/* * Copyright (c) 2013, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package org.graalvm.compiler.hotspot.sparc; import static jdk.vm.ci.code.ValueUtil.asRegister; import static jdk.vm.ci.code.ValueUtil.isRegister; import static jdk.vm.ci.sparc.SPARC.g0; import static jdk.vm.ci.sparc.SPARC.g5; import static jdk.vm.ci.sparc.SPARC.i0; import static jdk.vm.ci.sparc.SPARC.i7; import static jdk.vm.ci.sparc.SPARC.l0; import static jdk.vm.ci.sparc.SPARC.l7; import static jdk.vm.ci.sparc.SPARC.o0; import static jdk.vm.ci.sparc.SPARC.o7; import static jdk.vm.ci.sparc.SPARC.sp; import static org.graalvm.compiler.asm.sparc.SPARCAssembler.BPCC; import static org.graalvm.compiler.asm.sparc.SPARCAssembler.isGlobalRegister; import static org.graalvm.compiler.asm.sparc.SPARCAssembler.Annul.NOT_ANNUL; import static org.graalvm.compiler.asm.sparc.SPARCAssembler.BranchPredict.PREDICT_NOT_TAKEN; import static org.graalvm.compiler.asm.sparc.SPARCAssembler.CC.Xcc; import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.NotEqual; import static org.graalvm.compiler.core.common.GraalOptions.ZapStackOnMethodEntry; import java.util.ArrayList; import java.util.HashSet; import java.util.Set; import java.util.concurrent.ConcurrentHashMap; import jdk.internal.vm.compiler.collections.EconomicMap; import jdk.internal.vm.compiler.collections.EconomicSet; import jdk.internal.vm.compiler.collections.Equivalence; import org.graalvm.compiler.asm.Assembler; import org.graalvm.compiler.asm.Label; import org.graalvm.compiler.asm.sparc.SPARCAddress; import org.graalvm.compiler.asm.sparc.SPARCAssembler; import org.graalvm.compiler.asm.sparc.SPARCMacroAssembler; import org.graalvm.compiler.asm.sparc.SPARCMacroAssembler.ScratchRegister; import org.graalvm.compiler.code.CompilationResult; import org.graalvm.compiler.code.DataSection; import org.graalvm.compiler.code.DataSection.Data; import org.graalvm.compiler.core.common.CompilationIdentifier; import org.graalvm.compiler.core.common.alloc.RegisterAllocationConfig; import org.graalvm.compiler.core.common.cfg.AbstractBlockBase; import org.graalvm.compiler.core.sparc.SPARCNodeMatchRules; import org.graalvm.compiler.debug.CounterKey; import org.graalvm.compiler.debug.DebugContext; import org.graalvm.compiler.hotspot.GraalHotSpotVMConfig; import org.graalvm.compiler.hotspot.HotSpotDataBuilder; import org.graalvm.compiler.hotspot.HotSpotGraalRuntimeProvider; import org.graalvm.compiler.hotspot.HotSpotHostBackend; import org.graalvm.compiler.hotspot.HotSpotLIRGenerationResult; import org.graalvm.compiler.hotspot.meta.HotSpotForeignCallsProvider; import org.graalvm.compiler.hotspot.meta.HotSpotProviders; import org.graalvm.compiler.hotspot.stubs.Stub; import org.graalvm.compiler.lir.InstructionValueConsumer; import org.graalvm.compiler.lir.LIR; import org.graalvm.compiler.lir.LIRFrameState; import org.graalvm.compiler.lir.LIRInstruction; import org.graalvm.compiler.lir.StandardOp.SaveRegistersOp; import org.graalvm.compiler.lir.asm.CompilationResultBuilder; import org.graalvm.compiler.lir.asm.CompilationResultBuilderFactory; import org.graalvm.compiler.lir.asm.DataBuilder; import org.graalvm.compiler.lir.asm.FrameContext; import org.graalvm.compiler.lir.framemap.FrameMap; import org.graalvm.compiler.lir.framemap.FrameMapBuilder; import org.graalvm.compiler.lir.gen.LIRGenerationResult; import org.graalvm.compiler.lir.gen.LIRGeneratorTool; import org.graalvm.compiler.lir.sparc.SPARCCall; import org.graalvm.compiler.lir.sparc.SPARCDelayedControlTransfer; import org.graalvm.compiler.lir.sparc.SPARCFrameMap; import org.graalvm.compiler.lir.sparc.SPARCFrameMapBuilder; import org.graalvm.compiler.lir.sparc.SPARCLIRInstructionMixin; import org.graalvm.compiler.lir.sparc.SPARCLIRInstructionMixin.SizeEstimate; import org.graalvm.compiler.lir.sparc.SPARCTailDelayedLIRInstruction; import org.graalvm.compiler.nodes.StructuredGraph; import org.graalvm.compiler.nodes.spi.NodeLIRBuilderTool; import org.graalvm.compiler.options.OptionValues; import jdk.vm.ci.code.CallingConvention; import jdk.vm.ci.code.Register; import jdk.vm.ci.code.RegisterConfig; import jdk.vm.ci.code.StackSlot; import jdk.vm.ci.hotspot.HotSpotCallingConventionType; import jdk.vm.ci.meta.JavaType; import jdk.vm.ci.meta.ResolvedJavaMethod; /** * HotSpot SPARC specific backend. */ public class SPARCHotSpotBackend extends HotSpotHostBackend { private static final SizeEstimateStatistics CONSTANT_ESTIMATED_STATS = new SizeEstimateStatistics("ESTIMATE"); private static final SizeEstimateStatistics CONSTANT_ACTUAL_STATS = new SizeEstimateStatistics("ACTUAL"); public SPARCHotSpotBackend(GraalHotSpotVMConfig config, HotSpotGraalRuntimeProvider runtime, HotSpotProviders providers) { super(config, runtime, providers); } private static class SizeEstimateStatistics { private static final ConcurrentHashMap counters = new ConcurrentHashMap<>(); private final String suffix; SizeEstimateStatistics(String suffix) { super(); this.suffix = suffix; } public void add(Class c, int count, DebugContext debug) { String name = SizeEstimateStatistics.class.getSimpleName() + "_" + c.getSimpleName() + "." + suffix; CounterKey m = counters.computeIfAbsent(name, (n) -> DebugContext.counter(n)); m.add(debug, count); } } @Override public FrameMapBuilder newFrameMapBuilder(RegisterConfig registerConfig) { RegisterConfig registerConfigNonNull = registerConfig == null ? getCodeCache().getRegisterConfig() : registerConfig; return new SPARCFrameMapBuilder(newFrameMap(registerConfigNonNull), getCodeCache(), registerConfigNonNull); } @Override public FrameMap newFrameMap(RegisterConfig registerConfig) { return new SPARCFrameMap(getCodeCache(), registerConfig, this); } @Override public LIRGeneratorTool newLIRGenerator(LIRGenerationResult lirGenRes) { return new SPARCHotSpotLIRGenerator(getProviders(), getRuntime().getVMConfig(), lirGenRes); } @Override public LIRGenerationResult newLIRGenerationResult(CompilationIdentifier compilationId, LIR lir, FrameMapBuilder frameMapBuilder, StructuredGraph graph, Object stub) { return new HotSpotLIRGenerationResult(compilationId, lir, frameMapBuilder, makeCallingConvention(graph, (Stub) stub), stub, config.requiresReservedStackCheck(graph.getMethods())); } @Override public NodeLIRBuilderTool newNodeLIRBuilder(StructuredGraph graph, LIRGeneratorTool lirGen) { return new SPARCHotSpotNodeLIRBuilder(graph, lirGen, new SPARCNodeMatchRules(lirGen)); } @Override protected void bangStackWithOffset(CompilationResultBuilder crb, int bangOffset) { // Use SPARCAddress to get the final displacement including the stack bias. SPARCMacroAssembler masm = (SPARCMacroAssembler) crb.asm; SPARCAddress address = new SPARCAddress(sp, -bangOffset); if (SPARCAssembler.isSimm13(address.getDisplacement())) { masm.stx(g0, address); } else { try (ScratchRegister sc = masm.getScratchRegister()) { Register scratch = sc.getRegister(); assert isGlobalRegister(scratch) : "Only global (g1-g7) registers are allowed if the frame was not initialized here. Got register " + scratch; masm.setx(address.getDisplacement(), scratch, false); masm.stx(g0, new SPARCAddress(sp, scratch)); } } } public class HotSpotFrameContext implements FrameContext { final boolean isStub; HotSpotFrameContext(boolean isStub) { this.isStub = isStub; } @Override public boolean hasFrame() { return true; } @Override public void enter(CompilationResultBuilder crb) { final int frameSize = crb.frameMap.totalFrameSize(); final int stackpointerChange = -frameSize; SPARCMacroAssembler masm = (SPARCMacroAssembler) crb.asm; if (!isStub) { emitStackOverflowCheck(crb); } if (SPARCAssembler.isSimm13(stackpointerChange)) { masm.save(sp, stackpointerChange, sp); } else { try (ScratchRegister sc = masm.getScratchRegister()) { Register scratch = sc.getRegister(); assert isGlobalRegister(scratch) : "Only global registers are allowed before save. Got register " + scratch; masm.setx(stackpointerChange, scratch, false); masm.save(sp, scratch, sp); } } if (ZapStackOnMethodEntry.getValue(crb.getOptions())) { final int slotSize = 8; for (int i = 0; i < frameSize / slotSize; ++i) { // 0xC1C1C1C1 masm.stx(g0, new SPARCAddress(sp, i * slotSize)); } } } @Override public void leave(CompilationResultBuilder crb) { SPARCMacroAssembler masm = (SPARCMacroAssembler) crb.asm; masm.restoreWindow(); } } @Override protected Assembler createAssembler(FrameMap frameMap) { return new SPARCMacroAssembler(getTarget()); } @Override public CompilationResultBuilder newCompilationResultBuilder(LIRGenerationResult lirGenRes, FrameMap frameMap, CompilationResult compilationResult, CompilationResultBuilderFactory factory) { HotSpotLIRGenerationResult gen = (HotSpotLIRGenerationResult) lirGenRes; LIR lir = gen.getLIR(); assert gen.getDeoptimizationRescueSlot() == null || frameMap.frameNeedsAllocating() : "method that can deoptimize must have a frame"; Stub stub = gen.getStub(); Assembler masm = createAssembler(frameMap); // On SPARC we always use stack frames. HotSpotFrameContext frameContext = new HotSpotFrameContext(stub != null); DataBuilder dataBuilder = new HotSpotDataBuilder(getCodeCache().getTarget()); OptionValues options = lir.getOptions(); DebugContext debug = lir.getDebug(); CompilationResultBuilder crb = factory.createBuilder(getProviders().getCodeCache(), getProviders().getForeignCalls(), frameMap, masm, dataBuilder, frameContext, options, debug, compilationResult, Register.None); crb.setTotalFrameSize(frameMap.totalFrameSize()); crb.setMaxInterpreterFrameSize(gen.getMaxInterpreterFrameSize()); StackSlot deoptimizationRescueSlot = gen.getDeoptimizationRescueSlot(); if (deoptimizationRescueSlot != null && stub == null) { crb.compilationResult.setCustomStackAreaOffset(deoptimizationRescueSlot); } if (stub != null) { // Even on sparc we need to save floating point registers EconomicSet destroyedCallerRegisters = gatherDestroyedCallerRegisters(lir); EconomicMap calleeSaveInfo = gen.getCalleeSaveInfo(); updateStub(stub, destroyedCallerRegisters, calleeSaveInfo, frameMap); } assert registerSizePredictionValidator(crb, debug); return crb; } /** * Registers a verifier which checks if the LIRInstructions estimate of constants size is * greater or equal to the actual one. */ private static boolean registerSizePredictionValidator(final CompilationResultBuilder crb, DebugContext debug) { /** * Used to hold state between beforeOp and afterOp */ class ValidationState { LIRInstruction op; final DebugContext debug; int constantSizeBefore; ValidationState(DebugContext debug) { this.debug = debug; } public void before(LIRInstruction before) { assert op == null : "LIRInstruction " + op + " no after call received"; op = before; constantSizeBefore = calculateDataSectionSize(crb.compilationResult.getDataSection()); } public void after(LIRInstruction after) { assert after.equals(op) : "Instructions before/after don't match " + op + "/" + after; int constantSizeAfter = calculateDataSectionSize(crb.compilationResult.getDataSection()); int actual = constantSizeAfter - constantSizeBefore; if (op instanceof SPARCLIRInstructionMixin) { org.graalvm.compiler.lir.sparc.SPARCLIRInstructionMixin.SizeEstimate size = ((SPARCLIRInstructionMixin) op).estimateSize(); assert size != null : "No size prediction available for op: " + op; Class c = op.getClass(); CONSTANT_ESTIMATED_STATS.add(c, size.constantSize, debug); CONSTANT_ACTUAL_STATS.add(c, actual, debug); assert size.constantSize >= actual : "Op " + op + " exceeded estimated constant size; predicted: " + size.constantSize + " actual: " + actual; } else { assert actual == 0 : "Op " + op + " emitted to DataSection without any estimate."; } op = null; constantSizeBefore = 0; } } final ValidationState state = new ValidationState(debug); crb.setOpCallback(op -> state.before(op), op -> state.after(op)); return true; } private static int calculateDataSectionSize(DataSection ds) { int sum = 0; for (Data d : ds) { sum += d.getSize(); } return sum; } @Override public void emitCode(CompilationResultBuilder crb, LIR lir, ResolvedJavaMethod installedCodeOwner) { SPARCMacroAssembler masm = (SPARCMacroAssembler) crb.asm; // TODO: (sa) Fold the two traversals into one stuffDelayedControlTransfers(lir); int constantSize = calculateConstantSize(lir); boolean canUseImmediateConstantLoad = constantSize < (1 << 13); masm.setImmediateConstantLoad(canUseImmediateConstantLoad); FrameMap frameMap = crb.frameMap; RegisterConfig regConfig = frameMap.getRegisterConfig(); Label unverifiedStub = installedCodeOwner == null || installedCodeOwner.isStatic() ? null : new Label(); for (int i = 0; i < 2; i++) { if (i > 0) { crb.resetForEmittingCode(); lir.resetLabels(); resetDelayedControlTransfers(lir); } // Emit the prefix if (unverifiedStub != null) { crb.recordMark(config.MARKID_UNVERIFIED_ENTRY); // We need to use JavaCall here because we haven't entered the frame yet. CallingConvention cc = regConfig.getCallingConvention(HotSpotCallingConventionType.JavaCall, null, new JavaType[]{getProviders().getMetaAccess().lookupJavaType(Object.class)}, this); Register inlineCacheKlass = g5; // see MacroAssembler::ic_call try (ScratchRegister sc = masm.getScratchRegister()) { Register scratch = sc.getRegister(); Register receiver = asRegister(cc.getArgument(0)); SPARCAddress src = new SPARCAddress(receiver, config.hubOffset); masm.ldx(src, scratch); masm.cmp(scratch, inlineCacheKlass); } BPCC.emit(masm, Xcc, NotEqual, NOT_ANNUL, PREDICT_NOT_TAKEN, unverifiedStub); masm.nop(); // delay slot } masm.align(config.codeEntryAlignment); crb.recordMark(config.MARKID_OSR_ENTRY); crb.recordMark(config.MARKID_VERIFIED_ENTRY); // Emit code for the LIR crb.emit(lir); } profileInstructions(lir, crb); HotSpotFrameContext frameContext = (HotSpotFrameContext) crb.frameContext; HotSpotForeignCallsProvider foreignCalls = getProviders().getForeignCalls(); if (!frameContext.isStub) { crb.recordMark(config.MARKID_EXCEPTION_HANDLER_ENTRY); SPARCCall.directCall(crb, masm, foreignCalls.lookupForeignCall(EXCEPTION_HANDLER), null, null); crb.recordMark(config.MARKID_DEOPT_HANDLER_ENTRY); SPARCCall.directCall(crb, masm, foreignCalls.lookupForeignCall(DEOPTIMIZATION_HANDLER), null, null); } else { // No need to emit the stubs for entries back into the method since // it has no calls that can cause such "return" entries } if (unverifiedStub != null) { masm.bind(unverifiedStub); try (ScratchRegister sc = masm.getScratchRegister()) { Register scratch = sc.getRegister(); SPARCCall.indirectJmp(crb, masm, scratch, foreignCalls.lookupForeignCall(IC_MISS_HANDLER)); } } masm.peephole(); } private static int calculateConstantSize(LIR lir) { int size = 0; for (AbstractBlockBase block : lir.codeEmittingOrder()) { if (block == null) { continue; } for (LIRInstruction inst : lir.getLIRforBlock(block)) { if (inst instanceof SPARCLIRInstructionMixin) { SizeEstimate pred = ((SPARCLIRInstructionMixin) inst).estimateSize(); if (pred != null) { size += pred.constantSize; } } } } return size; } private static void resetDelayedControlTransfers(LIR lir) { for (AbstractBlockBase block : lir.codeEmittingOrder()) { if (block == null) { continue; } for (LIRInstruction inst : lir.getLIRforBlock(block)) { if (inst instanceof SPARCDelayedControlTransfer) { ((SPARCDelayedControlTransfer) inst).resetState(); } } } } /** * Fix-up over whole LIR. * * @see #stuffDelayedControlTransfers(LIR, AbstractBlockBase) * @param l */ private static void stuffDelayedControlTransfers(LIR l) { for (AbstractBlockBase b : l.codeEmittingOrder()) { if (b != null) { stuffDelayedControlTransfers(l, b); } } } /** * Tries to put DelayedControlTransfer instructions and DelayableLIRInstructions together. Also * it tries to move the DelayedLIRInstruction to the DelayedControlTransfer instruction, if * possible. */ private static void stuffDelayedControlTransfers(LIR l, AbstractBlockBase block) { ArrayList instructions = l.getLIRforBlock(block); if (instructions.size() >= 2) { LIRDependencyAccumulator acc = new LIRDependencyAccumulator(); SPARCDelayedControlTransfer delayedTransfer = null; int delayTransferPosition = -1; for (int i = instructions.size() - 1; i >= 0; i--) { LIRInstruction inst = instructions.get(i); boolean adjacent = delayTransferPosition - i == 1; if (!adjacent || inst.destroysCallerSavedRegisters() || leavesRegisterWindow(inst)) { delayedTransfer = null; } if (inst instanceof SPARCDelayedControlTransfer) { delayedTransfer = (SPARCDelayedControlTransfer) inst; acc.start(inst); delayTransferPosition = i; } else if (delayedTransfer != null) { boolean overlap = acc.add(inst); if (!overlap && inst instanceof SPARCTailDelayedLIRInstruction) { // We have found a non overlapping LIR instruction which can be delayed ((SPARCTailDelayedLIRInstruction) inst).setDelayedControlTransfer(delayedTransfer); delayedTransfer = null; } } } } } private static boolean leavesRegisterWindow(LIRInstruction inst) { return inst instanceof SPARCLIRInstructionMixin && ((SPARCLIRInstructionMixin) inst).leavesRegisterWindow(); } /** * Accumulates inputs/outputs/temp/alive in a set along we walk back the LIRInstructions and * detects, if there is any overlap. In this way LIRInstructions can be detected, which can be * moved nearer to the DelayedControlTransfer instruction. */ private static class LIRDependencyAccumulator { private final Set inputs = new HashSet<>(10); private boolean overlap = false; private final InstructionValueConsumer valueConsumer = (instruction, value, mode, flags) -> { Object valueObject = value; if (isRegister(value)) { // Canonicalize registers valueObject = asRegister(value); } if (!inputs.add(valueObject)) { overlap = true; } }; public void start(LIRInstruction initial) { inputs.clear(); overlap = false; initial.visitEachInput(valueConsumer); initial.visitEachTemp(valueConsumer); initial.visitEachAlive(valueConsumer); } /** * Adds the inputs of lir instruction to the accumulator and returns, true if there was any * overlap of parameters. * * @param inst * @return true if an overlap was found */ public boolean add(LIRInstruction inst) { overlap = false; inst.visitEachOutput(valueConsumer); inst.visitEachTemp(valueConsumer); inst.visitEachInput(valueConsumer); inst.visitEachAlive(valueConsumer); return overlap; } } @Override public RegisterAllocationConfig newRegisterAllocationConfig(RegisterConfig registerConfig, String[] allocationRestrictedTo) { RegisterConfig registerConfigNonNull = registerConfig == null ? getCodeCache().getRegisterConfig() : registerConfig; return new SPARCHotSpotRegisterAllocationConfig(registerConfigNonNull, allocationRestrictedTo); } @Override public EconomicSet translateToCallerRegisters(EconomicSet calleeRegisters) { EconomicSet callerRegisters = EconomicSet.create(Equivalence.IDENTITY, calleeRegisters.size()); for (Register register : calleeRegisters) { if (l0.number <= register.number && register.number <= l7.number) { // do nothing } else if (o0.number <= register.number && register.number <= o7.number) { // do nothing } else if (i0.number <= register.number && register.number <= i7.number) { // translate input to output registers callerRegisters.add(translateInputToOutputRegister(register)); } else { callerRegisters.add(register); } } return callerRegisters; } private Register translateInputToOutputRegister(Register register) { assert i0.number <= register.number && register.number <= i7.number : "Not an input register " + register; return getTarget().arch.getRegisters().get(o0.number + register.number - i0.number); } }