1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/gcId.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jfr/support/jfrThreadId.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/metaspaceShared.hpp"
  51 #include "memory/oopFactory.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "memory/universe.hpp"
  54 #include "oops/access.inline.hpp"
  55 #include "oops/instanceKlass.hpp"
  56 #include "oops/objArrayOop.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/symbol.hpp"
  59 #include "oops/typeArrayOop.inline.hpp"
  60 #include "oops/verifyOopClosure.hpp"
  61 #include "prims/jvm_misc.hpp"
  62 #include "prims/jvmtiExport.hpp"
  63 #include "prims/jvmtiThreadState.hpp"
  64 #include "prims/privilegedStack.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/biasedLocking.hpp"
  68 #include "runtime/fieldDescriptor.inline.hpp"
  69 #include "runtime/flags/jvmFlagConstraintList.hpp"
  70 #include "runtime/flags/jvmFlagRangeList.hpp"
  71 #include "runtime/flags/jvmFlagWriteableList.hpp"
  72 #include "runtime/deoptimization.hpp"
  73 #include "runtime/frame.inline.hpp"
  74 #include "runtime/handshake.hpp"
  75 #include "runtime/init.hpp"
  76 #include "runtime/interfaceSupport.inline.hpp"
  77 #include "runtime/java.hpp"
  78 #include "runtime/javaCalls.hpp"
  79 #include "runtime/jniHandles.inline.hpp"
  80 #include "runtime/jniPeriodicChecker.hpp"
  81 #include "runtime/memprofiler.hpp"
  82 #include "runtime/mutexLocker.hpp"
  83 #include "runtime/objectMonitor.hpp"
  84 #include "runtime/orderAccess.hpp"
  85 #include "runtime/osThread.hpp"
  86 #include "runtime/prefetch.inline.hpp"
  87 #include "runtime/safepoint.hpp"
  88 #include "runtime/safepointMechanism.inline.hpp"
  89 #include "runtime/safepointVerifiers.hpp"
  90 #include "runtime/sharedRuntime.hpp"
  91 #include "runtime/statSampler.hpp"
  92 #include "runtime/stubRoutines.hpp"
  93 #include "runtime/sweeper.hpp"
  94 #include "runtime/task.hpp"
  95 #include "runtime/thread.inline.hpp"
  96 #include "runtime/threadCritical.hpp"
  97 #include "runtime/threadSMR.inline.hpp"
  98 #include "runtime/threadStatisticalInfo.hpp"
  99 #include "runtime/timer.hpp"
 100 #include "runtime/timerTrace.hpp"
 101 #include "runtime/vframe.inline.hpp"
 102 #include "runtime/vframeArray.hpp"
 103 #include "runtime/vframe_hp.hpp"
 104 #include "runtime/vmThread.hpp"
 105 #include "runtime/vm_operations.hpp"
 106 #include "runtime/vm_version.hpp"
 107 #include "services/attachListener.hpp"
 108 #include "services/management.hpp"
 109 #include "services/memTracker.hpp"
 110 #include "services/threadService.hpp"
 111 #include "utilities/align.hpp"
 112 #include "utilities/copy.hpp"
 113 #include "utilities/defaultStream.hpp"
 114 #include "utilities/dtrace.hpp"
 115 #include "utilities/events.hpp"
 116 #include "utilities/macros.hpp"
 117 #include "utilities/preserveException.hpp"
 118 #include "utilities/singleWriterSynchronizer.hpp"
 119 #include "utilities/vmError.hpp"
 120 #if INCLUDE_JVMCI
 121 #include "jvmci/jvmciCompiler.hpp"
 122 #include "jvmci/jvmciRuntime.hpp"
 123 #include "logging/logHandle.hpp"
 124 #endif
 125 #ifdef COMPILER1
 126 #include "c1/c1_Compiler.hpp"
 127 #endif
 128 #ifdef COMPILER2
 129 #include "opto/c2compiler.hpp"
 130 #include "opto/idealGraphPrinter.hpp"
 131 #endif
 132 #if INCLUDE_RTM_OPT
 133 #include "runtime/rtmLocking.hpp"
 134 #endif
 135 #if INCLUDE_JFR
 136 #include "jfr/jfr.hpp"
 137 #endif
 138 
 139 // Initialization after module runtime initialization
 140 void universe_post_module_init();  // must happen after call_initPhase2
 141 
 142 #ifdef DTRACE_ENABLED
 143 
 144 // Only bother with this argument setup if dtrace is available
 145 
 146   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 147   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 148 
 149   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 150     {                                                                      \
 151       ResourceMark rm(this);                                               \
 152       int len = 0;                                                         \
 153       const char* name = (javathread)->get_thread_name();                  \
 154       len = strlen(name);                                                  \
 155       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 156         (char *) name, len,                                                \
 157         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 158         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 159         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 160     }
 161 
 162 #else //  ndef DTRACE_ENABLED
 163 
 164   #define DTRACE_THREAD_PROBE(probe, javathread)
 165 
 166 #endif // ndef DTRACE_ENABLED
 167 
 168 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 169 // Current thread is maintained as a thread-local variable
 170 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 171 #endif
 172 
 173 // ======= Thread ========
 174 // Support for forcing alignment of thread objects for biased locking
 175 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 176   if (UseBiasedLocking) {
 177     const int alignment = markOopDesc::biased_lock_alignment;
 178     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 179     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 180                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 181                                                          AllocFailStrategy::RETURN_NULL);
 182     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 183     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 184            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 185            "JavaThread alignment code overflowed allocated storage");
 186     if (aligned_addr != real_malloc_addr) {
 187       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 188                               p2i(real_malloc_addr),
 189                               p2i(aligned_addr));
 190     }
 191     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 192     return aligned_addr;
 193   } else {
 194     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 195                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 196   }
 197 }
 198 
 199 void Thread::operator delete(void* p) {
 200   if (UseBiasedLocking) {
 201     FreeHeap(((Thread*) p)->_real_malloc_address);
 202   } else {
 203     FreeHeap(p);
 204   }
 205 }
 206 
 207 void JavaThread::smr_delete() {
 208   if (_on_thread_list) {
 209     ThreadsSMRSupport::smr_delete(this);
 210   } else {
 211     delete this;
 212   }
 213 }
 214 
 215 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 216 // JavaThread
 217 
 218 
 219 Thread::Thread() {
 220   // stack and get_thread
 221   set_stack_base(NULL);
 222   set_stack_size(0);
 223   set_self_raw_id(0);
 224   set_lgrp_id(-1);
 225   DEBUG_ONLY(clear_suspendible_thread();)
 226 
 227   // allocated data structures
 228   set_osthread(NULL);
 229   set_resource_area(new (mtThread)ResourceArea());
 230   DEBUG_ONLY(_current_resource_mark = NULL;)
 231   set_handle_area(new (mtThread) HandleArea(NULL));
 232   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 233   set_active_handles(NULL);
 234   set_free_handle_block(NULL);
 235   set_last_handle_mark(NULL);
 236 
 237   // This initial value ==> never claimed.
 238   _oops_do_parity = 0;
 239   _threads_hazard_ptr = NULL;
 240   _threads_list_ptr = NULL;
 241   _nested_threads_hazard_ptr_cnt = 0;
 242   _rcu_counter = 0;
 243 
 244   // the handle mark links itself to last_handle_mark
 245   new HandleMark(this);
 246 
 247   // plain initialization
 248   debug_only(_owned_locks = NULL;)
 249   debug_only(_allow_allocation_count = 0;)
 250   NOT_PRODUCT(_allow_safepoint_count = 0;)
 251   NOT_PRODUCT(_skip_gcalot = false;)
 252   _jvmti_env_iteration_count = 0;
 253   set_allocated_bytes(0);
 254   _vm_operation_started_count = 0;
 255   _vm_operation_completed_count = 0;
 256   _current_pending_monitor = NULL;
 257   _current_pending_monitor_is_from_java = true;
 258   _current_waiting_monitor = NULL;
 259   _num_nested_signal = 0;
 260   omFreeList = NULL;
 261   omFreeCount = 0;
 262   omFreeProvision = 32;
 263   omInUseList = NULL;
 264   omInUseCount = 0;
 265 
 266 #ifdef ASSERT
 267   _visited_for_critical_count = false;
 268 #endif
 269 
 270   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 271                          Monitor::_safepoint_check_sometimes);
 272   _suspend_flags = 0;
 273 
 274   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 275   _hashStateX = os::random();
 276   _hashStateY = 842502087;
 277   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 278   _hashStateW = 273326509;
 279 
 280   _OnTrap   = 0;
 281   _Stalled  = 0;
 282   _TypeTag  = 0x2BAD;
 283 
 284   // Many of the following fields are effectively final - immutable
 285   // Note that nascent threads can't use the Native Monitor-Mutex
 286   // construct until the _MutexEvent is initialized ...
 287   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 288   // we might instead use a stack of ParkEvents that we could provision on-demand.
 289   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 290   // and ::Release()
 291   _ParkEvent   = ParkEvent::Allocate(this);
 292   _SleepEvent  = ParkEvent::Allocate(this);
 293   _MutexEvent  = ParkEvent::Allocate(this);
 294   _MuxEvent    = ParkEvent::Allocate(this);
 295 
 296 #ifdef CHECK_UNHANDLED_OOPS
 297   if (CheckUnhandledOops) {
 298     _unhandled_oops = new UnhandledOops(this);
 299   }
 300 #endif // CHECK_UNHANDLED_OOPS
 301 #ifdef ASSERT
 302   if (UseBiasedLocking) {
 303     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 304     assert(this == _real_malloc_address ||
 305            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 306            "bug in forced alignment of thread objects");
 307   }
 308 #endif // ASSERT
 309 
 310   // Notify the barrier set that a thread is being created. Note that some
 311   // threads are created before a barrier set is available. The call to
 312   // BarrierSet::on_thread_create() for these threads is therefore deferred
 313   // to BarrierSet::set_barrier_set().
 314   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 315   if (barrier_set != NULL) {
 316     barrier_set->on_thread_create(this);
 317   } else {
 318     DEBUG_ONLY(Threads::inc_threads_before_barrier_set();)
 319   }
 320 }
 321 
 322 void Thread::initialize_thread_current() {
 323 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 324   assert(_thr_current == NULL, "Thread::current already initialized");
 325   _thr_current = this;
 326 #endif
 327   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 328   ThreadLocalStorage::set_thread(this);
 329   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 330 }
 331 
 332 void Thread::clear_thread_current() {
 333   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 334 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 335   _thr_current = NULL;
 336 #endif
 337   ThreadLocalStorage::set_thread(NULL);
 338 }
 339 
 340 void Thread::record_stack_base_and_size() {
 341   // Note: at this point, Thread object is not yet initialized. Do not rely on
 342   // any members being initialized. Do not rely on Thread::current() being set.
 343   // If possible, refrain from doing anything which may crash or assert since
 344   // quite probably those crash dumps will be useless.
 345   set_stack_base(os::current_stack_base());
 346   set_stack_size(os::current_stack_size());
 347 
 348 #ifdef SOLARIS
 349   if (os::is_primordial_thread()) {
 350     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 351   }
 352 #endif
 353 
 354   // Set stack limits after thread is initialized.
 355   if (is_Java_thread()) {
 356     ((JavaThread*) this)->set_stack_overflow_limit();
 357     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 358   }
 359 }
 360 
 361 #if INCLUDE_NMT
 362 void Thread::register_thread_stack_with_NMT() {
 363   MemTracker::record_thread_stack(stack_end(), stack_size());
 364 }
 365 #endif // INCLUDE_NMT
 366 
 367 void Thread::call_run() {
 368   // At this point, Thread object should be fully initialized and
 369   // Thread::current() should be set.
 370 
 371   register_thread_stack_with_NMT();
 372 
 373   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 374     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 375     os::current_thread_id(), p2i(stack_base() - stack_size()),
 376     p2i(stack_base()), stack_size()/1024);
 377 
 378   // Invoke <ChildClass>::run()
 379   this->run();
 380   // Returned from <ChildClass>::run(). Thread finished.
 381 
 382   // Note: at this point the thread object may already have deleted itself.
 383   // So from here on do not dereference *this*.
 384 
 385   // If a thread has not deleted itself ("delete this") as part of its
 386   // termination sequence, we have to ensure thread-local-storage is
 387   // cleared before we actually terminate. No threads should ever be
 388   // deleted asynchronously with respect to their termination.
 389   if (Thread::current_or_null_safe() != NULL) {
 390     assert(Thread::current_or_null_safe() == this, "current thread is wrong");
 391     Thread::clear_thread_current();
 392   }
 393 
 394 }
 395 
 396 Thread::~Thread() {
 397   JFR_ONLY(Jfr::on_thread_destruct(this);)
 398 
 399   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 400   // set might not be available if we encountered errors during bootstrapping.
 401   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 402   if (barrier_set != NULL) {
 403     barrier_set->on_thread_destroy(this);
 404   }
 405 
 406 
 407   // stack_base can be NULL if the thread is never started or exited before
 408   // record_stack_base_and_size called. Although, we would like to ensure
 409   // that all started threads do call record_stack_base_and_size(), there is
 410   // not proper way to enforce that.
 411 #if INCLUDE_NMT
 412   if (_stack_base != NULL) {
 413     MemTracker::release_thread_stack(stack_end(), stack_size());
 414 #ifdef ASSERT
 415     set_stack_base(NULL);
 416 #endif
 417   }
 418 #endif // INCLUDE_NMT
 419 
 420   // deallocate data structures
 421   delete resource_area();
 422   // since the handle marks are using the handle area, we have to deallocated the root
 423   // handle mark before deallocating the thread's handle area,
 424   assert(last_handle_mark() != NULL, "check we have an element");
 425   delete last_handle_mark();
 426   assert(last_handle_mark() == NULL, "check we have reached the end");
 427 
 428   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 429   // We NULL out the fields for good hygiene.
 430   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 431   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 432   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 433   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 434 
 435   delete handle_area();
 436   delete metadata_handles();
 437 
 438   // SR_handler uses this as a termination indicator -
 439   // needs to happen before os::free_thread()
 440   delete _SR_lock;
 441   _SR_lock = NULL;
 442 
 443   // osthread() can be NULL, if creation of thread failed.
 444   if (osthread() != NULL) os::free_thread(osthread());
 445 
 446   // clear Thread::current if thread is deleting itself.
 447   // Needed to ensure JNI correctly detects non-attached threads.
 448   if (this == Thread::current()) {
 449     Thread::clear_thread_current();
 450   }
 451 
 452   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 453 }
 454 
 455 #ifdef ASSERT
 456 // A JavaThread is considered "dangling" if it is not the current
 457 // thread, has been added the Threads list, the system is not at a
 458 // safepoint and the Thread is not "protected".
 459 //
 460 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 461   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 462          !((JavaThread *) thread)->on_thread_list() ||
 463          SafepointSynchronize::is_at_safepoint() ||
 464          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 465          "possibility of dangling Thread pointer");
 466 }
 467 #endif
 468 
 469 ThreadPriority Thread::get_priority(const Thread* const thread) {
 470   ThreadPriority priority;
 471   // Can return an error!
 472   (void)os::get_priority(thread, priority);
 473   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 474   return priority;
 475 }
 476 
 477 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 478   debug_only(check_for_dangling_thread_pointer(thread);)
 479   // Can return an error!
 480   (void)os::set_priority(thread, priority);
 481 }
 482 
 483 
 484 void Thread::start(Thread* thread) {
 485   // Start is different from resume in that its safety is guaranteed by context or
 486   // being called from a Java method synchronized on the Thread object.
 487   if (!DisableStartThread) {
 488     if (thread->is_Java_thread()) {
 489       // Initialize the thread state to RUNNABLE before starting this thread.
 490       // Can not set it after the thread started because we do not know the
 491       // exact thread state at that time. It could be in MONITOR_WAIT or
 492       // in SLEEPING or some other state.
 493       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 494                                           java_lang_Thread::RUNNABLE);
 495     }
 496     os::start_thread(thread);
 497   }
 498 }
 499 
 500 // Enqueue a VM_Operation to do the job for us - sometime later
 501 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 502   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 503   VMThread::execute(vm_stop);
 504 }
 505 
 506 
 507 // Check if an external suspend request has completed (or has been
 508 // cancelled). Returns true if the thread is externally suspended and
 509 // false otherwise.
 510 //
 511 // The bits parameter returns information about the code path through
 512 // the routine. Useful for debugging:
 513 //
 514 // set in is_ext_suspend_completed():
 515 // 0x00000001 - routine was entered
 516 // 0x00000010 - routine return false at end
 517 // 0x00000100 - thread exited (return false)
 518 // 0x00000200 - suspend request cancelled (return false)
 519 // 0x00000400 - thread suspended (return true)
 520 // 0x00001000 - thread is in a suspend equivalent state (return true)
 521 // 0x00002000 - thread is native and walkable (return true)
 522 // 0x00004000 - thread is native_trans and walkable (needed retry)
 523 //
 524 // set in wait_for_ext_suspend_completion():
 525 // 0x00010000 - routine was entered
 526 // 0x00020000 - suspend request cancelled before loop (return false)
 527 // 0x00040000 - thread suspended before loop (return true)
 528 // 0x00080000 - suspend request cancelled in loop (return false)
 529 // 0x00100000 - thread suspended in loop (return true)
 530 // 0x00200000 - suspend not completed during retry loop (return false)
 531 
 532 // Helper class for tracing suspend wait debug bits.
 533 //
 534 // 0x00000100 indicates that the target thread exited before it could
 535 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 536 // 0x00080000 each indicate a cancelled suspend request so they don't
 537 // count as wait failures either.
 538 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 539 
 540 class TraceSuspendDebugBits : public StackObj {
 541  private:
 542   JavaThread * jt;
 543   bool         is_wait;
 544   bool         called_by_wait;  // meaningful when !is_wait
 545   uint32_t *   bits;
 546 
 547  public:
 548   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 549                         uint32_t *_bits) {
 550     jt             = _jt;
 551     is_wait        = _is_wait;
 552     called_by_wait = _called_by_wait;
 553     bits           = _bits;
 554   }
 555 
 556   ~TraceSuspendDebugBits() {
 557     if (!is_wait) {
 558 #if 1
 559       // By default, don't trace bits for is_ext_suspend_completed() calls.
 560       // That trace is very chatty.
 561       return;
 562 #else
 563       if (!called_by_wait) {
 564         // If tracing for is_ext_suspend_completed() is enabled, then only
 565         // trace calls to it from wait_for_ext_suspend_completion()
 566         return;
 567       }
 568 #endif
 569     }
 570 
 571     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 572       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 573         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 574         ResourceMark rm;
 575 
 576         tty->print_cr(
 577                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 578                       jt->get_thread_name(), *bits);
 579 
 580         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 581       }
 582     }
 583   }
 584 };
 585 #undef DEBUG_FALSE_BITS
 586 
 587 
 588 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 589                                           uint32_t *bits) {
 590   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 591 
 592   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 593   bool do_trans_retry;           // flag to force the retry
 594 
 595   *bits |= 0x00000001;
 596 
 597   do {
 598     do_trans_retry = false;
 599 
 600     if (is_exiting()) {
 601       // Thread is in the process of exiting. This is always checked
 602       // first to reduce the risk of dereferencing a freed JavaThread.
 603       *bits |= 0x00000100;
 604       return false;
 605     }
 606 
 607     if (!is_external_suspend()) {
 608       // Suspend request is cancelled. This is always checked before
 609       // is_ext_suspended() to reduce the risk of a rogue resume
 610       // confusing the thread that made the suspend request.
 611       *bits |= 0x00000200;
 612       return false;
 613     }
 614 
 615     if (is_ext_suspended()) {
 616       // thread is suspended
 617       *bits |= 0x00000400;
 618       return true;
 619     }
 620 
 621     // Now that we no longer do hard suspends of threads running
 622     // native code, the target thread can be changing thread state
 623     // while we are in this routine:
 624     //
 625     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 626     //
 627     // We save a copy of the thread state as observed at this moment
 628     // and make our decision about suspend completeness based on the
 629     // copy. This closes the race where the thread state is seen as
 630     // _thread_in_native_trans in the if-thread_blocked check, but is
 631     // seen as _thread_blocked in if-thread_in_native_trans check.
 632     JavaThreadState save_state = thread_state();
 633 
 634     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 635       // If the thread's state is _thread_blocked and this blocking
 636       // condition is known to be equivalent to a suspend, then we can
 637       // consider the thread to be externally suspended. This means that
 638       // the code that sets _thread_blocked has been modified to do
 639       // self-suspension if the blocking condition releases. We also
 640       // used to check for CONDVAR_WAIT here, but that is now covered by
 641       // the _thread_blocked with self-suspension check.
 642       //
 643       // Return true since we wouldn't be here unless there was still an
 644       // external suspend request.
 645       *bits |= 0x00001000;
 646       return true;
 647     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 648       // Threads running native code will self-suspend on native==>VM/Java
 649       // transitions. If its stack is walkable (should always be the case
 650       // unless this function is called before the actual java_suspend()
 651       // call), then the wait is done.
 652       *bits |= 0x00002000;
 653       return true;
 654     } else if (!called_by_wait && !did_trans_retry &&
 655                save_state == _thread_in_native_trans &&
 656                frame_anchor()->walkable()) {
 657       // The thread is transitioning from thread_in_native to another
 658       // thread state. check_safepoint_and_suspend_for_native_trans()
 659       // will force the thread to self-suspend. If it hasn't gotten
 660       // there yet we may have caught the thread in-between the native
 661       // code check above and the self-suspend. Lucky us. If we were
 662       // called by wait_for_ext_suspend_completion(), then it
 663       // will be doing the retries so we don't have to.
 664       //
 665       // Since we use the saved thread state in the if-statement above,
 666       // there is a chance that the thread has already transitioned to
 667       // _thread_blocked by the time we get here. In that case, we will
 668       // make a single unnecessary pass through the logic below. This
 669       // doesn't hurt anything since we still do the trans retry.
 670 
 671       *bits |= 0x00004000;
 672 
 673       // Once the thread leaves thread_in_native_trans for another
 674       // thread state, we break out of this retry loop. We shouldn't
 675       // need this flag to prevent us from getting back here, but
 676       // sometimes paranoia is good.
 677       did_trans_retry = true;
 678 
 679       // We wait for the thread to transition to a more usable state.
 680       for (int i = 1; i <= SuspendRetryCount; i++) {
 681         // We used to do an "os::yield_all(i)" call here with the intention
 682         // that yielding would increase on each retry. However, the parameter
 683         // is ignored on Linux which means the yield didn't scale up. Waiting
 684         // on the SR_lock below provides a much more predictable scale up for
 685         // the delay. It also provides a simple/direct point to check for any
 686         // safepoint requests from the VMThread
 687 
 688         // temporarily drops SR_lock while doing wait with safepoint check
 689         // (if we're a JavaThread - the WatcherThread can also call this)
 690         // and increase delay with each retry
 691         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 692 
 693         // check the actual thread state instead of what we saved above
 694         if (thread_state() != _thread_in_native_trans) {
 695           // the thread has transitioned to another thread state so
 696           // try all the checks (except this one) one more time.
 697           do_trans_retry = true;
 698           break;
 699         }
 700       } // end retry loop
 701 
 702 
 703     }
 704   } while (do_trans_retry);
 705 
 706   *bits |= 0x00000010;
 707   return false;
 708 }
 709 
 710 // Wait for an external suspend request to complete (or be cancelled).
 711 // Returns true if the thread is externally suspended and false otherwise.
 712 //
 713 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 714                                                  uint32_t *bits) {
 715   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 716                              false /* !called_by_wait */, bits);
 717 
 718   // local flag copies to minimize SR_lock hold time
 719   bool is_suspended;
 720   bool pending;
 721   uint32_t reset_bits;
 722 
 723   // set a marker so is_ext_suspend_completed() knows we are the caller
 724   *bits |= 0x00010000;
 725 
 726   // We use reset_bits to reinitialize the bits value at the top of
 727   // each retry loop. This allows the caller to make use of any
 728   // unused bits for their own marking purposes.
 729   reset_bits = *bits;
 730 
 731   {
 732     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 733     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 734                                             delay, bits);
 735     pending = is_external_suspend();
 736   }
 737   // must release SR_lock to allow suspension to complete
 738 
 739   if (!pending) {
 740     // A cancelled suspend request is the only false return from
 741     // is_ext_suspend_completed() that keeps us from entering the
 742     // retry loop.
 743     *bits |= 0x00020000;
 744     return false;
 745   }
 746 
 747   if (is_suspended) {
 748     *bits |= 0x00040000;
 749     return true;
 750   }
 751 
 752   for (int i = 1; i <= retries; i++) {
 753     *bits = reset_bits;  // reinit to only track last retry
 754 
 755     // We used to do an "os::yield_all(i)" call here with the intention
 756     // that yielding would increase on each retry. However, the parameter
 757     // is ignored on Linux which means the yield didn't scale up. Waiting
 758     // on the SR_lock below provides a much more predictable scale up for
 759     // the delay. It also provides a simple/direct point to check for any
 760     // safepoint requests from the VMThread
 761 
 762     {
 763       MutexLocker ml(SR_lock());
 764       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 765       // can also call this)  and increase delay with each retry
 766       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 767 
 768       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 769                                               delay, bits);
 770 
 771       // It is possible for the external suspend request to be cancelled
 772       // (by a resume) before the actual suspend operation is completed.
 773       // Refresh our local copy to see if we still need to wait.
 774       pending = is_external_suspend();
 775     }
 776 
 777     if (!pending) {
 778       // A cancelled suspend request is the only false return from
 779       // is_ext_suspend_completed() that keeps us from staying in the
 780       // retry loop.
 781       *bits |= 0x00080000;
 782       return false;
 783     }
 784 
 785     if (is_suspended) {
 786       *bits |= 0x00100000;
 787       return true;
 788     }
 789   } // end retry loop
 790 
 791   // thread did not suspend after all our retries
 792   *bits |= 0x00200000;
 793   return false;
 794 }
 795 
 796 // Called from API entry points which perform stack walking. If the
 797 // associated JavaThread is the current thread, then wait_for_suspend
 798 // is not used. Otherwise, it determines if we should wait for the
 799 // "other" thread to complete external suspension. (NOTE: in future
 800 // releases the suspension mechanism should be reimplemented so this
 801 // is not necessary.)
 802 //
 803 bool
 804 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 805   if (this != JavaThread::current()) {
 806     // "other" threads require special handling.
 807     if (wait_for_suspend) {
 808       // We are allowed to wait for the external suspend to complete
 809       // so give the other thread a chance to get suspended.
 810       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 811                                            SuspendRetryDelay, bits)) {
 812         // Didn't make it so let the caller know.
 813         return false;
 814       }
 815     }
 816     // We aren't allowed to wait for the external suspend to complete
 817     // so if the other thread isn't externally suspended we need to
 818     // let the caller know.
 819     else if (!is_ext_suspend_completed_with_lock(bits)) {
 820       return false;
 821     }
 822   }
 823 
 824   return true;
 825 }
 826 
 827 #ifndef PRODUCT
 828 void JavaThread::record_jump(address target, address instr, const char* file,
 829                              int line) {
 830 
 831   // This should not need to be atomic as the only way for simultaneous
 832   // updates is via interrupts. Even then this should be rare or non-existent
 833   // and we don't care that much anyway.
 834 
 835   int index = _jmp_ring_index;
 836   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 837   _jmp_ring[index]._target = (intptr_t) target;
 838   _jmp_ring[index]._instruction = (intptr_t) instr;
 839   _jmp_ring[index]._file = file;
 840   _jmp_ring[index]._line = line;
 841 }
 842 #endif // PRODUCT
 843 
 844 void Thread::interrupt(Thread* thread) {
 845   debug_only(check_for_dangling_thread_pointer(thread);)
 846   os::interrupt(thread);
 847 }
 848 
 849 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 850   debug_only(check_for_dangling_thread_pointer(thread);)
 851   // Note:  If clear_interrupted==false, this simply fetches and
 852   // returns the value of the field osthread()->interrupted().
 853   return os::is_interrupted(thread, clear_interrupted);
 854 }
 855 
 856 
 857 // GC Support
 858 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 859   int thread_parity = _oops_do_parity;
 860   if (thread_parity != strong_roots_parity) {
 861     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 862     if (res == thread_parity) {
 863       return true;
 864     } else {
 865       guarantee(res == strong_roots_parity, "Or else what?");
 866       return false;
 867     }
 868   }
 869   return false;
 870 }
 871 
 872 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 873   active_handles()->oops_do(f);
 874   // Do oop for ThreadShadow
 875   f->do_oop((oop*)&_pending_exception);
 876   handle_area()->oops_do(f);
 877 
 878   // We scan thread local monitor lists here, and the remaining global
 879   // monitors in ObjectSynchronizer::oops_do().
 880   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 881 }
 882 
 883 void Thread::metadata_handles_do(void f(Metadata*)) {
 884   // Only walk the Handles in Thread.
 885   if (metadata_handles() != NULL) {
 886     for (int i = 0; i< metadata_handles()->length(); i++) {
 887       f(metadata_handles()->at(i));
 888     }
 889   }
 890 }
 891 
 892 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 893   // get_priority assumes osthread initialized
 894   if (osthread() != NULL) {
 895     int os_prio;
 896     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 897       st->print("os_prio=%d ", os_prio);
 898     }
 899 
 900     st->print("cpu=%.2fms ",
 901               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 902               );
 903     st->print("elapsed=%.2fs ",
 904               _statistical_info.getElapsedTime() / 1000.0
 905               );
 906     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 907       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 908       st->print("allocated=" SIZE_FORMAT "%s ",
 909                 byte_size_in_proper_unit(allocated_bytes),
 910                 proper_unit_for_byte_size(allocated_bytes)
 911                 );
 912       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 913     }
 914 
 915     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 916     osthread()->print_on(st);
 917   }
 918   ThreadsSMRSupport::print_info_on(this, st);
 919   st->print(" ");
 920   debug_only(if (WizardMode) print_owned_locks_on(st);)
 921 }
 922 
 923 // Thread::print_on_error() is called by fatal error handler. Don't use
 924 // any lock or allocate memory.
 925 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 926   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 927 
 928   if (is_VM_thread())                 { st->print("VMThread"); }
 929   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 930   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 931   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 932   else                                { st->print("Thread"); }
 933 
 934   if (is_Named_thread()) {
 935     st->print(" \"%s\"", name());
 936   }
 937 
 938   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 939             p2i(stack_end()), p2i(stack_base()));
 940 
 941   if (osthread()) {
 942     st->print(" [id=%d]", osthread()->thread_id());
 943   }
 944 
 945   ThreadsSMRSupport::print_info_on(this, st);
 946 }
 947 
 948 void Thread::print_value_on(outputStream* st) const {
 949   if (is_Named_thread()) {
 950     st->print(" \"%s\" ", name());
 951   }
 952   st->print(INTPTR_FORMAT, p2i(this));   // print address
 953 }
 954 
 955 #ifdef ASSERT
 956 void Thread::print_owned_locks_on(outputStream* st) const {
 957   Monitor *cur = _owned_locks;
 958   if (cur == NULL) {
 959     st->print(" (no locks) ");
 960   } else {
 961     st->print_cr(" Locks owned:");
 962     while (cur) {
 963       cur->print_on(st);
 964       cur = cur->next();
 965     }
 966   }
 967 }
 968 
 969 static int ref_use_count  = 0;
 970 
 971 bool Thread::owns_locks_but_compiled_lock() const {
 972   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 973     if (cur != Compile_lock) return true;
 974   }
 975   return false;
 976 }
 977 
 978 
 979 #endif
 980 
 981 #ifndef PRODUCT
 982 
 983 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
 984 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
 985 // no locks which allow_vm_block's are held
 986 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 987   // Check if current thread is allowed to block at a safepoint
 988   if (!(_allow_safepoint_count == 0)) {
 989     fatal("Possible safepoint reached by thread that does not allow it");
 990   }
 991   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 992     fatal("LEAF method calling lock?");
 993   }
 994 
 995 #ifdef ASSERT
 996   if (potential_vm_operation && is_Java_thread()
 997       && !Universe::is_bootstrapping()) {
 998     // Make sure we do not hold any locks that the VM thread also uses.
 999     // This could potentially lead to deadlocks
1000     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1001       // Threads_lock is special, since the safepoint synchronization will not start before this is
1002       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
1003       // since it is used to transfer control between JavaThreads and the VMThread
1004       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
1005       if ((cur->allow_vm_block() &&
1006            cur != Threads_lock &&
1007            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
1008            cur != VMOperationRequest_lock &&
1009            cur != VMOperationQueue_lock) ||
1010            cur->rank() == Mutex::special) {
1011         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
1012       }
1013     }
1014   }
1015 
1016   if (GCALotAtAllSafepoints) {
1017     // We could enter a safepoint here and thus have a gc
1018     InterfaceSupport::check_gc_alot();
1019   }
1020 #endif
1021 }
1022 #endif
1023 
1024 bool Thread::is_in_stack(address adr) const {
1025   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1026   address end = os::current_stack_pointer();
1027   // Allow non Java threads to call this without stack_base
1028   if (_stack_base == NULL) return true;
1029   if (stack_base() >= adr && adr >= end) return true;
1030 
1031   return false;
1032 }
1033 
1034 bool Thread::is_in_usable_stack(address adr) const {
1035   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1036   size_t usable_stack_size = _stack_size - stack_guard_size;
1037 
1038   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1039 }
1040 
1041 
1042 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1043 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1044 // used for compilation in the future. If that change is made, the need for these methods
1045 // should be revisited, and they should be removed if possible.
1046 
1047 bool Thread::is_lock_owned(address adr) const {
1048   return on_local_stack(adr);
1049 }
1050 
1051 bool Thread::set_as_starting_thread() {
1052   // NOTE: this must be called inside the main thread.
1053   return os::create_main_thread((JavaThread*)this);
1054 }
1055 
1056 static void initialize_class(Symbol* class_name, TRAPS) {
1057   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1058   InstanceKlass::cast(klass)->initialize(CHECK);
1059 }
1060 
1061 
1062 // Creates the initial ThreadGroup
1063 static Handle create_initial_thread_group(TRAPS) {
1064   Handle system_instance = JavaCalls::construct_new_instance(
1065                             SystemDictionary::ThreadGroup_klass(),
1066                             vmSymbols::void_method_signature(),
1067                             CHECK_NH);
1068   Universe::set_system_thread_group(system_instance());
1069 
1070   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1071   Handle main_instance = JavaCalls::construct_new_instance(
1072                             SystemDictionary::ThreadGroup_klass(),
1073                             vmSymbols::threadgroup_string_void_signature(),
1074                             system_instance,
1075                             string,
1076                             CHECK_NH);
1077   return main_instance;
1078 }
1079 
1080 // Creates the initial Thread
1081 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1082                                  TRAPS) {
1083   InstanceKlass* ik = SystemDictionary::Thread_klass();
1084   assert(ik->is_initialized(), "must be");
1085   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1086 
1087   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1088   // constructor calls Thread.current(), which must be set here for the
1089   // initial thread.
1090   java_lang_Thread::set_thread(thread_oop(), thread);
1091   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1092   thread->set_threadObj(thread_oop());
1093 
1094   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1095 
1096   JavaValue result(T_VOID);
1097   JavaCalls::call_special(&result, thread_oop,
1098                           ik,
1099                           vmSymbols::object_initializer_name(),
1100                           vmSymbols::threadgroup_string_void_signature(),
1101                           thread_group,
1102                           string,
1103                           CHECK_NULL);
1104   return thread_oop();
1105 }
1106 
1107 char java_runtime_name[128] = "";
1108 char java_runtime_version[128] = "";
1109 
1110 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1111 static const char* get_java_runtime_name(TRAPS) {
1112   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1113                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1114   fieldDescriptor fd;
1115   bool found = k != NULL &&
1116                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1117                                                         vmSymbols::string_signature(), &fd);
1118   if (found) {
1119     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1120     if (name_oop == NULL) {
1121       return NULL;
1122     }
1123     const char* name = java_lang_String::as_utf8_string(name_oop,
1124                                                         java_runtime_name,
1125                                                         sizeof(java_runtime_name));
1126     return name;
1127   } else {
1128     return NULL;
1129   }
1130 }
1131 
1132 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1133 static const char* get_java_runtime_version(TRAPS) {
1134   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1135                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1136   fieldDescriptor fd;
1137   bool found = k != NULL &&
1138                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1139                                                         vmSymbols::string_signature(), &fd);
1140   if (found) {
1141     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1142     if (name_oop == NULL) {
1143       return NULL;
1144     }
1145     const char* name = java_lang_String::as_utf8_string(name_oop,
1146                                                         java_runtime_version,
1147                                                         sizeof(java_runtime_version));
1148     return name;
1149   } else {
1150     return NULL;
1151   }
1152 }
1153 
1154 // General purpose hook into Java code, run once when the VM is initialized.
1155 // The Java library method itself may be changed independently from the VM.
1156 static void call_postVMInitHook(TRAPS) {
1157   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1158   if (klass != NULL) {
1159     JavaValue result(T_VOID);
1160     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1161                            vmSymbols::void_method_signature(),
1162                            CHECK);
1163   }
1164 }
1165 
1166 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1167                                     bool daemon, TRAPS) {
1168   assert(thread_group.not_null(), "thread group should be specified");
1169   assert(threadObj() == NULL, "should only create Java thread object once");
1170 
1171   InstanceKlass* ik = SystemDictionary::Thread_klass();
1172   assert(ik->is_initialized(), "must be");
1173   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1174 
1175   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1176   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1177   // constructor calls Thread.current(), which must be set here.
1178   java_lang_Thread::set_thread(thread_oop(), this);
1179   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1180   set_threadObj(thread_oop());
1181 
1182   JavaValue result(T_VOID);
1183   if (thread_name != NULL) {
1184     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1185     // Thread gets assigned specified name and null target
1186     JavaCalls::call_special(&result,
1187                             thread_oop,
1188                             ik,
1189                             vmSymbols::object_initializer_name(),
1190                             vmSymbols::threadgroup_string_void_signature(),
1191                             thread_group,
1192                             name,
1193                             THREAD);
1194   } else {
1195     // Thread gets assigned name "Thread-nnn" and null target
1196     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1197     JavaCalls::call_special(&result,
1198                             thread_oop,
1199                             ik,
1200                             vmSymbols::object_initializer_name(),
1201                             vmSymbols::threadgroup_runnable_void_signature(),
1202                             thread_group,
1203                             Handle(),
1204                             THREAD);
1205   }
1206 
1207 
1208   if (daemon) {
1209     java_lang_Thread::set_daemon(thread_oop());
1210   }
1211 
1212   if (HAS_PENDING_EXCEPTION) {
1213     return;
1214   }
1215 
1216   Klass* group =  SystemDictionary::ThreadGroup_klass();
1217   Handle threadObj(THREAD, this->threadObj());
1218 
1219   JavaCalls::call_special(&result,
1220                           thread_group,
1221                           group,
1222                           vmSymbols::add_method_name(),
1223                           vmSymbols::thread_void_signature(),
1224                           threadObj,          // Arg 1
1225                           THREAD);
1226 }
1227 
1228 // List of all NonJavaThreads and safe iteration over that list.
1229 
1230 class NonJavaThread::List {
1231 public:
1232   NonJavaThread* volatile _head;
1233   SingleWriterSynchronizer _protect;
1234 
1235   List() : _head(NULL), _protect() {}
1236 };
1237 
1238 NonJavaThread::List NonJavaThread::_the_list;
1239 
1240 NonJavaThread::Iterator::Iterator() :
1241   _protect_enter(_the_list._protect.enter()),
1242   _current(OrderAccess::load_acquire(&_the_list._head))
1243 {}
1244 
1245 NonJavaThread::Iterator::~Iterator() {
1246   _the_list._protect.exit(_protect_enter);
1247 }
1248 
1249 void NonJavaThread::Iterator::step() {
1250   assert(!end(), "precondition");
1251   _current = OrderAccess::load_acquire(&_current->_next);
1252 }
1253 
1254 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1255   // Add this thread to _the_list.
1256   MutexLockerEx lock(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1257   _next = _the_list._head;
1258   OrderAccess::release_store(&_the_list._head, this);
1259 }
1260 
1261 NonJavaThread::~NonJavaThread() {
1262   // Remove this thread from _the_list.
1263   MutexLockerEx lock(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1264   NonJavaThread* volatile* p = &_the_list._head;
1265   for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1266     if (t == this) {
1267       *p = this->_next;
1268       // Wait for any in-progress iterators.
1269       _the_list._protect.synchronize();
1270       break;
1271     }
1272   }
1273 }
1274 
1275 // NamedThread --  non-JavaThread subclasses with multiple
1276 // uniquely named instances should derive from this.
1277 NamedThread::NamedThread() :
1278   NonJavaThread(),
1279   _name(NULL),
1280   _processed_thread(NULL),
1281   _gc_id(GCId::undefined())
1282 {}
1283 
1284 NamedThread::~NamedThread() {
1285   if (_name != NULL) {
1286     FREE_C_HEAP_ARRAY(char, _name);
1287     _name = NULL;
1288   }
1289 }
1290 
1291 void NamedThread::set_name(const char* format, ...) {
1292   guarantee(_name == NULL, "Only get to set name once.");
1293   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1294   guarantee(_name != NULL, "alloc failure");
1295   va_list ap;
1296   va_start(ap, format);
1297   jio_vsnprintf(_name, max_name_len, format, ap);
1298   va_end(ap);
1299 }
1300 
1301 void NamedThread::initialize_named_thread() {
1302   set_native_thread_name(name());
1303 }
1304 
1305 void NamedThread::print_on(outputStream* st) const {
1306   st->print("\"%s\" ", name());
1307   Thread::print_on(st);
1308   st->cr();
1309 }
1310 
1311 
1312 // ======= WatcherThread ========
1313 
1314 // The watcher thread exists to simulate timer interrupts.  It should
1315 // be replaced by an abstraction over whatever native support for
1316 // timer interrupts exists on the platform.
1317 
1318 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1319 bool WatcherThread::_startable = false;
1320 volatile bool  WatcherThread::_should_terminate = false;
1321 
1322 WatcherThread::WatcherThread() : NonJavaThread() {
1323   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1324   if (os::create_thread(this, os::watcher_thread)) {
1325     _watcher_thread = this;
1326 
1327     // Set the watcher thread to the highest OS priority which should not be
1328     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1329     // is created. The only normal thread using this priority is the reference
1330     // handler thread, which runs for very short intervals only.
1331     // If the VMThread's priority is not lower than the WatcherThread profiling
1332     // will be inaccurate.
1333     os::set_priority(this, MaxPriority);
1334     if (!DisableStartThread) {
1335       os::start_thread(this);
1336     }
1337   }
1338 }
1339 
1340 int WatcherThread::sleep() const {
1341   // The WatcherThread does not participate in the safepoint protocol
1342   // for the PeriodicTask_lock because it is not a JavaThread.
1343   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1344 
1345   if (_should_terminate) {
1346     // check for termination before we do any housekeeping or wait
1347     return 0;  // we did not sleep.
1348   }
1349 
1350   // remaining will be zero if there are no tasks,
1351   // causing the WatcherThread to sleep until a task is
1352   // enrolled
1353   int remaining = PeriodicTask::time_to_wait();
1354   int time_slept = 0;
1355 
1356   // we expect this to timeout - we only ever get unparked when
1357   // we should terminate or when a new task has been enrolled
1358   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1359 
1360   jlong time_before_loop = os::javaTimeNanos();
1361 
1362   while (true) {
1363     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1364                                             remaining);
1365     jlong now = os::javaTimeNanos();
1366 
1367     if (remaining == 0) {
1368       // if we didn't have any tasks we could have waited for a long time
1369       // consider the time_slept zero and reset time_before_loop
1370       time_slept = 0;
1371       time_before_loop = now;
1372     } else {
1373       // need to recalculate since we might have new tasks in _tasks
1374       time_slept = (int) ((now - time_before_loop) / 1000000);
1375     }
1376 
1377     // Change to task list or spurious wakeup of some kind
1378     if (timedout || _should_terminate) {
1379       break;
1380     }
1381 
1382     remaining = PeriodicTask::time_to_wait();
1383     if (remaining == 0) {
1384       // Last task was just disenrolled so loop around and wait until
1385       // another task gets enrolled
1386       continue;
1387     }
1388 
1389     remaining -= time_slept;
1390     if (remaining <= 0) {
1391       break;
1392     }
1393   }
1394 
1395   return time_slept;
1396 }
1397 
1398 void WatcherThread::run() {
1399   assert(this == watcher_thread(), "just checking");
1400 
1401   this->set_native_thread_name(this->name());
1402   this->set_active_handles(JNIHandleBlock::allocate_block());
1403   while (true) {
1404     assert(watcher_thread() == Thread::current(), "thread consistency check");
1405     assert(watcher_thread() == this, "thread consistency check");
1406 
1407     // Calculate how long it'll be until the next PeriodicTask work
1408     // should be done, and sleep that amount of time.
1409     int time_waited = sleep();
1410 
1411     if (VMError::is_error_reported()) {
1412       // A fatal error has happened, the error handler(VMError::report_and_die)
1413       // should abort JVM after creating an error log file. However in some
1414       // rare cases, the error handler itself might deadlock. Here periodically
1415       // check for error reporting timeouts, and if it happens, just proceed to
1416       // abort the VM.
1417 
1418       // This code is in WatcherThread because WatcherThread wakes up
1419       // periodically so the fatal error handler doesn't need to do anything;
1420       // also because the WatcherThread is less likely to crash than other
1421       // threads.
1422 
1423       for (;;) {
1424         // Note: we use naked sleep in this loop because we want to avoid using
1425         // any kind of VM infrastructure which may be broken at this point.
1426         if (VMError::check_timeout()) {
1427           // We hit error reporting timeout. Error reporting was interrupted and
1428           // will be wrapping things up now (closing files etc). Give it some more
1429           // time, then quit the VM.
1430           os::naked_short_sleep(200);
1431           // Print a message to stderr.
1432           fdStream err(defaultStream::output_fd());
1433           err.print_raw_cr("# [ timer expired, abort... ]");
1434           // skip atexit/vm_exit/vm_abort hooks
1435           os::die();
1436         }
1437 
1438         // Wait a second, then recheck for timeout.
1439         os::naked_short_sleep(999);
1440       }
1441     }
1442 
1443     if (_should_terminate) {
1444       // check for termination before posting the next tick
1445       break;
1446     }
1447 
1448     PeriodicTask::real_time_tick(time_waited);
1449   }
1450 
1451   // Signal that it is terminated
1452   {
1453     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1454     _watcher_thread = NULL;
1455     Terminator_lock->notify();
1456   }
1457 }
1458 
1459 void WatcherThread::start() {
1460   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1461 
1462   if (watcher_thread() == NULL && _startable) {
1463     _should_terminate = false;
1464     // Create the single instance of WatcherThread
1465     new WatcherThread();
1466   }
1467 }
1468 
1469 void WatcherThread::make_startable() {
1470   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1471   _startable = true;
1472 }
1473 
1474 void WatcherThread::stop() {
1475   {
1476     // Follow normal safepoint aware lock enter protocol since the
1477     // WatcherThread is stopped by another JavaThread.
1478     MutexLocker ml(PeriodicTask_lock);
1479     _should_terminate = true;
1480 
1481     WatcherThread* watcher = watcher_thread();
1482     if (watcher != NULL) {
1483       // unpark the WatcherThread so it can see that it should terminate
1484       watcher->unpark();
1485     }
1486   }
1487 
1488   MutexLocker mu(Terminator_lock);
1489 
1490   while (watcher_thread() != NULL) {
1491     // This wait should make safepoint checks, wait without a timeout,
1492     // and wait as a suspend-equivalent condition.
1493     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1494                           Mutex::_as_suspend_equivalent_flag);
1495   }
1496 }
1497 
1498 void WatcherThread::unpark() {
1499   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1500   PeriodicTask_lock->notify();
1501 }
1502 
1503 void WatcherThread::print_on(outputStream* st) const {
1504   st->print("\"%s\" ", name());
1505   Thread::print_on(st);
1506   st->cr();
1507 }
1508 
1509 // ======= JavaThread ========
1510 
1511 #if INCLUDE_JVMCI
1512 
1513 jlong* JavaThread::_jvmci_old_thread_counters;
1514 
1515 bool jvmci_counters_include(JavaThread* thread) {
1516   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1517 }
1518 
1519 void JavaThread::collect_counters(typeArrayOop array) {
1520   if (JVMCICounterSize > 0) {
1521     JavaThreadIteratorWithHandle jtiwh;
1522     for (int i = 0; i < array->length(); i++) {
1523       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1524     }
1525     for (; JavaThread *tp = jtiwh.next(); ) {
1526       if (jvmci_counters_include(tp)) {
1527         for (int i = 0; i < array->length(); i++) {
1528           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1529         }
1530       }
1531     }
1532   }
1533 }
1534 
1535 #endif // INCLUDE_JVMCI
1536 
1537 // A JavaThread is a normal Java thread
1538 
1539 void JavaThread::initialize() {
1540   // Initialize fields
1541 
1542   set_saved_exception_pc(NULL);
1543   set_threadObj(NULL);
1544   _anchor.clear();
1545   set_entry_point(NULL);
1546   set_jni_functions(jni_functions());
1547   set_callee_target(NULL);
1548   set_vm_result(NULL);
1549   set_vm_result_2(NULL);
1550   set_vframe_array_head(NULL);
1551   set_vframe_array_last(NULL);
1552   set_deferred_locals(NULL);
1553   set_deopt_mark(NULL);
1554   set_deopt_compiled_method(NULL);
1555   clear_must_deopt_id();
1556   set_monitor_chunks(NULL);
1557   set_next(NULL);
1558   _on_thread_list = false;
1559   set_thread_state(_thread_new);
1560   _terminated = _not_terminated;
1561   _privileged_stack_top = NULL;
1562   _array_for_gc = NULL;
1563   _suspend_equivalent = false;
1564   _in_deopt_handler = 0;
1565   _doing_unsafe_access = false;
1566   _stack_guard_state = stack_guard_unused;
1567 #if INCLUDE_JVMCI
1568   _pending_monitorenter = false;
1569   _pending_deoptimization = -1;
1570   _pending_failed_speculation = 0;
1571   _pending_transfer_to_interpreter = false;
1572   _adjusting_comp_level = false;
1573   _in_retryable_allocation = false;
1574   _jvmci._alternate_call_target = NULL;
1575   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1576   if (JVMCICounterSize > 0) {
1577     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1578     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1579   } else {
1580     _jvmci_counters = NULL;
1581   }
1582 #endif // INCLUDE_JVMCI
1583   _reserved_stack_activation = NULL;  // stack base not known yet
1584   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1585   _exception_pc  = 0;
1586   _exception_handler_pc = 0;
1587   _is_method_handle_return = 0;
1588   _jvmti_thread_state= NULL;
1589   _should_post_on_exceptions_flag = JNI_FALSE;
1590   _interp_only_mode    = 0;
1591   _special_runtime_exit_condition = _no_async_condition;
1592   _pending_async_exception = NULL;
1593   _thread_stat = NULL;
1594   _thread_stat = new ThreadStatistics();
1595   _blocked_on_compilation = false;
1596   _jni_active_critical = 0;
1597   _pending_jni_exception_check_fn = NULL;
1598   _do_not_unlock_if_synchronized = false;
1599   _cached_monitor_info = NULL;
1600   _parker = Parker::Allocate(this);
1601 
1602 #ifndef PRODUCT
1603   _jmp_ring_index = 0;
1604   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1605     record_jump(NULL, NULL, NULL, 0);
1606   }
1607 #endif // PRODUCT
1608 
1609   // Setup safepoint state info for this thread
1610   ThreadSafepointState::create(this);
1611 
1612   debug_only(_java_call_counter = 0);
1613 
1614   // JVMTI PopFrame support
1615   _popframe_condition = popframe_inactive;
1616   _popframe_preserved_args = NULL;
1617   _popframe_preserved_args_size = 0;
1618   _frames_to_pop_failed_realloc = 0;
1619 
1620   if (SafepointMechanism::uses_thread_local_poll()) {
1621     SafepointMechanism::initialize_header(this);
1622   }
1623 
1624   pd_initialize();
1625 }
1626 
1627 JavaThread::JavaThread(bool is_attaching_via_jni) :
1628                        Thread() {
1629   initialize();
1630   if (is_attaching_via_jni) {
1631     _jni_attach_state = _attaching_via_jni;
1632   } else {
1633     _jni_attach_state = _not_attaching_via_jni;
1634   }
1635   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1636 }
1637 
1638 bool JavaThread::reguard_stack(address cur_sp) {
1639   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1640       && _stack_guard_state != stack_guard_reserved_disabled) {
1641     return true; // Stack already guarded or guard pages not needed.
1642   }
1643 
1644   if (register_stack_overflow()) {
1645     // For those architectures which have separate register and
1646     // memory stacks, we must check the register stack to see if
1647     // it has overflowed.
1648     return false;
1649   }
1650 
1651   // Java code never executes within the yellow zone: the latter is only
1652   // there to provoke an exception during stack banging.  If java code
1653   // is executing there, either StackShadowPages should be larger, or
1654   // some exception code in c1, c2 or the interpreter isn't unwinding
1655   // when it should.
1656   guarantee(cur_sp > stack_reserved_zone_base(),
1657             "not enough space to reguard - increase StackShadowPages");
1658   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1659     enable_stack_yellow_reserved_zone();
1660     if (reserved_stack_activation() != stack_base()) {
1661       set_reserved_stack_activation(stack_base());
1662     }
1663   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1664     set_reserved_stack_activation(stack_base());
1665     enable_stack_reserved_zone();
1666   }
1667   return true;
1668 }
1669 
1670 bool JavaThread::reguard_stack(void) {
1671   return reguard_stack(os::current_stack_pointer());
1672 }
1673 
1674 
1675 void JavaThread::block_if_vm_exited() {
1676   if (_terminated == _vm_exited) {
1677     // _vm_exited is set at safepoint, and Threads_lock is never released
1678     // we will block here forever
1679     Threads_lock->lock_without_safepoint_check();
1680     ShouldNotReachHere();
1681   }
1682 }
1683 
1684 
1685 // Remove this ifdef when C1 is ported to the compiler interface.
1686 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1687 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1688 
1689 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1690                        Thread() {
1691   initialize();
1692   _jni_attach_state = _not_attaching_via_jni;
1693   set_entry_point(entry_point);
1694   // Create the native thread itself.
1695   // %note runtime_23
1696   os::ThreadType thr_type = os::java_thread;
1697   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1698                                                      os::java_thread;
1699   os::create_thread(this, thr_type, stack_sz);
1700   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1701   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1702   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1703   // the exception consists of creating the exception object & initializing it, initialization
1704   // will leave the VM via a JavaCall and then all locks must be unlocked).
1705   //
1706   // The thread is still suspended when we reach here. Thread must be explicit started
1707   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1708   // by calling Threads:add. The reason why this is not done here, is because the thread
1709   // object must be fully initialized (take a look at JVM_Start)
1710 }
1711 
1712 JavaThread::~JavaThread() {
1713 
1714   // JSR166 -- return the parker to the free list
1715   Parker::Release(_parker);
1716   _parker = NULL;
1717 
1718   // Free any remaining  previous UnrollBlock
1719   vframeArray* old_array = vframe_array_last();
1720 
1721   if (old_array != NULL) {
1722     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1723     old_array->set_unroll_block(NULL);
1724     delete old_info;
1725     delete old_array;
1726   }
1727 
1728   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1729   if (deferred != NULL) {
1730     // This can only happen if thread is destroyed before deoptimization occurs.
1731     assert(deferred->length() != 0, "empty array!");
1732     do {
1733       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1734       deferred->remove_at(0);
1735       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1736       delete dlv;
1737     } while (deferred->length() != 0);
1738     delete deferred;
1739   }
1740 
1741   // All Java related clean up happens in exit
1742   ThreadSafepointState::destroy(this);
1743   if (_thread_stat != NULL) delete _thread_stat;
1744 
1745 #if INCLUDE_JVMCI
1746   if (JVMCICounterSize > 0) {
1747     if (jvmci_counters_include(this)) {
1748       for (int i = 0; i < JVMCICounterSize; i++) {
1749         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1750       }
1751     }
1752     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1753   }
1754 #endif // INCLUDE_JVMCI
1755 }
1756 
1757 
1758 // The first routine called by a new Java thread
1759 void JavaThread::run() {
1760   // initialize thread-local alloc buffer related fields
1761   this->initialize_tlab();
1762 
1763   // used to test validity of stack trace backs
1764   this->record_base_of_stack_pointer();
1765 
1766   this->create_stack_guard_pages();
1767 
1768   this->cache_global_variables();
1769 
1770   // Thread is now sufficient initialized to be handled by the safepoint code as being
1771   // in the VM. Change thread state from _thread_new to _thread_in_vm
1772   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1773 
1774   assert(JavaThread::current() == this, "sanity check");
1775   assert(!Thread::current()->owns_locks(), "sanity check");
1776 
1777   DTRACE_THREAD_PROBE(start, this);
1778 
1779   // This operation might block. We call that after all safepoint checks for a new thread has
1780   // been completed.
1781   this->set_active_handles(JNIHandleBlock::allocate_block());
1782 
1783   if (JvmtiExport::should_post_thread_life()) {
1784     JvmtiExport::post_thread_start(this);
1785   }
1786 
1787   EventThreadStart event;
1788   if (event.should_commit()) {
1789     event.set_thread(JFR_THREAD_ID(this));
1790     event.commit();
1791   }
1792 
1793   // We call another function to do the rest so we are sure that the stack addresses used
1794   // from there will be lower than the stack base just computed
1795   thread_main_inner();
1796 
1797   // Note, thread is no longer valid at this point!
1798 }
1799 
1800 
1801 void JavaThread::thread_main_inner() {
1802   assert(JavaThread::current() == this, "sanity check");
1803   assert(this->threadObj() != NULL, "just checking");
1804 
1805   // Execute thread entry point unless this thread has a pending exception
1806   // or has been stopped before starting.
1807   // Note: Due to JVM_StopThread we can have pending exceptions already!
1808   if (!this->has_pending_exception() &&
1809       !java_lang_Thread::is_stillborn(this->threadObj())) {
1810     {
1811       ResourceMark rm(this);
1812       this->set_native_thread_name(this->get_thread_name());
1813     }
1814     HandleMark hm(this);
1815     this->entry_point()(this, this);
1816   }
1817 
1818   DTRACE_THREAD_PROBE(stop, this);
1819 
1820   this->exit(false);
1821   this->smr_delete();
1822 }
1823 
1824 
1825 static void ensure_join(JavaThread* thread) {
1826   // We do not need to grab the Threads_lock, since we are operating on ourself.
1827   Handle threadObj(thread, thread->threadObj());
1828   assert(threadObj.not_null(), "java thread object must exist");
1829   ObjectLocker lock(threadObj, thread);
1830   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1831   thread->clear_pending_exception();
1832   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1833   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1834   // Clear the native thread instance - this makes isAlive return false and allows the join()
1835   // to complete once we've done the notify_all below
1836   java_lang_Thread::set_thread(threadObj(), NULL);
1837   lock.notify_all(thread);
1838   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1839   thread->clear_pending_exception();
1840 }
1841 
1842 static bool is_daemon(oop threadObj) {
1843   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1844 }
1845 
1846 // For any new cleanup additions, please check to see if they need to be applied to
1847 // cleanup_failed_attach_current_thread as well.
1848 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1849   assert(this == JavaThread::current(), "thread consistency check");
1850 
1851   elapsedTimer _timer_exit_phase1;
1852   elapsedTimer _timer_exit_phase2;
1853   elapsedTimer _timer_exit_phase3;
1854   elapsedTimer _timer_exit_phase4;
1855 
1856   if (log_is_enabled(Debug, os, thread, timer)) {
1857     _timer_exit_phase1.start();
1858   }
1859 
1860   HandleMark hm(this);
1861   Handle uncaught_exception(this, this->pending_exception());
1862   this->clear_pending_exception();
1863   Handle threadObj(this, this->threadObj());
1864   assert(threadObj.not_null(), "Java thread object should be created");
1865 
1866   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1867   {
1868     EXCEPTION_MARK;
1869 
1870     CLEAR_PENDING_EXCEPTION;
1871   }
1872   if (!destroy_vm) {
1873     if (uncaught_exception.not_null()) {
1874       EXCEPTION_MARK;
1875       // Call method Thread.dispatchUncaughtException().
1876       Klass* thread_klass = SystemDictionary::Thread_klass();
1877       JavaValue result(T_VOID);
1878       JavaCalls::call_virtual(&result,
1879                               threadObj, thread_klass,
1880                               vmSymbols::dispatchUncaughtException_name(),
1881                               vmSymbols::throwable_void_signature(),
1882                               uncaught_exception,
1883                               THREAD);
1884       if (HAS_PENDING_EXCEPTION) {
1885         ResourceMark rm(this);
1886         jio_fprintf(defaultStream::error_stream(),
1887                     "\nException: %s thrown from the UncaughtExceptionHandler"
1888                     " in thread \"%s\"\n",
1889                     pending_exception()->klass()->external_name(),
1890                     get_thread_name());
1891         CLEAR_PENDING_EXCEPTION;
1892       }
1893     }
1894 
1895     // Called before the java thread exit since we want to read info
1896     // from java_lang_Thread object
1897     EventThreadEnd event;
1898     if (event.should_commit()) {
1899       event.set_thread(JFR_THREAD_ID(this));
1900       event.commit();
1901     }
1902 
1903     // Call after last event on thread
1904     JFR_ONLY(Jfr::on_thread_exit(this);)
1905 
1906     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1907     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1908     // is deprecated anyhow.
1909     if (!is_Compiler_thread()) {
1910       int count = 3;
1911       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1912         EXCEPTION_MARK;
1913         JavaValue result(T_VOID);
1914         Klass* thread_klass = SystemDictionary::Thread_klass();
1915         JavaCalls::call_virtual(&result,
1916                                 threadObj, thread_klass,
1917                                 vmSymbols::exit_method_name(),
1918                                 vmSymbols::void_method_signature(),
1919                                 THREAD);
1920         CLEAR_PENDING_EXCEPTION;
1921       }
1922     }
1923     // notify JVMTI
1924     if (JvmtiExport::should_post_thread_life()) {
1925       JvmtiExport::post_thread_end(this);
1926     }
1927 
1928     // We have notified the agents that we are exiting, before we go on,
1929     // we must check for a pending external suspend request and honor it
1930     // in order to not surprise the thread that made the suspend request.
1931     while (true) {
1932       {
1933         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1934         if (!is_external_suspend()) {
1935           set_terminated(_thread_exiting);
1936           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
1937           break;
1938         }
1939         // Implied else:
1940         // Things get a little tricky here. We have a pending external
1941         // suspend request, but we are holding the SR_lock so we
1942         // can't just self-suspend. So we temporarily drop the lock
1943         // and then self-suspend.
1944       }
1945 
1946       ThreadBlockInVM tbivm(this);
1947       java_suspend_self();
1948 
1949       // We're done with this suspend request, but we have to loop around
1950       // and check again. Eventually we will get SR_lock without a pending
1951       // external suspend request and will be able to mark ourselves as
1952       // exiting.
1953     }
1954     // no more external suspends are allowed at this point
1955   } else {
1956     assert(!is_terminated() && !is_exiting(), "must not be exiting");
1957     // before_exit() has already posted JVMTI THREAD_END events
1958   }
1959 
1960   if (log_is_enabled(Debug, os, thread, timer)) {
1961     _timer_exit_phase1.stop();
1962     _timer_exit_phase2.start();
1963   }
1964   // Notify waiters on thread object. This has to be done after exit() is called
1965   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1966   // group should have the destroyed bit set before waiters are notified).
1967   ensure_join(this);
1968   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1969 
1970   if (log_is_enabled(Debug, os, thread, timer)) {
1971     _timer_exit_phase2.stop();
1972     _timer_exit_phase3.start();
1973   }
1974   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1975   // held by this thread must be released. The spec does not distinguish
1976   // between JNI-acquired and regular Java monitors. We can only see
1977   // regular Java monitors here if monitor enter-exit matching is broken.
1978   //
1979   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1980   // ObjectSynchronizer::release_monitors_owned_by_thread().
1981   if (exit_type == jni_detach) {
1982     // Sanity check even though JNI DetachCurrentThread() would have
1983     // returned JNI_ERR if there was a Java frame. JavaThread exit
1984     // should be done executing Java code by the time we get here.
1985     assert(!this->has_last_Java_frame(),
1986            "should not have a Java frame when detaching or exiting");
1987     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1988     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1989   }
1990 
1991   // These things needs to be done while we are still a Java Thread. Make sure that thread
1992   // is in a consistent state, in case GC happens
1993   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1994 
1995   if (active_handles() != NULL) {
1996     JNIHandleBlock* block = active_handles();
1997     set_active_handles(NULL);
1998     JNIHandleBlock::release_block(block);
1999   }
2000 
2001   if (free_handle_block() != NULL) {
2002     JNIHandleBlock* block = free_handle_block();
2003     set_free_handle_block(NULL);
2004     JNIHandleBlock::release_block(block);
2005   }
2006 
2007   // These have to be removed while this is still a valid thread.
2008   remove_stack_guard_pages();
2009 
2010   if (UseTLAB) {
2011     tlab().retire();
2012   }
2013 
2014   if (JvmtiEnv::environments_might_exist()) {
2015     JvmtiExport::cleanup_thread(this);
2016   }
2017 
2018   // We must flush any deferred card marks and other various GC barrier
2019   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2020   // before removing a thread from the list of active threads.
2021   BarrierSet::barrier_set()->on_thread_detach(this);
2022 
2023   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2024     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2025     os::current_thread_id());
2026 
2027   if (log_is_enabled(Debug, os, thread, timer)) {
2028     _timer_exit_phase3.stop();
2029     _timer_exit_phase4.start();
2030   }
2031   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2032   Threads::remove(this);
2033 
2034   if (log_is_enabled(Debug, os, thread, timer)) {
2035     _timer_exit_phase4.stop();
2036     ResourceMark rm(this);
2037     log_debug(os, thread, timer)("name='%s'"
2038                                  ", exit-phase1=" JLONG_FORMAT
2039                                  ", exit-phase2=" JLONG_FORMAT
2040                                  ", exit-phase3=" JLONG_FORMAT
2041                                  ", exit-phase4=" JLONG_FORMAT,
2042                                  get_thread_name(),
2043                                  _timer_exit_phase1.milliseconds(),
2044                                  _timer_exit_phase2.milliseconds(),
2045                                  _timer_exit_phase3.milliseconds(),
2046                                  _timer_exit_phase4.milliseconds());
2047   }
2048 }
2049 
2050 void JavaThread::cleanup_failed_attach_current_thread() {
2051   if (active_handles() != NULL) {
2052     JNIHandleBlock* block = active_handles();
2053     set_active_handles(NULL);
2054     JNIHandleBlock::release_block(block);
2055   }
2056 
2057   if (free_handle_block() != NULL) {
2058     JNIHandleBlock* block = free_handle_block();
2059     set_free_handle_block(NULL);
2060     JNIHandleBlock::release_block(block);
2061   }
2062 
2063   // These have to be removed while this is still a valid thread.
2064   remove_stack_guard_pages();
2065 
2066   if (UseTLAB) {
2067     tlab().retire();
2068   }
2069 
2070   BarrierSet::barrier_set()->on_thread_detach(this);
2071 
2072   Threads::remove(this);
2073   this->smr_delete();
2074 }
2075 
2076 JavaThread* JavaThread::active() {
2077   Thread* thread = Thread::current();
2078   if (thread->is_Java_thread()) {
2079     return (JavaThread*) thread;
2080   } else {
2081     assert(thread->is_VM_thread(), "this must be a vm thread");
2082     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2083     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2084     assert(ret->is_Java_thread(), "must be a Java thread");
2085     return ret;
2086   }
2087 }
2088 
2089 bool JavaThread::is_lock_owned(address adr) const {
2090   if (Thread::is_lock_owned(adr)) return true;
2091 
2092   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2093     if (chunk->contains(adr)) return true;
2094   }
2095 
2096   return false;
2097 }
2098 
2099 
2100 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2101   chunk->set_next(monitor_chunks());
2102   set_monitor_chunks(chunk);
2103 }
2104 
2105 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2106   guarantee(monitor_chunks() != NULL, "must be non empty");
2107   if (monitor_chunks() == chunk) {
2108     set_monitor_chunks(chunk->next());
2109   } else {
2110     MonitorChunk* prev = monitor_chunks();
2111     while (prev->next() != chunk) prev = prev->next();
2112     prev->set_next(chunk->next());
2113   }
2114 }
2115 
2116 // JVM support.
2117 
2118 // Note: this function shouldn't block if it's called in
2119 // _thread_in_native_trans state (such as from
2120 // check_special_condition_for_native_trans()).
2121 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2122 
2123   if (has_last_Java_frame() && has_async_condition()) {
2124     // If we are at a polling page safepoint (not a poll return)
2125     // then we must defer async exception because live registers
2126     // will be clobbered by the exception path. Poll return is
2127     // ok because the call we a returning from already collides
2128     // with exception handling registers and so there is no issue.
2129     // (The exception handling path kills call result registers but
2130     //  this is ok since the exception kills the result anyway).
2131 
2132     if (is_at_poll_safepoint()) {
2133       // if the code we are returning to has deoptimized we must defer
2134       // the exception otherwise live registers get clobbered on the
2135       // exception path before deoptimization is able to retrieve them.
2136       //
2137       RegisterMap map(this, false);
2138       frame caller_fr = last_frame().sender(&map);
2139       assert(caller_fr.is_compiled_frame(), "what?");
2140       if (caller_fr.is_deoptimized_frame()) {
2141         log_info(exceptions)("deferred async exception at compiled safepoint");
2142         return;
2143       }
2144     }
2145   }
2146 
2147   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2148   if (condition == _no_async_condition) {
2149     // Conditions have changed since has_special_runtime_exit_condition()
2150     // was called:
2151     // - if we were here only because of an external suspend request,
2152     //   then that was taken care of above (or cancelled) so we are done
2153     // - if we were here because of another async request, then it has
2154     //   been cleared between the has_special_runtime_exit_condition()
2155     //   and now so again we are done
2156     return;
2157   }
2158 
2159   // Check for pending async. exception
2160   if (_pending_async_exception != NULL) {
2161     // Only overwrite an already pending exception, if it is not a threadDeath.
2162     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2163 
2164       // We cannot call Exceptions::_throw(...) here because we cannot block
2165       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2166 
2167       LogTarget(Info, exceptions) lt;
2168       if (lt.is_enabled()) {
2169         ResourceMark rm;
2170         LogStream ls(lt);
2171         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2172           if (has_last_Java_frame()) {
2173             frame f = last_frame();
2174            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2175           }
2176         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2177       }
2178       _pending_async_exception = NULL;
2179       clear_has_async_exception();
2180     }
2181   }
2182 
2183   if (check_unsafe_error &&
2184       condition == _async_unsafe_access_error && !has_pending_exception()) {
2185     condition = _no_async_condition;  // done
2186     switch (thread_state()) {
2187     case _thread_in_vm: {
2188       JavaThread* THREAD = this;
2189       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2190     }
2191     case _thread_in_native: {
2192       ThreadInVMfromNative tiv(this);
2193       JavaThread* THREAD = this;
2194       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2195     }
2196     case _thread_in_Java: {
2197       ThreadInVMfromJava tiv(this);
2198       JavaThread* THREAD = this;
2199       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2200     }
2201     default:
2202       ShouldNotReachHere();
2203     }
2204   }
2205 
2206   assert(condition == _no_async_condition || has_pending_exception() ||
2207          (!check_unsafe_error && condition == _async_unsafe_access_error),
2208          "must have handled the async condition, if no exception");
2209 }
2210 
2211 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2212   //
2213   // Check for pending external suspend. Internal suspend requests do
2214   // not use handle_special_runtime_exit_condition().
2215   // If JNIEnv proxies are allowed, don't self-suspend if the target
2216   // thread is not the current thread. In older versions of jdbx, jdbx
2217   // threads could call into the VM with another thread's JNIEnv so we
2218   // can be here operating on behalf of a suspended thread (4432884).
2219   bool do_self_suspend = is_external_suspend_with_lock();
2220   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2221     //
2222     // Because thread is external suspended the safepoint code will count
2223     // thread as at a safepoint. This can be odd because we can be here
2224     // as _thread_in_Java which would normally transition to _thread_blocked
2225     // at a safepoint. We would like to mark the thread as _thread_blocked
2226     // before calling java_suspend_self like all other callers of it but
2227     // we must then observe proper safepoint protocol. (We can't leave
2228     // _thread_blocked with a safepoint in progress). However we can be
2229     // here as _thread_in_native_trans so we can't use a normal transition
2230     // constructor/destructor pair because they assert on that type of
2231     // transition. We could do something like:
2232     //
2233     // JavaThreadState state = thread_state();
2234     // set_thread_state(_thread_in_vm);
2235     // {
2236     //   ThreadBlockInVM tbivm(this);
2237     //   java_suspend_self()
2238     // }
2239     // set_thread_state(_thread_in_vm_trans);
2240     // if (safepoint) block;
2241     // set_thread_state(state);
2242     //
2243     // but that is pretty messy. Instead we just go with the way the
2244     // code has worked before and note that this is the only path to
2245     // java_suspend_self that doesn't put the thread in _thread_blocked
2246     // mode.
2247 
2248     frame_anchor()->make_walkable(this);
2249     java_suspend_self();
2250 
2251     // We might be here for reasons in addition to the self-suspend request
2252     // so check for other async requests.
2253   }
2254 
2255   if (check_asyncs) {
2256     check_and_handle_async_exceptions();
2257   }
2258 
2259   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2260 }
2261 
2262 void JavaThread::send_thread_stop(oop java_throwable)  {
2263   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2264   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2265   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2266 
2267   // Do not throw asynchronous exceptions against the compiler thread
2268   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2269   if (!can_call_java()) return;
2270 
2271   {
2272     // Actually throw the Throwable against the target Thread - however
2273     // only if there is no thread death exception installed already.
2274     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2275       // If the topmost frame is a runtime stub, then we are calling into
2276       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2277       // must deoptimize the caller before continuing, as the compiled  exception handler table
2278       // may not be valid
2279       if (has_last_Java_frame()) {
2280         frame f = last_frame();
2281         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2282           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2283           RegisterMap reg_map(this, UseBiasedLocking);
2284           frame compiled_frame = f.sender(&reg_map);
2285           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2286             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2287           }
2288         }
2289       }
2290 
2291       // Set async. pending exception in thread.
2292       set_pending_async_exception(java_throwable);
2293 
2294       if (log_is_enabled(Info, exceptions)) {
2295          ResourceMark rm;
2296         log_info(exceptions)("Pending Async. exception installed of type: %s",
2297                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2298       }
2299       // for AbortVMOnException flag
2300       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2301     }
2302   }
2303 
2304 
2305   // Interrupt thread so it will wake up from a potential wait()
2306   Thread::interrupt(this);
2307 }
2308 
2309 // External suspension mechanism.
2310 //
2311 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2312 // to any VM_locks and it is at a transition
2313 // Self-suspension will happen on the transition out of the vm.
2314 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2315 //
2316 // Guarantees on return:
2317 //   + Target thread will not execute any new bytecode (that's why we need to
2318 //     force a safepoint)
2319 //   + Target thread will not enter any new monitors
2320 //
2321 void JavaThread::java_suspend() {
2322   ThreadsListHandle tlh;
2323   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2324     return;
2325   }
2326 
2327   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2328     if (!is_external_suspend()) {
2329       // a racing resume has cancelled us; bail out now
2330       return;
2331     }
2332 
2333     // suspend is done
2334     uint32_t debug_bits = 0;
2335     // Warning: is_ext_suspend_completed() may temporarily drop the
2336     // SR_lock to allow the thread to reach a stable thread state if
2337     // it is currently in a transient thread state.
2338     if (is_ext_suspend_completed(false /* !called_by_wait */,
2339                                  SuspendRetryDelay, &debug_bits)) {
2340       return;
2341     }
2342   }
2343 
2344   VM_ThreadSuspend vm_suspend;
2345   VMThread::execute(&vm_suspend);
2346 }
2347 
2348 // Part II of external suspension.
2349 // A JavaThread self suspends when it detects a pending external suspend
2350 // request. This is usually on transitions. It is also done in places
2351 // where continuing to the next transition would surprise the caller,
2352 // e.g., monitor entry.
2353 //
2354 // Returns the number of times that the thread self-suspended.
2355 //
2356 // Note: DO NOT call java_suspend_self() when you just want to block current
2357 //       thread. java_suspend_self() is the second stage of cooperative
2358 //       suspension for external suspend requests and should only be used
2359 //       to complete an external suspend request.
2360 //
2361 int JavaThread::java_suspend_self() {
2362   int ret = 0;
2363 
2364   // we are in the process of exiting so don't suspend
2365   if (is_exiting()) {
2366     clear_external_suspend();
2367     return ret;
2368   }
2369 
2370   assert(_anchor.walkable() ||
2371          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2372          "must have walkable stack");
2373 
2374   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2375 
2376   assert(!this->is_ext_suspended(),
2377          "a thread trying to self-suspend should not already be suspended");
2378 
2379   if (this->is_suspend_equivalent()) {
2380     // If we are self-suspending as a result of the lifting of a
2381     // suspend equivalent condition, then the suspend_equivalent
2382     // flag is not cleared until we set the ext_suspended flag so
2383     // that wait_for_ext_suspend_completion() returns consistent
2384     // results.
2385     this->clear_suspend_equivalent();
2386   }
2387 
2388   // A racing resume may have cancelled us before we grabbed SR_lock
2389   // above. Or another external suspend request could be waiting for us
2390   // by the time we return from SR_lock()->wait(). The thread
2391   // that requested the suspension may already be trying to walk our
2392   // stack and if we return now, we can change the stack out from under
2393   // it. This would be a "bad thing (TM)" and cause the stack walker
2394   // to crash. We stay self-suspended until there are no more pending
2395   // external suspend requests.
2396   while (is_external_suspend()) {
2397     ret++;
2398     this->set_ext_suspended();
2399 
2400     // _ext_suspended flag is cleared by java_resume()
2401     while (is_ext_suspended()) {
2402       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2403     }
2404   }
2405 
2406   return ret;
2407 }
2408 
2409 #ifdef ASSERT
2410 // Verify the JavaThread has not yet been published in the Threads::list, and
2411 // hence doesn't need protection from concurrent access at this stage.
2412 void JavaThread::verify_not_published() {
2413   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2414   // since an unpublished JavaThread doesn't participate in the
2415   // Thread-SMR protocol for keeping a ThreadsList alive.
2416   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2417 }
2418 #endif
2419 
2420 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2421 // progress or when _suspend_flags is non-zero.
2422 // Current thread needs to self-suspend if there is a suspend request and/or
2423 // block if a safepoint is in progress.
2424 // Async exception ISN'T checked.
2425 // Note only the ThreadInVMfromNative transition can call this function
2426 // directly and when thread state is _thread_in_native_trans
2427 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2428   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2429 
2430   JavaThread *curJT = JavaThread::current();
2431   bool do_self_suspend = thread->is_external_suspend();
2432 
2433   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2434 
2435   // If JNIEnv proxies are allowed, don't self-suspend if the target
2436   // thread is not the current thread. In older versions of jdbx, jdbx
2437   // threads could call into the VM with another thread's JNIEnv so we
2438   // can be here operating on behalf of a suspended thread (4432884).
2439   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2440     JavaThreadState state = thread->thread_state();
2441 
2442     // We mark this thread_blocked state as a suspend-equivalent so
2443     // that a caller to is_ext_suspend_completed() won't be confused.
2444     // The suspend-equivalent state is cleared by java_suspend_self().
2445     thread->set_suspend_equivalent();
2446 
2447     // If the safepoint code sees the _thread_in_native_trans state, it will
2448     // wait until the thread changes to other thread state. There is no
2449     // guarantee on how soon we can obtain the SR_lock and complete the
2450     // self-suspend request. It would be a bad idea to let safepoint wait for
2451     // too long. Temporarily change the state to _thread_blocked to
2452     // let the VM thread know that this thread is ready for GC. The problem
2453     // of changing thread state is that safepoint could happen just after
2454     // java_suspend_self() returns after being resumed, and VM thread will
2455     // see the _thread_blocked state. We must check for safepoint
2456     // after restoring the state and make sure we won't leave while a safepoint
2457     // is in progress.
2458     thread->set_thread_state(_thread_blocked);
2459     thread->java_suspend_self();
2460     thread->set_thread_state(state);
2461 
2462     InterfaceSupport::serialize_thread_state_with_handler(thread);
2463   }
2464 
2465   SafepointMechanism::block_if_requested(curJT);
2466 
2467   if (thread->is_deopt_suspend()) {
2468     thread->clear_deopt_suspend();
2469     RegisterMap map(thread, false);
2470     frame f = thread->last_frame();
2471     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2472       f = f.sender(&map);
2473     }
2474     if (f.id() == thread->must_deopt_id()) {
2475       thread->clear_must_deopt_id();
2476       f.deoptimize(thread);
2477     } else {
2478       fatal("missed deoptimization!");
2479     }
2480   }
2481 
2482   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2483 }
2484 
2485 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2486 // progress or when _suspend_flags is non-zero.
2487 // Current thread needs to self-suspend if there is a suspend request and/or
2488 // block if a safepoint is in progress.
2489 // Also check for pending async exception (not including unsafe access error).
2490 // Note only the native==>VM/Java barriers can call this function and when
2491 // thread state is _thread_in_native_trans.
2492 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2493   check_safepoint_and_suspend_for_native_trans(thread);
2494 
2495   if (thread->has_async_exception()) {
2496     // We are in _thread_in_native_trans state, don't handle unsafe
2497     // access error since that may block.
2498     thread->check_and_handle_async_exceptions(false);
2499   }
2500 }
2501 
2502 // This is a variant of the normal
2503 // check_special_condition_for_native_trans with slightly different
2504 // semantics for use by critical native wrappers.  It does all the
2505 // normal checks but also performs the transition back into
2506 // thread_in_Java state.  This is required so that critical natives
2507 // can potentially block and perform a GC if they are the last thread
2508 // exiting the GCLocker.
2509 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2510   check_special_condition_for_native_trans(thread);
2511 
2512   // Finish the transition
2513   thread->set_thread_state(_thread_in_Java);
2514 
2515   if (thread->do_critical_native_unlock()) {
2516     ThreadInVMfromJavaNoAsyncException tiv(thread);
2517     GCLocker::unlock_critical(thread);
2518     thread->clear_critical_native_unlock();
2519   }
2520 }
2521 
2522 // We need to guarantee the Threads_lock here, since resumes are not
2523 // allowed during safepoint synchronization
2524 // Can only resume from an external suspension
2525 void JavaThread::java_resume() {
2526   assert_locked_or_safepoint(Threads_lock);
2527 
2528   // Sanity check: thread is gone, has started exiting or the thread
2529   // was not externally suspended.
2530   ThreadsListHandle tlh;
2531   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2532     return;
2533   }
2534 
2535   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2536 
2537   clear_external_suspend();
2538 
2539   if (is_ext_suspended()) {
2540     clear_ext_suspended();
2541     SR_lock()->notify_all();
2542   }
2543 }
2544 
2545 size_t JavaThread::_stack_red_zone_size = 0;
2546 size_t JavaThread::_stack_yellow_zone_size = 0;
2547 size_t JavaThread::_stack_reserved_zone_size = 0;
2548 size_t JavaThread::_stack_shadow_zone_size = 0;
2549 
2550 void JavaThread::create_stack_guard_pages() {
2551   if (!os::uses_stack_guard_pages() ||
2552       _stack_guard_state != stack_guard_unused ||
2553       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2554       log_info(os, thread)("Stack guard page creation for thread "
2555                            UINTX_FORMAT " disabled", os::current_thread_id());
2556     return;
2557   }
2558   address low_addr = stack_end();
2559   size_t len = stack_guard_zone_size();
2560 
2561   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2562   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2563 
2564   int must_commit = os::must_commit_stack_guard_pages();
2565   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2566 
2567   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2568     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2569     return;
2570   }
2571 
2572   if (os::guard_memory((char *) low_addr, len)) {
2573     _stack_guard_state = stack_guard_enabled;
2574   } else {
2575     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2576       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2577     if (os::uncommit_memory((char *) low_addr, len)) {
2578       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2579     }
2580     return;
2581   }
2582 
2583   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2584     PTR_FORMAT "-" PTR_FORMAT ".",
2585     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2586 }
2587 
2588 void JavaThread::remove_stack_guard_pages() {
2589   assert(Thread::current() == this, "from different thread");
2590   if (_stack_guard_state == stack_guard_unused) return;
2591   address low_addr = stack_end();
2592   size_t len = stack_guard_zone_size();
2593 
2594   if (os::must_commit_stack_guard_pages()) {
2595     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2596       _stack_guard_state = stack_guard_unused;
2597     } else {
2598       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2599         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2600       return;
2601     }
2602   } else {
2603     if (_stack_guard_state == stack_guard_unused) return;
2604     if (os::unguard_memory((char *) low_addr, len)) {
2605       _stack_guard_state = stack_guard_unused;
2606     } else {
2607       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2608         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2609       return;
2610     }
2611   }
2612 
2613   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2614     PTR_FORMAT "-" PTR_FORMAT ".",
2615     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2616 }
2617 
2618 void JavaThread::enable_stack_reserved_zone() {
2619   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2620   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2621 
2622   // The base notation is from the stack's point of view, growing downward.
2623   // We need to adjust it to work correctly with guard_memory()
2624   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2625 
2626   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2627   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2628 
2629   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2630     _stack_guard_state = stack_guard_enabled;
2631   } else {
2632     warning("Attempt to guard stack reserved zone failed.");
2633   }
2634   enable_register_stack_guard();
2635 }
2636 
2637 void JavaThread::disable_stack_reserved_zone() {
2638   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2639   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2640 
2641   // Simply return if called for a thread that does not use guard pages.
2642   if (_stack_guard_state == stack_guard_unused) return;
2643 
2644   // The base notation is from the stack's point of view, growing downward.
2645   // We need to adjust it to work correctly with guard_memory()
2646   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2647 
2648   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2649     _stack_guard_state = stack_guard_reserved_disabled;
2650   } else {
2651     warning("Attempt to unguard stack reserved zone failed.");
2652   }
2653   disable_register_stack_guard();
2654 }
2655 
2656 void JavaThread::enable_stack_yellow_reserved_zone() {
2657   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2658   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2659 
2660   // The base notation is from the stacks point of view, growing downward.
2661   // We need to adjust it to work correctly with guard_memory()
2662   address base = stack_red_zone_base();
2663 
2664   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2665   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2666 
2667   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2668     _stack_guard_state = stack_guard_enabled;
2669   } else {
2670     warning("Attempt to guard stack yellow zone failed.");
2671   }
2672   enable_register_stack_guard();
2673 }
2674 
2675 void JavaThread::disable_stack_yellow_reserved_zone() {
2676   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2677   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2678 
2679   // Simply return if called for a thread that does not use guard pages.
2680   if (_stack_guard_state == stack_guard_unused) return;
2681 
2682   // The base notation is from the stacks point of view, growing downward.
2683   // We need to adjust it to work correctly with guard_memory()
2684   address base = stack_red_zone_base();
2685 
2686   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2687     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2688   } else {
2689     warning("Attempt to unguard stack yellow zone failed.");
2690   }
2691   disable_register_stack_guard();
2692 }
2693 
2694 void JavaThread::enable_stack_red_zone() {
2695   // The base notation is from the stacks point of view, growing downward.
2696   // We need to adjust it to work correctly with guard_memory()
2697   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2698   address base = stack_red_zone_base() - stack_red_zone_size();
2699 
2700   guarantee(base < stack_base(), "Error calculating stack red zone");
2701   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2702 
2703   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2704     warning("Attempt to guard stack red zone failed.");
2705   }
2706 }
2707 
2708 void JavaThread::disable_stack_red_zone() {
2709   // The base notation is from the stacks point of view, growing downward.
2710   // We need to adjust it to work correctly with guard_memory()
2711   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2712   address base = stack_red_zone_base() - stack_red_zone_size();
2713   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2714     warning("Attempt to unguard stack red zone failed.");
2715   }
2716 }
2717 
2718 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2719   // ignore is there is no stack
2720   if (!has_last_Java_frame()) return;
2721   // traverse the stack frames. Starts from top frame.
2722   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2723     frame* fr = fst.current();
2724     f(fr, fst.register_map());
2725   }
2726 }
2727 
2728 
2729 #ifndef PRODUCT
2730 // Deoptimization
2731 // Function for testing deoptimization
2732 void JavaThread::deoptimize() {
2733   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2734   StackFrameStream fst(this, UseBiasedLocking);
2735   bool deopt = false;           // Dump stack only if a deopt actually happens.
2736   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2737   // Iterate over all frames in the thread and deoptimize
2738   for (; !fst.is_done(); fst.next()) {
2739     if (fst.current()->can_be_deoptimized()) {
2740 
2741       if (only_at) {
2742         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2743         // consists of comma or carriage return separated numbers so
2744         // search for the current bci in that string.
2745         address pc = fst.current()->pc();
2746         nmethod* nm =  (nmethod*) fst.current()->cb();
2747         ScopeDesc* sd = nm->scope_desc_at(pc);
2748         char buffer[8];
2749         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2750         size_t len = strlen(buffer);
2751         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2752         while (found != NULL) {
2753           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2754               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2755             // Check that the bci found is bracketed by terminators.
2756             break;
2757           }
2758           found = strstr(found + 1, buffer);
2759         }
2760         if (!found) {
2761           continue;
2762         }
2763       }
2764 
2765       if (DebugDeoptimization && !deopt) {
2766         deopt = true; // One-time only print before deopt
2767         tty->print_cr("[BEFORE Deoptimization]");
2768         trace_frames();
2769         trace_stack();
2770       }
2771       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2772     }
2773   }
2774 
2775   if (DebugDeoptimization && deopt) {
2776     tty->print_cr("[AFTER Deoptimization]");
2777     trace_frames();
2778   }
2779 }
2780 
2781 
2782 // Make zombies
2783 void JavaThread::make_zombies() {
2784   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2785     if (fst.current()->can_be_deoptimized()) {
2786       // it is a Java nmethod
2787       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2788       nm->make_not_entrant();
2789     }
2790   }
2791 }
2792 #endif // PRODUCT
2793 
2794 
2795 void JavaThread::deoptimized_wrt_marked_nmethods() {
2796   if (!has_last_Java_frame()) return;
2797   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2798   StackFrameStream fst(this, UseBiasedLocking);
2799   for (; !fst.is_done(); fst.next()) {
2800     if (fst.current()->should_be_deoptimized()) {
2801       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2802     }
2803   }
2804 }
2805 
2806 
2807 // If the caller is a NamedThread, then remember, in the current scope,
2808 // the given JavaThread in its _processed_thread field.
2809 class RememberProcessedThread: public StackObj {
2810   NamedThread* _cur_thr;
2811  public:
2812   RememberProcessedThread(JavaThread* jthr) {
2813     Thread* thread = Thread::current();
2814     if (thread->is_Named_thread()) {
2815       _cur_thr = (NamedThread *)thread;
2816       _cur_thr->set_processed_thread(jthr);
2817     } else {
2818       _cur_thr = NULL;
2819     }
2820   }
2821 
2822   ~RememberProcessedThread() {
2823     if (_cur_thr) {
2824       _cur_thr->set_processed_thread(NULL);
2825     }
2826   }
2827 };
2828 
2829 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2830   // Verify that the deferred card marks have been flushed.
2831   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2832 
2833   // Traverse the GCHandles
2834   Thread::oops_do(f, cf);
2835 
2836   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2837          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2838 
2839   if (has_last_Java_frame()) {
2840     // Record JavaThread to GC thread
2841     RememberProcessedThread rpt(this);
2842 
2843     // Traverse the privileged stack
2844     if (_privileged_stack_top != NULL) {
2845       _privileged_stack_top->oops_do(f);
2846     }
2847 
2848     // traverse the registered growable array
2849     if (_array_for_gc != NULL) {
2850       for (int index = 0; index < _array_for_gc->length(); index++) {
2851         f->do_oop(_array_for_gc->adr_at(index));
2852       }
2853     }
2854 
2855     // Traverse the monitor chunks
2856     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2857       chunk->oops_do(f);
2858     }
2859 
2860     // Traverse the execution stack
2861     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2862       fst.current()->oops_do(f, cf, fst.register_map());
2863     }
2864   }
2865 
2866   // callee_target is never live across a gc point so NULL it here should
2867   // it still contain a methdOop.
2868 
2869   set_callee_target(NULL);
2870 
2871   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2872   // If we have deferred set_locals there might be oops waiting to be
2873   // written
2874   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2875   if (list != NULL) {
2876     for (int i = 0; i < list->length(); i++) {
2877       list->at(i)->oops_do(f);
2878     }
2879   }
2880 
2881   // Traverse instance variables at the end since the GC may be moving things
2882   // around using this function
2883   f->do_oop((oop*) &_threadObj);
2884   f->do_oop((oop*) &_vm_result);
2885   f->do_oop((oop*) &_exception_oop);
2886   f->do_oop((oop*) &_pending_async_exception);
2887 
2888   if (jvmti_thread_state() != NULL) {
2889     jvmti_thread_state()->oops_do(f);
2890   }
2891 }
2892 
2893 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2894   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2895          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2896 
2897   if (has_last_Java_frame()) {
2898     // Traverse the execution stack
2899     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2900       fst.current()->nmethods_do(cf);
2901     }
2902   }
2903 }
2904 
2905 void JavaThread::metadata_do(void f(Metadata*)) {
2906   if (has_last_Java_frame()) {
2907     // Traverse the execution stack to call f() on the methods in the stack
2908     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2909       fst.current()->metadata_do(f);
2910     }
2911   } else if (is_Compiler_thread()) {
2912     // need to walk ciMetadata in current compile tasks to keep alive.
2913     CompilerThread* ct = (CompilerThread*)this;
2914     if (ct->env() != NULL) {
2915       ct->env()->metadata_do(f);
2916     }
2917     CompileTask* task = ct->task();
2918     if (task != NULL) {
2919       task->metadata_do(f);
2920     }
2921   }
2922 }
2923 
2924 // Printing
2925 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2926   switch (_thread_state) {
2927   case _thread_uninitialized:     return "_thread_uninitialized";
2928   case _thread_new:               return "_thread_new";
2929   case _thread_new_trans:         return "_thread_new_trans";
2930   case _thread_in_native:         return "_thread_in_native";
2931   case _thread_in_native_trans:   return "_thread_in_native_trans";
2932   case _thread_in_vm:             return "_thread_in_vm";
2933   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2934   case _thread_in_Java:           return "_thread_in_Java";
2935   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2936   case _thread_blocked:           return "_thread_blocked";
2937   case _thread_blocked_trans:     return "_thread_blocked_trans";
2938   default:                        return "unknown thread state";
2939   }
2940 }
2941 
2942 #ifndef PRODUCT
2943 void JavaThread::print_thread_state_on(outputStream *st) const {
2944   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2945 };
2946 void JavaThread::print_thread_state() const {
2947   print_thread_state_on(tty);
2948 }
2949 #endif // PRODUCT
2950 
2951 // Called by Threads::print() for VM_PrintThreads operation
2952 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
2953   st->print_raw("\"");
2954   st->print_raw(get_thread_name());
2955   st->print_raw("\" ");
2956   oop thread_oop = threadObj();
2957   if (thread_oop != NULL) {
2958     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
2959     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2960     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2961   }
2962   Thread::print_on(st, print_extended_info);
2963   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2964   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2965   if (thread_oop != NULL) {
2966     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2967   }
2968 #ifndef PRODUCT
2969   print_thread_state_on(st);
2970   _safepoint_state->print_on(st);
2971 #endif // PRODUCT
2972   if (is_Compiler_thread()) {
2973     CompileTask *task = ((CompilerThread*)this)->task();
2974     if (task != NULL) {
2975       st->print("   Compiling: ");
2976       task->print(st, NULL, true, false);
2977     } else {
2978       st->print("   No compile task");
2979     }
2980     st->cr();
2981   }
2982 }
2983 
2984 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2985   st->print("%s", get_thread_name_string(buf, buflen));
2986 }
2987 
2988 // Called by fatal error handler. The difference between this and
2989 // JavaThread::print() is that we can't grab lock or allocate memory.
2990 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2991   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2992   oop thread_obj = threadObj();
2993   if (thread_obj != NULL) {
2994     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2995   }
2996   st->print(" [");
2997   st->print("%s", _get_thread_state_name(_thread_state));
2998   if (osthread()) {
2999     st->print(", id=%d", osthread()->thread_id());
3000   }
3001   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3002             p2i(stack_end()), p2i(stack_base()));
3003   st->print("]");
3004 
3005   ThreadsSMRSupport::print_info_on(this, st);
3006   return;
3007 }
3008 
3009 // Verification
3010 
3011 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3012 
3013 void JavaThread::verify() {
3014   // Verify oops in the thread.
3015   oops_do(&VerifyOopClosure::verify_oop, NULL);
3016 
3017   // Verify the stack frames.
3018   frames_do(frame_verify);
3019 }
3020 
3021 // CR 6300358 (sub-CR 2137150)
3022 // Most callers of this method assume that it can't return NULL but a
3023 // thread may not have a name whilst it is in the process of attaching to
3024 // the VM - see CR 6412693, and there are places where a JavaThread can be
3025 // seen prior to having it's threadObj set (eg JNI attaching threads and
3026 // if vm exit occurs during initialization). These cases can all be accounted
3027 // for such that this method never returns NULL.
3028 const char* JavaThread::get_thread_name() const {
3029 #ifdef ASSERT
3030   // early safepoints can hit while current thread does not yet have TLS
3031   if (!SafepointSynchronize::is_at_safepoint()) {
3032     Thread *cur = Thread::current();
3033     if (!(cur->is_Java_thread() && cur == this)) {
3034       // Current JavaThreads are allowed to get their own name without
3035       // the Threads_lock.
3036       assert_locked_or_safepoint(Threads_lock);
3037     }
3038   }
3039 #endif // ASSERT
3040   return get_thread_name_string();
3041 }
3042 
3043 // Returns a non-NULL representation of this thread's name, or a suitable
3044 // descriptive string if there is no set name
3045 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3046   const char* name_str;
3047   oop thread_obj = threadObj();
3048   if (thread_obj != NULL) {
3049     oop name = java_lang_Thread::name(thread_obj);
3050     if (name != NULL) {
3051       if (buf == NULL) {
3052         name_str = java_lang_String::as_utf8_string(name);
3053       } else {
3054         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3055       }
3056     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3057       name_str = "<no-name - thread is attaching>";
3058     } else {
3059       name_str = Thread::name();
3060     }
3061   } else {
3062     name_str = Thread::name();
3063   }
3064   assert(name_str != NULL, "unexpected NULL thread name");
3065   return name_str;
3066 }
3067 
3068 
3069 const char* JavaThread::get_threadgroup_name() const {
3070   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3071   oop thread_obj = threadObj();
3072   if (thread_obj != NULL) {
3073     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3074     if (thread_group != NULL) {
3075       // ThreadGroup.name can be null
3076       return java_lang_ThreadGroup::name(thread_group);
3077     }
3078   }
3079   return NULL;
3080 }
3081 
3082 const char* JavaThread::get_parent_name() const {
3083   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3084   oop thread_obj = threadObj();
3085   if (thread_obj != NULL) {
3086     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3087     if (thread_group != NULL) {
3088       oop parent = java_lang_ThreadGroup::parent(thread_group);
3089       if (parent != NULL) {
3090         // ThreadGroup.name can be null
3091         return java_lang_ThreadGroup::name(parent);
3092       }
3093     }
3094   }
3095   return NULL;
3096 }
3097 
3098 ThreadPriority JavaThread::java_priority() const {
3099   oop thr_oop = threadObj();
3100   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3101   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3102   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3103   return priority;
3104 }
3105 
3106 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3107 
3108   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3109   // Link Java Thread object <-> C++ Thread
3110 
3111   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3112   // and put it into a new Handle.  The Handle "thread_oop" can then
3113   // be used to pass the C++ thread object to other methods.
3114 
3115   // Set the Java level thread object (jthread) field of the
3116   // new thread (a JavaThread *) to C++ thread object using the
3117   // "thread_oop" handle.
3118 
3119   // Set the thread field (a JavaThread *) of the
3120   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3121 
3122   Handle thread_oop(Thread::current(),
3123                     JNIHandles::resolve_non_null(jni_thread));
3124   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3125          "must be initialized");
3126   set_threadObj(thread_oop());
3127   java_lang_Thread::set_thread(thread_oop(), this);
3128 
3129   if (prio == NoPriority) {
3130     prio = java_lang_Thread::priority(thread_oop());
3131     assert(prio != NoPriority, "A valid priority should be present");
3132   }
3133 
3134   // Push the Java priority down to the native thread; needs Threads_lock
3135   Thread::set_priority(this, prio);
3136 
3137   // Add the new thread to the Threads list and set it in motion.
3138   // We must have threads lock in order to call Threads::add.
3139   // It is crucial that we do not block before the thread is
3140   // added to the Threads list for if a GC happens, then the java_thread oop
3141   // will not be visited by GC.
3142   Threads::add(this);
3143 }
3144 
3145 oop JavaThread::current_park_blocker() {
3146   // Support for JSR-166 locks
3147   oop thread_oop = threadObj();
3148   if (thread_oop != NULL &&
3149       JDK_Version::current().supports_thread_park_blocker()) {
3150     return java_lang_Thread::park_blocker(thread_oop);
3151   }
3152   return NULL;
3153 }
3154 
3155 
3156 void JavaThread::print_stack_on(outputStream* st) {
3157   if (!has_last_Java_frame()) return;
3158   ResourceMark rm;
3159   HandleMark   hm;
3160 
3161   RegisterMap reg_map(this);
3162   vframe* start_vf = last_java_vframe(&reg_map);
3163   int count = 0;
3164   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3165     if (f->is_java_frame()) {
3166       javaVFrame* jvf = javaVFrame::cast(f);
3167       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3168 
3169       // Print out lock information
3170       if (JavaMonitorsInStackTrace) {
3171         jvf->print_lock_info_on(st, count);
3172       }
3173     } else {
3174       // Ignore non-Java frames
3175     }
3176 
3177     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3178     count++;
3179     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3180   }
3181 }
3182 
3183 
3184 // JVMTI PopFrame support
3185 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3186   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3187   if (in_bytes(size_in_bytes) != 0) {
3188     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3189     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3190     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3191   }
3192 }
3193 
3194 void* JavaThread::popframe_preserved_args() {
3195   return _popframe_preserved_args;
3196 }
3197 
3198 ByteSize JavaThread::popframe_preserved_args_size() {
3199   return in_ByteSize(_popframe_preserved_args_size);
3200 }
3201 
3202 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3203   int sz = in_bytes(popframe_preserved_args_size());
3204   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3205   return in_WordSize(sz / wordSize);
3206 }
3207 
3208 void JavaThread::popframe_free_preserved_args() {
3209   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3210   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3211   _popframe_preserved_args = NULL;
3212   _popframe_preserved_args_size = 0;
3213 }
3214 
3215 #ifndef PRODUCT
3216 
3217 void JavaThread::trace_frames() {
3218   tty->print_cr("[Describe stack]");
3219   int frame_no = 1;
3220   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3221     tty->print("  %d. ", frame_no++);
3222     fst.current()->print_value_on(tty, this);
3223     tty->cr();
3224   }
3225 }
3226 
3227 class PrintAndVerifyOopClosure: public OopClosure {
3228  protected:
3229   template <class T> inline void do_oop_work(T* p) {
3230     oop obj = RawAccess<>::oop_load(p);
3231     if (obj == NULL) return;
3232     tty->print(INTPTR_FORMAT ": ", p2i(p));
3233     if (oopDesc::is_oop_or_null(obj)) {
3234       if (obj->is_objArray()) {
3235         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3236       } else {
3237         obj->print();
3238       }
3239     } else {
3240       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3241     }
3242     tty->cr();
3243   }
3244  public:
3245   virtual void do_oop(oop* p) { do_oop_work(p); }
3246   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3247 };
3248 
3249 
3250 static void oops_print(frame* f, const RegisterMap *map) {
3251   PrintAndVerifyOopClosure print;
3252   f->print_value();
3253   f->oops_do(&print, NULL, (RegisterMap*)map);
3254 }
3255 
3256 // Print our all the locations that contain oops and whether they are
3257 // valid or not.  This useful when trying to find the oldest frame
3258 // where an oop has gone bad since the frame walk is from youngest to
3259 // oldest.
3260 void JavaThread::trace_oops() {
3261   tty->print_cr("[Trace oops]");
3262   frames_do(oops_print);
3263 }
3264 
3265 
3266 #ifdef ASSERT
3267 // Print or validate the layout of stack frames
3268 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3269   ResourceMark rm;
3270   PRESERVE_EXCEPTION_MARK;
3271   FrameValues values;
3272   int frame_no = 0;
3273   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3274     fst.current()->describe(values, ++frame_no);
3275     if (depth == frame_no) break;
3276   }
3277   if (validate_only) {
3278     values.validate();
3279   } else {
3280     tty->print_cr("[Describe stack layout]");
3281     values.print(this);
3282   }
3283 }
3284 #endif
3285 
3286 void JavaThread::trace_stack_from(vframe* start_vf) {
3287   ResourceMark rm;
3288   int vframe_no = 1;
3289   for (vframe* f = start_vf; f; f = f->sender()) {
3290     if (f->is_java_frame()) {
3291       javaVFrame::cast(f)->print_activation(vframe_no++);
3292     } else {
3293       f->print();
3294     }
3295     if (vframe_no > StackPrintLimit) {
3296       tty->print_cr("...<more frames>...");
3297       return;
3298     }
3299   }
3300 }
3301 
3302 
3303 void JavaThread::trace_stack() {
3304   if (!has_last_Java_frame()) return;
3305   ResourceMark rm;
3306   HandleMark   hm;
3307   RegisterMap reg_map(this);
3308   trace_stack_from(last_java_vframe(&reg_map));
3309 }
3310 
3311 
3312 #endif // PRODUCT
3313 
3314 
3315 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3316   assert(reg_map != NULL, "a map must be given");
3317   frame f = last_frame();
3318   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3319     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3320   }
3321   return NULL;
3322 }
3323 
3324 
3325 Klass* JavaThread::security_get_caller_class(int depth) {
3326   vframeStream vfst(this);
3327   vfst.security_get_caller_frame(depth);
3328   if (!vfst.at_end()) {
3329     return vfst.method()->method_holder();
3330   }
3331   return NULL;
3332 }
3333 
3334 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3335   assert(thread->is_Compiler_thread(), "must be compiler thread");
3336   CompileBroker::compiler_thread_loop();
3337 }
3338 
3339 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3340   NMethodSweeper::sweeper_loop();
3341 }
3342 
3343 // Create a CompilerThread
3344 CompilerThread::CompilerThread(CompileQueue* queue,
3345                                CompilerCounters* counters)
3346                                : JavaThread(&compiler_thread_entry) {
3347   _env   = NULL;
3348   _log   = NULL;
3349   _task  = NULL;
3350   _queue = queue;
3351   _counters = counters;
3352   _buffer_blob = NULL;
3353   _compiler = NULL;
3354 
3355   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3356   resource_area()->bias_to(mtCompiler);
3357 
3358 #ifndef PRODUCT
3359   _ideal_graph_printer = NULL;
3360 #endif
3361 }
3362 
3363 CompilerThread::~CompilerThread() {
3364   // Delete objects which were allocated on heap.
3365   delete _counters;
3366 }
3367 
3368 bool CompilerThread::can_call_java() const {
3369   return _compiler != NULL && _compiler->is_jvmci();
3370 }
3371 
3372 // Create sweeper thread
3373 CodeCacheSweeperThread::CodeCacheSweeperThread()
3374 : JavaThread(&sweeper_thread_entry) {
3375   _scanned_compiled_method = NULL;
3376 }
3377 
3378 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3379   JavaThread::oops_do(f, cf);
3380   if (_scanned_compiled_method != NULL && cf != NULL) {
3381     // Safepoints can occur when the sweeper is scanning an nmethod so
3382     // process it here to make sure it isn't unloaded in the middle of
3383     // a scan.
3384     cf->do_code_blob(_scanned_compiled_method);
3385   }
3386 }
3387 
3388 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3389   JavaThread::nmethods_do(cf);
3390   if (_scanned_compiled_method != NULL && cf != NULL) {
3391     // Safepoints can occur when the sweeper is scanning an nmethod so
3392     // process it here to make sure it isn't unloaded in the middle of
3393     // a scan.
3394     cf->do_code_blob(_scanned_compiled_method);
3395   }
3396 }
3397 
3398 
3399 // ======= Threads ========
3400 
3401 // The Threads class links together all active threads, and provides
3402 // operations over all threads. It is protected by the Threads_lock,
3403 // which is also used in other global contexts like safepointing.
3404 // ThreadsListHandles are used to safely perform operations on one
3405 // or more threads without the risk of the thread exiting during the
3406 // operation.
3407 //
3408 // Note: The Threads_lock is currently more widely used than we
3409 // would like. We are actively migrating Threads_lock uses to other
3410 // mechanisms in order to reduce Threads_lock contention.
3411 
3412 JavaThread* Threads::_thread_list = NULL;
3413 int         Threads::_number_of_threads = 0;
3414 int         Threads::_number_of_non_daemon_threads = 0;
3415 int         Threads::_return_code = 0;
3416 int         Threads::_thread_claim_parity = 0;
3417 size_t      JavaThread::_stack_size_at_create = 0;
3418 
3419 #ifdef ASSERT
3420 bool        Threads::_vm_complete = false;
3421 size_t      Threads::_threads_before_barrier_set = 0;
3422 #endif
3423 
3424 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3425   Prefetch::read((void*)addr, prefetch_interval);
3426   return *addr;
3427 }
3428 
3429 // Possibly the ugliest for loop the world has seen. C++ does not allow
3430 // multiple types in the declaration section of the for loop. In this case
3431 // we are only dealing with pointers and hence can cast them. It looks ugly
3432 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3433 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3434     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3435              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3436              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3437              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3438              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3439          MACRO_current_p != MACRO_end;                                                                                    \
3440          MACRO_current_p++,                                                                                               \
3441              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3442 
3443 // All JavaThreads
3444 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3445 
3446 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3447 void Threads::non_java_threads_do(ThreadClosure* tc) {
3448   NoSafepointVerifier nsv(!SafepointSynchronize::is_at_safepoint(), false);
3449   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3450     tc->do_thread(njti.current());
3451   }
3452 }
3453 
3454 // All JavaThreads
3455 void Threads::java_threads_do(ThreadClosure* tc) {
3456   assert_locked_or_safepoint(Threads_lock);
3457   // ALL_JAVA_THREADS iterates through all JavaThreads.
3458   ALL_JAVA_THREADS(p) {
3459     tc->do_thread(p);
3460   }
3461 }
3462 
3463 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3464   assert_locked_or_safepoint(Threads_lock);
3465   java_threads_do(tc);
3466   tc->do_thread(VMThread::vm_thread());
3467 }
3468 
3469 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3470 void Threads::threads_do(ThreadClosure* tc) {
3471   assert_locked_or_safepoint(Threads_lock);
3472   java_threads_do(tc);
3473   non_java_threads_do(tc);
3474 }
3475 
3476 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3477   int cp = Threads::thread_claim_parity();
3478   ALL_JAVA_THREADS(p) {
3479     if (p->claim_oops_do(is_par, cp)) {
3480       tc->do_thread(p);
3481     }
3482   }
3483   VMThread* vmt = VMThread::vm_thread();
3484   if (vmt->claim_oops_do(is_par, cp)) {
3485     tc->do_thread(vmt);
3486   }
3487 }
3488 
3489 // The system initialization in the library has three phases.
3490 //
3491 // Phase 1: java.lang.System class initialization
3492 //     java.lang.System is a primordial class loaded and initialized
3493 //     by the VM early during startup.  java.lang.System.<clinit>
3494 //     only does registerNatives and keeps the rest of the class
3495 //     initialization work later until thread initialization completes.
3496 //
3497 //     System.initPhase1 initializes the system properties, the static
3498 //     fields in, out, and err. Set up java signal handlers, OS-specific
3499 //     system settings, and thread group of the main thread.
3500 static void call_initPhase1(TRAPS) {
3501   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3502   JavaValue result(T_VOID);
3503   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3504                                          vmSymbols::void_method_signature(), CHECK);
3505 }
3506 
3507 // Phase 2. Module system initialization
3508 //     This will initialize the module system.  Only java.base classes
3509 //     can be loaded until phase 2 completes.
3510 //
3511 //     Call System.initPhase2 after the compiler initialization and jsr292
3512 //     classes get initialized because module initialization runs a lot of java
3513 //     code, that for performance reasons, should be compiled.  Also, this will
3514 //     enable the startup code to use lambda and other language features in this
3515 //     phase and onward.
3516 //
3517 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3518 static void call_initPhase2(TRAPS) {
3519   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3520 
3521   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3522 
3523   JavaValue result(T_INT);
3524   JavaCallArguments args;
3525   args.push_int(DisplayVMOutputToStderr);
3526   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3527   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3528                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3529   if (result.get_jint() != JNI_OK) {
3530     vm_exit_during_initialization(); // no message or exception
3531   }
3532 
3533   universe_post_module_init();
3534 }
3535 
3536 // Phase 3. final setup - set security manager, system class loader and TCCL
3537 //
3538 //     This will instantiate and set the security manager, set the system class
3539 //     loader as well as the thread context class loader.  The security manager
3540 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3541 //     other modules or the application's classpath.
3542 static void call_initPhase3(TRAPS) {
3543   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3544   JavaValue result(T_VOID);
3545   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3546                                          vmSymbols::void_method_signature(), CHECK);
3547 }
3548 
3549 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3550   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3551 
3552   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3553     create_vm_init_libraries();
3554   }
3555 
3556   initialize_class(vmSymbols::java_lang_String(), CHECK);
3557 
3558   // Inject CompactStrings value after the static initializers for String ran.
3559   java_lang_String::set_compact_strings(CompactStrings);
3560 
3561   // Initialize java_lang.System (needed before creating the thread)
3562   initialize_class(vmSymbols::java_lang_System(), CHECK);
3563   // The VM creates & returns objects of this class. Make sure it's initialized.
3564   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3565   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3566   Handle thread_group = create_initial_thread_group(CHECK);
3567   Universe::set_main_thread_group(thread_group());
3568   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3569   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3570   main_thread->set_threadObj(thread_object);
3571   // Set thread status to running since main thread has
3572   // been started and running.
3573   java_lang_Thread::set_thread_status(thread_object,
3574                                       java_lang_Thread::RUNNABLE);
3575 
3576   // The VM creates objects of this class.
3577   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3578 
3579   // The VM preresolves methods to these classes. Make sure that they get initialized
3580   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3581   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3582 
3583   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3584   call_initPhase1(CHECK);
3585 
3586   // get the Java runtime name after java.lang.System is initialized
3587   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3588   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3589 
3590   // an instance of OutOfMemory exception has been allocated earlier
3591   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3592   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3593   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3594   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3595   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3596   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3597   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3598   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3599 }
3600 
3601 void Threads::initialize_jsr292_core_classes(TRAPS) {
3602   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3603 
3604   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3605   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3606   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3607   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3608 }
3609 
3610 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3611   extern void JDK_Version_init();
3612 
3613   // Preinitialize version info.
3614   VM_Version::early_initialize();
3615 
3616   // Check version
3617   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3618 
3619   // Initialize library-based TLS
3620   ThreadLocalStorage::init();
3621 
3622   // Initialize the output stream module
3623   ostream_init();
3624 
3625   // Process java launcher properties.
3626   Arguments::process_sun_java_launcher_properties(args);
3627 
3628   // Initialize the os module
3629   os::init();
3630 
3631   // Record VM creation timing statistics
3632   TraceVmCreationTime create_vm_timer;
3633   create_vm_timer.start();
3634 
3635   // Initialize system properties.
3636   Arguments::init_system_properties();
3637 
3638   // So that JDK version can be used as a discriminator when parsing arguments
3639   JDK_Version_init();
3640 
3641   // Update/Initialize System properties after JDK version number is known
3642   Arguments::init_version_specific_system_properties();
3643 
3644   // Make sure to initialize log configuration *before* parsing arguments
3645   LogConfiguration::initialize(create_vm_timer.begin_time());
3646 
3647   // Parse arguments
3648   // Note: this internally calls os::init_container_support()
3649   jint parse_result = Arguments::parse(args);
3650   if (parse_result != JNI_OK) return parse_result;
3651 
3652   os::init_before_ergo();
3653 
3654   jint ergo_result = Arguments::apply_ergo();
3655   if (ergo_result != JNI_OK) return ergo_result;
3656 
3657   // Final check of all ranges after ergonomics which may change values.
3658   if (!JVMFlagRangeList::check_ranges()) {
3659     return JNI_EINVAL;
3660   }
3661 
3662   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3663   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3664   if (!constraint_result) {
3665     return JNI_EINVAL;
3666   }
3667 
3668   JVMFlagWriteableList::mark_startup();
3669 
3670   if (PauseAtStartup) {
3671     os::pause();
3672   }
3673 
3674   HOTSPOT_VM_INIT_BEGIN();
3675 
3676   // Timing (must come after argument parsing)
3677   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3678 
3679 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3680   // Initialize assert poison page mechanism.
3681   if (ShowRegistersOnAssert) {
3682     initialize_assert_poison();
3683   }
3684 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3685 
3686   // Initialize the os module after parsing the args
3687   jint os_init_2_result = os::init_2();
3688   if (os_init_2_result != JNI_OK) return os_init_2_result;
3689 
3690   SafepointMechanism::initialize();
3691 
3692   jint adjust_after_os_result = Arguments::adjust_after_os();
3693   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3694 
3695   // Initialize output stream logging
3696   ostream_init_log();
3697 
3698   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3699   // Must be before create_vm_init_agents()
3700   if (Arguments::init_libraries_at_startup()) {
3701     convert_vm_init_libraries_to_agents();
3702   }
3703 
3704   // Launch -agentlib/-agentpath and converted -Xrun agents
3705   if (Arguments::init_agents_at_startup()) {
3706     create_vm_init_agents();
3707   }
3708 
3709   // Initialize Threads state
3710   _thread_list = NULL;
3711   _number_of_threads = 0;
3712   _number_of_non_daemon_threads = 0;
3713 
3714   // Initialize global data structures and create system classes in heap
3715   vm_init_globals();
3716 
3717 #if INCLUDE_JVMCI
3718   if (JVMCICounterSize > 0) {
3719     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3720     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3721   } else {
3722     JavaThread::_jvmci_old_thread_counters = NULL;
3723   }
3724 #endif // INCLUDE_JVMCI
3725 
3726   // Attach the main thread to this os thread
3727   JavaThread* main_thread = new JavaThread();
3728   main_thread->set_thread_state(_thread_in_vm);
3729   main_thread->initialize_thread_current();
3730   // must do this before set_active_handles
3731   main_thread->record_stack_base_and_size();
3732   main_thread->register_thread_stack_with_NMT();
3733   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3734 
3735   if (!main_thread->set_as_starting_thread()) {
3736     vm_shutdown_during_initialization(
3737                                       "Failed necessary internal allocation. Out of swap space");
3738     main_thread->smr_delete();
3739     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3740     return JNI_ENOMEM;
3741   }
3742 
3743   // Enable guard page *after* os::create_main_thread(), otherwise it would
3744   // crash Linux VM, see notes in os_linux.cpp.
3745   main_thread->create_stack_guard_pages();
3746 
3747   // Initialize Java-Level synchronization subsystem
3748   ObjectMonitor::Initialize();
3749 
3750   // Initialize global modules
3751   jint status = init_globals();
3752   if (status != JNI_OK) {
3753     main_thread->smr_delete();
3754     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3755     return status;
3756   }
3757 
3758   JFR_ONLY(Jfr::on_vm_init();)
3759 
3760   // Should be done after the heap is fully created
3761   main_thread->cache_global_variables();
3762 
3763   HandleMark hm;
3764 
3765   { MutexLocker mu(Threads_lock);
3766     Threads::add(main_thread);
3767   }
3768 
3769   // Any JVMTI raw monitors entered in onload will transition into
3770   // real raw monitor. VM is setup enough here for raw monitor enter.
3771   JvmtiExport::transition_pending_onload_raw_monitors();
3772 
3773   // Create the VMThread
3774   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3775 
3776   VMThread::create();
3777     Thread* vmthread = VMThread::vm_thread();
3778 
3779     if (!os::create_thread(vmthread, os::vm_thread)) {
3780       vm_exit_during_initialization("Cannot create VM thread. "
3781                                     "Out of system resources.");
3782     }
3783 
3784     // Wait for the VM thread to become ready, and VMThread::run to initialize
3785     // Monitors can have spurious returns, must always check another state flag
3786     {
3787       MutexLocker ml(Notify_lock);
3788       os::start_thread(vmthread);
3789       while (vmthread->active_handles() == NULL) {
3790         Notify_lock->wait();
3791       }
3792     }
3793   }
3794 
3795   assert(Universe::is_fully_initialized(), "not initialized");
3796   if (VerifyDuringStartup) {
3797     // Make sure we're starting with a clean slate.
3798     VM_Verify verify_op;
3799     VMThread::execute(&verify_op);
3800   }
3801 
3802   // We need this to update the java.vm.info property in case any flags used
3803   // to initially define it have been changed. This is needed for both CDS and
3804   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3805   // is initially computed. See Abstract_VM_Version::vm_info_string().
3806   // This update must happen before we initialize the java classes, but
3807   // after any initialization logic that might modify the flags.
3808   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3809 
3810   Thread* THREAD = Thread::current();
3811 
3812   // Always call even when there are not JVMTI environments yet, since environments
3813   // may be attached late and JVMTI must track phases of VM execution
3814   JvmtiExport::enter_early_start_phase();
3815 
3816   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3817   JvmtiExport::post_early_vm_start();
3818 
3819   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3820 
3821   quicken_jni_functions();
3822 
3823   // No more stub generation allowed after that point.
3824   StubCodeDesc::freeze();
3825 
3826   // Set flag that basic initialization has completed. Used by exceptions and various
3827   // debug stuff, that does not work until all basic classes have been initialized.
3828   set_init_completed();
3829 
3830   LogConfiguration::post_initialize();
3831   Metaspace::post_initialize();
3832 
3833   HOTSPOT_VM_INIT_END();
3834 
3835   // record VM initialization completion time
3836 #if INCLUDE_MANAGEMENT
3837   Management::record_vm_init_completed();
3838 #endif // INCLUDE_MANAGEMENT
3839 
3840   // Signal Dispatcher needs to be started before VMInit event is posted
3841   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3842 
3843   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3844   if (!DisableAttachMechanism) {
3845     AttachListener::vm_start();
3846     if (StartAttachListener || AttachListener::init_at_startup()) {
3847       AttachListener::init();
3848     }
3849   }
3850 
3851   // Launch -Xrun agents
3852   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3853   // back-end can launch with -Xdebug -Xrunjdwp.
3854   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3855     create_vm_init_libraries();
3856   }
3857 
3858   if (CleanChunkPoolAsync) {
3859     Chunk::start_chunk_pool_cleaner_task();
3860   }
3861 
3862   // initialize compiler(s)
3863 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3864 #if INCLUDE_JVMCI
3865   bool force_JVMCI_intialization = false;
3866   if (EnableJVMCI) {
3867     // Initialize JVMCI eagerly when it is explicitly requested.
3868     // Or when JVMCIPrintProperties is enabled.
3869     // The JVMCI Java initialization code will read this flag and
3870     // do the printing if it's set.
3871     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties;
3872 
3873     if (!force_JVMCI_intialization) {
3874       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3875       // compilations via JVMCI will not actually block until JVMCI is initialized.
3876       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3877     }
3878   }
3879 #endif
3880   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3881   // Postpone completion of compiler initialization to after JVMCI
3882   // is initialized to avoid timeouts of blocking compilations.
3883   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3884     CompileBroker::compilation_init_phase2();
3885   }
3886 #endif
3887 
3888   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3889   // It is done after compilers are initialized, because otherwise compilations of
3890   // signature polymorphic MH intrinsics can be missed
3891   // (see SystemDictionary::find_method_handle_intrinsic).
3892   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3893 
3894   // This will initialize the module system.  Only java.base classes can be
3895   // loaded until phase 2 completes
3896   call_initPhase2(CHECK_JNI_ERR);
3897 
3898   // Always call even when there are not JVMTI environments yet, since environments
3899   // may be attached late and JVMTI must track phases of VM execution
3900   JvmtiExport::enter_start_phase();
3901 
3902   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3903   JvmtiExport::post_vm_start();
3904 
3905   // Final system initialization including security manager and system class loader
3906   call_initPhase3(CHECK_JNI_ERR);
3907 
3908   // cache the system and platform class loaders
3909   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3910 
3911 #if INCLUDE_CDS
3912   if (DumpSharedSpaces) {
3913     // capture the module path info from the ModuleEntryTable
3914     ClassLoader::initialize_module_path(THREAD);
3915   }
3916 #endif
3917 
3918 #if INCLUDE_JVMCI
3919   if (force_JVMCI_intialization) {
3920     JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3921     CompileBroker::compilation_init_phase2();
3922   }
3923 #endif
3924 
3925   // Always call even when there are not JVMTI environments yet, since environments
3926   // may be attached late and JVMTI must track phases of VM execution
3927   JvmtiExport::enter_live_phase();
3928 
3929   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3930   JvmtiExport::post_vm_initialized();
3931 
3932   JFR_ONLY(Jfr::on_vm_start();)
3933 
3934 #if INCLUDE_MANAGEMENT
3935   Management::initialize(THREAD);
3936 
3937   if (HAS_PENDING_EXCEPTION) {
3938     // management agent fails to start possibly due to
3939     // configuration problem and is responsible for printing
3940     // stack trace if appropriate. Simply exit VM.
3941     vm_exit(1);
3942   }
3943 #endif // INCLUDE_MANAGEMENT
3944 
3945   if (MemProfiling)                   MemProfiler::engage();
3946   StatSampler::engage();
3947   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3948 
3949   BiasedLocking::init();
3950 
3951 #if INCLUDE_RTM_OPT
3952   RTMLockingCounters::init();
3953 #endif
3954 
3955   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3956     call_postVMInitHook(THREAD);
3957     // The Java side of PostVMInitHook.run must deal with all
3958     // exceptions and provide means of diagnosis.
3959     if (HAS_PENDING_EXCEPTION) {
3960       CLEAR_PENDING_EXCEPTION;
3961     }
3962   }
3963 
3964   {
3965     MutexLocker ml(PeriodicTask_lock);
3966     // Make sure the WatcherThread can be started by WatcherThread::start()
3967     // or by dynamic enrollment.
3968     WatcherThread::make_startable();
3969     // Start up the WatcherThread if there are any periodic tasks
3970     // NOTE:  All PeriodicTasks should be registered by now. If they
3971     //   aren't, late joiners might appear to start slowly (we might
3972     //   take a while to process their first tick).
3973     if (PeriodicTask::num_tasks() > 0) {
3974       WatcherThread::start();
3975     }
3976   }
3977 
3978   create_vm_timer.end();
3979 #ifdef ASSERT
3980   _vm_complete = true;
3981 #endif
3982 
3983   if (DumpSharedSpaces) {
3984     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3985     ShouldNotReachHere();
3986   }
3987 
3988   return JNI_OK;
3989 }
3990 
3991 // type for the Agent_OnLoad and JVM_OnLoad entry points
3992 extern "C" {
3993   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3994 }
3995 // Find a command line agent library and return its entry point for
3996 //         -agentlib:  -agentpath:   -Xrun
3997 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3998 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3999                                     const char *on_load_symbols[],
4000                                     size_t num_symbol_entries) {
4001   OnLoadEntry_t on_load_entry = NULL;
4002   void *library = NULL;
4003 
4004   if (!agent->valid()) {
4005     char buffer[JVM_MAXPATHLEN];
4006     char ebuf[1024] = "";
4007     const char *name = agent->name();
4008     const char *msg = "Could not find agent library ";
4009 
4010     // First check to see if agent is statically linked into executable
4011     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4012       library = agent->os_lib();
4013     } else if (agent->is_absolute_path()) {
4014       library = os::dll_load(name, ebuf, sizeof ebuf);
4015       if (library == NULL) {
4016         const char *sub_msg = " in absolute path, with error: ";
4017         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4018         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4019         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4020         // If we can't find the agent, exit.
4021         vm_exit_during_initialization(buf, NULL);
4022         FREE_C_HEAP_ARRAY(char, buf);
4023       }
4024     } else {
4025       // Try to load the agent from the standard dll directory
4026       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4027                              name)) {
4028         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4029       }
4030       if (library == NULL) { // Try the library path directory.
4031         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4032           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4033         }
4034         if (library == NULL) {
4035           const char *sub_msg = " on the library path, with error: ";
4036           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4037 
4038           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4039                        strlen(ebuf) + strlen(sub_msg2) + 1;
4040           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4041           if (!agent->is_instrument_lib()) {
4042             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4043           } else {
4044             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4045           }
4046           // If we can't find the agent, exit.
4047           vm_exit_during_initialization(buf, NULL);
4048           FREE_C_HEAP_ARRAY(char, buf);
4049         }
4050       }
4051     }
4052     agent->set_os_lib(library);
4053     agent->set_valid();
4054   }
4055 
4056   // Find the OnLoad function.
4057   on_load_entry =
4058     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4059                                                           false,
4060                                                           on_load_symbols,
4061                                                           num_symbol_entries));
4062   return on_load_entry;
4063 }
4064 
4065 // Find the JVM_OnLoad entry point
4066 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4067   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4068   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4069 }
4070 
4071 // Find the Agent_OnLoad entry point
4072 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4073   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4074   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4075 }
4076 
4077 // For backwards compatibility with -Xrun
4078 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4079 // treated like -agentpath:
4080 // Must be called before agent libraries are created
4081 void Threads::convert_vm_init_libraries_to_agents() {
4082   AgentLibrary* agent;
4083   AgentLibrary* next;
4084 
4085   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4086     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4087     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4088 
4089     // If there is an JVM_OnLoad function it will get called later,
4090     // otherwise see if there is an Agent_OnLoad
4091     if (on_load_entry == NULL) {
4092       on_load_entry = lookup_agent_on_load(agent);
4093       if (on_load_entry != NULL) {
4094         // switch it to the agent list -- so that Agent_OnLoad will be called,
4095         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4096         Arguments::convert_library_to_agent(agent);
4097       } else {
4098         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4099       }
4100     }
4101   }
4102 }
4103 
4104 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4105 // Invokes Agent_OnLoad
4106 // Called very early -- before JavaThreads exist
4107 void Threads::create_vm_init_agents() {
4108   extern struct JavaVM_ main_vm;
4109   AgentLibrary* agent;
4110 
4111   JvmtiExport::enter_onload_phase();
4112 
4113   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4114     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4115 
4116     if (on_load_entry != NULL) {
4117       // Invoke the Agent_OnLoad function
4118       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4119       if (err != JNI_OK) {
4120         vm_exit_during_initialization("agent library failed to init", agent->name());
4121       }
4122     } else {
4123       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4124     }
4125   }
4126   JvmtiExport::enter_primordial_phase();
4127 }
4128 
4129 extern "C" {
4130   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4131 }
4132 
4133 void Threads::shutdown_vm_agents() {
4134   // Send any Agent_OnUnload notifications
4135   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4136   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4137   extern struct JavaVM_ main_vm;
4138   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4139 
4140     // Find the Agent_OnUnload function.
4141     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4142                                                    os::find_agent_function(agent,
4143                                                    false,
4144                                                    on_unload_symbols,
4145                                                    num_symbol_entries));
4146 
4147     // Invoke the Agent_OnUnload function
4148     if (unload_entry != NULL) {
4149       JavaThread* thread = JavaThread::current();
4150       ThreadToNativeFromVM ttn(thread);
4151       HandleMark hm(thread);
4152       (*unload_entry)(&main_vm);
4153     }
4154   }
4155 }
4156 
4157 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4158 // Invokes JVM_OnLoad
4159 void Threads::create_vm_init_libraries() {
4160   extern struct JavaVM_ main_vm;
4161   AgentLibrary* agent;
4162 
4163   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4164     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4165 
4166     if (on_load_entry != NULL) {
4167       // Invoke the JVM_OnLoad function
4168       JavaThread* thread = JavaThread::current();
4169       ThreadToNativeFromVM ttn(thread);
4170       HandleMark hm(thread);
4171       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4172       if (err != JNI_OK) {
4173         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4174       }
4175     } else {
4176       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4177     }
4178   }
4179 }
4180 
4181 
4182 // Last thread running calls java.lang.Shutdown.shutdown()
4183 void JavaThread::invoke_shutdown_hooks() {
4184   HandleMark hm(this);
4185 
4186   // We could get here with a pending exception, if so clear it now.
4187   if (this->has_pending_exception()) {
4188     this->clear_pending_exception();
4189   }
4190 
4191   EXCEPTION_MARK;
4192   Klass* shutdown_klass =
4193     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4194                                       THREAD);
4195   if (shutdown_klass != NULL) {
4196     // SystemDictionary::resolve_or_null will return null if there was
4197     // an exception.  If we cannot load the Shutdown class, just don't
4198     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4199     // won't be run.  Note that if a shutdown hook was registered,
4200     // the Shutdown class would have already been loaded
4201     // (Runtime.addShutdownHook will load it).
4202     JavaValue result(T_VOID);
4203     JavaCalls::call_static(&result,
4204                            shutdown_klass,
4205                            vmSymbols::shutdown_method_name(),
4206                            vmSymbols::void_method_signature(),
4207                            THREAD);
4208   }
4209   CLEAR_PENDING_EXCEPTION;
4210 }
4211 
4212 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4213 // the program falls off the end of main(). Another VM exit path is through
4214 // vm_exit() when the program calls System.exit() to return a value or when
4215 // there is a serious error in VM. The two shutdown paths are not exactly
4216 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4217 // and VM_Exit op at VM level.
4218 //
4219 // Shutdown sequence:
4220 //   + Shutdown native memory tracking if it is on
4221 //   + Wait until we are the last non-daemon thread to execute
4222 //     <-- every thing is still working at this moment -->
4223 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4224 //        shutdown hooks
4225 //   + Call before_exit(), prepare for VM exit
4226 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4227 //        currently the only user of this mechanism is File.deleteOnExit())
4228 //      > stop StatSampler, watcher thread, CMS threads,
4229 //        post thread end and vm death events to JVMTI,
4230 //        stop signal thread
4231 //   + Call JavaThread::exit(), it will:
4232 //      > release JNI handle blocks, remove stack guard pages
4233 //      > remove this thread from Threads list
4234 //     <-- no more Java code from this thread after this point -->
4235 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4236 //     the compiler threads at safepoint
4237 //     <-- do not use anything that could get blocked by Safepoint -->
4238 //   + Disable tracing at JNI/JVM barriers
4239 //   + Set _vm_exited flag for threads that are still running native code
4240 //   + Call exit_globals()
4241 //      > deletes tty
4242 //      > deletes PerfMemory resources
4243 //   + Delete this thread
4244 //   + Return to caller
4245 
4246 bool Threads::destroy_vm() {
4247   JavaThread* thread = JavaThread::current();
4248 
4249 #ifdef ASSERT
4250   _vm_complete = false;
4251 #endif
4252   // Wait until we are the last non-daemon thread to execute
4253   { MutexLocker nu(Threads_lock);
4254     while (Threads::number_of_non_daemon_threads() > 1)
4255       // This wait should make safepoint checks, wait without a timeout,
4256       // and wait as a suspend-equivalent condition.
4257       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4258                          Mutex::_as_suspend_equivalent_flag);
4259   }
4260 
4261   EventShutdown e;
4262   if (e.should_commit()) {
4263     e.set_reason("No remaining non-daemon Java threads");
4264     e.commit();
4265   }
4266 
4267   // Hang forever on exit if we are reporting an error.
4268   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4269     os::infinite_sleep();
4270   }
4271   os::wait_for_keypress_at_exit();
4272 
4273   // run Java level shutdown hooks
4274   thread->invoke_shutdown_hooks();
4275 
4276   before_exit(thread);
4277 
4278   thread->exit(true);
4279 
4280   // Stop VM thread.
4281   {
4282     // 4945125 The vm thread comes to a safepoint during exit.
4283     // GC vm_operations can get caught at the safepoint, and the
4284     // heap is unparseable if they are caught. Grab the Heap_lock
4285     // to prevent this. The GC vm_operations will not be able to
4286     // queue until after the vm thread is dead. After this point,
4287     // we'll never emerge out of the safepoint before the VM exits.
4288 
4289     MutexLocker ml(Heap_lock);
4290 
4291     VMThread::wait_for_vm_thread_exit();
4292     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4293     VMThread::destroy();
4294   }
4295 
4296   // Now, all Java threads are gone except daemon threads. Daemon threads
4297   // running Java code or in VM are stopped by the Safepoint. However,
4298   // daemon threads executing native code are still running.  But they
4299   // will be stopped at native=>Java/VM barriers. Note that we can't
4300   // simply kill or suspend them, as it is inherently deadlock-prone.
4301 
4302   VM_Exit::set_vm_exited();
4303 
4304   // Clean up ideal graph printers after the VMThread has started
4305   // the final safepoint which will block all the Compiler threads.
4306   // Note that this Thread has already logically exited so the
4307   // clean_up() function's use of a JavaThreadIteratorWithHandle
4308   // would be a problem except set_vm_exited() has remembered the
4309   // shutdown thread which is granted a policy exception.
4310 #if defined(COMPILER2) && !defined(PRODUCT)
4311   IdealGraphPrinter::clean_up();
4312 #endif
4313 
4314   notify_vm_shutdown();
4315 
4316   // exit_globals() will delete tty
4317   exit_globals();
4318 
4319   // We are after VM_Exit::set_vm_exited() so we can't call
4320   // thread->smr_delete() or we will block on the Threads_lock.
4321   // Deleting the shutdown thread here is safe because another
4322   // JavaThread cannot have an active ThreadsListHandle for
4323   // this JavaThread.
4324   delete thread;
4325 
4326 #if INCLUDE_JVMCI
4327   if (JVMCICounterSize > 0) {
4328     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4329   }
4330 #endif
4331 
4332   LogConfiguration::finalize();
4333 
4334   return true;
4335 }
4336 
4337 
4338 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4339   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4340   return is_supported_jni_version(version);
4341 }
4342 
4343 
4344 jboolean Threads::is_supported_jni_version(jint version) {
4345   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4346   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4347   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4348   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4349   if (version == JNI_VERSION_9) return JNI_TRUE;
4350   if (version == JNI_VERSION_10) return JNI_TRUE;
4351   return JNI_FALSE;
4352 }
4353 
4354 
4355 void Threads::add(JavaThread* p, bool force_daemon) {
4356   // The threads lock must be owned at this point
4357   assert(Threads_lock->owned_by_self(), "must have threads lock");
4358 
4359   BarrierSet::barrier_set()->on_thread_attach(p);
4360 
4361   p->set_next(_thread_list);
4362   _thread_list = p;
4363 
4364   // Once a JavaThread is added to the Threads list, smr_delete() has
4365   // to be used to delete it. Otherwise we can just delete it directly.
4366   p->set_on_thread_list();
4367 
4368   _number_of_threads++;
4369   oop threadObj = p->threadObj();
4370   bool daemon = true;
4371   // Bootstrapping problem: threadObj can be null for initial
4372   // JavaThread (or for threads attached via JNI)
4373   if ((!force_daemon) && !is_daemon((threadObj))) {
4374     _number_of_non_daemon_threads++;
4375     daemon = false;
4376   }
4377 
4378   ThreadService::add_thread(p, daemon);
4379 
4380   // Maintain fast thread list
4381   ThreadsSMRSupport::add_thread(p);
4382 
4383   // Possible GC point.
4384   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4385 }
4386 
4387 void Threads::remove(JavaThread* p) {
4388 
4389   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4390   ObjectSynchronizer::omFlush(p);
4391 
4392   // Extra scope needed for Thread_lock, so we can check
4393   // that we do not remove thread without safepoint code notice
4394   { MutexLocker ml(Threads_lock);
4395 
4396     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4397 
4398     // Maintain fast thread list
4399     ThreadsSMRSupport::remove_thread(p);
4400 
4401     JavaThread* current = _thread_list;
4402     JavaThread* prev    = NULL;
4403 
4404     while (current != p) {
4405       prev    = current;
4406       current = current->next();
4407     }
4408 
4409     if (prev) {
4410       prev->set_next(current->next());
4411     } else {
4412       _thread_list = p->next();
4413     }
4414 
4415     _number_of_threads--;
4416     oop threadObj = p->threadObj();
4417     bool daemon = true;
4418     if (!is_daemon(threadObj)) {
4419       _number_of_non_daemon_threads--;
4420       daemon = false;
4421 
4422       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4423       // on destroy_vm will wake up.
4424       if (number_of_non_daemon_threads() == 1) {
4425         Threads_lock->notify_all();
4426       }
4427     }
4428     ThreadService::remove_thread(p, daemon);
4429 
4430     // Make sure that safepoint code disregard this thread. This is needed since
4431     // the thread might mess around with locks after this point. This can cause it
4432     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4433     // of this thread since it is removed from the queue.
4434     p->set_terminated_value();
4435   } // unlock Threads_lock
4436 
4437   // Since Events::log uses a lock, we grab it outside the Threads_lock
4438   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4439 }
4440 
4441 // Operations on the Threads list for GC.  These are not explicitly locked,
4442 // but the garbage collector must provide a safe context for them to run.
4443 // In particular, these things should never be called when the Threads_lock
4444 // is held by some other thread. (Note: the Safepoint abstraction also
4445 // uses the Threads_lock to guarantee this property. It also makes sure that
4446 // all threads gets blocked when exiting or starting).
4447 
4448 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4449   ALL_JAVA_THREADS(p) {
4450     p->oops_do(f, cf);
4451   }
4452   VMThread::vm_thread()->oops_do(f, cf);
4453 }
4454 
4455 void Threads::change_thread_claim_parity() {
4456   // Set the new claim parity.
4457   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4458          "Not in range.");
4459   _thread_claim_parity++;
4460   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4461   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4462          "Not in range.");
4463 }
4464 
4465 #ifdef ASSERT
4466 void Threads::assert_all_threads_claimed() {
4467   ALL_JAVA_THREADS(p) {
4468     const int thread_parity = p->oops_do_parity();
4469     assert((thread_parity == _thread_claim_parity),
4470            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4471   }
4472   VMThread* vmt = VMThread::vm_thread();
4473   const int thread_parity = vmt->oops_do_parity();
4474   assert((thread_parity == _thread_claim_parity),
4475          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4476 }
4477 #endif // ASSERT
4478 
4479 class ParallelOopsDoThreadClosure : public ThreadClosure {
4480 private:
4481   OopClosure* _f;
4482   CodeBlobClosure* _cf;
4483 public:
4484   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4485   void do_thread(Thread* t) {
4486     t->oops_do(_f, _cf);
4487   }
4488 };
4489 
4490 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4491   ParallelOopsDoThreadClosure tc(f, cf);
4492   possibly_parallel_threads_do(is_par, &tc);
4493 }
4494 
4495 void Threads::nmethods_do(CodeBlobClosure* cf) {
4496   ALL_JAVA_THREADS(p) {
4497     // This is used by the code cache sweeper to mark nmethods that are active
4498     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4499     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4500     if(!p->is_Code_cache_sweeper_thread()) {
4501       p->nmethods_do(cf);
4502     }
4503   }
4504 }
4505 
4506 void Threads::metadata_do(void f(Metadata*)) {
4507   ALL_JAVA_THREADS(p) {
4508     p->metadata_do(f);
4509   }
4510 }
4511 
4512 class ThreadHandlesClosure : public ThreadClosure {
4513   void (*_f)(Metadata*);
4514  public:
4515   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4516   virtual void do_thread(Thread* thread) {
4517     thread->metadata_handles_do(_f);
4518   }
4519 };
4520 
4521 void Threads::metadata_handles_do(void f(Metadata*)) {
4522   // Only walk the Handles in Thread.
4523   ThreadHandlesClosure handles_closure(f);
4524   threads_do(&handles_closure);
4525 }
4526 
4527 void Threads::deoptimized_wrt_marked_nmethods() {
4528   ALL_JAVA_THREADS(p) {
4529     p->deoptimized_wrt_marked_nmethods();
4530   }
4531 }
4532 
4533 
4534 // Get count Java threads that are waiting to enter the specified monitor.
4535 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4536                                                          int count,
4537                                                          address monitor) {
4538   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4539 
4540   int i = 0;
4541   DO_JAVA_THREADS(t_list, p) {
4542     if (!p->can_call_java()) continue;
4543 
4544     address pending = (address)p->current_pending_monitor();
4545     if (pending == monitor) {             // found a match
4546       if (i < count) result->append(p);   // save the first count matches
4547       i++;
4548     }
4549   }
4550 
4551   return result;
4552 }
4553 
4554 
4555 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4556                                                       address owner) {
4557   // NULL owner means not locked so we can skip the search
4558   if (owner == NULL) return NULL;
4559 
4560   DO_JAVA_THREADS(t_list, p) {
4561     // first, see if owner is the address of a Java thread
4562     if (owner == (address)p) return p;
4563   }
4564 
4565   // Cannot assert on lack of success here since this function may be
4566   // used by code that is trying to report useful problem information
4567   // like deadlock detection.
4568   if (UseHeavyMonitors) return NULL;
4569 
4570   // If we didn't find a matching Java thread and we didn't force use of
4571   // heavyweight monitors, then the owner is the stack address of the
4572   // Lock Word in the owning Java thread's stack.
4573   //
4574   JavaThread* the_owner = NULL;
4575   DO_JAVA_THREADS(t_list, q) {
4576     if (q->is_lock_owned(owner)) {
4577       the_owner = q;
4578       break;
4579     }
4580   }
4581 
4582   // cannot assert on lack of success here; see above comment
4583   return the_owner;
4584 }
4585 
4586 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4587 void Threads::print_on(outputStream* st, bool print_stacks,
4588                        bool internal_format, bool print_concurrent_locks,
4589                        bool print_extended_info) {
4590   char buf[32];
4591   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4592 
4593   st->print_cr("Full thread dump %s (%s %s):",
4594                VM_Version::vm_name(),
4595                VM_Version::vm_release(),
4596                VM_Version::vm_info_string());
4597   st->cr();
4598 
4599 #if INCLUDE_SERVICES
4600   // Dump concurrent locks
4601   ConcurrentLocksDump concurrent_locks;
4602   if (print_concurrent_locks) {
4603     concurrent_locks.dump_at_safepoint();
4604   }
4605 #endif // INCLUDE_SERVICES
4606 
4607   ThreadsSMRSupport::print_info_on(st);
4608   st->cr();
4609 
4610   ALL_JAVA_THREADS(p) {
4611     ResourceMark rm;
4612     p->print_on(st, print_extended_info);
4613     if (print_stacks) {
4614       if (internal_format) {
4615         p->trace_stack();
4616       } else {
4617         p->print_stack_on(st);
4618       }
4619     }
4620     st->cr();
4621 #if INCLUDE_SERVICES
4622     if (print_concurrent_locks) {
4623       concurrent_locks.print_locks_on(p, st);
4624     }
4625 #endif // INCLUDE_SERVICES
4626   }
4627 
4628   VMThread::vm_thread()->print_on(st);
4629   st->cr();
4630   Universe::heap()->print_gc_threads_on(st);
4631   WatcherThread* wt = WatcherThread::watcher_thread();
4632   if (wt != NULL) {
4633     wt->print_on(st);
4634     st->cr();
4635   }
4636 
4637   st->flush();
4638 }
4639 
4640 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4641                              int buflen, bool* found_current) {
4642   if (this_thread != NULL) {
4643     bool is_current = (current == this_thread);
4644     *found_current = *found_current || is_current;
4645     st->print("%s", is_current ? "=>" : "  ");
4646 
4647     st->print(PTR_FORMAT, p2i(this_thread));
4648     st->print(" ");
4649     this_thread->print_on_error(st, buf, buflen);
4650     st->cr();
4651   }
4652 }
4653 
4654 class PrintOnErrorClosure : public ThreadClosure {
4655   outputStream* _st;
4656   Thread* _current;
4657   char* _buf;
4658   int _buflen;
4659   bool* _found_current;
4660  public:
4661   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4662                       int buflen, bool* found_current) :
4663    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4664 
4665   virtual void do_thread(Thread* thread) {
4666     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4667   }
4668 };
4669 
4670 // Threads::print_on_error() is called by fatal error handler. It's possible
4671 // that VM is not at safepoint and/or current thread is inside signal handler.
4672 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4673 // memory (even in resource area), it might deadlock the error handler.
4674 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4675                              int buflen) {
4676   ThreadsSMRSupport::print_info_on(st);
4677   st->cr();
4678 
4679   bool found_current = false;
4680   st->print_cr("Java Threads: ( => current thread )");
4681   ALL_JAVA_THREADS(thread) {
4682     print_on_error(thread, st, current, buf, buflen, &found_current);
4683   }
4684   st->cr();
4685 
4686   st->print_cr("Other Threads:");
4687   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4688   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4689 
4690   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4691   Universe::heap()->gc_threads_do(&print_closure);
4692 
4693   if (!found_current) {
4694     st->cr();
4695     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4696     current->print_on_error(st, buf, buflen);
4697     st->cr();
4698   }
4699   st->cr();
4700 
4701   st->print_cr("Threads with active compile tasks:");
4702   print_threads_compiling(st, buf, buflen);
4703 }
4704 
4705 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4706   ALL_JAVA_THREADS(thread) {
4707     if (thread->is_Compiler_thread()) {
4708       CompilerThread* ct = (CompilerThread*) thread;
4709 
4710       // Keep task in local variable for NULL check.
4711       // ct->_task might be set to NULL by concurring compiler thread
4712       // because it completed the compilation. The task is never freed,
4713       // though, just returned to a free list.
4714       CompileTask* task = ct->task();
4715       if (task != NULL) {
4716         thread->print_name_on_error(st, buf, buflen);
4717         task->print(st, NULL, true, true);
4718       }
4719     }
4720   }
4721 }
4722 
4723 
4724 // Internal SpinLock and Mutex
4725 // Based on ParkEvent
4726 
4727 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4728 //
4729 // We employ SpinLocks _only for low-contention, fixed-length
4730 // short-duration critical sections where we're concerned
4731 // about native mutex_t or HotSpot Mutex:: latency.
4732 // The mux construct provides a spin-then-block mutual exclusion
4733 // mechanism.
4734 //
4735 // Testing has shown that contention on the ListLock guarding gFreeList
4736 // is common.  If we implement ListLock as a simple SpinLock it's common
4737 // for the JVM to devolve to yielding with little progress.  This is true
4738 // despite the fact that the critical sections protected by ListLock are
4739 // extremely short.
4740 //
4741 // TODO-FIXME: ListLock should be of type SpinLock.
4742 // We should make this a 1st-class type, integrated into the lock
4743 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4744 // should have sufficient padding to avoid false-sharing and excessive
4745 // cache-coherency traffic.
4746 
4747 
4748 typedef volatile int SpinLockT;
4749 
4750 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4751   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4752     return;   // normal fast-path return
4753   }
4754 
4755   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4756   int ctr = 0;
4757   int Yields = 0;
4758   for (;;) {
4759     while (*adr != 0) {
4760       ++ctr;
4761       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4762         if (Yields > 5) {
4763           os::naked_short_sleep(1);
4764         } else {
4765           os::naked_yield();
4766           ++Yields;
4767         }
4768       } else {
4769         SpinPause();
4770       }
4771     }
4772     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4773   }
4774 }
4775 
4776 void Thread::SpinRelease(volatile int * adr) {
4777   assert(*adr != 0, "invariant");
4778   OrderAccess::fence();      // guarantee at least release consistency.
4779   // Roach-motel semantics.
4780   // It's safe if subsequent LDs and STs float "up" into the critical section,
4781   // but prior LDs and STs within the critical section can't be allowed
4782   // to reorder or float past the ST that releases the lock.
4783   // Loads and stores in the critical section - which appear in program
4784   // order before the store that releases the lock - must also appear
4785   // before the store that releases the lock in memory visibility order.
4786   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4787   // the ST of 0 into the lock-word which releases the lock, so fence
4788   // more than covers this on all platforms.
4789   *adr = 0;
4790 }
4791 
4792 // muxAcquire and muxRelease:
4793 //
4794 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4795 //    The LSB of the word is set IFF the lock is held.
4796 //    The remainder of the word points to the head of a singly-linked list
4797 //    of threads blocked on the lock.
4798 //
4799 // *  The current implementation of muxAcquire-muxRelease uses its own
4800 //    dedicated Thread._MuxEvent instance.  If we're interested in
4801 //    minimizing the peak number of extant ParkEvent instances then
4802 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4803 //    as certain invariants were satisfied.  Specifically, care would need
4804 //    to be taken with regards to consuming unpark() "permits".
4805 //    A safe rule of thumb is that a thread would never call muxAcquire()
4806 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4807 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4808 //    consume an unpark() permit intended for monitorenter, for instance.
4809 //    One way around this would be to widen the restricted-range semaphore
4810 //    implemented in park().  Another alternative would be to provide
4811 //    multiple instances of the PlatformEvent() for each thread.  One
4812 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4813 //
4814 // *  Usage:
4815 //    -- Only as leaf locks
4816 //    -- for short-term locking only as muxAcquire does not perform
4817 //       thread state transitions.
4818 //
4819 // Alternatives:
4820 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4821 //    but with parking or spin-then-park instead of pure spinning.
4822 // *  Use Taura-Oyama-Yonenzawa locks.
4823 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4824 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4825 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4826 //    acquiring threads use timers (ParkTimed) to detect and recover from
4827 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4828 //    boundaries by using placement-new.
4829 // *  Augment MCS with advisory back-link fields maintained with CAS().
4830 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4831 //    The validity of the backlinks must be ratified before we trust the value.
4832 //    If the backlinks are invalid the exiting thread must back-track through the
4833 //    the forward links, which are always trustworthy.
4834 // *  Add a successor indication.  The LockWord is currently encoded as
4835 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4836 //    to provide the usual futile-wakeup optimization.
4837 //    See RTStt for details.
4838 //
4839 
4840 
4841 const intptr_t LOCKBIT = 1;
4842 
4843 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4844   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4845   if (w == 0) return;
4846   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4847     return;
4848   }
4849 
4850   ParkEvent * const Self = Thread::current()->_MuxEvent;
4851   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4852   for (;;) {
4853     int its = (os::is_MP() ? 100 : 0) + 1;
4854 
4855     // Optional spin phase: spin-then-park strategy
4856     while (--its >= 0) {
4857       w = *Lock;
4858       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4859         return;
4860       }
4861     }
4862 
4863     Self->reset();
4864     Self->OnList = intptr_t(Lock);
4865     // The following fence() isn't _strictly necessary as the subsequent
4866     // CAS() both serializes execution and ratifies the fetched *Lock value.
4867     OrderAccess::fence();
4868     for (;;) {
4869       w = *Lock;
4870       if ((w & LOCKBIT) == 0) {
4871         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4872           Self->OnList = 0;   // hygiene - allows stronger asserts
4873           return;
4874         }
4875         continue;      // Interference -- *Lock changed -- Just retry
4876       }
4877       assert(w & LOCKBIT, "invariant");
4878       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4879       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4880     }
4881 
4882     while (Self->OnList != 0) {
4883       Self->park();
4884     }
4885   }
4886 }
4887 
4888 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4889   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4890   if (w == 0) return;
4891   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4892     return;
4893   }
4894 
4895   ParkEvent * ReleaseAfter = NULL;
4896   if (ev == NULL) {
4897     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4898   }
4899   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4900   for (;;) {
4901     guarantee(ev->OnList == 0, "invariant");
4902     int its = (os::is_MP() ? 100 : 0) + 1;
4903 
4904     // Optional spin phase: spin-then-park strategy
4905     while (--its >= 0) {
4906       w = *Lock;
4907       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4908         if (ReleaseAfter != NULL) {
4909           ParkEvent::Release(ReleaseAfter);
4910         }
4911         return;
4912       }
4913     }
4914 
4915     ev->reset();
4916     ev->OnList = intptr_t(Lock);
4917     // The following fence() isn't _strictly necessary as the subsequent
4918     // CAS() both serializes execution and ratifies the fetched *Lock value.
4919     OrderAccess::fence();
4920     for (;;) {
4921       w = *Lock;
4922       if ((w & LOCKBIT) == 0) {
4923         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4924           ev->OnList = 0;
4925           // We call ::Release while holding the outer lock, thus
4926           // artificially lengthening the critical section.
4927           // Consider deferring the ::Release() until the subsequent unlock(),
4928           // after we've dropped the outer lock.
4929           if (ReleaseAfter != NULL) {
4930             ParkEvent::Release(ReleaseAfter);
4931           }
4932           return;
4933         }
4934         continue;      // Interference -- *Lock changed -- Just retry
4935       }
4936       assert(w & LOCKBIT, "invariant");
4937       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4938       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4939     }
4940 
4941     while (ev->OnList != 0) {
4942       ev->park();
4943     }
4944   }
4945 }
4946 
4947 // Release() must extract a successor from the list and then wake that thread.
4948 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4949 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4950 // Release() would :
4951 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4952 // (B) Extract a successor from the private list "in-hand"
4953 // (C) attempt to CAS() the residual back into *Lock over null.
4954 //     If there were any newly arrived threads and the CAS() would fail.
4955 //     In that case Release() would detach the RATs, re-merge the list in-hand
4956 //     with the RATs and repeat as needed.  Alternately, Release() might
4957 //     detach and extract a successor, but then pass the residual list to the wakee.
4958 //     The wakee would be responsible for reattaching and remerging before it
4959 //     competed for the lock.
4960 //
4961 // Both "pop" and DMR are immune from ABA corruption -- there can be
4962 // multiple concurrent pushers, but only one popper or detacher.
4963 // This implementation pops from the head of the list.  This is unfair,
4964 // but tends to provide excellent throughput as hot threads remain hot.
4965 // (We wake recently run threads first).
4966 //
4967 // All paths through muxRelease() will execute a CAS.
4968 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4969 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4970 // executed within the critical section are complete and globally visible before the
4971 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4972 void Thread::muxRelease(volatile intptr_t * Lock)  {
4973   for (;;) {
4974     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
4975     assert(w & LOCKBIT, "invariant");
4976     if (w == LOCKBIT) return;
4977     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4978     assert(List != NULL, "invariant");
4979     assert(List->OnList == intptr_t(Lock), "invariant");
4980     ParkEvent * const nxt = List->ListNext;
4981     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4982 
4983     // The following CAS() releases the lock and pops the head element.
4984     // The CAS() also ratifies the previously fetched lock-word value.
4985     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
4986       continue;
4987     }
4988     List->OnList = 0;
4989     OrderAccess::fence();
4990     List->unpark();
4991     return;
4992   }
4993 }
4994 
4995 
4996 void Threads::verify() {
4997   ALL_JAVA_THREADS(p) {
4998     p->verify();
4999   }
5000   VMThread* thread = VMThread::vm_thread();
5001   if (thread != NULL) thread->verify();
5002 }