1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/castnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/connode.hpp"
  32 #include "opto/loopnode.hpp"
  33 #include "opto/machnode.hpp"
  34 #include "opto/matcher.hpp"
  35 #include "opto/node.hpp"
  36 #include "opto/opcodes.hpp"
  37 #include "opto/regmask.hpp"
  38 #include "opto/type.hpp"
  39 #include "utilities/copy.hpp"
  40 
  41 class RegMask;
  42 // #include "phase.hpp"
  43 class PhaseTransform;
  44 class PhaseGVN;
  45 
  46 // Arena we are currently building Nodes in
  47 const uint Node::NotAMachineReg = 0xffff0000;
  48 
  49 #ifndef PRODUCT
  50 extern int nodes_created;
  51 #endif
  52 #ifdef __clang__
  53 #pragma clang diagnostic push
  54 #pragma GCC diagnostic ignored "-Wuninitialized"
  55 #endif
  56 
  57 #ifdef ASSERT
  58 
  59 //-------------------------- construct_node------------------------------------
  60 // Set a breakpoint here to identify where a particular node index is built.
  61 void Node::verify_construction() {
  62   _debug_orig = NULL;
  63   int old_debug_idx = Compile::debug_idx();
  64   int new_debug_idx = old_debug_idx+1;
  65   if (new_debug_idx > 0) {
  66     // Arrange that the lowest five decimal digits of _debug_idx
  67     // will repeat those of _idx. In case this is somehow pathological,
  68     // we continue to assign negative numbers (!) consecutively.
  69     const int mod = 100000;
  70     int bump = (int)(_idx - new_debug_idx) % mod;
  71     if (bump < 0)  bump += mod;
  72     assert(bump >= 0 && bump < mod, "");
  73     new_debug_idx += bump;
  74   }
  75   Compile::set_debug_idx(new_debug_idx);
  76   set_debug_idx( new_debug_idx );
  77   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  78   assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
  79   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  80     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  81     BREAKPOINT;
  82   }
  83 #if OPTO_DU_ITERATOR_ASSERT
  84   _last_del = NULL;
  85   _del_tick = 0;
  86 #endif
  87   _hash_lock = 0;
  88 }
  89 
  90 
  91 // #ifdef ASSERT ...
  92 
  93 #if OPTO_DU_ITERATOR_ASSERT
  94 void DUIterator_Common::sample(const Node* node) {
  95   _vdui     = VerifyDUIterators;
  96   _node     = node;
  97   _outcnt   = node->_outcnt;
  98   _del_tick = node->_del_tick;
  99   _last     = NULL;
 100 }
 101 
 102 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
 103   assert(_node     == node, "consistent iterator source");
 104   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
 105 }
 106 
 107 void DUIterator_Common::verify_resync() {
 108   // Ensure that the loop body has just deleted the last guy produced.
 109   const Node* node = _node;
 110   // Ensure that at least one copy of the last-seen edge was deleted.
 111   // Note:  It is OK to delete multiple copies of the last-seen edge.
 112   // Unfortunately, we have no way to verify that all the deletions delete
 113   // that same edge.  On this point we must use the Honor System.
 114   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 115   assert(node->_last_del == _last, "must have deleted the edge just produced");
 116   // We liked this deletion, so accept the resulting outcnt and tick.
 117   _outcnt   = node->_outcnt;
 118   _del_tick = node->_del_tick;
 119 }
 120 
 121 void DUIterator_Common::reset(const DUIterator_Common& that) {
 122   if (this == &that)  return;  // ignore assignment to self
 123   if (!_vdui) {
 124     // We need to initialize everything, overwriting garbage values.
 125     _last = that._last;
 126     _vdui = that._vdui;
 127   }
 128   // Note:  It is legal (though odd) for an iterator over some node x
 129   // to be reassigned to iterate over another node y.  Some doubly-nested
 130   // progress loops depend on being able to do this.
 131   const Node* node = that._node;
 132   // Re-initialize everything, except _last.
 133   _node     = node;
 134   _outcnt   = node->_outcnt;
 135   _del_tick = node->_del_tick;
 136 }
 137 
 138 void DUIterator::sample(const Node* node) {
 139   DUIterator_Common::sample(node);      // Initialize the assertion data.
 140   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 141 }
 142 
 143 void DUIterator::verify(const Node* node, bool at_end_ok) {
 144   DUIterator_Common::verify(node, at_end_ok);
 145   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 146 }
 147 
 148 void DUIterator::verify_increment() {
 149   if (_refresh_tick & 1) {
 150     // We have refreshed the index during this loop.
 151     // Fix up _idx to meet asserts.
 152     if (_idx > _outcnt)  _idx = _outcnt;
 153   }
 154   verify(_node, true);
 155 }
 156 
 157 void DUIterator::verify_resync() {
 158   // Note:  We do not assert on _outcnt, because insertions are OK here.
 159   DUIterator_Common::verify_resync();
 160   // Make sure we are still in sync, possibly with no more out-edges:
 161   verify(_node, true);
 162 }
 163 
 164 void DUIterator::reset(const DUIterator& that) {
 165   if (this == &that)  return;  // self assignment is always a no-op
 166   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 167   assert(that._idx          == 0, "assign only the result of Node::outs()");
 168   assert(_idx               == that._idx, "already assigned _idx");
 169   if (!_vdui) {
 170     // We need to initialize everything, overwriting garbage values.
 171     sample(that._node);
 172   } else {
 173     DUIterator_Common::reset(that);
 174     if (_refresh_tick & 1) {
 175       _refresh_tick++;                  // Clear the "was refreshed" flag.
 176     }
 177     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 178   }
 179 }
 180 
 181 void DUIterator::refresh() {
 182   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 183   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 184 }
 185 
 186 void DUIterator::verify_finish() {
 187   // If the loop has killed the node, do not require it to re-run.
 188   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 189   // If this assert triggers, it means that a loop used refresh_out_pos
 190   // to re-synch an iteration index, but the loop did not correctly
 191   // re-run itself, using a "while (progress)" construct.
 192   // This iterator enforces the rule that you must keep trying the loop
 193   // until it "runs clean" without any need for refreshing.
 194   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 195 }
 196 
 197 
 198 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 199   DUIterator_Common::verify(node, at_end_ok);
 200   Node** out    = node->_out;
 201   uint   cnt    = node->_outcnt;
 202   assert(cnt == _outcnt, "no insertions allowed");
 203   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 204   // This last check is carefully designed to work for NO_OUT_ARRAY.
 205 }
 206 
 207 void DUIterator_Fast::verify_limit() {
 208   const Node* node = _node;
 209   verify(node, true);
 210   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 211 }
 212 
 213 void DUIterator_Fast::verify_resync() {
 214   const Node* node = _node;
 215   if (_outp == node->_out + _outcnt) {
 216     // Note that the limit imax, not the pointer i, gets updated with the
 217     // exact count of deletions.  (For the pointer it's always "--i".)
 218     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 219     // This is a limit pointer, with a name like "imax".
 220     // Fudge the _last field so that the common assert will be happy.
 221     _last = (Node*) node->_last_del;
 222     DUIterator_Common::verify_resync();
 223   } else {
 224     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 225     // A normal internal pointer.
 226     DUIterator_Common::verify_resync();
 227     // Make sure we are still in sync, possibly with no more out-edges:
 228     verify(node, true);
 229   }
 230 }
 231 
 232 void DUIterator_Fast::verify_relimit(uint n) {
 233   const Node* node = _node;
 234   assert((int)n > 0, "use imax -= n only with a positive count");
 235   // This must be a limit pointer, with a name like "imax".
 236   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 237   // The reported number of deletions must match what the node saw.
 238   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 239   // Fudge the _last field so that the common assert will be happy.
 240   _last = (Node*) node->_last_del;
 241   DUIterator_Common::verify_resync();
 242 }
 243 
 244 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 245   assert(_outp              == that._outp, "already assigned _outp");
 246   DUIterator_Common::reset(that);
 247 }
 248 
 249 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 250   // at_end_ok means the _outp is allowed to underflow by 1
 251   _outp += at_end_ok;
 252   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 253   _outp -= at_end_ok;
 254   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 255 }
 256 
 257 void DUIterator_Last::verify_limit() {
 258   // Do not require the limit address to be resynched.
 259   //verify(node, true);
 260   assert(_outp == _node->_out, "limit still correct");
 261 }
 262 
 263 void DUIterator_Last::verify_step(uint num_edges) {
 264   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 265   _outcnt   -= num_edges;
 266   _del_tick += num_edges;
 267   // Make sure we are still in sync, possibly with no more out-edges:
 268   const Node* node = _node;
 269   verify(node, true);
 270   assert(node->_last_del == _last, "must have deleted the edge just produced");
 271 }
 272 
 273 #endif //OPTO_DU_ITERATOR_ASSERT
 274 
 275 
 276 #endif //ASSERT
 277 
 278 
 279 // This constant used to initialize _out may be any non-null value.
 280 // The value NULL is reserved for the top node only.
 281 #define NO_OUT_ARRAY ((Node**)-1)
 282 
 283 // Out-of-line code from node constructors.
 284 // Executed only when extra debug info. is being passed around.
 285 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 286   C->set_node_notes_at(idx, nn);
 287 }
 288 
 289 // Shared initialization code.
 290 inline int Node::Init(int req) {
 291   Compile* C = Compile::current();
 292   int idx = C->next_unique();
 293 
 294   // Allocate memory for the necessary number of edges.
 295   if (req > 0) {
 296     // Allocate space for _in array to have double alignment.
 297     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
 298   }
 299   // If there are default notes floating around, capture them:
 300   Node_Notes* nn = C->default_node_notes();
 301   if (nn != NULL)  init_node_notes(C, idx, nn);
 302 
 303   // Note:  At this point, C is dead,
 304   // and we begin to initialize the new Node.
 305 
 306   _cnt = _max = req;
 307   _outcnt = _outmax = 0;
 308   _class_id = Class_Node;
 309   _flags = 0;
 310   _out = NO_OUT_ARRAY;
 311   return idx;
 312 }
 313 
 314 //------------------------------Node-------------------------------------------
 315 // Create a Node, with a given number of required edges.
 316 Node::Node(uint req)
 317   : _idx(Init(req))
 318 #ifdef ASSERT
 319   , _parse_idx(_idx)
 320 #endif
 321 {
 322   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 323   debug_only( verify_construction() );
 324   NOT_PRODUCT(nodes_created++);
 325   if (req == 0) {
 326     _in = NULL;
 327   } else {
 328     Node** to = _in;
 329     for(uint i = 0; i < req; i++) {
 330       to[i] = NULL;
 331     }
 332   }
 333 }
 334 
 335 //------------------------------Node-------------------------------------------
 336 Node::Node(Node *n0)
 337   : _idx(Init(1))
 338 #ifdef ASSERT
 339   , _parse_idx(_idx)
 340 #endif
 341 {
 342   debug_only( verify_construction() );
 343   NOT_PRODUCT(nodes_created++);
 344   assert( is_not_dead(n0), "can not use dead node");
 345   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 346 }
 347 
 348 //------------------------------Node-------------------------------------------
 349 Node::Node(Node *n0, Node *n1)
 350   : _idx(Init(2))
 351 #ifdef ASSERT
 352   , _parse_idx(_idx)
 353 #endif
 354 {
 355   debug_only( verify_construction() );
 356   NOT_PRODUCT(nodes_created++);
 357   assert( is_not_dead(n0), "can not use dead node");
 358   assert( is_not_dead(n1), "can not use dead node");
 359   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 360   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 361 }
 362 
 363 //------------------------------Node-------------------------------------------
 364 Node::Node(Node *n0, Node *n1, Node *n2)
 365   : _idx(Init(3))
 366 #ifdef ASSERT
 367   , _parse_idx(_idx)
 368 #endif
 369 {
 370   debug_only( verify_construction() );
 371   NOT_PRODUCT(nodes_created++);
 372   assert( is_not_dead(n0), "can not use dead node");
 373   assert( is_not_dead(n1), "can not use dead node");
 374   assert( is_not_dead(n2), "can not use dead node");
 375   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 376   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 377   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 378 }
 379 
 380 //------------------------------Node-------------------------------------------
 381 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 382   : _idx(Init(4))
 383 #ifdef ASSERT
 384   , _parse_idx(_idx)
 385 #endif
 386 {
 387   debug_only( verify_construction() );
 388   NOT_PRODUCT(nodes_created++);
 389   assert( is_not_dead(n0), "can not use dead node");
 390   assert( is_not_dead(n1), "can not use dead node");
 391   assert( is_not_dead(n2), "can not use dead node");
 392   assert( is_not_dead(n3), "can not use dead node");
 393   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 394   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 395   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 396   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 397 }
 398 
 399 //------------------------------Node-------------------------------------------
 400 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 401   : _idx(Init(5))
 402 #ifdef ASSERT
 403   , _parse_idx(_idx)
 404 #endif
 405 {
 406   debug_only( verify_construction() );
 407   NOT_PRODUCT(nodes_created++);
 408   assert( is_not_dead(n0), "can not use dead node");
 409   assert( is_not_dead(n1), "can not use dead node");
 410   assert( is_not_dead(n2), "can not use dead node");
 411   assert( is_not_dead(n3), "can not use dead node");
 412   assert( is_not_dead(n4), "can not use dead node");
 413   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 414   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 415   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 416   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 417   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 418 }
 419 
 420 //------------------------------Node-------------------------------------------
 421 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 422                      Node *n4, Node *n5)
 423   : _idx(Init(6))
 424 #ifdef ASSERT
 425   , _parse_idx(_idx)
 426 #endif
 427 {
 428   debug_only( verify_construction() );
 429   NOT_PRODUCT(nodes_created++);
 430   assert( is_not_dead(n0), "can not use dead node");
 431   assert( is_not_dead(n1), "can not use dead node");
 432   assert( is_not_dead(n2), "can not use dead node");
 433   assert( is_not_dead(n3), "can not use dead node");
 434   assert( is_not_dead(n4), "can not use dead node");
 435   assert( is_not_dead(n5), "can not use dead node");
 436   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 437   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 438   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 439   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 440   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 441   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 442 }
 443 
 444 //------------------------------Node-------------------------------------------
 445 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 446                      Node *n4, Node *n5, Node *n6)
 447   : _idx(Init(7))
 448 #ifdef ASSERT
 449   , _parse_idx(_idx)
 450 #endif
 451 {
 452   debug_only( verify_construction() );
 453   NOT_PRODUCT(nodes_created++);
 454   assert( is_not_dead(n0), "can not use dead node");
 455   assert( is_not_dead(n1), "can not use dead node");
 456   assert( is_not_dead(n2), "can not use dead node");
 457   assert( is_not_dead(n3), "can not use dead node");
 458   assert( is_not_dead(n4), "can not use dead node");
 459   assert( is_not_dead(n5), "can not use dead node");
 460   assert( is_not_dead(n6), "can not use dead node");
 461   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 462   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 463   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 464   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 465   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 466   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 467   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 468 }
 469 
 470 #ifdef __clang__
 471 #pragma clang diagnostic pop
 472 #endif
 473 
 474 
 475 //------------------------------clone------------------------------------------
 476 // Clone a Node.
 477 Node *Node::clone() const {
 478   Compile* C = Compile::current();
 479   uint s = size_of();           // Size of inherited Node
 480   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 481   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 482   // Set the new input pointer array
 483   n->_in = (Node**)(((char*)n)+s);
 484   // Cannot share the old output pointer array, so kill it
 485   n->_out = NO_OUT_ARRAY;
 486   // And reset the counters to 0
 487   n->_outcnt = 0;
 488   n->_outmax = 0;
 489   // Unlock this guy, since he is not in any hash table.
 490   debug_only(n->_hash_lock = 0);
 491   // Walk the old node's input list to duplicate its edges
 492   uint i;
 493   for( i = 0; i < len(); i++ ) {
 494     Node *x = in(i);
 495     n->_in[i] = x;
 496     if (x != NULL) x->add_out(n);
 497   }
 498   if (is_macro())
 499     C->add_macro_node(n);
 500   if (is_expensive())
 501     C->add_expensive_node(n);
 502   // If the cloned node is a range check dependent CastII, add it to the list.
 503   CastIINode* cast = n->isa_CastII();
 504   if (cast != NULL && cast->has_range_check()) {
 505     C->add_range_check_cast(cast);
 506   }
 507 
 508   n->set_idx(C->next_unique()); // Get new unique index as well
 509   debug_only( n->verify_construction() );
 510   NOT_PRODUCT(nodes_created++);
 511   // Do not patch over the debug_idx of a clone, because it makes it
 512   // impossible to break on the clone's moment of creation.
 513   //debug_only( n->set_debug_idx( debug_idx() ) );
 514 
 515   C->copy_node_notes_to(n, (Node*) this);
 516 
 517   // MachNode clone
 518   uint nopnds;
 519   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 520     MachNode *mach  = n->as_Mach();
 521     MachNode *mthis = this->as_Mach();
 522     // Get address of _opnd_array.
 523     // It should be the same offset since it is the clone of this node.
 524     MachOper **from = mthis->_opnds;
 525     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 526                     pointer_delta((const void*)from,
 527                                   (const void*)(&mthis->_opnds), 1));
 528     mach->_opnds = to;
 529     for ( uint i = 0; i < nopnds; ++i ) {
 530       to[i] = from[i]->clone();
 531     }
 532   }
 533   // cloning CallNode may need to clone JVMState
 534   if (n->is_Call()) {
 535     n->as_Call()->clone_jvms(C);
 536   }
 537   if (n->is_SafePoint()) {
 538     n->as_SafePoint()->clone_replaced_nodes();
 539   }
 540   return n;                     // Return the clone
 541 }
 542 
 543 //---------------------------setup_is_top--------------------------------------
 544 // Call this when changing the top node, to reassert the invariants
 545 // required by Node::is_top.  See Compile::set_cached_top_node.
 546 void Node::setup_is_top() {
 547   if (this == (Node*)Compile::current()->top()) {
 548     // This node has just become top.  Kill its out array.
 549     _outcnt = _outmax = 0;
 550     _out = NULL;                           // marker value for top
 551     assert(is_top(), "must be top");
 552   } else {
 553     if (_out == NULL)  _out = NO_OUT_ARRAY;
 554     assert(!is_top(), "must not be top");
 555   }
 556 }
 557 
 558 
 559 //------------------------------~Node------------------------------------------
 560 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 561 void Node::destruct() {
 562   // Eagerly reclaim unique Node numberings
 563   Compile* compile = Compile::current();
 564   if ((uint)_idx+1 == compile->unique()) {
 565     compile->set_unique(compile->unique()-1);
 566   }
 567   // Clear debug info:
 568   Node_Notes* nn = compile->node_notes_at(_idx);
 569   if (nn != NULL)  nn->clear();
 570   // Walk the input array, freeing the corresponding output edges
 571   _cnt = _max;  // forget req/prec distinction
 572   uint i;
 573   for( i = 0; i < _max; i++ ) {
 574     set_req(i, NULL);
 575     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 576   }
 577   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 578   // See if the input array was allocated just prior to the object
 579   int edge_size = _max*sizeof(void*);
 580   int out_edge_size = _outmax*sizeof(void*);
 581   char *edge_end = ((char*)_in) + edge_size;
 582   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 583   int node_size = size_of();
 584 
 585   // Free the output edge array
 586   if (out_edge_size > 0) {
 587     compile->node_arena()->Afree(out_array, out_edge_size);
 588   }
 589 
 590   // Free the input edge array and the node itself
 591   if( edge_end == (char*)this ) {
 592     // It was; free the input array and object all in one hit
 593 #ifndef ASSERT
 594     compile->node_arena()->Afree(_in,edge_size+node_size);
 595 #endif
 596   } else {
 597     // Free just the input array
 598     compile->node_arena()->Afree(_in,edge_size);
 599 
 600     // Free just the object
 601 #ifndef ASSERT
 602     compile->node_arena()->Afree(this,node_size);
 603 #endif
 604   }
 605   if (is_macro()) {
 606     compile->remove_macro_node(this);
 607   }
 608   if (is_expensive()) {
 609     compile->remove_expensive_node(this);
 610   }
 611   CastIINode* cast = isa_CastII();
 612   if (cast != NULL && cast->has_range_check()) {
 613     compile->remove_range_check_cast(cast);
 614   }
 615 
 616   if (is_SafePoint()) {
 617     as_SafePoint()->delete_replaced_nodes();
 618   }
 619 #ifdef ASSERT
 620   // We will not actually delete the storage, but we'll make the node unusable.
 621   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 622   _in = _out = (Node**) badAddress;
 623   _max = _cnt = _outmax = _outcnt = 0;
 624   compile->remove_modified_node(this);
 625 #endif
 626 }
 627 
 628 //------------------------------grow-------------------------------------------
 629 // Grow the input array, making space for more edges
 630 void Node::grow( uint len ) {
 631   Arena* arena = Compile::current()->node_arena();
 632   uint new_max = _max;
 633   if( new_max == 0 ) {
 634     _max = 4;
 635     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 636     Node** to = _in;
 637     to[0] = NULL;
 638     to[1] = NULL;
 639     to[2] = NULL;
 640     to[3] = NULL;
 641     return;
 642   }
 643   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 644   // Trimming to limit allows a uint8 to handle up to 255 edges.
 645   // Previously I was using only powers-of-2 which peaked at 128 edges.
 646   //if( new_max >= limit ) new_max = limit-1;
 647   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 648   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 649   _max = new_max;               // Record new max length
 650   // This assertion makes sure that Node::_max is wide enough to
 651   // represent the numerical value of new_max.
 652   assert(_max == new_max && _max > len, "int width of _max is too small");
 653 }
 654 
 655 //-----------------------------out_grow----------------------------------------
 656 // Grow the input array, making space for more edges
 657 void Node::out_grow( uint len ) {
 658   assert(!is_top(), "cannot grow a top node's out array");
 659   Arena* arena = Compile::current()->node_arena();
 660   uint new_max = _outmax;
 661   if( new_max == 0 ) {
 662     _outmax = 4;
 663     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 664     return;
 665   }
 666   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 667   // Trimming to limit allows a uint8 to handle up to 255 edges.
 668   // Previously I was using only powers-of-2 which peaked at 128 edges.
 669   //if( new_max >= limit ) new_max = limit-1;
 670   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 671   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 672   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 673   _outmax = new_max;               // Record new max length
 674   // This assertion makes sure that Node::_max is wide enough to
 675   // represent the numerical value of new_max.
 676   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 677 }
 678 
 679 #ifdef ASSERT
 680 //------------------------------is_dead----------------------------------------
 681 bool Node::is_dead() const {
 682   // Mach and pinch point nodes may look like dead.
 683   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 684     return false;
 685   for( uint i = 0; i < _max; i++ )
 686     if( _in[i] != NULL )
 687       return false;
 688   dump();
 689   return true;
 690 }
 691 #endif
 692 
 693 
 694 //------------------------------is_unreachable---------------------------------
 695 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 696   assert(!is_Mach(), "doesn't work with MachNodes");
 697   return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
 698 }
 699 
 700 //------------------------------add_req----------------------------------------
 701 // Add a new required input at the end
 702 void Node::add_req( Node *n ) {
 703   assert( is_not_dead(n), "can not use dead node");
 704 
 705   // Look to see if I can move precedence down one without reallocating
 706   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 707     grow( _max+1 );
 708 
 709   // Find a precedence edge to move
 710   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 711     uint i;
 712     for( i=_cnt; i<_max; i++ )
 713       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 714         break;                  // There must be one, since we grew the array
 715     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 716   }
 717   _in[_cnt++] = n;            // Stuff over old prec edge
 718   if (n != NULL) n->add_out((Node *)this);
 719 }
 720 
 721 //---------------------------add_req_batch-------------------------------------
 722 // Add a new required input at the end
 723 void Node::add_req_batch( Node *n, uint m ) {
 724   assert( is_not_dead(n), "can not use dead node");
 725   // check various edge cases
 726   if ((int)m <= 1) {
 727     assert((int)m >= 0, "oob");
 728     if (m != 0)  add_req(n);
 729     return;
 730   }
 731 
 732   // Look to see if I can move precedence down one without reallocating
 733   if( (_cnt+m) > _max || _in[_max-m] )
 734     grow( _max+m );
 735 
 736   // Find a precedence edge to move
 737   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 738     uint i;
 739     for( i=_cnt; i<_max; i++ )
 740       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 741         break;                  // There must be one, since we grew the array
 742     // Slide all the precs over by m positions (assume #prec << m).
 743     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 744   }
 745 
 746   // Stuff over the old prec edges
 747   for(uint i=0; i<m; i++ ) {
 748     _in[_cnt++] = n;
 749   }
 750 
 751   // Insert multiple out edges on the node.
 752   if (n != NULL && !n->is_top()) {
 753     for(uint i=0; i<m; i++ ) {
 754       n->add_out((Node *)this);
 755     }
 756   }
 757 }
 758 
 759 //------------------------------del_req----------------------------------------
 760 // Delete the required edge and compact the edge array
 761 void Node::del_req( uint idx ) {
 762   assert( idx < _cnt, "oob");
 763   assert( !VerifyHashTableKeys || _hash_lock == 0,
 764           "remove node from hash table before modifying it");
 765   // First remove corresponding def-use edge
 766   Node *n = in(idx);
 767   if (n != NULL) n->del_out((Node *)this);
 768   _in[idx] = in(--_cnt); // Compact the array
 769   // Avoid spec violation: Gap in prec edges.
 770   close_prec_gap_at(_cnt);
 771   Compile::current()->record_modified_node(this);
 772 }
 773 
 774 //------------------------------del_req_ordered--------------------------------
 775 // Delete the required edge and compact the edge array with preserved order
 776 void Node::del_req_ordered( uint idx ) {
 777   assert( idx < _cnt, "oob");
 778   assert( !VerifyHashTableKeys || _hash_lock == 0,
 779           "remove node from hash table before modifying it");
 780   // First remove corresponding def-use edge
 781   Node *n = in(idx);
 782   if (n != NULL) n->del_out((Node *)this);
 783   if (idx < --_cnt) {    // Not last edge ?
 784     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
 785   }
 786   // Avoid spec violation: Gap in prec edges.
 787   close_prec_gap_at(_cnt);
 788   Compile::current()->record_modified_node(this);
 789 }
 790 
 791 //------------------------------ins_req----------------------------------------
 792 // Insert a new required input at the end
 793 void Node::ins_req( uint idx, Node *n ) {
 794   assert( is_not_dead(n), "can not use dead node");
 795   add_req(NULL);                // Make space
 796   assert( idx < _max, "Must have allocated enough space");
 797   // Slide over
 798   if(_cnt-idx-1 > 0) {
 799     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 800   }
 801   _in[idx] = n;                            // Stuff over old required edge
 802   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 803 }
 804 
 805 //-----------------------------find_edge---------------------------------------
 806 int Node::find_edge(Node* n) {
 807   for (uint i = 0; i < len(); i++) {
 808     if (_in[i] == n)  return i;
 809   }
 810   return -1;
 811 }
 812 
 813 //----------------------------replace_edge-------------------------------------
 814 int Node::replace_edge(Node* old, Node* neww) {
 815   if (old == neww)  return 0;  // nothing to do
 816   uint nrep = 0;
 817   for (uint i = 0; i < len(); i++) {
 818     if (in(i) == old) {
 819       if (i < req()) {
 820         set_req(i, neww);
 821       } else {
 822         assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx);
 823         set_prec(i, neww);
 824       }
 825       nrep++;
 826     }
 827   }
 828   return nrep;
 829 }
 830 
 831 /**
 832  * Replace input edges in the range pointing to 'old' node.
 833  */
 834 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
 835   if (old == neww)  return 0;  // nothing to do
 836   uint nrep = 0;
 837   for (int i = start; i < end; i++) {
 838     if (in(i) == old) {
 839       set_req(i, neww);
 840       nrep++;
 841     }
 842   }
 843   return nrep;
 844 }
 845 
 846 //-------------------------disconnect_inputs-----------------------------------
 847 // NULL out all inputs to eliminate incoming Def-Use edges.
 848 // Return the number of edges between 'n' and 'this'
 849 int Node::disconnect_inputs(Node *n, Compile* C) {
 850   int edges_to_n = 0;
 851 
 852   uint cnt = req();
 853   for( uint i = 0; i < cnt; ++i ) {
 854     if( in(i) == 0 ) continue;
 855     if( in(i) == n ) ++edges_to_n;
 856     set_req(i, NULL);
 857   }
 858   // Remove precedence edges if any exist
 859   // Note: Safepoints may have precedence edges, even during parsing
 860   if( (req() != len()) && (in(req()) != NULL) ) {
 861     uint max = len();
 862     for( uint i = 0; i < max; ++i ) {
 863       if( in(i) == 0 ) continue;
 864       if( in(i) == n ) ++edges_to_n;
 865       set_prec(i, NULL);
 866     }
 867   }
 868 
 869   // Node::destruct requires all out edges be deleted first
 870   // debug_only(destruct();)   // no reuse benefit expected
 871   if (edges_to_n == 0) {
 872     C->record_dead_node(_idx);
 873   }
 874   return edges_to_n;
 875 }
 876 
 877 //-----------------------------uncast---------------------------------------
 878 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 879 // Strip away casting.  (It is depth-limited.)
 880 Node* Node::uncast() const {
 881   // Should be inline:
 882   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 883   if (is_ConstraintCast())
 884     return uncast_helper(this);
 885   else
 886     return (Node*) this;
 887 }
 888 
 889 // Find out of current node that matches opcode.
 890 Node* Node::find_out_with(int opcode) {
 891   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 892     Node* use = fast_out(i);
 893     if (use->Opcode() == opcode) {
 894       return use;
 895     }
 896   }
 897   return NULL;
 898 }
 899 
 900 // Return true if the current node has an out that matches opcode.
 901 bool Node::has_out_with(int opcode) {
 902   return (find_out_with(opcode) != NULL);
 903 }
 904 
 905 // Return true if the current node has an out that matches any of the opcodes.
 906 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) {
 907   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 908       int opcode = fast_out(i)->Opcode();
 909       if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
 910         return true;
 911       }
 912   }
 913   return false;
 914 }
 915 
 916 
 917 //---------------------------uncast_helper-------------------------------------
 918 Node* Node::uncast_helper(const Node* p) {
 919 #ifdef ASSERT
 920   uint depth_count = 0;
 921   const Node* orig_p = p;
 922 #endif
 923 
 924   while (true) {
 925 #ifdef ASSERT
 926     if (depth_count >= K) {
 927       orig_p->dump(4);
 928       if (p != orig_p)
 929         p->dump(1);
 930     }
 931     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 932 #endif
 933     if (p == NULL || p->req() != 2) {
 934       break;
 935     } else if (p->is_ConstraintCast()) {
 936       p = p->in(1);
 937     } else {
 938       break;
 939     }
 940   }
 941   return (Node*) p;
 942 }
 943 
 944 //------------------------------add_prec---------------------------------------
 945 // Add a new precedence input.  Precedence inputs are unordered, with
 946 // duplicates removed and NULLs packed down at the end.
 947 void Node::add_prec( Node *n ) {
 948   assert( is_not_dead(n), "can not use dead node");
 949 
 950   // Check for NULL at end
 951   if( _cnt >= _max || in(_max-1) )
 952     grow( _max+1 );
 953 
 954   // Find a precedence edge to move
 955   uint i = _cnt;
 956   while( in(i) != NULL ) {
 957     if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
 958     i++;
 959   }
 960   _in[i] = n;                                // Stuff prec edge over NULL
 961   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 962 
 963 #ifdef ASSERT
 964   while ((++i)<_max) { assert(_in[i] == NULL, "spec violation: Gap in prec edges (node %d)", _idx); }
 965 #endif
 966 }
 967 
 968 //------------------------------rm_prec----------------------------------------
 969 // Remove a precedence input.  Precedence inputs are unordered, with
 970 // duplicates removed and NULLs packed down at the end.
 971 void Node::rm_prec( uint j ) {
 972   assert(j < _max, "oob: i=%d, _max=%d", j, _max);
 973   assert(j >= _cnt, "not a precedence edge");
 974   if (_in[j] == NULL) return;   // Avoid spec violation: Gap in prec edges.
 975   _in[j]->del_out((Node *)this);
 976   close_prec_gap_at(j);
 977 }
 978 
 979 //------------------------------size_of----------------------------------------
 980 uint Node::size_of() const { return sizeof(*this); }
 981 
 982 //------------------------------ideal_reg--------------------------------------
 983 uint Node::ideal_reg() const { return 0; }
 984 
 985 //------------------------------jvms-------------------------------------------
 986 JVMState* Node::jvms() const { return NULL; }
 987 
 988 #ifdef ASSERT
 989 //------------------------------jvms-------------------------------------------
 990 bool Node::verify_jvms(const JVMState* using_jvms) const {
 991   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 992     if (jvms == using_jvms)  return true;
 993   }
 994   return false;
 995 }
 996 
 997 //------------------------------init_NodeProperty------------------------------
 998 void Node::init_NodeProperty() {
 999   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
1000   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
1001 }
1002 #endif
1003 
1004 //------------------------------format-----------------------------------------
1005 // Print as assembly
1006 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1007 //------------------------------emit-------------------------------------------
1008 // Emit bytes starting at parameter 'ptr'.
1009 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
1010 //------------------------------size-------------------------------------------
1011 // Size of instruction in bytes
1012 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1013 
1014 //------------------------------CFG Construction-------------------------------
1015 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1016 // Goto and Return.
1017 const Node *Node::is_block_proj() const { return 0; }
1018 
1019 // Minimum guaranteed type
1020 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1021 
1022 
1023 //------------------------------raise_bottom_type------------------------------
1024 // Get the worst-case Type output for this Node.
1025 void Node::raise_bottom_type(const Type* new_type) {
1026   if (is_Type()) {
1027     TypeNode *n = this->as_Type();
1028     if (VerifyAliases) {
1029       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1030     }
1031     n->set_type(new_type);
1032   } else if (is_Load()) {
1033     LoadNode *n = this->as_Load();
1034     if (VerifyAliases) {
1035       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1036     }
1037     n->set_type(new_type);
1038   }
1039 }
1040 
1041 //------------------------------Identity---------------------------------------
1042 // Return a node that the given node is equivalent to.
1043 Node* Node::Identity(PhaseGVN* phase) {
1044   return this;                  // Default to no identities
1045 }
1046 
1047 //------------------------------Value------------------------------------------
1048 // Compute a new Type for a node using the Type of the inputs.
1049 const Type* Node::Value(PhaseGVN* phase) const {
1050   return bottom_type();         // Default to worst-case Type
1051 }
1052 
1053 //------------------------------Ideal------------------------------------------
1054 //
1055 // 'Idealize' the graph rooted at this Node.
1056 //
1057 // In order to be efficient and flexible there are some subtle invariants
1058 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1059 // these invariants, although its too slow to have on by default.  If you are
1060 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1061 //
1062 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1063 // pointer.  If ANY change is made, it must return the root of the reshaped
1064 // graph - even if the root is the same Node.  Example: swapping the inputs
1065 // to an AddINode gives the same answer and same root, but you still have to
1066 // return the 'this' pointer instead of NULL.
1067 //
1068 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1069 // Identity call to return an old Node; basically if Identity can find
1070 // another Node have the Ideal call make no change and return NULL.
1071 // Example: AddINode::Ideal must check for add of zero; in this case it
1072 // returns NULL instead of doing any graph reshaping.
1073 //
1074 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1075 // sharing there may be other users of the old Nodes relying on their current
1076 // semantics.  Modifying them will break the other users.
1077 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1078 // "X+3" unchanged in case it is shared.
1079 //
1080 // If you modify the 'this' pointer's inputs, you should use
1081 // 'set_req'.  If you are making a new Node (either as the new root or
1082 // some new internal piece) you may use 'init_req' to set the initial
1083 // value.  You can make a new Node with either 'new' or 'clone'.  In
1084 // either case, def-use info is correctly maintained.
1085 //
1086 // Example: reshape "(X+3)+4" into "X+7":
1087 //    set_req(1, in(1)->in(1));
1088 //    set_req(2, phase->intcon(7));
1089 //    return this;
1090 // Example: reshape "X*4" into "X<<2"
1091 //    return new LShiftINode(in(1), phase->intcon(2));
1092 //
1093 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1094 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1095 //    Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
1096 //    return new AddINode(shift, in(1));
1097 //
1098 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1099 // These forms are faster than 'phase->transform(new ConNode())' and Do
1100 // The Right Thing with def-use info.
1101 //
1102 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1103 // graph uses the 'this' Node it must be the root.  If you want a Node with
1104 // the same Opcode as the 'this' pointer use 'clone'.
1105 //
1106 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1107   return NULL;                  // Default to being Ideal already
1108 }
1109 
1110 // Some nodes have specific Ideal subgraph transformations only if they are
1111 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1112 // for the transformations to happen.
1113 bool Node::has_special_unique_user() const {
1114   assert(outcnt() == 1, "match only for unique out");
1115   Node* n = unique_out();
1116   int op  = Opcode();
1117   if (this->is_Store()) {
1118     // Condition for back-to-back stores folding.
1119     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1120   } else if (this->is_Load()) {
1121     // Condition for removing an unused LoadNode from the MemBarAcquire precedence input
1122     return n->Opcode() == Op_MemBarAcquire;
1123   } else if (op == Op_AddL) {
1124     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1125     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1126   } else if (op == Op_SubI || op == Op_SubL) {
1127     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1128     return n->Opcode() == op && n->in(2) == this;
1129   } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
1130     // See IfProjNode::Identity()
1131     return true;
1132   }
1133   return false;
1134 };
1135 
1136 //--------------------------find_exact_control---------------------------------
1137 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1138 Node* Node::find_exact_control(Node* ctrl) {
1139   if (ctrl == NULL && this->is_Region())
1140     ctrl = this->as_Region()->is_copy();
1141 
1142   if (ctrl != NULL && ctrl->is_CatchProj()) {
1143     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1144       ctrl = ctrl->in(0);
1145     if (ctrl != NULL && !ctrl->is_top())
1146       ctrl = ctrl->in(0);
1147   }
1148 
1149   if (ctrl != NULL && ctrl->is_Proj())
1150     ctrl = ctrl->in(0);
1151 
1152   return ctrl;
1153 }
1154 
1155 //--------------------------dominates------------------------------------------
1156 // Helper function for MemNode::all_controls_dominate().
1157 // Check if 'this' control node dominates or equal to 'sub' control node.
1158 // We already know that if any path back to Root or Start reaches 'this',
1159 // then all paths so, so this is a simple search for one example,
1160 // not an exhaustive search for a counterexample.
1161 bool Node::dominates(Node* sub, Node_List &nlist) {
1162   assert(this->is_CFG(), "expecting control");
1163   assert(sub != NULL && sub->is_CFG(), "expecting control");
1164 
1165   // detect dead cycle without regions
1166   int iterations_without_region_limit = DominatorSearchLimit;
1167 
1168   Node* orig_sub = sub;
1169   Node* dom      = this;
1170   bool  met_dom  = false;
1171   nlist.clear();
1172 
1173   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1174   // After seeing 'dom', continue up to Root or Start.
1175   // If we hit a region (backward split point), it may be a loop head.
1176   // Keep going through one of the region's inputs.  If we reach the
1177   // same region again, go through a different input.  Eventually we
1178   // will either exit through the loop head, or give up.
1179   // (If we get confused, break out and return a conservative 'false'.)
1180   while (sub != NULL) {
1181     if (sub->is_top())  break; // Conservative answer for dead code.
1182     if (sub == dom) {
1183       if (nlist.size() == 0) {
1184         // No Region nodes except loops were visited before and the EntryControl
1185         // path was taken for loops: it did not walk in a cycle.
1186         return true;
1187       } else if (met_dom) {
1188         break;          // already met before: walk in a cycle
1189       } else {
1190         // Region nodes were visited. Continue walk up to Start or Root
1191         // to make sure that it did not walk in a cycle.
1192         met_dom = true; // first time meet
1193         iterations_without_region_limit = DominatorSearchLimit; // Reset
1194      }
1195     }
1196     if (sub->is_Start() || sub->is_Root()) {
1197       // Success if we met 'dom' along a path to Start or Root.
1198       // We assume there are no alternative paths that avoid 'dom'.
1199       // (This assumption is up to the caller to ensure!)
1200       return met_dom;
1201     }
1202     Node* up = sub->in(0);
1203     // Normalize simple pass-through regions and projections:
1204     up = sub->find_exact_control(up);
1205     // If sub == up, we found a self-loop.  Try to push past it.
1206     if (sub == up && sub->is_Loop()) {
1207       // Take loop entry path on the way up to 'dom'.
1208       up = sub->in(1); // in(LoopNode::EntryControl);
1209     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1210       // Always take in(1) path on the way up to 'dom' for clone regions
1211       // (with only one input) or regions which merge > 2 paths
1212       // (usually used to merge fast/slow paths).
1213       up = sub->in(1);
1214     } else if (sub == up && sub->is_Region()) {
1215       // Try both paths for Regions with 2 input paths (it may be a loop head).
1216       // It could give conservative 'false' answer without information
1217       // which region's input is the entry path.
1218       iterations_without_region_limit = DominatorSearchLimit; // Reset
1219 
1220       bool region_was_visited_before = false;
1221       // Was this Region node visited before?
1222       // If so, we have reached it because we accidentally took a
1223       // loop-back edge from 'sub' back into the body of the loop,
1224       // and worked our way up again to the loop header 'sub'.
1225       // So, take the first unexplored path on the way up to 'dom'.
1226       for (int j = nlist.size() - 1; j >= 0; j--) {
1227         intptr_t ni = (intptr_t)nlist.at(j);
1228         Node* visited = (Node*)(ni & ~1);
1229         bool  visited_twice_already = ((ni & 1) != 0);
1230         if (visited == sub) {
1231           if (visited_twice_already) {
1232             // Visited 2 paths, but still stuck in loop body.  Give up.
1233             return false;
1234           }
1235           // The Region node was visited before only once.
1236           // (We will repush with the low bit set, below.)
1237           nlist.remove(j);
1238           // We will find a new edge and re-insert.
1239           region_was_visited_before = true;
1240           break;
1241         }
1242       }
1243 
1244       // Find an incoming edge which has not been seen yet; walk through it.
1245       assert(up == sub, "");
1246       uint skip = region_was_visited_before ? 1 : 0;
1247       for (uint i = 1; i < sub->req(); i++) {
1248         Node* in = sub->in(i);
1249         if (in != NULL && !in->is_top() && in != sub) {
1250           if (skip == 0) {
1251             up = in;
1252             break;
1253           }
1254           --skip;               // skip this nontrivial input
1255         }
1256       }
1257 
1258       // Set 0 bit to indicate that both paths were taken.
1259       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1260     }
1261 
1262     if (up == sub) {
1263       break;    // some kind of tight cycle
1264     }
1265     if (up == orig_sub && met_dom) {
1266       // returned back after visiting 'dom'
1267       break;    // some kind of cycle
1268     }
1269     if (--iterations_without_region_limit < 0) {
1270       break;    // dead cycle
1271     }
1272     sub = up;
1273   }
1274 
1275   // Did not meet Root or Start node in pred. chain.
1276   // Conservative answer for dead code.
1277   return false;
1278 }
1279 
1280 //------------------------------remove_dead_region-----------------------------
1281 // This control node is dead.  Follow the subgraph below it making everything
1282 // using it dead as well.  This will happen normally via the usual IterGVN
1283 // worklist but this call is more efficient.  Do not update use-def info
1284 // inside the dead region, just at the borders.
1285 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1286   // Con's are a popular node to re-hit in the hash table again.
1287   if( dead->is_Con() ) return;
1288 
1289   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1290   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1291   Node_List  nstack(Thread::current()->resource_area());
1292 
1293   Node *top = igvn->C->top();
1294   nstack.push(dead);
1295   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1296 
1297   while (nstack.size() > 0) {
1298     dead = nstack.pop();
1299     if (dead->outcnt() > 0) {
1300       // Keep dead node on stack until all uses are processed.
1301       nstack.push(dead);
1302       // For all Users of the Dead...    ;-)
1303       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1304         Node* use = dead->last_out(k);
1305         igvn->hash_delete(use);       // Yank from hash table prior to mod
1306         if (use->in(0) == dead) {     // Found another dead node
1307           assert (!use->is_Con(), "Control for Con node should be Root node.");
1308           use->set_req(0, top);       // Cut dead edge to prevent processing
1309           nstack.push(use);           // the dead node again.
1310         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1311                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1312                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1313           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1314           use->set_req(0, top);       // Cut self edge
1315           nstack.push(use);
1316         } else {                      // Else found a not-dead user
1317           // Dead if all inputs are top or null
1318           bool dead_use = !use->is_Root(); // Keep empty graph alive
1319           for (uint j = 1; j < use->req(); j++) {
1320             Node* in = use->in(j);
1321             if (in == dead) {         // Turn all dead inputs into TOP
1322               use->set_req(j, top);
1323             } else if (in != NULL && !in->is_top()) {
1324               dead_use = false;
1325             }
1326           }
1327           if (dead_use) {
1328             if (use->is_Region()) {
1329               use->set_req(0, top);   // Cut self edge
1330             }
1331             nstack.push(use);
1332           } else {
1333             igvn->_worklist.push(use);
1334           }
1335         }
1336         // Refresh the iterator, since any number of kills might have happened.
1337         k = dead->last_outs(kmin);
1338       }
1339     } else { // (dead->outcnt() == 0)
1340       // Done with outputs.
1341       igvn->hash_delete(dead);
1342       igvn->_worklist.remove(dead);
1343       igvn->C->remove_modified_node(dead);
1344       igvn->set_type(dead, Type::TOP);
1345       if (dead->is_macro()) {
1346         igvn->C->remove_macro_node(dead);
1347       }
1348       if (dead->is_expensive()) {
1349         igvn->C->remove_expensive_node(dead);
1350       }
1351       CastIINode* cast = dead->isa_CastII();
1352       if (cast != NULL && cast->has_range_check()) {
1353         igvn->C->remove_range_check_cast(cast);
1354       }
1355       igvn->C->record_dead_node(dead->_idx);
1356       // Kill all inputs to the dead guy
1357       for (uint i=0; i < dead->req(); i++) {
1358         Node *n = dead->in(i);      // Get input to dead guy
1359         if (n != NULL && !n->is_top()) { // Input is valid?
1360           dead->set_req(i, top);    // Smash input away
1361           if (n->outcnt() == 0) {   // Input also goes dead?
1362             if (!n->is_Con())
1363               nstack.push(n);       // Clear it out as well
1364           } else if (n->outcnt() == 1 &&
1365                      n->has_special_unique_user()) {
1366             igvn->add_users_to_worklist( n );
1367           } else if (n->outcnt() <= 2 && n->is_Store()) {
1368             // Push store's uses on worklist to enable folding optimization for
1369             // store/store and store/load to the same address.
1370             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1371             // and remove_globally_dead_node().
1372             igvn->add_users_to_worklist( n );
1373           }
1374         }
1375       }
1376     } // (dead->outcnt() == 0)
1377   }   // while (nstack.size() > 0) for outputs
1378   return;
1379 }
1380 
1381 //------------------------------remove_dead_region-----------------------------
1382 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1383   Node *n = in(0);
1384   if( !n ) return false;
1385   // Lost control into this guy?  I.e., it became unreachable?
1386   // Aggressively kill all unreachable code.
1387   if (can_reshape && n->is_top()) {
1388     kill_dead_code(this, phase->is_IterGVN());
1389     return false; // Node is dead.
1390   }
1391 
1392   if( n->is_Region() && n->as_Region()->is_copy() ) {
1393     Node *m = n->nonnull_req();
1394     set_req(0, m);
1395     return true;
1396   }
1397   return false;
1398 }
1399 
1400 //------------------------------hash-------------------------------------------
1401 // Hash function over Nodes.
1402 uint Node::hash() const {
1403   uint sum = 0;
1404   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1405     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1406   return (sum>>2) + _cnt + Opcode();
1407 }
1408 
1409 //------------------------------cmp--------------------------------------------
1410 // Compare special parts of simple Nodes
1411 uint Node::cmp( const Node &n ) const {
1412   return 1;                     // Must be same
1413 }
1414 
1415 //------------------------------rematerialize-----------------------------------
1416 // Should we clone rather than spill this instruction?
1417 bool Node::rematerialize() const {
1418   if ( is_Mach() )
1419     return this->as_Mach()->rematerialize();
1420   else
1421     return (_flags & Flag_rematerialize) != 0;
1422 }
1423 
1424 //------------------------------needs_anti_dependence_check---------------------
1425 // Nodes which use memory without consuming it, hence need antidependences.
1426 bool Node::needs_anti_dependence_check() const {
1427   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1428     return false;
1429   else
1430     return in(1)->bottom_type()->has_memory();
1431 }
1432 
1433 
1434 // Get an integer constant from a ConNode (or CastIINode).
1435 // Return a default value if there is no apparent constant here.
1436 const TypeInt* Node::find_int_type() const {
1437   if (this->is_Type()) {
1438     return this->as_Type()->type()->isa_int();
1439   } else if (this->is_Con()) {
1440     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1441     return this->bottom_type()->isa_int();
1442   }
1443   return NULL;
1444 }
1445 
1446 // Get a pointer constant from a ConstNode.
1447 // Returns the constant if it is a pointer ConstNode
1448 intptr_t Node::get_ptr() const {
1449   assert( Opcode() == Op_ConP, "" );
1450   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1451 }
1452 
1453 // Get a narrow oop constant from a ConNNode.
1454 intptr_t Node::get_narrowcon() const {
1455   assert( Opcode() == Op_ConN, "" );
1456   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1457 }
1458 
1459 // Get a long constant from a ConNode.
1460 // Return a default value if there is no apparent constant here.
1461 const TypeLong* Node::find_long_type() const {
1462   if (this->is_Type()) {
1463     return this->as_Type()->type()->isa_long();
1464   } else if (this->is_Con()) {
1465     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1466     return this->bottom_type()->isa_long();
1467   }
1468   return NULL;
1469 }
1470 
1471 
1472 /**
1473  * Return a ptr type for nodes which should have it.
1474  */
1475 const TypePtr* Node::get_ptr_type() const {
1476   const TypePtr* tp = this->bottom_type()->make_ptr();
1477 #ifdef ASSERT
1478   if (tp == NULL) {
1479     this->dump(1);
1480     assert((tp != NULL), "unexpected node type");
1481   }
1482 #endif
1483   return tp;
1484 }
1485 
1486 // Get a double constant from a ConstNode.
1487 // Returns the constant if it is a double ConstNode
1488 jdouble Node::getd() const {
1489   assert( Opcode() == Op_ConD, "" );
1490   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1491 }
1492 
1493 // Get a float constant from a ConstNode.
1494 // Returns the constant if it is a float ConstNode
1495 jfloat Node::getf() const {
1496   assert( Opcode() == Op_ConF, "" );
1497   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1498 }
1499 
1500 #ifndef PRODUCT
1501 
1502 //------------------------------find------------------------------------------
1503 // Find a neighbor of this Node with the given _idx
1504 // If idx is negative, find its absolute value, following both _in and _out.
1505 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1506                         VectorSet* old_space, VectorSet* new_space ) {
1507   int node_idx = (idx >= 0) ? idx : -idx;
1508   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1509   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1510   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1511   if( v->test(n->_idx) ) return;
1512   if( (int)n->_idx == node_idx
1513       debug_only(|| n->debug_idx() == node_idx) ) {
1514     if (result != NULL)
1515       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1516                  (uintptr_t)result, (uintptr_t)n, node_idx);
1517     result = n;
1518   }
1519   v->set(n->_idx);
1520   for( uint i=0; i<n->len(); i++ ) {
1521     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1522     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1523   }
1524   // Search along forward edges also:
1525   if (idx < 0 && !only_ctrl) {
1526     for( uint j=0; j<n->outcnt(); j++ ) {
1527       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1528     }
1529   }
1530 #ifdef ASSERT
1531   // Search along debug_orig edges last, checking for cycles
1532   Node* orig = n->debug_orig();
1533   if (orig != NULL) {
1534     do {
1535       if (NotANode(orig))  break;
1536       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1537       orig = orig->debug_orig();
1538     } while (orig != NULL && orig != n->debug_orig());
1539   }
1540 #endif //ASSERT
1541 }
1542 
1543 // call this from debugger:
1544 Node* find_node(Node* n, int idx) {
1545   return n->find(idx);
1546 }
1547 
1548 //------------------------------find-------------------------------------------
1549 Node* Node::find(int idx) const {
1550   ResourceArea *area = Thread::current()->resource_area();
1551   VectorSet old_space(area), new_space(area);
1552   Node* result = NULL;
1553   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1554   return result;
1555 }
1556 
1557 //------------------------------find_ctrl--------------------------------------
1558 // Find an ancestor to this node in the control history with given _idx
1559 Node* Node::find_ctrl(int idx) const {
1560   ResourceArea *area = Thread::current()->resource_area();
1561   VectorSet old_space(area), new_space(area);
1562   Node* result = NULL;
1563   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1564   return result;
1565 }
1566 #endif
1567 
1568 
1569 
1570 #ifndef PRODUCT
1571 
1572 // -----------------------------Name-------------------------------------------
1573 extern const char *NodeClassNames[];
1574 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1575 
1576 static bool is_disconnected(const Node* n) {
1577   for (uint i = 0; i < n->req(); i++) {
1578     if (n->in(i) != NULL)  return false;
1579   }
1580   return true;
1581 }
1582 
1583 #ifdef ASSERT
1584 static void dump_orig(Node* orig, outputStream *st) {
1585   Compile* C = Compile::current();
1586   if (NotANode(orig)) orig = NULL;
1587   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1588   if (orig == NULL) return;
1589   st->print(" !orig=");
1590   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1591   if (NotANode(fast)) fast = NULL;
1592   while (orig != NULL) {
1593     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1594     if (discon) st->print("[");
1595     if (!Compile::current()->node_arena()->contains(orig))
1596       st->print("o");
1597     st->print("%d", orig->_idx);
1598     if (discon) st->print("]");
1599     orig = orig->debug_orig();
1600     if (NotANode(orig)) orig = NULL;
1601     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1602     if (orig != NULL) st->print(",");
1603     if (fast != NULL) {
1604       // Step fast twice for each single step of orig:
1605       fast = fast->debug_orig();
1606       if (NotANode(fast)) fast = NULL;
1607       if (fast != NULL && fast != orig) {
1608         fast = fast->debug_orig();
1609         if (NotANode(fast)) fast = NULL;
1610       }
1611       if (fast == orig) {
1612         st->print("...");
1613         break;
1614       }
1615     }
1616   }
1617 }
1618 
1619 void Node::set_debug_orig(Node* orig) {
1620   _debug_orig = orig;
1621   if (BreakAtNode == 0)  return;
1622   if (NotANode(orig))  orig = NULL;
1623   int trip = 10;
1624   while (orig != NULL) {
1625     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1626       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1627                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1628       BREAKPOINT;
1629     }
1630     orig = orig->debug_orig();
1631     if (NotANode(orig))  orig = NULL;
1632     if (trip-- <= 0)  break;
1633   }
1634 }
1635 #endif //ASSERT
1636 
1637 //------------------------------dump------------------------------------------
1638 // Dump a Node
1639 void Node::dump(const char* suffix, bool mark, outputStream *st) const {
1640   Compile* C = Compile::current();
1641   bool is_new = C->node_arena()->contains(this);
1642   C->_in_dump_cnt++;
1643   st->print("%c%d%s\t%s\t=== ", is_new ? ' ' : 'o', _idx, mark ? " >" : "", Name());
1644 
1645   // Dump the required and precedence inputs
1646   dump_req(st);
1647   dump_prec(st);
1648   // Dump the outputs
1649   dump_out(st);
1650 
1651   if (is_disconnected(this)) {
1652 #ifdef ASSERT
1653     st->print("  [%d]",debug_idx());
1654     dump_orig(debug_orig(), st);
1655 #endif
1656     st->cr();
1657     C->_in_dump_cnt--;
1658     return;                     // don't process dead nodes
1659   }
1660 
1661   if (C->clone_map().value(_idx) != 0) {
1662     C->clone_map().dump(_idx);
1663   }
1664   // Dump node-specific info
1665   dump_spec(st);
1666 #ifdef ASSERT
1667   // Dump the non-reset _debug_idx
1668   if (Verbose && WizardMode) {
1669     st->print("  [%d]",debug_idx());
1670   }
1671 #endif
1672 
1673   const Type *t = bottom_type();
1674 
1675   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1676     const TypeInstPtr  *toop = t->isa_instptr();
1677     const TypeKlassPtr *tkls = t->isa_klassptr();
1678     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1679     if (klass && klass->is_loaded() && klass->is_interface()) {
1680       st->print("  Interface:");
1681     } else if (toop) {
1682       st->print("  Oop:");
1683     } else if (tkls) {
1684       st->print("  Klass:");
1685     }
1686     t->dump_on(st);
1687   } else if (t == Type::MEMORY) {
1688     st->print("  Memory:");
1689     MemNode::dump_adr_type(this, adr_type(), st);
1690   } else if (Verbose || WizardMode) {
1691     st->print("  Type:");
1692     if (t) {
1693       t->dump_on(st);
1694     } else {
1695       st->print("no type");
1696     }
1697   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1698     // Dump MachSpillcopy vector type.
1699     t->dump_on(st);
1700   }
1701   if (is_new) {
1702     debug_only(dump_orig(debug_orig(), st));
1703     Node_Notes* nn = C->node_notes_at(_idx);
1704     if (nn != NULL && !nn->is_clear()) {
1705       if (nn->jvms() != NULL) {
1706         st->print(" !jvms:");
1707         nn->jvms()->dump_spec(st);
1708       }
1709     }
1710   }
1711   if (suffix) st->print("%s", suffix);
1712   C->_in_dump_cnt--;
1713 }
1714 
1715 //------------------------------dump_req--------------------------------------
1716 void Node::dump_req(outputStream *st) const {
1717   // Dump the required input edges
1718   for (uint i = 0; i < req(); i++) {    // For all required inputs
1719     Node* d = in(i);
1720     if (d == NULL) {
1721       st->print("_ ");
1722     } else if (NotANode(d)) {
1723       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1724     } else {
1725       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1726     }
1727   }
1728 }
1729 
1730 
1731 //------------------------------dump_prec-------------------------------------
1732 void Node::dump_prec(outputStream *st) const {
1733   // Dump the precedence edges
1734   int any_prec = 0;
1735   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1736     Node* p = in(i);
1737     if (p != NULL) {
1738       if (!any_prec++) st->print(" |");
1739       if (NotANode(p)) { st->print("NotANode "); continue; }
1740       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1741     }
1742   }
1743 }
1744 
1745 //------------------------------dump_out--------------------------------------
1746 void Node::dump_out(outputStream *st) const {
1747   // Delimit the output edges
1748   st->print(" [[");
1749   // Dump the output edges
1750   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1751     Node* u = _out[i];
1752     if (u == NULL) {
1753       st->print("_ ");
1754     } else if (NotANode(u)) {
1755       st->print("NotANode ");
1756     } else {
1757       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1758     }
1759   }
1760   st->print("]] ");
1761 }
1762 
1763 //----------------------------collect_nodes_i----------------------------------
1764 // Collects nodes from an Ideal graph, starting from a given start node and
1765 // moving in a given direction until a certain depth (distance from the start
1766 // node) is reached. Duplicates are ignored.
1767 // Arguments:
1768 //   nstack:        the nodes are collected into this array.
1769 //   start:         the node at which to start collecting.
1770 //   direction:     if this is a positive number, collect input nodes; if it is
1771 //                  a negative number, collect output nodes.
1772 //   depth:         collect nodes up to this distance from the start node.
1773 //   include_start: whether to include the start node in the result collection.
1774 //   only_ctrl:     whether to regard control edges only during traversal.
1775 //   only_data:     whether to regard data edges only during traversal.
1776 static void collect_nodes_i(GrowableArray<Node*> *nstack, const Node* start, int direction, uint depth, bool include_start, bool only_ctrl, bool only_data) {
1777   Node* s = (Node*) start; // remove const
1778   nstack->append(s);
1779   int begin = 0;
1780   int end = 0;
1781   for(uint i = 0; i < depth; i++) {
1782     end = nstack->length();
1783     for(int j = begin; j < end; j++) {
1784       Node* tp  = nstack->at(j);
1785       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1786       for(uint k = 0; k < limit; k++) {
1787         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1788 
1789         if (NotANode(n))  continue;
1790         // do not recurse through top or the root (would reach unrelated stuff)
1791         if (n->is_Root() || n->is_top()) continue;
1792         if (only_ctrl && !n->is_CFG()) continue;
1793         if (only_data && n->is_CFG()) continue;
1794 
1795         bool on_stack = nstack->contains(n);
1796         if (!on_stack) {
1797           nstack->append(n);
1798         }
1799       }
1800     }
1801     begin = end;
1802   }
1803   if (!include_start) {
1804     nstack->remove(s);
1805   }
1806 }
1807 
1808 //------------------------------dump_nodes-------------------------------------
1809 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1810   if (NotANode(start)) return;
1811 
1812   GrowableArray <Node *> nstack(Compile::current()->live_nodes());
1813   collect_nodes_i(&nstack, start, d, (uint) ABS(d), true, only_ctrl, false);
1814 
1815   int end = nstack.length();
1816   if (d > 0) {
1817     for(int j = end-1; j >= 0; j--) {
1818       nstack.at(j)->dump();
1819     }
1820   } else {
1821     for(int j = 0; j < end; j++) {
1822       nstack.at(j)->dump();
1823     }
1824   }
1825 }
1826 
1827 //------------------------------dump-------------------------------------------
1828 void Node::dump(int d) const {
1829   dump_nodes(this, d, false);
1830 }
1831 
1832 //------------------------------dump_ctrl--------------------------------------
1833 // Dump a Node's control history to depth
1834 void Node::dump_ctrl(int d) const {
1835   dump_nodes(this, d, true);
1836 }
1837 
1838 //-----------------------------dump_compact------------------------------------
1839 void Node::dump_comp() const {
1840   this->dump_comp("\n");
1841 }
1842 
1843 //-----------------------------dump_compact------------------------------------
1844 // Dump a Node in compact representation, i.e., just print its name and index.
1845 // Nodes can specify additional specifics to print in compact representation by
1846 // implementing dump_compact_spec.
1847 void Node::dump_comp(const char* suffix, outputStream *st) const {
1848   Compile* C = Compile::current();
1849   C->_in_dump_cnt++;
1850   st->print("%s(%d)", Name(), _idx);
1851   this->dump_compact_spec(st);
1852   if (suffix) {
1853     st->print("%s", suffix);
1854   }
1855   C->_in_dump_cnt--;
1856 }
1857 
1858 //----------------------------dump_related-------------------------------------
1859 // Dump a Node's related nodes - the notion of "related" depends on the Node at
1860 // hand and is determined by the implementation of the virtual method rel.
1861 void Node::dump_related() const {
1862   Compile* C = Compile::current();
1863   GrowableArray <Node *> in_rel(C->unique());
1864   GrowableArray <Node *> out_rel(C->unique());
1865   this->related(&in_rel, &out_rel, false);
1866   for (int i = in_rel.length() - 1; i >= 0; i--) {
1867     in_rel.at(i)->dump();
1868   }
1869   this->dump("\n", true);
1870   for (int i = 0; i < out_rel.length(); i++) {
1871     out_rel.at(i)->dump();
1872   }
1873 }
1874 
1875 //----------------------------dump_related-------------------------------------
1876 // Dump a Node's related nodes up to a given depth (distance from the start
1877 // node).
1878 // Arguments:
1879 //   d_in:  depth for input nodes.
1880 //   d_out: depth for output nodes (note: this also is a positive number).
1881 void Node::dump_related(uint d_in, uint d_out) const {
1882   Compile* C = Compile::current();
1883   GrowableArray <Node *> in_rel(C->unique());
1884   GrowableArray <Node *> out_rel(C->unique());
1885 
1886   // call collect_nodes_i directly
1887   collect_nodes_i(&in_rel, this, 1, d_in, false, false, false);
1888   collect_nodes_i(&out_rel, this, -1, d_out, false, false, false);
1889 
1890   for (int i = in_rel.length() - 1; i >= 0; i--) {
1891     in_rel.at(i)->dump();
1892   }
1893   this->dump("\n", true);
1894   for (int i = 0; i < out_rel.length(); i++) {
1895     out_rel.at(i)->dump();
1896   }
1897 }
1898 
1899 //------------------------dump_related_compact---------------------------------
1900 // Dump a Node's related nodes in compact representation. The notion of
1901 // "related" depends on the Node at hand and is determined by the implementation
1902 // of the virtual method rel.
1903 void Node::dump_related_compact() const {
1904   Compile* C = Compile::current();
1905   GrowableArray <Node *> in_rel(C->unique());
1906   GrowableArray <Node *> out_rel(C->unique());
1907   this->related(&in_rel, &out_rel, true);
1908   int n_in = in_rel.length();
1909   int n_out = out_rel.length();
1910 
1911   this->dump_comp(n_in == 0 ? "\n" : "  ");
1912   for (int i = 0; i < n_in; i++) {
1913     in_rel.at(i)->dump_comp(i == n_in - 1 ? "\n" : "  ");
1914   }
1915   for (int i = 0; i < n_out; i++) {
1916     out_rel.at(i)->dump_comp(i == n_out - 1 ? "\n" : "  ");
1917   }
1918 }
1919 
1920 //------------------------------related----------------------------------------
1921 // Collect a Node's related nodes. The default behaviour just collects the
1922 // inputs and outputs at depth 1, including both control and data flow edges,
1923 // regardless of whether the presentation is compact or not. For data nodes,
1924 // the default is to collect all data inputs (till level 1 if compact), and
1925 // outputs till level 1.
1926 void Node::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1927   if (this->is_CFG()) {
1928     collect_nodes_i(in_rel, this, 1, 1, false, false, false);
1929     collect_nodes_i(out_rel, this, -1, 1, false, false, false);
1930   } else {
1931     if (compact) {
1932       this->collect_nodes(in_rel, 1, false, true);
1933     } else {
1934       this->collect_nodes_in_all_data(in_rel, false);
1935     }
1936     this->collect_nodes(out_rel, -1, false, false);
1937   }
1938 }
1939 
1940 //---------------------------collect_nodes-------------------------------------
1941 // An entry point to the low-level node collection facility, to start from a
1942 // given node in the graph. The start node is by default not included in the
1943 // result.
1944 // Arguments:
1945 //   ns:   collect the nodes into this data structure.
1946 //   d:    the depth (distance from start node) to which nodes should be
1947 //         collected. A value >0 indicates input nodes, a value <0, output
1948 //         nodes.
1949 //   ctrl: include only control nodes.
1950 //   data: include only data nodes.
1951 void Node::collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const {
1952   if (ctrl && data) {
1953     // ignore nonsensical combination
1954     return;
1955   }
1956   collect_nodes_i(ns, this, d, (uint) ABS(d), false, ctrl, data);
1957 }
1958 
1959 //--------------------------collect_nodes_in-----------------------------------
1960 static void collect_nodes_in(Node* start, GrowableArray<Node*> *ns, bool primary_is_data, bool collect_secondary) {
1961   // The maximum depth is determined using a BFS that visits all primary (data
1962   // or control) inputs and increments the depth at each level.
1963   uint d_in = 0;
1964   GrowableArray<Node*> nodes(Compile::current()->unique());
1965   nodes.push(start);
1966   int nodes_at_current_level = 1;
1967   int n_idx = 0;
1968   while (nodes_at_current_level > 0) {
1969     // Add all primary inputs reachable from the current level to the list, and
1970     // increase the depth if there were any.
1971     int nodes_at_next_level = 0;
1972     bool nodes_added = false;
1973     while (nodes_at_current_level > 0) {
1974       nodes_at_current_level--;
1975       Node* current = nodes.at(n_idx++);
1976       for (uint i = 0; i < current->len(); i++) {
1977         Node* n = current->in(i);
1978         if (NotANode(n)) {
1979           continue;
1980         }
1981         if ((primary_is_data && n->is_CFG()) || (!primary_is_data && !n->is_CFG())) {
1982           continue;
1983         }
1984         if (!nodes.contains(n)) {
1985           nodes.push(n);
1986           nodes_added = true;
1987           nodes_at_next_level++;
1988         }
1989       }
1990     }
1991     if (nodes_added) {
1992       d_in++;
1993     }
1994     nodes_at_current_level = nodes_at_next_level;
1995   }
1996   start->collect_nodes(ns, d_in, !primary_is_data, primary_is_data);
1997   if (collect_secondary) {
1998     // Now, iterate over the secondary nodes in ns and add the respective
1999     // boundary reachable from them.
2000     GrowableArray<Node*> sns(Compile::current()->unique());
2001     for (GrowableArrayIterator<Node*> it = ns->begin(); it != ns->end(); ++it) {
2002       Node* n = *it;
2003       n->collect_nodes(&sns, 1, primary_is_data, !primary_is_data);
2004       for (GrowableArrayIterator<Node*> d = sns.begin(); d != sns.end(); ++d) {
2005         ns->append_if_missing(*d);
2006       }
2007       sns.clear();
2008     }
2009   }
2010 }
2011 
2012 //---------------------collect_nodes_in_all_data-------------------------------
2013 // Collect the entire data input graph. Include the control boundary if
2014 // requested.
2015 // Arguments:
2016 //   ns:   collect the nodes into this data structure.
2017 //   ctrl: if true, include the control boundary.
2018 void Node::collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const {
2019   collect_nodes_in((Node*) this, ns, true, ctrl);
2020 }
2021 
2022 //--------------------------collect_nodes_in_all_ctrl--------------------------
2023 // Collect the entire control input graph. Include the data boundary if
2024 // requested.
2025 //   ns:   collect the nodes into this data structure.
2026 //   data: if true, include the control boundary.
2027 void Node::collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const {
2028   collect_nodes_in((Node*) this, ns, false, data);
2029 }
2030 
2031 //------------------collect_nodes_out_all_ctrl_boundary------------------------
2032 // Collect the entire output graph until hitting control node boundaries, and
2033 // include those.
2034 void Node::collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const {
2035   // Perform a BFS and stop at control nodes.
2036   GrowableArray<Node*> nodes(Compile::current()->unique());
2037   nodes.push((Node*) this);
2038   while (nodes.length() > 0) {
2039     Node* current = nodes.pop();
2040     if (NotANode(current)) {
2041       continue;
2042     }
2043     ns->append_if_missing(current);
2044     if (!current->is_CFG()) {
2045       for (DUIterator i = current->outs(); current->has_out(i); i++) {
2046         nodes.push(current->out(i));
2047       }
2048     }
2049   }
2050   ns->remove((Node*) this);
2051 }
2052 
2053 // VERIFICATION CODE
2054 // For each input edge to a node (ie - for each Use-Def edge), verify that
2055 // there is a corresponding Def-Use edge.
2056 //------------------------------verify_edges-----------------------------------
2057 void Node::verify_edges(Unique_Node_List &visited) {
2058   uint i, j, idx;
2059   int  cnt;
2060   Node *n;
2061 
2062   // Recursive termination test
2063   if (visited.member(this))  return;
2064   visited.push(this);
2065 
2066   // Walk over all input edges, checking for correspondence
2067   for( i = 0; i < len(); i++ ) {
2068     n = in(i);
2069     if (n != NULL && !n->is_top()) {
2070       // Count instances of (Node *)this
2071       cnt = 0;
2072       for (idx = 0; idx < n->_outcnt; idx++ ) {
2073         if (n->_out[idx] == (Node *)this)  cnt++;
2074       }
2075       assert( cnt > 0,"Failed to find Def-Use edge." );
2076       // Check for duplicate edges
2077       // walk the input array downcounting the input edges to n
2078       for( j = 0; j < len(); j++ ) {
2079         if( in(j) == n ) cnt--;
2080       }
2081       assert( cnt == 0,"Mismatched edge count.");
2082     } else if (n == NULL) {
2083       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
2084     } else {
2085       assert(n->is_top(), "sanity");
2086       // Nothing to check.
2087     }
2088   }
2089   // Recursive walk over all input edges
2090   for( i = 0; i < len(); i++ ) {
2091     n = in(i);
2092     if( n != NULL )
2093       in(i)->verify_edges(visited);
2094   }
2095 }
2096 
2097 //------------------------------verify_recur-----------------------------------
2098 static const Node *unique_top = NULL;
2099 
2100 void Node::verify_recur(const Node *n, int verify_depth,
2101                         VectorSet &old_space, VectorSet &new_space) {
2102   if ( verify_depth == 0 )  return;
2103   if (verify_depth > 0)  --verify_depth;
2104 
2105   Compile* C = Compile::current();
2106 
2107   // Contained in new_space or old_space?
2108   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
2109   // Check for visited in the proper space.  Numberings are not unique
2110   // across spaces so we need a separate VectorSet for each space.
2111   if( v->test_set(n->_idx) ) return;
2112 
2113   if (n->is_Con() && n->bottom_type() == Type::TOP) {
2114     if (C->cached_top_node() == NULL)
2115       C->set_cached_top_node((Node*)n);
2116     assert(C->cached_top_node() == n, "TOP node must be unique");
2117   }
2118 
2119   for( uint i = 0; i < n->len(); i++ ) {
2120     Node *x = n->in(i);
2121     if (!x || x->is_top()) continue;
2122 
2123     // Verify my input has a def-use edge to me
2124     if (true /*VerifyDefUse*/) {
2125       // Count use-def edges from n to x
2126       int cnt = 0;
2127       for( uint j = 0; j < n->len(); j++ )
2128         if( n->in(j) == x )
2129           cnt++;
2130       // Count def-use edges from x to n
2131       uint max = x->_outcnt;
2132       for( uint k = 0; k < max; k++ )
2133         if (x->_out[k] == n)
2134           cnt--;
2135       assert( cnt == 0, "mismatched def-use edge counts" );
2136     }
2137 
2138     verify_recur(x, verify_depth, old_space, new_space);
2139   }
2140 
2141 }
2142 
2143 //------------------------------verify-----------------------------------------
2144 // Check Def-Use info for my subgraph
2145 void Node::verify() const {
2146   Compile* C = Compile::current();
2147   Node* old_top = C->cached_top_node();
2148   ResourceMark rm;
2149   ResourceArea *area = Thread::current()->resource_area();
2150   VectorSet old_space(area), new_space(area);
2151   verify_recur(this, -1, old_space, new_space);
2152   C->set_cached_top_node(old_top);
2153 }
2154 #endif
2155 
2156 
2157 //------------------------------walk-------------------------------------------
2158 // Graph walk, with both pre-order and post-order functions
2159 void Node::walk(NFunc pre, NFunc post, void *env) {
2160   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
2161   walk_(pre, post, env, visited);
2162 }
2163 
2164 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
2165   if( visited.test_set(_idx) ) return;
2166   pre(*this,env);               // Call the pre-order walk function
2167   for( uint i=0; i<_max; i++ )
2168     if( in(i) )                 // Input exists and is not walked?
2169       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
2170   post(*this,env);              // Call the post-order walk function
2171 }
2172 
2173 void Node::nop(Node &, void*) {}
2174 
2175 //------------------------------Registers--------------------------------------
2176 // Do we Match on this edge index or not?  Generally false for Control
2177 // and true for everything else.  Weird for calls & returns.
2178 uint Node::match_edge(uint idx) const {
2179   return idx;                   // True for other than index 0 (control)
2180 }
2181 
2182 static RegMask _not_used_at_all;
2183 // Register classes are defined for specific machines
2184 const RegMask &Node::out_RegMask() const {
2185   ShouldNotCallThis();
2186   return _not_used_at_all;
2187 }
2188 
2189 const RegMask &Node::in_RegMask(uint) const {
2190   ShouldNotCallThis();
2191   return _not_used_at_all;
2192 }
2193 
2194 //=============================================================================
2195 //-----------------------------------------------------------------------------
2196 void Node_Array::reset( Arena *new_arena ) {
2197   _a->Afree(_nodes,_max*sizeof(Node*));
2198   _max   = 0;
2199   _nodes = NULL;
2200   _a     = new_arena;
2201 }
2202 
2203 //------------------------------clear------------------------------------------
2204 // Clear all entries in _nodes to NULL but keep storage
2205 void Node_Array::clear() {
2206   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
2207 }
2208 
2209 //-----------------------------------------------------------------------------
2210 void Node_Array::grow( uint i ) {
2211   if( !_max ) {
2212     _max = 1;
2213     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
2214     _nodes[0] = NULL;
2215   }
2216   uint old = _max;
2217   while( i >= _max ) _max <<= 1;        // Double to fit
2218   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2219   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2220 }
2221 
2222 //-----------------------------------------------------------------------------
2223 void Node_Array::insert( uint i, Node *n ) {
2224   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
2225   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
2226   _nodes[i] = n;
2227 }
2228 
2229 //-----------------------------------------------------------------------------
2230 void Node_Array::remove( uint i ) {
2231   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
2232   _nodes[_max-1] = NULL;
2233 }
2234 
2235 //-----------------------------------------------------------------------------
2236 void Node_Array::sort( C_sort_func_t func) {
2237   qsort( _nodes, _max, sizeof( Node* ), func );
2238 }
2239 
2240 //-----------------------------------------------------------------------------
2241 void Node_Array::dump() const {
2242 #ifndef PRODUCT
2243   for( uint i = 0; i < _max; i++ ) {
2244     Node *nn = _nodes[i];
2245     if( nn != NULL ) {
2246       tty->print("%5d--> ",i); nn->dump();
2247     }
2248   }
2249 #endif
2250 }
2251 
2252 //--------------------------is_iteratively_computed------------------------------
2253 // Operation appears to be iteratively computed (such as an induction variable)
2254 // It is possible for this operation to return false for a loop-varying
2255 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2256 bool Node::is_iteratively_computed() {
2257   if (ideal_reg()) { // does operation have a result register?
2258     for (uint i = 1; i < req(); i++) {
2259       Node* n = in(i);
2260       if (n != NULL && n->is_Phi()) {
2261         for (uint j = 1; j < n->req(); j++) {
2262           if (n->in(j) == this) {
2263             return true;
2264           }
2265         }
2266       }
2267     }
2268   }
2269   return false;
2270 }
2271 
2272 //--------------------------find_similar------------------------------
2273 // Return a node with opcode "opc" and same inputs as "this" if one can
2274 // be found; Otherwise return NULL;
2275 Node* Node::find_similar(int opc) {
2276   if (req() >= 2) {
2277     Node* def = in(1);
2278     if (def && def->outcnt() >= 2) {
2279       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2280         Node* use = def->fast_out(i);
2281         if (use != this &&
2282             use->Opcode() == opc &&
2283             use->req() == req()) {
2284           uint j;
2285           for (j = 0; j < use->req(); j++) {
2286             if (use->in(j) != in(j)) {
2287               break;
2288             }
2289           }
2290           if (j == use->req()) {
2291             return use;
2292           }
2293         }
2294       }
2295     }
2296   }
2297   return NULL;
2298 }
2299 
2300 
2301 //--------------------------unique_ctrl_out------------------------------
2302 // Return the unique control out if only one. Null if none or more than one.
2303 Node* Node::unique_ctrl_out() const {
2304   Node* found = NULL;
2305   for (uint i = 0; i < outcnt(); i++) {
2306     Node* use = raw_out(i);
2307     if (use->is_CFG() && use != this) {
2308       if (found != NULL) return NULL;
2309       found = use;
2310     }
2311   }
2312   return found;
2313 }
2314 
2315 void Node::ensure_control_or_add_prec(Node* c) {
2316   if (in(0) == NULL) {
2317     set_req(0, c);
2318   } else if (in(0) != c) {
2319     add_prec(c);
2320   }
2321 }
2322 
2323 //=============================================================================
2324 //------------------------------yank-------------------------------------------
2325 // Find and remove
2326 void Node_List::yank( Node *n ) {
2327   uint i;
2328   for( i = 0; i < _cnt; i++ )
2329     if( _nodes[i] == n )
2330       break;
2331 
2332   if( i < _cnt )
2333     _nodes[i] = _nodes[--_cnt];
2334 }
2335 
2336 //------------------------------dump-------------------------------------------
2337 void Node_List::dump() const {
2338 #ifndef PRODUCT
2339   for( uint i = 0; i < _cnt; i++ )
2340     if( _nodes[i] ) {
2341       tty->print("%5d--> ",i);
2342       _nodes[i]->dump();
2343     }
2344 #endif
2345 }
2346 
2347 void Node_List::dump_simple() const {
2348 #ifndef PRODUCT
2349   for( uint i = 0; i < _cnt; i++ )
2350     if( _nodes[i] ) {
2351       tty->print(" %d", _nodes[i]->_idx);
2352     } else {
2353       tty->print(" NULL");
2354     }
2355 #endif
2356 }
2357 
2358 //=============================================================================
2359 //------------------------------remove-----------------------------------------
2360 void Unique_Node_List::remove( Node *n ) {
2361   if( _in_worklist[n->_idx] ) {
2362     for( uint i = 0; i < size(); i++ )
2363       if( _nodes[i] == n ) {
2364         map(i,Node_List::pop());
2365         _in_worklist >>= n->_idx;
2366         return;
2367       }
2368     ShouldNotReachHere();
2369   }
2370 }
2371 
2372 //-----------------------remove_useless_nodes----------------------------------
2373 // Remove useless nodes from worklist
2374 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2375 
2376   for( uint i = 0; i < size(); ++i ) {
2377     Node *n = at(i);
2378     assert( n != NULL, "Did not expect null entries in worklist");
2379     if( ! useful.test(n->_idx) ) {
2380       _in_worklist >>= n->_idx;
2381       map(i,Node_List::pop());
2382       // Node *replacement = Node_List::pop();
2383       // if( i != size() ) { // Check if removing last entry
2384       //   _nodes[i] = replacement;
2385       // }
2386       --i;  // Visit popped node
2387       // If it was last entry, loop terminates since size() was also reduced
2388     }
2389   }
2390 }
2391 
2392 //=============================================================================
2393 void Node_Stack::grow() {
2394   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2395   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2396   size_t max = old_max << 1;             // max * 2
2397   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2398   _inode_max = _inodes + max;
2399   _inode_top = _inodes + old_top;        // restore _top
2400 }
2401 
2402 // Node_Stack is used to map nodes.
2403 Node* Node_Stack::find(uint idx) const {
2404   uint sz = size();
2405   for (uint i=0; i < sz; i++) {
2406     if (idx == index_at(i) )
2407       return node_at(i);
2408   }
2409   return NULL;
2410 }
2411 
2412 //=============================================================================
2413 uint TypeNode::size_of() const { return sizeof(*this); }
2414 #ifndef PRODUCT
2415 void TypeNode::dump_spec(outputStream *st) const {
2416   if( !Verbose && !WizardMode ) {
2417     // standard dump does this in Verbose and WizardMode
2418     st->print(" #"); _type->dump_on(st);
2419   }
2420 }
2421 
2422 void TypeNode::dump_compact_spec(outputStream *st) const {
2423   st->print("#");
2424   _type->dump_on(st);
2425 }
2426 #endif
2427 uint TypeNode::hash() const {
2428   return Node::hash() + _type->hash();
2429 }
2430 uint TypeNode::cmp( const Node &n ) const
2431 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2432 const Type *TypeNode::bottom_type() const { return _type; }
2433 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; }
2434 
2435 //------------------------------ideal_reg--------------------------------------
2436 uint TypeNode::ideal_reg() const {
2437   return _type->ideal_reg();
2438 }