1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.misc;
  27 
  28 import jdk.internal.vm.annotation.ForceInline;
  29 import jdk.internal.misc.VM;
  30 import jdk.internal.reflect.CallerSensitive;
  31 import jdk.internal.reflect.Reflection;
  32 
  33 import java.lang.reflect.Field;
  34 import java.security.ProtectionDomain;
  35 
  36 
  37 /**
  38  * A collection of methods for performing low-level, unsafe operations.
  39  * Although the class and all methods are public, use of this class is
  40  * limited because only trusted code can obtain instances of it.
  41  *
  42  * <em>Note:</em> It is the resposibility of the caller to make sure
  43  * arguments are checked before methods of this class are
  44  * called. While some rudimentary checks are performed on the input,
  45  * the checks are best effort and when performance is an overriding
  46  * priority, as when methods of this class are optimized by the
  47  * runtime compiler, some or all checks (if any) may be elided. Hence,
  48  * the caller must not rely on the checks and corresponding
  49  * exceptions!
  50  *
  51  * @author John R. Rose
  52  * @see #getUnsafe
  53  */
  54 
  55 public final class Unsafe {
  56 
  57     static {
  58         Reflection.registerMethodsToFilter(Unsafe.class, "getUnsafe");
  59     }
  60 
  61     private Unsafe() {}
  62 
  63     private static final Unsafe theUnsafe = new Unsafe();
  64     private static final jdk.internal.misc.Unsafe theInternalUnsafe = jdk.internal.misc.Unsafe.getUnsafe();
  65 
  66     /**
  67      * Provides the caller with the capability of performing unsafe
  68      * operations.
  69      *
  70      * <p>The returned {@code Unsafe} object should be carefully guarded
  71      * by the caller, since it can be used to read and write data at arbitrary
  72      * memory addresses.  It must never be passed to untrusted code.
  73      *
  74      * <p>Most methods in this class are very low-level, and correspond to a
  75      * small number of hardware instructions (on typical machines).  Compilers
  76      * are encouraged to optimize these methods accordingly.
  77      *
  78      * <p>Here is a suggested idiom for using unsafe operations:
  79      *
  80      * <pre> {@code
  81      * class MyTrustedClass {
  82      *   private static final Unsafe unsafe = Unsafe.getUnsafe();
  83      *   ...
  84      *   private long myCountAddress = ...;
  85      *   public int getCount() { return unsafe.getByte(myCountAddress); }
  86      * }}</pre>
  87      *
  88      * (It may assist compilers to make the local variable {@code final}.)
  89      *
  90      * @throws  SecurityException  if a security manager exists and its
  91      *          {@code checkPropertiesAccess} method doesn't allow
  92      *          access to the system properties.
  93      */
  94     @CallerSensitive
  95     public static Unsafe getUnsafe() {
  96         Class<?> caller = Reflection.getCallerClass();
  97         if (!VM.isSystemDomainLoader(caller.getClassLoader()))
  98             throw new SecurityException("Unsafe");
  99         return theUnsafe;
 100     }
 101 
 102     /// peek and poke operations
 103     /// (compilers should optimize these to memory ops)
 104 
 105     // These work on object fields in the Java heap.
 106     // They will not work on elements of packed arrays.
 107 
 108     /**
 109      * Fetches a value from a given Java variable.
 110      * More specifically, fetches a field or array element within the given
 111      * object {@code o} at the given offset, or (if {@code o} is null)
 112      * from the memory address whose numerical value is the given offset.
 113      * <p>
 114      * The results are undefined unless one of the following cases is true:
 115      * <ul>
 116      * <li>The offset was obtained from {@link #objectFieldOffset} on
 117      * the {@link java.lang.reflect.Field} of some Java field and the object
 118      * referred to by {@code o} is of a class compatible with that
 119      * field's class.
 120      *
 121      * <li>The offset and object reference {@code o} (either null or
 122      * non-null) were both obtained via {@link #staticFieldOffset}
 123      * and {@link #staticFieldBase} (respectively) from the
 124      * reflective {@link Field} representation of some Java field.
 125      *
 126      * <li>The object referred to by {@code o} is an array, and the offset
 127      * is an integer of the form {@code B+N*S}, where {@code N} is
 128      * a valid index into the array, and {@code B} and {@code S} are
 129      * the values obtained by {@link #arrayBaseOffset} and {@link
 130      * #arrayIndexScale} (respectively) from the array's class.  The value
 131      * referred to is the {@code N}<em>th</em> element of the array.
 132      *
 133      * </ul>
 134      * <p>
 135      * If one of the above cases is true, the call references a specific Java
 136      * variable (field or array element).  However, the results are undefined
 137      * if that variable is not in fact of the type returned by this method.
 138      * <p>
 139      * This method refers to a variable by means of two parameters, and so
 140      * it provides (in effect) a <em>double-register</em> addressing mode
 141      * for Java variables.  When the object reference is null, this method
 142      * uses its offset as an absolute address.  This is similar in operation
 143      * to methods such as {@link #getInt(long)}, which provide (in effect) a
 144      * <em>single-register</em> addressing mode for non-Java variables.
 145      * However, because Java variables may have a different layout in memory
 146      * from non-Java variables, programmers should not assume that these
 147      * two addressing modes are ever equivalent.  Also, programmers should
 148      * remember that offsets from the double-register addressing mode cannot
 149      * be portably confused with longs used in the single-register addressing
 150      * mode.
 151      *
 152      * @param o Java heap object in which the variable resides, if any, else
 153      *        null
 154      * @param offset indication of where the variable resides in a Java heap
 155      *        object, if any, else a memory address locating the variable
 156      *        statically
 157      * @return the value fetched from the indicated Java variable
 158      * @throws RuntimeException No defined exceptions are thrown, not even
 159      *         {@link NullPointerException}
 160      */
 161     @ForceInline
 162     public int getInt(Object o, long offset) {
 163         return theInternalUnsafe.getInt(o, offset);
 164     }
 165 
 166     /**
 167      * Stores a value into a given Java variable.
 168      * <p>
 169      * The first two parameters are interpreted exactly as with
 170      * {@link #getInt(Object, long)} to refer to a specific
 171      * Java variable (field or array element).  The given value
 172      * is stored into that variable.
 173      * <p>
 174      * The variable must be of the same type as the method
 175      * parameter {@code x}.
 176      *
 177      * @param o Java heap object in which the variable resides, if any, else
 178      *        null
 179      * @param offset indication of where the variable resides in a Java heap
 180      *        object, if any, else a memory address locating the variable
 181      *        statically
 182      * @param x the value to store into the indicated Java variable
 183      * @throws RuntimeException No defined exceptions are thrown, not even
 184      *         {@link NullPointerException}
 185      */
 186     @ForceInline
 187     public void putInt(Object o, long offset, int x) {
 188         theInternalUnsafe.putInt(o, offset, x);
 189     }
 190 
 191     /**
 192      * Fetches a reference value from a given Java variable.
 193      * @see #getInt(Object, long)
 194      */
 195     @ForceInline
 196     public Object getObject(Object o, long offset) {
 197         return theInternalUnsafe.getObject(o, offset);
 198     }
 199 
 200     /**
 201      * Stores a reference value into a given Java variable.
 202      * <p>
 203      * Unless the reference {@code x} being stored is either null
 204      * or matches the field type, the results are undefined.
 205      * If the reference {@code o} is non-null, card marks or
 206      * other store barriers for that object (if the VM requires them)
 207      * are updated.
 208      * @see #putInt(Object, long, int)
 209      */
 210     @ForceInline
 211     public void putObject(Object o, long offset, Object x) {
 212         theInternalUnsafe.putObject(o, offset, x);
 213     }
 214 
 215     /** @see #getInt(Object, long) */
 216     @ForceInline
 217     public boolean getBoolean(Object o, long offset) {
 218         return theInternalUnsafe.getBoolean(o, offset);
 219     }
 220 
 221     /** @see #putInt(Object, long, int) */
 222     @ForceInline
 223     public void putBoolean(Object o, long offset, boolean x) {
 224         theInternalUnsafe.putBoolean(o, offset, x);
 225     }
 226 
 227     /** @see #getInt(Object, long) */
 228     @ForceInline
 229     public byte getByte(Object o, long offset) {
 230         return theInternalUnsafe.getByte(o, offset);
 231     }
 232 
 233     /** @see #putInt(Object, long, int) */
 234     @ForceInline
 235     public void putByte(Object o, long offset, byte x) {
 236         theInternalUnsafe.putByte(o, offset, x);
 237     }
 238 
 239     /** @see #getInt(Object, long) */
 240     @ForceInline
 241     public short getShort(Object o, long offset) {
 242         return theInternalUnsafe.getShort(o, offset);
 243     }
 244 
 245     /** @see #putInt(Object, long, int) */
 246     @ForceInline
 247     public void putShort(Object o, long offset, short x) {
 248         theInternalUnsafe.putShort(o, offset, x);
 249     }
 250 
 251     /** @see #getInt(Object, long) */
 252     @ForceInline
 253     public char getChar(Object o, long offset) {
 254         return theInternalUnsafe.getChar(o, offset);
 255     }
 256 
 257     /** @see #putInt(Object, long, int) */
 258     @ForceInline
 259     public void putChar(Object o, long offset, char x) {
 260         theInternalUnsafe.putChar(o, offset, x);
 261     }
 262 
 263     /** @see #getInt(Object, long) */
 264     @ForceInline
 265     public long getLong(Object o, long offset) {
 266         return theInternalUnsafe.getLong(o, offset);
 267     }
 268 
 269     /** @see #putInt(Object, long, int) */
 270     @ForceInline
 271     public void putLong(Object o, long offset, long x) {
 272         theInternalUnsafe.putLong(o, offset, x);
 273     }
 274 
 275     /** @see #getInt(Object, long) */
 276     @ForceInline
 277     public float getFloat(Object o, long offset) {
 278         return theInternalUnsafe.getFloat(o, offset);
 279     }
 280 
 281     /** @see #putInt(Object, long, int) */
 282     @ForceInline
 283     public void putFloat(Object o, long offset, float x) {
 284         theInternalUnsafe.putFloat(o, offset, x);
 285     }
 286 
 287     /** @see #getInt(Object, long) */
 288     @ForceInline
 289     public double getDouble(Object o, long offset) {
 290         return theInternalUnsafe.getDouble(o, offset);
 291     }
 292 
 293     /** @see #putInt(Object, long, int) */
 294     @ForceInline
 295     public void putDouble(Object o, long offset, double x) {
 296         theInternalUnsafe.putDouble(o, offset, x);
 297     }
 298 
 299 
 300     // These read VM internal data.
 301 
 302     /**
 303      * Fetches an uncompressed reference value from a given native variable
 304      * ignoring the VM's compressed references mode.
 305      *
 306      * @param address a memory address locating the variable
 307      * @return the value fetched from the indicated native variable
 308      */
 309     @ForceInline
 310     public Object getUncompressedObject(long address) {
 311         return theInternalUnsafe.getUncompressedObject(address);
 312     }
 313 
 314     /**
 315      * Fetches the {@link java.lang.Class} Java mirror for the given native
 316      * metaspace {@code Klass} pointer.
 317      *
 318      * @param metaspaceKlass a native metaspace {@code Klass} pointer
 319      * @return the {@link java.lang.Class} Java mirror
 320      */
 321     @ForceInline
 322     public Class<?> getJavaMirror(long metaspaceKlass) {
 323         return theInternalUnsafe.getJavaMirror(metaspaceKlass);
 324     }
 325 
 326     /**
 327      * Fetches a native metaspace {@code Klass} pointer for the given Java
 328      * object.
 329      *
 330      * @param o Java heap object for which to fetch the class pointer
 331      * @return a native metaspace {@code Klass} pointer
 332      */
 333     @ForceInline
 334     public long getKlassPointer(Object o) {
 335         return theInternalUnsafe.getKlassPointer(o);
 336     }
 337 
 338     // These work on values in the C heap.
 339 
 340     /**
 341      * Fetches a value from a given memory address.  If the address is zero, or
 342      * does not point into a block obtained from {@link #allocateMemory}, the
 343      * results are undefined.
 344      *
 345      * @see #allocateMemory
 346      */
 347     @ForceInline
 348     public byte getByte(long address) {
 349         return theInternalUnsafe.getByte(address);
 350     }
 351 
 352     /**
 353      * Stores a value into a given memory address.  If the address is zero, or
 354      * does not point into a block obtained from {@link #allocateMemory}, the
 355      * results are undefined.
 356      *
 357      * @see #getByte(long)
 358      */
 359     @ForceInline
 360     public void putByte(long address, byte x) {
 361         theInternalUnsafe.putByte(address, x);
 362     }
 363 
 364     /** @see #getByte(long) */
 365     @ForceInline
 366     public short getShort(long address) {
 367         return theInternalUnsafe.getShort(address);
 368     }
 369 
 370     /** @see #putByte(long, byte) */
 371     @ForceInline
 372     public void putShort(long address, short x) {
 373         theInternalUnsafe.putShort(address, x);
 374     }
 375 
 376     /** @see #getByte(long) */
 377     @ForceInline
 378     public char getChar(long address) {
 379         return theInternalUnsafe.getChar(address);
 380     }
 381 
 382     /** @see #putByte(long, byte) */
 383     @ForceInline
 384     public void putChar(long address, char x) {
 385         theInternalUnsafe.putChar(address, x);
 386     }
 387 
 388     /** @see #getByte(long) */
 389     @ForceInline
 390     public int getInt(long address) {
 391         return theInternalUnsafe.getInt(address);
 392     }
 393 
 394     /** @see #putByte(long, byte) */
 395     @ForceInline
 396     public void putInt(long address, int x) {
 397         theInternalUnsafe.putInt(address, x);
 398     }
 399 
 400     /** @see #getByte(long) */
 401     @ForceInline
 402     public long getLong(long address) {
 403         return theInternalUnsafe.getLong(address);
 404     }
 405 
 406     /** @see #putByte(long, byte) */
 407     @ForceInline
 408     public void putLong(long address, long x) {
 409         theInternalUnsafe.putLong(address, x);
 410     }
 411 
 412     /** @see #getByte(long) */
 413     @ForceInline
 414     public float getFloat(long address) {
 415         return theInternalUnsafe.getFloat(address);
 416     }
 417 
 418     /** @see #putByte(long, byte) */
 419     @ForceInline
 420     public void putFloat(long address, float x) {
 421         theInternalUnsafe.putFloat(address, x);
 422     }
 423 
 424     /** @see #getByte(long) */
 425     @ForceInline
 426     public double getDouble(long address) {
 427         return theInternalUnsafe.getDouble(address);
 428     }
 429 
 430     /** @see #putByte(long, byte) */
 431     @ForceInline
 432     public void putDouble(long address, double x) {
 433         theInternalUnsafe.putDouble(address, x);
 434     }
 435 
 436 
 437     /**
 438      * Fetches a native pointer from a given memory address.  If the address is
 439      * zero, or does not point into a block obtained from {@link
 440      * #allocateMemory}, the results are undefined.
 441      *
 442      * <p>If the native pointer is less than 64 bits wide, it is extended as
 443      * an unsigned number to a Java long.  The pointer may be indexed by any
 444      * given byte offset, simply by adding that offset (as a simple integer) to
 445      * the long representing the pointer.  The number of bytes actually read
 446      * from the target address may be determined by consulting {@link
 447      * #addressSize}.
 448      *
 449      * @see #allocateMemory
 450      */
 451     @ForceInline
 452     public long getAddress(long address) {
 453         return theInternalUnsafe.getAddress(address);
 454     }
 455 
 456     /**
 457      * Stores a native pointer into a given memory address.  If the address is
 458      * zero, or does not point into a block obtained from {@link
 459      * #allocateMemory}, the results are undefined.
 460      *
 461      * <p>The number of bytes actually written at the target address may be
 462      * determined by consulting {@link #addressSize}.
 463      *
 464      * @see #getAddress(long)
 465      */
 466     @ForceInline
 467     public void putAddress(long address, long x) {
 468         theInternalUnsafe.putAddress(address, x);
 469     }
 470 
 471 
 472     /// wrappers for malloc, realloc, free:
 473 
 474     /**
 475      * Allocates a new block of native memory, of the given size in bytes.  The
 476      * contents of the memory are uninitialized; they will generally be
 477      * garbage.  The resulting native pointer will never be zero, and will be
 478      * aligned for all value types.  Dispose of this memory by calling {@link
 479      * #freeMemory}, or resize it with {@link #reallocateMemory}.
 480      *
 481      * <em>Note:</em> It is the resposibility of the caller to make
 482      * sure arguments are checked before the methods are called. While
 483      * some rudimentary checks are performed on the input, the checks
 484      * are best effort and when performance is an overriding priority,
 485      * as when methods of this class are optimized by the runtime
 486      * compiler, some or all checks (if any) may be elided. Hence, the
 487      * caller must not rely on the checks and corresponding
 488      * exceptions!
 489      *
 490      * @throws RuntimeException if the size is negative or too large
 491      *         for the native size_t type
 492      *
 493      * @throws OutOfMemoryError if the allocation is refused by the system
 494      *
 495      * @see #getByte(long)
 496      * @see #putByte(long, byte)
 497      */
 498     @ForceInline
 499     public long allocateMemory(long bytes) {
 500         return theInternalUnsafe.allocateMemory(bytes);
 501     }
 502 
 503     /**
 504      * Resizes a new block of native memory, to the given size in bytes.  The
 505      * contents of the new block past the size of the old block are
 506      * uninitialized; they will generally be garbage.  The resulting native
 507      * pointer will be zero if and only if the requested size is zero.  The
 508      * resulting native pointer will be aligned for all value types.  Dispose
 509      * of this memory by calling {@link #freeMemory}, or resize it with {@link
 510      * #reallocateMemory}.  The address passed to this method may be null, in
 511      * which case an allocation will be performed.
 512      *
 513      * <em>Note:</em> It is the resposibility of the caller to make
 514      * sure arguments are checked before the methods are called. While
 515      * some rudimentary checks are performed on the input, the checks
 516      * are best effort and when performance is an overriding priority,
 517      * as when methods of this class are optimized by the runtime
 518      * compiler, some or all checks (if any) may be elided. Hence, the
 519      * caller must not rely on the checks and corresponding
 520      * exceptions!
 521      *
 522      * @throws RuntimeException if the size is negative or too large
 523      *         for the native size_t type
 524      *
 525      * @throws OutOfMemoryError if the allocation is refused by the system
 526      *
 527      * @see #allocateMemory
 528      */
 529     @ForceInline
 530     public long reallocateMemory(long address, long bytes) {
 531         return theInternalUnsafe.reallocateMemory(address, bytes);
 532     }
 533 
 534     /**
 535      * Sets all bytes in a given block of memory to a fixed value
 536      * (usually zero).
 537      *
 538      * <p>This method determines a block's base address by means of two parameters,
 539      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 540      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 541      * the offset supplies an absolute base address.
 542      *
 543      * <p>The stores are in coherent (atomic) units of a size determined
 544      * by the address and length parameters.  If the effective address and
 545      * length are all even modulo 8, the stores take place in 'long' units.
 546      * If the effective address and length are (resp.) even modulo 4 or 2,
 547      * the stores take place in units of 'int' or 'short'.
 548      *
 549      * <em>Note:</em> It is the resposibility of the caller to make
 550      * sure arguments are checked before the methods are called. While
 551      * some rudimentary checks are performed on the input, the checks
 552      * are best effort and when performance is an overriding priority,
 553      * as when methods of this class are optimized by the runtime
 554      * compiler, some or all checks (if any) may be elided. Hence, the
 555      * caller must not rely on the checks and corresponding
 556      * exceptions!
 557      *
 558      * @throws RuntimeException if any of the arguments is invalid
 559      *
 560      * @since 1.7
 561      */
 562     @ForceInline
 563     public void setMemory(Object o, long offset, long bytes, byte value) {
 564         theInternalUnsafe.setMemory(o, offset, bytes, value);
 565     }
 566 
 567     /**
 568      * Sets all bytes in a given block of memory to a fixed value
 569      * (usually zero).  This provides a <em>single-register</em> addressing mode,
 570      * as discussed in {@link #getInt(Object,long)}.
 571      *
 572      * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
 573      */
 574     @ForceInline
 575     public void setMemory(long address, long bytes, byte value) {
 576         theInternalUnsafe.setMemory(address, bytes, value);
 577     }
 578 
 579     /**
 580      * Sets all bytes in a given block of memory to a copy of another
 581      * block.
 582      *
 583      * <p>This method determines each block's base address by means of two parameters,
 584      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 585      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 586      * the offset supplies an absolute base address.
 587      *
 588      * <p>The transfers are in coherent (atomic) units of a size determined
 589      * by the address and length parameters.  If the effective addresses and
 590      * length are all even modulo 8, the transfer takes place in 'long' units.
 591      * If the effective addresses and length are (resp.) even modulo 4 or 2,
 592      * the transfer takes place in units of 'int' or 'short'.
 593      *
 594      * <em>Note:</em> It is the resposibility of the caller to make
 595      * sure arguments are checked before the methods are called. While
 596      * some rudimentary checks are performed on the input, the checks
 597      * are best effort and when performance is an overriding priority,
 598      * as when methods of this class are optimized by the runtime
 599      * compiler, some or all checks (if any) may be elided. Hence, the
 600      * caller must not rely on the checks and corresponding
 601      * exceptions!
 602      *
 603      * @throws RuntimeException if any of the arguments is invalid
 604      *
 605      * @since 1.7
 606      */
 607     @ForceInline
 608     public void copyMemory(Object srcBase, long srcOffset,
 609                            Object destBase, long destOffset,
 610                            long bytes) {
 611         theInternalUnsafe.copyMemory(srcBase, srcOffset, destBase, destOffset, bytes);
 612     }
 613 
 614     /**
 615      * Sets all bytes in a given block of memory to a copy of another
 616      * block.  This provides a <em>single-register</em> addressing mode,
 617      * as discussed in {@link #getInt(Object,long)}.
 618      *
 619      * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
 620      */
 621     @ForceInline
 622     public void copyMemory(long srcAddress, long destAddress, long bytes) {
 623         theInternalUnsafe.copyMemory(srcAddress, destAddress, bytes);
 624     }
 625 
 626     /**
 627      * Disposes of a block of native memory, as obtained from {@link
 628      * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
 629      * this method may be null, in which case no action is taken.
 630      *
 631      * <em>Note:</em> It is the resposibility of the caller to make
 632      * sure arguments are checked before the methods are called. While
 633      * some rudimentary checks are performed on the input, the checks
 634      * are best effort and when performance is an overriding priority,
 635      * as when methods of this class are optimized by the runtime
 636      * compiler, some or all checks (if any) may be elided. Hence, the
 637      * caller must not rely on the checks and corresponding
 638      * exceptions!
 639      *
 640      * @throws RuntimeException if any of the arguments is invalid
 641      *
 642      * @see #allocateMemory
 643      */
 644     @ForceInline
 645     public void freeMemory(long address) {
 646         theInternalUnsafe.freeMemory(address);
 647     }
 648 
 649     /// random queries
 650 
 651     /**
 652      * This constant differs from all results that will ever be returned from
 653      * {@link #staticFieldOffset}, {@link #objectFieldOffset},
 654      * or {@link #arrayBaseOffset}.
 655      */
 656     public static final int INVALID_FIELD_OFFSET = jdk.internal.misc.Unsafe.INVALID_FIELD_OFFSET;
 657 
 658     /**
 659      * Reports the location of a given field in the storage allocation of its
 660      * class.  Do not expect to perform any sort of arithmetic on this offset;
 661      * it is just a cookie which is passed to the unsafe heap memory accessors.
 662      *
 663      * <p>Any given field will always have the same offset and base, and no
 664      * two distinct fields of the same class will ever have the same offset
 665      * and base.
 666      *
 667      * <p>As of 1.4.1, offsets for fields are represented as long values,
 668      * although the Sun JVM does not use the most significant 32 bits.
 669      * However, JVM implementations which store static fields at absolute
 670      * addresses can use long offsets and null base pointers to express
 671      * the field locations in a form usable by {@link #getInt(Object,long)}.
 672      * Therefore, code which will be ported to such JVMs on 64-bit platforms
 673      * must preserve all bits of static field offsets.
 674      * @see #getInt(Object, long)
 675      */
 676     @ForceInline
 677     public long objectFieldOffset(Field f) {
 678         return theInternalUnsafe.objectFieldOffset(f);
 679     }
 680 
 681     /**
 682      * Reports the location of a given static field, in conjunction with {@link
 683      * #staticFieldBase}.
 684      * <p>Do not expect to perform any sort of arithmetic on this offset;
 685      * it is just a cookie which is passed to the unsafe heap memory accessors.
 686      *
 687      * <p>Any given field will always have the same offset, and no two distinct
 688      * fields of the same class will ever have the same offset.
 689      *
 690      * <p>As of 1.4.1, offsets for fields are represented as long values,
 691      * although the Sun JVM does not use the most significant 32 bits.
 692      * It is hard to imagine a JVM technology which needs more than
 693      * a few bits to encode an offset within a non-array object,
 694      * However, for consistency with other methods in this class,
 695      * this method reports its result as a long value.
 696      * @see #getInt(Object, long)
 697      */
 698     @ForceInline
 699     public long staticFieldOffset(Field f) {
 700         return theInternalUnsafe.staticFieldOffset(f);
 701     }
 702 
 703     /**
 704      * Reports the location of a given static field, in conjunction with {@link
 705      * #staticFieldOffset}.
 706      * <p>Fetch the base "Object", if any, with which static fields of the
 707      * given class can be accessed via methods like {@link #getInt(Object,
 708      * long)}.  This value may be null.  This value may refer to an object
 709      * which is a "cookie", not guaranteed to be a real Object, and it should
 710      * not be used in any way except as argument to the get and put routines in
 711      * this class.
 712      */
 713     @ForceInline
 714     public Object staticFieldBase(Field f) {
 715         return theInternalUnsafe.staticFieldBase(f);
 716     }
 717 
 718     /**
 719      * Detects if the given class may need to be initialized. This is often
 720      * needed in conjunction with obtaining the static field base of a
 721      * class.
 722      * @return false only if a call to {@code ensureClassInitialized} would have no effect
 723      */
 724     @ForceInline
 725     public boolean shouldBeInitialized(Class<?> c) {
 726         return theInternalUnsafe.shouldBeInitialized(c);
 727     }
 728 
 729     /**
 730      * Ensures the given class has been initialized. This is often
 731      * needed in conjunction with obtaining the static field base of a
 732      * class.
 733      */
 734     @ForceInline
 735     public void ensureClassInitialized(Class<?> c) {
 736         theInternalUnsafe.ensureClassInitialized(c);
 737     }
 738 
 739     /**
 740      * Reports the offset of the first element in the storage allocation of a
 741      * given array class.  If {@link #arrayIndexScale} returns a non-zero value
 742      * for the same class, you may use that scale factor, together with this
 743      * base offset, to form new offsets to access elements of arrays of the
 744      * given class.
 745      *
 746      * @see #getInt(Object, long)
 747      * @see #putInt(Object, long, int)
 748      */
 749     @ForceInline
 750     public int arrayBaseOffset(Class<?> arrayClass) {
 751         return theInternalUnsafe.arrayBaseOffset(arrayClass);
 752     }
 753 
 754     /** The value of {@code arrayBaseOffset(boolean[].class)} */
 755     public static final int ARRAY_BOOLEAN_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_BOOLEAN_BASE_OFFSET;
 756 
 757     /** The value of {@code arrayBaseOffset(byte[].class)} */
 758     public static final int ARRAY_BYTE_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_BYTE_BASE_OFFSET;
 759 
 760     /** The value of {@code arrayBaseOffset(short[].class)} */
 761     public static final int ARRAY_SHORT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_SHORT_BASE_OFFSET;
 762 
 763     /** The value of {@code arrayBaseOffset(char[].class)} */
 764     public static final int ARRAY_CHAR_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_CHAR_BASE_OFFSET;
 765 
 766     /** The value of {@code arrayBaseOffset(int[].class)} */
 767     public static final int ARRAY_INT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_INT_BASE_OFFSET;
 768 
 769     /** The value of {@code arrayBaseOffset(long[].class)} */
 770     public static final int ARRAY_LONG_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_LONG_BASE_OFFSET;
 771 
 772     /** The value of {@code arrayBaseOffset(float[].class)} */
 773     public static final int ARRAY_FLOAT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_FLOAT_BASE_OFFSET;
 774 
 775     /** The value of {@code arrayBaseOffset(double[].class)} */
 776     public static final int ARRAY_DOUBLE_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_DOUBLE_BASE_OFFSET;
 777 
 778     /** The value of {@code arrayBaseOffset(Object[].class)} */
 779     public static final int ARRAY_OBJECT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_OBJECT_BASE_OFFSET;
 780 
 781     /**
 782      * Reports the scale factor for addressing elements in the storage
 783      * allocation of a given array class.  However, arrays of "narrow" types
 784      * will generally not work properly with accessors like {@link
 785      * #getByte(Object, long)}, so the scale factor for such classes is reported
 786      * as zero.
 787      *
 788      * @see #arrayBaseOffset
 789      * @see #getInt(Object, long)
 790      * @see #putInt(Object, long, int)
 791      */
 792     @ForceInline
 793     public int arrayIndexScale(Class<?> arrayClass) {
 794         return theInternalUnsafe.arrayIndexScale(arrayClass);
 795     }
 796 
 797     /** The value of {@code arrayIndexScale(boolean[].class)} */
 798     public static final int ARRAY_BOOLEAN_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_BOOLEAN_INDEX_SCALE;
 799 
 800     /** The value of {@code arrayIndexScale(byte[].class)} */
 801     public static final int ARRAY_BYTE_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_BYTE_INDEX_SCALE;
 802 
 803     /** The value of {@code arrayIndexScale(short[].class)} */
 804     public static final int ARRAY_SHORT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_SHORT_INDEX_SCALE;
 805 
 806     /** The value of {@code arrayIndexScale(char[].class)} */
 807     public static final int ARRAY_CHAR_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_CHAR_INDEX_SCALE;
 808 
 809     /** The value of {@code arrayIndexScale(int[].class)} */
 810     public static final int ARRAY_INT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_INT_INDEX_SCALE;
 811 
 812     /** The value of {@code arrayIndexScale(long[].class)} */
 813     public static final int ARRAY_LONG_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_LONG_INDEX_SCALE;
 814 
 815     /** The value of {@code arrayIndexScale(float[].class)} */
 816     public static final int ARRAY_FLOAT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_FLOAT_INDEX_SCALE;
 817 
 818     /** The value of {@code arrayIndexScale(double[].class)} */
 819     public static final int ARRAY_DOUBLE_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_DOUBLE_INDEX_SCALE;
 820 
 821     /** The value of {@code arrayIndexScale(Object[].class)} */
 822     public static final int ARRAY_OBJECT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_OBJECT_INDEX_SCALE;
 823 
 824     /**
 825      * Reports the size in bytes of a native pointer, as stored via {@link
 826      * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
 827      * other primitive types (as stored in native memory blocks) is determined
 828      * fully by their information content.
 829      */
 830     @ForceInline
 831     public int addressSize() {
 832         return theInternalUnsafe.addressSize();
 833     }
 834 
 835     /** The value of {@code addressSize()} */
 836     public static final int ADDRESS_SIZE = theInternalUnsafe.addressSize();
 837 
 838     /**
 839      * Reports the size in bytes of a native memory page (whatever that is).
 840      * This value will always be a power of two.
 841      */
 842     @ForceInline
 843     public int pageSize() {
 844         return theInternalUnsafe.pageSize();
 845     }
 846 
 847 
 848     /// random trusted operations from JNI:
 849 
 850     /**
 851      * Tells the VM to define a class, without security checks.  By default, the
 852      * class loader and protection domain come from the caller's class.
 853      */
 854     @ForceInline
 855     public Class<?> defineClass(String name, byte[] b, int off, int len,
 856                                 ClassLoader loader,
 857                                 ProtectionDomain protectionDomain) {
 858         return theInternalUnsafe.defineClass(name, b, off, len, loader, protectionDomain);
 859     }
 860 
 861     /**
 862      * Defines a class but does not make it known to the class loader or system dictionary.
 863      * <p>
 864      * For each CP entry, the corresponding CP patch must either be null or have
 865      * the a format that matches its tag:
 866      * <ul>
 867      * <li>Integer, Long, Float, Double: the corresponding wrapper object type from java.lang
 868      * <li>Utf8: a string (must have suitable syntax if used as signature or name)
 869      * <li>Class: any java.lang.Class object
 870      * <li>String: any object (not just a java.lang.String)
 871      * <li>InterfaceMethodRef: (NYI) a method handle to invoke on that call site's arguments
 872      * </ul>
 873      * @param hostClass context for linkage, access control, protection domain, and class loader
 874      * @param data      bytes of a class file
 875      * @param cpPatches where non-null entries exist, they replace corresponding CP entries in data
 876      */
 877     @ForceInline
 878     public Class<?> defineAnonymousClass(Class<?> hostClass, byte[] data, Object[] cpPatches) {
 879         return theInternalUnsafe.defineAnonymousClass(hostClass, data, cpPatches);
 880     }
 881 
 882     /**
 883      * Allocates an instance but does not run any constructor.
 884      * Initializes the class if it has not yet been.
 885      */
 886     @ForceInline
 887     public Object allocateInstance(Class<?> cls)
 888         throws InstantiationException {
 889         return theInternalUnsafe.allocateInstance(cls);
 890     }
 891 
 892     /** Throws the exception without telling the verifier. */
 893     @ForceInline
 894     public void throwException(Throwable ee) {
 895         theInternalUnsafe.throwException(ee);
 896     }
 897 
 898     /**
 899      * Atomically updates Java variable to {@code x} if it is currently
 900      * holding {@code expected}.
 901      *
 902      * <p>This operation has memory semantics of a {@code volatile} read
 903      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
 904      *
 905      * @return {@code true} if successful
 906      */
 907     @ForceInline
 908     public final boolean compareAndSwapObject(Object o, long offset,
 909                                               Object expected,
 910                                               Object x) {
 911         return theInternalUnsafe.compareAndSwapObject(o, offset, expected, x);
 912     }
 913 
 914     /**
 915      * Atomically updates Java variable to {@code x} if it is currently
 916      * holding {@code expected}.
 917      *
 918      * <p>This operation has memory semantics of a {@code volatile} read
 919      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
 920      *
 921      * @return {@code true} if successful
 922      */
 923     @ForceInline
 924     public final boolean compareAndSwapInt(Object o, long offset,
 925                                            int expected,
 926                                            int x) {
 927         return theInternalUnsafe.compareAndSwapInt(o, offset, expected, x);
 928     }
 929 
 930     /**
 931      * Atomically updates Java variable to {@code x} if it is currently
 932      * holding {@code expected}.
 933      *
 934      * <p>This operation has memory semantics of a {@code volatile} read
 935      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
 936      *
 937      * @return {@code true} if successful
 938      */
 939     @ForceInline
 940     public final boolean compareAndSwapLong(Object o, long offset,
 941                                             long expected,
 942                                             long x) {
 943         return theInternalUnsafe.compareAndSwapLong(o, offset, expected, x);
 944     }
 945 
 946     /**
 947      * Fetches a reference value from a given Java variable, with volatile
 948      * load semantics. Otherwise identical to {@link #getObject(Object, long)}
 949      */
 950     @ForceInline
 951     public Object getObjectVolatile(Object o, long offset) {
 952         return theInternalUnsafe.getObjectVolatile(o, offset);
 953     }
 954 
 955     /**
 956      * Stores a reference value into a given Java variable, with
 957      * volatile store semantics. Otherwise identical to {@link #putObject(Object, long, Object)}
 958      */
 959     @ForceInline
 960     public void putObjectVolatile(Object o, long offset, Object x) {
 961         theInternalUnsafe.putObjectVolatile(o, offset, x);
 962     }
 963 
 964     /** Volatile version of {@link #getInt(Object, long)}  */
 965     @ForceInline
 966     public int getIntVolatile(Object o, long offset) {
 967         return theInternalUnsafe.getIntVolatile(o, offset);
 968     }
 969 
 970     /** Volatile version of {@link #putInt(Object, long, int)}  */
 971     @ForceInline
 972     public void putIntVolatile(Object o, long offset, int x) {
 973         theInternalUnsafe.putIntVolatile(o, offset, x);
 974     }
 975 
 976     /** Volatile version of {@link #getBoolean(Object, long)}  */
 977     @ForceInline
 978     public boolean getBooleanVolatile(Object o, long offset) {
 979         return theInternalUnsafe.getBooleanVolatile(o, offset);
 980     }
 981 
 982     /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
 983     @ForceInline
 984     public void putBooleanVolatile(Object o, long offset, boolean x) {
 985         theInternalUnsafe.putBooleanVolatile(o, offset, x);
 986     }
 987 
 988     /** Volatile version of {@link #getByte(Object, long)}  */
 989     @ForceInline
 990     public byte getByteVolatile(Object o, long offset) {
 991         return theInternalUnsafe.getByteVolatile(o, offset);
 992     }
 993 
 994     /** Volatile version of {@link #putByte(Object, long, byte)}  */
 995     @ForceInline
 996     public void putByteVolatile(Object o, long offset, byte x) {
 997         theInternalUnsafe.putByteVolatile(o, offset, x);
 998     }
 999 
1000     /** Volatile version of {@link #getShort(Object, long)}  */
1001     @ForceInline
1002     public short getShortVolatile(Object o, long offset) {
1003         return theInternalUnsafe.getShortVolatile(o, offset);
1004     }
1005 
1006     /** Volatile version of {@link #putShort(Object, long, short)}  */
1007     @ForceInline
1008     public void putShortVolatile(Object o, long offset, short x) {
1009         theInternalUnsafe.putShortVolatile(o, offset, x);
1010     }
1011 
1012     /** Volatile version of {@link #getChar(Object, long)}  */
1013     @ForceInline
1014     public char getCharVolatile(Object o, long offset) {
1015         return theInternalUnsafe.getCharVolatile(o, offset);
1016     }
1017 
1018     /** Volatile version of {@link #putChar(Object, long, char)}  */
1019     @ForceInline
1020     public void putCharVolatile(Object o, long offset, char x) {
1021         theInternalUnsafe.putCharVolatile(o, offset, x);
1022     }
1023 
1024     /** Volatile version of {@link #getLong(Object, long)}  */
1025     @ForceInline
1026     public long getLongVolatile(Object o, long offset) {
1027         return theInternalUnsafe.getLongVolatile(o, offset);
1028     }
1029 
1030     /** Volatile version of {@link #putLong(Object, long, long)}  */
1031     @ForceInline
1032     public void putLongVolatile(Object o, long offset, long x) {
1033         theInternalUnsafe.putLongVolatile(o, offset, x);
1034     }
1035 
1036     /** Volatile version of {@link #getFloat(Object, long)}  */
1037     @ForceInline
1038     public float getFloatVolatile(Object o, long offset) {
1039         return theInternalUnsafe.getFloatVolatile(o, offset);
1040     }
1041 
1042     /** Volatile version of {@link #putFloat(Object, long, float)}  */
1043     @ForceInline
1044     public void putFloatVolatile(Object o, long offset, float x) {
1045         theInternalUnsafe.putFloatVolatile(o, offset, x);
1046     }
1047 
1048     /** Volatile version of {@link #getDouble(Object, long)}  */
1049     @ForceInline
1050     public double getDoubleVolatile(Object o, long offset) {
1051         return theInternalUnsafe.getDoubleVolatile(o, offset);
1052     }
1053 
1054     /** Volatile version of {@link #putDouble(Object, long, double)}  */
1055     @ForceInline
1056     public void putDoubleVolatile(Object o, long offset, double x) {
1057         theInternalUnsafe.putDoubleVolatile(o, offset, x);
1058     }
1059 
1060     /**
1061      * Version of {@link #putObjectVolatile(Object, long, Object)}
1062      * that does not guarantee immediate visibility of the store to
1063      * other threads. This method is generally only useful if the
1064      * underlying field is a Java volatile (or if an array cell, one
1065      * that is otherwise only accessed using volatile accesses).
1066      *
1067      * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
1068      */
1069     @ForceInline
1070     public void putOrderedObject(Object o, long offset, Object x) {
1071         theInternalUnsafe.putObjectRelease(o, offset, x);
1072     }
1073 
1074     /** Ordered/Lazy version of {@link #putIntVolatile(Object, long, int)}  */
1075     @ForceInline
1076     public void putOrderedInt(Object o, long offset, int x) {
1077         theInternalUnsafe.putIntRelease(o, offset, x);
1078     }
1079 
1080     /** Ordered/Lazy version of {@link #putLongVolatile(Object, long, long)} */
1081     @ForceInline
1082     public void putOrderedLong(Object o, long offset, long x) {
1083         theInternalUnsafe.putLongRelease(o, offset, x);
1084     }
1085 
1086     /**
1087      * Unblocks the given thread blocked on {@code park}, or, if it is
1088      * not blocked, causes the subsequent call to {@code park} not to
1089      * block.  Note: this operation is "unsafe" solely because the
1090      * caller must somehow ensure that the thread has not been
1091      * destroyed. Nothing special is usually required to ensure this
1092      * when called from Java (in which there will ordinarily be a live
1093      * reference to the thread) but this is not nearly-automatically
1094      * so when calling from native code.
1095      *
1096      * @param thread the thread to unpark.
1097      */
1098     @ForceInline
1099     public void unpark(Object thread) {
1100         theInternalUnsafe.unpark(thread);
1101     }
1102 
1103     /**
1104      * Blocks current thread, returning when a balancing
1105      * {@code unpark} occurs, or a balancing {@code unpark} has
1106      * already occurred, or the thread is interrupted, or, if not
1107      * absolute and time is not zero, the given time nanoseconds have
1108      * elapsed, or if absolute, the given deadline in milliseconds
1109      * since Epoch has passed, or spuriously (i.e., returning for no
1110      * "reason"). Note: This operation is in the Unsafe class only
1111      * because {@code unpark} is, so it would be strange to place it
1112      * elsewhere.
1113      */
1114     @ForceInline
1115     public void park(boolean isAbsolute, long time) {
1116         theInternalUnsafe.park(isAbsolute, time);
1117     }
1118 
1119     /**
1120      * Gets the load average in the system run queue assigned
1121      * to the available processors averaged over various periods of time.
1122      * This method retrieves the given {@code nelem} samples and
1123      * assigns to the elements of the given {@code loadavg} array.
1124      * The system imposes a maximum of 3 samples, representing
1125      * averages over the last 1,  5,  and  15 minutes, respectively.
1126      *
1127      * @param loadavg an array of double of size nelems
1128      * @param nelems the number of samples to be retrieved and
1129      *        must be 1 to 3.
1130      *
1131      * @return the number of samples actually retrieved; or -1
1132      *         if the load average is unobtainable.
1133      */
1134     @ForceInline
1135     public int getLoadAverage(double[] loadavg, int nelems) {
1136         return theInternalUnsafe.getLoadAverage(loadavg, nelems);
1137     }
1138 
1139     // The following contain CAS-based Java implementations used on
1140     // platforms not supporting native instructions
1141 
1142     /**
1143      * Atomically adds the given value to the current value of a field
1144      * or array element within the given object {@code o}
1145      * at the given {@code offset}.
1146      *
1147      * @param o object/array to update the field/element in
1148      * @param offset field/element offset
1149      * @param delta the value to add
1150      * @return the previous value
1151      * @since 1.8
1152      */
1153     @ForceInline
1154     public final int getAndAddInt(Object o, long offset, int delta) {
1155         return theInternalUnsafe.getAndAddInt(o, offset, delta);
1156     }
1157 
1158     /**
1159      * Atomically adds the given value to the current value of a field
1160      * or array element within the given object {@code o}
1161      * at the given {@code offset}.
1162      *
1163      * @param o object/array to update the field/element in
1164      * @param offset field/element offset
1165      * @param delta the value to add
1166      * @return the previous value
1167      * @since 1.8
1168      */
1169     @ForceInline
1170     public final long getAndAddLong(Object o, long offset, long delta) {
1171         return theInternalUnsafe.getAndAddLong(o, offset, delta);
1172     }
1173 
1174     /**
1175      * Atomically exchanges the given value with the current value of
1176      * a field or array element within the given object {@code o}
1177      * at the given {@code offset}.
1178      *
1179      * @param o object/array to update the field/element in
1180      * @param offset field/element offset
1181      * @param newValue new value
1182      * @return the previous value
1183      * @since 1.8
1184      */
1185     @ForceInline
1186     public final int getAndSetInt(Object o, long offset, int newValue) {
1187         return theInternalUnsafe.getAndSetInt(o, offset, newValue);
1188     }
1189 
1190     /**
1191      * Atomically exchanges the given value with the current value of
1192      * a field or array element within the given object {@code o}
1193      * at the given {@code offset}.
1194      *
1195      * @param o object/array to update the field/element in
1196      * @param offset field/element offset
1197      * @param newValue new value
1198      * @return the previous value
1199      * @since 1.8
1200      */
1201     @ForceInline
1202     public final long getAndSetLong(Object o, long offset, long newValue) {
1203         return theInternalUnsafe.getAndSetLong(o, offset, newValue);
1204     }
1205 
1206     /**
1207      * Atomically exchanges the given reference value with the current
1208      * reference value of a field or array element within the given
1209      * object {@code o} at the given {@code offset}.
1210      *
1211      * @param o object/array to update the field/element in
1212      * @param offset field/element offset
1213      * @param newValue new value
1214      * @return the previous value
1215      * @since 1.8
1216      */
1217     @ForceInline
1218     public final Object getAndSetObject(Object o, long offset, Object newValue) {
1219         return theInternalUnsafe.getAndSetObject(o, offset, newValue);
1220     }
1221 
1222 
1223     /**
1224      * Ensures that loads before the fence will not be reordered with loads and
1225      * stores after the fence; a "LoadLoad plus LoadStore barrier".
1226      *
1227      * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
1228      * (an "acquire fence").
1229      *
1230      * A pure LoadLoad fence is not provided, since the addition of LoadStore
1231      * is almost always desired, and most current hardware instructions that
1232      * provide a LoadLoad barrier also provide a LoadStore barrier for free.
1233      * @since 1.8
1234      */
1235     @ForceInline
1236     public void loadFence() {
1237         theInternalUnsafe.loadFence();
1238     }
1239 
1240     /**
1241      * Ensures that loads and stores before the fence will not be reordered with
1242      * stores after the fence; a "StoreStore plus LoadStore barrier".
1243      *
1244      * Corresponds to C11 atomic_thread_fence(memory_order_release)
1245      * (a "release fence").
1246      *
1247      * A pure StoreStore fence is not provided, since the addition of LoadStore
1248      * is almost always desired, and most current hardware instructions that
1249      * provide a StoreStore barrier also provide a LoadStore barrier for free.
1250      * @since 1.8
1251      */
1252     @ForceInline
1253     public void storeFence() {
1254         theInternalUnsafe.storeFence();
1255     }
1256 
1257     /**
1258      * Ensures that loads and stores before the fence will not be reordered
1259      * with loads and stores after the fence.  Implies the effects of both
1260      * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
1261      * barrier.
1262      *
1263      * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
1264      * @since 1.8
1265      */
1266     @ForceInline
1267     public void fullFence() {
1268         theInternalUnsafe.fullFence();
1269     }
1270 }