in caller-save register. "spill-save" moves thos registers
2867 // either in a free callee-save register or spills them if no free
2868 // callee save register is available.
2869 //
2870 // The problem is where to invoke spill-save.
2871 // - if invoked between e) and f), we may lock callee save
2872 //   register in "spill-save" that destroys the receiver register
2873 //   before f) is executed
2874 // - if we rearange the f) to be earlier, by loading %o0, it
2875 //   may destroy a value on the stack that is currently in %o0
2876 //   and is waiting to be spilled
2877 // - if we keep the receiver locked while doing spill-save,
2878 //   we cannot spill it as it is spill-locked
2879 //
2880 void LIRGenerator::do_Invoke(Invoke* x) {
2881   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2882 
2883   LIR_OprList* arg_list = cc->args();
2884   LIRItemList* args = invoke_visit_arguments(x);
2885   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2886 
2887   // setup result register
2888   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2889   if (x->type() != voidType) {
2890     result_register = result_register_for(x->type());
2891   }
2892 
2893   CodeEmitInfo* info = state_for(x, x->state());
2894 
2895   invoke_load_arguments(x, args, arg_list);
2896 
2897   if (x->has_receiver()) {
2898     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2899     receiver = args->at(0)->result();
2900   }
2901 
2902   // emit invoke code
2903   bool optimized = x->target_is_loaded() && x->target_is_final();
2904   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2905 
2906   // JSR 292
2907   // Preserve the SP over MethodHandle call sites.
2908   ciMethod* target = x->target();
2909   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2910                                   target->is_method_handle_intrinsic() ||
2911                                   target->is_compiled_lambda_form());
2912   if (is_method_handle_invoke) {
2913     info->set_is_method_handle_invoke(true);
2914     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2915   }
2916 
2917   switch (x->code()) {
2918     case Bytecodes::_invokestatic:
2919       __ call_static(target, result_register,
2920                      SharedRuntime::get_resolve_static_call_stub(),
2921                      arg_list, info);
2922       break;
2923     case Bytecodes::_invokespecial:
2924     case Bytecodes::_invokevirtual:
2925     case Bytecodes::_invokeinterface:
2926       // for final target we still produce an inline cache, in order
2927       // to be able to call mixed mode
2928       if (x->code() == Bytecodes::_invokespecial || optimized) {
2929         __ call_opt_virtual(target, receiver, result_register,
2930                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2931                             arg_list, info);
2932       } else if (x->vtable_index() < 0) {
2933         __ call_icvirtual(target, receiver, result_register,
2934                           SharedRuntime::get_resolve_virtual_call_stub(),
2935                           arg_list, info);
2936       } else {
2937         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2938         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2939         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2940       }
2941       break;
2942     case Bytecodes::_invokedynamic: {
2943       __ call_dynamic(target, receiver, result_register,
2944                       SharedRuntime::get_resolve_static_call_stub(),
2945                       arg_list, info);
2946       break;
2947     }
2948     default:
2949       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
2950       break;
2951   }
2952 
2953   // JSR 292
2954   // Restore the SP after MethodHandle call sites.
2955   if (is_method_handle_invoke) {
2956     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2957   }
2958 
2959   if (x->type()->is_float() || x->type()->is_double()) {
2960     // Force rounding of results from non-strictfp when in strictfp
2961     // scope (or when we don't know the strictness of the callee, to
2962     // be safe.)
2963     if (method()->is_strict()) {
2964       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2965         result_register = round_item(result_register);
2966       }
2967     }
2968   }
2969 
2970   if (result_register->is_valid()) {
2971     LIR_Opr result = rlock_result(x);
2972     __ move(result_register, result);
2973   }
2974 }
2975 
2976 
2977 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2978   assert(x->number_of_arguments() == 1, "wrong type");
2979   LIRItem value       (x->argument_at(0), this);
2980   LIR_Opr reg = rlock_result(x);
2981   value.load_item();
2982   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2983   __ move(tmp, reg);
2984 }
2985 
2986 
2987 
2988 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2989 void LIRGenerator::do_IfOp(IfOp* x) {
2990 #ifdef ASSERT
2991   {
2992     ValueTag xtag = x->x()->type()->tag();
2993     ValueTag ttag = x->tval()->type()->tag();
2994     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2995     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2996     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2997   }
2998 #endif
2999 
3000   LIRItem left(x->x(), this);
3001   LIRItem right(x->y(), this);
3002   left.load_item();
3003   if (can_inline_as_constant(right.value())) {
3004     right.dont_load_item();
3005   } else {
3006     right.load_item();
3007   }
3008 
3009   LIRItem t_val(x->tval(), this);
3010   LIRItem f_val(x->fval(), this);
3011   t_val.dont_load_item();
3012   f_val.dont_load_item();
3013   LIR_Opr reg = rlock_result(x);
3014 
3015   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3016   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3017 }
3018 
3019 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
3020     assert(x->number_of_arguments() == expected_arguments, "wrong type");
3021     LIR_Opr reg = result_register_for(x->type());
3022     __ call_runtime_leaf(routine, getThreadTemp(),
3023                          reg, new LIR_OprList());
3024     LIR_Opr result = rlock_result(x);
3025     __ move(reg, result);
3026 }
3027 
3028 #ifdef TRACE_HAVE_INTRINSICS
3029 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
3030     LIR_Opr thread = getThreadPointer();
3031     LIR_Opr osthread = new_pointer_register();
3032     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
3033     size_t thread_id_size = OSThread::thread_id_size();
3034     if (thread_id_size == (size_t) BytesPerLong) {
3035       LIR_Opr id = new_register(T_LONG);
3036       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
3037       __ convert(Bytecodes::_l2i, id, rlock_result(x));
3038     } else if (thread_id_size == (size_t) BytesPerInt) {
3039       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
3040     } else {
3041       ShouldNotReachHere();
3042     }
3043 }
3044 
3045 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3046     CodeEmitInfo* info = state_for(x);
3047     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3048     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
3049     assert(info != NULL, "must have info");
3050     LIRItem arg(x->argument_at(1), this);
3051     arg.load_item();
3052     LIR_Opr klass = new_pointer_register();
3053     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
3054     LIR_Opr id = new_register(T_LONG);
3055     ByteSize offset = TRACE_ID_OFFSET;
3056     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3057     __ move(trace_id_addr, id);
3058     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3059     __ store(id, trace_id_addr);
3060     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
3061     __ move(id, rlock_result(x));
3062 }
3063 #endif
3064 
3065 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3066   switch (x->id()) {
3067   case vmIntrinsics::_intBitsToFloat      :
3068   case vmIntrinsics::_doubleToRawLongBits :
3069   case vmIntrinsics::_longBitsToDouble    :
3070   case vmIntrinsics::_floatToRawIntBits   : {
3071     do_FPIntrinsics(x);
3072     break;
3073   }
3074 
3075 #ifdef TRACE_HAVE_INTRINSICS
3076   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
3077   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
3078   case vmIntrinsics::_counterTime:
3079     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
3080     break;
3081 #endif
3082 
3083   case vmIntrinsics::_currentTimeMillis:
3084     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
3085     break;
3086 
3087   case vmIntrinsics::_nanoTime:
3088     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
3089     break;
3090 
3091   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3092   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3093   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3094   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3095 
3096   case vmIntrinsics::_dlog:           // fall through
3097   case vmIntrinsics::_dlog10:         // fall through
3098   case vmIntrinsics::_dabs:           // fall through
3099   case vmIntrinsics::_dsqrt:          // fall through
3100   case vmIntrinsics::_dtan:           // fall through
3101   case vmIntrinsics::_dsin :          // fall through
3102   case vmIntrinsics::_dcos :          // fall through
3103   case vmIntrinsics::_dexp :          // fall through
3104   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3105   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3106 
3107   // java.nio.Buffer.checkIndex
3108   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3109 
3110   case vmIntrinsics::_compareAndSwapObject:
3111     do_CompareAndSwap(x, objectType);
3112     break;
3113   case vmIntrinsics::_compareAndSwapInt:
3114     do_CompareAndSwap(x, intType);
3115     break;
3116   case vmIntrinsics::_compareAndSwapLong:
3117     do_CompareAndSwap(x, longType);
3118     break;
3119 
3120   case vmIntrinsics::_loadFence :
3121     if (os::is_MP()) __ membar_acquire();
3122     break;
3123   case vmIntrinsics::_storeFence:
3124     if (os::is_MP()) __ membar_release();
3125     break;
3126   case vmIntrinsics::_fullFence :
3127     if (os::is_MP()) __ membar();
3128     break;
3129 
3130   case vmIntrinsics::_Reference_get:
3131     do_Reference_get(x);
3132     break;
3133 
3134   case vmIntrinsics::_updateCRC32:
3135   case vmIntrinsics::_updateBytesCRC32:
3136   case vmIntrinsics::_updateByteBufferCRC32:
3137     do_update_CRC32(x);
3138     break;
3139 
3140   default: ShouldNotReachHere(); break;
3141   }
3142 }
3143 
3144 void LIRGenerator::profile_arguments(ProfileCall* x) {
3145   if (compilation()->profile_arguments()) {
3146     int bci = x->bci_of_invoke();
3147     ciMethodData* md = x->method()->method_data_or_null();
3148     ciProfileData* data = md->bci_to_data(bci);
3149     if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3150         (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3151       ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3152       int base_offset = md->byte_offset_of_slot(data, extra);
3153       LIR_Opr mdp = LIR_OprFact::illegalOpr;
3154       ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3155 
3156       Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3157       int start = 0;
3158       int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3159       if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3160         // first argument is not profiled at call (method handle invoke)
3161         assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3162         start = 1;
3163       }
3164       ciSignature* callee_signature = x->callee()->signature();
3165       // method handle call to virtual method
3166       bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3167       ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3168 
3169       bool ignored_will_link;
3170       ciSignature* signature_at_call = NULL;
3171       x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3172       ciSignatureStream signature_at_call_stream(signature_at_call);
3173 
3174       // if called through method handle invoke, some arguments may have been popped
3175       for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3176         int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3177         ciKlass* exact = profile_type(md, base_offset, off,
3178                                       args->type(i), x->profiled_arg_at(i+start), mdp,
3179                                       !x->arg_needs_null_check(i+start),
3180                                       signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3181         if (exact != NULL) {
3182           md->set_argument_type(bci, i, exact);
3183         }
3184       }
3185     } else {
3186 #ifdef ASSERT
3187       Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3188       int n = x->nb_profiled_args();
3189       assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3190                                                   (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3191              "only at JSR292 bytecodes");
3192 #endif
3193     }
3194   }
3195 }
3196 
3197 // profile parameters on entry to an inlined method
3198 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3199   if (compilation()->profile_parameters() && x->inlined()) {
3200     ciMethodData* md = x->callee()->method_data_or_null();
3201     if (md != NULL) {
3202       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3203       if (parameters_type_data != NULL) {
3204         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3205         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3206         bool has_receiver = !x->callee()->is_static();
3207         ciSignature* sig = x->callee()->signature();
3208         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3209         int i = 0; // to iterate on the Instructions
3210         Value arg = x->recv();
3211         bool not_null = false;
3212         int bci = x->bci_of_invoke();
3213         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3214         // The first parameter is the receiver so that's what we start
3215         // with if it exists. One exception is method handle call to
3216         // virtual method: the receiver is in the args list
3217         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3218           i = 1;
3219           arg = x->profiled_arg_at(0);
3220           not_null = !x->arg_needs_null_check(0);
3221         }
3222         int k = 0; // to iterate on the profile data
3223         for (;;) {
3224           intptr_t profiled_k = parameters->type(k);
3225           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3226                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3227                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3228           // If the profile is known statically set it once for all and do not emit any code
3229           if (exact != NULL) {
3230             md->set_parameter_type(k, exact);
3231           }
3232           k++;
3233           if (k >= parameters_type_data->number_of_parameters()) {
3234 #ifdef ASSERT
3235             int extra = 0;
3236             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3237                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3238                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3239               extra += 1;
3240             }
3241             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3242 #endif
3243             break;
3244           }
3245           arg = x->profiled_arg_at(i);
3246           not_null = !x->arg_needs_null_check(i);
3247           i++;
3248         }
3249       }
3250     }
3251   }
3252 }
3253 
3254 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3255   // Need recv in a temporary register so it interferes with the other temporaries
3256   LIR_Opr recv = LIR_OprFact::illegalOpr;
3257   LIR_Opr mdo = new_register(T_OBJECT);
3258   // tmp is used to hold the counters on SPARC
3259   LIR_Opr tmp = new_pointer_register();
3260 
3261   if (x->nb_profiled_args() > 0) {
3262     profile_arguments(x);
3263   }
3264 
3265   // profile parameters on inlined method entry including receiver
3266   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3267     profile_parameters_at_call(x);
3268   }
3269 
3270   if (x->recv() != NULL) {
3271     LIRItem value(x->recv(), this);
3272     value.load_item();
3273     recv = new_register(T_OBJECT);
3274     __ move(value.result(), recv);
3275   }
3276   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3277 }
3278 
3279 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3280   int bci = x->bci_of_invoke();
3281   ciMethodData* md = x->method()->method_data_or_null();
3282   ciProfileData* data = md->bci_to_data(bci);
3283   assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3284   ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3285   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3286 
3287   bool ignored_will_link;
3288   ciSignature* signature_at_call = NULL;
3289   x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3290 
3291   // The offset within the MDO of the entry to update may be too large
3292   // to be used in load/store instructions on some platforms. So have
3293   // profile_type() compute the address of the profile in a register.
3294   ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3295                                 ret->type(), x->ret(), mdp,
3296                                 !x->needs_null_check(),
3297                                 signature_at_call->return_type()->as_klass(),
3298                                 x->callee()->signature()->return_type()->as_klass());
3299   if (exact != NULL) {
3300     md->set_return_type(bci, exact);
3301   }
3302 }
3303 
3304 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3305   // We can safely ignore accessors here, since c2 will inline them anyway,
3306   // accessors are also always mature.
3307   if (!x->inlinee()->is_accessor()) {
3308     CodeEmitInfo* info = state_for(x, x->state(), true);
3309     // Notify the runtime very infrequently only to take care of counter overflows
3310     int freq_log = Tier23InlineeNotifyFreqLog;
3311     double scale;
3312     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3313       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3314     }
3315     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3316   }
3317 }
3318 
3319 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3320   int freq_log;
3321   int level = compilation()->env()->comp_level();
3322   if (level == CompLevel_limited_profile) {
3323     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3324   } else if (level == CompLevel_full_profile) {
3325     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3326   } else {
3327     ShouldNotReachHere();
3328   }
3329   // Increment the appropriate invocation/backedge counter and notify the runtime.
3330   double scale;
3331   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3332     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3333   }
3334   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3335 }
3336 
3337 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3338   ciMethod* method = info->scope()->method();
3339   MethodCounters* mc_adr = method->ensure_method_counters();
3340   if (mc_adr != NULL) {
3341     LIR_Opr mc = new_pointer_register();
3342     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3343     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3344     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3345     LIR_Opr result = new_register(T_INT);
3346     __ load(counter, result);
3347     __ sub(result, LIR_OprFact::intConst(1), result);
3348     __ store(result, counter);
3349     // DeoptimizeStub will reexecute from the current state in code info.
3350     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3351                                          Deoptimization::Action_make_not_entrant);
3352     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3353     __ branch(lir_cond_lessEqual, T_INT, deopt);
3354   }
3355 }
3356 
3357 
3358 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3359                                                 ciMethod *method, int frequency,
3360                                                 int bci, bool backedge, bool notify) {
3361   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3362   int level = _compilation->env()->comp_level();
3363   assert(level > CompLevel_simple, "Shouldn't be here");
3364 
3365   int offset = -1;
3366   LIR_Opr counter_holder;
3367   if (level == CompLevel_limited_profile) {
3368     MethodCounters* counters_adr = method->ensure_method_counters();
3369     if (counters_adr == NULL) {
3370       bailout("method counters allocation failed");
3371       return;
3372     }
3373     counter_holder = new_pointer_register();
3374     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3375     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3376                                  MethodCounters::invocation_counter_offset());
3377   } else if (level == CompLevel_full_profile) {
3378     counter_holder = new_register(T_METADATA);
3379     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3380                                  MethodData::invocation_counter_offset());
3381     ciMethodData* md = method->method_data_or_null();
3382     assert(md != NULL, "Sanity");
3383     __ metadata2reg(md->constant_encoding(), counter_holder);
3384   } else {
3385     ShouldNotReachHere();
3386   }
3387   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3388   LIR_Opr result = new_register(T_INT);
3389   __ load(counter, result);
3390   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3391   __ store(result, counter);
3392   if (notify) {
3393     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3394     LIR_Opr meth = new_register(T_METADATA);
3395     __ metadata2reg(method->constant_encoding(), meth);
3396     __ logical_and(result, mask, result);
3397     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3398     // The bci for info can point to cmp for if's we want the if bci
3399     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3400     __ branch(lir_cond_equal, T_INT, overflow);
3401     __ branch_destination(overflow->continuation());
3402   }
3403 }
3404 
3405 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3406   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3407   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3408 
3409   if (x->pass_thread()) {
3410     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3411     args->append(getThreadPointer());
3412   }
3413 
3414   for (int i = 0; i < x->number_of_arguments(); i++) {
3415     Value a = x->argument_at(i);
3416     LIRItem* item = new LIRItem(a, this);
3417     item->load_item();
3418     args->append(item->result());
3419     signature->append(as_BasicType(a->type()));
3420   }
3421 
3422   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3423   if (x->type() == voidType) {
3424     set_no_result(x);
3425   } else {
3426     __ move(result, rlock_result(x));
3427   }
3428 }
3429 
3430 #ifdef ASSERT
3431 void LIRGenerator::do_Assert(Assert *x) {
3432   ValueTag tag = x->x()->type()->tag();
3433   If::Condition cond = x->cond();
3434 
3435   LIRItem xitem(x->x(), this);
3436   LIRItem yitem(x->y(), this);
3437   LIRItem* xin = &xitem;
3438   LIRItem* yin = &yitem;
3439 
3440   assert(tag == intTag, "Only integer assertions are valid!");
3441 
3442   xin->load_item();
3443   yin->dont_load_item();
3444 
3445   set_no_result(x);
3446 
3447   LIR_Opr left = xin->result();
3448   LIR_Opr right = yin->result();
3449 
3450   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3451 }
3452 #endif
3453 
3454 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3455 
3456 
3457   Instruction *a = x->x();
3458   Instruction *b = x->y();
3459   if (!a || StressRangeCheckElimination) {
3460     assert(!b || StressRangeCheckElimination, "B must also be null");
3461 
3462     CodeEmitInfo *info = state_for(x, x->state());
3463     CodeStub* stub = new PredicateFailedStub(info);
3464 
3465     __ jump(stub);
3466   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3467     int a_int = a->type()->as_IntConstant()->value();
3468     int b_int = b->type()->as_IntConstant()->value();
3469 
3470     bool ok = false;
3471 
3472     switch(x->cond()) {
3473       case Instruction::eql: ok = (a_int == b_int); break;
3474       case Instruction::neq: ok = (a_int != b_int); break;
3475       case Instruction::lss: ok = (a_int < b_int); break;
3476       case Instruction::leq: ok = (a_int <= b_int); break;
3477       case Instruction::gtr: ok = (a_int > b_int); break;
3478       case Instruction::geq: ok = (a_int >= b_int); break;
3479       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3480       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3481       default: ShouldNotReachHere();
3482     }
3483 
3484     if (ok) {
3485 
3486       CodeEmitInfo *info = state_for(x, x->state());
3487       CodeStub* stub = new PredicateFailedStub(info);
3488 
3489       __ jump(stub);
3490     }
3491   } else {
3492 
3493     ValueTag tag = x->x()->type()->tag();
3494     If::Condition cond = x->cond();
3495     LIRItem xitem(x->x(), this);
3496     LIRItem yitem(x->y(), this);
3497     LIRItem* xin = &xitem;
3498     LIRItem* yin = &yitem;
3499 
3500     assert(tag == intTag, "Only integer deoptimizations are valid!");
3501 
3502     xin->load_item();
3503     yin->dont_load_item();
3504     set_no_result(x);
3505 
3506     LIR_Opr left = xin->result();
3507     LIR_Opr right = yin->result();
3508 
3509     CodeEmitInfo *info = state_for(x, x->state());
3510     CodeStub* stub = new PredicateFailedStub(info);
3511 
3512     __ cmp(lir_cond(cond), left, right);
3513     __ branch(lir_cond(cond), right->type(), stub);
3514   }
3515 }
3516 
3517 
3518 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3519   LIRItemList args(1);
3520   LIRItem value(arg1, this);
3521   args.append(&value);
3522   BasicTypeList signature;
3523   signature.append(as_BasicType(arg1->type()));
3524 
3525   return call_runtime(&signature, &args, entry, result_type, info);
3526 }
3527 
3528 
3529 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3530   LIRItemList args(2);
3531   LIRItem value1(arg1, this);
3532   LIRItem value2(arg2, this);
3533   args.append(&value1);
3534   args.append(&value2);
3535   BasicTypeList signature;
3536   signature.append(as_BasicType(arg1->type()));
3537   signature.append(as_BasicType(arg2->type()));
3538 
3539   return call_runtime(&signature, &args, entry, result_type, info);
3540 }
3541 
3542 
3543 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3544                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3545   // get a result register
3546   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3547   LIR_Opr result = LIR_OprFact::illegalOpr;
3548   if (result_type->tag() != voidTag) {
3549     result = new_register(result_type);
3550     phys_reg = result_register_for(result_type);
3551   }
3552 
3553   // move the arguments into the correct location
3554   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3555   assert(cc->length() == args->length(), "argument mismatch");
3556   for (int i = 0; i < args->length(); i++) {
3557     LIR_Opr arg = args->at(i);
3558     LIR_Opr loc = cc->at(i);
3559     if (loc->is_register()) {
3560       __ move(arg, loc);
3561     } else {
3562       LIR_Address* addr = loc->as_address_ptr();
3563 //           if (!can_store_as_constant(arg)) {
3564 //             LIR_Opr tmp = new_register(arg->type());
3565 //             __ move(arg, tmp);
3566 //             arg = tmp;
3567 //           }
3568       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3569         __ unaligned_move(arg, addr);
3570       } else {
3571         __ move(arg, addr);
3572       }
3573     }
3574   }
3575 
3576   if (info) {
3577     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3578   } else {
3579     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3580   }
3581   if (result->is_valid()) {
3582     __ move(phys_reg, result);
3583   }
3584   return result;
3585 }
3586 
3587 
3588 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3589                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3590   // get a result register
3591   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3592   LIR_Opr result = LIR_OprFact::illegalOpr;
3593   if (result_type->tag() != voidTag) {
3594     result = new_register(result_type);
3595     phys_reg = result_register_for(result_type);
3596   }
3597 
3598   // move the arguments into the correct location
3599   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3600 
3601   assert(cc->length() == args->length(), "argument mismatch");
3602   for (int i = 0; i < args->length(); i++) {
3603     LIRItem* arg = args->at(i);
3604     LIR_Opr loc = cc->at(i);
3605     if (loc->is_register()) {
3606       arg->load_item_force(loc);
3607     } else {
3608       LIR_Address* addr = loc->as_address_ptr();
3609       arg->load_for_store(addr->type());
3610       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3611         __ unaligned_move(arg->result(), addr);
3612       } else {
3613         __ move(arg->result(), addr);
3614       }
3615     }
3616   }
3617 
3618   if (info) {
3619     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3620   } else {
3621     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3622   }
3623   if (result->is_valid()) {
3624     __ move(phys_reg, result);
3625   }
3626   return result;
3627 }
3628 
3629 void LIRGenerator::do_MemBar(MemBar* x) {
3630   if (os::is_MP()) {
3631     LIR_Code code = x->code();
3632     switch(code) {
3633       case lir_membar_acquire   : __ membar_acquire(); break;
3634       case lir_membar_release   : __ membar_release(); break;
3635       case lir_membar           : __ membar(); break;
3636       case lir_membar_loadload  : __ membar_loadload(); break;
3637       case lir_membar_storestore: __ membar_storestore(); break;
3638       case lir_membar_loadstore : __ membar_loadstore(); break;
3639       case lir_membar_storeload : __ membar_storeload(); break;
3640       default                   : ShouldNotReachHere(); break;
3641     }
3642   }
3643 }