1 /*
   2  * Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 
  25 package org.graalvm.compiler.core.test.tutorial;
  26 
  27 import static org.graalvm.compiler.core.test.GraalCompilerTest.getInitialOptions;
  28 
  29 import java.util.ArrayDeque;
  30 import java.util.Collections;
  31 import java.util.Deque;
  32 import java.util.HashMap;
  33 import java.util.HashSet;
  34 import java.util.Map;
  35 import java.util.Set;
  36 
  37 import org.graalvm.compiler.debug.DebugHandlersFactory;
  38 import org.graalvm.compiler.debug.DebugContext;
  39 import org.graalvm.compiler.debug.GraalError;
  40 import org.graalvm.compiler.graph.Node;
  41 import org.graalvm.compiler.graph.NodeMap;
  42 import org.graalvm.compiler.java.GraphBuilderPhase;
  43 import org.graalvm.compiler.nodes.CallTargetNode.InvokeKind;
  44 import org.graalvm.compiler.nodes.ConstantNode;
  45 import org.graalvm.compiler.nodes.FixedNode;
  46 import org.graalvm.compiler.nodes.Invoke;
  47 import org.graalvm.compiler.nodes.ParameterNode;
  48 import org.graalvm.compiler.nodes.ReturnNode;
  49 import org.graalvm.compiler.nodes.StructuredGraph;
  50 import org.graalvm.compiler.nodes.ValueNode;
  51 import org.graalvm.compiler.nodes.ValuePhiNode;
  52 import org.graalvm.compiler.nodes.graphbuilderconf.GraphBuilderConfiguration;
  53 import org.graalvm.compiler.nodes.graphbuilderconf.GraphBuilderConfiguration.BytecodeExceptionMode;
  54 import org.graalvm.compiler.nodes.graphbuilderconf.GraphBuilderConfiguration.Plugins;
  55 import org.graalvm.compiler.nodes.graphbuilderconf.InvocationPlugins;
  56 import org.graalvm.compiler.nodes.java.LoadFieldNode;
  57 import org.graalvm.compiler.nodes.java.MethodCallTargetNode;
  58 import org.graalvm.compiler.nodes.java.NewArrayNode;
  59 import org.graalvm.compiler.nodes.java.NewInstanceNode;
  60 import org.graalvm.compiler.nodes.java.StoreFieldNode;
  61 import org.graalvm.compiler.nodes.spi.StampProvider;
  62 import org.graalvm.compiler.nodes.util.GraphUtil;
  63 import org.graalvm.compiler.options.OptionValues;
  64 import org.graalvm.compiler.phases.OptimisticOptimizations;
  65 import org.graalvm.compiler.phases.graph.StatelessPostOrderNodeIterator;
  66 
  67 import jdk.vm.ci.meta.JavaConstant;
  68 import jdk.vm.ci.meta.JavaKind;
  69 import jdk.vm.ci.meta.MetaAccessProvider;
  70 import jdk.vm.ci.meta.ResolvedJavaField;
  71 import jdk.vm.ci.meta.ResolvedJavaMethod;
  72 import jdk.vm.ci.meta.ResolvedJavaType;
  73 
  74 /**
  75  * A simple context-insensitive static analysis based on the Graal API. It is intended for
  76  * educational purposes, not for use in production. Only a limited set of Java functionality is
  77  * supported to keep the code minimal.
  78  * <p>
  79  * The analysis builds a directed graph of {@link TypeFlow type flows}. If a type is added to type
  80  * flow, it is propagated to all {@link TypeFlow#uses uses} of the type flow. Types are propagated
  81  * using a {@link #worklist} of changed type flows until a fixpoint is reached, i.e., until no more
  82  * types need to be added to any type state.
  83  * <p>
  84  * The type flows are constructed from a high-level Graal graph by the {@link TypeFlowBuilder}. All
  85  * nodes that operate on {@link JavaKind#Object object} values are converted to the appropriate type
  86  * flows. The analysis is context insensitive: every Java field has {@link Results#lookupField one
  87  * list} of types assigned to the field; every Java method has {@link Results#lookupMethod one
  88  * state} for each {@link MethodState#formalParameters parameter} as well as the
  89  * {@link MethodState#formalReturn return value}.
  90  */
  91 public class StaticAnalysis {
  92     /** Access to type, method, and fields using the Graal API. */
  93     private final MetaAccessProvider metaAccess;
  94     /** Access to platform dependent stamps. */
  95     private final StampProvider stampProvider;
  96     /** The results of the static analysis. */
  97     private final Results results;
  98     /** Worklist for fixpoint iteration. */
  99     private final Deque<WorklistEntry> worklist;
 100 
 101     public StaticAnalysis(MetaAccessProvider metaAccess, StampProvider stampProvider) {
 102         this.metaAccess = metaAccess;
 103         this.stampProvider = stampProvider;
 104         this.results = new Results();
 105         this.worklist = new ArrayDeque<>();
 106     }
 107 
 108     /**
 109      * Adds a root method to the static analysis. The method must be static and must not have any
 110      * parameters, because the possible types of the parameters would not be known.
 111      */
 112     public void addMethod(ResolvedJavaMethod method) {
 113         if (!method.isStatic() || method.getSignature().getParameterCount(false) > 0) {
 114             error("Entry point method is not static or has parameters: " + method.format("%H.%n(%p)"));
 115         }
 116         addToWorklist(results.lookupMethod(method));
 117     }
 118 
 119     /**
 120      * Performs the fixed-point analysis that finds all methods transitively reachable from the
 121      * {@link #addMethod root methods}.
 122      */
 123     public void finish() {
 124         while (!worklist.isEmpty()) {
 125             worklist.removeFirst().process();
 126         }
 127     }
 128 
 129     /**
 130      * Returns the static analysis results computed by {@link StaticAnalysis#finish}.
 131      */
 132     public Results getResults() {
 133         return results;
 134     }
 135 
 136     protected void addToWorklist(WorklistEntry task) {
 137         worklist.addLast(task);
 138     }
 139 
 140     protected static RuntimeException error(String msg) {
 141         throw GraalError.shouldNotReachHere(msg);
 142     }
 143 
 144     /**
 145      * Base class for all work items that can be {@link #addToWorklist added to the worklist}.
 146      */
 147     abstract class WorklistEntry {
 148         protected abstract void process();
 149     }
 150 
 151     /**
 152      * The results computed by the static analysis.
 153      */
 154     public class Results {
 155         private final TypeFlow allInstantiatedTypes;
 156         private final Map<ResolvedJavaField, TypeFlow> fields;
 157         private final Map<ResolvedJavaMethod, MethodState> methods;
 158 
 159         protected Results() {
 160             allInstantiatedTypes = new TypeFlow();
 161             fields = new HashMap<>();
 162             methods = new HashMap<>();
 163         }
 164 
 165         /**
 166          * All {@link TypeFlow#getTypes() types} that are found to be instantiated, i.e., all types
 167          * allocated by the reachable instance and array allocation bytecodes.
 168          */
 169         public TypeFlow getAllInstantiatedTypes() {
 170             return allInstantiatedTypes;
 171         }
 172 
 173         /**
 174          * All {@link TypeFlow#getTypes() types} that the given field can have, i.e., all types
 175          * assigned by the reachable field store bytecodes.
 176          */
 177         public TypeFlow lookupField(ResolvedJavaField field) {
 178             TypeFlow result = fields.get(field);
 179             if (result == null) {
 180                 result = new TypeFlow();
 181                 fields.put(field, result);
 182             }
 183             return result;
 184         }
 185 
 186         /**
 187          * All {@link TypeFlow#getTypes() types} that {@link MethodState#formalParameters
 188          * parameters} and {@link MethodState#formalReturn return value} of the given method can
 189          * have.
 190          */
 191         public MethodState lookupMethod(ResolvedJavaMethod method) {
 192             MethodState result = methods.get(method);
 193             if (result == null) {
 194                 result = new MethodState(method);
 195                 methods.put(method, result);
 196             }
 197             return result;
 198         }
 199     }
 200 
 201     /**
 202      * The {@link TypeFlow#getTypes() types} of the parameters and return value of a method. Also
 203      * serves as the worklist element to parse the bytecodes of the method.
 204      */
 205     public class MethodState extends WorklistEntry {
 206         private final ResolvedJavaMethod method;
 207         private final TypeFlow[] formalParameters;
 208         private final TypeFlow formalReturn;
 209         private boolean processed;
 210 
 211         protected MethodState(ResolvedJavaMethod method) {
 212             this.method = method;
 213 
 214             formalParameters = new TypeFlow[method.getSignature().getParameterCount(!method.isStatic())];
 215             for (int i = 0; i < formalParameters.length; i++) {
 216                 formalParameters[i] = new TypeFlow();
 217             }
 218             formalReturn = new TypeFlow();
 219         }
 220 
 221         /**
 222          * All {@link TypeFlow#getTypes() types} that the parameters of this method can have.
 223          */
 224         public TypeFlow[] getFormalParameters() {
 225             return formalParameters;
 226         }
 227 
 228         /**
 229          * All {@link TypeFlow#getTypes() types} that the return value of this method can have.
 230          */
 231         public TypeFlow getFormalReturn() {
 232             return formalReturn;
 233         }
 234 
 235         @Override
 236         @SuppressWarnings("try")
 237         protected void process() {
 238             if (!processed) {
 239                 /* We want to process a method only once. */
 240                 processed = true;
 241 
 242                 /*
 243                  * Build the Graal graph for the method using the bytecode parser provided by Graal.
 244                  */
 245 
 246                 OptionValues options = getInitialOptions();
 247                 DebugContext debug = DebugContext.create(options, DebugHandlersFactory.LOADER);
 248                 StructuredGraph graph = new StructuredGraph.Builder(options, debug).method(method).build();
 249                 /*
 250                  * Support for graph dumping, IGV uses this information to show the method name of a
 251                  * graph.
 252                  */
 253                 try (DebugContext.Scope scope = debug.scope("graph building", graph)) {
 254                     /*
 255                      * We want all types to be resolved by the graph builder, i.e., we want classes
 256                      * referenced by the bytecodes to be loaded and initialized. Since we do not run
 257                      * the code before static analysis, the classes would otherwise be not loaded
 258                      * yet and the bytecode parser would only create a graph.
 259                      */
 260                     Plugins plugins = new Plugins(new InvocationPlugins());
 261                     GraphBuilderConfiguration graphBuilderConfig = GraphBuilderConfiguration.getDefault(plugins).withEagerResolving(true).withUnresolvedIsError(true);
 262                     /*
 263                      * For simplicity, we ignore all exception handling during the static analysis.
 264                      * This is a constraint of this example code, a real static analysis needs to
 265                      * handle the Graal nodes for throwing and handling exceptions.
 266                      */
 267                     graphBuilderConfig = graphBuilderConfig.withBytecodeExceptionMode(BytecodeExceptionMode.OmitAll);
 268                     /*
 269                      * We do not want Graal to perform any speculative optimistic optimizations,
 270                      * i.e., we do not want to use profiling information. Since we do not run the
 271                      * code before static analysis, the profiling information is empty and therefore
 272                      * wrong.
 273                      */
 274                     OptimisticOptimizations optimisticOpts = OptimisticOptimizations.NONE;
 275 
 276                     GraphBuilderPhase.Instance graphBuilder = new GraphBuilderPhase.Instance(metaAccess, stampProvider, null, null, graphBuilderConfig, optimisticOpts, null);
 277                     graphBuilder.apply(graph);
 278                 } catch (Throwable ex) {
 279                     debug.handle(ex);
 280                 }
 281 
 282                 /*
 283                  * Build the type flow graph from the Graal graph, i.e., process all nodes that are
 284                  * deal with objects.
 285                  */
 286 
 287                 TypeFlowBuilder typeFlowBuilder = new TypeFlowBuilder(graph);
 288                 typeFlowBuilder.apply();
 289             }
 290         }
 291     }
 292 
 293     /**
 294      * The active element during static analysis: types are added until a fixed point is reached.
 295      * When a new type is added, it is propagated to all usages by putting this element on the
 296      * {@link StaticAnalysis#addToWorklist worklist}.
 297      */
 298     public class TypeFlow extends WorklistEntry {
 299         private final Set<ResolvedJavaType> types;
 300         private final Set<TypeFlow> uses;
 301 
 302         protected TypeFlow() {
 303             types = new HashSet<>();
 304             uses = new HashSet<>();
 305         }
 306 
 307         /** Returns the types of this element. */
 308         public Set<ResolvedJavaType> getTypes() {
 309             return types;
 310         }
 311 
 312         /**
 313          * Adds new types to this element. If that changes the state of this element, it is added to
 314          * the {@link StaticAnalysis#addToWorklist worklist} in order to propagate the added types
 315          * to all usages.
 316          */
 317         protected void addTypes(Set<ResolvedJavaType> newTypes) {
 318             if (types.addAll(newTypes)) {
 319                 addToWorklist(this);
 320             }
 321         }
 322 
 323         /**
 324          * Adds a new use to this element. All types of this element are propagated to the new
 325          * usage.
 326          */
 327         protected void addUse(TypeFlow use) {
 328             if (uses.add(use)) {
 329                 use.addTypes(types);
 330             }
 331         }
 332 
 333         /**
 334          * Processing of the worklist element: propagate the types to all usages. That in turn can
 335          * add the usages to the worklist (if the types of the usage are changed).
 336          */
 337         @Override
 338         protected void process() {
 339             for (TypeFlow use : uses) {
 340                 use.addTypes(types);
 341             }
 342         }
 343     }
 344 
 345     /**
 346      * The active element for method invocations. For {@link InvokeKind#Virtual virtual} and
 347      * {@link InvokeKind#Interface interface} calls, the {@link TypeFlow#getTypes() types} of this
 348      * node are the receiver types. When a new receiver type is added, a new callee might be added.
 349      * Adding a new callee means linking the type flow of the actual parameters with the formal
 350      * parameters of the callee, and linking the return value of the callee with the return value
 351      * state of the invocation.
 352      *
 353      * Statically bindable methods calls ({@link InvokeKind#Static static} and
 354      * {@link InvokeKind#Special special} calls) have only one callee, but use the same code for
 355      * simplicity.
 356      */
 357     class InvokeTypeFlow extends TypeFlow {
 358         private final MethodCallTargetNode callTarget;
 359         private final TypeFlow[] actualParameters;
 360         private final TypeFlow actualReturn;
 361         private final Set<ResolvedJavaMethod> callees;
 362 
 363         protected InvokeTypeFlow(MethodCallTargetNode callTarget, TypeFlow[] actualParameterFlows, TypeFlow actualReturnFlow) {
 364             this.callTarget = callTarget;
 365             this.actualParameters = actualParameterFlows;
 366             this.actualReturn = actualReturnFlow;
 367             this.callees = new HashSet<>();
 368         }
 369 
 370         private void linkCallee(ResolvedJavaMethod callee) {
 371             if (callees.add(callee)) {
 372                 /* We have added a new callee. */
 373 
 374                 /*
 375                  * Connect the actual parameters of the invocation with the formal parameters of the
 376                  * callee.
 377                  */
 378                 MethodState calleeState = results.lookupMethod(callee);
 379                 for (int i = 0; i < actualParameters.length; i++) {
 380                     if (actualParameters[i] != null) {
 381                         actualParameters[i].addUse(calleeState.formalParameters[i]);
 382                     }
 383                 }
 384 
 385                 /*
 386                  * Connect the formal return value of the callee with the actual return value of the
 387                  * invocation.
 388                  */
 389                 if (actualReturn != null) {
 390                     calleeState.formalReturn.addUse(actualReturn);
 391                 }
 392                 addToWorklist(calleeState);
 393             }
 394         }
 395 
 396         @Override
 397         protected void process() {
 398             if (callTarget.invokeKind().isDirect()) {
 399                 /* Static and special calls: link the statically known callee method. */
 400                 linkCallee(callTarget.targetMethod());
 401             } else {
 402                 /* Virtual and interface call: Iterate all receiver types. */
 403                 for (ResolvedJavaType type : getTypes()) {
 404                     /*
 405                      * Resolve the method call for one exact receiver type. The method linking
 406                      * semantics of Java are complicated, but fortunatley we can use the linker of
 407                      * the hosting Java VM. The Graal API exposes this functionality.
 408                      */
 409                     ResolvedJavaMethod method = type.resolveConcreteMethod(callTarget.targetMethod(), callTarget.invoke().getContextType());
 410 
 411                     /*
 412                      * Since the static analysis is conservative, the list of receiver types can
 413                      * contain types that actually do not provide the method to be called. Ignore
 414                      * these.
 415                      */
 416                     if (method != null && !method.isAbstract()) {
 417                         linkCallee(method);
 418                     }
 419                 }
 420             }
 421             super.process();
 422         }
 423     }
 424 
 425     /**
 426      * Converts the Graal nodes of a method to a type flow graph. The main part of the algorithm is
 427      * a reverse-postorder iteration of the Graal nodes, which is provided by the base class
 428      * {@link StatelessPostOrderNodeIterator}.
 429      */
 430     class TypeFlowBuilder extends StatelessPostOrderNodeIterator {
 431         private final StructuredGraph graph;
 432         private final MethodState methodState;
 433         /**
 434          * Mapping from Graal nodes to type flows. This uses an efficient Graal-provided
 435          * {@link NodeMap collection class}.
 436          */
 437         private final NodeMap<TypeFlow> typeFlows;
 438 
 439         protected TypeFlowBuilder(StructuredGraph graph) {
 440             super(graph.start());
 441 
 442             this.graph = graph;
 443             this.methodState = results.lookupMethod(graph.method());
 444             this.typeFlows = new NodeMap<>(graph);
 445         }
 446 
 447         /**
 448          * Register the type flow node for a Graal node.
 449          */
 450         private void registerFlow(ValueNode node, TypeFlow flow) {
 451             /*
 452              * We ignore intermediate nodes used by Graal that, e.g., add more type information or
 453              * encapsulate values flowing out of loops.
 454              */
 455             ValueNode unproxiedNode = GraphUtil.unproxify(node);
 456 
 457             assert typeFlows.get(unproxiedNode) == null : "overwriting existing value";
 458             typeFlows.set(unproxiedNode, flow);
 459         }
 460 
 461         /**
 462          * Lookup the type flow node for a Graal node.
 463          */
 464         private TypeFlow lookupFlow(ValueNode node) {
 465             ValueNode unproxiedNode = GraphUtil.unproxify(node);
 466             TypeFlow result = typeFlows.get(unproxiedNode);
 467             if (result == null) {
 468                 /*
 469                  * This is only the prototype of a static analysis, the handling of many Graal nodes
 470                  * (such as array accesses) is not implemented.
 471                  */
 472                 throw error("Node is not supported yet by static analysis: " + node.getClass().getName());
 473             }
 474             return result;
 475         }
 476 
 477         private boolean isObject(ValueNode node) {
 478             return node.getStackKind() == JavaKind.Object;
 479         }
 480 
 481         @Override
 482         public void apply() {
 483             /*
 484              * Before the reverse-postorder iteration of fixed nodes, we handle some classes of
 485              * floating nodes.
 486              */
 487             for (Node n : graph.getNodes()) {
 488                 if (n instanceof ParameterNode) {
 489                     /*
 490                      * Incoming method parameter already have a type flow created by the
 491                      * MethodState.
 492                      */
 493                     ParameterNode node = (ParameterNode) n;
 494                     if (isObject(node)) {
 495                         registerFlow(node, methodState.formalParameters[(node.index())]);
 496                     }
 497                 } else if (n instanceof ValuePhiNode) {
 498                     /*
 499                      * Phi functions for loops are cyclic. We create the type flow here (before
 500                      * processing any loop nodes), but link the phi values only later (after
 501                      * processing of all loop nodes.
 502                      */
 503                     ValuePhiNode node = (ValuePhiNode) n;
 504                     if (isObject(node)) {
 505                         registerFlow(node, new TypeFlow());
 506                     }
 507                 } else if (n instanceof ConstantNode) {
 508                     /* Constants have a known type. */
 509                     ConstantNode node = (ConstantNode) n;
 510                     JavaConstant constant = node.asJavaConstant();
 511                     if (constant.isNull()) {
 512                         registerFlow(node, new TypeFlow());
 513                     }
 514                 }
 515             }
 516 
 517             super.apply();
 518 
 519             for (Node n : graph.getNodes()) {
 520                 if (n instanceof ValuePhiNode) {
 521                     /*
 522                      * Post-processing of phi functions. Now the type flow for all input values has
 523                      * been created, so we can link the type flows together.
 524                      */
 525                     ValuePhiNode node = (ValuePhiNode) n;
 526                     if (isObject(node)) {
 527                         TypeFlow phiFlow = lookupFlow(node);
 528                         for (ValueNode value : node.values()) {
 529                             lookupFlow(value).addUse(phiFlow);
 530                         }
 531                     }
 532                 }
 533             }
 534         }
 535 
 536         private void allocation(ValueNode node, ResolvedJavaType type) {
 537             /*
 538              * The type flow of allocation nodes is one exact type. This is the source of the
 539              * fixpoint iteration, the types are propagated downwards from these sources.
 540              */
 541             TypeFlow flow = new TypeFlow();
 542             flow.addTypes(Collections.singleton(type));
 543             registerFlow(node, flow);
 544             flow.addUse(results.getAllInstantiatedTypes());
 545         }
 546 
 547         @Override
 548         protected void node(FixedNode n) {
 549             if (n instanceof NewInstanceNode) {
 550                 NewInstanceNode node = (NewInstanceNode) n;
 551                 allocation(node, node.instanceClass());
 552             } else if (n instanceof NewArrayNode) {
 553                 NewArrayNode node = (NewArrayNode) n;
 554                 allocation(node, node.elementType().getArrayClass());
 555 
 556             } else if (n instanceof LoadFieldNode) {
 557                 /*
 558                  * The type flow of a field load is the type flow of the field itself. It
 559                  * accumulates all types ever stored to the field.
 560                  */
 561                 LoadFieldNode node = (LoadFieldNode) n;
 562                 if (isObject(node)) {
 563                     registerFlow(node, results.lookupField(node.field()));
 564                 }
 565             } else if (n instanceof StoreFieldNode) {
 566                 /*
 567                  * Connect the type flow of the stored value with the type flow of the field.
 568                  */
 569                 StoreFieldNode node = (StoreFieldNode) n;
 570                 if (isObject(node.value())) {
 571                     TypeFlow fieldFlow = results.lookupField(node.field());
 572                     lookupFlow(node.value()).addUse(fieldFlow);
 573                 }
 574 
 575             } else if (n instanceof ReturnNode) {
 576                 /*
 577                  * Connect the type flow of the returned value with the formal return type flow of
 578                  * the MethodState.
 579                  */
 580                 ReturnNode node = (ReturnNode) n;
 581                 if (node.result() != null && isObject(node.result())) {
 582                     lookupFlow(node.result()).addUse(methodState.formalReturn);
 583                 }
 584 
 585             } else if (n instanceof Invoke) {
 586                 /*
 587                  * Create the InvokeTypeFlow, which performs all the linking of actual and formal
 588                  * parameter values with all identified callees.
 589                  */
 590                 Invoke invoke = (Invoke) n;
 591                 MethodCallTargetNode callTarget = (MethodCallTargetNode) invoke.callTarget();
 592 
 593                 TypeFlow[] actualParameters = new TypeFlow[callTarget.arguments().size()];
 594                 for (int i = 0; i < actualParameters.length; i++) {
 595                     ValueNode actualParam = callTarget.arguments().get(i);
 596                     if (isObject(actualParam)) {
 597                         actualParameters[i] = lookupFlow(actualParam);
 598                     }
 599                 }
 600                 TypeFlow actualReturn = null;
 601                 if (isObject(invoke.asNode())) {
 602                     actualReturn = new TypeFlow();
 603                     registerFlow(invoke.asNode(), actualReturn);
 604                 }
 605 
 606                 InvokeTypeFlow invokeFlow = new InvokeTypeFlow(callTarget, actualParameters, actualReturn);
 607 
 608                 if (callTarget.invokeKind().isIndirect()) {
 609                     /*
 610                      * For virtual and interface calls, new receiver types can lead to new callees.
 611                      * Connect the type flow of the receiver with the invocation flow.
 612                      */
 613                     lookupFlow(callTarget.arguments().get(0)).addUse(invokeFlow);
 614                 }
 615                 /*
 616                  * Ensure the invocation is on the worklist at least once, even if it is a static
 617                  * call with not parameters that does not involve any type flows.
 618                  */
 619                 addToWorklist(invokeFlow);
 620             }
 621         }
 622     }
 623 }