/* * Copyright (c) 2011, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package org.graalvm.compiler.nodes.calc; import org.graalvm.compiler.core.common.type.ArithmeticOpTable; import org.graalvm.compiler.core.common.type.ArithmeticOpTable.BinaryOp; import org.graalvm.compiler.core.common.type.ArithmeticOpTable.BinaryOp.Add; import org.graalvm.compiler.core.common.type.IntegerStamp; import org.graalvm.compiler.core.common.type.Stamp; import org.graalvm.compiler.graph.NodeClass; import org.graalvm.compiler.graph.spi.Canonicalizable.BinaryCommutative; import org.graalvm.compiler.graph.spi.CanonicalizerTool; import org.graalvm.compiler.lir.gen.ArithmeticLIRGeneratorTool; import org.graalvm.compiler.nodeinfo.NodeInfo; import org.graalvm.compiler.nodes.ConstantNode; import org.graalvm.compiler.nodes.NodeView; import org.graalvm.compiler.nodes.ValueNode; import org.graalvm.compiler.nodes.spi.NodeLIRBuilderTool; import jdk.vm.ci.code.CodeUtil; import jdk.vm.ci.meta.Constant; import jdk.vm.ci.meta.JavaConstant; import jdk.vm.ci.meta.Value; @NodeInfo(shortName = "+") public class AddNode extends BinaryArithmeticNode implements NarrowableArithmeticNode, BinaryCommutative { public static final NodeClass TYPE = NodeClass.create(AddNode.class); public AddNode(ValueNode x, ValueNode y) { this(TYPE, x, y); } protected AddNode(NodeClass c, ValueNode x, ValueNode y) { super(c, ArithmeticOpTable::getAdd, x, y); } public static ValueNode create(ValueNode x, ValueNode y, NodeView view) { BinaryOp op = ArithmeticOpTable.forStamp(x.stamp(view)).getAdd(); Stamp stamp = op.foldStamp(x.stamp(view), y.stamp(view)); ConstantNode tryConstantFold = tryConstantFold(op, x, y, stamp, view); if (tryConstantFold != null) { return tryConstantFold; } if (x.isConstant() && !y.isConstant()) { return canonical(null, op, y, x, view); } else { return canonical(null, op, x, y, view); } } private static ValueNode canonical(AddNode addNode, BinaryOp op, ValueNode forX, ValueNode forY, NodeView view) { AddNode self = addNode; boolean associative = op.isAssociative(); if (associative) { if (forX instanceof SubNode) { SubNode sub = (SubNode) forX; if (sub.getY() == forY) { // (a - b) + b return sub.getX(); } } if (forY instanceof SubNode) { SubNode sub = (SubNode) forY; if (sub.getY() == forX) { // b + (a - b) return sub.getX(); } } } if (forY.isConstant()) { Constant c = forY.asConstant(); if (op.isNeutral(c)) { return forX; } if (associative && self != null) { // canonicalize expressions like "(a + 1) + 2" ValueNode reassociated = reassociate(self, ValueNode.isConstantPredicate(), forX, forY, view); if (reassociated != self) { return reassociated; } } // Attempt to optimize the pattern of an extend node between two add nodes. if (c instanceof JavaConstant && (forX instanceof SignExtendNode || forX instanceof ZeroExtendNode)) { IntegerConvertNode integerConvertNode = (IntegerConvertNode) forX; ValueNode valueNode = integerConvertNode.getValue(); long constant = ((JavaConstant) c).asLong(); if (valueNode instanceof AddNode) { AddNode addBeforeExtend = (AddNode) valueNode; if (addBeforeExtend.getY().isConstant()) { // There is a second add before the extend node that also has a constant as // second operand. Therefore there will be canonicalizations triggered if we // can move the add above the extension. For this we need to check whether // the result of the addition is the same before the extension (which can be // either zero extend or sign extend). IntegerStamp beforeExtendStamp = (IntegerStamp) addBeforeExtend.stamp(view); int bits = beforeExtendStamp.getBits(); if (constant >= CodeUtil.minValue(bits) && constant <= CodeUtil.maxValue(bits)) { IntegerStamp narrowConstantStamp = IntegerStamp.create(bits, constant, constant); if (!IntegerStamp.addCanOverflow(narrowConstantStamp, beforeExtendStamp)) { ConstantNode constantNode = ConstantNode.forIntegerStamp(narrowConstantStamp, constant); if (forX instanceof SignExtendNode) { return SignExtendNode.create(AddNode.create(addBeforeExtend, constantNode, view), integerConvertNode.getResultBits(), view); } else { assert forX instanceof ZeroExtendNode; // Must check to not cross zero with the new add. boolean crossesZeroPoint = true; if (constant > 0) { if (beforeExtendStamp.lowerBound() >= 0 || beforeExtendStamp.upperBound() < -constant) { // We are good here. crossesZeroPoint = false; } } else { if (beforeExtendStamp.lowerBound() >= -constant || beforeExtendStamp.upperBound() < 0) { // We are good here as well. crossesZeroPoint = false; } } if (!crossesZeroPoint) { return ZeroExtendNode.create(AddNode.create(addBeforeExtend, constantNode, view), integerConvertNode.getResultBits(), view); } } } } } } } } if (forX instanceof NegateNode) { return BinaryArithmeticNode.sub(forY, ((NegateNode) forX).getValue(), view); } else if (forY instanceof NegateNode) { return BinaryArithmeticNode.sub(forX, ((NegateNode) forY).getValue(), view); } if (self == null) { self = (AddNode) new AddNode(forX, forY).maybeCommuteInputs(); } return self; } @Override public ValueNode canonical(CanonicalizerTool tool, ValueNode forX, ValueNode forY) { ValueNode ret = super.canonical(tool, forX, forY); if (ret != this) { return ret; } if (forX.isConstant() && !forY.isConstant()) { // we try to swap and canonicalize ValueNode improvement = canonical(tool, forY, forX); if (improvement != this) { return improvement; } // if this fails we only swap return new AddNode(forY, forX); } BinaryOp op = getOp(forX, forY); NodeView view = NodeView.from(tool); return canonical(this, op, forX, forY, view); } @Override public void generate(NodeLIRBuilderTool nodeValueMap, ArithmeticLIRGeneratorTool gen) { Value op1 = nodeValueMap.operand(getX()); assert op1 != null : getX() + ", this=" + this; Value op2 = nodeValueMap.operand(getY()); if (shouldSwapInputs(nodeValueMap)) { Value tmp = op1; op1 = op2; op2 = tmp; } nodeValueMap.setResult(this, gen.emitAdd(op1, op2, false)); } }