/* * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_SHARED_BARRIERSET_HPP #define SHARE_VM_GC_SHARED_BARRIERSET_HPP #include "memory/memRegion.hpp" #include "oops/oopsHierarchy.hpp" #include "utilities/fakeRttiSupport.hpp" // This class provides the interface between a barrier implementation and // the rest of the system. class BarrierSet: public CHeapObj { friend class VMStructs; public: // Fake RTTI support. For a derived class T to participate // - T must have a corresponding Name entry. // - GetName must be specialized to return the corresponding Name // entry. // - If T is a base class, the constructor must have a FakeRtti // parameter and pass it up to its base class, with the tag set // augmented with the corresponding Name entry. // - If T is a concrete class, the constructor must create a // FakeRtti object whose tag set includes the corresponding Name // entry, and pass it up to its base class. enum Name { // associated class ModRef, // ModRefBarrierSet CardTableModRef, // CardTableModRefBS CardTableForRS, // CardTableModRefBSForCTRS CardTableExtension, // CardTableExtension G1SATBCT, // G1SATBCardTableModRefBS G1SATBCTLogging // G1SATBCardTableLoggingModRefBS }; protected: typedef FakeRttiSupport FakeRtti; private: FakeRtti _fake_rtti; // Metafunction mapping a class derived from BarrierSet to the // corresponding Name enum tag. template struct GetName; // Downcast argument to a derived barrier set type. // The cast is checked in a debug build. // T must have a specialization for BarrierSet::GetName. template friend T* barrier_set_cast(BarrierSet* bs); public: // Note: This is not presently the Name corresponding to the // concrete class of this object. BarrierSet::Name kind() const { return _fake_rtti.concrete_tag(); } // Test whether this object is of the type corresponding to bsn. bool is_a(BarrierSet::Name bsn) const { return _fake_rtti.has_tag(bsn); } // End of fake RTTI support. protected: BarrierSet(const FakeRtti& fake_rtti) : _fake_rtti(fake_rtti) { } ~BarrierSet() { } public: // Invoke the barrier, if any, necessary when writing "new_val" into the // ref field at "offset" in "obj". // (For efficiency reasons, this operation is specialized for certain // barrier types. Semantically, it should be thought of as a call to the // virtual "_work" function below, which must implement the barrier.) // First the pre-write versions... template inline void write_ref_field_pre(T* field, oop new_val); // ...then the post-write version. inline void write_ref_field(void* field, oop new_val, bool release = false); protected: virtual void write_ref_field_pre_work( oop* field, oop new_val) {}; virtual void write_ref_field_pre_work(narrowOop* field, oop new_val) {}; virtual void write_ref_field_work(void* field, oop new_val, bool release) = 0; public: // Operations on arrays, or general regions (e.g., for "clone") may be // optimized by some barriers. // Below length is the # array elements being written virtual void write_ref_array_pre(oop* dst, int length, bool dest_uninitialized = false) {} virtual void write_ref_array_pre(narrowOop* dst, int length, bool dest_uninitialized = false) {} // Below count is the # array elements being written, starting // at the address "start", which may not necessarily be HeapWord-aligned inline void write_ref_array(HeapWord* start, size_t count); // Static versions, suitable for calling from generated code; // count is # array elements being written, starting with "start", // which may not necessarily be HeapWord-aligned. static void static_write_ref_array_pre(HeapWord* start, size_t count); static void static_write_ref_array_post(HeapWord* start, size_t count); protected: virtual void write_ref_array_work(MemRegion mr) = 0; public: // (For efficiency reasons, this operation is specialized for certain // barrier types. Semantically, it should be thought of as a call to the // virtual "_work" function below, which must implement the barrier.) void write_region(MemRegion mr); protected: virtual void write_region_work(MemRegion mr) = 0; public: // Inform the BarrierSet that the the covered heap region that starts // with "base" has been changed to have the given size (possibly from 0, // for initialization.) virtual void resize_covered_region(MemRegion new_region) = 0; // If the barrier set imposes any alignment restrictions on boundaries // within the heap, this function tells whether they are met. virtual bool is_aligned(HeapWord* addr) = 0; // Print a description of the memory for the barrier set virtual void print_on(outputStream* st) const = 0; }; template inline T* barrier_set_cast(BarrierSet* bs) { assert(bs->is_a(BarrierSet::GetName::value), "wrong type of barrier set"); return static_cast(bs); } #endif // SHARE_VM_GC_SHARED_BARRIERSET_HPP