1 /*
   2  * Copyright (c) 2014, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2015, 2017, SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/interp_masm.hpp"
  32 #include "interpreter/templateInterpreterGenerator.hpp"
  33 #include "interpreter/templateTable.hpp"
  34 #include "oops/arrayOop.hpp"
  35 #include "oops/methodData.hpp"
  36 #include "oops/method.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "prims/jvmtiExport.hpp"
  39 #include "prims/jvmtiThreadState.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/deoptimization.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "runtime/synchronizer.hpp"
  46 #include "runtime/timer.hpp"
  47 #include "runtime/vframeArray.hpp"
  48 #include "utilities/debug.hpp"
  49 #include "utilities/macros.hpp"
  50 
  51 #undef __
  52 #define __ _masm->
  53 
  54 // Size of interpreter code.  Increase if too small.  Interpreter will
  55 // fail with a guarantee ("not enough space for interpreter generation");
  56 // if too small.
  57 // Run with +PrintInterpreter to get the VM to print out the size.
  58 // Max size with JVMTI
  59 int TemplateInterpreter::InterpreterCodeSize = 256*K;
  60 
  61 #ifdef PRODUCT
  62 #define BLOCK_COMMENT(str) /* nothing */
  63 #else
  64 #define BLOCK_COMMENT(str) __ block_comment(str)
  65 #endif
  66 
  67 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
  68 
  69 //-----------------------------------------------------------------------------
  70 
  71 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  72   // Slow_signature handler that respects the PPC C calling conventions.
  73   //
  74   // We get called by the native entry code with our output register
  75   // area == 8. First we call InterpreterRuntime::get_result_handler
  76   // to copy the pointer to the signature string temporarily to the
  77   // first C-argument and to return the result_handler in
  78   // R3_RET. Since native_entry will copy the jni-pointer to the
  79   // first C-argument slot later on, it is OK to occupy this slot
  80   // temporarilly. Then we copy the argument list on the java
  81   // expression stack into native varargs format on the native stack
  82   // and load arguments into argument registers. Integer arguments in
  83   // the varargs vector will be sign-extended to 8 bytes.
  84   //
  85   // On entry:
  86   //   R3_ARG1        - intptr_t*     Address of java argument list in memory.
  87   //   R15_prev_state - BytecodeInterpreter* Address of interpreter state for
  88   //     this method
  89   //   R19_method
  90   //
  91   // On exit (just before return instruction):
  92   //   R3_RET            - contains the address of the result_handler.
  93   //   R4_ARG2           - is not updated for static methods and contains "this" otherwise.
  94   //   R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double,
  95   //                       ARGi contains this argument. Otherwise, ARGi is not updated.
  96   //   F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double.
  97 
  98   const int LogSizeOfTwoInstructions = 3;
  99 
 100   // FIXME: use Argument:: GL: Argument names different numbers!
 101   const int max_fp_register_arguments  = 13;
 102   const int max_int_register_arguments = 6;  // first 2 are reserved
 103 
 104   const Register arg_java       = R21_tmp1;
 105   const Register arg_c          = R22_tmp2;
 106   const Register signature      = R23_tmp3;  // is string
 107   const Register sig_byte       = R24_tmp4;
 108   const Register fpcnt          = R25_tmp5;
 109   const Register argcnt         = R26_tmp6;
 110   const Register intSlot        = R27_tmp7;
 111   const Register target_sp      = R28_tmp8;
 112   const FloatRegister floatSlot = F0;
 113 
 114   address entry = __ function_entry();
 115 
 116   __ save_LR_CR(R0);
 117   __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
 118   // We use target_sp for storing arguments in the C frame.
 119   __ mr(target_sp, R1_SP);
 120   __ push_frame_reg_args_nonvolatiles(0, R11_scratch1);
 121 
 122   __ mr(arg_java, R3_ARG1);
 123 
 124   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method);
 125 
 126   // Signature is in R3_RET. Signature is callee saved.
 127   __ mr(signature, R3_RET);
 128 
 129   // Get the result handler.
 130   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method);
 131 
 132   {
 133     Label L;
 134     // test if static
 135     // _access_flags._flags must be at offset 0.
 136     // TODO PPC port: requires change in shared code.
 137     //assert(in_bytes(AccessFlags::flags_offset()) == 0,
 138     //       "MethodDesc._access_flags == MethodDesc._access_flags._flags");
 139     // _access_flags must be a 32 bit value.
 140     assert(sizeof(AccessFlags) == 4, "wrong size");
 141     __ lwa(R11_scratch1/*access_flags*/, method_(access_flags));
 142     // testbit with condition register.
 143     __ testbitdi(CCR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT);
 144     __ btrue(CCR0, L);
 145     // For non-static functions, pass "this" in R4_ARG2 and copy it
 146     // to 2nd C-arg slot.
 147     // We need to box the Java object here, so we use arg_java
 148     // (address of current Java stack slot) as argument and don't
 149     // dereference it as in case of ints, floats, etc.
 150     __ mr(R4_ARG2, arg_java);
 151     __ addi(arg_java, arg_java, -BytesPerWord);
 152     __ std(R4_ARG2, _abi(carg_2), target_sp);
 153     __ bind(L);
 154   }
 155 
 156   // Will be incremented directly after loop_start. argcnt=0
 157   // corresponds to 3rd C argument.
 158   __ li(argcnt, -1);
 159   // arg_c points to 3rd C argument
 160   __ addi(arg_c, target_sp, _abi(carg_3));
 161   // no floating-point args parsed so far
 162   __ li(fpcnt, 0);
 163 
 164   Label move_intSlot_to_ARG, move_floatSlot_to_FARG;
 165   Label loop_start, loop_end;
 166   Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed;
 167 
 168   // signature points to '(' at entry
 169 #ifdef ASSERT
 170   __ lbz(sig_byte, 0, signature);
 171   __ cmplwi(CCR0, sig_byte, '(');
 172   __ bne(CCR0, do_dontreachhere);
 173 #endif
 174 
 175   __ bind(loop_start);
 176 
 177   __ addi(argcnt, argcnt, 1);
 178   __ lbzu(sig_byte, 1, signature);
 179 
 180   __ cmplwi(CCR0, sig_byte, ')'); // end of signature
 181   __ beq(CCR0, loop_end);
 182 
 183   __ cmplwi(CCR0, sig_byte, 'B'); // byte
 184   __ beq(CCR0, do_int);
 185 
 186   __ cmplwi(CCR0, sig_byte, 'C'); // char
 187   __ beq(CCR0, do_int);
 188 
 189   __ cmplwi(CCR0, sig_byte, 'D'); // double
 190   __ beq(CCR0, do_double);
 191 
 192   __ cmplwi(CCR0, sig_byte, 'F'); // float
 193   __ beq(CCR0, do_float);
 194 
 195   __ cmplwi(CCR0, sig_byte, 'I'); // int
 196   __ beq(CCR0, do_int);
 197 
 198   __ cmplwi(CCR0, sig_byte, 'J'); // long
 199   __ beq(CCR0, do_long);
 200 
 201   __ cmplwi(CCR0, sig_byte, 'S'); // short
 202   __ beq(CCR0, do_int);
 203 
 204   __ cmplwi(CCR0, sig_byte, 'Z'); // boolean
 205   __ beq(CCR0, do_int);
 206 
 207   __ cmplwi(CCR0, sig_byte, 'L'); // object
 208   __ beq(CCR0, do_object);
 209 
 210   __ cmplwi(CCR0, sig_byte, '['); // array
 211   __ beq(CCR0, do_array);
 212 
 213   //  __ cmplwi(CCR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type
 214   //  __ beq(CCR0, do_void);
 215 
 216   __ bind(do_dontreachhere);
 217 
 218   __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
 219 
 220   __ bind(do_array);
 221 
 222   {
 223     Label start_skip, end_skip;
 224 
 225     __ bind(start_skip);
 226     __ lbzu(sig_byte, 1, signature);
 227     __ cmplwi(CCR0, sig_byte, '[');
 228     __ beq(CCR0, start_skip); // skip further brackets
 229     __ cmplwi(CCR0, sig_byte, '9');
 230     __ bgt(CCR0, end_skip);   // no optional size
 231     __ cmplwi(CCR0, sig_byte, '0');
 232     __ bge(CCR0, start_skip); // skip optional size
 233     __ bind(end_skip);
 234 
 235     __ cmplwi(CCR0, sig_byte, 'L');
 236     __ beq(CCR0, do_object);  // for arrays of objects, the name of the object must be skipped
 237     __ b(do_boxed);          // otherwise, go directly to do_boxed
 238   }
 239 
 240   __ bind(do_object);
 241   {
 242     Label L;
 243     __ bind(L);
 244     __ lbzu(sig_byte, 1, signature);
 245     __ cmplwi(CCR0, sig_byte, ';');
 246     __ bne(CCR0, L);
 247    }
 248   // Need to box the Java object here, so we use arg_java (address of
 249   // current Java stack slot) as argument and don't dereference it as
 250   // in case of ints, floats, etc.
 251   Label do_null;
 252   __ bind(do_boxed);
 253   __ ld(R0,0, arg_java);
 254   __ cmpdi(CCR0, R0, 0);
 255   __ li(intSlot,0);
 256   __ beq(CCR0, do_null);
 257   __ mr(intSlot, arg_java);
 258   __ bind(do_null);
 259   __ std(intSlot, 0, arg_c);
 260   __ addi(arg_java, arg_java, -BytesPerWord);
 261   __ addi(arg_c, arg_c, BytesPerWord);
 262   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 263   __ blt(CCR0, move_intSlot_to_ARG);
 264   __ b(loop_start);
 265 
 266   __ bind(do_int);
 267   __ lwa(intSlot, 0, arg_java);
 268   __ std(intSlot, 0, arg_c);
 269   __ addi(arg_java, arg_java, -BytesPerWord);
 270   __ addi(arg_c, arg_c, BytesPerWord);
 271   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 272   __ blt(CCR0, move_intSlot_to_ARG);
 273   __ b(loop_start);
 274 
 275   __ bind(do_long);
 276   __ ld(intSlot, -BytesPerWord, arg_java);
 277   __ std(intSlot, 0, arg_c);
 278   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
 279   __ addi(arg_c, arg_c, BytesPerWord);
 280   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 281   __ blt(CCR0, move_intSlot_to_ARG);
 282   __ b(loop_start);
 283 
 284   __ bind(do_float);
 285   __ lfs(floatSlot, 0, arg_java);
 286 #if defined(LINUX)
 287   // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
 288   // in the least significant word of an argument slot.
 289 #if defined(VM_LITTLE_ENDIAN)
 290   __ stfs(floatSlot, 0, arg_c);
 291 #else
 292   __ stfs(floatSlot, 4, arg_c);
 293 #endif
 294 #elif defined(AIX)
 295   // Although AIX runs on big endian CPU, float is in most significant
 296   // word of an argument slot.
 297   __ stfs(floatSlot, 0, arg_c);
 298 #else
 299 #error "unknown OS"
 300 #endif
 301   __ addi(arg_java, arg_java, -BytesPerWord);
 302   __ addi(arg_c, arg_c, BytesPerWord);
 303   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
 304   __ blt(CCR0, move_floatSlot_to_FARG);
 305   __ b(loop_start);
 306 
 307   __ bind(do_double);
 308   __ lfd(floatSlot, - BytesPerWord, arg_java);
 309   __ stfd(floatSlot, 0, arg_c);
 310   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
 311   __ addi(arg_c, arg_c, BytesPerWord);
 312   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
 313   __ blt(CCR0, move_floatSlot_to_FARG);
 314   __ b(loop_start);
 315 
 316   __ bind(loop_end);
 317 
 318   __ pop_frame();
 319   __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
 320   __ restore_LR_CR(R0);
 321 
 322   __ blr();
 323 
 324   Label move_int_arg, move_float_arg;
 325   __ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
 326   __ mr(R5_ARG3, intSlot);  __ b(loop_start);
 327   __ mr(R6_ARG4, intSlot);  __ b(loop_start);
 328   __ mr(R7_ARG5, intSlot);  __ b(loop_start);
 329   __ mr(R8_ARG6, intSlot);  __ b(loop_start);
 330   __ mr(R9_ARG7, intSlot);  __ b(loop_start);
 331   __ mr(R10_ARG8, intSlot); __ b(loop_start);
 332 
 333   __ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
 334   __ fmr(F1_ARG1, floatSlot);   __ b(loop_start);
 335   __ fmr(F2_ARG2, floatSlot);   __ b(loop_start);
 336   __ fmr(F3_ARG3, floatSlot);   __ b(loop_start);
 337   __ fmr(F4_ARG4, floatSlot);   __ b(loop_start);
 338   __ fmr(F5_ARG5, floatSlot);   __ b(loop_start);
 339   __ fmr(F6_ARG6, floatSlot);   __ b(loop_start);
 340   __ fmr(F7_ARG7, floatSlot);   __ b(loop_start);
 341   __ fmr(F8_ARG8, floatSlot);   __ b(loop_start);
 342   __ fmr(F9_ARG9, floatSlot);   __ b(loop_start);
 343   __ fmr(F10_ARG10, floatSlot); __ b(loop_start);
 344   __ fmr(F11_ARG11, floatSlot); __ b(loop_start);
 345   __ fmr(F12_ARG12, floatSlot); __ b(loop_start);
 346   __ fmr(F13_ARG13, floatSlot); __ b(loop_start);
 347 
 348   __ bind(move_intSlot_to_ARG);
 349   __ sldi(R0, argcnt, LogSizeOfTwoInstructions);
 350   __ load_const(R11_scratch1, move_int_arg); // Label must be bound here.
 351   __ add(R11_scratch1, R0, R11_scratch1);
 352   __ mtctr(R11_scratch1/*branch_target*/);
 353   __ bctr();
 354   __ bind(move_floatSlot_to_FARG);
 355   __ sldi(R0, fpcnt, LogSizeOfTwoInstructions);
 356   __ addi(fpcnt, fpcnt, 1);
 357   __ load_const(R11_scratch1, move_float_arg); // Label must be bound here.
 358   __ add(R11_scratch1, R0, R11_scratch1);
 359   __ mtctr(R11_scratch1/*branch_target*/);
 360   __ bctr();
 361 
 362   return entry;
 363 }
 364 
 365 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 366   //
 367   // Registers alive
 368   //   R3_RET
 369   //   LR
 370   //
 371   // Registers updated
 372   //   R3_RET
 373   //
 374 
 375   Label done;
 376   address entry = __ pc();
 377 
 378   switch (type) {
 379   case T_BOOLEAN:
 380     // convert !=0 to 1
 381     __ neg(R0, R3_RET);
 382     __ orr(R0, R3_RET, R0);
 383     __ srwi(R3_RET, R0, 31);
 384     break;
 385   case T_BYTE:
 386      // sign extend 8 bits
 387      __ extsb(R3_RET, R3_RET);
 388      break;
 389   case T_CHAR:
 390      // zero extend 16 bits
 391      __ clrldi(R3_RET, R3_RET, 48);
 392      break;
 393   case T_SHORT:
 394      // sign extend 16 bits
 395      __ extsh(R3_RET, R3_RET);
 396      break;
 397   case T_INT:
 398      // sign extend 32 bits
 399      __ extsw(R3_RET, R3_RET);
 400      break;
 401   case T_LONG:
 402      break;
 403   case T_OBJECT:
 404     // JNIHandles::resolve result.
 405     __ resolve_jobject(R3_RET, R11_scratch1, R12_scratch2, /* needs_frame */ true); // kills R31
 406     break;
 407   case T_FLOAT:
 408      break;
 409   case T_DOUBLE:
 410      break;
 411   case T_VOID:
 412      break;
 413   default: ShouldNotReachHere();
 414   }
 415 
 416   BIND(done);
 417   __ blr();
 418 
 419   return entry;
 420 }
 421 
 422 // Abstract method entry.
 423 //
 424 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 425   address entry = __ pc();
 426 
 427   //
 428   // Registers alive
 429   //   R16_thread     - JavaThread*
 430   //   R19_method     - callee's method (method to be invoked)
 431   //   R1_SP          - SP prepared such that caller's outgoing args are near top
 432   //   LR             - return address to caller
 433   //
 434   // Stack layout at this point:
 435   //
 436   //   0       [TOP_IJAVA_FRAME_ABI]         <-- R1_SP
 437   //           alignment (optional)
 438   //           [outgoing Java arguments]
 439   //           ...
 440   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
 441   //            ...
 442   //
 443 
 444   // Can't use call_VM here because we have not set up a new
 445   // interpreter state. Make the call to the vm and make it look like
 446   // our caller set up the JavaFrameAnchor.
 447   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
 448 
 449   // Push a new C frame and save LR.
 450   __ save_LR_CR(R0);
 451   __ push_frame_reg_args(0, R11_scratch1);
 452 
 453   // This is not a leaf but we have a JavaFrameAnchor now and we will
 454   // check (create) exceptions afterward so this is ok.
 455   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError),
 456                   R16_thread);
 457 
 458   // Pop the C frame and restore LR.
 459   __ pop_frame();
 460   __ restore_LR_CR(R0);
 461 
 462   // Reset JavaFrameAnchor from call_VM_leaf above.
 463   __ reset_last_Java_frame();
 464 
 465   // We don't know our caller, so jump to the general forward exception stub,
 466   // which will also pop our full frame off. Satisfy the interface of
 467   // SharedRuntime::generate_forward_exception()
 468   __ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0);
 469   __ mtctr(R11_scratch1);
 470   __ bctr();
 471 
 472   return entry;
 473 }
 474 
 475 // Interpreter intrinsic for WeakReference.get().
 476 // 1. Don't push a full blown frame and go on dispatching, but fetch the value
 477 //    into R8 and return quickly
 478 // 2. If G1 is active we *must* execute this intrinsic for corrrectness:
 479 //    It contains a GC barrier which puts the reference into the satb buffer
 480 //    to indicate that someone holds a strong reference to the object the
 481 //    weak ref points to!
 482 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 483   // Code: _aload_0, _getfield, _areturn
 484   // parameter size = 1
 485   //
 486   // The code that gets generated by this routine is split into 2 parts:
 487   //    1. the "intrinsified" code for G1 (or any SATB based GC),
 488   //    2. the slow path - which is an expansion of the regular method entry.
 489   //
 490   // Notes:
 491   // * In the G1 code we do not check whether we need to block for
 492   //   a safepoint. If G1 is enabled then we must execute the specialized
 493   //   code for Reference.get (except when the Reference object is null)
 494   //   so that we can log the value in the referent field with an SATB
 495   //   update buffer.
 496   //   If the code for the getfield template is modified so that the
 497   //   G1 pre-barrier code is executed when the current method is
 498   //   Reference.get() then going through the normal method entry
 499   //   will be fine.
 500   // * The G1 code can, however, check the receiver object (the instance
 501   //   of java.lang.Reference) and jump to the slow path if null. If the
 502   //   Reference object is null then we obviously cannot fetch the referent
 503   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 504   //   regular method entry code to generate the NPE.
 505   //
 506 
 507   if (UseG1GC) {
 508     address entry = __ pc();
 509 
 510     const int referent_offset = java_lang_ref_Reference::referent_offset;
 511     guarantee(referent_offset > 0, "referent offset not initialized");
 512 
 513     Label slow_path;
 514 
 515     // Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);
 516 
 517     // In the G1 code we don't check if we need to reach a safepoint. We
 518     // continue and the thread will safepoint at the next bytecode dispatch.
 519 
 520     // If the receiver is null then it is OK to jump to the slow path.
 521     __ ld(R3_RET, Interpreter::stackElementSize, R15_esp); // get receiver
 522 
 523     // Check if receiver == NULL and go the slow path.
 524     __ cmpdi(CCR0, R3_RET, 0);
 525     __ beq(CCR0, slow_path);
 526 
 527     // Load the value of the referent field.
 528     __ load_heap_oop(R3_RET, referent_offset, R3_RET);
 529 
 530     // Generate the G1 pre-barrier code to log the value of
 531     // the referent field in an SATB buffer. Note with
 532     // these parameters the pre-barrier does not generate
 533     // the load of the previous value.
 534 
 535     // Restore caller sp for c2i case.
 536 #ifdef ASSERT
 537       __ ld(R9_ARG7, 0, R1_SP);
 538       __ ld(R10_ARG8, 0, R21_sender_SP);
 539       __ cmpd(CCR0, R9_ARG7, R10_ARG8);
 540       __ asm_assert_eq("backlink", 0x544);
 541 #endif // ASSERT
 542     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
 543 
 544     __ g1_write_barrier_pre(noreg,         // obj
 545                             noreg,         // offset
 546                             R3_RET,        // pre_val
 547                             R11_scratch1,  // tmp
 548                             R12_scratch2,  // tmp
 549                             true);         // needs_frame
 550 
 551     __ blr();
 552 
 553     // Generate regular method entry.
 554     __ bind(slow_path);
 555     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
 556     return entry;
 557   }
 558 
 559   return NULL;
 560 }
 561 
 562 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 563   address entry = __ pc();
 564 
 565   // Expression stack must be empty before entering the VM if an
 566   // exception happened.
 567   __ empty_expression_stack();
 568   // Throw exception.
 569   __ call_VM(noreg,
 570              CAST_FROM_FN_PTR(address,
 571                               InterpreterRuntime::throw_StackOverflowError));
 572   return entry;
 573 }
 574 
 575 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 576   address entry = __ pc();
 577   __ empty_expression_stack();
 578   __ load_const_optimized(R4_ARG2, (address) name);
 579   // Index is in R17_tos.
 580   __ mr(R5_ARG3, R17_tos);
 581   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException));
 582   return entry;
 583 }
 584 
 585 #if 0
 586 // Call special ClassCastException constructor taking object to cast
 587 // and target class as arguments.
 588 address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler() {
 589   address entry = __ pc();
 590 
 591   // Expression stack must be empty before entering the VM if an
 592   // exception happened.
 593   __ empty_expression_stack();
 594 
 595   // Thread will be loaded to R3_ARG1.
 596   // Target class oop is in register R5_ARG3 by convention!
 597   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose), R17_tos, R5_ARG3);
 598   // Above call must not return here since exception pending.
 599   DEBUG_ONLY(__ should_not_reach_here();)
 600   return entry;
 601 }
 602 #endif
 603 
 604 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 605   address entry = __ pc();
 606   // Expression stack must be empty before entering the VM if an
 607   // exception happened.
 608   __ empty_expression_stack();
 609 
 610   // Load exception object.
 611   // Thread will be loaded to R3_ARG1.
 612   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
 613 #ifdef ASSERT
 614   // Above call must not return here since exception pending.
 615   __ should_not_reach_here();
 616 #endif
 617   return entry;
 618 }
 619 
 620 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 621   address entry = __ pc();
 622   //__ untested("generate_exception_handler_common");
 623   Register Rexception = R17_tos;
 624 
 625   // Expression stack must be empty before entering the VM if an exception happened.
 626   __ empty_expression_stack();
 627 
 628   __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
 629   if (pass_oop) {
 630     __ mr(R5_ARG3, Rexception);
 631     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false);
 632   } else {
 633     __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
 634     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false);
 635   }
 636 
 637   // Throw exception.
 638   __ mr(R3_ARG1, Rexception);
 639   __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
 640   __ mtctr(R11_scratch1);
 641   __ bctr();
 642 
 643   return entry;
 644 }
 645 
 646 // This entry is returned to when a call returns to the interpreter.
 647 // When we arrive here, we expect that the callee stack frame is already popped.
 648 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 649   address entry = __ pc();
 650 
 651   // Move the value out of the return register back to the TOS cache of current frame.
 652   switch (state) {
 653     case ltos:
 654     case btos:
 655     case ztos:
 656     case ctos:
 657     case stos:
 658     case atos:
 659     case itos: __ mr(R17_tos, R3_RET); break;   // RET -> TOS cache
 660     case ftos:
 661     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
 662     case vtos: break;                           // Nothing to do, this was a void return.
 663     default  : ShouldNotReachHere();
 664   }
 665 
 666   __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
 667   __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
 668   __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
 669 
 670   // Compiled code destroys templateTableBase, reload.
 671   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
 672 
 673   if (state == atos) {
 674     __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2);
 675   }
 676 
 677   const Register cache = R11_scratch1;
 678   const Register size  = R12_scratch2;
 679   __ get_cache_and_index_at_bcp(cache, 1, index_size);
 680 
 681   // Get least significant byte of 64 bit value:
 682 #if defined(VM_LITTLE_ENDIAN)
 683   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()), cache);
 684 #else
 685   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache);
 686 #endif
 687   __ sldi(size, size, Interpreter::logStackElementSize);
 688   __ add(R15_esp, R15_esp, size);
 689 
 690  __ check_and_handle_popframe(R11_scratch1);
 691  __ check_and_handle_earlyret(R11_scratch1);
 692 
 693   __ dispatch_next(state, step);
 694   return entry;
 695 }
 696 
 697 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 698   address entry = __ pc();
 699   // If state != vtos, we're returning from a native method, which put it's result
 700   // into the result register. So move the value out of the return register back
 701   // to the TOS cache of current frame.
 702 
 703   switch (state) {
 704     case ltos:
 705     case btos:
 706     case ztos:
 707     case ctos:
 708     case stos:
 709     case atos:
 710     case itos: __ mr(R17_tos, R3_RET); break;   // GR_RET -> TOS cache
 711     case ftos:
 712     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
 713     case vtos: break;                           // Nothing to do, this was a void return.
 714     default  : ShouldNotReachHere();
 715   }
 716 
 717   // Load LcpoolCache @@@ should be already set!
 718   __ get_constant_pool_cache(R27_constPoolCache);
 719 
 720   // Handle a pending exception, fall through if none.
 721   __ check_and_forward_exception(R11_scratch1, R12_scratch2);
 722 
 723   // Start executing bytecodes.
 724   __ dispatch_next(state, step);
 725 
 726   return entry;
 727 }
 728 
 729 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 730   address entry = __ pc();
 731 
 732   __ push(state);
 733   __ call_VM(noreg, runtime_entry);
 734   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 735 
 736   return entry;
 737 }
 738 
 739 // Helpers for commoning out cases in the various type of method entries.
 740 
 741 // Increment invocation count & check for overflow.
 742 //
 743 // Note: checking for negative value instead of overflow
 744 //       so we have a 'sticky' overflow test.
 745 //
 746 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 747   // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
 748   Register Rscratch1   = R11_scratch1;
 749   Register Rscratch2   = R12_scratch2;
 750   Register R3_counters = R3_ARG1;
 751   Label done;
 752 
 753   if (TieredCompilation) {
 754     const int increment = InvocationCounter::count_increment;
 755     Label no_mdo;
 756     if (ProfileInterpreter) {
 757       const Register Rmdo = R3_counters;
 758       // If no method data exists, go to profile_continue.
 759       __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
 760       __ cmpdi(CCR0, Rmdo, 0);
 761       __ beq(CCR0, no_mdo);
 762 
 763       // Increment invocation counter in the MDO.
 764       const int mdo_ic_offs = in_bytes(MethodData::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
 765       __ lwz(Rscratch2, mdo_ic_offs, Rmdo);
 766       __ lwz(Rscratch1, in_bytes(MethodData::invoke_mask_offset()), Rmdo);
 767       __ addi(Rscratch2, Rscratch2, increment);
 768       __ stw(Rscratch2, mdo_ic_offs, Rmdo);
 769       __ and_(Rscratch1, Rscratch2, Rscratch1);
 770       __ bne(CCR0, done);
 771       __ b(*overflow);
 772     }
 773 
 774     // Increment counter in MethodCounters*.
 775     const int mo_ic_offs = in_bytes(MethodCounters::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
 776     __ bind(no_mdo);
 777     __ get_method_counters(R19_method, R3_counters, done);
 778     __ lwz(Rscratch2, mo_ic_offs, R3_counters);
 779     __ lwz(Rscratch1, in_bytes(MethodCounters::invoke_mask_offset()), R3_counters);
 780     __ addi(Rscratch2, Rscratch2, increment);
 781     __ stw(Rscratch2, mo_ic_offs, R3_counters);
 782     __ and_(Rscratch1, Rscratch2, Rscratch1);
 783     __ beq(CCR0, *overflow);
 784 
 785     __ bind(done);
 786 
 787   } else {
 788 
 789     // Update standard invocation counters.
 790     Register Rsum_ivc_bec = R4_ARG2;
 791     __ get_method_counters(R19_method, R3_counters, done);
 792     __ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2);
 793     // Increment interpreter invocation counter.
 794     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop.
 795       __ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
 796       __ addi(R12_scratch2, R12_scratch2, 1);
 797       __ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
 798     }
 799     // Check if we must create a method data obj.
 800     if (ProfileInterpreter && profile_method != NULL) {
 801       const Register profile_limit = Rscratch1;
 802       __ lwz(profile_limit, in_bytes(MethodCounters::interpreter_profile_limit_offset()), R3_counters);
 803       // Test to see if we should create a method data oop.
 804       __ cmpw(CCR0, Rsum_ivc_bec, profile_limit);
 805       __ blt(CCR0, *profile_method_continue);
 806       // If no method data exists, go to profile_method.
 807       __ test_method_data_pointer(*profile_method);
 808     }
 809     // Finally check for counter overflow.
 810     if (overflow) {
 811       const Register invocation_limit = Rscratch1;
 812       __ lwz(invocation_limit, in_bytes(MethodCounters::interpreter_invocation_limit_offset()), R3_counters);
 813       __ cmpw(CCR0, Rsum_ivc_bec, invocation_limit);
 814       __ bge(CCR0, *overflow);
 815     }
 816 
 817     __ bind(done);
 818   }
 819 }
 820 
 821 // Generate code to initiate compilation on invocation counter overflow.
 822 void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
 823   // Generate code to initiate compilation on the counter overflow.
 824 
 825   // InterpreterRuntime::frequency_counter_overflow takes one arguments,
 826   // which indicates if the counter overflow occurs at a backwards branch (NULL bcp)
 827   // We pass zero in.
 828   // The call returns the address of the verified entry point for the method or NULL
 829   // if the compilation did not complete (either went background or bailed out).
 830   //
 831   // Unlike the C++ interpreter above: Check exceptions!
 832   // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
 833   // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
 834 
 835   __ li(R4_ARG2, 0);
 836   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
 837 
 838   // Returns verified_entry_point or NULL.
 839   // We ignore it in any case.
 840   __ b(continue_entry);
 841 }
 842 
 843 // See if we've got enough room on the stack for locals plus overhead below
 844 // JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 845 // without going through the signal handler, i.e., reserved and yellow zones
 846 // will not be made usable. The shadow zone must suffice to handle the
 847 // overflow.
 848 //
 849 // Kills Rmem_frame_size, Rscratch1.
 850 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
 851   Label done;
 852   assert_different_registers(Rmem_frame_size, Rscratch1);
 853 
 854   BLOCK_COMMENT("stack_overflow_check_with_compare {");
 855   __ sub(Rmem_frame_size, R1_SP, Rmem_frame_size);
 856   __ ld(Rscratch1, thread_(stack_overflow_limit));
 857   __ cmpld(CCR0/*is_stack_overflow*/, Rmem_frame_size, Rscratch1);
 858   __ bgt(CCR0/*is_stack_overflow*/, done);
 859 
 860   // The stack overflows. Load target address of the runtime stub and call it.
 861   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "generated in wrong order");
 862   __ load_const_optimized(Rscratch1, (StubRoutines::throw_StackOverflowError_entry()), R0);
 863   __ mtctr(Rscratch1);
 864   // Restore caller_sp.
 865 #ifdef ASSERT
 866   __ ld(Rscratch1, 0, R1_SP);
 867   __ ld(R0, 0, R21_sender_SP);
 868   __ cmpd(CCR0, R0, Rscratch1);
 869   __ asm_assert_eq("backlink", 0x547);
 870 #endif // ASSERT
 871   __ mr(R1_SP, R21_sender_SP);
 872   __ bctr();
 873 
 874   __ align(32, 12);
 875   __ bind(done);
 876   BLOCK_COMMENT("} stack_overflow_check_with_compare");
 877 }
 878 
 879 // Lock the current method, interpreter register window must be set up!
 880 void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
 881   const Register Robj_to_lock = Rscratch2;
 882 
 883   {
 884     if (!flags_preloaded) {
 885       __ lwz(Rflags, method_(access_flags));
 886     }
 887 
 888 #ifdef ASSERT
 889     // Check if methods needs synchronization.
 890     {
 891       Label Lok;
 892       __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
 893       __ btrue(CCR0,Lok);
 894       __ stop("method doesn't need synchronization");
 895       __ bind(Lok);
 896     }
 897 #endif // ASSERT
 898   }
 899 
 900   // Get synchronization object to Rscratch2.
 901   {
 902     Label Lstatic;
 903     Label Ldone;
 904 
 905     __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
 906     __ btrue(CCR0, Lstatic);
 907 
 908     // Non-static case: load receiver obj from stack and we're done.
 909     __ ld(Robj_to_lock, R18_locals);
 910     __ b(Ldone);
 911 
 912     __ bind(Lstatic); // Static case: Lock the java mirror
 913     // Load mirror from interpreter frame.
 914     __ ld(Robj_to_lock, _abi(callers_sp), R1_SP);
 915     __ ld(Robj_to_lock, _ijava_state_neg(mirror), Robj_to_lock);
 916 
 917     __ bind(Ldone);
 918     __ verify_oop(Robj_to_lock);
 919   }
 920 
 921   // Got the oop to lock => execute!
 922   __ add_monitor_to_stack(true, Rscratch1, R0);
 923 
 924   __ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
 925   __ lock_object(R26_monitor, Robj_to_lock);
 926 }
 927 
 928 // Generate a fixed interpreter frame for pure interpreter
 929 // and I2N native transition frames.
 930 //
 931 // Before (stack grows downwards):
 932 //
 933 //         |  ...         |
 934 //         |------------- |
 935 //         |  java arg0   |
 936 //         |  ...         |
 937 //         |  java argn   |
 938 //         |              |   <-   R15_esp
 939 //         |              |
 940 //         |--------------|
 941 //         | abi_112      |
 942 //         |              |   <-   R1_SP
 943 //         |==============|
 944 //
 945 //
 946 // After:
 947 //
 948 //         |  ...         |
 949 //         |  java arg0   |<-   R18_locals
 950 //         |  ...         |
 951 //         |  java argn   |
 952 //         |--------------|
 953 //         |              |
 954 //         |  java locals |
 955 //         |              |
 956 //         |--------------|
 957 //         |  abi_48      |
 958 //         |==============|
 959 //         |              |
 960 //         |   istate     |
 961 //         |              |
 962 //         |--------------|
 963 //         |   monitor    |<-   R26_monitor
 964 //         |--------------|
 965 //         |              |<-   R15_esp
 966 //         | expression   |
 967 //         | stack        |
 968 //         |              |
 969 //         |--------------|
 970 //         |              |
 971 //         | abi_112      |<-   R1_SP
 972 //         |==============|
 973 //
 974 // The top most frame needs an abi space of 112 bytes. This space is needed,
 975 // since we call to c. The c function may spill their arguments to the caller
 976 // frame. When we call to java, we don't need these spill slots. In order to save
 977 // space on the stack, we resize the caller. However, java locals reside in
 978 // the caller frame and the frame has to be increased. The frame_size for the
 979 // current frame was calculated based on max_stack as size for the expression
 980 // stack. At the call, just a part of the expression stack might be used.
 981 // We don't want to waste this space and cut the frame back accordingly.
 982 // The resulting amount for resizing is calculated as follows:
 983 // resize =   (number_of_locals - number_of_arguments) * slot_size
 984 //          + (R1_SP - R15_esp) + 48
 985 //
 986 // The size for the callee frame is calculated:
 987 // framesize = 112 + max_stack + monitor + state_size
 988 //
 989 // maxstack:   Max number of slots on the expression stack, loaded from the method.
 990 // monitor:    We statically reserve room for one monitor object.
 991 // state_size: We save the current state of the interpreter to this area.
 992 //
 993 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
 994   Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
 995            top_frame_size      = R7_ARG5,
 996            Rconst_method       = R8_ARG6;
 997 
 998   assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size);
 999 
1000   __ ld(Rconst_method, method_(const));
1001   __ lhz(Rsize_of_parameters /* number of params */,
1002          in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
1003   if (native_call) {
1004     // If we're calling a native method, we reserve space for the worst-case signature
1005     // handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2).
1006     // We add two slots to the parameter_count, one for the jni
1007     // environment and one for a possible native mirror.
1008     Label skip_native_calculate_max_stack;
1009     __ addi(top_frame_size, Rsize_of_parameters, 2);
1010     __ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters);
1011     __ bge(CCR0, skip_native_calculate_max_stack);
1012     __ li(top_frame_size, Argument::n_register_parameters);
1013     __ bind(skip_native_calculate_max_stack);
1014     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
1015     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
1016     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
1017     assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
1018   } else {
1019     __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
1020     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
1021     __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
1022     __ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
1023     __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
1024     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
1025     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
1026     __ add(parent_frame_resize, parent_frame_resize, R11_scratch1);
1027   }
1028 
1029   // Compute top frame size.
1030   __ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size);
1031 
1032   // Cut back area between esp and max_stack.
1033   __ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize);
1034 
1035   __ round_to(top_frame_size, frame::alignment_in_bytes);
1036   __ round_to(parent_frame_resize, frame::alignment_in_bytes);
1037   // parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
1038   // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
1039 
1040   if (!native_call) {
1041     // Stack overflow check.
1042     // Native calls don't need the stack size check since they have no
1043     // expression stack and the arguments are already on the stack and
1044     // we only add a handful of words to the stack.
1045     __ add(R11_scratch1, parent_frame_resize, top_frame_size);
1046     generate_stack_overflow_check(R11_scratch1, R12_scratch2);
1047   }
1048 
1049   // Set up interpreter state registers.
1050 
1051   __ add(R18_locals, R15_esp, Rsize_of_parameters);
1052   __ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
1053   __ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache);
1054 
1055   // Set method data pointer.
1056   if (ProfileInterpreter) {
1057     Label zero_continue;
1058     __ ld(R28_mdx, method_(method_data));
1059     __ cmpdi(CCR0, R28_mdx, 0);
1060     __ beq(CCR0, zero_continue);
1061     __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
1062     __ bind(zero_continue);
1063   }
1064 
1065   if (native_call) {
1066     __ li(R14_bcp, 0); // Must initialize.
1067   } else {
1068     __ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method);
1069   }
1070 
1071   // Resize parent frame.
1072   __ mflr(R12_scratch2);
1073   __ neg(parent_frame_resize, parent_frame_resize);
1074   __ resize_frame(parent_frame_resize, R11_scratch1);
1075   __ std(R12_scratch2, _abi(lr), R1_SP);
1076 
1077   // Get mirror and store it in the frame as GC root for this Method*.
1078   __ load_mirror_from_const_method(R12_scratch2, Rconst_method);
1079 
1080   __ addi(R26_monitor, R1_SP, - frame::ijava_state_size);
1081   __ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
1082 
1083   // Store values.
1084   // R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls
1085   // in InterpreterMacroAssembler::call_from_interpreter.
1086   __ std(R19_method, _ijava_state_neg(method), R1_SP);
1087   __ std(R12_scratch2, _ijava_state_neg(mirror), R1_SP);
1088   __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
1089   __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
1090   __ std(R18_locals, _ijava_state_neg(locals), R1_SP);
1091 
1092   // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
1093   // be found in the frame after save_interpreter_state is done. This is always true
1094   // for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
1095   // because e.g. frame::interpreter_frame_bcp() will not access the correct value
1096   // (Enhanced Stack Trace).
1097   // The signal handler does not save the interpreter state into the frame.
1098   __ li(R0, 0);
1099 #ifdef ASSERT
1100   // Fill remaining slots with constants.
1101   __ load_const_optimized(R11_scratch1, 0x5afe);
1102   __ load_const_optimized(R12_scratch2, 0xdead);
1103 #endif
1104   // We have to initialize some frame slots for native calls (accessed by GC).
1105   if (native_call) {
1106     __ std(R26_monitor, _ijava_state_neg(monitors), R1_SP);
1107     __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
1108     if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
1109   }
1110 #ifdef ASSERT
1111   else {
1112     __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
1113     __ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP);
1114     __ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP);
1115   }
1116   __ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP);
1117   __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
1118   __ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP);
1119   __ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP);
1120 #endif
1121   __ subf(R12_scratch2, top_frame_size, R1_SP);
1122   __ std(R0, _ijava_state_neg(oop_tmp), R1_SP);
1123   __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
1124 
1125   // Push top frame.
1126   __ push_frame(top_frame_size, R11_scratch1);
1127 }
1128 
1129 // End of helpers
1130 
1131 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1132 
1133   // Decide what to do: Use same platform specific instructions and runtime calls as compilers.
1134   bool use_instruction = false;
1135   address runtime_entry = NULL;
1136   int num_args = 1;
1137   bool double_precision = true;
1138 
1139   // PPC64 specific:
1140   switch (kind) {
1141     case Interpreter::java_lang_math_sqrt: use_instruction = VM_Version::has_fsqrt(); break;
1142     case Interpreter::java_lang_math_abs:  use_instruction = true; break;
1143     case Interpreter::java_lang_math_fmaF:
1144     case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break;
1145     default: break; // Fall back to runtime call.
1146   }
1147 
1148   switch (kind) {
1149     case Interpreter::java_lang_math_sin  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);   break;
1150     case Interpreter::java_lang_math_cos  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);   break;
1151     case Interpreter::java_lang_math_tan  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);   break;
1152     case Interpreter::java_lang_math_abs  : /* run interpreted */ break;
1153     case Interpreter::java_lang_math_sqrt : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt);  break;
1154     case Interpreter::java_lang_math_log  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);   break;
1155     case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break;
1156     case Interpreter::java_lang_math_pow  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break;
1157     case Interpreter::java_lang_math_exp  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);   break;
1158     case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break;
1159     case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break;
1160     default: ShouldNotReachHere();
1161   }
1162 
1163   // Use normal entry if neither instruction nor runtime call is used.
1164   if (!use_instruction && runtime_entry == NULL) return NULL;
1165 
1166   address entry = __ pc();
1167 
1168   // Load arguments
1169   assert(num_args <= 13, "passed in registers");
1170   if (double_precision) {
1171     int offset = (2 * num_args - 1) * Interpreter::stackElementSize;
1172     for (int i = 0; i < num_args; ++i) {
1173       __ lfd(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
1174       offset -= 2 * Interpreter::stackElementSize;
1175     }
1176   } else {
1177     int offset = num_args * Interpreter::stackElementSize;
1178     for (int i = 0; i < num_args; ++i) {
1179       __ lfs(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
1180       offset -= Interpreter::stackElementSize;
1181     }
1182   }
1183 
1184   // Pop c2i arguments (if any) off when we return.
1185 #ifdef ASSERT
1186   __ ld(R9_ARG7, 0, R1_SP);
1187   __ ld(R10_ARG8, 0, R21_sender_SP);
1188   __ cmpd(CCR0, R9_ARG7, R10_ARG8);
1189   __ asm_assert_eq("backlink", 0x545);
1190 #endif // ASSERT
1191   __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1192 
1193   if (use_instruction) {
1194     switch (kind) {
1195       case Interpreter::java_lang_math_sqrt: __ fsqrt(F1_RET, F1);          break;
1196       case Interpreter::java_lang_math_abs:  __ fabs(F1_RET, F1);           break;
1197       case Interpreter::java_lang_math_fmaF: __ fmadds(F1_RET, F1, F2, F3); break;
1198       case Interpreter::java_lang_math_fmaD: __ fmadd(F1_RET, F1, F2, F3);  break;
1199       default: ShouldNotReachHere();
1200     }
1201   } else {
1202     // Comment: Can use tail call if the unextended frame is always C ABI compliant:
1203     //__ load_const_optimized(R12_scratch2, runtime_entry, R0);
1204     //__ call_c_and_return_to_caller(R12_scratch2);
1205 
1206     // Push a new C frame and save LR.
1207     __ save_LR_CR(R0);
1208     __ push_frame_reg_args(0, R11_scratch1);
1209 
1210     __ call_VM_leaf(runtime_entry);
1211 
1212     // Pop the C frame and restore LR.
1213     __ pop_frame();
1214     __ restore_LR_CR(R0);
1215   }
1216 
1217   __ blr();
1218 
1219   __ flush();
1220 
1221   return entry;
1222 }
1223 
1224 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1225   // Quick & dirty stack overflow checking: bang the stack & handle trap.
1226   // Note that we do the banging after the frame is setup, since the exception
1227   // handling code expects to find a valid interpreter frame on the stack.
1228   // Doing the banging earlier fails if the caller frame is not an interpreter
1229   // frame.
1230   // (Also, the exception throwing code expects to unlock any synchronized
1231   // method receiever, so do the banging after locking the receiver.)
1232 
1233   // Bang each page in the shadow zone. We can't assume it's been done for
1234   // an interpreter frame with greater than a page of locals, so each page
1235   // needs to be checked.  Only true for non-native.
1236   if (UseStackBanging) {
1237     const int page_size = os::vm_page_size();
1238     const int n_shadow_pages = ((int)JavaThread::stack_shadow_zone_size()) / page_size;
1239     const int start_page = native_call ? n_shadow_pages : 1;
1240     BLOCK_COMMENT("bang_stack_shadow_pages:");
1241     for (int pages = start_page; pages <= n_shadow_pages; pages++) {
1242       __ bang_stack_with_offset(pages*page_size);
1243     }
1244   }
1245 }
1246 
1247 // Interpreter stub for calling a native method. (asm interpreter)
1248 // This sets up a somewhat different looking stack for calling the
1249 // native method than the typical interpreter frame setup.
1250 //
1251 // On entry:
1252 //   R19_method    - method
1253 //   R16_thread    - JavaThread*
1254 //   R15_esp       - intptr_t* sender tos
1255 //
1256 //   abstract stack (grows up)
1257 //     [  IJava (caller of JNI callee)  ]  <-- ASP
1258 //        ...
1259 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1260 
1261   address entry = __ pc();
1262 
1263   const bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1264 
1265   // -----------------------------------------------------------------------------
1266   // Allocate a new frame that represents the native callee (i2n frame).
1267   // This is not a full-blown interpreter frame, but in particular, the
1268   // following registers are valid after this:
1269   // - R19_method
1270   // - R18_local (points to start of arguments to native function)
1271   //
1272   //   abstract stack (grows up)
1273   //     [  IJava (caller of JNI callee)  ]  <-- ASP
1274   //        ...
1275 
1276   const Register signature_handler_fd = R11_scratch1;
1277   const Register pending_exception    = R0;
1278   const Register result_handler_addr  = R31;
1279   const Register native_method_fd     = R11_scratch1;
1280   const Register access_flags         = R22_tmp2;
1281   const Register active_handles       = R11_scratch1; // R26_monitor saved to state.
1282   const Register sync_state           = R12_scratch2;
1283   const Register sync_state_addr      = sync_state;   // Address is dead after use.
1284   const Register suspend_flags        = R11_scratch1;
1285 
1286   //=============================================================================
1287   // Allocate new frame and initialize interpreter state.
1288 
1289   Label exception_return;
1290   Label exception_return_sync_check;
1291   Label stack_overflow_return;
1292 
1293   // Generate new interpreter state and jump to stack_overflow_return in case of
1294   // a stack overflow.
1295   //generate_compute_interpreter_state(stack_overflow_return);
1296 
1297   Register size_of_parameters = R22_tmp2;
1298 
1299   generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
1300 
1301   //=============================================================================
1302   // Increment invocation counter. On overflow, entry to JNI method
1303   // will be compiled.
1304   Label invocation_counter_overflow, continue_after_compile;
1305   if (inc_counter) {
1306     if (synchronized) {
1307       // Since at this point in the method invocation the exception handler
1308       // would try to exit the monitor of synchronized methods which hasn't
1309       // been entered yet, we set the thread local variable
1310       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1311       // runtime, exception handling i.e. unlock_if_synchronized_method will
1312       // check this thread local flag.
1313       // This flag has two effects, one is to force an unwind in the topmost
1314       // interpreter frame and not perform an unlock while doing so.
1315       __ li(R0, 1);
1316       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1317     }
1318     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1319 
1320     BIND(continue_after_compile);
1321   }
1322 
1323   bang_stack_shadow_pages(true);
1324 
1325   if (inc_counter) {
1326     // Reset the _do_not_unlock_if_synchronized flag.
1327     if (synchronized) {
1328       __ li(R0, 0);
1329       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1330     }
1331   }
1332 
1333   // access_flags = method->access_flags();
1334   // Load access flags.
1335   assert(access_flags->is_nonvolatile(),
1336          "access_flags must be in a non-volatile register");
1337   // Type check.
1338   assert(4 == sizeof(AccessFlags), "unexpected field size");
1339   __ lwz(access_flags, method_(access_flags));
1340 
1341   // We don't want to reload R19_method and access_flags after calls
1342   // to some helper functions.
1343   assert(R19_method->is_nonvolatile(),
1344          "R19_method must be a non-volatile register");
1345 
1346   // Check for synchronized methods. Must happen AFTER invocation counter
1347   // check, so method is not locked if counter overflows.
1348 
1349   if (synchronized) {
1350     lock_method(access_flags, R11_scratch1, R12_scratch2, true);
1351 
1352     // Update monitor in state.
1353     __ ld(R11_scratch1, 0, R1_SP);
1354     __ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1);
1355   }
1356 
1357   // jvmti/jvmpi support
1358   __ notify_method_entry();
1359 
1360   //=============================================================================
1361   // Get and call the signature handler.
1362 
1363   __ ld(signature_handler_fd, method_(signature_handler));
1364   Label call_signature_handler;
1365 
1366   __ cmpdi(CCR0, signature_handler_fd, 0);
1367   __ bne(CCR0, call_signature_handler);
1368 
1369   // Method has never been called. Either generate a specialized
1370   // handler or point to the slow one.
1371   //
1372   // Pass parameter 'false' to avoid exception check in call_VM.
1373   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
1374 
1375   // Check for an exception while looking up the target method. If we
1376   // incurred one, bail.
1377   __ ld(pending_exception, thread_(pending_exception));
1378   __ cmpdi(CCR0, pending_exception, 0);
1379   __ bne(CCR0, exception_return_sync_check); // Has pending exception.
1380 
1381   // Reload signature handler, it may have been created/assigned in the meanwhile.
1382   __ ld(signature_handler_fd, method_(signature_handler));
1383   __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
1384 
1385   BIND(call_signature_handler);
1386 
1387   // Before we call the signature handler we push a new frame to
1388   // protect the interpreter frame volatile registers when we return
1389   // from jni but before we can get back to Java.
1390 
1391   // First set the frame anchor while the SP/FP registers are
1392   // convenient and the slow signature handler can use this same frame
1393   // anchor.
1394 
1395   // We have a TOP_IJAVA_FRAME here, which belongs to us.
1396   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
1397 
1398   // Now the interpreter frame (and its call chain) have been
1399   // invalidated and flushed. We are now protected against eager
1400   // being enabled in native code. Even if it goes eager the
1401   // registers will be reloaded as clean and we will invalidate after
1402   // the call so no spurious flush should be possible.
1403 
1404   // Call signature handler and pass locals address.
1405   //
1406   // Our signature handlers copy required arguments to the C stack
1407   // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
1408   __ mr(R3_ARG1, R18_locals);
1409 #if !defined(ABI_ELFv2)
1410   __ ld(signature_handler_fd, 0, signature_handler_fd);
1411 #endif
1412 
1413   __ call_stub(signature_handler_fd);
1414 
1415   // Remove the register parameter varargs slots we allocated in
1416   // compute_interpreter_state. SP+16 ends up pointing to the ABI
1417   // outgoing argument area.
1418   //
1419   // Not needed on PPC64.
1420   //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);
1421 
1422   assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
1423   // Save across call to native method.
1424   __ mr(result_handler_addr, R3_RET);
1425 
1426   __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
1427 
1428   // Set up fixed parameters and call the native method.
1429   // If the method is static, get mirror into R4_ARG2.
1430   {
1431     Label method_is_not_static;
1432     // Access_flags is non-volatile and still, no need to restore it.
1433 
1434     // Restore access flags.
1435     __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
1436     __ bfalse(CCR0, method_is_not_static);
1437 
1438     __ ld(R11_scratch1, _abi(callers_sp), R1_SP);
1439     // Load mirror from interpreter frame.
1440     __ ld(R12_scratch2, _ijava_state_neg(mirror), R11_scratch1);
1441     // R4_ARG2 = &state->_oop_temp;
1442     __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
1443     __ std(R12_scratch2/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
1444     BIND(method_is_not_static);
1445   }
1446 
1447   // At this point, arguments have been copied off the stack into
1448   // their JNI positions. Oops are boxed in-place on the stack, with
1449   // handles copied to arguments. The result handler address is in a
1450   // register.
1451 
1452   // Pass JNIEnv address as first parameter.
1453   __ addir(R3_ARG1, thread_(jni_environment));
1454 
1455   // Load the native_method entry before we change the thread state.
1456   __ ld(native_method_fd, method_(native_function));
1457 
1458   //=============================================================================
1459   // Transition from _thread_in_Java to _thread_in_native. As soon as
1460   // we make this change the safepoint code needs to be certain that
1461   // the last Java frame we established is good. The pc in that frame
1462   // just needs to be near here not an actual return address.
1463 
1464   // We use release_store_fence to update values like the thread state, where
1465   // we don't want the current thread to continue until all our prior memory
1466   // accesses (including the new thread state) are visible to other threads.
1467   __ li(R0, _thread_in_native);
1468   __ release();
1469 
1470   // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
1471   __ stw(R0, thread_(thread_state));
1472 
1473   //=============================================================================
1474   // Call the native method. Argument registers must not have been
1475   // overwritten since "__ call_stub(signature_handler);" (except for
1476   // ARG1 and ARG2 for static methods).
1477   __ call_c(native_method_fd);
1478 
1479   __ li(R0, 0);
1480   __ ld(R11_scratch1, 0, R1_SP);
1481   __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1482   __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1483   __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
1484 
1485   // Note: C++ interpreter needs the following here:
1486   // The frame_manager_lr field, which we use for setting the last
1487   // java frame, gets overwritten by the signature handler. Restore
1488   // it now.
1489   //__ get_PC_trash_LR(R11_scratch1);
1490   //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
1491 
1492   // Because of GC R19_method may no longer be valid.
1493 
1494   // Block, if necessary, before resuming in _thread_in_Java state.
1495   // In order for GC to work, don't clear the last_Java_sp until after
1496   // blocking.
1497 
1498   //=============================================================================
1499   // Switch thread to "native transition" state before reading the
1500   // synchronization state. This additional state is necessary
1501   // because reading and testing the synchronization state is not
1502   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
1503   // in _thread_in_native state, loads _not_synchronized and is
1504   // preempted. VM thread changes sync state to synchronizing and
1505   // suspends threads for GC. Thread A is resumed to finish this
1506   // native method, but doesn't block here since it didn't see any
1507   // synchronization in progress, and escapes.
1508 
1509   // We use release_store_fence to update values like the thread state, where
1510   // we don't want the current thread to continue until all our prior memory
1511   // accesses (including the new thread state) are visible to other threads.
1512   __ li(R0/*thread_state*/, _thread_in_native_trans);
1513   __ release();
1514   __ stw(R0/*thread_state*/, thread_(thread_state));
1515   if (UseMembar) {
1516     __ fence();
1517   }
1518   // Write serialization page so that the VM thread can do a pseudo remote
1519   // membar. We use the current thread pointer to calculate a thread
1520   // specific offset to write to within the page. This minimizes bus
1521   // traffic due to cache line collision.
1522   else {
1523     __ serialize_memory(R16_thread, R11_scratch1, R12_scratch2);
1524   }
1525 
1526   // Now before we return to java we must look for a current safepoint
1527   // (a new safepoint can not start since we entered native_trans).
1528   // We must check here because a current safepoint could be modifying
1529   // the callers registers right this moment.
1530 
1531   // Acquire isn't strictly necessary here because of the fence, but
1532   // sync_state is declared to be volatile, so we do it anyway
1533   // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
1534   int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1535 
1536   // TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
1537   __ lwz(sync_state, sync_state_offs, sync_state_addr);
1538 
1539   // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
1540   __ lwz(suspend_flags, thread_(suspend_flags));
1541 
1542   Label sync_check_done;
1543   Label do_safepoint;
1544   // No synchronization in progress nor yet synchronized.
1545   __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1546   // Not suspended.
1547   __ cmpwi(CCR1, suspend_flags, 0);
1548 
1549   __ bne(CCR0, do_safepoint);
1550   __ beq(CCR1, sync_check_done);
1551   __ bind(do_safepoint);
1552   __ isync();
1553   // Block. We do the call directly and leave the current
1554   // last_Java_frame setup undisturbed. We must save any possible
1555   // native result across the call. No oop is present.
1556 
1557   __ mr(R3_ARG1, R16_thread);
1558 #if defined(ABI_ELFv2)
1559   __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1560             relocInfo::none);
1561 #else
1562   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
1563             relocInfo::none);
1564 #endif
1565 
1566   __ bind(sync_check_done);
1567 
1568   //=============================================================================
1569   // <<<<<< Back in Interpreter Frame >>>>>
1570 
1571   // We are in thread_in_native_trans here and back in the normal
1572   // interpreter frame. We don't have to do anything special about
1573   // safepoints and we can switch to Java mode anytime we are ready.
1574 
1575   // Note: frame::interpreter_frame_result has a dependency on how the
1576   // method result is saved across the call to post_method_exit. For
1577   // native methods it assumes that the non-FPU/non-void result is
1578   // saved in _native_lresult and a FPU result in _native_fresult. If
1579   // this changes then the interpreter_frame_result implementation
1580   // will need to be updated too.
1581 
1582   // On PPC64, we have stored the result directly after the native call.
1583 
1584   //=============================================================================
1585   // Back in Java
1586 
1587   // We use release_store_fence to update values like the thread state, where
1588   // we don't want the current thread to continue until all our prior memory
1589   // accesses (including the new thread state) are visible to other threads.
1590   __ li(R0/*thread_state*/, _thread_in_Java);
1591   __ release();
1592   __ stw(R0/*thread_state*/, thread_(thread_state));
1593 
1594   if (CheckJNICalls) {
1595     // clear_pending_jni_exception_check
1596     __ load_const_optimized(R0, 0L);
1597     __ st_ptr(R0, JavaThread::pending_jni_exception_check_fn_offset(), R16_thread);
1598   }
1599 
1600   __ reset_last_Java_frame();
1601 
1602   // Jvmdi/jvmpi support. Whether we've got an exception pending or
1603   // not, and whether unlocking throws an exception or not, we notify
1604   // on native method exit. If we do have an exception, we'll end up
1605   // in the caller's context to handle it, so if we don't do the
1606   // notify here, we'll drop it on the floor.
1607   __ notify_method_exit(true/*native method*/,
1608                         ilgl /*illegal state (not used for native methods)*/,
1609                         InterpreterMacroAssembler::NotifyJVMTI,
1610                         false /*check_exceptions*/);
1611 
1612   //=============================================================================
1613   // Handle exceptions
1614 
1615   if (synchronized) {
1616     // Don't check for exceptions since we're still in the i2n frame. Do that
1617     // manually afterwards.
1618     __ unlock_object(R26_monitor, false); // Can also unlock methods.
1619   }
1620 
1621   // Reset active handles after returning from native.
1622   // thread->active_handles()->clear();
1623   __ ld(active_handles, thread_(active_handles));
1624   // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
1625   __ li(R0, 0);
1626   __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);
1627 
1628   Label exception_return_sync_check_already_unlocked;
1629   __ ld(R0/*pending_exception*/, thread_(pending_exception));
1630   __ cmpdi(CCR0, R0/*pending_exception*/, 0);
1631   __ bne(CCR0, exception_return_sync_check_already_unlocked);
1632 
1633   //-----------------------------------------------------------------------------
1634   // No exception pending.
1635 
1636   // Move native method result back into proper registers and return.
1637   // Invoke result handler (may unbox/promote).
1638   __ ld(R11_scratch1, 0, R1_SP);
1639   __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1640   __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1641   __ call_stub(result_handler_addr);
1642 
1643   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1644 
1645   // Must use the return pc which was loaded from the caller's frame
1646   // as the VM uses return-pc-patching for deoptimization.
1647   __ mtlr(R0);
1648   __ blr();
1649 
1650   //-----------------------------------------------------------------------------
1651   // An exception is pending. We call into the runtime only if the
1652   // caller was not interpreted. If it was interpreted the
1653   // interpreter will do the correct thing. If it isn't interpreted
1654   // (call stub/compiled code) we will change our return and continue.
1655 
1656   BIND(exception_return_sync_check);
1657 
1658   if (synchronized) {
1659     // Don't check for exceptions since we're still in the i2n frame. Do that
1660     // manually afterwards.
1661     __ unlock_object(R26_monitor, false); // Can also unlock methods.
1662   }
1663   BIND(exception_return_sync_check_already_unlocked);
1664 
1665   const Register return_pc = R31;
1666 
1667   __ ld(return_pc, 0, R1_SP);
1668   __ ld(return_pc, _abi(lr), return_pc);
1669 
1670   // Get the address of the exception handler.
1671   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1672                   R16_thread,
1673                   return_pc /* return pc */);
1674   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
1675 
1676   // Load the PC of the the exception handler into LR.
1677   __ mtlr(R3_RET);
1678 
1679   // Load exception into R3_ARG1 and clear pending exception in thread.
1680   __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
1681   __ li(R4_ARG2, 0);
1682   __ std(R4_ARG2, thread_(pending_exception));
1683 
1684   // Load the original return pc into R4_ARG2.
1685   __ mr(R4_ARG2/*issuing_pc*/, return_pc);
1686 
1687   // Return to exception handler.
1688   __ blr();
1689 
1690   //=============================================================================
1691   // Counter overflow.
1692 
1693   if (inc_counter) {
1694     // Handle invocation counter overflow.
1695     __ bind(invocation_counter_overflow);
1696 
1697     generate_counter_overflow(continue_after_compile);
1698   }
1699 
1700   return entry;
1701 }
1702 
1703 // Generic interpreted method entry to (asm) interpreter.
1704 //
1705 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1706   bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1707   address entry = __ pc();
1708   // Generate the code to allocate the interpreter stack frame.
1709   Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
1710            Rsize_of_locals     = R5_ARG3; // Written by generate_fixed_frame.
1711 
1712   // Does also a stack check to assure this frame fits on the stack.
1713   generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
1714 
1715   // --------------------------------------------------------------------------
1716   // Zero out non-parameter locals.
1717   // Note: *Always* zero out non-parameter locals as Sparc does. It's not
1718   // worth to ask the flag, just do it.
1719   Register Rslot_addr = R6_ARG4,
1720            Rnum       = R7_ARG5;
1721   Label Lno_locals, Lzero_loop;
1722 
1723   // Set up the zeroing loop.
1724   __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
1725   __ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
1726   __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
1727   __ beq(CCR0, Lno_locals);
1728   __ li(R0, 0);
1729   __ mtctr(Rnum);
1730 
1731   // The zero locals loop.
1732   __ bind(Lzero_loop);
1733   __ std(R0, 0, Rslot_addr);
1734   __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
1735   __ bdnz(Lzero_loop);
1736 
1737   __ bind(Lno_locals);
1738 
1739   // --------------------------------------------------------------------------
1740   // Counter increment and overflow check.
1741   Label invocation_counter_overflow,
1742         profile_method,
1743         profile_method_continue;
1744   if (inc_counter || ProfileInterpreter) {
1745 
1746     Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
1747     if (synchronized) {
1748       // Since at this point in the method invocation the exception handler
1749       // would try to exit the monitor of synchronized methods which hasn't
1750       // been entered yet, we set the thread local variable
1751       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1752       // runtime, exception handling i.e. unlock_if_synchronized_method will
1753       // check this thread local flag.
1754       // This flag has two effects, one is to force an unwind in the topmost
1755       // interpreter frame and not perform an unlock while doing so.
1756       __ li(R0, 1);
1757       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1758     }
1759 
1760     // Argument and return type profiling.
1761     __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4);
1762 
1763     // Increment invocation counter and check for overflow.
1764     if (inc_counter) {
1765       generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1766     }
1767 
1768     __ bind(profile_method_continue);
1769   }
1770 
1771   bang_stack_shadow_pages(false);
1772 
1773   if (inc_counter || ProfileInterpreter) {
1774     // Reset the _do_not_unlock_if_synchronized flag.
1775     if (synchronized) {
1776       __ li(R0, 0);
1777       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1778     }
1779   }
1780 
1781   // --------------------------------------------------------------------------
1782   // Locking of synchronized methods. Must happen AFTER invocation_counter
1783   // check and stack overflow check, so method is not locked if overflows.
1784   if (synchronized) {
1785     lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
1786   }
1787 #ifdef ASSERT
1788   else {
1789     Label Lok;
1790     __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
1791     __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
1792     __ asm_assert_eq("method needs synchronization", 0x8521);
1793     __ bind(Lok);
1794   }
1795 #endif // ASSERT
1796 
1797   __ verify_thread();
1798 
1799   // --------------------------------------------------------------------------
1800   // JVMTI support
1801   __ notify_method_entry();
1802 
1803   // --------------------------------------------------------------------------
1804   // Start executing instructions.
1805   __ dispatch_next(vtos);
1806 
1807   // --------------------------------------------------------------------------
1808   // Out of line counter overflow and MDO creation code.
1809   if (ProfileInterpreter) {
1810     // We have decided to profile this method in the interpreter.
1811     __ bind(profile_method);
1812     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1813     __ set_method_data_pointer_for_bcp();
1814     __ b(profile_method_continue);
1815   }
1816 
1817   if (inc_counter) {
1818     // Handle invocation counter overflow.
1819     __ bind(invocation_counter_overflow);
1820     generate_counter_overflow(profile_method_continue);
1821   }
1822   return entry;
1823 }
1824 
1825 // CRC32 Intrinsics.
1826 //
1827 // Contract on scratch and work registers.
1828 // =======================================
1829 //
1830 // On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers.
1831 // You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set.
1832 // You can't rely on these registers across calls.
1833 //
1834 // The generators for CRC32_update and for CRC32_updateBytes use the
1835 // scratch/work register set internally, passing the work registers
1836 // as arguments to the MacroAssembler emitters as required.
1837 //
1838 // R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments.
1839 // Their contents is not constant but may change according to the requirements
1840 // of the emitted code.
1841 //
1842 // All other registers from the scratch/work register set are used "internally"
1843 // and contain garbage (i.e. unpredictable values) once blr() is reached.
1844 // Basically, only R3_RET contains a defined value which is the function result.
1845 //
1846 /**
1847  * Method entry for static native methods:
1848  *   int java.util.zip.CRC32.update(int crc, int b)
1849  */
1850 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1851   if (UseCRC32Intrinsics) {
1852     address start = __ pc();  // Remember stub start address (is rtn value).
1853     Label slow_path;
1854 
1855     // Safepoint check
1856     const Register sync_state = R11_scratch1;
1857     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1858     __ lwz(sync_state, sync_state_offs, sync_state);
1859     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1860     __ bne(CCR0, slow_path);
1861 
1862     // We don't generate local frame and don't align stack because
1863     // we not even call stub code (we generate the code inline)
1864     // and there is no safepoint on this path.
1865 
1866     // Load java parameters.
1867     // R15_esp is callers operand stack pointer, i.e. it points to the parameters.
1868     const Register argP    = R15_esp;
1869     const Register crc     = R3_ARG1;  // crc value
1870     const Register data    = R4_ARG2;  // address of java byte value (kernel_crc32 needs address)
1871     const Register dataLen = R5_ARG3;  // source data len (1 byte). Not used because calling the single-byte emitter.
1872     const Register table   = R6_ARG4;  // address of crc32 table
1873     const Register tmp     = dataLen;  // Reuse unused len register to show we don't actually need a separate tmp here.
1874 
1875     BLOCK_COMMENT("CRC32_update {");
1876 
1877     // Arguments are reversed on java expression stack
1878 #ifdef VM_LITTLE_ENDIAN
1879     __ addi(data, argP, 0+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
1880                                        // Being passed as an int, the single byte is at offset +0.
1881 #else
1882     __ addi(data, argP, 3+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
1883                                        // Being passed from java as an int, the single byte is at offset +3.
1884 #endif
1885     __ lwz(crc,  2*wordSize, argP);    // Current crc state, zero extend to 64 bit to have a clean register.
1886 
1887     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
1888     __ kernel_crc32_singleByte(crc, data, dataLen, table, tmp, true);
1889 
1890     // Restore caller sp for c2i case and return.
1891     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1892     __ blr();
1893 
1894     // Generate a vanilla native entry as the slow path.
1895     BLOCK_COMMENT("} CRC32_update");
1896     BIND(slow_path);
1897     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1898     return start;
1899   }
1900 
1901   return NULL;
1902 }
1903 
1904 
1905 /**
1906  * Method entry for static native methods:
1907  *   int java.util.zip.CRC32.updateBytes(     int crc, byte[] b,  int off, int len)
1908  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
1909  */
1910 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1911   if (UseCRC32Intrinsics) {
1912     address start = __ pc();  // Remember stub start address (is rtn value).
1913     Label slow_path;
1914 
1915     // Safepoint check
1916     const Register sync_state = R11_scratch1;
1917     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1918     __ lwz(sync_state, sync_state_offs, sync_state);
1919     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1920     __ bne(CCR0, slow_path);
1921 
1922     // We don't generate local frame and don't align stack because
1923     // we not even call stub code (we generate the code inline)
1924     // and there is no safepoint on this path.
1925 
1926     // Load parameters.
1927     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1928     const Register argP    = R15_esp;
1929     const Register crc     = R3_ARG1;  // crc value
1930     const Register data    = R4_ARG2;  // address of java byte array
1931     const Register dataLen = R5_ARG3;  // source data len
1932     const Register table   = R6_ARG4;  // address of crc32 table
1933 
1934     const Register t0      = R9;       // scratch registers for crc calculation
1935     const Register t1      = R10;
1936     const Register t2      = R11;
1937     const Register t3      = R12;
1938 
1939     const Register tc0     = R2;       // registers to hold pre-calculated column addresses
1940     const Register tc1     = R7;
1941     const Register tc2     = R8;
1942     const Register tc3     = table;    // table address is reconstructed at the end of kernel_crc32_* emitters
1943 
1944     const Register tmp     = t0;       // Only used very locally to calculate byte buffer address.
1945 
1946     // Arguments are reversed on java expression stack.
1947     // Calculate address of start element.
1948     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
1949       BLOCK_COMMENT("CRC32_updateByteBuffer {");
1950       // crc     @ (SP + 5W) (32bit)
1951       // buf     @ (SP + 3W) (64bit ptr to long array)
1952       // off     @ (SP + 2W) (32bit)
1953       // dataLen @ (SP + 1W) (32bit)
1954       // data = buf + off
1955       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1956       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1957       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1958       __ lwz( crc,     5*wordSize, argP);  // current crc state
1959       __ add( data, data, tmp);            // Add byte buffer offset.
1960     } else {                                                         // Used for "updateBytes update".
1961       BLOCK_COMMENT("CRC32_updateBytes {");
1962       // crc     @ (SP + 4W) (32bit)
1963       // buf     @ (SP + 3W) (64bit ptr to byte array)
1964       // off     @ (SP + 2W) (32bit)
1965       // dataLen @ (SP + 1W) (32bit)
1966       // data = buf + off + base_offset
1967       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1968       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1969       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1970       __ add( data, data, tmp);            // add byte buffer offset
1971       __ lwz( crc,     4*wordSize, argP);  // current crc state
1972       __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1973     }
1974 
1975     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
1976 
1977     // Performance measurements show the 1word and 2word variants to be almost equivalent,
1978     // with very light advantages for the 1word variant. We chose the 1word variant for
1979     // code compactness.
1980     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3, true);
1981 
1982     // Restore caller sp for c2i case and return.
1983     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1984     __ blr();
1985 
1986     // Generate a vanilla native entry as the slow path.
1987     BLOCK_COMMENT("} CRC32_updateBytes(Buffer)");
1988     BIND(slow_path);
1989     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1990     return start;
1991   }
1992 
1993   return NULL;
1994 }
1995 
1996 
1997 /**
1998  * Method entry for intrinsic-candidate (non-native) methods:
1999  *   int java.util.zip.CRC32C.updateBytes(           int crc, byte[] b,  int off, int end)
2000  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int end)
2001  * Unlike CRC32, CRC32C does not have any methods marked as native
2002  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
2003  **/
2004 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
2005   if (UseCRC32CIntrinsics) {
2006     address start = __ pc();  // Remember stub start address (is rtn value).
2007 
2008     // We don't generate local frame and don't align stack because
2009     // we not even call stub code (we generate the code inline)
2010     // and there is no safepoint on this path.
2011 
2012     // Load parameters.
2013     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
2014     const Register argP    = R15_esp;
2015     const Register crc     = R3_ARG1;  // crc value
2016     const Register data    = R4_ARG2;  // address of java byte array
2017     const Register dataLen = R5_ARG3;  // source data len
2018     const Register table   = R6_ARG4;  // address of crc32c table
2019 
2020     const Register t0      = R9;       // scratch registers for crc calculation
2021     const Register t1      = R10;
2022     const Register t2      = R11;
2023     const Register t3      = R12;
2024 
2025     const Register tc0     = R2;       // registers to hold pre-calculated column addresses
2026     const Register tc1     = R7;
2027     const Register tc2     = R8;
2028     const Register tc3     = table;    // table address is reconstructed at the end of kernel_crc32_* emitters
2029 
2030     const Register tmp     = t0;       // Only used very locally to calculate byte buffer address.
2031 
2032     // Arguments are reversed on java expression stack.
2033     // Calculate address of start element.
2034     if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateDirectByteBuffer".
2035       BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {");
2036       // crc     @ (SP + 5W) (32bit)
2037       // buf     @ (SP + 3W) (64bit ptr to long array)
2038       // off     @ (SP + 2W) (32bit)
2039       // dataLen @ (SP + 1W) (32bit)
2040       // data = buf + off
2041       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
2042       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
2043       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
2044       __ lwz( crc,     5*wordSize, argP);  // current crc state
2045       __ add( data, data, tmp);            // Add byte buffer offset.
2046       __ sub( dataLen, dataLen, tmp);      // (end_index - offset)
2047     } else {                                                         // Used for "updateBytes update".
2048       BLOCK_COMMENT("CRC32C_updateBytes {");
2049       // crc     @ (SP + 4W) (32bit)
2050       // buf     @ (SP + 3W) (64bit ptr to byte array)
2051       // off     @ (SP + 2W) (32bit)
2052       // dataLen @ (SP + 1W) (32bit)
2053       // data = buf + off + base_offset
2054       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
2055       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
2056       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
2057       __ add( data, data, tmp);            // add byte buffer offset
2058       __ sub( dataLen, dataLen, tmp);      // (end_index - offset)
2059       __ lwz( crc,     4*wordSize, argP);  // current crc state
2060       __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
2061     }
2062 
2063     StubRoutines::ppc64::generate_load_crc32c_table_addr(_masm, table);
2064 
2065     // Performance measurements show the 1word and 2word variants to be almost equivalent,
2066     // with very light advantages for the 1word variant. We chose the 1word variant for
2067     // code compactness.
2068     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3, false);
2069 
2070     // Restore caller sp for c2i case and return.
2071     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
2072     __ blr();
2073 
2074     BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}");
2075     return start;
2076   }
2077 
2078   return NULL;
2079 }
2080 
2081 // =============================================================================
2082 // Exceptions
2083 
2084 void TemplateInterpreterGenerator::generate_throw_exception() {
2085   Register Rexception    = R17_tos,
2086            Rcontinuation = R3_RET;
2087 
2088   // --------------------------------------------------------------------------
2089   // Entry point if an method returns with a pending exception (rethrow).
2090   Interpreter::_rethrow_exception_entry = __ pc();
2091   {
2092     __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
2093     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
2094     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
2095 
2096     // Compiled code destroys templateTableBase, reload.
2097     __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
2098   }
2099 
2100   // Entry point if a interpreted method throws an exception (throw).
2101   Interpreter::_throw_exception_entry = __ pc();
2102   {
2103     __ mr(Rexception, R3_RET);
2104 
2105     __ verify_thread();
2106     __ verify_oop(Rexception);
2107 
2108     // Expression stack must be empty before entering the VM in case of an exception.
2109     __ empty_expression_stack();
2110     // Find exception handler address and preserve exception oop.
2111     // Call C routine to find handler and jump to it.
2112     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
2113     __ mtctr(Rcontinuation);
2114     // Push exception for exception handler bytecodes.
2115     __ push_ptr(Rexception);
2116 
2117     // Jump to exception handler (may be remove activation entry!).
2118     __ bctr();
2119   }
2120 
2121   // If the exception is not handled in the current frame the frame is
2122   // removed and the exception is rethrown (i.e. exception
2123   // continuation is _rethrow_exception).
2124   //
2125   // Note: At this point the bci is still the bxi for the instruction
2126   // which caused the exception and the expression stack is
2127   // empty. Thus, for any VM calls at this point, GC will find a legal
2128   // oop map (with empty expression stack).
2129 
2130   // In current activation
2131   // tos: exception
2132   // bcp: exception bcp
2133 
2134   // --------------------------------------------------------------------------
2135   // JVMTI PopFrame support
2136 
2137   Interpreter::_remove_activation_preserving_args_entry = __ pc();
2138   {
2139     // Set the popframe_processing bit in popframe_condition indicating that we are
2140     // currently handling popframe, so that call_VMs that may happen later do not
2141     // trigger new popframe handling cycles.
2142     __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2143     __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
2144     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2145 
2146     // Empty the expression stack, as in normal exception handling.
2147     __ empty_expression_stack();
2148     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
2149 
2150     // Check to see whether we are returning to a deoptimized frame.
2151     // (The PopFrame call ensures that the caller of the popped frame is
2152     // either interpreted or compiled and deoptimizes it if compiled.)
2153     // Note that we don't compare the return PC against the
2154     // deoptimization blob's unpack entry because of the presence of
2155     // adapter frames in C2.
2156     Label Lcaller_not_deoptimized;
2157     Register return_pc = R3_ARG1;
2158     __ ld(return_pc, 0, R1_SP);
2159     __ ld(return_pc, _abi(lr), return_pc);
2160     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
2161     __ cmpdi(CCR0, R3_RET, 0);
2162     __ bne(CCR0, Lcaller_not_deoptimized);
2163 
2164     // The deoptimized case.
2165     // In this case, we can't call dispatch_next() after the frame is
2166     // popped, but instead must save the incoming arguments and restore
2167     // them after deoptimization has occurred.
2168     __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
2169     __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
2170     __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
2171     __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
2172     __ subf(R5_ARG3, R4_ARG2, R5_ARG3);
2173     // Save these arguments.
2174     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
2175 
2176     // Inform deoptimization that it is responsible for restoring these arguments.
2177     __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
2178     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2179 
2180     // Return from the current method into the deoptimization blob. Will eventually
2181     // end up in the deopt interpeter entry, deoptimization prepared everything that
2182     // we will reexecute the call that called us.
2183     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
2184     __ mtlr(return_pc);
2185     __ blr();
2186 
2187     // The non-deoptimized case.
2188     __ bind(Lcaller_not_deoptimized);
2189 
2190     // Clear the popframe condition flag.
2191     __ li(R0, 0);
2192     __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2193 
2194     // Get out of the current method and re-execute the call that called us.
2195     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2196     __ restore_interpreter_state(R11_scratch1);
2197     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
2198     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
2199     if (ProfileInterpreter) {
2200       __ set_method_data_pointer_for_bcp();
2201       __ ld(R11_scratch1, 0, R1_SP);
2202       __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1);
2203     }
2204 #if INCLUDE_JVMTI
2205     Label L_done;
2206 
2207     __ lbz(R11_scratch1, 0, R14_bcp);
2208     __ cmpwi(CCR0, R11_scratch1, Bytecodes::_invokestatic);
2209     __ bne(CCR0, L_done);
2210 
2211     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
2212     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
2213     __ ld(R4_ARG2, 0, R18_locals);
2214     __ MacroAssembler::call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp, false);
2215     __ restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
2216     __ cmpdi(CCR0, R4_ARG2, 0);
2217     __ beq(CCR0, L_done);
2218     __ std(R4_ARG2, wordSize, R15_esp);
2219     __ bind(L_done);
2220 #endif // INCLUDE_JVMTI
2221     __ dispatch_next(vtos);
2222   }
2223   // end of JVMTI PopFrame support
2224 
2225   // --------------------------------------------------------------------------
2226   // Remove activation exception entry.
2227   // This is jumped to if an interpreted method can't handle an exception itself
2228   // (we come from the throw/rethrow exception entry above). We're going to call
2229   // into the VM to find the exception handler in the caller, pop the current
2230   // frame and return the handler we calculated.
2231   Interpreter::_remove_activation_entry = __ pc();
2232   {
2233     __ pop_ptr(Rexception);
2234     __ verify_thread();
2235     __ verify_oop(Rexception);
2236     __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
2237 
2238     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
2239     __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
2240 
2241     __ get_vm_result(Rexception);
2242 
2243     // We are done with this activation frame; find out where to go next.
2244     // The continuation point will be an exception handler, which expects
2245     // the following registers set up:
2246     //
2247     // RET:  exception oop
2248     // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
2249 
2250     Register return_pc = R31; // Needs to survive the runtime call.
2251     __ ld(return_pc, 0, R1_SP);
2252     __ ld(return_pc, _abi(lr), return_pc);
2253     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
2254 
2255     // Remove the current activation.
2256     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2257 
2258     __ mr(R4_ARG2, return_pc);
2259     __ mtlr(R3_RET);
2260     __ mr(R3_RET, Rexception);
2261     __ blr();
2262   }
2263 }
2264 
2265 // JVMTI ForceEarlyReturn support.
2266 // Returns "in the middle" of a method with a "fake" return value.
2267 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
2268 
2269   Register Rscratch1 = R11_scratch1,
2270            Rscratch2 = R12_scratch2;
2271 
2272   address entry = __ pc();
2273   __ empty_expression_stack();
2274 
2275   __ load_earlyret_value(state, Rscratch1);
2276 
2277   __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
2278   // Clear the earlyret state.
2279   __ li(R0, 0);
2280   __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
2281 
2282   __ remove_activation(state, false, false);
2283   // Copied from TemplateTable::_return.
2284   // Restoration of lr done by remove_activation.
2285   switch (state) {
2286     // Narrow result if state is itos but result type is smaller.
2287     case btos:
2288     case ztos:
2289     case ctos:
2290     case stos:
2291     case itos: __ narrow(R17_tos); /* fall through */
2292     case ltos:
2293     case atos: __ mr(R3_RET, R17_tos); break;
2294     case ftos:
2295     case dtos: __ fmr(F1_RET, F15_ftos); break;
2296     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
2297                // to get visible before the reference to the object gets stored anywhere.
2298                __ membar(Assembler::StoreStore); break;
2299     default  : ShouldNotReachHere();
2300   }
2301   __ blr();
2302 
2303   return entry;
2304 } // end of ForceEarlyReturn support
2305 
2306 //-----------------------------------------------------------------------------
2307 // Helper for vtos entry point generation
2308 
2309 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2310                                                          address& bep,
2311                                                          address& cep,
2312                                                          address& sep,
2313                                                          address& aep,
2314                                                          address& iep,
2315                                                          address& lep,
2316                                                          address& fep,
2317                                                          address& dep,
2318                                                          address& vep) {
2319   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2320   Label L;
2321 
2322   aep = __ pc();  __ push_ptr();  __ b(L);
2323   fep = __ pc();  __ push_f();    __ b(L);
2324   dep = __ pc();  __ push_d();    __ b(L);
2325   lep = __ pc();  __ push_l();    __ b(L);
2326   __ align(32, 12, 24); // align L
2327   bep = cep = sep =
2328   iep = __ pc();  __ push_i();
2329   vep = __ pc();
2330   __ bind(L);
2331   generate_and_dispatch(t);
2332 }
2333 
2334 //-----------------------------------------------------------------------------
2335 
2336 // Non-product code
2337 #ifndef PRODUCT
2338 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2339   //__ flush_bundle();
2340   address entry = __ pc();
2341 
2342   const char *bname = NULL;
2343   uint tsize = 0;
2344   switch(state) {
2345   case ftos:
2346     bname = "trace_code_ftos {";
2347     tsize = 2;
2348     break;
2349   case btos:
2350     bname = "trace_code_btos {";
2351     tsize = 2;
2352     break;
2353   case ztos:
2354     bname = "trace_code_ztos {";
2355     tsize = 2;
2356     break;
2357   case ctos:
2358     bname = "trace_code_ctos {";
2359     tsize = 2;
2360     break;
2361   case stos:
2362     bname = "trace_code_stos {";
2363     tsize = 2;
2364     break;
2365   case itos:
2366     bname = "trace_code_itos {";
2367     tsize = 2;
2368     break;
2369   case ltos:
2370     bname = "trace_code_ltos {";
2371     tsize = 3;
2372     break;
2373   case atos:
2374     bname = "trace_code_atos {";
2375     tsize = 2;
2376     break;
2377   case vtos:
2378     // Note: In case of vtos, the topmost of stack value could be a int or doubl
2379     // In case of a double (2 slots) we won't see the 2nd stack value.
2380     // Maybe we simply should print the topmost 3 stack slots to cope with the problem.
2381     bname = "trace_code_vtos {";
2382     tsize = 2;
2383 
2384     break;
2385   case dtos:
2386     bname = "trace_code_dtos {";
2387     tsize = 3;
2388     break;
2389   default:
2390     ShouldNotReachHere();
2391   }
2392   BLOCK_COMMENT(bname);
2393 
2394   // Support short-cut for TraceBytecodesAt.
2395   // Don't call into the VM if we don't want to trace to speed up things.
2396   Label Lskip_vm_call;
2397   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
2398     int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
2399     int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2400     __ ld(R11_scratch1, offs1, R11_scratch1);
2401     __ lwa(R12_scratch2, offs2, R12_scratch2);
2402     __ cmpd(CCR0, R12_scratch2, R11_scratch1);
2403     __ blt(CCR0, Lskip_vm_call);
2404   }
2405 
2406   __ push(state);
2407   // Load 2 topmost expression stack values.
2408   __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
2409   __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
2410   __ mflr(R31);
2411   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
2412   __ mtlr(R31);
2413   __ pop(state);
2414 
2415   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
2416     __ bind(Lskip_vm_call);
2417   }
2418   __ blr();
2419   BLOCK_COMMENT("} trace_code");
2420   return entry;
2421 }
2422 
2423 void TemplateInterpreterGenerator::count_bytecode() {
2424   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
2425   __ lwz(R12_scratch2, offs, R11_scratch1);
2426   __ addi(R12_scratch2, R12_scratch2, 1);
2427   __ stw(R12_scratch2, offs, R11_scratch1);
2428 }
2429 
2430 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2431   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
2432   __ lwz(R12_scratch2, offs, R11_scratch1);
2433   __ addi(R12_scratch2, R12_scratch2, 1);
2434   __ stw(R12_scratch2, offs, R11_scratch1);
2435 }
2436 
2437 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2438   const Register addr = R11_scratch1,
2439                  tmp  = R12_scratch2;
2440   // Get index, shift out old bytecode, bring in new bytecode, and store it.
2441   // _index = (_index >> log2_number_of_codes) |
2442   //          (bytecode << log2_number_of_codes);
2443   int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
2444   __ lwz(tmp, offs1, addr);
2445   __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
2446   __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
2447   __ stw(tmp, offs1, addr);
2448 
2449   // Bump bucket contents.
2450   // _counters[_index] ++;
2451   int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
2452   __ sldi(tmp, tmp, LogBytesPerInt);
2453   __ add(addr, tmp, addr);
2454   __ lwz(tmp, offs2, addr);
2455   __ addi(tmp, tmp, 1);
2456   __ stw(tmp, offs2, addr);
2457 }
2458 
2459 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2460   // Call a little run-time stub to avoid blow-up for each bytecode.
2461   // The run-time runtime saves the right registers, depending on
2462   // the tosca in-state for the given template.
2463 
2464   assert(Interpreter::trace_code(t->tos_in()) != NULL,
2465          "entry must have been generated");
2466 
2467   // Note: we destroy LR here.
2468   __ bl(Interpreter::trace_code(t->tos_in()));
2469 }
2470 
2471 void TemplateInterpreterGenerator::stop_interpreter_at() {
2472   Label L;
2473   int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
2474   int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2475   __ ld(R11_scratch1, offs1, R11_scratch1);
2476   __ lwa(R12_scratch2, offs2, R12_scratch2);
2477   __ cmpd(CCR0, R12_scratch2, R11_scratch1);
2478   __ bne(CCR0, L);
2479   __ illtrap();
2480   __ bind(L);
2481 }
2482 
2483 #endif // !PRODUCT