1 /*
   2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_CODE_DEPENDENCIES_HPP
  26 #define SHARE_VM_CODE_DEPENDENCIES_HPP
  27 
  28 #include "ci/ciCallSite.hpp"
  29 #include "ci/ciKlass.hpp"
  30 #include "ci/ciMethod.hpp"
  31 #include "ci/ciMethodHandle.hpp"
  32 #include "classfile/systemDictionary.hpp"
  33 #include "code/compressedStream.hpp"
  34 #include "code/nmethod.hpp"
  35 #include "utilities/growableArray.hpp"
  36 
  37 //** Dependencies represent assertions (approximate invariants) within
  38 // the runtime system, e.g. class hierarchy changes.  An example is an
  39 // assertion that a given method is not overridden; another example is
  40 // that a type has only one concrete subtype.  Compiled code which
  41 // relies on such assertions must be discarded if they are overturned
  42 // by changes in the runtime system.  We can think of these assertions
  43 // as approximate invariants, because we expect them to be overturned
  44 // very infrequently.  We are willing to perform expensive recovery
  45 // operations when they are overturned.  The benefit, of course, is
  46 // performing optimistic optimizations (!) on the object code.
  47 //
  48 // Changes in the class hierarchy due to dynamic linking or
  49 // class evolution can violate dependencies.  There is enough
  50 // indexing between classes and nmethods to make dependency
  51 // checking reasonably efficient.
  52 
  53 class ciEnv;
  54 class nmethod;
  55 class OopRecorder;
  56 class xmlStream;
  57 class CompileLog;
  58 class DepChange;
  59 class   KlassDepChange;
  60 class   CallSiteDepChange;
  61 class No_Safepoint_Verifier;
  62 
  63 class Dependencies: public ResourceObj {
  64  public:
  65   // Note: In the comments on dependency types, most uses of the terms
  66   // subtype and supertype are used in a "non-strict" or "inclusive"
  67   // sense, and are starred to remind the reader of this fact.
  68   // Strict uses of the terms use the word "proper".
  69   //
  70   // Specifically, every class is its own subtype* and supertype*.
  71   // (This trick is easier than continually saying things like "Y is a
  72   // subtype of X or X itself".)
  73   //
  74   // Sometimes we write X > Y to mean X is a proper supertype of Y.
  75   // The notation X > {Y, Z} means X has proper subtypes Y, Z.
  76   // The notation X.m > Y means that Y inherits m from X, while
  77   // X.m > Y.m means Y overrides X.m.  A star denotes abstractness,
  78   // as *I > A, meaning (abstract) interface I is a super type of A,
  79   // or A.*m > B.m, meaning B.m implements abstract method A.m.
  80   //
  81   // In this module, the terms "subtype" and "supertype" refer to
  82   // Java-level reference type conversions, as detected by
  83   // "instanceof" and performed by "checkcast" operations.  The method
  84   // Klass::is_subtype_of tests these relations.  Note that "subtype"
  85   // is richer than "subclass" (as tested by Klass::is_subclass_of),
  86   // since it takes account of relations involving interface and array
  87   // types.
  88   //
  89   // To avoid needless complexity, dependencies involving array types
  90   // are not accepted.  If you need to make an assertion about an
  91   // array type, make the assertion about its corresponding element
  92   // types.  Any assertion that might change about an array type can
  93   // be converted to an assertion about its element type.
  94   //
  95   // Most dependencies are evaluated over a "context type" CX, which
  96   // stands for the set Subtypes(CX) of every Java type that is a subtype*
  97   // of CX.  When the system loads a new class or interface N, it is
  98   // responsible for re-evaluating changed dependencies whose context
  99   // type now includes N, that is, all super types of N.
 100   //
 101   enum DepType {
 102     end_marker = 0,
 103 
 104     // An 'evol' dependency simply notes that the contents of the
 105     // method were used.  If it evolves (is replaced), the nmethod
 106     // must be recompiled.  No other dependencies are implied.
 107     evol_method,
 108     FIRST_TYPE = evol_method,
 109 
 110     // A context type CX is a leaf it if has no proper subtype.
 111     leaf_type,
 112 
 113     // An abstract class CX has exactly one concrete subtype CC.
 114     abstract_with_unique_concrete_subtype,
 115 
 116     // The type CX is purely abstract, with no concrete subtype* at all.
 117     abstract_with_no_concrete_subtype,
 118 
 119     // The concrete CX is free of concrete proper subtypes.
 120     concrete_with_no_concrete_subtype,
 121 
 122     // Given a method M1 and a context class CX, the set MM(CX, M1) of
 123     // "concrete matching methods" in CX of M1 is the set of every
 124     // concrete M2 for which it is possible to create an invokevirtual
 125     // or invokeinterface call site that can reach either M1 or M2.
 126     // That is, M1 and M2 share a name, signature, and vtable index.
 127     // We wish to notice when the set MM(CX, M1) is just {M1}, or
 128     // perhaps a set of two {M1,M2}, and issue dependencies on this.
 129 
 130     // The set MM(CX, M1) can be computed by starting with any matching
 131     // concrete M2 that is inherited into CX, and then walking the
 132     // subtypes* of CX looking for concrete definitions.
 133 
 134     // The parameters to this dependency are the method M1 and the
 135     // context class CX.  M1 must be either inherited in CX or defined
 136     // in a subtype* of CX.  It asserts that MM(CX, M1) is no greater
 137     // than {M1}.
 138     unique_concrete_method,       // one unique concrete method under CX
 139 
 140     // An "exclusive" assertion concerns two methods or subtypes, and
 141     // declares that there are at most two (or perhaps later N>2)
 142     // specific items that jointly satisfy the restriction.
 143     // We list all items explicitly rather than just giving their
 144     // count, for robustness in the face of complex schema changes.
 145 
 146     // A context class CX (which may be either abstract or concrete)
 147     // has two exclusive concrete subtypes* C1, C2 if every concrete
 148     // subtype* of CX is either C1 or C2.  Note that if neither C1 or C2
 149     // are equal to CX, then CX itself must be abstract.  But it is
 150     // also possible (for example) that C1 is CX (a concrete class)
 151     // and C2 is a proper subtype of C1.
 152     abstract_with_exclusive_concrete_subtypes_2,
 153 
 154     // This dependency asserts that MM(CX, M1) is no greater than {M1,M2}.
 155     exclusive_concrete_methods_2,
 156 
 157     // This dependency asserts that no instances of class or it's
 158     // subclasses require finalization registration.
 159     no_finalizable_subclasses,
 160 
 161     // This dependency asserts when the CallSite.target value changed.
 162     call_site_target_value,
 163 
 164     TYPE_LIMIT
 165   };
 166   enum {
 167     LG2_TYPE_LIMIT = 4,  // assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT))
 168 
 169     // handy categorizations of dependency types:
 170     all_types           = ((1 << TYPE_LIMIT) - 1) & ((-1) << FIRST_TYPE),
 171 
 172     non_klass_types     = (1 << call_site_target_value),
 173     klass_types         = all_types & ~non_klass_types,
 174 
 175     non_ctxk_types      = (1 << evol_method),
 176     implicit_ctxk_types = (1 << call_site_target_value),
 177     explicit_ctxk_types = all_types & ~(non_ctxk_types | implicit_ctxk_types),
 178 
 179     max_arg_count = 3,   // current maximum number of arguments (incl. ctxk)
 180 
 181     // A "context type" is a class or interface that
 182     // provides context for evaluating a dependency.
 183     // When present, it is one of the arguments (dep_context_arg).
 184     //
 185     // If a dependency does not have a context type, there is a
 186     // default context, depending on the type of the dependency.
 187     // This bit signals that a default context has been compressed away.
 188     default_context_type_bit = (1<<LG2_TYPE_LIMIT)
 189   };
 190 
 191   static const char* dep_name(DepType dept);
 192   static int         dep_args(DepType dept);
 193 
 194   static bool is_klass_type(           DepType dept) { return dept_in_mask(dept, klass_types        ); }
 195 
 196   static bool has_explicit_context_arg(DepType dept) { return dept_in_mask(dept, explicit_ctxk_types); }
 197   static bool has_implicit_context_arg(DepType dept) { return dept_in_mask(dept, implicit_ctxk_types); }
 198 
 199   static int           dep_context_arg(DepType dept) { return has_explicit_context_arg(dept) ? 0 : -1; }
 200   static int  dep_implicit_context_arg(DepType dept) { return has_implicit_context_arg(dept) ? 0 : -1; }
 201 
 202   static void check_valid_dependency_type(DepType dept);
 203 
 204   // A Metadata* or object value recorded in an OopRecorder
 205   class DepValue VALUE_OBJ_CLASS_SPEC {
 206    private:
 207     // Unique identifier of the value within the associated OopRecorder that
 208     // encodes both the category of the value (0: invalid, positive: metadata, negative: object)
 209     // and the index within a category specific array (metadata: index + 1, object: -(index + 1))
 210     int _id;
 211 
 212    public:
 213     DepValue() : _id(0) {}
 214     DepValue(OopRecorder* rec, Metadata* metadata, DepValue* candidate = NULL) {
 215       assert(candidate == NULL || candidate->is_metadata(), "oops");
 216       if (candidate != NULL && candidate->as_metadata(rec) == metadata) {
 217         _id = candidate->_id;
 218       } else {
 219         _id = rec->find_index(metadata) + 1;
 220       }
 221     }
 222     DepValue(OopRecorder* rec, jobject obj, DepValue* candidate = NULL) {
 223       assert(candidate == NULL || candidate->is_object(), "oops");
 224       if (candidate != NULL && candidate->as_object(rec) == obj) {
 225         _id = candidate->_id;
 226       } else {
 227         _id = -(rec->find_index(obj) + 1);
 228       }
 229     }
 230 
 231     // Used to sort values in ascending order of index() with metadata values preceding object values
 232     int sort_key() const { return -_id; }
 233 
 234     bool operator == (const DepValue& other) const   { return other._id == _id; }
 235 
 236     bool is_valid() const             { return _id != 0; }
 237     int  index() const                { assert(is_valid(), "oops"); return _id < 0 ? -(_id + 1) : _id - 1; }
 238     bool is_metadata() const          { assert(is_valid(), "oops"); return _id > 0; }
 239     bool is_object() const            { assert(is_valid(), "oops"); return _id < 0; }
 240 
 241     Metadata*  as_metadata(OopRecorder* rec) const    { assert(is_metadata(), "oops"); return rec->metadata_at(index()); }
 242     Klass*     as_klass(OopRecorder* rec) const       { assert(as_metadata(rec)->is_klass(), "oops"); return (Klass*) as_metadata(rec); }
 243     Method*    as_method(OopRecorder* rec) const      { assert(as_metadata(rec)->is_method(), "oops"); return (Method*) as_metadata(rec); }
 244     jobject    as_object(OopRecorder* rec) const      { assert(is_object(), "oops"); return rec->oop_at(index()); }
 245   };
 246 
 247  private:
 248   // State for writing a new set of dependencies:
 249   GrowableArray<int>*       _dep_seen;  // (seen[h->ident] & (1<<dept))
 250   GrowableArray<DepValue>*  _deps[TYPE_LIMIT];
 251 
 252   static const char* _dep_name[TYPE_LIMIT];
 253   static int         _dep_args[TYPE_LIMIT];
 254 
 255   static bool dept_in_mask(DepType dept, int mask) {
 256     return (int)dept >= 0 && dept < TYPE_LIMIT && ((1<<dept) & mask) != 0;
 257   }
 258 
 259   bool note_dep_seen(int dept, DepValue x) {
 260     assert(dept < BitsPerInt, "oops");
 261     // place metadata deps at even indexes, object deps at odd indexes
 262     int x_id = x.is_metadata() ? x.index() * 2 : (x.index() * 2) + 1;
 263     assert(_dep_seen != NULL, "deps must be writable");
 264     int seen = _dep_seen->at_grow(x_id, 0);
 265     _dep_seen->at_put(x_id, seen | (1<<dept));
 266     // return true if we've already seen dept/x
 267     return (seen & (1<<dept)) != 0;
 268   }
 269 
 270   bool maybe_merge_ctxk(GrowableArray<DepValue>* deps,
 271                         int ctxk_i, Klass* ctxk);
 272 
 273   void sort_all_deps();
 274   size_t estimate_size_in_bytes();
 275 
 276   // Initialize _deps, etc.
 277   void initialize(ciEnv* env);
 278 
 279   // State for making a new set of dependencies:
 280   OopRecorder* _oop_recorder;
 281 
 282   // Logging support
 283   CompileLog* _log;
 284 
 285   address  _content_bytes;  // everything but the oop references, encoded
 286   size_t   _size_in_bytes;
 287 
 288  public:
 289   // Make a new empty dependencies set.
 290   Dependencies(ciEnv* env) {
 291     initialize(env);
 292   }
 293 
 294  private:
 295   // Check for a valid context type.
 296   // Enforce the restriction against array types.
 297   static void check_ctxk(Klass* ctxk) {
 298     assert(ctxk->oop_is_instance(), "java types only");
 299   }
 300   static void check_ctxk_concrete(Klass* ctxk) {
 301     check_ctxk(ctxk);
 302     assert(!ctxk->is_abstract(), "must be abstract");
 303   }
 304   static void check_ctxk_abstract(Klass* ctxk) {
 305     check_ctxk(ctxk);
 306     assert(ctxk->is_abstract(), "must be abstract");
 307   }
 308 
 309   void assert_common_1(DepType dept, DepValue x);
 310   void assert_common_2(DepType dept, DepValue x0, DepValue x1);
 311   void assert_common_3(DepType dept, Klass* ctxk, DepValue x1, DepValue x2);
 312 
 313  public:
 314   // Adding assertions to a new dependency set at compile time:
 315   void assert_evol_method(Method* m);
 316   void assert_leaf_type(Klass* ctxk);
 317   void assert_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck);
 318   void assert_abstract_with_no_concrete_subtype(Klass* ctxk);
 319   void assert_concrete_with_no_concrete_subtype(Klass* ctxk);
 320   void assert_unique_concrete_method(Klass* ctxk, Method* uniqm);
 321   void assert_abstract_with_exclusive_concrete_subtypes(Klass* ctxk, Klass* k1, Klass* k2);
 322   void assert_exclusive_concrete_methods(Klass* ctxk, Method* m1, Method* m2);
 323   void assert_has_no_finalizable_subclasses(Klass* ctxk);
 324   void assert_call_site_target_value(jobject call_site, jobject method_handle);
 325 
 326   // Wrappers for the above in terms of ci classes:
 327   void assert_evol_method(ciMethod* m) {
 328     assert_evol_method(m->get_Method());
 329   }
 330   void assert_leaf_type(ciKlass* ctxk) {
 331     assert_leaf_type(ctxk->get_Klass());
 332   }
 333   void assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) {
 334     assert_abstract_with_unique_concrete_subtype(ctxk->get_Klass(), conck->get_Klass());
 335   }
 336   void assert_abstract_with_no_concrete_subtype(ciKlass* ctxk) {
 337     assert_abstract_with_no_concrete_subtype(ctxk->get_Klass());
 338   }
 339   void assert_concrete_with_no_concrete_subtype(ciKlass* ctxk) {
 340     assert_concrete_with_no_concrete_subtype(ctxk->get_Klass());
 341   }
 342   void assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) {
 343     assert_unique_concrete_method(ctxk->get_Klass(), uniqm->get_Method());
 344   }
 345   void assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2) {
 346     assert_abstract_with_exclusive_concrete_subtypes(ctxk->get_Klass(), k1->get_Klass(), k2->get_Klass());
 347   }
 348   void assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2) {
 349     assert_exclusive_concrete_methods(ctxk->get_Klass(), m1->get_Method(), m2->get_Method());
 350   }
 351   void assert_has_no_finalizable_subclasses(ciKlass* ctxk) {
 352     assert_has_no_finalizable_subclasses(ctxk->get_Klass());
 353   }
 354   void assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) {
 355     assert_call_site_target_value(call_site->constant_encoding(), method_handle->constant_encoding());
 356   }
 357 
 358   // Define whether a given method or type is concrete.
 359   // These methods define the term "concrete" as used in this module.
 360   // For this module, an "abstract" class is one which is non-concrete.
 361   //
 362   // Future optimizations may allow some classes to remain
 363   // non-concrete until their first instantiation, and allow some
 364   // methods to remain non-concrete until their first invocation.
 365   // In that case, there would be a middle ground between concrete
 366   // and abstract (as defined by the Java language and VM).
 367   static bool is_concrete_klass(Klass* k);    // k is instantiable
 368   static bool is_concrete_method(Method* m);  // m is invocable
 369   static Klass* find_finalizable_subclass(Klass* k);
 370 
 371   // These versions of the concreteness queries work through the CI.
 372   // The CI versions are allowed to skew sometimes from the VM
 373   // (oop-based) versions.  The cost of such a difference is a
 374   // (safely) aborted compilation, or a deoptimization, or a missed
 375   // optimization opportunity.
 376   //
 377   // In order to prevent spurious assertions, query results must
 378   // remain stable within any single ciEnv instance.  (I.e., they must
 379   // not go back into the VM to get their value; they must cache the
 380   // bit in the CI, either eagerly or lazily.)
 381   static bool is_concrete_klass(ciInstanceKlass* k); // k appears instantiable
 382   static bool is_concrete_method(ciMethod* m);       // m appears invocable
 383   static bool has_finalizable_subclass(ciInstanceKlass* k);
 384 
 385   // As a general rule, it is OK to compile under the assumption that
 386   // a given type or method is concrete, even if it at some future
 387   // point becomes abstract.  So dependency checking is one-sided, in
 388   // that it permits supposedly concrete classes or methods to turn up
 389   // as really abstract.  (This shouldn't happen, except during class
 390   // evolution, but that's the logic of the checking.)  However, if a
 391   // supposedly abstract class or method suddenly becomes concrete, a
 392   // dependency on it must fail.
 393 
 394   // Checking old assertions at run-time (in the VM only):
 395   static Klass* check_evol_method(Method* m);
 396   static Klass* check_leaf_type(Klass* ctxk);
 397   static Klass* check_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck,
 398                                                               KlassDepChange* changes = NULL);
 399   static Klass* check_abstract_with_no_concrete_subtype(Klass* ctxk,
 400                                                           KlassDepChange* changes = NULL);
 401   static Klass* check_concrete_with_no_concrete_subtype(Klass* ctxk,
 402                                                           KlassDepChange* changes = NULL);
 403   static Klass* check_unique_concrete_method(Klass* ctxk, Method* uniqm,
 404                                                KlassDepChange* changes = NULL);
 405   static Klass* check_abstract_with_exclusive_concrete_subtypes(Klass* ctxk, Klass* k1, Klass* k2,
 406                                                                   KlassDepChange* changes = NULL);
 407   static Klass* check_exclusive_concrete_methods(Klass* ctxk, Method* m1, Method* m2,
 408                                                    KlassDepChange* changes = NULL);
 409   static Klass* check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes = NULL);
 410   static Klass* check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes = NULL);
 411   // A returned Klass* is NULL if the dependency assertion is still
 412   // valid.  A non-NULL Klass* is a 'witness' to the assertion
 413   // failure, a point in the class hierarchy where the assertion has
 414   // been proven false.  For example, if check_leaf_type returns
 415   // non-NULL, the value is a subtype of the supposed leaf type.  This
 416   // witness value may be useful for logging the dependency failure.
 417   // Note that, when a dependency fails, there may be several possible
 418   // witnesses to the failure.  The value returned from the check_foo
 419   // method is chosen arbitrarily.
 420 
 421   // The 'changes' value, if non-null, requests a limited spot-check
 422   // near the indicated recent changes in the class hierarchy.
 423   // It is used by DepStream::spot_check_dependency_at.
 424 
 425   // Detecting possible new assertions:
 426   static Klass*    find_unique_concrete_subtype(Klass* ctxk);
 427   static Method*   find_unique_concrete_method(Klass* ctxk, Method* m);
 428   static int       find_exclusive_concrete_subtypes(Klass* ctxk, int klen, Klass* k[]);
 429   static int       find_exclusive_concrete_methods(Klass* ctxk, int mlen, Method* m[]);
 430 
 431   // Create the encoding which will be stored in an nmethod.
 432   void encode_content_bytes();
 433 
 434   address content_bytes() {
 435     assert(_content_bytes != NULL, "encode it first");
 436     return _content_bytes;
 437   }
 438   size_t size_in_bytes() {
 439     assert(_content_bytes != NULL, "encode it first");
 440     return _size_in_bytes;
 441   }
 442 
 443   OopRecorder* oop_recorder() { return _oop_recorder; }
 444   CompileLog*  log()          { return _log; }
 445 
 446   void copy_to(nmethod* nm);
 447 
 448   void log_all_dependencies();
 449   void log_dependency(DepType dept, int nargs, DepValue args[]) {
 450     write_dependency_to(log(), dept, nargs, args);
 451   }
 452   void log_dependency(DepType dept,
 453                       DepValue x0,
 454                       DepValue x1 = DepValue(),
 455                       DepValue x2 = DepValue()) {
 456     if (log() == NULL)  return;
 457     DepValue args[max_arg_count];
 458     args[0] = x0;
 459     args[1] = x1;
 460     args[2] = x2;
 461     assert(2 < max_arg_count, "");
 462     log_dependency(dept, dep_args(dept), args);
 463   }
 464 
 465   class DepArgument : public ResourceObj {
 466    private:
 467     bool  _is_oop;
 468     bool  _valid;
 469     void* _value;
 470    public:
 471     DepArgument() : _is_oop(false), _value(NULL), _valid(false) {}
 472     DepArgument(oop v): _is_oop(true), _value(v), _valid(true) {}
 473     DepArgument(Metadata* v): _is_oop(false), _value(v), _valid(true) {}
 474 
 475     bool is_null() const               { return _value == NULL; }
 476     bool is_oop() const                { return _is_oop; }
 477     bool is_metadata() const           { return !_is_oop; }
 478     bool is_klass() const              { return is_metadata() && metadata_value()->is_klass(); }
 479     bool is_method() const              { return is_metadata() && metadata_value()->is_method(); }
 480 
 481     oop oop_value() const              { assert(_is_oop && _valid, "must be"); return (oop) _value; }
 482     Metadata* metadata_value() const { assert(!_is_oop && _valid, "must be"); return (Metadata*) _value; }
 483   };
 484 
 485   static void write_dependency_to(CompileLog* log,
 486                                   DepType dept,
 487                                   int nargs, ciBaseObject* args[],
 488                                   Klass* witness = NULL);
 489   static void write_dependency_to(CompileLog* log,
 490                                   DepType dept,
 491                                   int nargs, DepArgument args[],
 492                                   Klass* witness = NULL);
 493          void write_dependency_to(CompileLog* log,
 494                                   DepType dept,
 495                                   int nargs, DepValue args[],
 496                                   Klass* witness = NULL);
 497   static void write_dependency_to(xmlStream* xtty,
 498                                   DepType dept,
 499                                   int nargs, DepArgument args[],
 500                                   Klass* witness = NULL);
 501   static void print_dependency(DepType dept,
 502                                int nargs, DepArgument args[],
 503                                Klass* witness = NULL);
 504 
 505  private:
 506   // helper for encoding common context types as zero:
 507   static Klass* ctxk_encoded_as_null(OopRecorder* oop_recorder, DepType dept, DepValue x);
 508 
 509   static Klass* ctxk_encoded_as_null(DepType dept, Metadata* x);
 510 
 511  public:
 512   // Use this to iterate over an nmethod's dependency set.
 513   // Works on new and old dependency sets.
 514   // Usage:
 515   //
 516   // ;
 517   // Dependencies::DepType dept;
 518   // for (Dependencies::DepStream deps(nm); deps.next(); ) {
 519   //   ...
 520   // }
 521   //
 522   // The caller must be in the VM, since oops are not wrapped in handles.
 523   class DepStream {
 524   private:
 525     nmethod*              _code;   // null if in a compiler thread
 526     Dependencies*         _deps;   // null if not in a compiler thread
 527     CompressedReadStream  _bytes;
 528 #ifdef ASSERT
 529     size_t                _byte_limit;
 530 #endif
 531 
 532     // iteration variables:
 533     DepType               _type;
 534     int                   _xi[max_arg_count+1];
 535 
 536     void initial_asserts(size_t byte_limit) NOT_DEBUG({});
 537 
 538     inline Metadata* recorded_metadata_at(int i);
 539     inline oop recorded_oop_at(int i);
 540 
 541     Klass* check_klass_dependency(KlassDepChange* changes);
 542     Klass* check_call_site_dependency(CallSiteDepChange* changes);
 543 
 544     void trace_and_log_witness(Klass* witness);
 545 
 546   public:
 547     DepStream(Dependencies* deps)
 548       : _deps(deps),
 549         _code(NULL),
 550         _bytes(deps->content_bytes())
 551     {
 552       initial_asserts(deps->size_in_bytes());
 553     }
 554     DepStream(nmethod* code)
 555       : _deps(NULL),
 556         _code(code),
 557         _bytes(code->dependencies_begin())
 558     {
 559       initial_asserts(code->dependencies_size());
 560     }
 561 
 562     bool next();
 563 
 564     DepType type()               { return _type; }
 565     int argument_count()         { return dep_args(type()); }
 566     int argument_index(int i)    { assert(0 <= i && i < argument_count(), "oob");
 567                                    return _xi[i]; }
 568     Metadata* argument(int i);     // => recorded_oop_at(argument_index(i))
 569     oop argument_oop(int i);         // => recorded_oop_at(argument_index(i))
 570     Klass* context_type();
 571 
 572     bool is_klass_type()         { return Dependencies::is_klass_type(type()); }
 573 
 574     Method* method_argument(int i) {
 575       Metadata* x = argument(i);
 576       assert(x->is_method(), "type");
 577       return (Method*) x;
 578     }
 579     Klass* type_argument(int i) {
 580       Metadata* x = argument(i);
 581       assert(x->is_klass(), "type");
 582       return (Klass*) x;
 583     }
 584 
 585     // The point of the whole exercise:  Is this dep still OK?
 586     Klass* check_dependency() {
 587       Klass* result = check_klass_dependency(NULL);
 588       if (result != NULL)  return result;
 589       return check_call_site_dependency(NULL);
 590     }
 591 
 592     // A lighter version:  Checks only around recent changes in a class
 593     // hierarchy.  (See Universe::flush_dependents_on.)
 594     Klass* spot_check_dependency_at(DepChange& changes);
 595 
 596     // Log the current dependency to xtty or compilation log.
 597     void log_dependency(Klass* witness = NULL);
 598 
 599     // Print the current dependency to tty.
 600     void print_dependency(Klass* witness = NULL, bool verbose = false);
 601   };
 602   friend class Dependencies::DepStream;
 603 
 604   static void print_statistics() PRODUCT_RETURN;
 605 };
 606 
 607 
 608 // Every particular DepChange is a sub-class of this class.
 609 class DepChange : public StackObj {
 610  public:
 611   // What kind of DepChange is this?
 612   virtual bool is_klass_change()     const { return false; }
 613   virtual bool is_call_site_change() const { return false; }
 614 
 615   // Subclass casting with assertions.
 616   KlassDepChange*    as_klass_change() {
 617     assert(is_klass_change(), "bad cast");
 618     return (KlassDepChange*) this;
 619   }
 620   CallSiteDepChange* as_call_site_change() {
 621     assert(is_call_site_change(), "bad cast");
 622     return (CallSiteDepChange*) this;
 623   }
 624 
 625   void print();
 626 
 627  public:
 628   enum ChangeType {
 629     NO_CHANGE = 0,              // an uninvolved klass
 630     Change_new_type,            // a newly loaded type
 631     Change_new_sub,             // a super with a new subtype
 632     Change_new_impl,            // an interface with a new implementation
 633     CHANGE_LIMIT,
 634     Start_Klass = CHANGE_LIMIT  // internal indicator for ContextStream
 635   };
 636 
 637   // Usage:
 638   // for (DepChange::ContextStream str(changes); str.next(); ) {
 639   //   Klass* k = str.klass();
 640   //   switch (str.change_type()) {
 641   //     ...
 642   //   }
 643   // }
 644   class ContextStream : public StackObj {
 645    private:
 646     DepChange&  _changes;
 647     friend class DepChange;
 648 
 649     // iteration variables:
 650     ChangeType  _change_type;
 651     Klass*      _klass;
 652     Array<Klass*>* _ti_base;    // i.e., transitive_interfaces
 653     int         _ti_index;
 654     int         _ti_limit;
 655 
 656     // start at the beginning:
 657     void start();
 658 
 659    public:
 660     ContextStream(DepChange& changes)
 661       : _changes(changes)
 662     { start(); }
 663 
 664     ContextStream(DepChange& changes, No_Safepoint_Verifier& nsv)
 665       : _changes(changes)
 666       // the nsv argument makes it safe to hold oops like _klass
 667     { start(); }
 668 
 669     bool next();
 670 
 671     ChangeType change_type()     { return _change_type; }
 672     Klass*     klass()           { return _klass; }
 673   };
 674   friend class DepChange::ContextStream;
 675 };
 676 
 677 
 678 // A class hierarchy change coming through the VM (under the Compile_lock).
 679 // The change is structured as a single new type with any number of supers
 680 // and implemented interface types.  Other than the new type, any of the
 681 // super types can be context types for a relevant dependency, which the
 682 // new type could invalidate.
 683 class KlassDepChange : public DepChange {
 684  private:
 685   // each change set is rooted in exactly one new type (at present):
 686   KlassHandle _new_type;
 687 
 688   void initialize();
 689 
 690  public:
 691   // notes the new type, marks it and all its super-types
 692   KlassDepChange(KlassHandle new_type)
 693     : _new_type(new_type)
 694   {
 695     initialize();
 696   }
 697 
 698   // cleans up the marks
 699   ~KlassDepChange();
 700 
 701   // What kind of DepChange is this?
 702   virtual bool is_klass_change() const { return true; }
 703 
 704   Klass* new_type() { return _new_type(); }
 705 
 706   // involves_context(k) is true if k is new_type or any of the super types
 707   bool involves_context(Klass* k);
 708 };
 709 
 710 
 711 // A CallSite has changed its target.
 712 class CallSiteDepChange : public DepChange {
 713  private:
 714   Handle _call_site;
 715   Handle _method_handle;
 716 
 717  public:
 718   CallSiteDepChange(Handle call_site, Handle method_handle)
 719     : _call_site(call_site),
 720       _method_handle(method_handle)
 721   {
 722     assert(_call_site()    ->is_a(SystemDictionary::CallSite_klass()),     "must be");
 723     assert(_method_handle()->is_a(SystemDictionary::MethodHandle_klass()), "must be");
 724   }
 725 
 726   // What kind of DepChange is this?
 727   virtual bool is_call_site_change() const { return true; }
 728 
 729   oop call_site()     const { return _call_site();     }
 730   oop method_handle() const { return _method_handle(); }
 731 };
 732 
 733 #endif // SHARE_VM_CODE_DEPENDENCIES_HPP