1 /*
   2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciArrayKlass.hpp"
  27 #include "ci/ciEnv.hpp"
  28 #include "ci/ciKlass.hpp"
  29 #include "ci/ciMethod.hpp"
  30 #include "code/dependencies.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "oops/objArrayKlass.hpp"
  34 #include "runtime/handles.hpp"
  35 #include "runtime/handles.inline.hpp"
  36 #include "utilities/copy.hpp"
  37 
  38 
  39 #ifdef ASSERT
  40 static bool must_be_in_vm() {
  41   Thread* thread = Thread::current();
  42   if (thread->is_Java_thread())
  43     return ((JavaThread*)thread)->thread_state() == _thread_in_vm;
  44   else
  45     return true;  //something like this: thread->is_VM_thread();
  46 }
  47 #endif //ASSERT
  48 
  49 void Dependencies::initialize(ciEnv* env) {
  50   Arena* arena = env->arena();
  51   _oop_recorder = env->oop_recorder();
  52   _log = env->log();
  53   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
  54   DEBUG_ONLY(_deps[end_marker] = NULL);
  55   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
  56     _deps[i] = new(arena) GrowableArray<DepValue>(arena, 10, 0, DepValue());
  57   }
  58   _content_bytes = NULL;
  59   _size_in_bytes = (size_t)-1;
  60 
  61   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
  62 }
  63 
  64 void Dependencies::assert_evol_method(Method* m) {
  65   assert_common_1(evol_method, DepValue(_oop_recorder, m));
  66 }
  67 
  68 void Dependencies::assert_leaf_type(Klass* ctxk) {
  69   if (ctxk->oop_is_array()) {
  70     // As a special case, support this assertion on an array type,
  71     // which reduces to an assertion on its element type.
  72     // Note that this cannot be done with assertions that
  73     // relate to concreteness or abstractness.
  74     BasicType elemt = ArrayKlass::cast(ctxk)->element_type();
  75     if (is_java_primitive(elemt))  return;   // Ex:  int[][]
  76     ctxk = ObjArrayKlass::cast(ctxk)->bottom_klass();
  77     //if (ctxk->is_final())  return;            // Ex:  String[][]
  78   }
  79   check_ctxk(ctxk);
  80   assert_common_1(leaf_type, DepValue(_oop_recorder, ctxk));
  81 }
  82 
  83 void Dependencies::assert_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck) {
  84   check_ctxk_abstract(ctxk);
  85   DepValue ctxk_dv(_oop_recorder, ctxk);
  86   assert_common_2(abstract_with_unique_concrete_subtype, ctxk_dv, DepValue(_oop_recorder, conck, &ctxk_dv));
  87 }
  88 
  89 void Dependencies::assert_abstract_with_no_concrete_subtype(Klass* ctxk) {
  90   check_ctxk_abstract(ctxk);
  91   assert_common_1(abstract_with_no_concrete_subtype, DepValue(_oop_recorder, ctxk));
  92 }
  93 
  94 void Dependencies::assert_concrete_with_no_concrete_subtype(Klass* ctxk) {
  95   check_ctxk_concrete(ctxk);
  96   assert_common_1(concrete_with_no_concrete_subtype, DepValue(_oop_recorder, ctxk));
  97 }
  98 
  99 void Dependencies::assert_unique_concrete_method(Klass* ctxk, Method* uniqm) {
 100   check_ctxk(ctxk);
 101   assert_common_2(unique_concrete_method, DepValue(_oop_recorder, ctxk), DepValue(_oop_recorder, uniqm));
 102 }
 103 
 104 void Dependencies::assert_abstract_with_exclusive_concrete_subtypes(Klass* ctxk, Klass* k1, Klass* k2) {
 105   check_ctxk(ctxk);
 106   DepValue k1_dv(_oop_recorder, k1);
 107   assert_common_3(abstract_with_exclusive_concrete_subtypes_2, ctxk, k1_dv, DepValue(_oop_recorder, k2, &k1_dv));
 108 }
 109 
 110 void Dependencies::assert_exclusive_concrete_methods(Klass* ctxk, Method* m1, Method* m2) {
 111   check_ctxk(ctxk);
 112   DepValue m1_dv(_oop_recorder, m1);
 113   assert_common_3(exclusive_concrete_methods_2, ctxk, m1_dv, DepValue(_oop_recorder, m2, &m1_dv));
 114 }
 115 
 116 void Dependencies::assert_has_no_finalizable_subclasses(Klass* ctxk) {
 117   check_ctxk(ctxk);
 118   assert_common_1(no_finalizable_subclasses, DepValue(_oop_recorder, ctxk));
 119 }
 120 
 121 void Dependencies::assert_call_site_target_value(jobject call_site, jobject method_handle) {
 122   Klass* ctxk = JNIHandles::resolve(call_site)->klass();
 123   check_ctxk(ctxk);
 124   assert_common_2(call_site_target_value, DepValue(_oop_recorder, call_site), DepValue(_oop_recorder, method_handle));
 125 }
 126 
 127 // Helper function.  If we are adding a new dep. under ctxk2,
 128 // try to find an old dep. under a broader* ctxk1.  If there is
 129 //
 130 bool Dependencies::maybe_merge_ctxk(GrowableArray<DepValue>* deps,
 131                                     int ctxk_i, Klass* ctxk2) {
 132   Klass* ctxk1 = deps->at(ctxk_i).as_klass(_oop_recorder);
 133   if (ctxk2->is_subtype_of(ctxk1)) {
 134     return true;  // success, and no need to change
 135   } else if (ctxk1->is_subtype_of(ctxk2)) {
 136     // new context class fully subsumes previous one
 137     deps->at_put(ctxk_i, DepValue(_oop_recorder, ctxk2));
 138     return true;
 139   } else {
 140     return false;
 141   }
 142 }
 143 
 144 void Dependencies::assert_common_1(DepType dept, DepValue x) {
 145   assert(dep_args(dept) == 1, "sanity");
 146   log_dependency(dept, x);
 147   GrowableArray<DepValue>* deps = _deps[dept];
 148 
 149   // see if the same (or a similar) dep is already recorded
 150   if (note_dep_seen(dept, x)) {
 151     assert(deps->find(x) >= 0, "sanity");
 152   } else {
 153     deps->append(x);
 154   }
 155 }
 156 
 157 void Dependencies::assert_common_2(DepType dept,
 158                                    DepValue x0, DepValue x1) {
 159   assert(dep_args(dept) == 2, "sanity");
 160   log_dependency(dept, x0, x1);
 161   GrowableArray<DepValue>* deps = _deps[dept];
 162 
 163   // see if the same (or a similar) dep is already recorded
 164   bool has_ctxk = has_explicit_context_arg(dept);
 165   if (has_ctxk) {
 166     assert(dep_context_arg(dept) == 0, "sanity");
 167     if (note_dep_seen(dept, x1)) {
 168       // look in this bucket for redundant assertions
 169       const int stride = 2;
 170       for (int i = deps->length(); (i -= stride) >= 0; ) {
 171         DepValue y1 = deps->at(i+1);
 172         if (x1 == y1) {  // same subject; check the context
 173           if (maybe_merge_ctxk(deps, i+0, x0.as_klass(_oop_recorder))) {
 174             return;
 175           }
 176         }
 177       }
 178     }
 179   } else {
 180     assert(dep_implicit_context_arg(dept) == 0, "sanity");
 181     if (note_dep_seen(dept, x0) && note_dep_seen(dept, x1)) {
 182       // look in this bucket for redundant assertions
 183       const int stride = 2;
 184       for (int i = deps->length(); (i -= stride) >= 0; ) {
 185         DepValue y0 = deps->at(i+0);
 186         DepValue y1 = deps->at(i+1);
 187         if (x0 == y0 && x1 == y1) {
 188           return;
 189         }
 190       }
 191     }
 192   }
 193 
 194   // append the assertion in the correct bucket:
 195   deps->append(x0);
 196   deps->append(x1);
 197 }
 198 
 199 void Dependencies::assert_common_3(DepType dept,
 200                                    Klass* ctxk, DepValue x, DepValue x2) {
 201   assert(dep_context_arg(dept) == 0, "sanity");
 202   assert(dep_args(dept) == 3, "sanity");
 203   log_dependency(dept, DepValue(_oop_recorder, ctxk), x, x2);
 204   GrowableArray<DepValue>* deps = _deps[dept];
 205 
 206   // try to normalize an unordered pair:
 207   bool swap = false;
 208   switch (dept) {
 209   case abstract_with_exclusive_concrete_subtypes_2:
 210     swap = (x.index() > x2.index() && x.as_klass(_oop_recorder) != ctxk);
 211     break;
 212   case exclusive_concrete_methods_2:
 213     swap = (x.index() > x2.index() && x.as_method(_oop_recorder)->method_holder() != ctxk);
 214     break;
 215   }
 216   if (swap) { DepValue t = x; x = x2; x2 = t; }
 217 
 218   // see if the same (or a similar) dep is already recorded
 219   if (note_dep_seen(dept, x) && note_dep_seen(dept, x2)) {
 220     // look in this bucket for redundant assertions
 221     const int stride = 3;
 222     for (int i = deps->length(); (i -= stride) >= 0; ) {
 223       DepValue y  = deps->at(i+1);
 224       DepValue y2 = deps->at(i+2);
 225       if (x == y && x2 == y2) {  // same subjects; check the context
 226         if (maybe_merge_ctxk(deps, i+0, ctxk)) {
 227           return;
 228         }
 229       }
 230     }
 231   }
 232   // append the assertion in the correct bucket:
 233   deps->append(DepValue(_oop_recorder, ctxk));
 234   deps->append(x);
 235   deps->append(x2);
 236 }
 237 
 238 /// Support for encoding dependencies into an nmethod:
 239 
 240 void Dependencies::copy_to(nmethod* nm) {
 241   address beg = nm->dependencies_begin();
 242   address end = nm->dependencies_end();
 243   guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing");
 244   Copy::disjoint_words((HeapWord*) content_bytes(),
 245                        (HeapWord*) beg,
 246                        size_in_bytes() / sizeof(HeapWord));
 247   assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words");
 248 }
 249 
 250 static int sort_dep(Dependencies::DepValue* p1, Dependencies::DepValue* p2, int narg) {
 251   for (int i = 0; i < narg; i++) {
 252     int diff = p1[i].sort_key() - p2[i].sort_key();
 253     if (diff != 0)  return diff;
 254   }
 255   return 0;
 256 }
 257 static int sort_dep_arg_1(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
 258 { return sort_dep(p1, p2, 1); }
 259 static int sort_dep_arg_2(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
 260 { return sort_dep(p1, p2, 2); }
 261 static int sort_dep_arg_3(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
 262 { return sort_dep(p1, p2, 3); }
 263 
 264 void Dependencies::sort_all_deps() {
 265   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 266     DepType dept = (DepType)deptv;
 267     GrowableArray<DepValue>* deps = _deps[dept];
 268     if (deps->length() <= 1)  continue;
 269     switch (dep_args(dept)) {
 270     case 1: deps->sort(sort_dep_arg_1, 1); break;
 271     case 2: deps->sort(sort_dep_arg_2, 2); break;
 272     case 3: deps->sort(sort_dep_arg_3, 3); break;
 273     default: ShouldNotReachHere();
 274     }
 275   }
 276 }
 277 
 278 size_t Dependencies::estimate_size_in_bytes() {
 279   size_t est_size = 100;
 280   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 281     DepType dept = (DepType)deptv;
 282     GrowableArray<DepValue>* deps = _deps[dept];
 283     est_size += deps->length()*2;  // tags and argument(s)
 284   }
 285   return est_size;
 286 }
 287 
 288 Klass* Dependencies::ctxk_encoded_as_null(OopRecorder* oop_recorder, DepType dept, DepValue x) {
 289   switch (dept) {
 290   case abstract_with_exclusive_concrete_subtypes_2:
 291     return x.as_klass(oop_recorder);
 292   case unique_concrete_method:
 293   case exclusive_concrete_methods_2:
 294     return x.as_method(oop_recorder)->method_holder();
 295   }
 296   return NULL;  // let NULL be NULL
 297 }
 298 
 299 Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) {
 300   assert(must_be_in_vm(), "raw oops here");
 301   switch (dept) {
 302   case abstract_with_exclusive_concrete_subtypes_2:
 303     assert(x->is_klass(), "sanity");
 304     return (Klass*) x;
 305   case unique_concrete_method:
 306   case exclusive_concrete_methods_2:
 307     assert(x->is_method(), "sanity");
 308     return ((Method*)x)->method_holder();
 309   }
 310   return NULL;  // let NULL be NULL
 311 }
 312 
 313 void Dependencies::encode_content_bytes() {
 314   sort_all_deps();
 315 
 316   // cast is safe, no deps can overflow INT_MAX
 317   CompressedWriteStream bytes((int)estimate_size_in_bytes());
 318 
 319   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 320     DepType dept = (DepType)deptv;
 321     GrowableArray<DepValue>* deps = _deps[dept];
 322     if (deps->length() == 0)  continue;
 323     int stride = dep_args(dept);
 324     int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
 325     assert(stride > 0, "sanity");
 326     for (int i = 0; i < deps->length(); i += stride) {
 327       jbyte code_byte = (jbyte)dept;
 328       int skipj = -1;
 329       if (ctxkj >= 0 && ctxkj+1 < stride) {
 330         Klass*  ctxk = deps->at(i+ctxkj+0).as_klass(_oop_recorder);
 331         DepValue x     = deps->at(i+ctxkj+1);  // following argument
 332         if (ctxk == ctxk_encoded_as_null(_oop_recorder, dept, x)) {
 333           skipj = ctxkj;  // we win:  maybe one less oop to keep track of
 334           code_byte |= default_context_type_bit;
 335         }
 336       }
 337       bytes.write_byte(code_byte);
 338       for (int j = 0; j < stride; j++) {
 339         if (j == skipj)  continue;
 340         DepValue v = deps->at(i+j);
 341         int idx = v.index();
 342         bytes.write_int(idx);
 343       }
 344     }
 345   }
 346 
 347   // write a sentinel byte to mark the end
 348   bytes.write_byte(end_marker);
 349 
 350   // round it out to a word boundary
 351   while (bytes.position() % sizeof(HeapWord) != 0) {
 352     bytes.write_byte(end_marker);
 353   }
 354 
 355   // check whether the dept byte encoding really works
 356   assert((jbyte)default_context_type_bit != 0, "byte overflow");
 357 
 358   _content_bytes = bytes.buffer();
 359   _size_in_bytes = bytes.position();
 360 }
 361 
 362 
 363 const char* Dependencies::_dep_name[TYPE_LIMIT] = {
 364   "end_marker",
 365   "evol_method",
 366   "leaf_type",
 367   "abstract_with_unique_concrete_subtype",
 368   "abstract_with_no_concrete_subtype",
 369   "concrete_with_no_concrete_subtype",
 370   "unique_concrete_method",
 371   "abstract_with_exclusive_concrete_subtypes_2",
 372   "exclusive_concrete_methods_2",
 373   "no_finalizable_subclasses",
 374   "call_site_target_value"
 375 };
 376 
 377 int Dependencies::_dep_args[TYPE_LIMIT] = {
 378   -1,// end_marker
 379   1, // evol_method m
 380   1, // leaf_type ctxk
 381   2, // abstract_with_unique_concrete_subtype ctxk, k
 382   1, // abstract_with_no_concrete_subtype ctxk
 383   1, // concrete_with_no_concrete_subtype ctxk
 384   2, // unique_concrete_method ctxk, m
 385   3, // unique_concrete_subtypes_2 ctxk, k1, k2
 386   3, // unique_concrete_methods_2 ctxk, m1, m2
 387   1, // no_finalizable_subclasses ctxk
 388   2  // call_site_target_value call_site, method_handle
 389 };
 390 
 391 const char* Dependencies::dep_name(Dependencies::DepType dept) {
 392   if (!dept_in_mask(dept, all_types))  return "?bad-dep?";
 393   return _dep_name[dept];
 394 }
 395 
 396 int Dependencies::dep_args(Dependencies::DepType dept) {
 397   if (!dept_in_mask(dept, all_types))  return -1;
 398   return _dep_args[dept];
 399 }
 400 
 401 void Dependencies::check_valid_dependency_type(DepType dept) {
 402   guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, err_msg("invalid dependency type: %d", (int) dept));
 403 }
 404 
 405 // for the sake of the compiler log, print out current dependencies:
 406 void Dependencies::log_all_dependencies() {
 407   if (log() == NULL)  return;
 408   DepValue args[max_arg_count];
 409   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 410     DepType dept = (DepType)deptv;
 411     GrowableArray<DepValue>* deps = _deps[dept];
 412     if (deps->length() == 0)  continue;
 413     int stride = dep_args(dept);
 414     for (int i = 0; i < deps->length(); i += stride) {
 415       for (int j = 0; j < stride; j++) {
 416         // flush out the identities before printing
 417         args[j] = deps->at(i+j);
 418       }
 419       write_dependency_to(log(), dept, stride, args);
 420     }
 421   }
 422 }
 423 
 424 void Dependencies::write_dependency_to(CompileLog* log,
 425                                        DepType dept,
 426                                        int nargs, DepValue args[],
 427                                        Klass* witness) {
 428   if (log == NULL) {
 429     return;
 430   }
 431   ciEnv* env = ciEnv::current();
 432   ciBaseObject* ciargs[max_arg_count];
 433   assert(nargs <= max_arg_count, "oob");
 434   for (int j = 0; j < nargs; j++) {
 435     if (args[j].is_object()) {
 436       ciargs[j] = env->get_object(JNIHandles::resolve(args[j].as_object(_oop_recorder)));
 437     } else {
 438       ciargs[j] = env->get_metadata(args[j].as_metadata(_oop_recorder));
 439     }
 440   }
 441   Dependencies::write_dependency_to(log, dept, nargs, ciargs, witness);
 442 }
 443 
 444 void Dependencies::write_dependency_to(CompileLog* log,
 445                                        DepType dept,
 446                                        int nargs, DepArgument args[],
 447                                        Klass* witness) {
 448   if (log == NULL) {
 449     return;
 450   }
 451   ciEnv* env = ciEnv::current();
 452   ciBaseObject* ciargs[max_arg_count];
 453   assert(nargs <= max_arg_count, "oob");
 454   for (int j = 0; j < nargs; j++) {
 455     if (args[j].is_oop()) {
 456       ciargs[j] = env->get_object(args[j].oop_value());
 457     } else {
 458       ciargs[j] = env->get_metadata(args[j].metadata_value());
 459     }
 460   }
 461   Dependencies::write_dependency_to(log, dept, nargs, ciargs, witness);
 462 }
 463 
 464 void Dependencies::write_dependency_to(CompileLog* log,
 465                                        DepType dept,
 466                                        int nargs, ciBaseObject* args[],
 467                                        Klass* witness) {
 468   if (log == NULL)  return;
 469   assert(nargs <= max_arg_count, "oob");
 470   int argids[max_arg_count];
 471   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 472   int j;
 473   for (j = 0; j < nargs; j++) {
 474     if (args[j]->is_object()) {
 475       argids[j] = log->identify(args[j]->as_object());
 476     } else {
 477       argids[j] = log->identify(args[j]->as_metadata());
 478     }
 479   }
 480   if (witness != NULL) {
 481     log->begin_elem("dependency_failed");
 482   } else {
 483     log->begin_elem("dependency");
 484   }
 485   log->print(" type='%s'", dep_name(dept));
 486   if (ctxkj >= 0) {
 487     log->print(" ctxk='%d'", argids[ctxkj]);
 488   }
 489   // write remaining arguments, if any.
 490   for (j = 0; j < nargs; j++) {
 491     if (j == ctxkj)  continue;  // already logged
 492     if (j == 1) {
 493       log->print(  " x='%d'",    argids[j]);
 494     } else {
 495       log->print(" x%d='%d'", j, argids[j]);
 496     }
 497   }
 498   if (witness != NULL) {
 499     log->object("witness", witness);
 500     log->stamp();
 501   }
 502   log->end_elem();
 503 }
 504 
 505 void Dependencies::write_dependency_to(xmlStream* xtty,
 506                                        DepType dept,
 507                                        int nargs, DepArgument args[],
 508                                        Klass* witness) {
 509   if (xtty == NULL)  return;
 510   ttyLocker ttyl;
 511   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 512   if (witness != NULL) {
 513     xtty->begin_elem("dependency_failed");
 514   } else {
 515     xtty->begin_elem("dependency");
 516   }
 517   xtty->print(" type='%s'", dep_name(dept));
 518   if (ctxkj >= 0) {
 519     xtty->object("ctxk", args[ctxkj].metadata_value());
 520   }
 521   // write remaining arguments, if any.
 522   for (int j = 0; j < nargs; j++) {
 523     if (j == ctxkj)  continue;  // already logged
 524     if (j == 1) {
 525       if (args[j].is_oop()) {
 526         xtty->object("x", args[j].oop_value());
 527       } else {
 528         xtty->object("x", args[j].metadata_value());
 529       }
 530     } else {
 531       char xn[10]; sprintf(xn, "x%d", j);
 532       if (args[j].is_oop()) {
 533         xtty->object(xn, args[j].oop_value());
 534       } else {
 535         xtty->object(xn, args[j].metadata_value());
 536       }
 537     }
 538   }
 539   if (witness != NULL) {
 540     xtty->object("witness", witness);
 541     xtty->stamp();
 542   }
 543   xtty->end_elem();
 544 }
 545 
 546 void Dependencies::print_dependency(DepType dept, int nargs, DepArgument args[],
 547                                     Klass* witness) {
 548   ResourceMark rm;
 549   ttyLocker ttyl;   // keep the following output all in one block
 550   tty->print_cr("%s of type %s",
 551                 (witness == NULL)? "Dependency": "Failed dependency",
 552                 dep_name(dept));
 553   // print arguments
 554   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 555   for (int j = 0; j < nargs; j++) {
 556     DepArgument arg = args[j];
 557     bool put_star = false;
 558     if (arg.is_null())  continue;
 559     const char* what;
 560     if (j == ctxkj) {
 561       assert(arg.is_metadata(), "must be");
 562       what = "context";
 563       put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value());
 564     } else if (arg.is_method()) {
 565       what = "method ";
 566       put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value());
 567     } else if (arg.is_klass()) {
 568       what = "class  ";
 569     } else {
 570       what = "object ";
 571     }
 572     tty->print("  %s = %s", what, (put_star? "*": ""));
 573     if (arg.is_klass())
 574       tty->print("%s", ((Klass*)arg.metadata_value())->external_name());
 575     else if (arg.is_method())
 576       ((Method*)arg.metadata_value())->print_value();
 577     else
 578       ShouldNotReachHere(); // Provide impl for this type.
 579     tty->cr();
 580   }
 581   if (witness != NULL) {
 582     bool put_star = !Dependencies::is_concrete_klass(witness);
 583     tty->print_cr("  witness = %s%s",
 584                   (put_star? "*": ""),
 585                   witness->external_name());
 586   }
 587 }
 588 
 589 void Dependencies::DepStream::log_dependency(Klass* witness) {
 590   if (_deps == NULL && xtty == NULL)  return;  // fast cutout for runtime
 591   ResourceMark rm;
 592   int nargs = argument_count();
 593   DepArgument args[max_arg_count];
 594   for (int j = 0; j < nargs; j++) {
 595     if (type() == call_site_target_value) {
 596       args[j] = argument_oop(j);
 597     } else {
 598       args[j] = argument(j);
 599     }
 600   }
 601   if (_deps != NULL && _deps->log() != NULL) {
 602     Dependencies::write_dependency_to(_deps->log(),
 603                                       type(), nargs, args, witness);
 604   } else {
 605     Dependencies::write_dependency_to(xtty,
 606                                       type(), nargs, args, witness);
 607   }
 608 }
 609 
 610 void Dependencies::DepStream::print_dependency(Klass* witness, bool verbose) {
 611   int nargs = argument_count();
 612   DepArgument args[max_arg_count];
 613   for (int j = 0; j < nargs; j++) {
 614     args[j] = argument(j);
 615   }
 616   Dependencies::print_dependency(type(), nargs, args, witness);
 617   if (verbose) {
 618     if (_code != NULL) {
 619       tty->print("  code: ");
 620       _code->print_value_on(tty);
 621       tty->cr();
 622     }
 623   }
 624 }
 625 
 626 
 627 /// Dependency stream support (decodes dependencies from an nmethod):
 628 
 629 #ifdef ASSERT
 630 void Dependencies::DepStream::initial_asserts(size_t byte_limit) {
 631   assert(must_be_in_vm(), "raw oops here");
 632   _byte_limit = byte_limit;
 633   _type       = (DepType)(end_marker-1);  // defeat "already at end" assert
 634   assert((_code!=NULL) + (_deps!=NULL) == 1, "one or t'other");
 635 }
 636 #endif //ASSERT
 637 
 638 bool Dependencies::DepStream::next() {
 639   assert(_type != end_marker, "already at end");
 640   if (_bytes.position() == 0 && _code != NULL
 641       && _code->dependencies_size() == 0) {
 642     // Method has no dependencies at all.
 643     return false;
 644   }
 645   int code_byte = (_bytes.read_byte() & 0xFF);
 646   if (code_byte == end_marker) {
 647     DEBUG_ONLY(_type = end_marker);
 648     return false;
 649   } else {
 650     int ctxk_bit = (code_byte & Dependencies::default_context_type_bit);
 651     code_byte -= ctxk_bit;
 652     DepType dept = (DepType)code_byte;
 653     _type = dept;
 654     Dependencies::check_valid_dependency_type(dept);
 655     int stride = _dep_args[dept];
 656     assert(stride == dep_args(dept), "sanity");
 657     int skipj = -1;
 658     if (ctxk_bit != 0) {
 659       skipj = 0;  // currently the only context argument is at zero
 660       assert(skipj == dep_context_arg(dept), "zero arg always ctxk");
 661     }
 662     for (int j = 0; j < stride; j++) {
 663       _xi[j] = (j == skipj)? 0: _bytes.read_int();
 664     }
 665     DEBUG_ONLY(_xi[stride] = -1);   // help detect overruns
 666     return true;
 667   }
 668 }
 669 
 670 inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) {
 671   Metadata* o = NULL;
 672   if (_code != NULL) {
 673     o = _code->metadata_at(i);
 674   } else {
 675     o = _deps->oop_recorder()->metadata_at(i);
 676   }
 677   assert(o == NULL || o->is_metaspace_object(),
 678          err_msg("Should be metadata " PTR_FORMAT, o));
 679   return o;
 680 }
 681 
 682 inline oop Dependencies::DepStream::recorded_oop_at(int i) {
 683   return (_code != NULL)
 684          ? _code->oop_at(i)
 685     : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i));
 686 }
 687 
 688 Metadata* Dependencies::DepStream::argument(int i) {
 689   Metadata* result = recorded_metadata_at(argument_index(i));
 690 
 691   if (result == NULL) { // Explicit context argument can be compressed
 692     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
 693     if (ctxkj >= 0 && i == ctxkj && ctxkj+1 < argument_count()) {
 694       result = ctxk_encoded_as_null(type(), argument(ctxkj+1));
 695     }
 696   }
 697 
 698   assert(result == NULL || result->is_klass() || result->is_method(), "must be");
 699   return result;
 700 }
 701 
 702 oop Dependencies::DepStream::argument_oop(int i) {
 703   oop result = recorded_oop_at(argument_index(i));
 704   assert(result == NULL || result->is_oop(), "must be");
 705   return result;
 706 }
 707 
 708 Klass* Dependencies::DepStream::context_type() {
 709   assert(must_be_in_vm(), "raw oops here");
 710 
 711   // Most dependencies have an explicit context type argument.
 712   {
 713     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
 714     if (ctxkj >= 0) {
 715       Metadata* k = argument(ctxkj);
 716       assert(k != NULL && k->is_klass(), "type check");
 717       return (Klass*)k;
 718     }
 719   }
 720 
 721   // Some dependencies are using the klass of the first object
 722   // argument as implicit context type (e.g. call_site_target_value).
 723   {
 724     int ctxkj = dep_implicit_context_arg(type());
 725     if (ctxkj >= 0) {
 726       Klass* k = argument_oop(ctxkj)->klass();
 727       assert(k != NULL && k->is_klass(), "type check");
 728       return (Klass*) k;
 729     }
 730   }
 731 
 732   // And some dependencies don't have a context type at all,
 733   // e.g. evol_method.
 734   return NULL;
 735 }
 736 
 737 /// Checking dependencies:
 738 
 739 // This hierarchy walker inspects subtypes of a given type,
 740 // trying to find a "bad" class which breaks a dependency.
 741 // Such a class is called a "witness" to the broken dependency.
 742 // While searching around, we ignore "participants", which
 743 // are already known to the dependency.
 744 class ClassHierarchyWalker {
 745  public:
 746   enum { PARTICIPANT_LIMIT = 3 };
 747 
 748  private:
 749   // optional method descriptor to check for:
 750   Symbol* _name;
 751   Symbol* _signature;
 752 
 753   // special classes which are not allowed to be witnesses:
 754   Klass*    _participants[PARTICIPANT_LIMIT+1];
 755   int       _num_participants;
 756 
 757   // cache of method lookups
 758   Method* _found_methods[PARTICIPANT_LIMIT+1];
 759 
 760   // if non-zero, tells how many witnesses to convert to participants
 761   int       _record_witnesses;
 762 
 763   void initialize(Klass* participant) {
 764     _record_witnesses = 0;
 765     _participants[0]  = participant;
 766     _found_methods[0] = NULL;
 767     _num_participants = 0;
 768     if (participant != NULL) {
 769       // Terminating NULL.
 770       _participants[1] = NULL;
 771       _found_methods[1] = NULL;
 772       _num_participants = 1;
 773     }
 774   }
 775 
 776   void initialize_from_method(Method* m) {
 777     assert(m != NULL && m->is_method(), "sanity");
 778     _name      = m->name();
 779     _signature = m->signature();
 780   }
 781 
 782  public:
 783   // The walker is initialized to recognize certain methods and/or types
 784   // as friendly participants.
 785   ClassHierarchyWalker(Klass* participant, Method* m) {
 786     initialize_from_method(m);
 787     initialize(participant);
 788   }
 789   ClassHierarchyWalker(Method* m) {
 790     initialize_from_method(m);
 791     initialize(NULL);
 792   }
 793   ClassHierarchyWalker(Klass* participant = NULL) {
 794     _name      = NULL;
 795     _signature = NULL;
 796     initialize(participant);
 797   }
 798 
 799   // This is common code for two searches:  One for concrete subtypes,
 800   // the other for concrete method implementations and overrides.
 801   bool doing_subtype_search() {
 802     return _name == NULL;
 803   }
 804 
 805   int num_participants() { return _num_participants; }
 806   Klass* participant(int n) {
 807     assert((uint)n <= (uint)_num_participants, "oob");
 808     return _participants[n];
 809   }
 810 
 811   // Note:  If n==num_participants, returns NULL.
 812   Method* found_method(int n) {
 813     assert((uint)n <= (uint)_num_participants, "oob");
 814     Method* fm = _found_methods[n];
 815     assert(n == _num_participants || fm != NULL, "proper usage");
 816     assert(fm == NULL || fm->method_holder() == _participants[n], "sanity");
 817     return fm;
 818   }
 819 
 820 #ifdef ASSERT
 821   // Assert that m is inherited into ctxk, without intervening overrides.
 822   // (May return true even if this is not true, in corner cases where we punt.)
 823   bool check_method_context(Klass* ctxk, Method* m) {
 824     if (m->method_holder() == ctxk)
 825       return true;  // Quick win.
 826     if (m->is_private())
 827       return false; // Quick lose.  Should not happen.
 828     if (!(m->is_public() || m->is_protected()))
 829       // The override story is complex when packages get involved.
 830       return true;  // Must punt the assertion to true.
 831     Klass* k = ctxk;
 832     Method* lm = k->lookup_method(m->name(), m->signature());
 833     if (lm == NULL && k->oop_is_instance()) {
 834       // It might be an interface method
 835         lm = ((InstanceKlass*)k)->lookup_method_in_ordered_interfaces(m->name(),
 836                                                                 m->signature());
 837     }
 838     if (lm == m)
 839       // Method m is inherited into ctxk.
 840       return true;
 841     if (lm != NULL) {
 842       if (!(lm->is_public() || lm->is_protected())) {
 843         // Method is [package-]private, so the override story is complex.
 844         return true;  // Must punt the assertion to true.
 845       }
 846       if (lm->is_static()) {
 847         // Static methods don't override non-static so punt
 848         return true;
 849       }
 850       if (   !Dependencies::is_concrete_method(lm)
 851           && !Dependencies::is_concrete_method(m)
 852           && lm->method_holder()->is_subtype_of(m->method_holder()))
 853         // Method m is overridden by lm, but both are non-concrete.
 854         return true;
 855     }
 856     ResourceMark rm;
 857     tty->print_cr("Dependency method not found in the associated context:");
 858     tty->print_cr("  context = %s", ctxk->external_name());
 859     tty->print(   "  method = "); m->print_short_name(tty); tty->cr();
 860     if (lm != NULL) {
 861       tty->print( "  found = "); lm->print_short_name(tty); tty->cr();
 862     }
 863     return false;
 864   }
 865 #endif
 866 
 867   void add_participant(Klass* participant) {
 868     assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob");
 869     int np = _num_participants++;
 870     _participants[np] = participant;
 871     _participants[np+1] = NULL;
 872     _found_methods[np+1] = NULL;
 873   }
 874 
 875   void record_witnesses(int add) {
 876     if (add > PARTICIPANT_LIMIT)  add = PARTICIPANT_LIMIT;
 877     assert(_num_participants + add < PARTICIPANT_LIMIT, "oob");
 878     _record_witnesses = add;
 879   }
 880 
 881   bool is_witness(Klass* k) {
 882     if (doing_subtype_search()) {
 883       return Dependencies::is_concrete_klass(k);
 884     } else {
 885       Method* m = InstanceKlass::cast(k)->find_method(_name, _signature);
 886       if (m == NULL || !Dependencies::is_concrete_method(m))  return false;
 887       _found_methods[_num_participants] = m;
 888       // Note:  If add_participant(k) is called,
 889       // the method m will already be memoized for it.
 890       return true;
 891     }
 892   }
 893 
 894   bool is_participant(Klass* k) {
 895     if (k == _participants[0]) {
 896       return true;
 897     } else if (_num_participants <= 1) {
 898       return false;
 899     } else {
 900       return in_list(k, &_participants[1]);
 901     }
 902   }
 903   bool ignore_witness(Klass* witness) {
 904     if (_record_witnesses == 0) {
 905       return false;
 906     } else {
 907       --_record_witnesses;
 908       add_participant(witness);
 909       return true;
 910     }
 911   }
 912   static bool in_list(Klass* x, Klass** list) {
 913     for (int i = 0; ; i++) {
 914       Klass* y = list[i];
 915       if (y == NULL)  break;
 916       if (y == x)  return true;
 917     }
 918     return false;  // not in list
 919   }
 920 
 921  private:
 922   // the actual search method:
 923   Klass* find_witness_anywhere(Klass* context_type,
 924                                  bool participants_hide_witnesses,
 925                                  bool top_level_call = true);
 926   // the spot-checking version:
 927   Klass* find_witness_in(KlassDepChange& changes,
 928                          Klass* context_type,
 929                            bool participants_hide_witnesses);
 930  public:
 931   Klass* find_witness_subtype(Klass* context_type, KlassDepChange* changes = NULL) {
 932     assert(doing_subtype_search(), "must set up a subtype search");
 933     // When looking for unexpected concrete types,
 934     // do not look beneath expected ones.
 935     const bool participants_hide_witnesses = true;
 936     // CX > CC > C' is OK, even if C' is new.
 937     // CX > { CC,  C' } is not OK if C' is new, and C' is the witness.
 938     if (changes != NULL) {
 939       return find_witness_in(*changes, context_type, participants_hide_witnesses);
 940     } else {
 941       return find_witness_anywhere(context_type, participants_hide_witnesses);
 942     }
 943   }
 944   Klass* find_witness_definer(Klass* context_type, KlassDepChange* changes = NULL) {
 945     assert(!doing_subtype_search(), "must set up a method definer search");
 946     // When looking for unexpected concrete methods,
 947     // look beneath expected ones, to see if there are overrides.
 948     const bool participants_hide_witnesses = true;
 949     // CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness.
 950     if (changes != NULL) {
 951       return find_witness_in(*changes, context_type, !participants_hide_witnesses);
 952     } else {
 953       return find_witness_anywhere(context_type, !participants_hide_witnesses);
 954     }
 955   }
 956 };
 957 
 958 #ifndef PRODUCT
 959 static int deps_find_witness_calls = 0;
 960 static int deps_find_witness_steps = 0;
 961 static int deps_find_witness_recursions = 0;
 962 static int deps_find_witness_singles = 0;
 963 static int deps_find_witness_print = 0; // set to -1 to force a final print
 964 static bool count_find_witness_calls() {
 965   if (TraceDependencies || LogCompilation) {
 966     int pcount = deps_find_witness_print + 1;
 967     bool final_stats      = (pcount == 0);
 968     bool initial_call     = (pcount == 1);
 969     bool occasional_print = ((pcount & ((1<<10) - 1)) == 0);
 970     if (pcount < 0)  pcount = 1; // crude overflow protection
 971     deps_find_witness_print = pcount;
 972     if (VerifyDependencies && initial_call) {
 973       tty->print_cr("Warning:  TraceDependencies results may be inflated by VerifyDependencies");
 974     }
 975     if (occasional_print || final_stats) {
 976       // Every now and then dump a little info about dependency searching.
 977       if (xtty != NULL) {
 978        ttyLocker ttyl;
 979        xtty->elem("deps_find_witness calls='%d' steps='%d' recursions='%d' singles='%d'",
 980                    deps_find_witness_calls,
 981                    deps_find_witness_steps,
 982                    deps_find_witness_recursions,
 983                    deps_find_witness_singles);
 984       }
 985       if (final_stats || (TraceDependencies && WizardMode)) {
 986         ttyLocker ttyl;
 987         tty->print_cr("Dependency check (find_witness) "
 988                       "calls=%d, steps=%d (avg=%.1f), recursions=%d, singles=%d",
 989                       deps_find_witness_calls,
 990                       deps_find_witness_steps,
 991                       (double)deps_find_witness_steps / deps_find_witness_calls,
 992                       deps_find_witness_recursions,
 993                       deps_find_witness_singles);
 994       }
 995     }
 996     return true;
 997   }
 998   return false;
 999 }
1000 #else
1001 #define count_find_witness_calls() (0)
1002 #endif //PRODUCT
1003 
1004 
1005 Klass* ClassHierarchyWalker::find_witness_in(KlassDepChange& changes,
1006                                                Klass* context_type,
1007                                                bool participants_hide_witnesses) {
1008   assert(changes.involves_context(context_type), "irrelevant dependency");
1009   Klass* new_type = changes.new_type();
1010 
1011   (void)count_find_witness_calls();
1012   NOT_PRODUCT(deps_find_witness_singles++);
1013 
1014   // Current thread must be in VM (not native mode, as in CI):
1015   assert(must_be_in_vm(), "raw oops here");
1016   // Must not move the class hierarchy during this check:
1017   assert_locked_or_safepoint(Compile_lock);
1018 
1019   int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
1020   if (nof_impls > 1) {
1021     // Avoid this case: *I.m > { A.m, C }; B.m > C
1022     // %%% Until this is fixed more systematically, bail out.
1023     // See corresponding comment in find_witness_anywhere.
1024     return context_type;
1025   }
1026 
1027   assert(!is_participant(new_type), "only old classes are participants");
1028   if (participants_hide_witnesses) {
1029     // If the new type is a subtype of a participant, we are done.
1030     for (int i = 0; i < num_participants(); i++) {
1031       Klass* part = participant(i);
1032       if (part == NULL)  continue;
1033       assert(changes.involves_context(part) == new_type->is_subtype_of(part),
1034              "correct marking of participants, b/c new_type is unique");
1035       if (changes.involves_context(part)) {
1036         // new guy is protected from this check by previous participant
1037         return NULL;
1038       }
1039     }
1040   }
1041 
1042   if (is_witness(new_type) &&
1043       !ignore_witness(new_type)) {
1044     return new_type;
1045   }
1046 
1047   return NULL;
1048 }
1049 
1050 
1051 // Walk hierarchy under a context type, looking for unexpected types.
1052 // Do not report participant types, and recursively walk beneath
1053 // them only if participants_hide_witnesses is false.
1054 // If top_level_call is false, skip testing the context type,
1055 // because the caller has already considered it.
1056 Klass* ClassHierarchyWalker::find_witness_anywhere(Klass* context_type,
1057                                                      bool participants_hide_witnesses,
1058                                                      bool top_level_call) {
1059   // Current thread must be in VM (not native mode, as in CI):
1060   assert(must_be_in_vm(), "raw oops here");
1061   // Must not move the class hierarchy during this check:
1062   assert_locked_or_safepoint(Compile_lock);
1063 
1064   bool do_counts = count_find_witness_calls();
1065 
1066   // Check the root of the sub-hierarchy first.
1067   if (top_level_call) {
1068     if (do_counts) {
1069       NOT_PRODUCT(deps_find_witness_calls++);
1070       NOT_PRODUCT(deps_find_witness_steps++);
1071     }
1072     if (is_participant(context_type)) {
1073       if (participants_hide_witnesses)  return NULL;
1074       // else fall through to search loop...
1075     } else if (is_witness(context_type) && !ignore_witness(context_type)) {
1076       // The context is an abstract class or interface, to start with.
1077       return context_type;
1078     }
1079   }
1080 
1081   // Now we must check each implementor and each subclass.
1082   // Use a short worklist to avoid blowing the stack.
1083   // Each worklist entry is a *chain* of subklass siblings to process.
1084   const int CHAINMAX = 100;  // >= 1 + InstanceKlass::implementors_limit
1085   Klass* chains[CHAINMAX];
1086   int    chaini = 0;  // index into worklist
1087   Klass* chain;       // scratch variable
1088 #define ADD_SUBCLASS_CHAIN(k)                     {  \
1089     assert(chaini < CHAINMAX, "oob");                \
1090     chain = InstanceKlass::cast(k)->subklass();      \
1091     if (chain != NULL)  chains[chaini++] = chain;    }
1092 
1093   // Look for non-abstract subclasses.
1094   // (Note:  Interfaces do not have subclasses.)
1095   ADD_SUBCLASS_CHAIN(context_type);
1096 
1097   // If it is an interface, search its direct implementors.
1098   // (Their subclasses are additional indirect implementors.
1099   // See InstanceKlass::add_implementor.)
1100   // (Note:  nof_implementors is always zero for non-interfaces.)
1101   int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
1102   if (nof_impls > 1) {
1103     // Avoid this case: *I.m > { A.m, C }; B.m > C
1104     // Here, I.m has 2 concrete implementations, but m appears unique
1105     // as A.m, because the search misses B.m when checking C.
1106     // The inherited method B.m was getting missed by the walker
1107     // when interface 'I' was the starting point.
1108     // %%% Until this is fixed more systematically, bail out.
1109     // (Old CHA had the same limitation.)
1110     return context_type;
1111   }
1112   if (nof_impls > 0) {
1113     Klass* impl = InstanceKlass::cast(context_type)->implementor();
1114     assert(impl != NULL, "just checking");
1115     // If impl is the same as the context_type, then more than one
1116     // implementor has seen. No exact info in this case.
1117     if (impl == context_type) {
1118       return context_type;  // report an inexact witness to this sad affair
1119     }
1120     if (do_counts)
1121       { NOT_PRODUCT(deps_find_witness_steps++); }
1122     if (is_participant(impl)) {
1123       if (!participants_hide_witnesses) {
1124         ADD_SUBCLASS_CHAIN(impl);
1125       }
1126     } else if (is_witness(impl) && !ignore_witness(impl)) {
1127       return impl;
1128     } else {
1129       ADD_SUBCLASS_CHAIN(impl);
1130     }
1131   }
1132 
1133   // Recursively process each non-trivial sibling chain.
1134   while (chaini > 0) {
1135     Klass* chain = chains[--chaini];
1136     for (Klass* sub = chain; sub != NULL; sub = sub->next_sibling()) {
1137       if (do_counts) { NOT_PRODUCT(deps_find_witness_steps++); }
1138       if (is_participant(sub)) {
1139         if (participants_hide_witnesses)  continue;
1140         // else fall through to process this guy's subclasses
1141       } else if (is_witness(sub) && !ignore_witness(sub)) {
1142         return sub;
1143       }
1144       if (chaini < (VerifyDependencies? 2: CHAINMAX)) {
1145         // Fast path.  (Partially disabled if VerifyDependencies.)
1146         ADD_SUBCLASS_CHAIN(sub);
1147       } else {
1148         // Worklist overflow.  Do a recursive call.  Should be rare.
1149         // The recursive call will have its own worklist, of course.
1150         // (Note that sub has already been tested, so that there is
1151         // no need for the recursive call to re-test.  That's handy,
1152         // since the recursive call sees sub as the context_type.)
1153         if (do_counts) { NOT_PRODUCT(deps_find_witness_recursions++); }
1154         Klass* witness = find_witness_anywhere(sub,
1155                                                  participants_hide_witnesses,
1156                                                  /*top_level_call=*/ false);
1157         if (witness != NULL)  return witness;
1158       }
1159     }
1160   }
1161 
1162   // No witness found.  The dependency remains unbroken.
1163   return NULL;
1164 #undef ADD_SUBCLASS_CHAIN
1165 }
1166 
1167 
1168 bool Dependencies::is_concrete_klass(Klass* k) {
1169   if (k->is_abstract())  return false;
1170   // %%% We could treat classes which are concrete but
1171   // have not yet been instantiated as virtually abstract.
1172   // This would require a deoptimization barrier on first instantiation.
1173   //if (k->is_not_instantiated())  return false;
1174   return true;
1175 }
1176 
1177 bool Dependencies::is_concrete_method(Method* m) {
1178   // Statics are irrelevant to virtual call sites.
1179   if (m->is_static())  return false;
1180 
1181   // We could also return false if m does not yet appear to be
1182   // executed, if the VM version supports this distinction also.
1183   return !m->is_abstract() &&
1184          !InstanceKlass::cast(m->method_holder())->is_interface();
1185          // TODO: investigate whether default methods should be
1186          // considered as "concrete" in this situation.  For now they
1187          // are not.
1188 }
1189 
1190 
1191 Klass* Dependencies::find_finalizable_subclass(Klass* k) {
1192   if (k->is_interface())  return NULL;
1193   if (k->has_finalizer()) return k;
1194   k = k->subklass();
1195   while (k != NULL) {
1196     Klass* result = find_finalizable_subclass(k);
1197     if (result != NULL) return result;
1198     k = k->next_sibling();
1199   }
1200   return NULL;
1201 }
1202 
1203 
1204 bool Dependencies::is_concrete_klass(ciInstanceKlass* k) {
1205   if (k->is_abstract())  return false;
1206   // We could also return false if k does not yet appear to be
1207   // instantiated, if the VM version supports this distinction also.
1208   //if (k->is_not_instantiated())  return false;
1209   return true;
1210 }
1211 
1212 bool Dependencies::is_concrete_method(ciMethod* m) {
1213   // Statics are irrelevant to virtual call sites.
1214   if (m->is_static())  return false;
1215 
1216   // We could also return false if m does not yet appear to be
1217   // executed, if the VM version supports this distinction also.
1218   return !m->is_abstract();
1219 }
1220 
1221 
1222 bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) {
1223   return k->has_finalizable_subclass();
1224 }
1225 
1226 
1227 // Any use of the contents (bytecodes) of a method must be
1228 // marked by an "evol_method" dependency, if those contents
1229 // can change.  (Note: A method is always dependent on itself.)
1230 Klass* Dependencies::check_evol_method(Method* m) {
1231   assert(must_be_in_vm(), "raw oops here");
1232   // Did somebody do a JVMTI RedefineClasses while our backs were turned?
1233   // Or is there a now a breakpoint?
1234   // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.)
1235   if (m->is_old()
1236       || m->number_of_breakpoints() > 0) {
1237     return m->method_holder();
1238   } else {
1239     return NULL;
1240   }
1241 }
1242 
1243 // This is a strong assertion:  It is that the given type
1244 // has no subtypes whatever.  It is most useful for
1245 // optimizing checks on reflected types or on array types.
1246 // (Checks on types which are derived from real instances
1247 // can be optimized more strongly than this, because we
1248 // know that the checked type comes from a concrete type,
1249 // and therefore we can disregard abstract types.)
1250 Klass* Dependencies::check_leaf_type(Klass* ctxk) {
1251   assert(must_be_in_vm(), "raw oops here");
1252   assert_locked_or_safepoint(Compile_lock);
1253   InstanceKlass* ctx = InstanceKlass::cast(ctxk);
1254   Klass* sub = ctx->subklass();
1255   if (sub != NULL) {
1256     return sub;
1257   } else if (ctx->nof_implementors() != 0) {
1258     // if it is an interface, it must be unimplemented
1259     // (if it is not an interface, nof_implementors is always zero)
1260     Klass* impl = ctx->implementor();
1261     assert(impl != NULL, "must be set");
1262     return impl;
1263   } else {
1264     return NULL;
1265   }
1266 }
1267 
1268 // Test the assertion that conck is the only concrete subtype* of ctxk.
1269 // The type conck itself is allowed to have have further concrete subtypes.
1270 // This allows the compiler to narrow occurrences of ctxk by conck,
1271 // when dealing with the types of actual instances.
1272 Klass* Dependencies::check_abstract_with_unique_concrete_subtype(Klass* ctxk,
1273                                                                    Klass* conck,
1274                                                                    KlassDepChange* changes) {
1275   ClassHierarchyWalker wf(conck);
1276   return wf.find_witness_subtype(ctxk, changes);
1277 }
1278 
1279 // If a non-concrete class has no concrete subtypes, it is not (yet)
1280 // instantiatable.  This can allow the compiler to make some paths go
1281 // dead, if they are gated by a test of the type.
1282 Klass* Dependencies::check_abstract_with_no_concrete_subtype(Klass* ctxk,
1283                                                                KlassDepChange* changes) {
1284   // Find any concrete subtype, with no participants:
1285   ClassHierarchyWalker wf;
1286   return wf.find_witness_subtype(ctxk, changes);
1287 }
1288 
1289 
1290 // If a concrete class has no concrete subtypes, it can always be
1291 // exactly typed.  This allows the use of a cheaper type test.
1292 Klass* Dependencies::check_concrete_with_no_concrete_subtype(Klass* ctxk,
1293                                                                KlassDepChange* changes) {
1294   // Find any concrete subtype, with only the ctxk as participant:
1295   ClassHierarchyWalker wf(ctxk);
1296   return wf.find_witness_subtype(ctxk, changes);
1297 }
1298 
1299 
1300 // Find the unique concrete proper subtype of ctxk, or NULL if there
1301 // is more than one concrete proper subtype.  If there are no concrete
1302 // proper subtypes, return ctxk itself, whether it is concrete or not.
1303 // The returned subtype is allowed to have have further concrete subtypes.
1304 // That is, return CC1 for CX > CC1 > CC2, but NULL for CX > { CC1, CC2 }.
1305 Klass* Dependencies::find_unique_concrete_subtype(Klass* ctxk) {
1306   ClassHierarchyWalker wf(ctxk);   // Ignore ctxk when walking.
1307   wf.record_witnesses(1);          // Record one other witness when walking.
1308   Klass* wit = wf.find_witness_subtype(ctxk);
1309   if (wit != NULL)  return NULL;   // Too many witnesses.
1310   Klass* conck = wf.participant(0);
1311   if (conck == NULL) {
1312 #ifndef PRODUCT
1313     // Make sure the dependency mechanism will pass this discovery:
1314     if (VerifyDependencies) {
1315       // Turn off dependency tracing while actually testing deps.
1316       FlagSetting fs(TraceDependencies, false);
1317       if (!Dependencies::is_concrete_klass(ctxk)) {
1318         guarantee(NULL ==
1319                   (void *)check_abstract_with_no_concrete_subtype(ctxk),
1320                   "verify dep.");
1321       } else {
1322         guarantee(NULL ==
1323                   (void *)check_concrete_with_no_concrete_subtype(ctxk),
1324                   "verify dep.");
1325       }
1326     }
1327 #endif //PRODUCT
1328     return ctxk;                   // Return ctxk as a flag for "no subtypes".
1329   } else {
1330 #ifndef PRODUCT
1331     // Make sure the dependency mechanism will pass this discovery:
1332     if (VerifyDependencies) {
1333       // Turn off dependency tracing while actually testing deps.
1334       FlagSetting fs(TraceDependencies, false);
1335       if (!Dependencies::is_concrete_klass(ctxk)) {
1336         guarantee(NULL == (void *)
1337                   check_abstract_with_unique_concrete_subtype(ctxk, conck),
1338                   "verify dep.");
1339       }
1340     }
1341 #endif //PRODUCT
1342     return conck;
1343   }
1344 }
1345 
1346 // Test the assertion that the k[12] are the only concrete subtypes of ctxk,
1347 // except possibly for further subtypes of k[12] themselves.
1348 // The context type must be abstract.  The types k1 and k2 are themselves
1349 // allowed to have further concrete subtypes.
1350 Klass* Dependencies::check_abstract_with_exclusive_concrete_subtypes(
1351                                                 Klass* ctxk,
1352                                                 Klass* k1,
1353                                                 Klass* k2,
1354                                                 KlassDepChange* changes) {
1355   ClassHierarchyWalker wf;
1356   wf.add_participant(k1);
1357   wf.add_participant(k2);
1358   return wf.find_witness_subtype(ctxk, changes);
1359 }
1360 
1361 // Search ctxk for concrete implementations.  If there are klen or fewer,
1362 // pack them into the given array and return the number.
1363 // Otherwise, return -1, meaning the given array would overflow.
1364 // (Note that a return of 0 means there are exactly no concrete subtypes.)
1365 // In this search, if ctxk is concrete, it will be reported alone.
1366 // For any type CC reported, no proper subtypes of CC will be reported.
1367 int Dependencies::find_exclusive_concrete_subtypes(Klass* ctxk,
1368                                                    int klen,
1369                                                    Klass* karray[]) {
1370   ClassHierarchyWalker wf;
1371   wf.record_witnesses(klen);
1372   Klass* wit = wf.find_witness_subtype(ctxk);
1373   if (wit != NULL)  return -1;  // Too many witnesses.
1374   int num = wf.num_participants();
1375   assert(num <= klen, "oob");
1376   // Pack the result array with the good news.
1377   for (int i = 0; i < num; i++)
1378     karray[i] = wf.participant(i);
1379 #ifndef PRODUCT
1380   // Make sure the dependency mechanism will pass this discovery:
1381   if (VerifyDependencies) {
1382     // Turn off dependency tracing while actually testing deps.
1383     FlagSetting fs(TraceDependencies, false);
1384     switch (Dependencies::is_concrete_klass(ctxk)? -1: num) {
1385     case -1: // ctxk was itself concrete
1386       guarantee(num == 1 && karray[0] == ctxk, "verify dep.");
1387       break;
1388     case 0:
1389       guarantee(NULL == (void *)check_abstract_with_no_concrete_subtype(ctxk),
1390                 "verify dep.");
1391       break;
1392     case 1:
1393       guarantee(NULL == (void *)
1394                 check_abstract_with_unique_concrete_subtype(ctxk, karray[0]),
1395                 "verify dep.");
1396       break;
1397     case 2:
1398       guarantee(NULL == (void *)
1399                 check_abstract_with_exclusive_concrete_subtypes(ctxk,
1400                                                                 karray[0],
1401                                                                 karray[1]),
1402                 "verify dep.");
1403       break;
1404     default:
1405       ShouldNotReachHere();  // klen > 2 yet supported
1406     }
1407   }
1408 #endif //PRODUCT
1409   return num;
1410 }
1411 
1412 // If a class (or interface) has a unique concrete method uniqm, return NULL.
1413 // Otherwise, return a class that contains an interfering method.
1414 Klass* Dependencies::check_unique_concrete_method(Klass* ctxk, Method* uniqm,
1415                                                     KlassDepChange* changes) {
1416   // Here is a missing optimization:  If uniqm->is_final(),
1417   // we don't really need to search beneath it for overrides.
1418   // This is probably not important, since we don't use dependencies
1419   // to track final methods.  (They can't be "definalized".)
1420   ClassHierarchyWalker wf(uniqm->method_holder(), uniqm);
1421   return wf.find_witness_definer(ctxk, changes);
1422 }
1423 
1424 // Find the set of all non-abstract methods under ctxk that match m.
1425 // (The method m must be defined or inherited in ctxk.)
1426 // Include m itself in the set, unless it is abstract.
1427 // If this set has exactly one element, return that element.
1428 Method* Dependencies::find_unique_concrete_method(Klass* ctxk, Method* m) {
1429   ClassHierarchyWalker wf(m);
1430   assert(wf.check_method_context(ctxk, m), "proper context");
1431   wf.record_witnesses(1);
1432   Klass* wit = wf.find_witness_definer(ctxk);
1433   if (wit != NULL)  return NULL;  // Too many witnesses.
1434   Method* fm = wf.found_method(0);  // Will be NULL if num_parts == 0.
1435   if (Dependencies::is_concrete_method(m)) {
1436     if (fm == NULL) {
1437       // It turns out that m was always the only implementation.
1438       fm = m;
1439     } else if (fm != m) {
1440       // Two conflicting implementations after all.
1441       // (This can happen if m is inherited into ctxk and fm overrides it.)
1442       return NULL;
1443     }
1444   }
1445 #ifndef PRODUCT
1446   // Make sure the dependency mechanism will pass this discovery:
1447   if (VerifyDependencies && fm != NULL) {
1448     guarantee(NULL == (void *)check_unique_concrete_method(ctxk, fm),
1449               "verify dep.");
1450   }
1451 #endif //PRODUCT
1452   return fm;
1453 }
1454 
1455 Klass* Dependencies::check_exclusive_concrete_methods(Klass* ctxk,
1456                                                         Method* m1,
1457                                                         Method* m2,
1458                                                         KlassDepChange* changes) {
1459   ClassHierarchyWalker wf(m1);
1460   wf.add_participant(m1->method_holder());
1461   wf.add_participant(m2->method_holder());
1462   return wf.find_witness_definer(ctxk, changes);
1463 }
1464 
1465 // Find the set of all non-abstract methods under ctxk that match m[0].
1466 // (The method m[0] must be defined or inherited in ctxk.)
1467 // Include m itself in the set, unless it is abstract.
1468 // Fill the given array m[0..(mlen-1)] with this set, and return the length.
1469 // (The length may be zero if no concrete methods are found anywhere.)
1470 // If there are too many concrete methods to fit in marray, return -1.
1471 int Dependencies::find_exclusive_concrete_methods(Klass* ctxk,
1472                                                   int mlen,
1473                                                   Method* marray[]) {
1474   Method* m0 = marray[0];
1475   ClassHierarchyWalker wf(m0);
1476   assert(wf.check_method_context(ctxk, m0), "proper context");
1477   wf.record_witnesses(mlen);
1478   bool participants_hide_witnesses = true;
1479   Klass* wit = wf.find_witness_definer(ctxk);
1480   if (wit != NULL)  return -1;  // Too many witnesses.
1481   int num = wf.num_participants();
1482   assert(num <= mlen, "oob");
1483   // Keep track of whether m is also part of the result set.
1484   int mfill = 0;
1485   assert(marray[mfill] == m0, "sanity");
1486   if (Dependencies::is_concrete_method(m0))
1487     mfill++;  // keep m0 as marray[0], the first result
1488   for (int i = 0; i < num; i++) {
1489     Method* fm = wf.found_method(i);
1490     if (fm == m0)  continue;  // Already put this guy in the list.
1491     if (mfill == mlen) {
1492       return -1;              // Oops.  Too many methods after all!
1493     }
1494     marray[mfill++] = fm;
1495   }
1496 #ifndef PRODUCT
1497   // Make sure the dependency mechanism will pass this discovery:
1498   if (VerifyDependencies) {
1499     // Turn off dependency tracing while actually testing deps.
1500     FlagSetting fs(TraceDependencies, false);
1501     switch (mfill) {
1502     case 1:
1503       guarantee(NULL == (void *)check_unique_concrete_method(ctxk, marray[0]),
1504                 "verify dep.");
1505       break;
1506     case 2:
1507       guarantee(NULL == (void *)
1508                 check_exclusive_concrete_methods(ctxk, marray[0], marray[1]),
1509                 "verify dep.");
1510       break;
1511     default:
1512       ShouldNotReachHere();  // mlen > 2 yet supported
1513     }
1514   }
1515 #endif //PRODUCT
1516   return mfill;
1517 }
1518 
1519 
1520 Klass* Dependencies::check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes) {
1521   Klass* search_at = ctxk;
1522   if (changes != NULL)
1523     search_at = changes->new_type(); // just look at the new bit
1524   return find_finalizable_subclass(search_at);
1525 }
1526 
1527 
1528 Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) {
1529   assert(call_site    ->is_a(SystemDictionary::CallSite_klass()),     "sanity");
1530   assert(method_handle->is_a(SystemDictionary::MethodHandle_klass()), "sanity");
1531   if (changes == NULL) {
1532     // Validate all CallSites
1533     if (java_lang_invoke_CallSite::target(call_site) != method_handle)
1534       return call_site->klass();  // assertion failed
1535   } else {
1536     // Validate the given CallSite
1537     if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) {
1538       assert(method_handle != changes->method_handle(), "must be");
1539       return call_site->klass();  // assertion failed
1540     }
1541   }
1542   return NULL;  // assertion still valid
1543 }
1544 
1545 
1546 void Dependencies::DepStream::trace_and_log_witness(Klass* witness) {
1547   if (witness != NULL) {
1548     if (TraceDependencies) {
1549       print_dependency(witness, /*verbose=*/ true);
1550     }
1551     // The following is a no-op unless logging is enabled:
1552     log_dependency(witness);
1553   }
1554 }
1555 
1556 
1557 Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) {
1558   assert_locked_or_safepoint(Compile_lock);
1559   Dependencies::check_valid_dependency_type(type());
1560 
1561   Klass* witness = NULL;
1562   switch (type()) {
1563   case evol_method:
1564     witness = check_evol_method(method_argument(0));
1565     break;
1566   case leaf_type:
1567     witness = check_leaf_type(context_type());
1568     break;
1569   case abstract_with_unique_concrete_subtype:
1570     witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes);
1571     break;
1572   case abstract_with_no_concrete_subtype:
1573     witness = check_abstract_with_no_concrete_subtype(context_type(), changes);
1574     break;
1575   case concrete_with_no_concrete_subtype:
1576     witness = check_concrete_with_no_concrete_subtype(context_type(), changes);
1577     break;
1578   case unique_concrete_method:
1579     witness = check_unique_concrete_method(context_type(), method_argument(1), changes);
1580     break;
1581   case abstract_with_exclusive_concrete_subtypes_2:
1582     witness = check_abstract_with_exclusive_concrete_subtypes(context_type(), type_argument(1), type_argument(2), changes);
1583     break;
1584   case exclusive_concrete_methods_2:
1585     witness = check_exclusive_concrete_methods(context_type(), method_argument(1), method_argument(2), changes);
1586     break;
1587   case no_finalizable_subclasses:
1588     witness = check_has_no_finalizable_subclasses(context_type(), changes);
1589     break;
1590   default:
1591     witness = NULL;
1592     break;
1593   }
1594   trace_and_log_witness(witness);
1595   return witness;
1596 }
1597 
1598 
1599 Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) {
1600   assert_locked_or_safepoint(Compile_lock);
1601   Dependencies::check_valid_dependency_type(type());
1602 
1603   Klass* witness = NULL;
1604   switch (type()) {
1605   case call_site_target_value:
1606     witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes);
1607     break;
1608   default:
1609     witness = NULL;
1610     break;
1611   }
1612   trace_and_log_witness(witness);
1613   return witness;
1614 }
1615 
1616 
1617 Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) {
1618   // Handle klass dependency
1619   if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type()))
1620     return check_klass_dependency(changes.as_klass_change());
1621 
1622   // Handle CallSite dependency
1623   if (changes.is_call_site_change())
1624     return check_call_site_dependency(changes.as_call_site_change());
1625 
1626   // irrelevant dependency; skip it
1627   return NULL;
1628 }
1629 
1630 
1631 void DepChange::print() {
1632   int nsup = 0, nint = 0;
1633   for (ContextStream str(*this); str.next(); ) {
1634     Klass* k = str.klass();
1635     switch (str.change_type()) {
1636     case Change_new_type:
1637       tty->print_cr("  dependee = %s", InstanceKlass::cast(k)->external_name());
1638       break;
1639     case Change_new_sub:
1640       if (!WizardMode) {
1641         ++nsup;
1642       } else {
1643         tty->print_cr("  context super = %s", InstanceKlass::cast(k)->external_name());
1644       }
1645       break;
1646     case Change_new_impl:
1647       if (!WizardMode) {
1648         ++nint;
1649       } else {
1650         tty->print_cr("  context interface = %s", InstanceKlass::cast(k)->external_name());
1651       }
1652       break;
1653     }
1654   }
1655   if (nsup + nint != 0) {
1656     tty->print_cr("  context supers = %d, interfaces = %d", nsup, nint);
1657   }
1658 }
1659 
1660 void DepChange::ContextStream::start() {
1661   Klass* new_type = _changes.is_klass_change() ? _changes.as_klass_change()->new_type() : (Klass*) NULL;
1662   _change_type = (new_type == NULL ? NO_CHANGE : Start_Klass);
1663   _klass = new_type;
1664   _ti_base = NULL;
1665   _ti_index = 0;
1666   _ti_limit = 0;
1667 }
1668 
1669 bool DepChange::ContextStream::next() {
1670   switch (_change_type) {
1671   case Start_Klass:             // initial state; _klass is the new type
1672     _ti_base = InstanceKlass::cast(_klass)->transitive_interfaces();
1673     _ti_index = 0;
1674     _change_type = Change_new_type;
1675     return true;
1676   case Change_new_type:
1677     // fall through:
1678     _change_type = Change_new_sub;
1679   case Change_new_sub:
1680     // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277
1681     {
1682       _klass = InstanceKlass::cast(_klass)->super();
1683       if (_klass != NULL) {
1684         return true;
1685       }
1686     }
1687     // else set up _ti_limit and fall through:
1688     _ti_limit = (_ti_base == NULL) ? 0 : _ti_base->length();
1689     _change_type = Change_new_impl;
1690   case Change_new_impl:
1691     if (_ti_index < _ti_limit) {
1692       _klass = _ti_base->at(_ti_index++);
1693       return true;
1694     }
1695     // fall through:
1696     _change_type = NO_CHANGE;  // iterator is exhausted
1697   case NO_CHANGE:
1698     break;
1699   default:
1700     ShouldNotReachHere();
1701   }
1702   return false;
1703 }
1704 
1705 void KlassDepChange::initialize() {
1706   // entire transaction must be under this lock:
1707   assert_lock_strong(Compile_lock);
1708 
1709   // Mark all dependee and all its superclasses
1710   // Mark transitive interfaces
1711   for (ContextStream str(*this); str.next(); ) {
1712     Klass* d = str.klass();
1713     assert(!InstanceKlass::cast(d)->is_marked_dependent(), "checking");
1714     InstanceKlass::cast(d)->set_is_marked_dependent(true);
1715   }
1716 }
1717 
1718 KlassDepChange::~KlassDepChange() {
1719   // Unmark all dependee and all its superclasses
1720   // Unmark transitive interfaces
1721   for (ContextStream str(*this); str.next(); ) {
1722     Klass* d = str.klass();
1723     InstanceKlass::cast(d)->set_is_marked_dependent(false);
1724   }
1725 }
1726 
1727 bool KlassDepChange::involves_context(Klass* k) {
1728   if (k == NULL || !k->oop_is_instance()) {
1729     return false;
1730   }
1731   InstanceKlass* ik = InstanceKlass::cast(k);
1732   bool is_contained = ik->is_marked_dependent();
1733   assert(is_contained == new_type()->is_subtype_of(k),
1734          "correct marking of potential context types");
1735   return is_contained;
1736 }
1737 
1738 #ifndef PRODUCT
1739 void Dependencies::print_statistics() {
1740   if (deps_find_witness_print != 0) {
1741     // Call one final time, to flush out the data.
1742     deps_find_witness_print = -1;
1743     count_find_witness_calls();
1744   }
1745 }
1746 #endif