/* * Copyright (c) 2009, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package org.graalvm.compiler.nodes.calc; import static org.graalvm.compiler.nodeinfo.NodeCycles.CYCLES_1; import static org.graalvm.compiler.nodeinfo.NodeSize.SIZE_1; import java.io.Serializable; import java.util.function.Function; import org.graalvm.compiler.core.common.type.ArithmeticOpTable; import org.graalvm.compiler.core.common.type.ArithmeticOpTable.BinaryOp; import org.graalvm.compiler.core.common.type.IntegerStamp; import org.graalvm.compiler.core.common.type.Stamp; import org.graalvm.compiler.debug.GraalError; import org.graalvm.compiler.graph.Graph; import org.graalvm.compiler.graph.Node; import org.graalvm.compiler.graph.NodeClass; import org.graalvm.compiler.graph.iterators.NodePredicate; import org.graalvm.compiler.graph.spi.Canonicalizable; import org.graalvm.compiler.graph.spi.CanonicalizerTool; import org.graalvm.compiler.nodeinfo.NodeInfo; import org.graalvm.compiler.nodes.ArithmeticOperation; import org.graalvm.compiler.nodes.ConstantNode; import org.graalvm.compiler.nodes.NodeView; import org.graalvm.compiler.nodes.StructuredGraph; import org.graalvm.compiler.nodes.ValueNode; import org.graalvm.compiler.nodes.ValuePhiNode; import org.graalvm.compiler.nodes.spi.ArithmeticLIRLowerable; import org.graalvm.compiler.nodes.spi.NodeValueMap; import jdk.vm.ci.meta.Constant; @NodeInfo(cycles = CYCLES_1, size = SIZE_1) public abstract class BinaryArithmeticNode extends BinaryNode implements ArithmeticOperation, ArithmeticLIRLowerable, Canonicalizable.Binary { @SuppressWarnings("rawtypes") public static final NodeClass TYPE = NodeClass.create(BinaryArithmeticNode.class); protected interface SerializableBinaryFunction extends Function>, Serializable { } protected final SerializableBinaryFunction getOp; protected BinaryArithmeticNode(NodeClass> c, SerializableBinaryFunction getOp, ValueNode x, ValueNode y) { super(c, getOp.apply(ArithmeticOpTable.forStamp(x.stamp(NodeView.DEFAULT))).foldStamp(x.stamp(NodeView.DEFAULT), y.stamp(NodeView.DEFAULT)), x, y); this.getOp = getOp; } protected final BinaryOp getOp(ValueNode forX, ValueNode forY) { ArithmeticOpTable table = ArithmeticOpTable.forStamp(forX.stamp(NodeView.DEFAULT)); assert table.equals(ArithmeticOpTable.forStamp(forY.stamp(NodeView.DEFAULT))); return getOp.apply(table); } @Override public final BinaryOp getArithmeticOp() { return getOp(getX(), getY()); } public boolean isAssociative() { return getArithmeticOp().isAssociative(); } @Override public ValueNode canonical(CanonicalizerTool tool, ValueNode forX, ValueNode forY) { NodeView view = NodeView.from(tool); ValueNode result = tryConstantFold(getOp(forX, forY), forX, forY, stamp(view), view); if (result != null) { return result; } return this; } @SuppressWarnings("unused") public static ConstantNode tryConstantFold(BinaryOp op, ValueNode forX, ValueNode forY, Stamp stamp, NodeView view) { if (forX.isConstant() && forY.isConstant()) { Constant ret = op.foldConstant(forX.asConstant(), forY.asConstant()); if (ret != null) { return ConstantNode.forPrimitive(stamp, ret); } } return null; } @Override public Stamp foldStamp(Stamp stampX, Stamp stampY) { assert stampX.isCompatible(x.stamp(NodeView.DEFAULT)) && stampY.isCompatible(y.stamp(NodeView.DEFAULT)); return getArithmeticOp().foldStamp(stampX, stampY); } public static ValueNode add(StructuredGraph graph, ValueNode v1, ValueNode v2, NodeView view) { return graph.addOrUniqueWithInputs(AddNode.create(v1, v2, view)); } public static ValueNode add(ValueNode v1, ValueNode v2, NodeView view) { return AddNode.create(v1, v2, view); } public static ValueNode mul(StructuredGraph graph, ValueNode v1, ValueNode v2, NodeView view) { return graph.addOrUniqueWithInputs(MulNode.create(v1, v2, view)); } public static ValueNode mul(ValueNode v1, ValueNode v2, NodeView view) { return MulNode.create(v1, v2, view); } public static ValueNode sub(StructuredGraph graph, ValueNode v1, ValueNode v2, NodeView view) { return graph.addOrUniqueWithInputs(SubNode.create(v1, v2, view)); } public static ValueNode sub(ValueNode v1, ValueNode v2, NodeView view) { return SubNode.create(v1, v2, view); } public static ValueNode branchlessMin(ValueNode v1, ValueNode v2, NodeView view) { if (v1.isDefaultConstant() && !v2.isDefaultConstant()) { return branchlessMin(v2, v1, view); } int bits = ((IntegerStamp) v1.stamp(view)).getBits(); assert ((IntegerStamp) v2.stamp(view)).getBits() == bits; ValueNode t1 = sub(v1, v2, view); ValueNode t2 = RightShiftNode.create(t1, bits - 1, view); ValueNode t3 = AndNode.create(t1, t2, view); return add(v2, t3, view); } public static ValueNode branchlessMax(ValueNode v1, ValueNode v2, NodeView view) { if (v1.isDefaultConstant() && !v2.isDefaultConstant()) { return branchlessMax(v2, v1, view); } int bits = ((IntegerStamp) v1.stamp(view)).getBits(); assert ((IntegerStamp) v2.stamp(view)).getBits() == bits; if (v2.isDefaultConstant()) { // prefer a & ~(a>>31) to a - (a & (a>>31)) return AndNode.create(v1, NotNode.create(RightShiftNode.create(v1, bits - 1, view)), view); } else { ValueNode t1 = sub(v1, v2, view); ValueNode t2 = RightShiftNode.create(t1, bits - 1, view); ValueNode t3 = AndNode.create(t1, t2, view); return sub(v1, t3, view); } } private enum ReassociateMatch { x, y; public ValueNode getValue(BinaryNode binary) { switch (this) { case x: return binary.getX(); case y: return binary.getY(); default: throw GraalError.shouldNotReachHere(); } } public ValueNode getOtherValue(BinaryNode binary) { switch (this) { case x: return binary.getY(); case y: return binary.getX(); default: throw GraalError.shouldNotReachHere(); } } } private static ReassociateMatch findReassociate(BinaryNode binary, NodePredicate criterion) { boolean resultX = criterion.apply(binary.getX()); boolean resultY = criterion.apply(binary.getY()); if (resultX && !resultY) { return ReassociateMatch.x; } if (!resultX && resultY) { return ReassociateMatch.y; } return null; } //@formatter:off /* * In reassociate, complexity comes from the handling of IntegerSub (non commutative) which can * be mixed with IntegerAdd. It first tries to find m1, m2 which match the criterion : * (a o m2) o m1 * (m2 o a) o m1 * m1 o (a o m2) * m1 o (m2 o a) * It then produces 4 boolean for the -/+ cases: * invertA : should the final expression be like *-a (rather than a+*) * aSub : should the final expression be like a-* (rather than a+*) * invertM1 : should the final expression contain -m1 * invertM2 : should the final expression contain -m2 * */ //@formatter:on /** * Tries to re-associate values which satisfy the criterion. For example with a constantness * criterion: {@code (a + 2) + 1 => a + (1 + 2)} *

* This method accepts only {@linkplain BinaryOp#isAssociative() associative} operations such as * +, -, *, &, | and ^ * * @param forY * @param forX */ public static ValueNode reassociate(BinaryArithmeticNode node, NodePredicate criterion, ValueNode forX, ValueNode forY, NodeView view) { assert node.getOp(forX, forY).isAssociative(); ReassociateMatch match1 = findReassociate(node, criterion); if (match1 == null) { return node; } ValueNode otherValue = match1.getOtherValue(node); boolean addSub = false; boolean subAdd = false; if (otherValue.getClass() != node.getClass()) { if (node instanceof AddNode && otherValue instanceof SubNode) { addSub = true; } else if (node instanceof SubNode && otherValue instanceof AddNode) { subAdd = true; } else { return node; } } BinaryNode other = (BinaryNode) otherValue; ReassociateMatch match2 = findReassociate(other, criterion); if (match2 == null) { return node; } boolean invertA = false; boolean aSub = false; boolean invertM1 = false; boolean invertM2 = false; if (addSub) { invertM2 = match2 == ReassociateMatch.y; invertA = !invertM2; } else if (subAdd) { invertA = invertM2 = match1 == ReassociateMatch.x; invertM1 = !invertM2; } else if (node instanceof SubNode && other instanceof SubNode) { invertA = match1 == ReassociateMatch.x ^ match2 == ReassociateMatch.x; aSub = match1 == ReassociateMatch.y && match2 == ReassociateMatch.y; invertM1 = match1 == ReassociateMatch.y && match2 == ReassociateMatch.x; invertM2 = match1 == ReassociateMatch.x && match2 == ReassociateMatch.x; } assert !(invertM1 && invertM2) && !(invertA && aSub); ValueNode m1 = match1.getValue(node); ValueNode m2 = match2.getValue(other); ValueNode a = match2.getOtherValue(other); if (node instanceof AddNode || node instanceof SubNode) { ValueNode associated; if (invertM1) { associated = BinaryArithmeticNode.sub(m2, m1, view); } else if (invertM2) { associated = BinaryArithmeticNode.sub(m1, m2, view); } else { associated = BinaryArithmeticNode.add(m1, m2, view); } if (invertA) { return BinaryArithmeticNode.sub(associated, a, view); } if (aSub) { return BinaryArithmeticNode.sub(a, associated, view); } return BinaryArithmeticNode.add(a, associated, view); } else if (node instanceof MulNode) { return BinaryArithmeticNode.mul(a, AddNode.mul(m1, m2, view), view); } else if (node instanceof AndNode) { return new AndNode(a, new AndNode(m1, m2)); } else if (node instanceof OrNode) { return new OrNode(a, new OrNode(m1, m2)); } else if (node instanceof XorNode) { return new XorNode(a, new XorNode(m1, m2)); } else { throw GraalError.shouldNotReachHere(); } } /** * Ensure a canonical ordering of inputs for commutative nodes to improve GVN results. Order the * inputs by increasing {@link Node#id} and call {@link Graph#findDuplicate(Node)} on the node * if it's currently in a graph. It's assumed that if there was a constant on the left it's been * moved to the right by other code and that ordering is left alone. * * @return the original node or another node with the same input ordering */ @SuppressWarnings("deprecation") public BinaryNode maybeCommuteInputs() { assert this instanceof BinaryCommutative; if (!y.isConstant() && (x.isConstant() || x.getId() > y.getId())) { ValueNode tmp = x; x = y; y = tmp; if (graph() != null) { // See if this node already exists BinaryNode duplicate = graph().findDuplicate(this); if (duplicate != null) { return duplicate; } } } return this; } /** * Determines if it would be better to swap the inputs in order to produce better assembly code. * First we try to pick a value which is dead after this use. If both values are dead at this * use then we try pick an induction variable phi to encourage the phi to live in a single * register. * * @param nodeValueMap * @return true if inputs should be swapped, false otherwise */ protected boolean shouldSwapInputs(NodeValueMap nodeValueMap) { final boolean xHasOtherUsages = getX().hasUsagesOtherThan(this, nodeValueMap); final boolean yHasOtherUsages = getY().hasUsagesOtherThan(this, nodeValueMap); if (!getY().isConstant() && !yHasOtherUsages) { if (xHasOtherUsages == yHasOtherUsages) { return getY() instanceof ValuePhiNode && getY().inputs().contains(this); } else { return true; } } return false; } }