/* * Copyright (c) 2011, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package org.graalvm.compiler.nodes.calc; import static org.graalvm.compiler.core.common.calc.CanonicalCondition.LT; import org.graalvm.compiler.core.common.NumUtil; import org.graalvm.compiler.core.common.calc.CanonicalCondition; import org.graalvm.compiler.core.common.type.FloatStamp; import org.graalvm.compiler.core.common.type.IntegerStamp; import org.graalvm.compiler.core.common.type.StampFactory; import org.graalvm.compiler.debug.GraalError; import org.graalvm.compiler.graph.Node; import org.graalvm.compiler.graph.NodeClass; import org.graalvm.compiler.graph.spi.CanonicalizerTool; import org.graalvm.compiler.nodeinfo.NodeInfo; import org.graalvm.compiler.nodes.ConstantNode; import org.graalvm.compiler.nodes.LogicConstantNode; import org.graalvm.compiler.nodes.LogicNegationNode; import org.graalvm.compiler.nodes.LogicNode; import org.graalvm.compiler.nodes.NodeView; import org.graalvm.compiler.nodes.ValueNode; import org.graalvm.compiler.options.OptionValues; import jdk.vm.ci.code.CodeUtil; import jdk.vm.ci.meta.Constant; import jdk.vm.ci.meta.ConstantReflectionProvider; import jdk.vm.ci.meta.JavaKind; import jdk.vm.ci.meta.MetaAccessProvider; import jdk.vm.ci.meta.PrimitiveConstant; import jdk.vm.ci.meta.TriState; @NodeInfo(shortName = "<") public final class IntegerLessThanNode extends IntegerLowerThanNode { public static final NodeClass TYPE = NodeClass.create(IntegerLessThanNode.class); private static final LessThanOp OP = new LessThanOp(); public IntegerLessThanNode(ValueNode x, ValueNode y) { super(TYPE, x, y, OP); assert !x.getStackKind().isNumericFloat() && x.getStackKind() != JavaKind.Object; assert !y.getStackKind().isNumericFloat() && y.getStackKind() != JavaKind.Object; } public static LogicNode create(ValueNode x, ValueNode y, NodeView view) { return OP.create(x, y, view); } public static LogicNode create(ConstantReflectionProvider constantReflection, MetaAccessProvider metaAccess, OptionValues options, Integer smallestCompareWidth, ValueNode x, ValueNode y, NodeView view) { LogicNode value = OP.canonical(constantReflection, metaAccess, options, smallestCompareWidth, OP.getCondition(), false, x, y, view); if (value != null) { return value; } return create(x, y, view); } @Override public Node canonical(CanonicalizerTool tool, ValueNode forX, ValueNode forY) { NodeView view = NodeView.from(tool); ValueNode value = OP.canonical(tool.getConstantReflection(), tool.getMetaAccess(), tool.getOptions(), tool.smallestCompareWidth(), OP.getCondition(), false, forX, forY, view); if (value != null) { return value; } return this; } public static boolean subtractMayUnderflow(long x, long y, long minValue) { long r = x - y; // HD 2-12 Overflow iff the arguments have different signs and // the sign of the result is different than the sign of x return (((x ^ y) & (x ^ r)) < 0) || r <= minValue; } public static boolean subtractMayOverflow(long x, long y, long maxValue) { long r = x - y; // HD 2-12 Overflow iff the arguments have different signs and // the sign of the result is different than the sign of x return (((x ^ y) & (x ^ r)) < 0) || r > maxValue; } public static class LessThanOp extends LowerOp { @Override protected CompareNode duplicateModified(ValueNode newX, ValueNode newY, boolean unorderedIsTrue, NodeView view) { if (newX.stamp(view) instanceof FloatStamp && newY.stamp(view) instanceof FloatStamp) { return new FloatLessThanNode(newX, newY, unorderedIsTrue); // TODO: Is the last arg // supposed to be true? } else if (newX.stamp(view) instanceof IntegerStamp && newY.stamp(view) instanceof IntegerStamp) { return new IntegerLessThanNode(newX, newY); } throw GraalError.shouldNotReachHere(); } @Override protected LogicNode optimizeNormalizeCompare(ConstantReflectionProvider constantReflection, MetaAccessProvider metaAccess, OptionValues options, Integer smallestCompareWidth, Constant constant, AbstractNormalizeCompareNode normalizeNode, boolean mirrored, NodeView view) { PrimitiveConstant primitive = (PrimitiveConstant) constant; /* @formatter:off * a NC b < c (not mirrored) * cases for c: * 0 -> a < b * [MIN, -1] -> false * 1 -> a <= b * [2, MAX] -> true * unordered-is-less means unordered-is-true. * * c < a NC b (mirrored) * cases for c: * 0 -> a > b * [1, MAX] -> false * -1 -> a >= b * [MIN, -2] -> true * unordered-is-less means unordered-is-false. * * We can handle mirroring by swapping a & b and negating the constant. * @formatter:on */ long cst = mirrored ? -primitive.asLong() : primitive.asLong(); if (cst == 0) { return normalizeNode.createLowerComparison(mirrored, constantReflection, metaAccess, options, smallestCompareWidth, view); } else if (cst == 1) { // a <= b <=> !(a > b) // since we negate, we have to reverse the unordered result LogicNode compare = normalizeNode.createLowerComparison(!mirrored, constantReflection, metaAccess, options, smallestCompareWidth, view); return LogicNegationNode.create(compare); } else if (cst <= -1) { return LogicConstantNode.contradiction(); } else { assert cst >= 2; return LogicConstantNode.tautology(); } } @Override protected LogicNode findSynonym(ValueNode forX, ValueNode forY, NodeView view) { LogicNode result = super.findSynonym(forX, forY, view); if (result != null) { return result; } if (forX.stamp(view) instanceof IntegerStamp && forY.stamp(view) instanceof IntegerStamp) { if (IntegerStamp.sameSign((IntegerStamp) forX.stamp(view), (IntegerStamp) forY.stamp(view))) { return new IntegerBelowNode(forX, forY); } } // Attempt to optimize the case where we can fold a constant from the left side (either // from an add or sub) into the constant on the right side. if (forY.isConstant()) { if (forX instanceof SubNode) { SubNode sub = (SubNode) forX; ValueNode xx = null; ValueNode yy = null; boolean negate = false; if (forY.asConstant().isDefaultForKind()) { // (x - y) < 0 when x - y is known not to underflow <=> x < y xx = sub.getX(); yy = sub.getY(); } else if (forY.isJavaConstant() && forY.asJavaConstant().asLong() == 1) { // (x - y) < 1 when x - y is known not to underflow <=> !(y < x) xx = sub.getY(); yy = sub.getX(); negate = true; } if (xx != null) { assert yy != null; IntegerStamp xStamp = (IntegerStamp) sub.getX().stamp(view); IntegerStamp yStamp = (IntegerStamp) sub.getY().stamp(view); long minValue = CodeUtil.minValue(xStamp.getBits()); long maxValue = CodeUtil.maxValue(xStamp.getBits()); if (!subtractMayUnderflow(xStamp.lowerBound(), yStamp.upperBound(), minValue) && !subtractMayOverflow(xStamp.upperBound(), yStamp.lowerBound(), maxValue)) { LogicNode logic = new IntegerLessThanNode(xx, yy); if (negate) { logic = LogicNegationNode.create(logic); } return logic; } } } else if (forX instanceof AddNode) { // (x + xConstant) < forY => x < (forY - xConstant) AddNode addNode = (AddNode) forX; if (addNode.getY().isJavaConstant()) { IntegerStamp xStamp = (IntegerStamp) addNode.getX().stamp(view); if (!IntegerStamp.addCanOverflow(xStamp, (IntegerStamp) addNode.getY().stamp(view))) { long minValue = CodeUtil.minValue(xStamp.getBits()); long maxValue = CodeUtil.maxValue(xStamp.getBits()); long yConstant = forY.asJavaConstant().asLong(); long xConstant = addNode.getY().asJavaConstant().asLong(); if (!subtractMayUnderflow(yConstant, xConstant, minValue) && !subtractMayOverflow(yConstant, xConstant, maxValue)) { long newConstant = yConstant - xConstant; return IntegerLessThanNode.create(addNode.getX(), ConstantNode.forIntegerStamp(xStamp, newConstant), view); } } } } } if (forX.stamp(view) instanceof IntegerStamp) { assert forY.stamp(view) instanceof IntegerStamp; int bits = ((IntegerStamp) forX.stamp(view)).getBits(); assert ((IntegerStamp) forY.stamp(view)).getBits() == bits; LogicNode logic = canonicalizeRangeFlip(forX, forY, bits, true, view); if (logic != null) { return logic; } } return null; } @Override protected CanonicalCondition getCondition() { return LT; } @Override protected IntegerLowerThanNode createNode(ValueNode x, ValueNode y) { return new IntegerLessThanNode(x, y); } @Override protected long upperBound(IntegerStamp stamp) { return stamp.upperBound(); } @Override protected long lowerBound(IntegerStamp stamp) { return stamp.lowerBound(); } @Override protected int compare(long a, long b) { return Long.compare(a, b); } @Override protected long min(long a, long b) { return Math.min(a, b); } @Override protected long max(long a, long b) { return Math.max(a, b); } @Override protected long cast(long a, int bits) { return CodeUtil.signExtend(a, bits); } @Override protected long minValue(int bits) { return NumUtil.minValue(bits); } @Override protected long maxValue(int bits) { return NumUtil.maxValue(bits); } @Override protected IntegerStamp forInteger(int bits, long min, long max) { return StampFactory.forInteger(bits, cast(min, bits), cast(max, bits)); } } @Override public TriState implies(boolean thisNegated, LogicNode other) { if (!thisNegated) { if (other instanceof IntegerLessThanNode) { ValueNode otherX = ((IntegerLessThanNode) other).getX(); ValueNode otherY = ((IntegerLessThanNode) other).getY(); // x < y => !y < x if (getX() == otherY && getY() == otherX) { return TriState.FALSE; } } // x < y => !x == y // x < y => !y == x if (other instanceof IntegerEqualsNode) { ValueNode otherX = ((IntegerEqualsNode) other).getX(); ValueNode otherY = ((IntegerEqualsNode) other).getY(); if ((getX() == otherX && getY() == otherY) || (getX() == otherY && getY() == otherX)) { return TriState.FALSE; } } } return super.implies(thisNegated, other); } }