1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/codeCacheExtensions.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "gc/shared/referencePendingListLocker.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jvmtifiles/jvmtiEnv.hpp"
  44 #include "logging/log.hpp"
  45 #include "logging/logConfiguration.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.inline.hpp"
  50 #include "oops/instanceKlass.hpp"
  51 #include "oops/objArrayOop.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "oops/symbol.hpp"
  54 #include "oops/verifyOopClosure.hpp"
  55 #include "prims/jvm_misc.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/privilegedStack.hpp"
  59 #include "runtime/arguments.hpp"
  60 #include "runtime/atomic.inline.hpp"
  61 #include "runtime/biasedLocking.hpp"
  62 #include "runtime/commandLineFlagConstraintList.hpp"
  63 #include "runtime/commandLineFlagWriteableList.hpp"
  64 #include "runtime/commandLineFlagRangeList.hpp"
  65 #include "runtime/deoptimization.hpp"
  66 #include "runtime/fprofiler.hpp"
  67 #include "runtime/frame.inline.hpp"
  68 #include "runtime/globals.hpp"
  69 #include "runtime/init.hpp"
  70 #include "runtime/interfaceSupport.hpp"
  71 #include "runtime/java.hpp"
  72 #include "runtime/javaCalls.hpp"
  73 #include "runtime/jniPeriodicChecker.hpp"
  74 #include "runtime/timerTrace.hpp"
  75 #include "runtime/memprofiler.hpp"
  76 #include "runtime/mutexLocker.hpp"
  77 #include "runtime/objectMonitor.hpp"
  78 #include "runtime/orderAccess.inline.hpp"
  79 #include "runtime/osThread.hpp"
  80 #include "runtime/safepoint.hpp"
  81 #include "runtime/sharedRuntime.hpp"
  82 #include "runtime/statSampler.hpp"
  83 #include "runtime/stubRoutines.hpp"
  84 #include "runtime/sweeper.hpp"
  85 #include "runtime/task.hpp"
  86 #include "runtime/thread.inline.hpp"
  87 #include "runtime/threadCritical.hpp"
  88 #include "runtime/vframe.hpp"
  89 #include "runtime/vframeArray.hpp"
  90 #include "runtime/vframe_hp.hpp"
  91 #include "runtime/vmThread.hpp"
  92 #include "runtime/vm_operations.hpp"
  93 #include "runtime/vm_version.hpp"
  94 #include "services/attachListener.hpp"
  95 #include "services/management.hpp"
  96 #include "services/memTracker.hpp"
  97 #include "services/threadService.hpp"
  98 #include "trace/traceMacros.hpp"
  99 #include "trace/tracing.hpp"
 100 #include "utilities/defaultStream.hpp"
 101 #include "utilities/dtrace.hpp"
 102 #include "utilities/events.hpp"
 103 #include "utilities/macros.hpp"
 104 #include "utilities/preserveException.hpp"
 105 #if INCLUDE_ALL_GCS
 106 #include "gc/cms/concurrentMarkSweepThread.hpp"
 107 #include "gc/g1/concurrentMarkThread.inline.hpp"
 108 #include "gc/parallel/pcTasks.hpp"
 109 #endif // INCLUDE_ALL_GCS
 110 #if INCLUDE_JVMCI
 111 #include "jvmci/jvmciCompiler.hpp"
 112 #include "jvmci/jvmciRuntime.hpp"
 113 #endif
 114 #ifdef COMPILER1
 115 #include "c1/c1_Compiler.hpp"
 116 #endif
 117 #ifdef COMPILER2
 118 #include "opto/c2compiler.hpp"
 119 #include "opto/idealGraphPrinter.hpp"
 120 #endif
 121 #if INCLUDE_RTM_OPT
 122 #include "runtime/rtmLocking.hpp"
 123 #endif
 124 
 125 // Initialization after module runtime initialization
 126 void universe_post_module_init();  // must happen after call_initPhase2
 127 
 128 #ifdef DTRACE_ENABLED
 129 
 130 // Only bother with this argument setup if dtrace is available
 131 
 132   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 133   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 134 
 135   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 136     {                                                                      \
 137       ResourceMark rm(this);                                               \
 138       int len = 0;                                                         \
 139       const char* name = (javathread)->get_thread_name();                  \
 140       len = strlen(name);                                                  \
 141       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 142         (char *) name, len,                                                \
 143         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 144         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 145         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 146     }
 147 
 148 #else //  ndef DTRACE_ENABLED
 149 
 150   #define DTRACE_THREAD_PROBE(probe, javathread)
 151 
 152 #endif // ndef DTRACE_ENABLED
 153 
 154 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 155 // Current thread is maintained as a thread-local variable
 156 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 157 #endif
 158 // Class hierarchy
 159 // - Thread
 160 //   - VMThread
 161 //   - WatcherThread
 162 //   - ConcurrentMarkSweepThread
 163 //   - JavaThread
 164 //     - CompilerThread
 165 
 166 // ======= Thread ========
 167 // Support for forcing alignment of thread objects for biased locking
 168 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 169   if (UseBiasedLocking) {
 170     const int alignment = markOopDesc::biased_lock_alignment;
 171     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 172     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 173                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 174                                                          AllocFailStrategy::RETURN_NULL);
 175     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 176     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 177            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 178            "JavaThread alignment code overflowed allocated storage");
 179     if (aligned_addr != real_malloc_addr) {
 180       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 181                               p2i(real_malloc_addr),
 182                               p2i(aligned_addr));
 183     }
 184     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 185     return aligned_addr;
 186   } else {
 187     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 188                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 189   }
 190 }
 191 
 192 void Thread::operator delete(void* p) {
 193   if (UseBiasedLocking) {
 194     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 195     FreeHeap(real_malloc_addr);
 196   } else {
 197     FreeHeap(p);
 198   }
 199 }
 200 
 201 
 202 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 203 // JavaThread
 204 
 205 
 206 Thread::Thread() {
 207   // stack and get_thread
 208   set_stack_base(NULL);
 209   set_stack_size(0);
 210   set_self_raw_id(0);
 211   set_lgrp_id(-1);
 212   DEBUG_ONLY(clear_suspendible_thread();)
 213 
 214   // allocated data structures
 215   set_osthread(NULL);
 216   set_resource_area(new (mtThread)ResourceArea());
 217   DEBUG_ONLY(_current_resource_mark = NULL;)
 218   set_handle_area(new (mtThread) HandleArea(NULL));
 219   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 220   set_active_handles(NULL);
 221   set_free_handle_block(NULL);
 222   set_last_handle_mark(NULL);
 223 
 224   // This initial value ==> never claimed.
 225   _oops_do_parity = 0;
 226 
 227   // the handle mark links itself to last_handle_mark
 228   new HandleMark(this);
 229 
 230   // plain initialization
 231   debug_only(_owned_locks = NULL;)
 232   debug_only(_allow_allocation_count = 0;)
 233   NOT_PRODUCT(_allow_safepoint_count = 0;)
 234   NOT_PRODUCT(_skip_gcalot = false;)
 235   _jvmti_env_iteration_count = 0;
 236   set_allocated_bytes(0);
 237   _vm_operation_started_count = 0;
 238   _vm_operation_completed_count = 0;
 239   _current_pending_monitor = NULL;
 240   _current_pending_monitor_is_from_java = true;
 241   _current_waiting_monitor = NULL;
 242   _num_nested_signal = 0;
 243   omFreeList = NULL;
 244   omFreeCount = 0;
 245   omFreeProvision = 32;
 246   omInUseList = NULL;
 247   omInUseCount = 0;
 248 
 249 #ifdef ASSERT
 250   _visited_for_critical_count = false;
 251 #endif
 252 
 253   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 254                          Monitor::_safepoint_check_sometimes);
 255   _suspend_flags = 0;
 256 
 257   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 258   _hashStateX = os::random();
 259   _hashStateY = 842502087;
 260   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 261   _hashStateW = 273326509;
 262 
 263   _OnTrap   = 0;
 264   _schedctl = NULL;
 265   _Stalled  = 0;
 266   _TypeTag  = 0x2BAD;
 267 
 268   // Many of the following fields are effectively final - immutable
 269   // Note that nascent threads can't use the Native Monitor-Mutex
 270   // construct until the _MutexEvent is initialized ...
 271   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 272   // we might instead use a stack of ParkEvents that we could provision on-demand.
 273   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 274   // and ::Release()
 275   _ParkEvent   = ParkEvent::Allocate(this);
 276   _SleepEvent  = ParkEvent::Allocate(this);
 277   _MutexEvent  = ParkEvent::Allocate(this);
 278   _MuxEvent    = ParkEvent::Allocate(this);
 279 
 280 #ifdef CHECK_UNHANDLED_OOPS
 281   if (CheckUnhandledOops) {
 282     _unhandled_oops = new UnhandledOops(this);
 283   }
 284 #endif // CHECK_UNHANDLED_OOPS
 285 #ifdef ASSERT
 286   if (UseBiasedLocking) {
 287     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 288     assert(this == _real_malloc_address ||
 289            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 290            "bug in forced alignment of thread objects");
 291   }
 292 #endif // ASSERT
 293 }
 294 
 295 void Thread::initialize_thread_current() {
 296 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 297   assert(_thr_current == NULL, "Thread::current already initialized");
 298   _thr_current = this;
 299 #endif
 300   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 301   ThreadLocalStorage::set_thread(this);
 302   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 303 }
 304 
 305 void Thread::clear_thread_current() {
 306   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 307 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 308   _thr_current = NULL;
 309 #endif
 310   ThreadLocalStorage::set_thread(NULL);
 311 }
 312 
 313 void Thread::record_stack_base_and_size() {
 314   set_stack_base(os::current_stack_base());
 315   set_stack_size(os::current_stack_size());
 316   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 317   // in initialize_thread(). Without the adjustment, stack size is
 318   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 319   // So far, only Solaris has real implementation of initialize_thread().
 320   //
 321   // set up any platform-specific state.
 322   os::initialize_thread(this);
 323 
 324   // Set stack limits after thread is initialized.
 325   if (is_Java_thread()) {
 326     ((JavaThread*) this)->set_stack_overflow_limit();
 327     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 328   }
 329 #if INCLUDE_NMT
 330   // record thread's native stack, stack grows downward
 331   MemTracker::record_thread_stack(stack_end(), stack_size());
 332 #endif // INCLUDE_NMT
 333   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 334     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 335     os::current_thread_id(), p2i(stack_base() - stack_size()),
 336     p2i(stack_base()), stack_size()/1024);
 337 }
 338 
 339 
 340 Thread::~Thread() {
 341   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 342   ObjectSynchronizer::omFlush(this);
 343 
 344   EVENT_THREAD_DESTRUCT(this);
 345 
 346   // stack_base can be NULL if the thread is never started or exited before
 347   // record_stack_base_and_size called. Although, we would like to ensure
 348   // that all started threads do call record_stack_base_and_size(), there is
 349   // not proper way to enforce that.
 350 #if INCLUDE_NMT
 351   if (_stack_base != NULL) {
 352     MemTracker::release_thread_stack(stack_end(), stack_size());
 353 #ifdef ASSERT
 354     set_stack_base(NULL);
 355 #endif
 356   }
 357 #endif // INCLUDE_NMT
 358 
 359   // deallocate data structures
 360   delete resource_area();
 361   // since the handle marks are using the handle area, we have to deallocated the root
 362   // handle mark before deallocating the thread's handle area,
 363   assert(last_handle_mark() != NULL, "check we have an element");
 364   delete last_handle_mark();
 365   assert(last_handle_mark() == NULL, "check we have reached the end");
 366 
 367   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 368   // We NULL out the fields for good hygiene.
 369   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 370   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 371   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 372   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 373 
 374   delete handle_area();
 375   delete metadata_handles();
 376 
 377   // osthread() can be NULL, if creation of thread failed.
 378   if (osthread() != NULL) os::free_thread(osthread());
 379 
 380   delete _SR_lock;
 381 
 382   // clear Thread::current if thread is deleting itself.
 383   // Needed to ensure JNI correctly detects non-attached threads.
 384   if (this == Thread::current()) {
 385     clear_thread_current();
 386   }
 387 
 388   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 389 }
 390 
 391 // NOTE: dummy function for assertion purpose.
 392 void Thread::run() {
 393   ShouldNotReachHere();
 394 }
 395 
 396 #ifdef ASSERT
 397 // Private method to check for dangling thread pointer
 398 void check_for_dangling_thread_pointer(Thread *thread) {
 399   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 400          "possibility of dangling Thread pointer");
 401 }
 402 #endif
 403 
 404 ThreadPriority Thread::get_priority(const Thread* const thread) {
 405   ThreadPriority priority;
 406   // Can return an error!
 407   (void)os::get_priority(thread, priority);
 408   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 409   return priority;
 410 }
 411 
 412 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 413   debug_only(check_for_dangling_thread_pointer(thread);)
 414   // Can return an error!
 415   (void)os::set_priority(thread, priority);
 416 }
 417 
 418 
 419 void Thread::start(Thread* thread) {
 420   // Start is different from resume in that its safety is guaranteed by context or
 421   // being called from a Java method synchronized on the Thread object.
 422   if (!DisableStartThread) {
 423     if (thread->is_Java_thread()) {
 424       // Initialize the thread state to RUNNABLE before starting this thread.
 425       // Can not set it after the thread started because we do not know the
 426       // exact thread state at that time. It could be in MONITOR_WAIT or
 427       // in SLEEPING or some other state.
 428       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 429                                           java_lang_Thread::RUNNABLE);
 430     }
 431     os::start_thread(thread);
 432   }
 433 }
 434 
 435 // Enqueue a VM_Operation to do the job for us - sometime later
 436 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 437   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 438   VMThread::execute(vm_stop);
 439 }
 440 
 441 
 442 // Check if an external suspend request has completed (or has been
 443 // cancelled). Returns true if the thread is externally suspended and
 444 // false otherwise.
 445 //
 446 // The bits parameter returns information about the code path through
 447 // the routine. Useful for debugging:
 448 //
 449 // set in is_ext_suspend_completed():
 450 // 0x00000001 - routine was entered
 451 // 0x00000010 - routine return false at end
 452 // 0x00000100 - thread exited (return false)
 453 // 0x00000200 - suspend request cancelled (return false)
 454 // 0x00000400 - thread suspended (return true)
 455 // 0x00001000 - thread is in a suspend equivalent state (return true)
 456 // 0x00002000 - thread is native and walkable (return true)
 457 // 0x00004000 - thread is native_trans and walkable (needed retry)
 458 //
 459 // set in wait_for_ext_suspend_completion():
 460 // 0x00010000 - routine was entered
 461 // 0x00020000 - suspend request cancelled before loop (return false)
 462 // 0x00040000 - thread suspended before loop (return true)
 463 // 0x00080000 - suspend request cancelled in loop (return false)
 464 // 0x00100000 - thread suspended in loop (return true)
 465 // 0x00200000 - suspend not completed during retry loop (return false)
 466 
 467 // Helper class for tracing suspend wait debug bits.
 468 //
 469 // 0x00000100 indicates that the target thread exited before it could
 470 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 471 // 0x00080000 each indicate a cancelled suspend request so they don't
 472 // count as wait failures either.
 473 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 474 
 475 class TraceSuspendDebugBits : public StackObj {
 476  private:
 477   JavaThread * jt;
 478   bool         is_wait;
 479   bool         called_by_wait;  // meaningful when !is_wait
 480   uint32_t *   bits;
 481 
 482  public:
 483   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 484                         uint32_t *_bits) {
 485     jt             = _jt;
 486     is_wait        = _is_wait;
 487     called_by_wait = _called_by_wait;
 488     bits           = _bits;
 489   }
 490 
 491   ~TraceSuspendDebugBits() {
 492     if (!is_wait) {
 493 #if 1
 494       // By default, don't trace bits for is_ext_suspend_completed() calls.
 495       // That trace is very chatty.
 496       return;
 497 #else
 498       if (!called_by_wait) {
 499         // If tracing for is_ext_suspend_completed() is enabled, then only
 500         // trace calls to it from wait_for_ext_suspend_completion()
 501         return;
 502       }
 503 #endif
 504     }
 505 
 506     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 507       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 508         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 509         ResourceMark rm;
 510 
 511         tty->print_cr(
 512                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 513                       jt->get_thread_name(), *bits);
 514 
 515         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 516       }
 517     }
 518   }
 519 };
 520 #undef DEBUG_FALSE_BITS
 521 
 522 
 523 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 524                                           uint32_t *bits) {
 525   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 526 
 527   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 528   bool do_trans_retry;           // flag to force the retry
 529 
 530   *bits |= 0x00000001;
 531 
 532   do {
 533     do_trans_retry = false;
 534 
 535     if (is_exiting()) {
 536       // Thread is in the process of exiting. This is always checked
 537       // first to reduce the risk of dereferencing a freed JavaThread.
 538       *bits |= 0x00000100;
 539       return false;
 540     }
 541 
 542     if (!is_external_suspend()) {
 543       // Suspend request is cancelled. This is always checked before
 544       // is_ext_suspended() to reduce the risk of a rogue resume
 545       // confusing the thread that made the suspend request.
 546       *bits |= 0x00000200;
 547       return false;
 548     }
 549 
 550     if (is_ext_suspended()) {
 551       // thread is suspended
 552       *bits |= 0x00000400;
 553       return true;
 554     }
 555 
 556     // Now that we no longer do hard suspends of threads running
 557     // native code, the target thread can be changing thread state
 558     // while we are in this routine:
 559     //
 560     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 561     //
 562     // We save a copy of the thread state as observed at this moment
 563     // and make our decision about suspend completeness based on the
 564     // copy. This closes the race where the thread state is seen as
 565     // _thread_in_native_trans in the if-thread_blocked check, but is
 566     // seen as _thread_blocked in if-thread_in_native_trans check.
 567     JavaThreadState save_state = thread_state();
 568 
 569     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 570       // If the thread's state is _thread_blocked and this blocking
 571       // condition is known to be equivalent to a suspend, then we can
 572       // consider the thread to be externally suspended. This means that
 573       // the code that sets _thread_blocked has been modified to do
 574       // self-suspension if the blocking condition releases. We also
 575       // used to check for CONDVAR_WAIT here, but that is now covered by
 576       // the _thread_blocked with self-suspension check.
 577       //
 578       // Return true since we wouldn't be here unless there was still an
 579       // external suspend request.
 580       *bits |= 0x00001000;
 581       return true;
 582     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 583       // Threads running native code will self-suspend on native==>VM/Java
 584       // transitions. If its stack is walkable (should always be the case
 585       // unless this function is called before the actual java_suspend()
 586       // call), then the wait is done.
 587       *bits |= 0x00002000;
 588       return true;
 589     } else if (!called_by_wait && !did_trans_retry &&
 590                save_state == _thread_in_native_trans &&
 591                frame_anchor()->walkable()) {
 592       // The thread is transitioning from thread_in_native to another
 593       // thread state. check_safepoint_and_suspend_for_native_trans()
 594       // will force the thread to self-suspend. If it hasn't gotten
 595       // there yet we may have caught the thread in-between the native
 596       // code check above and the self-suspend. Lucky us. If we were
 597       // called by wait_for_ext_suspend_completion(), then it
 598       // will be doing the retries so we don't have to.
 599       //
 600       // Since we use the saved thread state in the if-statement above,
 601       // there is a chance that the thread has already transitioned to
 602       // _thread_blocked by the time we get here. In that case, we will
 603       // make a single unnecessary pass through the logic below. This
 604       // doesn't hurt anything since we still do the trans retry.
 605 
 606       *bits |= 0x00004000;
 607 
 608       // Once the thread leaves thread_in_native_trans for another
 609       // thread state, we break out of this retry loop. We shouldn't
 610       // need this flag to prevent us from getting back here, but
 611       // sometimes paranoia is good.
 612       did_trans_retry = true;
 613 
 614       // We wait for the thread to transition to a more usable state.
 615       for (int i = 1; i <= SuspendRetryCount; i++) {
 616         // We used to do an "os::yield_all(i)" call here with the intention
 617         // that yielding would increase on each retry. However, the parameter
 618         // is ignored on Linux which means the yield didn't scale up. Waiting
 619         // on the SR_lock below provides a much more predictable scale up for
 620         // the delay. It also provides a simple/direct point to check for any
 621         // safepoint requests from the VMThread
 622 
 623         // temporarily drops SR_lock while doing wait with safepoint check
 624         // (if we're a JavaThread - the WatcherThread can also call this)
 625         // and increase delay with each retry
 626         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 627 
 628         // check the actual thread state instead of what we saved above
 629         if (thread_state() != _thread_in_native_trans) {
 630           // the thread has transitioned to another thread state so
 631           // try all the checks (except this one) one more time.
 632           do_trans_retry = true;
 633           break;
 634         }
 635       } // end retry loop
 636 
 637 
 638     }
 639   } while (do_trans_retry);
 640 
 641   *bits |= 0x00000010;
 642   return false;
 643 }
 644 
 645 // Wait for an external suspend request to complete (or be cancelled).
 646 // Returns true if the thread is externally suspended and false otherwise.
 647 //
 648 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 649                                                  uint32_t *bits) {
 650   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 651                              false /* !called_by_wait */, bits);
 652 
 653   // local flag copies to minimize SR_lock hold time
 654   bool is_suspended;
 655   bool pending;
 656   uint32_t reset_bits;
 657 
 658   // set a marker so is_ext_suspend_completed() knows we are the caller
 659   *bits |= 0x00010000;
 660 
 661   // We use reset_bits to reinitialize the bits value at the top of
 662   // each retry loop. This allows the caller to make use of any
 663   // unused bits for their own marking purposes.
 664   reset_bits = *bits;
 665 
 666   {
 667     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 668     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 669                                             delay, bits);
 670     pending = is_external_suspend();
 671   }
 672   // must release SR_lock to allow suspension to complete
 673 
 674   if (!pending) {
 675     // A cancelled suspend request is the only false return from
 676     // is_ext_suspend_completed() that keeps us from entering the
 677     // retry loop.
 678     *bits |= 0x00020000;
 679     return false;
 680   }
 681 
 682   if (is_suspended) {
 683     *bits |= 0x00040000;
 684     return true;
 685   }
 686 
 687   for (int i = 1; i <= retries; i++) {
 688     *bits = reset_bits;  // reinit to only track last retry
 689 
 690     // We used to do an "os::yield_all(i)" call here with the intention
 691     // that yielding would increase on each retry. However, the parameter
 692     // is ignored on Linux which means the yield didn't scale up. Waiting
 693     // on the SR_lock below provides a much more predictable scale up for
 694     // the delay. It also provides a simple/direct point to check for any
 695     // safepoint requests from the VMThread
 696 
 697     {
 698       MutexLocker ml(SR_lock());
 699       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 700       // can also call this)  and increase delay with each retry
 701       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 702 
 703       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 704                                               delay, bits);
 705 
 706       // It is possible for the external suspend request to be cancelled
 707       // (by a resume) before the actual suspend operation is completed.
 708       // Refresh our local copy to see if we still need to wait.
 709       pending = is_external_suspend();
 710     }
 711 
 712     if (!pending) {
 713       // A cancelled suspend request is the only false return from
 714       // is_ext_suspend_completed() that keeps us from staying in the
 715       // retry loop.
 716       *bits |= 0x00080000;
 717       return false;
 718     }
 719 
 720     if (is_suspended) {
 721       *bits |= 0x00100000;
 722       return true;
 723     }
 724   } // end retry loop
 725 
 726   // thread did not suspend after all our retries
 727   *bits |= 0x00200000;
 728   return false;
 729 }
 730 
 731 #ifndef PRODUCT
 732 void JavaThread::record_jump(address target, address instr, const char* file,
 733                              int line) {
 734 
 735   // This should not need to be atomic as the only way for simultaneous
 736   // updates is via interrupts. Even then this should be rare or non-existent
 737   // and we don't care that much anyway.
 738 
 739   int index = _jmp_ring_index;
 740   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 741   _jmp_ring[index]._target = (intptr_t) target;
 742   _jmp_ring[index]._instruction = (intptr_t) instr;
 743   _jmp_ring[index]._file = file;
 744   _jmp_ring[index]._line = line;
 745 }
 746 #endif // PRODUCT
 747 
 748 // Called by flat profiler
 749 // Callers have already called wait_for_ext_suspend_completion
 750 // The assertion for that is currently too complex to put here:
 751 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 752   bool gotframe = false;
 753   // self suspension saves needed state.
 754   if (has_last_Java_frame() && _anchor.walkable()) {
 755     *_fr = pd_last_frame();
 756     gotframe = true;
 757   }
 758   return gotframe;
 759 }
 760 
 761 void Thread::interrupt(Thread* thread) {
 762   debug_only(check_for_dangling_thread_pointer(thread);)
 763   os::interrupt(thread);
 764 }
 765 
 766 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 767   debug_only(check_for_dangling_thread_pointer(thread);)
 768   // Note:  If clear_interrupted==false, this simply fetches and
 769   // returns the value of the field osthread()->interrupted().
 770   return os::is_interrupted(thread, clear_interrupted);
 771 }
 772 
 773 
 774 // GC Support
 775 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 776   jint thread_parity = _oops_do_parity;
 777   if (thread_parity != strong_roots_parity) {
 778     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 779     if (res == thread_parity) {
 780       return true;
 781     } else {
 782       guarantee(res == strong_roots_parity, "Or else what?");
 783       return false;
 784     }
 785   }
 786   return false;
 787 }
 788 
 789 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 790   active_handles()->oops_do(f);
 791   // Do oop for ThreadShadow
 792   f->do_oop((oop*)&_pending_exception);
 793   handle_area()->oops_do(f);
 794 }
 795 
 796 void Thread::metadata_handles_do(void f(Metadata*)) {
 797   // Only walk the Handles in Thread.
 798   if (metadata_handles() != NULL) {
 799     for (int i = 0; i< metadata_handles()->length(); i++) {
 800       f(metadata_handles()->at(i));
 801     }
 802   }
 803 }
 804 
 805 void Thread::print_on(outputStream* st) const {
 806   // get_priority assumes osthread initialized
 807   if (osthread() != NULL) {
 808     int os_prio;
 809     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 810       st->print("os_prio=%d ", os_prio);
 811     }
 812     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 813     ext().print_on(st);
 814     osthread()->print_on(st);
 815   }
 816   debug_only(if (WizardMode) print_owned_locks_on(st);)
 817 }
 818 
 819 // Thread::print_on_error() is called by fatal error handler. Don't use
 820 // any lock or allocate memory.
 821 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 822   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 823 
 824   if (is_VM_thread())                 { st->print("VMThread"); }
 825   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 826   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 827   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 828   else                                { st->print("Thread"); }
 829 
 830   if (is_Named_thread()) {
 831     st->print(" \"%s\"", name());
 832   }
 833 
 834   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 835             p2i(stack_end()), p2i(stack_base()));
 836 
 837   if (osthread()) {
 838     st->print(" [id=%d]", osthread()->thread_id());
 839   }
 840 }
 841 
 842 #ifdef ASSERT
 843 void Thread::print_owned_locks_on(outputStream* st) const {
 844   Monitor *cur = _owned_locks;
 845   if (cur == NULL) {
 846     st->print(" (no locks) ");
 847   } else {
 848     st->print_cr(" Locks owned:");
 849     while (cur) {
 850       cur->print_on(st);
 851       cur = cur->next();
 852     }
 853   }
 854 }
 855 
 856 static int ref_use_count  = 0;
 857 
 858 bool Thread::owns_locks_but_compiled_lock() const {
 859   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 860     if (cur != Compile_lock) return true;
 861   }
 862   return false;
 863 }
 864 
 865 
 866 #endif
 867 
 868 #ifndef PRODUCT
 869 
 870 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 871 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 872 // no threads which allow_vm_block's are held
 873 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 874   // Check if current thread is allowed to block at a safepoint
 875   if (!(_allow_safepoint_count == 0)) {
 876     fatal("Possible safepoint reached by thread that does not allow it");
 877   }
 878   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 879     fatal("LEAF method calling lock?");
 880   }
 881 
 882 #ifdef ASSERT
 883   if (potential_vm_operation && is_Java_thread()
 884       && !Universe::is_bootstrapping()) {
 885     // Make sure we do not hold any locks that the VM thread also uses.
 886     // This could potentially lead to deadlocks
 887     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 888       // Threads_lock is special, since the safepoint synchronization will not start before this is
 889       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 890       // since it is used to transfer control between JavaThreads and the VMThread
 891       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 892       if ((cur->allow_vm_block() &&
 893            cur != Threads_lock &&
 894            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 895            cur != VMOperationRequest_lock &&
 896            cur != VMOperationQueue_lock) ||
 897            cur->rank() == Mutex::special) {
 898         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 899       }
 900     }
 901   }
 902 
 903   if (GCALotAtAllSafepoints) {
 904     // We could enter a safepoint here and thus have a gc
 905     InterfaceSupport::check_gc_alot();
 906   }
 907 #endif
 908 }
 909 #endif
 910 
 911 bool Thread::is_in_stack(address adr) const {
 912   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 913   address end = os::current_stack_pointer();
 914   // Allow non Java threads to call this without stack_base
 915   if (_stack_base == NULL) return true;
 916   if (stack_base() >= adr && adr >= end) return true;
 917 
 918   return false;
 919 }
 920 
 921 bool Thread::is_in_usable_stack(address adr) const {
 922   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 923   size_t usable_stack_size = _stack_size - stack_guard_size;
 924 
 925   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 926 }
 927 
 928 
 929 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 930 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 931 // used for compilation in the future. If that change is made, the need for these methods
 932 // should be revisited, and they should be removed if possible.
 933 
 934 bool Thread::is_lock_owned(address adr) const {
 935   return on_local_stack(adr);
 936 }
 937 
 938 bool Thread::set_as_starting_thread() {
 939   // NOTE: this must be called inside the main thread.
 940   return os::create_main_thread((JavaThread*)this);
 941 }
 942 
 943 static void initialize_class(Symbol* class_name, TRAPS) {
 944   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 945   InstanceKlass::cast(klass)->initialize(CHECK);
 946 }
 947 
 948 
 949 // Creates the initial ThreadGroup
 950 static Handle create_initial_thread_group(TRAPS) {
 951   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 952   instanceKlassHandle klass (THREAD, k);
 953 
 954   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 955   {
 956     JavaValue result(T_VOID);
 957     JavaCalls::call_special(&result,
 958                             system_instance,
 959                             klass,
 960                             vmSymbols::object_initializer_name(),
 961                             vmSymbols::void_method_signature(),
 962                             CHECK_NH);
 963   }
 964   Universe::set_system_thread_group(system_instance());
 965 
 966   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 967   {
 968     JavaValue result(T_VOID);
 969     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 970     JavaCalls::call_special(&result,
 971                             main_instance,
 972                             klass,
 973                             vmSymbols::object_initializer_name(),
 974                             vmSymbols::threadgroup_string_void_signature(),
 975                             system_instance,
 976                             string,
 977                             CHECK_NH);
 978   }
 979   return main_instance;
 980 }
 981 
 982 // Creates the initial Thread
 983 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 984                                  TRAPS) {
 985   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 986   instanceKlassHandle klass (THREAD, k);
 987   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 988 
 989   java_lang_Thread::set_thread(thread_oop(), thread);
 990   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 991   thread->set_threadObj(thread_oop());
 992 
 993   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 994 
 995   JavaValue result(T_VOID);
 996   JavaCalls::call_special(&result, thread_oop,
 997                           klass,
 998                           vmSymbols::object_initializer_name(),
 999                           vmSymbols::threadgroup_string_void_signature(),
1000                           thread_group,
1001                           string,
1002                           CHECK_NULL);
1003   return thread_oop();
1004 }
1005 
1006 char java_runtime_name[128] = "";
1007 char java_runtime_version[128] = "";
1008 
1009 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1010 static const char* get_java_runtime_name(TRAPS) {
1011   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1012                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1013   fieldDescriptor fd;
1014   bool found = k != NULL &&
1015                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1016                                                         vmSymbols::string_signature(), &fd);
1017   if (found) {
1018     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1019     if (name_oop == NULL) {
1020       return NULL;
1021     }
1022     const char* name = java_lang_String::as_utf8_string(name_oop,
1023                                                         java_runtime_name,
1024                                                         sizeof(java_runtime_name));
1025     return name;
1026   } else {
1027     return NULL;
1028   }
1029 }
1030 
1031 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1032 static const char* get_java_runtime_version(TRAPS) {
1033   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1034                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1035   fieldDescriptor fd;
1036   bool found = k != NULL &&
1037                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1038                                                         vmSymbols::string_signature(), &fd);
1039   if (found) {
1040     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1041     if (name_oop == NULL) {
1042       return NULL;
1043     }
1044     const char* name = java_lang_String::as_utf8_string(name_oop,
1045                                                         java_runtime_version,
1046                                                         sizeof(java_runtime_version));
1047     return name;
1048   } else {
1049     return NULL;
1050   }
1051 }
1052 
1053 // General purpose hook into Java code, run once when the VM is initialized.
1054 // The Java library method itself may be changed independently from the VM.
1055 static void call_postVMInitHook(TRAPS) {
1056   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1057   instanceKlassHandle klass (THREAD, k);
1058   if (klass.not_null()) {
1059     JavaValue result(T_VOID);
1060     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1061                            vmSymbols::void_method_signature(),
1062                            CHECK);
1063   }
1064 }
1065 
1066 static void reset_vm_info_property(TRAPS) {
1067   // the vm info string
1068   ResourceMark rm(THREAD);
1069   const char *vm_info = VM_Version::vm_info_string();
1070 
1071   // java.lang.System class
1072   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1073   instanceKlassHandle klass (THREAD, k);
1074 
1075   // setProperty arguments
1076   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1077   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1078 
1079   // return value
1080   JavaValue r(T_OBJECT);
1081 
1082   // public static String setProperty(String key, String value);
1083   JavaCalls::call_static(&r,
1084                          klass,
1085                          vmSymbols::setProperty_name(),
1086                          vmSymbols::string_string_string_signature(),
1087                          key_str,
1088                          value_str,
1089                          CHECK);
1090 }
1091 
1092 
1093 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1094                                     bool daemon, TRAPS) {
1095   assert(thread_group.not_null(), "thread group should be specified");
1096   assert(threadObj() == NULL, "should only create Java thread object once");
1097 
1098   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1099   instanceKlassHandle klass (THREAD, k);
1100   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1101 
1102   java_lang_Thread::set_thread(thread_oop(), this);
1103   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1104   set_threadObj(thread_oop());
1105 
1106   JavaValue result(T_VOID);
1107   if (thread_name != NULL) {
1108     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1109     // Thread gets assigned specified name and null target
1110     JavaCalls::call_special(&result,
1111                             thread_oop,
1112                             klass,
1113                             vmSymbols::object_initializer_name(),
1114                             vmSymbols::threadgroup_string_void_signature(),
1115                             thread_group, // Argument 1
1116                             name,         // Argument 2
1117                             THREAD);
1118   } else {
1119     // Thread gets assigned name "Thread-nnn" and null target
1120     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1121     JavaCalls::call_special(&result,
1122                             thread_oop,
1123                             klass,
1124                             vmSymbols::object_initializer_name(),
1125                             vmSymbols::threadgroup_runnable_void_signature(),
1126                             thread_group, // Argument 1
1127                             Handle(),     // Argument 2
1128                             THREAD);
1129   }
1130 
1131 
1132   if (daemon) {
1133     java_lang_Thread::set_daemon(thread_oop());
1134   }
1135 
1136   if (HAS_PENDING_EXCEPTION) {
1137     return;
1138   }
1139 
1140   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1141   Handle threadObj(THREAD, this->threadObj());
1142 
1143   JavaCalls::call_special(&result,
1144                           thread_group,
1145                           group,
1146                           vmSymbols::add_method_name(),
1147                           vmSymbols::thread_void_signature(),
1148                           threadObj,          // Arg 1
1149                           THREAD);
1150 }
1151 
1152 // NamedThread --  non-JavaThread subclasses with multiple
1153 // uniquely named instances should derive from this.
1154 NamedThread::NamedThread() : Thread() {
1155   _name = NULL;
1156   _processed_thread = NULL;
1157   _gc_id = GCId::undefined();
1158 }
1159 
1160 NamedThread::~NamedThread() {
1161   if (_name != NULL) {
1162     FREE_C_HEAP_ARRAY(char, _name);
1163     _name = NULL;
1164   }
1165 }
1166 
1167 void NamedThread::set_name(const char* format, ...) {
1168   guarantee(_name == NULL, "Only get to set name once.");
1169   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1170   guarantee(_name != NULL, "alloc failure");
1171   va_list ap;
1172   va_start(ap, format);
1173   jio_vsnprintf(_name, max_name_len, format, ap);
1174   va_end(ap);
1175 }
1176 
1177 void NamedThread::initialize_named_thread() {
1178   set_native_thread_name(name());
1179 }
1180 
1181 void NamedThread::print_on(outputStream* st) const {
1182   st->print("\"%s\" ", name());
1183   Thread::print_on(st);
1184   st->cr();
1185 }
1186 
1187 
1188 // ======= WatcherThread ========
1189 
1190 // The watcher thread exists to simulate timer interrupts.  It should
1191 // be replaced by an abstraction over whatever native support for
1192 // timer interrupts exists on the platform.
1193 
1194 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1195 bool WatcherThread::_startable = false;
1196 volatile bool  WatcherThread::_should_terminate = false;
1197 
1198 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1199   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1200   if (os::create_thread(this, os::watcher_thread)) {
1201     _watcher_thread = this;
1202 
1203     // Set the watcher thread to the highest OS priority which should not be
1204     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1205     // is created. The only normal thread using this priority is the reference
1206     // handler thread, which runs for very short intervals only.
1207     // If the VMThread's priority is not lower than the WatcherThread profiling
1208     // will be inaccurate.
1209     os::set_priority(this, MaxPriority);
1210     if (!DisableStartThread) {
1211       os::start_thread(this);
1212     }
1213   }
1214 }
1215 
1216 int WatcherThread::sleep() const {
1217   // The WatcherThread does not participate in the safepoint protocol
1218   // for the PeriodicTask_lock because it is not a JavaThread.
1219   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1220 
1221   if (_should_terminate) {
1222     // check for termination before we do any housekeeping or wait
1223     return 0;  // we did not sleep.
1224   }
1225 
1226   // remaining will be zero if there are no tasks,
1227   // causing the WatcherThread to sleep until a task is
1228   // enrolled
1229   int remaining = PeriodicTask::time_to_wait();
1230   int time_slept = 0;
1231 
1232   // we expect this to timeout - we only ever get unparked when
1233   // we should terminate or when a new task has been enrolled
1234   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1235 
1236   jlong time_before_loop = os::javaTimeNanos();
1237 
1238   while (true) {
1239     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1240                                             remaining);
1241     jlong now = os::javaTimeNanos();
1242 
1243     if (remaining == 0) {
1244       // if we didn't have any tasks we could have waited for a long time
1245       // consider the time_slept zero and reset time_before_loop
1246       time_slept = 0;
1247       time_before_loop = now;
1248     } else {
1249       // need to recalculate since we might have new tasks in _tasks
1250       time_slept = (int) ((now - time_before_loop) / 1000000);
1251     }
1252 
1253     // Change to task list or spurious wakeup of some kind
1254     if (timedout || _should_terminate) {
1255       break;
1256     }
1257 
1258     remaining = PeriodicTask::time_to_wait();
1259     if (remaining == 0) {
1260       // Last task was just disenrolled so loop around and wait until
1261       // another task gets enrolled
1262       continue;
1263     }
1264 
1265     remaining -= time_slept;
1266     if (remaining <= 0) {
1267       break;
1268     }
1269   }
1270 
1271   return time_slept;
1272 }
1273 
1274 void WatcherThread::run() {
1275   assert(this == watcher_thread(), "just checking");
1276 
1277   this->record_stack_base_and_size();
1278   this->set_native_thread_name(this->name());
1279   this->set_active_handles(JNIHandleBlock::allocate_block());
1280   while (true) {
1281     assert(watcher_thread() == Thread::current(), "thread consistency check");
1282     assert(watcher_thread() == this, "thread consistency check");
1283 
1284     // Calculate how long it'll be until the next PeriodicTask work
1285     // should be done, and sleep that amount of time.
1286     int time_waited = sleep();
1287 
1288     if (is_error_reported()) {
1289       // A fatal error has happened, the error handler(VMError::report_and_die)
1290       // should abort JVM after creating an error log file. However in some
1291       // rare cases, the error handler itself might deadlock. Here we try to
1292       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1293       //
1294       // This code is in WatcherThread because WatcherThread wakes up
1295       // periodically so the fatal error handler doesn't need to do anything;
1296       // also because the WatcherThread is less likely to crash than other
1297       // threads.
1298 
1299       for (;;) {
1300         if (!ShowMessageBoxOnError
1301             && (OnError == NULL || OnError[0] == '\0')
1302             && Arguments::abort_hook() == NULL) {
1303           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1304           fdStream err(defaultStream::output_fd());
1305           err.print_raw_cr("# [ timer expired, abort... ]");
1306           // skip atexit/vm_exit/vm_abort hooks
1307           os::die();
1308         }
1309 
1310         // Wake up 5 seconds later, the fatal handler may reset OnError or
1311         // ShowMessageBoxOnError when it is ready to abort.
1312         os::sleep(this, 5 * 1000, false);
1313       }
1314     }
1315 
1316     if (_should_terminate) {
1317       // check for termination before posting the next tick
1318       break;
1319     }
1320 
1321     PeriodicTask::real_time_tick(time_waited);
1322   }
1323 
1324   // Signal that it is terminated
1325   {
1326     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1327     _watcher_thread = NULL;
1328     Terminator_lock->notify();
1329   }
1330 }
1331 
1332 void WatcherThread::start() {
1333   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1334 
1335   if (watcher_thread() == NULL && _startable) {
1336     _should_terminate = false;
1337     // Create the single instance of WatcherThread
1338     new WatcherThread();
1339   }
1340 }
1341 
1342 void WatcherThread::make_startable() {
1343   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1344   _startable = true;
1345 }
1346 
1347 void WatcherThread::stop() {
1348   {
1349     // Follow normal safepoint aware lock enter protocol since the
1350     // WatcherThread is stopped by another JavaThread.
1351     MutexLocker ml(PeriodicTask_lock);
1352     _should_terminate = true;
1353 
1354     WatcherThread* watcher = watcher_thread();
1355     if (watcher != NULL) {
1356       // unpark the WatcherThread so it can see that it should terminate
1357       watcher->unpark();
1358     }
1359   }
1360 
1361   MutexLocker mu(Terminator_lock);
1362 
1363   while (watcher_thread() != NULL) {
1364     // This wait should make safepoint checks, wait without a timeout,
1365     // and wait as a suspend-equivalent condition.
1366     //
1367     // Note: If the FlatProfiler is running, then this thread is waiting
1368     // for the WatcherThread to terminate and the WatcherThread, via the
1369     // FlatProfiler task, is waiting for the external suspend request on
1370     // this thread to complete. wait_for_ext_suspend_completion() will
1371     // eventually timeout, but that takes time. Making this wait a
1372     // suspend-equivalent condition solves that timeout problem.
1373     //
1374     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1375                           Mutex::_as_suspend_equivalent_flag);
1376   }
1377 }
1378 
1379 void WatcherThread::unpark() {
1380   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1381   PeriodicTask_lock->notify();
1382 }
1383 
1384 void WatcherThread::print_on(outputStream* st) const {
1385   st->print("\"%s\" ", name());
1386   Thread::print_on(st);
1387   st->cr();
1388 }
1389 
1390 // ======= JavaThread ========
1391 
1392 #if INCLUDE_JVMCI
1393 
1394 jlong* JavaThread::_jvmci_old_thread_counters;
1395 
1396 bool jvmci_counters_include(JavaThread* thread) {
1397   oop threadObj = thread->threadObj();
1398   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1399 }
1400 
1401 void JavaThread::collect_counters(typeArrayOop array) {
1402   if (JVMCICounterSize > 0) {
1403     MutexLocker tl(Threads_lock);
1404     for (int i = 0; i < array->length(); i++) {
1405       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1406     }
1407     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1408       if (jvmci_counters_include(tp)) {
1409         for (int i = 0; i < array->length(); i++) {
1410           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1411         }
1412       }
1413     }
1414   }
1415 }
1416 
1417 #endif // INCLUDE_JVMCI
1418 
1419 // A JavaThread is a normal Java thread
1420 
1421 void JavaThread::initialize() {
1422   // Initialize fields
1423 
1424   set_saved_exception_pc(NULL);
1425   set_threadObj(NULL);
1426   _anchor.clear();
1427   set_entry_point(NULL);
1428   set_jni_functions(jni_functions());
1429   set_callee_target(NULL);
1430   set_vm_result(NULL);
1431   set_vm_result_2(NULL);
1432   set_vframe_array_head(NULL);
1433   set_vframe_array_last(NULL);
1434   set_deferred_locals(NULL);
1435   set_deopt_mark(NULL);
1436   set_deopt_compiled_method(NULL);
1437   clear_must_deopt_id();
1438   set_monitor_chunks(NULL);
1439   set_next(NULL);
1440   set_thread_state(_thread_new);
1441   _terminated = _not_terminated;
1442   _privileged_stack_top = NULL;
1443   _array_for_gc = NULL;
1444   _suspend_equivalent = false;
1445   _in_deopt_handler = 0;
1446   _doing_unsafe_access = false;
1447   _stack_guard_state = stack_guard_unused;
1448 #if INCLUDE_JVMCI
1449   _pending_monitorenter = false;
1450   _pending_deoptimization = -1;
1451   _pending_failed_speculation = NULL;
1452   _pending_transfer_to_interpreter = false;
1453   _adjusting_comp_level = false;
1454   _jvmci._alternate_call_target = NULL;
1455   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1456   if (JVMCICounterSize > 0) {
1457     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1458     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1459   } else {
1460     _jvmci_counters = NULL;
1461   }
1462 #endif // INCLUDE_JVMCI
1463   _reserved_stack_activation = NULL;  // stack base not known yet
1464   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1465   _exception_pc  = 0;
1466   _exception_handler_pc = 0;
1467   _is_method_handle_return = 0;
1468   _jvmti_thread_state= NULL;
1469   _should_post_on_exceptions_flag = JNI_FALSE;
1470   _jvmti_get_loaded_classes_closure = NULL;
1471   _interp_only_mode    = 0;
1472   _special_runtime_exit_condition = _no_async_condition;
1473   _pending_async_exception = NULL;
1474   _thread_stat = NULL;
1475   _thread_stat = new ThreadStatistics();
1476   _blocked_on_compilation = false;
1477   _jni_active_critical = 0;
1478   _pending_jni_exception_check_fn = NULL;
1479   _do_not_unlock_if_synchronized = false;
1480   _cached_monitor_info = NULL;
1481   _parker = Parker::Allocate(this);
1482 
1483 #ifndef PRODUCT
1484   _jmp_ring_index = 0;
1485   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1486     record_jump(NULL, NULL, NULL, 0);
1487   }
1488 #endif // PRODUCT
1489 
1490   set_thread_profiler(NULL);
1491   if (FlatProfiler::is_active()) {
1492     // This is where we would decide to either give each thread it's own profiler
1493     // or use one global one from FlatProfiler,
1494     // or up to some count of the number of profiled threads, etc.
1495     ThreadProfiler* pp = new ThreadProfiler();
1496     pp->engage();
1497     set_thread_profiler(pp);
1498   }
1499 
1500   // Setup safepoint state info for this thread
1501   ThreadSafepointState::create(this);
1502 
1503   debug_only(_java_call_counter = 0);
1504 
1505   // JVMTI PopFrame support
1506   _popframe_condition = popframe_inactive;
1507   _popframe_preserved_args = NULL;
1508   _popframe_preserved_args_size = 0;
1509   _frames_to_pop_failed_realloc = 0;
1510 
1511   pd_initialize();
1512 }
1513 
1514 #if INCLUDE_ALL_GCS
1515 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1516 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1517 #endif // INCLUDE_ALL_GCS
1518 
1519 JavaThread::JavaThread(bool is_attaching_via_jni) :
1520                        Thread()
1521 #if INCLUDE_ALL_GCS
1522                        , _satb_mark_queue(&_satb_mark_queue_set),
1523                        _dirty_card_queue(&_dirty_card_queue_set)
1524 #endif // INCLUDE_ALL_GCS
1525 {
1526   initialize();
1527   if (is_attaching_via_jni) {
1528     _jni_attach_state = _attaching_via_jni;
1529   } else {
1530     _jni_attach_state = _not_attaching_via_jni;
1531   }
1532   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1533 }
1534 
1535 bool JavaThread::reguard_stack(address cur_sp) {
1536   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1537       && _stack_guard_state != stack_guard_reserved_disabled) {
1538     return true; // Stack already guarded or guard pages not needed.
1539   }
1540 
1541   if (register_stack_overflow()) {
1542     // For those architectures which have separate register and
1543     // memory stacks, we must check the register stack to see if
1544     // it has overflowed.
1545     return false;
1546   }
1547 
1548   // Java code never executes within the yellow zone: the latter is only
1549   // there to provoke an exception during stack banging.  If java code
1550   // is executing there, either StackShadowPages should be larger, or
1551   // some exception code in c1, c2 or the interpreter isn't unwinding
1552   // when it should.
1553   guarantee(cur_sp > stack_reserved_zone_base(),
1554             "not enough space to reguard - increase StackShadowPages");
1555   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1556     enable_stack_yellow_reserved_zone();
1557     if (reserved_stack_activation() != stack_base()) {
1558       set_reserved_stack_activation(stack_base());
1559     }
1560   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1561     set_reserved_stack_activation(stack_base());
1562     enable_stack_reserved_zone();
1563   }
1564   return true;
1565 }
1566 
1567 bool JavaThread::reguard_stack(void) {
1568   return reguard_stack(os::current_stack_pointer());
1569 }
1570 
1571 
1572 void JavaThread::block_if_vm_exited() {
1573   if (_terminated == _vm_exited) {
1574     // _vm_exited is set at safepoint, and Threads_lock is never released
1575     // we will block here forever
1576     Threads_lock->lock_without_safepoint_check();
1577     ShouldNotReachHere();
1578   }
1579 }
1580 
1581 
1582 // Remove this ifdef when C1 is ported to the compiler interface.
1583 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1584 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1585 
1586 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1587                        Thread()
1588 #if INCLUDE_ALL_GCS
1589                        , _satb_mark_queue(&_satb_mark_queue_set),
1590                        _dirty_card_queue(&_dirty_card_queue_set)
1591 #endif // INCLUDE_ALL_GCS
1592 {
1593   initialize();
1594   _jni_attach_state = _not_attaching_via_jni;
1595   set_entry_point(entry_point);
1596   // Create the native thread itself.
1597   // %note runtime_23
1598   os::ThreadType thr_type = os::java_thread;
1599   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1600                                                      os::java_thread;
1601   os::create_thread(this, thr_type, stack_sz);
1602   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1603   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1604   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1605   // the exception consists of creating the exception object & initializing it, initialization
1606   // will leave the VM via a JavaCall and then all locks must be unlocked).
1607   //
1608   // The thread is still suspended when we reach here. Thread must be explicit started
1609   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1610   // by calling Threads:add. The reason why this is not done here, is because the thread
1611   // object must be fully initialized (take a look at JVM_Start)
1612 }
1613 
1614 JavaThread::~JavaThread() {
1615 
1616   // JSR166 -- return the parker to the free list
1617   Parker::Release(_parker);
1618   _parker = NULL;
1619 
1620   // Free any remaining  previous UnrollBlock
1621   vframeArray* old_array = vframe_array_last();
1622 
1623   if (old_array != NULL) {
1624     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1625     old_array->set_unroll_block(NULL);
1626     delete old_info;
1627     delete old_array;
1628   }
1629 
1630   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1631   if (deferred != NULL) {
1632     // This can only happen if thread is destroyed before deoptimization occurs.
1633     assert(deferred->length() != 0, "empty array!");
1634     do {
1635       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1636       deferred->remove_at(0);
1637       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1638       delete dlv;
1639     } while (deferred->length() != 0);
1640     delete deferred;
1641   }
1642 
1643   // All Java related clean up happens in exit
1644   ThreadSafepointState::destroy(this);
1645   if (_thread_profiler != NULL) delete _thread_profiler;
1646   if (_thread_stat != NULL) delete _thread_stat;
1647 
1648 #if INCLUDE_JVMCI
1649   if (JVMCICounterSize > 0) {
1650     if (jvmci_counters_include(this)) {
1651       for (int i = 0; i < JVMCICounterSize; i++) {
1652         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1653       }
1654     }
1655     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1656   }
1657 #endif // INCLUDE_JVMCI
1658 }
1659 
1660 
1661 // The first routine called by a new Java thread
1662 void JavaThread::run() {
1663   // initialize thread-local alloc buffer related fields
1664   this->initialize_tlab();
1665 
1666   // used to test validity of stack trace backs
1667   this->record_base_of_stack_pointer();
1668 
1669   // Record real stack base and size.
1670   this->record_stack_base_and_size();
1671 
1672   this->create_stack_guard_pages();
1673 
1674   this->cache_global_variables();
1675 
1676   // Thread is now sufficient initialized to be handled by the safepoint code as being
1677   // in the VM. Change thread state from _thread_new to _thread_in_vm
1678   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1679 
1680   assert(JavaThread::current() == this, "sanity check");
1681   assert(!Thread::current()->owns_locks(), "sanity check");
1682 
1683   DTRACE_THREAD_PROBE(start, this);
1684 
1685   // This operation might block. We call that after all safepoint checks for a new thread has
1686   // been completed.
1687   this->set_active_handles(JNIHandleBlock::allocate_block());
1688 
1689   if (JvmtiExport::should_post_thread_life()) {
1690     JvmtiExport::post_thread_start(this);
1691   }
1692 
1693   EventThreadStart event;
1694   if (event.should_commit()) {
1695     event.set_thread(THREAD_TRACE_ID(this));
1696     event.commit();
1697   }
1698 
1699   // We call another function to do the rest so we are sure that the stack addresses used
1700   // from there will be lower than the stack base just computed
1701   thread_main_inner();
1702 
1703   // Note, thread is no longer valid at this point!
1704 }
1705 
1706 
1707 void JavaThread::thread_main_inner() {
1708   assert(JavaThread::current() == this, "sanity check");
1709   assert(this->threadObj() != NULL, "just checking");
1710 
1711   // Execute thread entry point unless this thread has a pending exception
1712   // or has been stopped before starting.
1713   // Note: Due to JVM_StopThread we can have pending exceptions already!
1714   if (!this->has_pending_exception() &&
1715       !java_lang_Thread::is_stillborn(this->threadObj())) {
1716     {
1717       ResourceMark rm(this);
1718       this->set_native_thread_name(this->get_thread_name());
1719     }
1720     HandleMark hm(this);
1721     this->entry_point()(this, this);
1722   }
1723 
1724   DTRACE_THREAD_PROBE(stop, this);
1725 
1726   this->exit(false);
1727   delete this;
1728 }
1729 
1730 
1731 static void ensure_join(JavaThread* thread) {
1732   // We do not need to grap the Threads_lock, since we are operating on ourself.
1733   Handle threadObj(thread, thread->threadObj());
1734   assert(threadObj.not_null(), "java thread object must exist");
1735   ObjectLocker lock(threadObj, thread);
1736   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1737   thread->clear_pending_exception();
1738   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1739   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1740   // Clear the native thread instance - this makes isAlive return false and allows the join()
1741   // to complete once we've done the notify_all below
1742   java_lang_Thread::set_thread(threadObj(), NULL);
1743   lock.notify_all(thread);
1744   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1745   thread->clear_pending_exception();
1746 }
1747 
1748 
1749 // For any new cleanup additions, please check to see if they need to be applied to
1750 // cleanup_failed_attach_current_thread as well.
1751 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1752   assert(this == JavaThread::current(), "thread consistency check");
1753 
1754   HandleMark hm(this);
1755   Handle uncaught_exception(this, this->pending_exception());
1756   this->clear_pending_exception();
1757   Handle threadObj(this, this->threadObj());
1758   assert(threadObj.not_null(), "Java thread object should be created");
1759 
1760   if (get_thread_profiler() != NULL) {
1761     get_thread_profiler()->disengage();
1762     ResourceMark rm;
1763     get_thread_profiler()->print(get_thread_name());
1764   }
1765 
1766 
1767   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1768   {
1769     EXCEPTION_MARK;
1770 
1771     CLEAR_PENDING_EXCEPTION;
1772   }
1773   if (!destroy_vm) {
1774     if (uncaught_exception.not_null()) {
1775       EXCEPTION_MARK;
1776       // Call method Thread.dispatchUncaughtException().
1777       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1778       JavaValue result(T_VOID);
1779       JavaCalls::call_virtual(&result,
1780                               threadObj, thread_klass,
1781                               vmSymbols::dispatchUncaughtException_name(),
1782                               vmSymbols::throwable_void_signature(),
1783                               uncaught_exception,
1784                               THREAD);
1785       if (HAS_PENDING_EXCEPTION) {
1786         ResourceMark rm(this);
1787         jio_fprintf(defaultStream::error_stream(),
1788                     "\nException: %s thrown from the UncaughtExceptionHandler"
1789                     " in thread \"%s\"\n",
1790                     pending_exception()->klass()->external_name(),
1791                     get_thread_name());
1792         CLEAR_PENDING_EXCEPTION;
1793       }
1794     }
1795 
1796     // Called before the java thread exit since we want to read info
1797     // from java_lang_Thread object
1798     EventThreadEnd event;
1799     if (event.should_commit()) {
1800       event.set_thread(THREAD_TRACE_ID(this));
1801       event.commit();
1802     }
1803 
1804     // Call after last event on thread
1805     EVENT_THREAD_EXIT(this);
1806 
1807     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1808     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1809     // is deprecated anyhow.
1810     if (!is_Compiler_thread()) {
1811       int count = 3;
1812       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1813         EXCEPTION_MARK;
1814         JavaValue result(T_VOID);
1815         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1816         JavaCalls::call_virtual(&result,
1817                                 threadObj, thread_klass,
1818                                 vmSymbols::exit_method_name(),
1819                                 vmSymbols::void_method_signature(),
1820                                 THREAD);
1821         CLEAR_PENDING_EXCEPTION;
1822       }
1823     }
1824     // notify JVMTI
1825     if (JvmtiExport::should_post_thread_life()) {
1826       JvmtiExport::post_thread_end(this);
1827     }
1828 
1829     // We have notified the agents that we are exiting, before we go on,
1830     // we must check for a pending external suspend request and honor it
1831     // in order to not surprise the thread that made the suspend request.
1832     while (true) {
1833       {
1834         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1835         if (!is_external_suspend()) {
1836           set_terminated(_thread_exiting);
1837           ThreadService::current_thread_exiting(this);
1838           break;
1839         }
1840         // Implied else:
1841         // Things get a little tricky here. We have a pending external
1842         // suspend request, but we are holding the SR_lock so we
1843         // can't just self-suspend. So we temporarily drop the lock
1844         // and then self-suspend.
1845       }
1846 
1847       ThreadBlockInVM tbivm(this);
1848       java_suspend_self();
1849 
1850       // We're done with this suspend request, but we have to loop around
1851       // and check again. Eventually we will get SR_lock without a pending
1852       // external suspend request and will be able to mark ourselves as
1853       // exiting.
1854     }
1855     // no more external suspends are allowed at this point
1856   } else {
1857     // before_exit() has already posted JVMTI THREAD_END events
1858   }
1859 
1860   // Notify waiters on thread object. This has to be done after exit() is called
1861   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1862   // group should have the destroyed bit set before waiters are notified).
1863   ensure_join(this);
1864   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1865 
1866   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1867   // held by this thread must be released. The spec does not distinguish
1868   // between JNI-acquired and regular Java monitors. We can only see
1869   // regular Java monitors here if monitor enter-exit matching is broken.
1870   //
1871   // Optionally release any monitors for regular JavaThread exits. This
1872   // is provided as a work around for any bugs in monitor enter-exit
1873   // matching. This can be expensive so it is not enabled by default.
1874   //
1875   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1876   // ObjectSynchronizer::release_monitors_owned_by_thread().
1877   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1878     // Sanity check even though JNI DetachCurrentThread() would have
1879     // returned JNI_ERR if there was a Java frame. JavaThread exit
1880     // should be done executing Java code by the time we get here.
1881     assert(!this->has_last_Java_frame(),
1882            "should not have a Java frame when detaching or exiting");
1883     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1884     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1885   }
1886 
1887   // These things needs to be done while we are still a Java Thread. Make sure that thread
1888   // is in a consistent state, in case GC happens
1889   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1890 
1891   if (active_handles() != NULL) {
1892     JNIHandleBlock* block = active_handles();
1893     set_active_handles(NULL);
1894     JNIHandleBlock::release_block(block);
1895   }
1896 
1897   if (free_handle_block() != NULL) {
1898     JNIHandleBlock* block = free_handle_block();
1899     set_free_handle_block(NULL);
1900     JNIHandleBlock::release_block(block);
1901   }
1902 
1903   // These have to be removed while this is still a valid thread.
1904   remove_stack_guard_pages();
1905 
1906   if (UseTLAB) {
1907     tlab().make_parsable(true);  // retire TLAB
1908   }
1909 
1910   if (JvmtiEnv::environments_might_exist()) {
1911     JvmtiExport::cleanup_thread(this);
1912   }
1913 
1914   // We must flush any deferred card marks before removing a thread from
1915   // the list of active threads.
1916   Universe::heap()->flush_deferred_store_barrier(this);
1917   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1918 
1919 #if INCLUDE_ALL_GCS
1920   // We must flush the G1-related buffers before removing a thread
1921   // from the list of active threads. We must do this after any deferred
1922   // card marks have been flushed (above) so that any entries that are
1923   // added to the thread's dirty card queue as a result are not lost.
1924   if (UseG1GC) {
1925     flush_barrier_queues();
1926   }
1927 #endif // INCLUDE_ALL_GCS
1928 
1929   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1930     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1931     os::current_thread_id());
1932 
1933   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1934   Threads::remove(this);
1935 }
1936 
1937 #if INCLUDE_ALL_GCS
1938 // Flush G1-related queues.
1939 void JavaThread::flush_barrier_queues() {
1940   satb_mark_queue().flush();
1941   dirty_card_queue().flush();
1942 }
1943 
1944 void JavaThread::initialize_queues() {
1945   assert(!SafepointSynchronize::is_at_safepoint(),
1946          "we should not be at a safepoint");
1947 
1948   SATBMarkQueue& satb_queue = satb_mark_queue();
1949   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1950   // The SATB queue should have been constructed with its active
1951   // field set to false.
1952   assert(!satb_queue.is_active(), "SATB queue should not be active");
1953   assert(satb_queue.is_empty(), "SATB queue should be empty");
1954   // If we are creating the thread during a marking cycle, we should
1955   // set the active field of the SATB queue to true.
1956   if (satb_queue_set.is_active()) {
1957     satb_queue.set_active(true);
1958   }
1959 
1960   DirtyCardQueue& dirty_queue = dirty_card_queue();
1961   // The dirty card queue should have been constructed with its
1962   // active field set to true.
1963   assert(dirty_queue.is_active(), "dirty card queue should be active");
1964 }
1965 #endif // INCLUDE_ALL_GCS
1966 
1967 void JavaThread::cleanup_failed_attach_current_thread() {
1968   if (get_thread_profiler() != NULL) {
1969     get_thread_profiler()->disengage();
1970     ResourceMark rm;
1971     get_thread_profiler()->print(get_thread_name());
1972   }
1973 
1974   if (active_handles() != NULL) {
1975     JNIHandleBlock* block = active_handles();
1976     set_active_handles(NULL);
1977     JNIHandleBlock::release_block(block);
1978   }
1979 
1980   if (free_handle_block() != NULL) {
1981     JNIHandleBlock* block = free_handle_block();
1982     set_free_handle_block(NULL);
1983     JNIHandleBlock::release_block(block);
1984   }
1985 
1986   // These have to be removed while this is still a valid thread.
1987   remove_stack_guard_pages();
1988 
1989   if (UseTLAB) {
1990     tlab().make_parsable(true);  // retire TLAB, if any
1991   }
1992 
1993 #if INCLUDE_ALL_GCS
1994   if (UseG1GC) {
1995     flush_barrier_queues();
1996   }
1997 #endif // INCLUDE_ALL_GCS
1998 
1999   Threads::remove(this);
2000   delete this;
2001 }
2002 
2003 
2004 
2005 
2006 JavaThread* JavaThread::active() {
2007   Thread* thread = Thread::current();
2008   if (thread->is_Java_thread()) {
2009     return (JavaThread*) thread;
2010   } else {
2011     assert(thread->is_VM_thread(), "this must be a vm thread");
2012     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2013     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2014     assert(ret->is_Java_thread(), "must be a Java thread");
2015     return ret;
2016   }
2017 }
2018 
2019 bool JavaThread::is_lock_owned(address adr) const {
2020   if (Thread::is_lock_owned(adr)) return true;
2021 
2022   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2023     if (chunk->contains(adr)) return true;
2024   }
2025 
2026   return false;
2027 }
2028 
2029 
2030 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2031   chunk->set_next(monitor_chunks());
2032   set_monitor_chunks(chunk);
2033 }
2034 
2035 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2036   guarantee(monitor_chunks() != NULL, "must be non empty");
2037   if (monitor_chunks() == chunk) {
2038     set_monitor_chunks(chunk->next());
2039   } else {
2040     MonitorChunk* prev = monitor_chunks();
2041     while (prev->next() != chunk) prev = prev->next();
2042     prev->set_next(chunk->next());
2043   }
2044 }
2045 
2046 // JVM support.
2047 
2048 // Note: this function shouldn't block if it's called in
2049 // _thread_in_native_trans state (such as from
2050 // check_special_condition_for_native_trans()).
2051 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2052 
2053   if (has_last_Java_frame() && has_async_condition()) {
2054     // If we are at a polling page safepoint (not a poll return)
2055     // then we must defer async exception because live registers
2056     // will be clobbered by the exception path. Poll return is
2057     // ok because the call we a returning from already collides
2058     // with exception handling registers and so there is no issue.
2059     // (The exception handling path kills call result registers but
2060     //  this is ok since the exception kills the result anyway).
2061 
2062     if (is_at_poll_safepoint()) {
2063       // if the code we are returning to has deoptimized we must defer
2064       // the exception otherwise live registers get clobbered on the
2065       // exception path before deoptimization is able to retrieve them.
2066       //
2067       RegisterMap map(this, false);
2068       frame caller_fr = last_frame().sender(&map);
2069       assert(caller_fr.is_compiled_frame(), "what?");
2070       if (caller_fr.is_deoptimized_frame()) {
2071         log_info(exceptions)("deferred async exception at compiled safepoint");
2072         return;
2073       }
2074     }
2075   }
2076 
2077   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2078   if (condition == _no_async_condition) {
2079     // Conditions have changed since has_special_runtime_exit_condition()
2080     // was called:
2081     // - if we were here only because of an external suspend request,
2082     //   then that was taken care of above (or cancelled) so we are done
2083     // - if we were here because of another async request, then it has
2084     //   been cleared between the has_special_runtime_exit_condition()
2085     //   and now so again we are done
2086     return;
2087   }
2088 
2089   // Check for pending async. exception
2090   if (_pending_async_exception != NULL) {
2091     // Only overwrite an already pending exception, if it is not a threadDeath.
2092     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2093 
2094       // We cannot call Exceptions::_throw(...) here because we cannot block
2095       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2096 
2097       if (log_is_enabled(Info, exceptions)) {
2098         ResourceMark rm;
2099         outputStream* logstream = Log(exceptions)::info_stream();
2100         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2101           if (has_last_Java_frame()) {
2102             frame f = last_frame();
2103            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2104           }
2105         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2106       }
2107       _pending_async_exception = NULL;
2108       clear_has_async_exception();
2109     }
2110   }
2111 
2112   if (check_unsafe_error &&
2113       condition == _async_unsafe_access_error && !has_pending_exception()) {
2114     condition = _no_async_condition;  // done
2115     switch (thread_state()) {
2116     case _thread_in_vm: {
2117       JavaThread* THREAD = this;
2118       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2119     }
2120     case _thread_in_native: {
2121       ThreadInVMfromNative tiv(this);
2122       JavaThread* THREAD = this;
2123       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2124     }
2125     case _thread_in_Java: {
2126       ThreadInVMfromJava tiv(this);
2127       JavaThread* THREAD = this;
2128       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2129     }
2130     default:
2131       ShouldNotReachHere();
2132     }
2133   }
2134 
2135   assert(condition == _no_async_condition || has_pending_exception() ||
2136          (!check_unsafe_error && condition == _async_unsafe_access_error),
2137          "must have handled the async condition, if no exception");
2138 }
2139 
2140 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2141   //
2142   // Check for pending external suspend. Internal suspend requests do
2143   // not use handle_special_runtime_exit_condition().
2144   // If JNIEnv proxies are allowed, don't self-suspend if the target
2145   // thread is not the current thread. In older versions of jdbx, jdbx
2146   // threads could call into the VM with another thread's JNIEnv so we
2147   // can be here operating on behalf of a suspended thread (4432884).
2148   bool do_self_suspend = is_external_suspend_with_lock();
2149   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2150     //
2151     // Because thread is external suspended the safepoint code will count
2152     // thread as at a safepoint. This can be odd because we can be here
2153     // as _thread_in_Java which would normally transition to _thread_blocked
2154     // at a safepoint. We would like to mark the thread as _thread_blocked
2155     // before calling java_suspend_self like all other callers of it but
2156     // we must then observe proper safepoint protocol. (We can't leave
2157     // _thread_blocked with a safepoint in progress). However we can be
2158     // here as _thread_in_native_trans so we can't use a normal transition
2159     // constructor/destructor pair because they assert on that type of
2160     // transition. We could do something like:
2161     //
2162     // JavaThreadState state = thread_state();
2163     // set_thread_state(_thread_in_vm);
2164     // {
2165     //   ThreadBlockInVM tbivm(this);
2166     //   java_suspend_self()
2167     // }
2168     // set_thread_state(_thread_in_vm_trans);
2169     // if (safepoint) block;
2170     // set_thread_state(state);
2171     //
2172     // but that is pretty messy. Instead we just go with the way the
2173     // code has worked before and note that this is the only path to
2174     // java_suspend_self that doesn't put the thread in _thread_blocked
2175     // mode.
2176 
2177     frame_anchor()->make_walkable(this);
2178     java_suspend_self();
2179 
2180     // We might be here for reasons in addition to the self-suspend request
2181     // so check for other async requests.
2182   }
2183 
2184   if (check_asyncs) {
2185     check_and_handle_async_exceptions();
2186   }
2187 }
2188 
2189 void JavaThread::send_thread_stop(oop java_throwable)  {
2190   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2191   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2192   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2193 
2194   // Do not throw asynchronous exceptions against the compiler thread
2195   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2196   if (!can_call_java()) return;
2197 
2198   {
2199     // Actually throw the Throwable against the target Thread - however
2200     // only if there is no thread death exception installed already.
2201     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2202       // If the topmost frame is a runtime stub, then we are calling into
2203       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2204       // must deoptimize the caller before continuing, as the compiled  exception handler table
2205       // may not be valid
2206       if (has_last_Java_frame()) {
2207         frame f = last_frame();
2208         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2209           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2210           RegisterMap reg_map(this, UseBiasedLocking);
2211           frame compiled_frame = f.sender(&reg_map);
2212           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2213             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2214           }
2215         }
2216       }
2217 
2218       // Set async. pending exception in thread.
2219       set_pending_async_exception(java_throwable);
2220 
2221       if (log_is_enabled(Info, exceptions)) {
2222          ResourceMark rm;
2223         log_info(exceptions)("Pending Async. exception installed of type: %s",
2224                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2225       }
2226       // for AbortVMOnException flag
2227       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2228     }
2229   }
2230 
2231 
2232   // Interrupt thread so it will wake up from a potential wait()
2233   Thread::interrupt(this);
2234 }
2235 
2236 // External suspension mechanism.
2237 //
2238 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2239 // to any VM_locks and it is at a transition
2240 // Self-suspension will happen on the transition out of the vm.
2241 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2242 //
2243 // Guarantees on return:
2244 //   + Target thread will not execute any new bytecode (that's why we need to
2245 //     force a safepoint)
2246 //   + Target thread will not enter any new monitors
2247 //
2248 void JavaThread::java_suspend() {
2249   { MutexLocker mu(Threads_lock);
2250     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2251       return;
2252     }
2253   }
2254 
2255   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2256     if (!is_external_suspend()) {
2257       // a racing resume has cancelled us; bail out now
2258       return;
2259     }
2260 
2261     // suspend is done
2262     uint32_t debug_bits = 0;
2263     // Warning: is_ext_suspend_completed() may temporarily drop the
2264     // SR_lock to allow the thread to reach a stable thread state if
2265     // it is currently in a transient thread state.
2266     if (is_ext_suspend_completed(false /* !called_by_wait */,
2267                                  SuspendRetryDelay, &debug_bits)) {
2268       return;
2269     }
2270   }
2271 
2272   VM_ForceSafepoint vm_suspend;
2273   VMThread::execute(&vm_suspend);
2274 }
2275 
2276 // Part II of external suspension.
2277 // A JavaThread self suspends when it detects a pending external suspend
2278 // request. This is usually on transitions. It is also done in places
2279 // where continuing to the next transition would surprise the caller,
2280 // e.g., monitor entry.
2281 //
2282 // Returns the number of times that the thread self-suspended.
2283 //
2284 // Note: DO NOT call java_suspend_self() when you just want to block current
2285 //       thread. java_suspend_self() is the second stage of cooperative
2286 //       suspension for external suspend requests and should only be used
2287 //       to complete an external suspend request.
2288 //
2289 int JavaThread::java_suspend_self() {
2290   int ret = 0;
2291 
2292   // we are in the process of exiting so don't suspend
2293   if (is_exiting()) {
2294     clear_external_suspend();
2295     return ret;
2296   }
2297 
2298   assert(_anchor.walkable() ||
2299          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2300          "must have walkable stack");
2301 
2302   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2303 
2304   assert(!this->is_ext_suspended(),
2305          "a thread trying to self-suspend should not already be suspended");
2306 
2307   if (this->is_suspend_equivalent()) {
2308     // If we are self-suspending as a result of the lifting of a
2309     // suspend equivalent condition, then the suspend_equivalent
2310     // flag is not cleared until we set the ext_suspended flag so
2311     // that wait_for_ext_suspend_completion() returns consistent
2312     // results.
2313     this->clear_suspend_equivalent();
2314   }
2315 
2316   // A racing resume may have cancelled us before we grabbed SR_lock
2317   // above. Or another external suspend request could be waiting for us
2318   // by the time we return from SR_lock()->wait(). The thread
2319   // that requested the suspension may already be trying to walk our
2320   // stack and if we return now, we can change the stack out from under
2321   // it. This would be a "bad thing (TM)" and cause the stack walker
2322   // to crash. We stay self-suspended until there are no more pending
2323   // external suspend requests.
2324   while (is_external_suspend()) {
2325     ret++;
2326     this->set_ext_suspended();
2327 
2328     // _ext_suspended flag is cleared by java_resume()
2329     while (is_ext_suspended()) {
2330       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2331     }
2332   }
2333 
2334   return ret;
2335 }
2336 
2337 #ifdef ASSERT
2338 // verify the JavaThread has not yet been published in the Threads::list, and
2339 // hence doesn't need protection from concurrent access at this stage
2340 void JavaThread::verify_not_published() {
2341   if (!Threads_lock->owned_by_self()) {
2342     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2343     assert(!Threads::includes(this),
2344            "java thread shouldn't have been published yet!");
2345   } else {
2346     assert(!Threads::includes(this),
2347            "java thread shouldn't have been published yet!");
2348   }
2349 }
2350 #endif
2351 
2352 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2353 // progress or when _suspend_flags is non-zero.
2354 // Current thread needs to self-suspend if there is a suspend request and/or
2355 // block if a safepoint is in progress.
2356 // Async exception ISN'T checked.
2357 // Note only the ThreadInVMfromNative transition can call this function
2358 // directly and when thread state is _thread_in_native_trans
2359 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2360   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2361 
2362   JavaThread *curJT = JavaThread::current();
2363   bool do_self_suspend = thread->is_external_suspend();
2364 
2365   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2366 
2367   // If JNIEnv proxies are allowed, don't self-suspend if the target
2368   // thread is not the current thread. In older versions of jdbx, jdbx
2369   // threads could call into the VM with another thread's JNIEnv so we
2370   // can be here operating on behalf of a suspended thread (4432884).
2371   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2372     JavaThreadState state = thread->thread_state();
2373 
2374     // We mark this thread_blocked state as a suspend-equivalent so
2375     // that a caller to is_ext_suspend_completed() won't be confused.
2376     // The suspend-equivalent state is cleared by java_suspend_self().
2377     thread->set_suspend_equivalent();
2378 
2379     // If the safepoint code sees the _thread_in_native_trans state, it will
2380     // wait until the thread changes to other thread state. There is no
2381     // guarantee on how soon we can obtain the SR_lock and complete the
2382     // self-suspend request. It would be a bad idea to let safepoint wait for
2383     // too long. Temporarily change the state to _thread_blocked to
2384     // let the VM thread know that this thread is ready for GC. The problem
2385     // of changing thread state is that safepoint could happen just after
2386     // java_suspend_self() returns after being resumed, and VM thread will
2387     // see the _thread_blocked state. We must check for safepoint
2388     // after restoring the state and make sure we won't leave while a safepoint
2389     // is in progress.
2390     thread->set_thread_state(_thread_blocked);
2391     thread->java_suspend_self();
2392     thread->set_thread_state(state);
2393     // Make sure new state is seen by VM thread
2394     if (os::is_MP()) {
2395       if (UseMembar) {
2396         // Force a fence between the write above and read below
2397         OrderAccess::fence();
2398       } else {
2399         // Must use this rather than serialization page in particular on Windows
2400         InterfaceSupport::serialize_memory(thread);
2401       }
2402     }
2403   }
2404 
2405   if (SafepointSynchronize::do_call_back()) {
2406     // If we are safepointing, then block the caller which may not be
2407     // the same as the target thread (see above).
2408     SafepointSynchronize::block(curJT);
2409   }
2410 
2411   if (thread->is_deopt_suspend()) {
2412     thread->clear_deopt_suspend();
2413     RegisterMap map(thread, false);
2414     frame f = thread->last_frame();
2415     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2416       f = f.sender(&map);
2417     }
2418     if (f.id() == thread->must_deopt_id()) {
2419       thread->clear_must_deopt_id();
2420       f.deoptimize(thread);
2421     } else {
2422       fatal("missed deoptimization!");
2423     }
2424   }
2425 }
2426 
2427 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2428 // progress or when _suspend_flags is non-zero.
2429 // Current thread needs to self-suspend if there is a suspend request and/or
2430 // block if a safepoint is in progress.
2431 // Also check for pending async exception (not including unsafe access error).
2432 // Note only the native==>VM/Java barriers can call this function and when
2433 // thread state is _thread_in_native_trans.
2434 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2435   check_safepoint_and_suspend_for_native_trans(thread);
2436 
2437   if (thread->has_async_exception()) {
2438     // We are in _thread_in_native_trans state, don't handle unsafe
2439     // access error since that may block.
2440     thread->check_and_handle_async_exceptions(false);
2441   }
2442 }
2443 
2444 // This is a variant of the normal
2445 // check_special_condition_for_native_trans with slightly different
2446 // semantics for use by critical native wrappers.  It does all the
2447 // normal checks but also performs the transition back into
2448 // thread_in_Java state.  This is required so that critical natives
2449 // can potentially block and perform a GC if they are the last thread
2450 // exiting the GCLocker.
2451 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2452   check_special_condition_for_native_trans(thread);
2453 
2454   // Finish the transition
2455   thread->set_thread_state(_thread_in_Java);
2456 
2457   if (thread->do_critical_native_unlock()) {
2458     ThreadInVMfromJavaNoAsyncException tiv(thread);
2459     GCLocker::unlock_critical(thread);
2460     thread->clear_critical_native_unlock();
2461   }
2462 }
2463 
2464 // We need to guarantee the Threads_lock here, since resumes are not
2465 // allowed during safepoint synchronization
2466 // Can only resume from an external suspension
2467 void JavaThread::java_resume() {
2468   assert_locked_or_safepoint(Threads_lock);
2469 
2470   // Sanity check: thread is gone, has started exiting or the thread
2471   // was not externally suspended.
2472   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2473     return;
2474   }
2475 
2476   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2477 
2478   clear_external_suspend();
2479 
2480   if (is_ext_suspended()) {
2481     clear_ext_suspended();
2482     SR_lock()->notify_all();
2483   }
2484 }
2485 
2486 size_t JavaThread::_stack_red_zone_size = 0;
2487 size_t JavaThread::_stack_yellow_zone_size = 0;
2488 size_t JavaThread::_stack_reserved_zone_size = 0;
2489 size_t JavaThread::_stack_shadow_zone_size = 0;
2490 
2491 void JavaThread::create_stack_guard_pages() {
2492   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2493   address low_addr = stack_end();
2494   size_t len = stack_guard_zone_size();
2495 
2496   int allocate = os::allocate_stack_guard_pages();
2497   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2498 
2499   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2500     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2501     return;
2502   }
2503 
2504   if (os::guard_memory((char *) low_addr, len)) {
2505     _stack_guard_state = stack_guard_enabled;
2506   } else {
2507     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2508       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2509     if (os::uncommit_memory((char *) low_addr, len)) {
2510       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2511     }
2512     return;
2513   }
2514 
2515   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2516     PTR_FORMAT "-" PTR_FORMAT ".",
2517     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2518 
2519 }
2520 
2521 void JavaThread::remove_stack_guard_pages() {
2522   assert(Thread::current() == this, "from different thread");
2523   if (_stack_guard_state == stack_guard_unused) return;
2524   address low_addr = stack_end();
2525   size_t len = stack_guard_zone_size();
2526 
2527   if (os::allocate_stack_guard_pages()) {
2528     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2529       _stack_guard_state = stack_guard_unused;
2530     } else {
2531       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2532         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2533       return;
2534     }
2535   } else {
2536     if (_stack_guard_state == stack_guard_unused) return;
2537     if (os::unguard_memory((char *) low_addr, len)) {
2538       _stack_guard_state = stack_guard_unused;
2539     } else {
2540       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2541         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2542       return;
2543     }
2544   }
2545 
2546   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2547     PTR_FORMAT "-" PTR_FORMAT ".",
2548     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2549 
2550 }
2551 
2552 void JavaThread::enable_stack_reserved_zone() {
2553   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2554   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2555 
2556   // The base notation is from the stack's point of view, growing downward.
2557   // We need to adjust it to work correctly with guard_memory()
2558   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2559 
2560   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2561   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2562 
2563   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2564     _stack_guard_state = stack_guard_enabled;
2565   } else {
2566     warning("Attempt to guard stack reserved zone failed.");
2567   }
2568   enable_register_stack_guard();
2569 }
2570 
2571 void JavaThread::disable_stack_reserved_zone() {
2572   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2573   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2574 
2575   // Simply return if called for a thread that does not use guard pages.
2576   if (_stack_guard_state == stack_guard_unused) return;
2577 
2578   // The base notation is from the stack's point of view, growing downward.
2579   // We need to adjust it to work correctly with guard_memory()
2580   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2581 
2582   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2583     _stack_guard_state = stack_guard_reserved_disabled;
2584   } else {
2585     warning("Attempt to unguard stack reserved zone failed.");
2586   }
2587   disable_register_stack_guard();
2588 }
2589 
2590 void JavaThread::enable_stack_yellow_reserved_zone() {
2591   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2592   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2593 
2594   // The base notation is from the stacks point of view, growing downward.
2595   // We need to adjust it to work correctly with guard_memory()
2596   address base = stack_red_zone_base();
2597 
2598   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2599   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2600 
2601   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2602     _stack_guard_state = stack_guard_enabled;
2603   } else {
2604     warning("Attempt to guard stack yellow zone failed.");
2605   }
2606   enable_register_stack_guard();
2607 }
2608 
2609 void JavaThread::disable_stack_yellow_reserved_zone() {
2610   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2611   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2612 
2613   // Simply return if called for a thread that does not use guard pages.
2614   if (_stack_guard_state == stack_guard_unused) return;
2615 
2616   // The base notation is from the stacks point of view, growing downward.
2617   // We need to adjust it to work correctly with guard_memory()
2618   address base = stack_red_zone_base();
2619 
2620   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2621     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2622   } else {
2623     warning("Attempt to unguard stack yellow zone failed.");
2624   }
2625   disable_register_stack_guard();
2626 }
2627 
2628 void JavaThread::enable_stack_red_zone() {
2629   // The base notation is from the stacks point of view, growing downward.
2630   // We need to adjust it to work correctly with guard_memory()
2631   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2632   address base = stack_red_zone_base() - stack_red_zone_size();
2633 
2634   guarantee(base < stack_base(), "Error calculating stack red zone");
2635   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2636 
2637   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2638     warning("Attempt to guard stack red zone failed.");
2639   }
2640 }
2641 
2642 void JavaThread::disable_stack_red_zone() {
2643   // The base notation is from the stacks point of view, growing downward.
2644   // We need to adjust it to work correctly with guard_memory()
2645   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2646   address base = stack_red_zone_base() - stack_red_zone_size();
2647   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2648     warning("Attempt to unguard stack red zone failed.");
2649   }
2650 }
2651 
2652 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2653   // ignore is there is no stack
2654   if (!has_last_Java_frame()) return;
2655   // traverse the stack frames. Starts from top frame.
2656   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2657     frame* fr = fst.current();
2658     f(fr, fst.register_map());
2659   }
2660 }
2661 
2662 
2663 #ifndef PRODUCT
2664 // Deoptimization
2665 // Function for testing deoptimization
2666 void JavaThread::deoptimize() {
2667   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2668   StackFrameStream fst(this, UseBiasedLocking);
2669   bool deopt = false;           // Dump stack only if a deopt actually happens.
2670   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2671   // Iterate over all frames in the thread and deoptimize
2672   for (; !fst.is_done(); fst.next()) {
2673     if (fst.current()->can_be_deoptimized()) {
2674 
2675       if (only_at) {
2676         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2677         // consists of comma or carriage return separated numbers so
2678         // search for the current bci in that string.
2679         address pc = fst.current()->pc();
2680         nmethod* nm =  (nmethod*) fst.current()->cb();
2681         ScopeDesc* sd = nm->scope_desc_at(pc);
2682         char buffer[8];
2683         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2684         size_t len = strlen(buffer);
2685         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2686         while (found != NULL) {
2687           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2688               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2689             // Check that the bci found is bracketed by terminators.
2690             break;
2691           }
2692           found = strstr(found + 1, buffer);
2693         }
2694         if (!found) {
2695           continue;
2696         }
2697       }
2698 
2699       if (DebugDeoptimization && !deopt) {
2700         deopt = true; // One-time only print before deopt
2701         tty->print_cr("[BEFORE Deoptimization]");
2702         trace_frames();
2703         trace_stack();
2704       }
2705       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2706     }
2707   }
2708 
2709   if (DebugDeoptimization && deopt) {
2710     tty->print_cr("[AFTER Deoptimization]");
2711     trace_frames();
2712   }
2713 }
2714 
2715 
2716 // Make zombies
2717 void JavaThread::make_zombies() {
2718   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2719     if (fst.current()->can_be_deoptimized()) {
2720       // it is a Java nmethod
2721       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2722       nm->make_not_entrant();
2723     }
2724   }
2725 }
2726 #endif // PRODUCT
2727 
2728 
2729 void JavaThread::deoptimized_wrt_marked_nmethods() {
2730   if (!has_last_Java_frame()) return;
2731   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2732   StackFrameStream fst(this, UseBiasedLocking);
2733   for (; !fst.is_done(); fst.next()) {
2734     if (fst.current()->should_be_deoptimized()) {
2735       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2736     }
2737   }
2738 }
2739 
2740 
2741 // If the caller is a NamedThread, then remember, in the current scope,
2742 // the given JavaThread in its _processed_thread field.
2743 class RememberProcessedThread: public StackObj {
2744   NamedThread* _cur_thr;
2745  public:
2746   RememberProcessedThread(JavaThread* jthr) {
2747     Thread* thread = Thread::current();
2748     if (thread->is_Named_thread()) {
2749       _cur_thr = (NamedThread *)thread;
2750       _cur_thr->set_processed_thread(jthr);
2751     } else {
2752       _cur_thr = NULL;
2753     }
2754   }
2755 
2756   ~RememberProcessedThread() {
2757     if (_cur_thr) {
2758       _cur_thr->set_processed_thread(NULL);
2759     }
2760   }
2761 };
2762 
2763 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2764   // Verify that the deferred card marks have been flushed.
2765   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2766 
2767   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2768   // since there may be more than one thread using each ThreadProfiler.
2769 
2770   // Traverse the GCHandles
2771   Thread::oops_do(f, cf);
2772 
2773   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2774 
2775   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2776          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2777 
2778   if (has_last_Java_frame()) {
2779     // Record JavaThread to GC thread
2780     RememberProcessedThread rpt(this);
2781 
2782     // Traverse the privileged stack
2783     if (_privileged_stack_top != NULL) {
2784       _privileged_stack_top->oops_do(f);
2785     }
2786 
2787     // traverse the registered growable array
2788     if (_array_for_gc != NULL) {
2789       for (int index = 0; index < _array_for_gc->length(); index++) {
2790         f->do_oop(_array_for_gc->adr_at(index));
2791       }
2792     }
2793 
2794     // Traverse the monitor chunks
2795     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2796       chunk->oops_do(f);
2797     }
2798 
2799     // Traverse the execution stack
2800     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2801       fst.current()->oops_do(f, cf, fst.register_map());
2802     }
2803   }
2804 
2805   // callee_target is never live across a gc point so NULL it here should
2806   // it still contain a methdOop.
2807 
2808   set_callee_target(NULL);
2809 
2810   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2811   // If we have deferred set_locals there might be oops waiting to be
2812   // written
2813   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2814   if (list != NULL) {
2815     for (int i = 0; i < list->length(); i++) {
2816       list->at(i)->oops_do(f);
2817     }
2818   }
2819 
2820   // Traverse instance variables at the end since the GC may be moving things
2821   // around using this function
2822   f->do_oop((oop*) &_threadObj);
2823   f->do_oop((oop*) &_vm_result);
2824   f->do_oop((oop*) &_exception_oop);
2825   f->do_oop((oop*) &_pending_async_exception);
2826 
2827   if (jvmti_thread_state() != NULL) {
2828     jvmti_thread_state()->oops_do(f);
2829   }
2830 }
2831 
2832 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2833   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2834          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2835 
2836   if (has_last_Java_frame()) {
2837     // Traverse the execution stack
2838     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2839       fst.current()->nmethods_do(cf);
2840     }
2841   }
2842 }
2843 
2844 void JavaThread::metadata_do(void f(Metadata*)) {
2845   if (has_last_Java_frame()) {
2846     // Traverse the execution stack to call f() on the methods in the stack
2847     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2848       fst.current()->metadata_do(f);
2849     }
2850   } else if (is_Compiler_thread()) {
2851     // need to walk ciMetadata in current compile tasks to keep alive.
2852     CompilerThread* ct = (CompilerThread*)this;
2853     if (ct->env() != NULL) {
2854       ct->env()->metadata_do(f);
2855     }
2856     if (ct->task() != NULL) {
2857       ct->task()->metadata_do(f);
2858     }
2859   }
2860 }
2861 
2862 // Printing
2863 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2864   switch (_thread_state) {
2865   case _thread_uninitialized:     return "_thread_uninitialized";
2866   case _thread_new:               return "_thread_new";
2867   case _thread_new_trans:         return "_thread_new_trans";
2868   case _thread_in_native:         return "_thread_in_native";
2869   case _thread_in_native_trans:   return "_thread_in_native_trans";
2870   case _thread_in_vm:             return "_thread_in_vm";
2871   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2872   case _thread_in_Java:           return "_thread_in_Java";
2873   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2874   case _thread_blocked:           return "_thread_blocked";
2875   case _thread_blocked_trans:     return "_thread_blocked_trans";
2876   default:                        return "unknown thread state";
2877   }
2878 }
2879 
2880 #ifndef PRODUCT
2881 void JavaThread::print_thread_state_on(outputStream *st) const {
2882   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2883 };
2884 void JavaThread::print_thread_state() const {
2885   print_thread_state_on(tty);
2886 }
2887 #endif // PRODUCT
2888 
2889 // Called by Threads::print() for VM_PrintThreads operation
2890 void JavaThread::print_on(outputStream *st) const {
2891   st->print_raw("\"");
2892   st->print_raw(get_thread_name());
2893   st->print_raw("\" ");
2894   oop thread_oop = threadObj();
2895   if (thread_oop != NULL) {
2896     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2897     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2898     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2899   }
2900   Thread::print_on(st);
2901   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2902   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2903   if (thread_oop != NULL) {
2904     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2905   }
2906 #ifndef PRODUCT
2907   print_thread_state_on(st);
2908   _safepoint_state->print_on(st);
2909 #endif // PRODUCT
2910   if (is_Compiler_thread()) {
2911     CompilerThread* ct = (CompilerThread*)this;
2912     if (ct->task() != NULL) {
2913       st->print("   Compiling: ");
2914       ct->task()->print(st, NULL, true, false);
2915     } else {
2916       st->print("   No compile task");
2917     }
2918     st->cr();
2919   }
2920 }
2921 
2922 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2923   st->print("%s", get_thread_name_string(buf, buflen));
2924 }
2925 
2926 // Called by fatal error handler. The difference between this and
2927 // JavaThread::print() is that we can't grab lock or allocate memory.
2928 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2929   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2930   oop thread_obj = threadObj();
2931   if (thread_obj != NULL) {
2932     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2933   }
2934   st->print(" [");
2935   st->print("%s", _get_thread_state_name(_thread_state));
2936   if (osthread()) {
2937     st->print(", id=%d", osthread()->thread_id());
2938   }
2939   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2940             p2i(stack_end()), p2i(stack_base()));
2941   st->print("]");
2942   return;
2943 }
2944 
2945 // Verification
2946 
2947 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2948 
2949 void JavaThread::verify() {
2950   // Verify oops in the thread.
2951   oops_do(&VerifyOopClosure::verify_oop, NULL);
2952 
2953   // Verify the stack frames.
2954   frames_do(frame_verify);
2955 }
2956 
2957 // CR 6300358 (sub-CR 2137150)
2958 // Most callers of this method assume that it can't return NULL but a
2959 // thread may not have a name whilst it is in the process of attaching to
2960 // the VM - see CR 6412693, and there are places where a JavaThread can be
2961 // seen prior to having it's threadObj set (eg JNI attaching threads and
2962 // if vm exit occurs during initialization). These cases can all be accounted
2963 // for such that this method never returns NULL.
2964 const char* JavaThread::get_thread_name() const {
2965 #ifdef ASSERT
2966   // early safepoints can hit while current thread does not yet have TLS
2967   if (!SafepointSynchronize::is_at_safepoint()) {
2968     Thread *cur = Thread::current();
2969     if (!(cur->is_Java_thread() && cur == this)) {
2970       // Current JavaThreads are allowed to get their own name without
2971       // the Threads_lock.
2972       assert_locked_or_safepoint(Threads_lock);
2973     }
2974   }
2975 #endif // ASSERT
2976   return get_thread_name_string();
2977 }
2978 
2979 // Returns a non-NULL representation of this thread's name, or a suitable
2980 // descriptive string if there is no set name
2981 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2982   const char* name_str;
2983   oop thread_obj = threadObj();
2984   if (thread_obj != NULL) {
2985     oop name = java_lang_Thread::name(thread_obj);
2986     if (name != NULL) {
2987       if (buf == NULL) {
2988         name_str = java_lang_String::as_utf8_string(name);
2989       } else {
2990         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2991       }
2992     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2993       name_str = "<no-name - thread is attaching>";
2994     } else {
2995       name_str = Thread::name();
2996     }
2997   } else {
2998     name_str = Thread::name();
2999   }
3000   assert(name_str != NULL, "unexpected NULL thread name");
3001   return name_str;
3002 }
3003 
3004 
3005 const char* JavaThread::get_threadgroup_name() const {
3006   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3007   oop thread_obj = threadObj();
3008   if (thread_obj != NULL) {
3009     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3010     if (thread_group != NULL) {
3011       // ThreadGroup.name can be null
3012       return java_lang_ThreadGroup::name(thread_group);
3013     }
3014   }
3015   return NULL;
3016 }
3017 
3018 const char* JavaThread::get_parent_name() const {
3019   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3020   oop thread_obj = threadObj();
3021   if (thread_obj != NULL) {
3022     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3023     if (thread_group != NULL) {
3024       oop parent = java_lang_ThreadGroup::parent(thread_group);
3025       if (parent != NULL) {
3026         // ThreadGroup.name can be null
3027         return java_lang_ThreadGroup::name(parent);
3028       }
3029     }
3030   }
3031   return NULL;
3032 }
3033 
3034 ThreadPriority JavaThread::java_priority() const {
3035   oop thr_oop = threadObj();
3036   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3037   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3038   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3039   return priority;
3040 }
3041 
3042 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3043 
3044   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3045   // Link Java Thread object <-> C++ Thread
3046 
3047   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3048   // and put it into a new Handle.  The Handle "thread_oop" can then
3049   // be used to pass the C++ thread object to other methods.
3050 
3051   // Set the Java level thread object (jthread) field of the
3052   // new thread (a JavaThread *) to C++ thread object using the
3053   // "thread_oop" handle.
3054 
3055   // Set the thread field (a JavaThread *) of the
3056   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3057 
3058   Handle thread_oop(Thread::current(),
3059                     JNIHandles::resolve_non_null(jni_thread));
3060   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3061          "must be initialized");
3062   set_threadObj(thread_oop());
3063   java_lang_Thread::set_thread(thread_oop(), this);
3064 
3065   if (prio == NoPriority) {
3066     prio = java_lang_Thread::priority(thread_oop());
3067     assert(prio != NoPriority, "A valid priority should be present");
3068   }
3069 
3070   // Push the Java priority down to the native thread; needs Threads_lock
3071   Thread::set_priority(this, prio);
3072 
3073   prepare_ext();
3074 
3075   // Add the new thread to the Threads list and set it in motion.
3076   // We must have threads lock in order to call Threads::add.
3077   // It is crucial that we do not block before the thread is
3078   // added to the Threads list for if a GC happens, then the java_thread oop
3079   // will not be visited by GC.
3080   Threads::add(this);
3081 }
3082 
3083 oop JavaThread::current_park_blocker() {
3084   // Support for JSR-166 locks
3085   oop thread_oop = threadObj();
3086   if (thread_oop != NULL &&
3087       JDK_Version::current().supports_thread_park_blocker()) {
3088     return java_lang_Thread::park_blocker(thread_oop);
3089   }
3090   return NULL;
3091 }
3092 
3093 
3094 void JavaThread::print_stack_on(outputStream* st) {
3095   if (!has_last_Java_frame()) return;
3096   ResourceMark rm;
3097   HandleMark   hm;
3098 
3099   RegisterMap reg_map(this);
3100   vframe* start_vf = last_java_vframe(&reg_map);
3101   int count = 0;
3102   for (vframe* f = start_vf; f; f = f->sender()) {
3103     if (f->is_java_frame()) {
3104       javaVFrame* jvf = javaVFrame::cast(f);
3105       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3106 
3107       // Print out lock information
3108       if (JavaMonitorsInStackTrace) {
3109         jvf->print_lock_info_on(st, count);
3110       }
3111     } else {
3112       // Ignore non-Java frames
3113     }
3114 
3115     // Bail-out case for too deep stacks
3116     count++;
3117     if (MaxJavaStackTraceDepth == count) return;
3118   }
3119 }
3120 
3121 
3122 // JVMTI PopFrame support
3123 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3124   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3125   if (in_bytes(size_in_bytes) != 0) {
3126     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3127     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3128     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3129   }
3130 }
3131 
3132 void* JavaThread::popframe_preserved_args() {
3133   return _popframe_preserved_args;
3134 }
3135 
3136 ByteSize JavaThread::popframe_preserved_args_size() {
3137   return in_ByteSize(_popframe_preserved_args_size);
3138 }
3139 
3140 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3141   int sz = in_bytes(popframe_preserved_args_size());
3142   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3143   return in_WordSize(sz / wordSize);
3144 }
3145 
3146 void JavaThread::popframe_free_preserved_args() {
3147   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3148   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3149   _popframe_preserved_args = NULL;
3150   _popframe_preserved_args_size = 0;
3151 }
3152 
3153 #ifndef PRODUCT
3154 
3155 void JavaThread::trace_frames() {
3156   tty->print_cr("[Describe stack]");
3157   int frame_no = 1;
3158   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3159     tty->print("  %d. ", frame_no++);
3160     fst.current()->print_value_on(tty, this);
3161     tty->cr();
3162   }
3163 }
3164 
3165 class PrintAndVerifyOopClosure: public OopClosure {
3166  protected:
3167   template <class T> inline void do_oop_work(T* p) {
3168     oop obj = oopDesc::load_decode_heap_oop(p);
3169     if (obj == NULL) return;
3170     tty->print(INTPTR_FORMAT ": ", p2i(p));
3171     if (obj->is_oop_or_null()) {
3172       if (obj->is_objArray()) {
3173         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3174       } else {
3175         obj->print();
3176       }
3177     } else {
3178       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3179     }
3180     tty->cr();
3181   }
3182  public:
3183   virtual void do_oop(oop* p) { do_oop_work(p); }
3184   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3185 };
3186 
3187 
3188 static void oops_print(frame* f, const RegisterMap *map) {
3189   PrintAndVerifyOopClosure print;
3190   f->print_value();
3191   f->oops_do(&print, NULL, (RegisterMap*)map);
3192 }
3193 
3194 // Print our all the locations that contain oops and whether they are
3195 // valid or not.  This useful when trying to find the oldest frame
3196 // where an oop has gone bad since the frame walk is from youngest to
3197 // oldest.
3198 void JavaThread::trace_oops() {
3199   tty->print_cr("[Trace oops]");
3200   frames_do(oops_print);
3201 }
3202 
3203 
3204 #ifdef ASSERT
3205 // Print or validate the layout of stack frames
3206 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3207   ResourceMark rm;
3208   PRESERVE_EXCEPTION_MARK;
3209   FrameValues values;
3210   int frame_no = 0;
3211   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3212     fst.current()->describe(values, ++frame_no);
3213     if (depth == frame_no) break;
3214   }
3215   if (validate_only) {
3216     values.validate();
3217   } else {
3218     tty->print_cr("[Describe stack layout]");
3219     values.print(this);
3220   }
3221 }
3222 #endif
3223 
3224 void JavaThread::trace_stack_from(vframe* start_vf) {
3225   ResourceMark rm;
3226   int vframe_no = 1;
3227   for (vframe* f = start_vf; f; f = f->sender()) {
3228     if (f->is_java_frame()) {
3229       javaVFrame::cast(f)->print_activation(vframe_no++);
3230     } else {
3231       f->print();
3232     }
3233     if (vframe_no > StackPrintLimit) {
3234       tty->print_cr("...<more frames>...");
3235       return;
3236     }
3237   }
3238 }
3239 
3240 
3241 void JavaThread::trace_stack() {
3242   if (!has_last_Java_frame()) return;
3243   ResourceMark rm;
3244   HandleMark   hm;
3245   RegisterMap reg_map(this);
3246   trace_stack_from(last_java_vframe(&reg_map));
3247 }
3248 
3249 
3250 #endif // PRODUCT
3251 
3252 
3253 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3254   assert(reg_map != NULL, "a map must be given");
3255   frame f = last_frame();
3256   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3257     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3258   }
3259   return NULL;
3260 }
3261 
3262 
3263 Klass* JavaThread::security_get_caller_class(int depth) {
3264   vframeStream vfst(this);
3265   vfst.security_get_caller_frame(depth);
3266   if (!vfst.at_end()) {
3267     return vfst.method()->method_holder();
3268   }
3269   return NULL;
3270 }
3271 
3272 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3273   assert(thread->is_Compiler_thread(), "must be compiler thread");
3274   CompileBroker::compiler_thread_loop();
3275 }
3276 
3277 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3278   NMethodSweeper::sweeper_loop();
3279 }
3280 
3281 // Create a CompilerThread
3282 CompilerThread::CompilerThread(CompileQueue* queue,
3283                                CompilerCounters* counters)
3284                                : JavaThread(&compiler_thread_entry) {
3285   _env   = NULL;
3286   _log   = NULL;
3287   _task  = NULL;
3288   _queue = queue;
3289   _counters = counters;
3290   _buffer_blob = NULL;
3291   _compiler = NULL;
3292 
3293 #ifndef PRODUCT
3294   _ideal_graph_printer = NULL;
3295 #endif
3296 }
3297 
3298 bool CompilerThread::can_call_java() const {
3299   return _compiler != NULL && _compiler->is_jvmci();
3300 }
3301 
3302 // Create sweeper thread
3303 CodeCacheSweeperThread::CodeCacheSweeperThread()
3304 : JavaThread(&sweeper_thread_entry) {
3305   _scanned_compiled_method = NULL;
3306 }
3307 
3308 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3309   JavaThread::oops_do(f, cf);
3310   if (_scanned_compiled_method != NULL && cf != NULL) {
3311     // Safepoints can occur when the sweeper is scanning an nmethod so
3312     // process it here to make sure it isn't unloaded in the middle of
3313     // a scan.
3314     cf->do_code_blob(_scanned_compiled_method);
3315   }
3316 }
3317 
3318 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3319   JavaThread::nmethods_do(cf);
3320   if (_scanned_compiled_method != NULL && cf != NULL) {
3321     // Safepoints can occur when the sweeper is scanning an nmethod so
3322     // process it here to make sure it isn't unloaded in the middle of
3323     // a scan.
3324     cf->do_code_blob(_scanned_compiled_method);
3325   }
3326 }
3327 
3328 
3329 // ======= Threads ========
3330 
3331 // The Threads class links together all active threads, and provides
3332 // operations over all threads.  It is protected by its own Mutex
3333 // lock, which is also used in other contexts to protect thread
3334 // operations from having the thread being operated on from exiting
3335 // and going away unexpectedly (e.g., safepoint synchronization)
3336 
3337 JavaThread* Threads::_thread_list = NULL;
3338 int         Threads::_number_of_threads = 0;
3339 int         Threads::_number_of_non_daemon_threads = 0;
3340 int         Threads::_return_code = 0;
3341 int         Threads::_thread_claim_parity = 0;
3342 size_t      JavaThread::_stack_size_at_create = 0;
3343 #ifdef ASSERT
3344 bool        Threads::_vm_complete = false;
3345 #endif
3346 
3347 // All JavaThreads
3348 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3349 
3350 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3351 void Threads::threads_do(ThreadClosure* tc) {
3352   assert_locked_or_safepoint(Threads_lock);
3353   // ALL_JAVA_THREADS iterates through all JavaThreads
3354   ALL_JAVA_THREADS(p) {
3355     tc->do_thread(p);
3356   }
3357   // Someday we could have a table or list of all non-JavaThreads.
3358   // For now, just manually iterate through them.
3359   tc->do_thread(VMThread::vm_thread());
3360   Universe::heap()->gc_threads_do(tc);
3361   WatcherThread *wt = WatcherThread::watcher_thread();
3362   // Strictly speaking, the following NULL check isn't sufficient to make sure
3363   // the data for WatcherThread is still valid upon being examined. However,
3364   // considering that WatchThread terminates when the VM is on the way to
3365   // exit at safepoint, the chance of the above is extremely small. The right
3366   // way to prevent termination of WatcherThread would be to acquire
3367   // Terminator_lock, but we can't do that without violating the lock rank
3368   // checking in some cases.
3369   if (wt != NULL) {
3370     tc->do_thread(wt);
3371   }
3372 
3373   // If CompilerThreads ever become non-JavaThreads, add them here
3374 }
3375 
3376 // The system initialization in the library has three phases.
3377 //
3378 // Phase 1: java.lang.System class initialization
3379 //     java.lang.System is a primordial class loaded and initialized
3380 //     by the VM early during startup.  java.lang.System.<clinit>
3381 //     only does registerNatives and keeps the rest of the class
3382 //     initialization work later until thread initialization completes.
3383 //
3384 //     System.initPhase1 initializes the system properties, the static
3385 //     fields in, out, and err. Set up java signal handlers, OS-specific
3386 //     system settings, and thread group of the main thread.
3387 static void call_initPhase1(TRAPS) {
3388   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3389   instanceKlassHandle klass (THREAD, k);
3390 
3391   JavaValue result(T_VOID);
3392   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3393                                          vmSymbols::void_method_signature(), CHECK);
3394 }
3395 
3396 // Phase 2. Module system initialization
3397 //     This will initialize the module system.  Only java.base classes
3398 //     can be loaded until phase 2 completes.
3399 //
3400 //     Call System.initPhase2 after the compiler initialization and jsr292
3401 //     classes get initialized because module initialization runs a lot of java
3402 //     code, that for performance reasons, should be compiled.  Also, this will
3403 //     enable the startup code to use lambda and other language features in this
3404 //     phase and onward.
3405 //
3406 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3407 static void call_initPhase2(TRAPS) {
3408   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3409   instanceKlassHandle klass (THREAD, k);
3410 
3411   JavaValue result(T_VOID);
3412   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3413                                          vmSymbols::void_method_signature(), CHECK);
3414   universe_post_module_init();
3415 }
3416 
3417 // Phase 3. final setup - set security manager, system class loader and TCCL
3418 //
3419 //     This will instantiate and set the security manager, set the system class
3420 //     loader as well as the thread context class loader.  The security manager
3421 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3422 //     other modules or the application's classpath.
3423 static void call_initPhase3(TRAPS) {
3424   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3425   instanceKlassHandle klass (THREAD, k);
3426 
3427   JavaValue result(T_VOID);
3428   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3429                                          vmSymbols::void_method_signature(), CHECK);
3430 }
3431 
3432 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3433   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3434 
3435   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3436     create_vm_init_libraries();
3437   }
3438 
3439   initialize_class(vmSymbols::java_lang_String(), CHECK);
3440 
3441   // Inject CompactStrings value after the static initializers for String ran.
3442   java_lang_String::set_compact_strings(CompactStrings);
3443 
3444   // Initialize java_lang.System (needed before creating the thread)
3445   initialize_class(vmSymbols::java_lang_System(), CHECK);
3446   // The VM creates & returns objects of this class. Make sure it's initialized.
3447   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3448   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3449   Handle thread_group = create_initial_thread_group(CHECK);
3450   Universe::set_main_thread_group(thread_group());
3451   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3452   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3453   main_thread->set_threadObj(thread_object);
3454   // Set thread status to running since main thread has
3455   // been started and running.
3456   java_lang_Thread::set_thread_status(thread_object,
3457                                       java_lang_Thread::RUNNABLE);
3458 
3459   // The VM creates objects of this class.
3460   initialize_class(vmSymbols::java_lang_reflect_Module(), CHECK);
3461 
3462   // The VM preresolves methods to these classes. Make sure that they get initialized
3463   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3464   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3465 
3466   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3467   call_initPhase1(CHECK);
3468 
3469   // get the Java runtime name after java.lang.System is initialized
3470   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3471   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3472 
3473   // an instance of OutOfMemory exception has been allocated earlier
3474   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3475   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3476   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3477   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3478   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3479   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3480   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3481   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3482 }
3483 
3484 void Threads::initialize_jsr292_core_classes(TRAPS) {
3485   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3486 
3487   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3488   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3489   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3490 }
3491 
3492 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3493   extern void JDK_Version_init();
3494 
3495   // Preinitialize version info.
3496   VM_Version::early_initialize();
3497 
3498   // Check version
3499   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3500 
3501   // Initialize library-based TLS
3502   ThreadLocalStorage::init();
3503 
3504   // Initialize the output stream module
3505   ostream_init();
3506 
3507   // Process java launcher properties.
3508   Arguments::process_sun_java_launcher_properties(args);
3509 
3510   // Initialize the os module
3511   os::init();
3512 
3513   // Record VM creation timing statistics
3514   TraceVmCreationTime create_vm_timer;
3515   create_vm_timer.start();
3516 
3517   // Initialize system properties.
3518   Arguments::init_system_properties();
3519 
3520   // So that JDK version can be used as a discriminator when parsing arguments
3521   JDK_Version_init();
3522 
3523   // Update/Initialize System properties after JDK version number is known
3524   Arguments::init_version_specific_system_properties();
3525 
3526   // Make sure to initialize log configuration *before* parsing arguments
3527   LogConfiguration::initialize(create_vm_timer.begin_time());
3528 
3529   // Parse arguments
3530   jint parse_result = Arguments::parse(args);
3531   if (parse_result != JNI_OK) return parse_result;
3532 
3533   os::init_before_ergo();
3534 
3535   jint ergo_result = Arguments::apply_ergo();
3536   if (ergo_result != JNI_OK) return ergo_result;
3537 
3538   // Final check of all ranges after ergonomics which may change values.
3539   if (!CommandLineFlagRangeList::check_ranges()) {
3540     return JNI_EINVAL;
3541   }
3542 
3543   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3544   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3545   if (!constraint_result) {
3546     return JNI_EINVAL;
3547   }
3548 
3549   CommandLineFlagWriteableList::mark_startup();
3550 
3551   if (PauseAtStartup) {
3552     os::pause();
3553   }
3554 
3555   HOTSPOT_VM_INIT_BEGIN();
3556 
3557   // Timing (must come after argument parsing)
3558   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3559 
3560   // Initialize the os module after parsing the args
3561   jint os_init_2_result = os::init_2();
3562   if (os_init_2_result != JNI_OK) return os_init_2_result;
3563 
3564   jint adjust_after_os_result = Arguments::adjust_after_os();
3565   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3566 
3567   // Initialize output stream logging
3568   ostream_init_log();
3569 
3570   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3571   // Must be before create_vm_init_agents()
3572   if (Arguments::init_libraries_at_startup()) {
3573     convert_vm_init_libraries_to_agents();
3574   }
3575 
3576   // Launch -agentlib/-agentpath and converted -Xrun agents
3577   if (Arguments::init_agents_at_startup()) {
3578     create_vm_init_agents();
3579   }
3580 
3581   // Initialize Threads state
3582   _thread_list = NULL;
3583   _number_of_threads = 0;
3584   _number_of_non_daemon_threads = 0;
3585 
3586   // Initialize global data structures and create system classes in heap
3587   vm_init_globals();
3588 
3589 #if INCLUDE_JVMCI
3590   if (JVMCICounterSize > 0) {
3591     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3592     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3593   } else {
3594     JavaThread::_jvmci_old_thread_counters = NULL;
3595   }
3596 #endif // INCLUDE_JVMCI
3597 
3598   // Attach the main thread to this os thread
3599   JavaThread* main_thread = new JavaThread();
3600   main_thread->set_thread_state(_thread_in_vm);
3601   main_thread->initialize_thread_current();
3602   // must do this before set_active_handles
3603   main_thread->record_stack_base_and_size();
3604   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3605 
3606   if (!main_thread->set_as_starting_thread()) {
3607     vm_shutdown_during_initialization(
3608                                       "Failed necessary internal allocation. Out of swap space");
3609     delete main_thread;
3610     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3611     return JNI_ENOMEM;
3612   }
3613 
3614   // Enable guard page *after* os::create_main_thread(), otherwise it would
3615   // crash Linux VM, see notes in os_linux.cpp.
3616   main_thread->create_stack_guard_pages();
3617 
3618   // Initialize Java-Level synchronization subsystem
3619   ObjectMonitor::Initialize();
3620 
3621   // Initialize global modules
3622   jint status = init_globals();
3623   if (status != JNI_OK) {
3624     delete main_thread;
3625     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3626     return status;
3627   }
3628 
3629   if (TRACE_INITIALIZE() != JNI_OK) {
3630     vm_exit_during_initialization("Failed to initialize tracing backend");
3631   }
3632 
3633   // Should be done after the heap is fully created
3634   main_thread->cache_global_variables();
3635 
3636   HandleMark hm;
3637 
3638   { MutexLocker mu(Threads_lock);
3639     Threads::add(main_thread);
3640   }
3641 
3642   // Any JVMTI raw monitors entered in onload will transition into
3643   // real raw monitor. VM is setup enough here for raw monitor enter.
3644   JvmtiExport::transition_pending_onload_raw_monitors();
3645 
3646   // Create the VMThread
3647   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3648 
3649   VMThread::create();
3650     Thread* vmthread = VMThread::vm_thread();
3651 
3652     if (!os::create_thread(vmthread, os::vm_thread)) {
3653       vm_exit_during_initialization("Cannot create VM thread. "
3654                                     "Out of system resources.");
3655     }
3656 
3657     // Wait for the VM thread to become ready, and VMThread::run to initialize
3658     // Monitors can have spurious returns, must always check another state flag
3659     {
3660       MutexLocker ml(Notify_lock);
3661       os::start_thread(vmthread);
3662       while (vmthread->active_handles() == NULL) {
3663         Notify_lock->wait();
3664       }
3665     }
3666   }
3667 
3668   assert(Universe::is_fully_initialized(), "not initialized");
3669   if (VerifyDuringStartup) {
3670     // Make sure we're starting with a clean slate.
3671     VM_Verify verify_op;
3672     VMThread::execute(&verify_op);
3673   }
3674 
3675   Thread* THREAD = Thread::current();
3676 
3677   // At this point, the Universe is initialized, but we have not executed
3678   // any byte code.  Now is a good time (the only time) to dump out the
3679   // internal state of the JVM for sharing.
3680   if (DumpSharedSpaces) {
3681     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3682     ShouldNotReachHere();
3683   }
3684 
3685   // Always call even when there are not JVMTI environments yet, since environments
3686   // may be attached late and JVMTI must track phases of VM execution
3687   JvmtiExport::enter_early_start_phase();
3688 
3689   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3690   JvmtiExport::post_early_vm_start();
3691 
3692   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3693 
3694   // We need this for ClassDataSharing - the initial vm.info property is set
3695   // with the default value of CDS "sharing" which may be reset through
3696   // command line options.
3697   reset_vm_info_property(CHECK_JNI_ERR);
3698 
3699   quicken_jni_functions();
3700 
3701   // No more stub generation allowed after that point.
3702   StubCodeDesc::freeze();
3703 
3704   // Set flag that basic initialization has completed. Used by exceptions and various
3705   // debug stuff, that does not work until all basic classes have been initialized.
3706   set_init_completed();
3707 
3708   LogConfiguration::post_initialize();
3709   Metaspace::post_initialize();
3710 
3711   HOTSPOT_VM_INIT_END();
3712 
3713   // record VM initialization completion time
3714 #if INCLUDE_MANAGEMENT
3715   Management::record_vm_init_completed();
3716 #endif // INCLUDE_MANAGEMENT
3717 
3718   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3719   // set_init_completed has just been called, causing exceptions not to be shortcut
3720   // anymore. We call vm_exit_during_initialization directly instead.
3721 
3722   // Initialize reference pending list locker
3723   bool needs_locker_thread = Universe::heap()->needs_reference_pending_list_locker_thread();
3724   ReferencePendingListLocker::initialize(needs_locker_thread, CHECK_JNI_ERR);
3725 
3726   // Signal Dispatcher needs to be started before VMInit event is posted
3727   os::signal_init();
3728 
3729   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3730   if (!DisableAttachMechanism) {
3731     AttachListener::vm_start();
3732     if (StartAttachListener || AttachListener::init_at_startup()) {
3733       AttachListener::init();
3734     }
3735   }
3736 
3737   // Launch -Xrun agents
3738   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3739   // back-end can launch with -Xdebug -Xrunjdwp.
3740   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3741     create_vm_init_libraries();
3742   }
3743 
3744   if (CleanChunkPoolAsync) {
3745     Chunk::start_chunk_pool_cleaner_task();
3746   }
3747 
3748   // initialize compiler(s)
3749 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3750   CompileBroker::compilation_init(CHECK_JNI_ERR);
3751 #endif
3752 
3753   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3754   // It is done after compilers are initialized, because otherwise compilations of
3755   // signature polymorphic MH intrinsics can be missed
3756   // (see SystemDictionary::find_method_handle_intrinsic).
3757   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3758 
3759   // This will initialize the module system.  Only java.base classes can be
3760   // loaded until phase 2 completes
3761   call_initPhase2(CHECK_JNI_ERR);
3762 
3763   // Always call even when there are not JVMTI environments yet, since environments
3764   // may be attached late and JVMTI must track phases of VM execution
3765   JvmtiExport::enter_start_phase();
3766 
3767   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3768   JvmtiExport::post_vm_start();
3769 
3770   // Final system initialization including security manager and system class loader
3771   call_initPhase3(CHECK_JNI_ERR);
3772 
3773 #ifdef INCLUDE_JVMCI
3774   if (EnableJVMCI && UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation)) {
3775     // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3776     // compilations via JVMCI will not actually block until JVMCI is initialized.
3777     JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3778   }
3779 #endif
3780   // cache the system class loader
3781   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3782 
3783   // Always call even when there are not JVMTI environments yet, since environments
3784   // may be attached late and JVMTI must track phases of VM execution
3785   JvmtiExport::enter_live_phase();
3786 
3787   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3788   JvmtiExport::post_vm_initialized();
3789 
3790   if (TRACE_START() != JNI_OK) {
3791     vm_exit_during_initialization("Failed to start tracing backend.");
3792   }
3793 
3794 #if INCLUDE_MANAGEMENT
3795   Management::initialize(THREAD);
3796 
3797   if (HAS_PENDING_EXCEPTION) {
3798     // management agent fails to start possibly due to
3799     // configuration problem and is responsible for printing
3800     // stack trace if appropriate. Simply exit VM.
3801     vm_exit(1);
3802   }
3803 #endif // INCLUDE_MANAGEMENT
3804 
3805   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3806   if (MemProfiling)                   MemProfiler::engage();
3807   StatSampler::engage();
3808   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3809 
3810   BiasedLocking::init();
3811 
3812 #if INCLUDE_RTM_OPT
3813   RTMLockingCounters::init();
3814 #endif
3815 
3816   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3817     call_postVMInitHook(THREAD);
3818     // The Java side of PostVMInitHook.run must deal with all
3819     // exceptions and provide means of diagnosis.
3820     if (HAS_PENDING_EXCEPTION) {
3821       CLEAR_PENDING_EXCEPTION;
3822     }
3823   }
3824 
3825   {
3826     MutexLocker ml(PeriodicTask_lock);
3827     // Make sure the WatcherThread can be started by WatcherThread::start()
3828     // or by dynamic enrollment.
3829     WatcherThread::make_startable();
3830     // Start up the WatcherThread if there are any periodic tasks
3831     // NOTE:  All PeriodicTasks should be registered by now. If they
3832     //   aren't, late joiners might appear to start slowly (we might
3833     //   take a while to process their first tick).
3834     if (PeriodicTask::num_tasks() > 0) {
3835       WatcherThread::start();
3836     }
3837   }
3838 
3839   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3840 
3841   create_vm_timer.end();
3842 #ifdef ASSERT
3843   _vm_complete = true;
3844 #endif
3845   return JNI_OK;
3846 }
3847 
3848 // type for the Agent_OnLoad and JVM_OnLoad entry points
3849 extern "C" {
3850   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3851 }
3852 // Find a command line agent library and return its entry point for
3853 //         -agentlib:  -agentpath:   -Xrun
3854 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3855 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3856                                     const char *on_load_symbols[],
3857                                     size_t num_symbol_entries) {
3858   OnLoadEntry_t on_load_entry = NULL;
3859   void *library = NULL;
3860 
3861   if (!agent->valid()) {
3862     char buffer[JVM_MAXPATHLEN];
3863     char ebuf[1024] = "";
3864     const char *name = agent->name();
3865     const char *msg = "Could not find agent library ";
3866 
3867     // First check to see if agent is statically linked into executable
3868     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3869       library = agent->os_lib();
3870     } else if (agent->is_absolute_path()) {
3871       library = os::dll_load(name, ebuf, sizeof ebuf);
3872       if (library == NULL) {
3873         const char *sub_msg = " in absolute path, with error: ";
3874         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3875         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3876         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3877         // If we can't find the agent, exit.
3878         vm_exit_during_initialization(buf, NULL);
3879         FREE_C_HEAP_ARRAY(char, buf);
3880       }
3881     } else {
3882       // Try to load the agent from the standard dll directory
3883       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3884                              name)) {
3885         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3886       }
3887       if (library == NULL) { // Try the local directory
3888         char ns[1] = {0};
3889         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3890           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3891         }
3892         if (library == NULL) {
3893           const char *sub_msg = " on the library path, with error: ";
3894           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3895           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3896           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3897           // If we can't find the agent, exit.
3898           vm_exit_during_initialization(buf, NULL);
3899           FREE_C_HEAP_ARRAY(char, buf);
3900         }
3901       }
3902     }
3903     agent->set_os_lib(library);
3904     agent->set_valid();
3905   }
3906 
3907   // Find the OnLoad function.
3908   on_load_entry =
3909     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3910                                                           false,
3911                                                           on_load_symbols,
3912                                                           num_symbol_entries));
3913   return on_load_entry;
3914 }
3915 
3916 // Find the JVM_OnLoad entry point
3917 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3918   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3919   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3920 }
3921 
3922 // Find the Agent_OnLoad entry point
3923 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3924   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3925   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3926 }
3927 
3928 // For backwards compatibility with -Xrun
3929 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3930 // treated like -agentpath:
3931 // Must be called before agent libraries are created
3932 void Threads::convert_vm_init_libraries_to_agents() {
3933   AgentLibrary* agent;
3934   AgentLibrary* next;
3935 
3936   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3937     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3938     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3939 
3940     // If there is an JVM_OnLoad function it will get called later,
3941     // otherwise see if there is an Agent_OnLoad
3942     if (on_load_entry == NULL) {
3943       on_load_entry = lookup_agent_on_load(agent);
3944       if (on_load_entry != NULL) {
3945         // switch it to the agent list -- so that Agent_OnLoad will be called,
3946         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3947         Arguments::convert_library_to_agent(agent);
3948       } else {
3949         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3950       }
3951     }
3952   }
3953 }
3954 
3955 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3956 // Invokes Agent_OnLoad
3957 // Called very early -- before JavaThreads exist
3958 void Threads::create_vm_init_agents() {
3959   extern struct JavaVM_ main_vm;
3960   AgentLibrary* agent;
3961 
3962   JvmtiExport::enter_onload_phase();
3963 
3964   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3965     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3966 
3967     if (on_load_entry != NULL) {
3968       // Invoke the Agent_OnLoad function
3969       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3970       if (err != JNI_OK) {
3971         vm_exit_during_initialization("agent library failed to init", agent->name());
3972       }
3973     } else {
3974       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3975     }
3976   }
3977   JvmtiExport::enter_primordial_phase();
3978 }
3979 
3980 extern "C" {
3981   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3982 }
3983 
3984 void Threads::shutdown_vm_agents() {
3985   // Send any Agent_OnUnload notifications
3986   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3987   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3988   extern struct JavaVM_ main_vm;
3989   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3990 
3991     // Find the Agent_OnUnload function.
3992     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3993                                                    os::find_agent_function(agent,
3994                                                    false,
3995                                                    on_unload_symbols,
3996                                                    num_symbol_entries));
3997 
3998     // Invoke the Agent_OnUnload function
3999     if (unload_entry != NULL) {
4000       JavaThread* thread = JavaThread::current();
4001       ThreadToNativeFromVM ttn(thread);
4002       HandleMark hm(thread);
4003       (*unload_entry)(&main_vm);
4004     }
4005   }
4006 }
4007 
4008 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4009 // Invokes JVM_OnLoad
4010 void Threads::create_vm_init_libraries() {
4011   extern struct JavaVM_ main_vm;
4012   AgentLibrary* agent;
4013 
4014   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4015     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4016 
4017     if (on_load_entry != NULL) {
4018       // Invoke the JVM_OnLoad function
4019       JavaThread* thread = JavaThread::current();
4020       ThreadToNativeFromVM ttn(thread);
4021       HandleMark hm(thread);
4022       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4023       if (err != JNI_OK) {
4024         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4025       }
4026     } else {
4027       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4028     }
4029   }
4030 }
4031 
4032 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4033   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4034 
4035   JavaThread* java_thread = NULL;
4036   // Sequential search for now.  Need to do better optimization later.
4037   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4038     oop tobj = thread->threadObj();
4039     if (!thread->is_exiting() &&
4040         tobj != NULL &&
4041         java_tid == java_lang_Thread::thread_id(tobj)) {
4042       java_thread = thread;
4043       break;
4044     }
4045   }
4046   return java_thread;
4047 }
4048 
4049 
4050 // Last thread running calls java.lang.Shutdown.shutdown()
4051 void JavaThread::invoke_shutdown_hooks() {
4052   HandleMark hm(this);
4053 
4054   // We could get here with a pending exception, if so clear it now.
4055   if (this->has_pending_exception()) {
4056     this->clear_pending_exception();
4057   }
4058 
4059   EXCEPTION_MARK;
4060   Klass* k =
4061     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4062                                       THREAD);
4063   if (k != NULL) {
4064     // SystemDictionary::resolve_or_null will return null if there was
4065     // an exception.  If we cannot load the Shutdown class, just don't
4066     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4067     // and finalizers (if runFinalizersOnExit is set) won't be run.
4068     // Note that if a shutdown hook was registered or runFinalizersOnExit
4069     // was called, the Shutdown class would have already been loaded
4070     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4071     instanceKlassHandle shutdown_klass (THREAD, k);
4072     JavaValue result(T_VOID);
4073     JavaCalls::call_static(&result,
4074                            shutdown_klass,
4075                            vmSymbols::shutdown_method_name(),
4076                            vmSymbols::void_method_signature(),
4077                            THREAD);
4078   }
4079   CLEAR_PENDING_EXCEPTION;
4080 }
4081 
4082 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4083 // the program falls off the end of main(). Another VM exit path is through
4084 // vm_exit() when the program calls System.exit() to return a value or when
4085 // there is a serious error in VM. The two shutdown paths are not exactly
4086 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4087 // and VM_Exit op at VM level.
4088 //
4089 // Shutdown sequence:
4090 //   + Shutdown native memory tracking if it is on
4091 //   + Wait until we are the last non-daemon thread to execute
4092 //     <-- every thing is still working at this moment -->
4093 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4094 //        shutdown hooks, run finalizers if finalization-on-exit
4095 //   + Call before_exit(), prepare for VM exit
4096 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4097 //        currently the only user of this mechanism is File.deleteOnExit())
4098 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4099 //        post thread end and vm death events to JVMTI,
4100 //        stop signal thread
4101 //   + Call JavaThread::exit(), it will:
4102 //      > release JNI handle blocks, remove stack guard pages
4103 //      > remove this thread from Threads list
4104 //     <-- no more Java code from this thread after this point -->
4105 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4106 //     the compiler threads at safepoint
4107 //     <-- do not use anything that could get blocked by Safepoint -->
4108 //   + Disable tracing at JNI/JVM barriers
4109 //   + Set _vm_exited flag for threads that are still running native code
4110 //   + Delete this thread
4111 //   + Call exit_globals()
4112 //      > deletes tty
4113 //      > deletes PerfMemory resources
4114 //   + Return to caller
4115 
4116 bool Threads::destroy_vm() {
4117   JavaThread* thread = JavaThread::current();
4118 
4119 #ifdef ASSERT
4120   _vm_complete = false;
4121 #endif
4122   // Wait until we are the last non-daemon thread to execute
4123   { MutexLocker nu(Threads_lock);
4124     while (Threads::number_of_non_daemon_threads() > 1)
4125       // This wait should make safepoint checks, wait without a timeout,
4126       // and wait as a suspend-equivalent condition.
4127       //
4128       // Note: If the FlatProfiler is running and this thread is waiting
4129       // for another non-daemon thread to finish, then the FlatProfiler
4130       // is waiting for the external suspend request on this thread to
4131       // complete. wait_for_ext_suspend_completion() will eventually
4132       // timeout, but that takes time. Making this wait a suspend-
4133       // equivalent condition solves that timeout problem.
4134       //
4135       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4136                          Mutex::_as_suspend_equivalent_flag);
4137   }
4138 
4139   // Hang forever on exit if we are reporting an error.
4140   if (ShowMessageBoxOnError && is_error_reported()) {
4141     os::infinite_sleep();
4142   }
4143   os::wait_for_keypress_at_exit();
4144 
4145   // run Java level shutdown hooks
4146   thread->invoke_shutdown_hooks();
4147 
4148   before_exit(thread);
4149 
4150   thread->exit(true);
4151 
4152   // Stop VM thread.
4153   {
4154     // 4945125 The vm thread comes to a safepoint during exit.
4155     // GC vm_operations can get caught at the safepoint, and the
4156     // heap is unparseable if they are caught. Grab the Heap_lock
4157     // to prevent this. The GC vm_operations will not be able to
4158     // queue until after the vm thread is dead. After this point,
4159     // we'll never emerge out of the safepoint before the VM exits.
4160 
4161     MutexLocker ml(Heap_lock);
4162 
4163     VMThread::wait_for_vm_thread_exit();
4164     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4165     VMThread::destroy();
4166   }
4167 
4168   // clean up ideal graph printers
4169 #if defined(COMPILER2) && !defined(PRODUCT)
4170   IdealGraphPrinter::clean_up();
4171 #endif
4172 
4173   // Now, all Java threads are gone except daemon threads. Daemon threads
4174   // running Java code or in VM are stopped by the Safepoint. However,
4175   // daemon threads executing native code are still running.  But they
4176   // will be stopped at native=>Java/VM barriers. Note that we can't
4177   // simply kill or suspend them, as it is inherently deadlock-prone.
4178 
4179   VM_Exit::set_vm_exited();
4180 
4181   notify_vm_shutdown();
4182 
4183   delete thread;
4184 
4185 #if INCLUDE_JVMCI
4186   if (JVMCICounterSize > 0) {
4187     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4188   }
4189 #endif
4190 
4191   // exit_globals() will delete tty
4192   exit_globals();
4193 
4194   LogConfiguration::finalize();
4195 
4196   return true;
4197 }
4198 
4199 
4200 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4201   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4202   return is_supported_jni_version(version);
4203 }
4204 
4205 
4206 jboolean Threads::is_supported_jni_version(jint version) {
4207   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4208   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4209   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4210   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4211   if (version == JNI_VERSION_9) return JNI_TRUE;
4212   return JNI_FALSE;
4213 }
4214 
4215 
4216 void Threads::add(JavaThread* p, bool force_daemon) {
4217   // The threads lock must be owned at this point
4218   assert_locked_or_safepoint(Threads_lock);
4219 
4220   // See the comment for this method in thread.hpp for its purpose and
4221   // why it is called here.
4222   p->initialize_queues();
4223   p->set_next(_thread_list);
4224   _thread_list = p;
4225   _number_of_threads++;
4226   oop threadObj = p->threadObj();
4227   bool daemon = true;
4228   // Bootstrapping problem: threadObj can be null for initial
4229   // JavaThread (or for threads attached via JNI)
4230   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4231     _number_of_non_daemon_threads++;
4232     daemon = false;
4233   }
4234 
4235   ThreadService::add_thread(p, daemon);
4236 
4237   // Possible GC point.
4238   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4239 }
4240 
4241 void Threads::remove(JavaThread* p) {
4242   // Extra scope needed for Thread_lock, so we can check
4243   // that we do not remove thread without safepoint code notice
4244   { MutexLocker ml(Threads_lock);
4245 
4246     assert(includes(p), "p must be present");
4247 
4248     JavaThread* current = _thread_list;
4249     JavaThread* prev    = NULL;
4250 
4251     while (current != p) {
4252       prev    = current;
4253       current = current->next();
4254     }
4255 
4256     if (prev) {
4257       prev->set_next(current->next());
4258     } else {
4259       _thread_list = p->next();
4260     }
4261     _number_of_threads--;
4262     oop threadObj = p->threadObj();
4263     bool daemon = true;
4264     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4265       _number_of_non_daemon_threads--;
4266       daemon = false;
4267 
4268       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4269       // on destroy_vm will wake up.
4270       if (number_of_non_daemon_threads() == 1) {
4271         Threads_lock->notify_all();
4272       }
4273     }
4274     ThreadService::remove_thread(p, daemon);
4275 
4276     // Make sure that safepoint code disregard this thread. This is needed since
4277     // the thread might mess around with locks after this point. This can cause it
4278     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4279     // of this thread since it is removed from the queue.
4280     p->set_terminated_value();
4281   } // unlock Threads_lock
4282 
4283   // Since Events::log uses a lock, we grab it outside the Threads_lock
4284   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4285 }
4286 
4287 // Threads_lock must be held when this is called (or must be called during a safepoint)
4288 bool Threads::includes(JavaThread* p) {
4289   assert(Threads_lock->is_locked(), "sanity check");
4290   ALL_JAVA_THREADS(q) {
4291     if (q == p) {
4292       return true;
4293     }
4294   }
4295   return false;
4296 }
4297 
4298 // Operations on the Threads list for GC.  These are not explicitly locked,
4299 // but the garbage collector must provide a safe context for them to run.
4300 // In particular, these things should never be called when the Threads_lock
4301 // is held by some other thread. (Note: the Safepoint abstraction also
4302 // uses the Threads_lock to guarantee this property. It also makes sure that
4303 // all threads gets blocked when exiting or starting).
4304 
4305 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4306   ALL_JAVA_THREADS(p) {
4307     p->oops_do(f, cf);
4308   }
4309   VMThread::vm_thread()->oops_do(f, cf);
4310 }
4311 
4312 void Threads::change_thread_claim_parity() {
4313   // Set the new claim parity.
4314   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4315          "Not in range.");
4316   _thread_claim_parity++;
4317   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4318   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4319          "Not in range.");
4320 }
4321 
4322 #ifdef ASSERT
4323 void Threads::assert_all_threads_claimed() {
4324   ALL_JAVA_THREADS(p) {
4325     const int thread_parity = p->oops_do_parity();
4326     assert((thread_parity == _thread_claim_parity),
4327            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4328   }
4329 }
4330 #endif // ASSERT
4331 
4332 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4333   int cp = Threads::thread_claim_parity();
4334   ALL_JAVA_THREADS(p) {
4335     if (p->claim_oops_do(is_par, cp)) {
4336       p->oops_do(f, cf);
4337     }
4338   }
4339   VMThread* vmt = VMThread::vm_thread();
4340   if (vmt->claim_oops_do(is_par, cp)) {
4341     vmt->oops_do(f, cf);
4342   }
4343 }
4344 
4345 #if INCLUDE_ALL_GCS
4346 // Used by ParallelScavenge
4347 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4348   ALL_JAVA_THREADS(p) {
4349     q->enqueue(new ThreadRootsTask(p));
4350   }
4351   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4352 }
4353 
4354 // Used by Parallel Old
4355 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4356   ALL_JAVA_THREADS(p) {
4357     q->enqueue(new ThreadRootsMarkingTask(p));
4358   }
4359   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4360 }
4361 #endif // INCLUDE_ALL_GCS
4362 
4363 void Threads::nmethods_do(CodeBlobClosure* cf) {
4364   ALL_JAVA_THREADS(p) {
4365     // This is used by the code cache sweeper to mark nmethods that are active
4366     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4367     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4368     if(!p->is_Code_cache_sweeper_thread()) {
4369       p->nmethods_do(cf);
4370     }
4371   }
4372 }
4373 
4374 void Threads::metadata_do(void f(Metadata*)) {
4375   ALL_JAVA_THREADS(p) {
4376     p->metadata_do(f);
4377   }
4378 }
4379 
4380 class ThreadHandlesClosure : public ThreadClosure {
4381   void (*_f)(Metadata*);
4382  public:
4383   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4384   virtual void do_thread(Thread* thread) {
4385     thread->metadata_handles_do(_f);
4386   }
4387 };
4388 
4389 void Threads::metadata_handles_do(void f(Metadata*)) {
4390   // Only walk the Handles in Thread.
4391   ThreadHandlesClosure handles_closure(f);
4392   threads_do(&handles_closure);
4393 }
4394 
4395 void Threads::deoptimized_wrt_marked_nmethods() {
4396   ALL_JAVA_THREADS(p) {
4397     p->deoptimized_wrt_marked_nmethods();
4398   }
4399 }
4400 
4401 
4402 // Get count Java threads that are waiting to enter the specified monitor.
4403 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4404                                                          address monitor,
4405                                                          bool doLock) {
4406   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4407          "must grab Threads_lock or be at safepoint");
4408   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4409 
4410   int i = 0;
4411   {
4412     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4413     ALL_JAVA_THREADS(p) {
4414       if (!p->can_call_java()) continue;
4415 
4416       address pending = (address)p->current_pending_monitor();
4417       if (pending == monitor) {             // found a match
4418         if (i < count) result->append(p);   // save the first count matches
4419         i++;
4420       }
4421     }
4422   }
4423   return result;
4424 }
4425 
4426 
4427 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4428                                                       bool doLock) {
4429   assert(doLock ||
4430          Threads_lock->owned_by_self() ||
4431          SafepointSynchronize::is_at_safepoint(),
4432          "must grab Threads_lock or be at safepoint");
4433 
4434   // NULL owner means not locked so we can skip the search
4435   if (owner == NULL) return NULL;
4436 
4437   {
4438     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4439     ALL_JAVA_THREADS(p) {
4440       // first, see if owner is the address of a Java thread
4441       if (owner == (address)p) return p;
4442     }
4443   }
4444   // Cannot assert on lack of success here since this function may be
4445   // used by code that is trying to report useful problem information
4446   // like deadlock detection.
4447   if (UseHeavyMonitors) return NULL;
4448 
4449   // If we didn't find a matching Java thread and we didn't force use of
4450   // heavyweight monitors, then the owner is the stack address of the
4451   // Lock Word in the owning Java thread's stack.
4452   //
4453   JavaThread* the_owner = NULL;
4454   {
4455     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4456     ALL_JAVA_THREADS(q) {
4457       if (q->is_lock_owned(owner)) {
4458         the_owner = q;
4459         break;
4460       }
4461     }
4462   }
4463   // cannot assert on lack of success here; see above comment
4464   return the_owner;
4465 }
4466 
4467 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4468 void Threads::print_on(outputStream* st, bool print_stacks,
4469                        bool internal_format, bool print_concurrent_locks) {
4470   char buf[32];
4471   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4472 
4473   st->print_cr("Full thread dump %s (%s %s):",
4474                Abstract_VM_Version::vm_name(),
4475                Abstract_VM_Version::vm_release(),
4476                Abstract_VM_Version::vm_info_string());
4477   st->cr();
4478 
4479 #if INCLUDE_SERVICES
4480   // Dump concurrent locks
4481   ConcurrentLocksDump concurrent_locks;
4482   if (print_concurrent_locks) {
4483     concurrent_locks.dump_at_safepoint();
4484   }
4485 #endif // INCLUDE_SERVICES
4486 
4487   ALL_JAVA_THREADS(p) {
4488     ResourceMark rm;
4489     p->print_on(st);
4490     if (print_stacks) {
4491       if (internal_format) {
4492         p->trace_stack();
4493       } else {
4494         p->print_stack_on(st);
4495       }
4496     }
4497     st->cr();
4498 #if INCLUDE_SERVICES
4499     if (print_concurrent_locks) {
4500       concurrent_locks.print_locks_on(p, st);
4501     }
4502 #endif // INCLUDE_SERVICES
4503   }
4504 
4505   VMThread::vm_thread()->print_on(st);
4506   st->cr();
4507   Universe::heap()->print_gc_threads_on(st);
4508   WatcherThread* wt = WatcherThread::watcher_thread();
4509   if (wt != NULL) {
4510     wt->print_on(st);
4511     st->cr();
4512   }
4513   st->flush();
4514 }
4515 
4516 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4517                              int buflen, bool* found_current) {
4518   if (this_thread != NULL) {
4519     bool is_current = (current == this_thread);
4520     *found_current = *found_current || is_current;
4521     st->print("%s", is_current ? "=>" : "  ");
4522 
4523     st->print(PTR_FORMAT, p2i(this_thread));
4524     st->print(" ");
4525     this_thread->print_on_error(st, buf, buflen);
4526     st->cr();
4527   }
4528 }
4529 
4530 class PrintOnErrorClosure : public ThreadClosure {
4531   outputStream* _st;
4532   Thread* _current;
4533   char* _buf;
4534   int _buflen;
4535   bool* _found_current;
4536  public:
4537   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4538                       int buflen, bool* found_current) :
4539    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4540 
4541   virtual void do_thread(Thread* thread) {
4542     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4543   }
4544 };
4545 
4546 // Threads::print_on_error() is called by fatal error handler. It's possible
4547 // that VM is not at safepoint and/or current thread is inside signal handler.
4548 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4549 // memory (even in resource area), it might deadlock the error handler.
4550 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4551                              int buflen) {
4552   bool found_current = false;
4553   st->print_cr("Java Threads: ( => current thread )");
4554   ALL_JAVA_THREADS(thread) {
4555     print_on_error(thread, st, current, buf, buflen, &found_current);
4556   }
4557   st->cr();
4558 
4559   st->print_cr("Other Threads:");
4560   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4561   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4562 
4563   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4564   Universe::heap()->gc_threads_do(&print_closure);
4565 
4566   if (!found_current) {
4567     st->cr();
4568     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4569     current->print_on_error(st, buf, buflen);
4570     st->cr();
4571   }
4572   st->cr();
4573   st->print_cr("Threads with active compile tasks:");
4574   print_threads_compiling(st, buf, buflen);
4575 }
4576 
4577 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4578   ALL_JAVA_THREADS(thread) {
4579     if (thread->is_Compiler_thread()) {
4580       CompilerThread* ct = (CompilerThread*) thread;
4581       if (ct->task() != NULL) {
4582         thread->print_name_on_error(st, buf, buflen);
4583         ct->task()->print(st, NULL, true, true);
4584       }
4585     }
4586   }
4587 }
4588 
4589 
4590 // Internal SpinLock and Mutex
4591 // Based on ParkEvent
4592 
4593 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4594 //
4595 // We employ SpinLocks _only for low-contention, fixed-length
4596 // short-duration critical sections where we're concerned
4597 // about native mutex_t or HotSpot Mutex:: latency.
4598 // The mux construct provides a spin-then-block mutual exclusion
4599 // mechanism.
4600 //
4601 // Testing has shown that contention on the ListLock guarding gFreeList
4602 // is common.  If we implement ListLock as a simple SpinLock it's common
4603 // for the JVM to devolve to yielding with little progress.  This is true
4604 // despite the fact that the critical sections protected by ListLock are
4605 // extremely short.
4606 //
4607 // TODO-FIXME: ListLock should be of type SpinLock.
4608 // We should make this a 1st-class type, integrated into the lock
4609 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4610 // should have sufficient padding to avoid false-sharing and excessive
4611 // cache-coherency traffic.
4612 
4613 
4614 typedef volatile int SpinLockT;
4615 
4616 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4617   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4618     return;   // normal fast-path return
4619   }
4620 
4621   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4622   TEVENT(SpinAcquire - ctx);
4623   int ctr = 0;
4624   int Yields = 0;
4625   for (;;) {
4626     while (*adr != 0) {
4627       ++ctr;
4628       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4629         if (Yields > 5) {
4630           os::naked_short_sleep(1);
4631         } else {
4632           os::naked_yield();
4633           ++Yields;
4634         }
4635       } else {
4636         SpinPause();
4637       }
4638     }
4639     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4640   }
4641 }
4642 
4643 void Thread::SpinRelease(volatile int * adr) {
4644   assert(*adr != 0, "invariant");
4645   OrderAccess::fence();      // guarantee at least release consistency.
4646   // Roach-motel semantics.
4647   // It's safe if subsequent LDs and STs float "up" into the critical section,
4648   // but prior LDs and STs within the critical section can't be allowed
4649   // to reorder or float past the ST that releases the lock.
4650   // Loads and stores in the critical section - which appear in program
4651   // order before the store that releases the lock - must also appear
4652   // before the store that releases the lock in memory visibility order.
4653   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4654   // the ST of 0 into the lock-word which releases the lock, so fence
4655   // more than covers this on all platforms.
4656   *adr = 0;
4657 }
4658 
4659 // muxAcquire and muxRelease:
4660 //
4661 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4662 //    The LSB of the word is set IFF the lock is held.
4663 //    The remainder of the word points to the head of a singly-linked list
4664 //    of threads blocked on the lock.
4665 //
4666 // *  The current implementation of muxAcquire-muxRelease uses its own
4667 //    dedicated Thread._MuxEvent instance.  If we're interested in
4668 //    minimizing the peak number of extant ParkEvent instances then
4669 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4670 //    as certain invariants were satisfied.  Specifically, care would need
4671 //    to be taken with regards to consuming unpark() "permits".
4672 //    A safe rule of thumb is that a thread would never call muxAcquire()
4673 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4674 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4675 //    consume an unpark() permit intended for monitorenter, for instance.
4676 //    One way around this would be to widen the restricted-range semaphore
4677 //    implemented in park().  Another alternative would be to provide
4678 //    multiple instances of the PlatformEvent() for each thread.  One
4679 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4680 //
4681 // *  Usage:
4682 //    -- Only as leaf locks
4683 //    -- for short-term locking only as muxAcquire does not perform
4684 //       thread state transitions.
4685 //
4686 // Alternatives:
4687 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4688 //    but with parking or spin-then-park instead of pure spinning.
4689 // *  Use Taura-Oyama-Yonenzawa locks.
4690 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4691 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4692 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4693 //    acquiring threads use timers (ParkTimed) to detect and recover from
4694 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4695 //    boundaries by using placement-new.
4696 // *  Augment MCS with advisory back-link fields maintained with CAS().
4697 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4698 //    The validity of the backlinks must be ratified before we trust the value.
4699 //    If the backlinks are invalid the exiting thread must back-track through the
4700 //    the forward links, which are always trustworthy.
4701 // *  Add a successor indication.  The LockWord is currently encoded as
4702 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4703 //    to provide the usual futile-wakeup optimization.
4704 //    See RTStt for details.
4705 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4706 //
4707 
4708 
4709 typedef volatile intptr_t MutexT;      // Mux Lock-word
4710 enum MuxBits { LOCKBIT = 1 };
4711 
4712 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4713   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4714   if (w == 0) return;
4715   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4716     return;
4717   }
4718 
4719   TEVENT(muxAcquire - Contention);
4720   ParkEvent * const Self = Thread::current()->_MuxEvent;
4721   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4722   for (;;) {
4723     int its = (os::is_MP() ? 100 : 0) + 1;
4724 
4725     // Optional spin phase: spin-then-park strategy
4726     while (--its >= 0) {
4727       w = *Lock;
4728       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4729         return;
4730       }
4731     }
4732 
4733     Self->reset();
4734     Self->OnList = intptr_t(Lock);
4735     // The following fence() isn't _strictly necessary as the subsequent
4736     // CAS() both serializes execution and ratifies the fetched *Lock value.
4737     OrderAccess::fence();
4738     for (;;) {
4739       w = *Lock;
4740       if ((w & LOCKBIT) == 0) {
4741         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4742           Self->OnList = 0;   // hygiene - allows stronger asserts
4743           return;
4744         }
4745         continue;      // Interference -- *Lock changed -- Just retry
4746       }
4747       assert(w & LOCKBIT, "invariant");
4748       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4749       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4750     }
4751 
4752     while (Self->OnList != 0) {
4753       Self->park();
4754     }
4755   }
4756 }
4757 
4758 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4759   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4760   if (w == 0) return;
4761   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4762     return;
4763   }
4764 
4765   TEVENT(muxAcquire - Contention);
4766   ParkEvent * ReleaseAfter = NULL;
4767   if (ev == NULL) {
4768     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4769   }
4770   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4771   for (;;) {
4772     guarantee(ev->OnList == 0, "invariant");
4773     int its = (os::is_MP() ? 100 : 0) + 1;
4774 
4775     // Optional spin phase: spin-then-park strategy
4776     while (--its >= 0) {
4777       w = *Lock;
4778       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4779         if (ReleaseAfter != NULL) {
4780           ParkEvent::Release(ReleaseAfter);
4781         }
4782         return;
4783       }
4784     }
4785 
4786     ev->reset();
4787     ev->OnList = intptr_t(Lock);
4788     // The following fence() isn't _strictly necessary as the subsequent
4789     // CAS() both serializes execution and ratifies the fetched *Lock value.
4790     OrderAccess::fence();
4791     for (;;) {
4792       w = *Lock;
4793       if ((w & LOCKBIT) == 0) {
4794         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4795           ev->OnList = 0;
4796           // We call ::Release while holding the outer lock, thus
4797           // artificially lengthening the critical section.
4798           // Consider deferring the ::Release() until the subsequent unlock(),
4799           // after we've dropped the outer lock.
4800           if (ReleaseAfter != NULL) {
4801             ParkEvent::Release(ReleaseAfter);
4802           }
4803           return;
4804         }
4805         continue;      // Interference -- *Lock changed -- Just retry
4806       }
4807       assert(w & LOCKBIT, "invariant");
4808       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4809       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4810     }
4811 
4812     while (ev->OnList != 0) {
4813       ev->park();
4814     }
4815   }
4816 }
4817 
4818 // Release() must extract a successor from the list and then wake that thread.
4819 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4820 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4821 // Release() would :
4822 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4823 // (B) Extract a successor from the private list "in-hand"
4824 // (C) attempt to CAS() the residual back into *Lock over null.
4825 //     If there were any newly arrived threads and the CAS() would fail.
4826 //     In that case Release() would detach the RATs, re-merge the list in-hand
4827 //     with the RATs and repeat as needed.  Alternately, Release() might
4828 //     detach and extract a successor, but then pass the residual list to the wakee.
4829 //     The wakee would be responsible for reattaching and remerging before it
4830 //     competed for the lock.
4831 //
4832 // Both "pop" and DMR are immune from ABA corruption -- there can be
4833 // multiple concurrent pushers, but only one popper or detacher.
4834 // This implementation pops from the head of the list.  This is unfair,
4835 // but tends to provide excellent throughput as hot threads remain hot.
4836 // (We wake recently run threads first).
4837 //
4838 // All paths through muxRelease() will execute a CAS.
4839 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4840 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4841 // executed within the critical section are complete and globally visible before the
4842 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4843 void Thread::muxRelease(volatile intptr_t * Lock)  {
4844   for (;;) {
4845     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4846     assert(w & LOCKBIT, "invariant");
4847     if (w == LOCKBIT) return;
4848     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4849     assert(List != NULL, "invariant");
4850     assert(List->OnList == intptr_t(Lock), "invariant");
4851     ParkEvent * const nxt = List->ListNext;
4852     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4853 
4854     // The following CAS() releases the lock and pops the head element.
4855     // The CAS() also ratifies the previously fetched lock-word value.
4856     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4857       continue;
4858     }
4859     List->OnList = 0;
4860     OrderAccess::fence();
4861     List->unpark();
4862     return;
4863   }
4864 }
4865 
4866 
4867 void Threads::verify() {
4868   ALL_JAVA_THREADS(p) {
4869     p->verify();
4870   }
4871   VMThread* thread = VMThread::vm_thread();
4872   if (thread != NULL) thread->verify();
4873 }