1 /*
   2  * Copyright (c) 2010, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "compiler/compileTask.hpp"
  28 #include "runtime/advancedThresholdPolicy.hpp"
  29 #include "runtime/simpleThresholdPolicy.inline.hpp"
  30 #if INCLUDE_JVMCI
  31 #include "jvmci/jvmciRuntime.hpp"
  32 #endif
  33 
  34 #ifdef TIERED
  35 // Print an event.
  36 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
  37                                              int bci, CompLevel level) {
  38   tty->print(" rate=");
  39   if (mh->prev_time() == 0) tty->print("n/a");
  40   else tty->print("%f", mh->rate());
  41 
  42   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
  43                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
  44 
  45 }
  46 
  47 void AdvancedThresholdPolicy::initialize() {
  48   int count = CICompilerCount;
  49 #ifdef _LP64
  50   // Turn on ergonomic compiler count selection
  51   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
  52     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
  53   }
  54   if (CICompilerCountPerCPU) {
  55     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
  56     int log_cpu = log2_intptr(os::active_processor_count());
  57     int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
  58     count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
  59   }
  60 #else
  61   // On 32-bit systems, the number of compiler threads is limited to 3.
  62   // On these systems, the virtual address space available to the JVM
  63   // is usually limited to 2-4 GB (the exact value depends on the platform).
  64   // As the compilers (especially C2) can consume a large amount of
  65   // memory, scaling the number of compiler threads with the number of
  66   // available cores can result in the exhaustion of the address space
  67   /// available to the VM and thus cause the VM to crash.
  68   if (FLAG_IS_DEFAULT(CICompilerCount)) {
  69     count = 3;
  70   }
  71 #endif
  72 
  73   set_c1_count(MAX2(count / 3, 1));
  74   set_c2_count(MAX2(count - c1_count(), 1));
  75   FLAG_SET_ERGO(intx, CICompilerCount, c1_count() + c2_count());
  76 
  77   // Some inlining tuning
  78 #ifdef X86
  79   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  80     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
  81   }
  82 #endif
  83 
  84 #if defined SPARC || defined AARCH64
  85   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  86     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
  87   }
  88 #endif
  89 
  90   set_increase_threshold_at_ratio();
  91   set_start_time(os::javaTimeMillis());
  92 }
  93 
  94 // update_rate() is called from select_task() while holding a compile queue lock.
  95 void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
  96   // Skip update if counters are absent.
  97   // Can't allocate them since we are holding compile queue lock.
  98   if (m->method_counters() == NULL)  return;
  99 
 100   if (is_old(m)) {
 101     // We don't remove old methods from the queue,
 102     // so we can just zero the rate.
 103     m->set_rate(0);
 104     return;
 105   }
 106 
 107   // We don't update the rate if we've just came out of a safepoint.
 108   // delta_s is the time since last safepoint in milliseconds.
 109   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
 110   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
 111   // How many events were there since the last time?
 112   int event_count = m->invocation_count() + m->backedge_count();
 113   int delta_e = event_count - m->prev_event_count();
 114 
 115   // We should be running for at least 1ms.
 116   if (delta_s >= TieredRateUpdateMinTime) {
 117     // And we must've taken the previous point at least 1ms before.
 118     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
 119       m->set_prev_time(t);
 120       m->set_prev_event_count(event_count);
 121       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
 122     } else {
 123       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
 124         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
 125         m->set_rate(0);
 126       }
 127     }
 128   }
 129 }
 130 
 131 // Check if this method has been stale from a given number of milliseconds.
 132 // See select_task().
 133 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
 134   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
 135   jlong delta_t = t - m->prev_time();
 136   if (delta_t > timeout && delta_s > timeout) {
 137     int event_count = m->invocation_count() + m->backedge_count();
 138     int delta_e = event_count - m->prev_event_count();
 139     // Return true if there were no events.
 140     return delta_e == 0;
 141   }
 142   return false;
 143 }
 144 
 145 // We don't remove old methods from the compile queue even if they have
 146 // very low activity. See select_task().
 147 bool AdvancedThresholdPolicy::is_old(Method* method) {
 148   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
 149 }
 150 
 151 double AdvancedThresholdPolicy::weight(Method* method) {
 152   return (double)(method->rate() + 1) *
 153     (method->invocation_count() + 1) * (method->backedge_count() + 1);
 154 }
 155 
 156 // Apply heuristics and return true if x should be compiled before y
 157 bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
 158   if (x->highest_comp_level() > y->highest_comp_level()) {
 159     // recompilation after deopt
 160     return true;
 161   } else
 162     if (x->highest_comp_level() == y->highest_comp_level()) {
 163       if (weight(x) > weight(y)) {
 164         return true;
 165       }
 166     }
 167   return false;
 168 }
 169 
 170 // Is method profiled enough?
 171 bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
 172   MethodData* mdo = method->method_data();
 173   if (mdo != NULL) {
 174     int i = mdo->invocation_count_delta();
 175     int b = mdo->backedge_count_delta();
 176     return call_predicate_helper<CompLevel_full_profile>(i, b, 1, method);
 177   }
 178   return false;
 179 }
 180 
 181 // Called with the queue locked and with at least one element
 182 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
 183   CompileTask *max_blocking_task = NULL;
 184   CompileTask *max_task = NULL;
 185   Method* max_method = NULL;
 186   jlong t = os::javaTimeMillis();
 187   // Iterate through the queue and find a method with a maximum rate.
 188   for (CompileTask* task = compile_queue->first(); task != NULL;) {
 189     CompileTask* next_task = task->next();
 190     Method* method = task->method();
 191     update_rate(t, method);
 192     if (max_task == NULL) {
 193       max_task = task;
 194       max_method = method;
 195     } else {
 196       // If a method has been stale for some time, remove it from the queue.
 197       // Blocking tasks and tasks submitted from whitebox API don't become stale
 198       if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
 199         if (PrintTieredEvents) {
 200           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
 201         }
 202         task->log_task_dequeued("stale");
 203         compile_queue->remove_and_mark_stale(task);
 204         method->clear_queued_for_compilation();
 205         task = next_task;
 206         continue;
 207       }
 208 
 209       // Select a method with a higher rate
 210       if (compare_methods(method, max_method)) {
 211         max_task = task;
 212         max_method = method;
 213       }
 214     }
 215 
 216     if (task->is_blocking()) {
 217       if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
 218         max_blocking_task = task;
 219       }
 220     }
 221 
 222     task = next_task;
 223   }
 224 
 225   if (max_blocking_task != NULL) {
 226     // In blocking compilation mode, the CompileBroker will make
 227     // compilations submitted by a JVMCI compiler thread non-blocking. These
 228     // compilations should be scheduled after all blocking compilations
 229     // to service non-compiler related compilations sooner and reduce the
 230     // chance of such compilations timing out.
 231     max_task = max_blocking_task;
 232     max_method = max_task->method();
 233   }
 234 
 235   if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
 236       && is_method_profiled(max_method)) {
 237     max_task->set_comp_level(CompLevel_limited_profile);
 238     if (PrintTieredEvents) {
 239       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 240     }
 241   }
 242 
 243   return max_task;
 244 }
 245 
 246 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
 247   double queue_size = CompileBroker::queue_size(level);
 248   int comp_count = compiler_count(level);
 249   double k = queue_size / (feedback_k * comp_count) + 1;
 250 
 251   // Increase C1 compile threshold when the code cache is filled more
 252   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 253   // The main intention is to keep enough free space for C2 compiled code
 254   // to achieve peak performance if the code cache is under stress.
 255   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
 256     double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
 257     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 258       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 259     }
 260   }
 261   return k;
 262 }
 263 
 264 // Call and loop predicates determine whether a transition to a higher
 265 // compilation level should be performed (pointers to predicate functions
 266 // are passed to common()).
 267 // Tier?LoadFeedback is basically a coefficient that determines of
 268 // how many methods per compiler thread can be in the queue before
 269 // the threshold values double.
 270 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) {
 271   switch(cur_level) {
 272   case CompLevel_none:
 273   case CompLevel_limited_profile: {
 274     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 275     return loop_predicate_helper<CompLevel_none>(i, b, k, method);
 276   }
 277   case CompLevel_full_profile: {
 278     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 279     return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 280   }
 281   default:
 282     return true;
 283   }
 284 }
 285 
 286 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) {
 287   switch(cur_level) {
 288   case CompLevel_none:
 289   case CompLevel_limited_profile: {
 290     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 291     return call_predicate_helper<CompLevel_none>(i, b, k, method);
 292   }
 293   case CompLevel_full_profile: {
 294     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 295     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 296   }
 297   default:
 298     return true;
 299   }
 300 }
 301 
 302 // If a method is old enough and is still in the interpreter we would want to
 303 // start profiling without waiting for the compiled method to arrive.
 304 // We also take the load on compilers into the account.
 305 bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
 306   if (cur_level == CompLevel_none &&
 307       CompileBroker::queue_size(CompLevel_full_optimization) <=
 308       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 309     int i = method->invocation_count();
 310     int b = method->backedge_count();
 311     double k = Tier0ProfilingStartPercentage / 100.0;
 312     return call_predicate_helper<CompLevel_none>(i, b, k, method) || loop_predicate_helper<CompLevel_none>(i, b, k, method);
 313   }
 314   return false;
 315 }
 316 
 317 // Inlining control: if we're compiling a profiled method with C1 and the callee
 318 // is known to have OSRed in a C2 version, don't inline it.
 319 bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
 320   CompLevel comp_level = (CompLevel)env->comp_level();
 321   if (comp_level == CompLevel_full_profile ||
 322       comp_level == CompLevel_limited_profile) {
 323     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
 324   }
 325   return false;
 326 }
 327 
 328 // Create MDO if necessary.
 329 void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
 330   if (mh->is_native() ||
 331       mh->is_abstract() ||
 332       mh->is_accessor() ||
 333       mh->is_constant_getter()) {
 334     return;
 335   }
 336   if (mh->method_data() == NULL) {
 337     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
 338   }
 339 }
 340 
 341 
 342 /*
 343  * Method states:
 344  *   0 - interpreter (CompLevel_none)
 345  *   1 - pure C1 (CompLevel_simple)
 346  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
 347  *   3 - C1 with full profiling (CompLevel_full_profile)
 348  *   4 - C2 (CompLevel_full_optimization)
 349  *
 350  * Common state transition patterns:
 351  * a. 0 -> 3 -> 4.
 352  *    The most common path. But note that even in this straightforward case
 353  *    profiling can start at level 0 and finish at level 3.
 354  *
 355  * b. 0 -> 2 -> 3 -> 4.
 356  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
 357  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
 358  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
 359  *
 360  * c. 0 -> (3->2) -> 4.
 361  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
 362  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
 363  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
 364  *    without full profiling while c2 is compiling.
 365  *
 366  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
 367  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
 368  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
 369  *
 370  * e. 0 -> 4.
 371  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 372  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 373  *    the compiled version already exists).
 374  *
 375  * Note that since state 0 can be reached from any other state via deoptimization different loops
 376  * are possible.
 377  *
 378  */
 379 
 380 // Common transition function. Given a predicate determines if a method should transition to another level.
 381 CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
 382   CompLevel next_level = cur_level;
 383   int i = method->invocation_count();
 384   int b = method->backedge_count();
 385 
 386   if (is_trivial(method)) {
 387     next_level = CompLevel_simple;
 388   } else {
 389     switch(cur_level) {
 390     case CompLevel_none:
 391       // If we were at full profile level, would we switch to full opt?
 392       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
 393         next_level = CompLevel_full_optimization;
 394       } else if ((this->*p)(i, b, cur_level, method)) {
 395 #if INCLUDE_JVMCI
 396         if (UseJVMCICompiler) {
 397           // Since JVMCI takes a while to warm up, its queue inevitably backs up during
 398           // early VM execution.
 399           next_level = CompLevel_full_profile;
 400           break;
 401         }
 402 #endif
 403         // C1-generated fully profiled code is about 30% slower than the limited profile
 404         // code that has only invocation and backedge counters. The observation is that
 405         // if C2 queue is large enough we can spend too much time in the fully profiled code
 406         // while waiting for C2 to pick the method from the queue. To alleviate this problem
 407         // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
 408         // we choose to compile a limited profiled version and then recompile with full profiling
 409         // when the load on C2 goes down.
 410         if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
 411             Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 412           next_level = CompLevel_limited_profile;
 413         } else {
 414           next_level = CompLevel_full_profile;
 415         }
 416       }
 417       break;
 418     case CompLevel_limited_profile:
 419       if (is_method_profiled(method)) {
 420         // Special case: we got here because this method was fully profiled in the interpreter.
 421         next_level = CompLevel_full_optimization;
 422       } else {
 423         MethodData* mdo = method->method_data();
 424         if (mdo != NULL) {
 425           if (mdo->would_profile()) {
 426             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 427                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 428                                      (this->*p)(i, b, cur_level, method))) {
 429               next_level = CompLevel_full_profile;
 430             }
 431           } else {
 432             next_level = CompLevel_full_optimization;
 433           }
 434         }
 435       }
 436       break;
 437     case CompLevel_full_profile:
 438       {
 439         MethodData* mdo = method->method_data();
 440         if (mdo != NULL) {
 441           if (mdo->would_profile()) {
 442             int mdo_i = mdo->invocation_count_delta();
 443             int mdo_b = mdo->backedge_count_delta();
 444             if ((this->*p)(mdo_i, mdo_b, cur_level, method)) {
 445               next_level = CompLevel_full_optimization;
 446             }
 447           } else {
 448             next_level = CompLevel_full_optimization;
 449           }
 450         }
 451       }
 452       break;
 453     }
 454   }
 455   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
 456 }
 457 
 458 // Determine if a method should be compiled with a normal entry point at a different level.
 459 CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level, JavaThread * thread) {
 460   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
 461                              common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
 462   CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
 463 
 464   // If OSR method level is greater than the regular method level, the levels should be
 465   // equalized by raising the regular method level in order to avoid OSRs during each
 466   // invocation of the method.
 467   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
 468     MethodData* mdo = method->method_data();
 469     guarantee(mdo != NULL, "MDO should not be NULL");
 470     if (mdo->invocation_count() >= 1) {
 471       next_level = CompLevel_full_optimization;
 472     }
 473   } else {
 474     next_level = MAX2(osr_level, next_level);
 475   }
 476 #if INCLUDE_JVMCI
 477   if (UseJVMCICompiler) {
 478     next_level = JVMCIRuntime::adjust_comp_level(method, false, next_level, thread);
 479   }
 480 #endif
 481   return next_level;
 482 }
 483 
 484 // Determine if we should do an OSR compilation of a given method.
 485 CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level, JavaThread * thread) {
 486   CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
 487   if (cur_level == CompLevel_none) {
 488     // If there is a live OSR method that means that we deopted to the interpreter
 489     // for the transition.
 490     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
 491     if (osr_level > CompLevel_none) {
 492       return osr_level;
 493     }
 494   }
 495 #if INCLUDE_JVMCI
 496   if (UseJVMCICompiler) {
 497     next_level = JVMCIRuntime::adjust_comp_level(method, true, next_level, thread);
 498   }
 499 #endif
 500   return next_level;
 501 }
 502 
 503 // Update the rate and submit compile
 504 void AdvancedThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
 505   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
 506   update_rate(os::javaTimeMillis(), mh());
 507   CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, thread);
 508 }
 509 
 510 // Handle the invocation event.
 511 void AdvancedThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
 512                                                       CompLevel level, CompiledMethod* nm, JavaThread* thread) {
 513   if (should_create_mdo(mh(), level)) {
 514     create_mdo(mh, thread);
 515   }
 516   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
 517     CompLevel next_level = call_event(mh(), level, thread);
 518     if (next_level != level) {
 519       compile(mh, InvocationEntryBci, next_level, thread);
 520     }
 521   }
 522 }
 523 
 524 // Handle the back branch event. Notice that we can compile the method
 525 // with a regular entry from here.
 526 void AdvancedThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
 527                                                        int bci, CompLevel level, CompiledMethod* nm, JavaThread* thread) {
 528   if (should_create_mdo(mh(), level)) {
 529     create_mdo(mh, thread);
 530   }
 531   // Check if MDO should be created for the inlined method
 532   if (should_create_mdo(imh(), level)) {
 533     create_mdo(imh, thread);
 534   }
 535 
 536   if (is_compilation_enabled()) {
 537     CompLevel next_osr_level = loop_event(imh(), level, thread);
 538     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
 539     // At the very least compile the OSR version
 540     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
 541       compile(imh, bci, next_osr_level, thread);
 542     }
 543 
 544     // Use loop event as an opportunity to also check if there's been
 545     // enough calls.
 546     CompLevel cur_level, next_level;
 547     if (mh() != imh()) { // If there is an enclosing method
 548       guarantee(nm != NULL, "Should have nmethod here");
 549       cur_level = comp_level(mh());
 550       next_level = call_event(mh(), cur_level, thread);
 551 
 552       if (max_osr_level == CompLevel_full_optimization) {
 553         // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
 554         bool make_not_entrant = false;
 555         if (nm->is_osr_method()) {
 556           // This is an osr method, just make it not entrant and recompile later if needed
 557           make_not_entrant = true;
 558         } else {
 559           if (next_level != CompLevel_full_optimization) {
 560             // next_level is not full opt, so we need to recompile the
 561             // enclosing method without the inlinee
 562             cur_level = CompLevel_none;
 563             make_not_entrant = true;
 564           }
 565         }
 566         if (make_not_entrant) {
 567           if (PrintTieredEvents) {
 568             int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
 569             print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
 570           }
 571           nm->make_not_entrant();
 572         }
 573       }
 574       if (!CompileBroker::compilation_is_in_queue(mh)) {
 575         // Fix up next_level if necessary to avoid deopts
 576         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
 577           next_level = CompLevel_full_profile;
 578         }
 579         if (cur_level != next_level) {
 580           compile(mh, InvocationEntryBci, next_level, thread);
 581         }
 582       }
 583     } else {
 584       cur_level = comp_level(imh());
 585       next_level = call_event(imh(), cur_level, thread);
 586       if (!CompileBroker::compilation_is_in_queue(imh) && (next_level != cur_level)) {
 587         compile(imh, InvocationEntryBci, next_level, thread);
 588       }
 589     }
 590   }
 591 }
 592 
 593 #endif // TIERED