1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/register.hpp"
  30 
  31 // definitions of various symbolic names for machine registers
  32 
  33 // First intercalls between C and Java which use 8 general registers
  34 // and 8 floating registers
  35 
  36 // we also have to copy between x86 and ARM registers but that's a
  37 // secondary complication -- not all code employing C call convention
  38 // executes as x86 code though -- we generate some of it
  39 
  40 class Argument {
  41  public:
  42   enum {
  43     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  44     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  45 
  46     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  47     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  48   };
  49 };
  50 
  51 REGISTER_DECLARATION(Register, c_rarg0, r0);
  52 REGISTER_DECLARATION(Register, c_rarg1, r1);
  53 REGISTER_DECLARATION(Register, c_rarg2, r2);
  54 REGISTER_DECLARATION(Register, c_rarg3, r3);
  55 REGISTER_DECLARATION(Register, c_rarg4, r4);
  56 REGISTER_DECLARATION(Register, c_rarg5, r5);
  57 REGISTER_DECLARATION(Register, c_rarg6, r6);
  58 REGISTER_DECLARATION(Register, c_rarg7, r7);
  59 
  60 REGISTER_DECLARATION(FloatRegister, c_farg0, v0);
  61 REGISTER_DECLARATION(FloatRegister, c_farg1, v1);
  62 REGISTER_DECLARATION(FloatRegister, c_farg2, v2);
  63 REGISTER_DECLARATION(FloatRegister, c_farg3, v3);
  64 REGISTER_DECLARATION(FloatRegister, c_farg4, v4);
  65 REGISTER_DECLARATION(FloatRegister, c_farg5, v5);
  66 REGISTER_DECLARATION(FloatRegister, c_farg6, v6);
  67 REGISTER_DECLARATION(FloatRegister, c_farg7, v7);
  68 
  69 // Symbolically name the register arguments used by the Java calling convention.
  70 // We have control over the convention for java so we can do what we please.
  71 // What pleases us is to offset the java calling convention so that when
  72 // we call a suitable jni method the arguments are lined up and we don't
  73 // have to do much shuffling. A suitable jni method is non-static and a
  74 // small number of arguments
  75 //
  76 //  |--------------------------------------------------------------------|
  77 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  78 //  |--------------------------------------------------------------------|
  79 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  80 //  |--------------------------------------------------------------------|
  81 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
  82 //  |--------------------------------------------------------------------|
  83 
  84 
  85 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
  86 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
  87 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
  88 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
  89 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
  90 REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
  91 REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
  92 REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
  93 
  94 // Java floating args are passed as per C
  95 
  96 REGISTER_DECLARATION(FloatRegister, j_farg0, v0);
  97 REGISTER_DECLARATION(FloatRegister, j_farg1, v1);
  98 REGISTER_DECLARATION(FloatRegister, j_farg2, v2);
  99 REGISTER_DECLARATION(FloatRegister, j_farg3, v3);
 100 REGISTER_DECLARATION(FloatRegister, j_farg4, v4);
 101 REGISTER_DECLARATION(FloatRegister, j_farg5, v5);
 102 REGISTER_DECLARATION(FloatRegister, j_farg6, v6);
 103 REGISTER_DECLARATION(FloatRegister, j_farg7, v7);
 104 
 105 // registers used to hold VM data either temporarily within a method
 106 // or across method calls
 107 
 108 // volatile (caller-save) registers
 109 
 110 // r8 is used for indirect result location return
 111 // we use it and r9 as scratch registers
 112 REGISTER_DECLARATION(Register, rscratch1, r8);
 113 REGISTER_DECLARATION(Register, rscratch2, r9);
 114 
 115 // current method -- must be in a call-clobbered register
 116 REGISTER_DECLARATION(Register, rmethod,   r12);
 117 
 118 // non-volatile (callee-save) registers are r16-29
 119 // of which the following are dedicated global state
 120 
 121 // link register
 122 REGISTER_DECLARATION(Register, lr,        r30);
 123 // frame pointer
 124 REGISTER_DECLARATION(Register, rfp,       r29);
 125 // current thread
 126 REGISTER_DECLARATION(Register, rthread,   r28);
 127 // base of heap
 128 REGISTER_DECLARATION(Register, rheapbase, r27);
 129 // constant pool cache
 130 REGISTER_DECLARATION(Register, rcpool,    r26);
 131 // monitors allocated on stack
 132 REGISTER_DECLARATION(Register, rmonitors, r25);
 133 // locals on stack
 134 REGISTER_DECLARATION(Register, rlocals,   r24);
 135 // bytecode pointer
 136 REGISTER_DECLARATION(Register, rbcp,      r22);
 137 // Dispatch table base
 138 REGISTER_DECLARATION(Register, rdispatch, r21);
 139 // Java stack pointer
 140 REGISTER_DECLARATION(Register, esp,      r20);
 141 
 142 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 143 
 144 namespace asm_util {
 145   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 146 };
 147 
 148 using namespace asm_util;
 149 
 150 
 151 class Assembler;
 152 
 153 class Instruction_aarch64 {
 154   unsigned insn;
 155 #ifdef ASSERT
 156   unsigned bits;
 157 #endif
 158   Assembler *assem;
 159 
 160 public:
 161 
 162   Instruction_aarch64(class Assembler *as) {
 163 #ifdef ASSERT
 164     bits = 0;
 165 #endif
 166     insn = 0;
 167     assem = as;
 168   }
 169 
 170   inline ~Instruction_aarch64();
 171 
 172   unsigned &get_insn() { return insn; }
 173 #ifdef ASSERT
 174   unsigned &get_bits() { return bits; }
 175 #endif
 176 
 177   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 178     union {
 179       unsigned u;
 180       int n;
 181     };
 182 
 183     u = val << (31 - hi);
 184     n = n >> (31 - hi + lo);
 185     return n;
 186   }
 187 
 188   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 189     int nbits = msb - lsb + 1;
 190     assert_cond(msb >= lsb);
 191     uint32_t mask = (1U << nbits) - 1;
 192     uint32_t result = val >> lsb;
 193     result &= mask;
 194     return result;
 195   }
 196 
 197   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 198     uint32_t uval = extract(val, msb, lsb);
 199     return extend(uval, msb - lsb);
 200   }
 201 
 202   static void patch(address a, int msb, int lsb, unsigned long val) {
 203     int nbits = msb - lsb + 1;
 204     guarantee(val < (1U << nbits), "Field too big for insn");
 205     assert_cond(msb >= lsb);
 206     unsigned mask = (1U << nbits) - 1;
 207     val <<= lsb;
 208     mask <<= lsb;
 209     unsigned target = *(unsigned *)a;
 210     target &= ~mask;
 211     target |= val;
 212     *(unsigned *)a = target;
 213   }
 214 
 215   static void spatch(address a, int msb, int lsb, long val) {
 216     int nbits = msb - lsb + 1;
 217     long chk = val >> (nbits - 1);
 218     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 219     unsigned uval = val;
 220     unsigned mask = (1U << nbits) - 1;
 221     uval &= mask;
 222     uval <<= lsb;
 223     mask <<= lsb;
 224     unsigned target = *(unsigned *)a;
 225     target &= ~mask;
 226     target |= uval;
 227     *(unsigned *)a = target;
 228   }
 229 
 230   void f(unsigned val, int msb, int lsb) {
 231     int nbits = msb - lsb + 1;
 232     guarantee(val < (1U << nbits), "Field too big for insn");
 233     assert_cond(msb >= lsb);
 234     unsigned mask = (1U << nbits) - 1;
 235     val <<= lsb;
 236     mask <<= lsb;
 237     insn |= val;
 238     assert_cond((bits & mask) == 0);
 239 #ifdef ASSERT
 240     bits |= mask;
 241 #endif
 242   }
 243 
 244   void f(unsigned val, int bit) {
 245     f(val, bit, bit);
 246   }
 247 
 248   void sf(long val, int msb, int lsb) {
 249     int nbits = msb - lsb + 1;
 250     long chk = val >> (nbits - 1);
 251     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 252     unsigned uval = val;
 253     unsigned mask = (1U << nbits) - 1;
 254     uval &= mask;
 255     f(uval, lsb + nbits - 1, lsb);
 256   }
 257 
 258   void rf(Register r, int lsb) {
 259     f(r->encoding_nocheck(), lsb + 4, lsb);
 260   }
 261 
 262   // reg|ZR
 263   void zrf(Register r, int lsb) {
 264     f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb);
 265   }
 266 
 267   // reg|SP
 268   void srf(Register r, int lsb) {
 269     f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb);
 270   }
 271 
 272   void rf(FloatRegister r, int lsb) {
 273     f(r->encoding_nocheck(), lsb + 4, lsb);
 274   }
 275 
 276   unsigned get(int msb = 31, int lsb = 0) {
 277     int nbits = msb - lsb + 1;
 278     unsigned mask = ((1U << nbits) - 1) << lsb;
 279     assert_cond(bits & mask == mask);
 280     return (insn & mask) >> lsb;
 281   }
 282 
 283   void fixed(unsigned value, unsigned mask) {
 284     assert_cond ((mask & bits) == 0);
 285 #ifdef ASSERT
 286     bits |= mask;
 287 #endif
 288     insn |= value;
 289   }
 290 };
 291 
 292 #define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use)
 293 
 294 class PrePost {
 295   int _offset;
 296   Register _r;
 297 public:
 298   PrePost(Register reg, int o) : _r(reg), _offset(o) { }
 299   int offset() { return _offset; }
 300   Register reg() { return _r; }
 301 };
 302 
 303 class Pre : public PrePost {
 304 public:
 305   Pre(Register reg, int o) : PrePost(reg, o) { }
 306 };
 307 class Post : public PrePost {
 308 public:
 309   Post(Register reg, int o) : PrePost(reg, o) { }
 310 };
 311 
 312 namespace ext
 313 {
 314   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 315 };
 316 
 317 // abs methods which cannot overflow and so are well-defined across
 318 // the entire domain of integer types.
 319 static inline unsigned int uabs(unsigned int n) {
 320   union {
 321     unsigned int result;
 322     int value;
 323   };
 324   result = n;
 325   if (value < 0) result = -result;
 326   return result;
 327 }
 328 static inline unsigned long uabs(unsigned long n) {
 329   union {
 330     unsigned long result;
 331     long value;
 332   };
 333   result = n;
 334   if (value < 0) result = -result;
 335   return result;
 336 }
 337 static inline unsigned long uabs(long n) { return uabs((unsigned long)n); }
 338 static inline unsigned long uabs(int n) { return uabs((unsigned int)n); }
 339 
 340 // Addressing modes
 341 class Address {
 342  public:
 343 
 344   enum mode { no_mode, base_plus_offset, pre, post, pcrel,
 345               base_plus_offset_reg, literal };
 346 
 347   // Shift and extend for base reg + reg offset addressing
 348   class extend {
 349     int _option, _shift;
 350     ext::operation _op;
 351   public:
 352     extend() { }
 353     extend(int s, int o, ext::operation op) : _shift(s), _option(o), _op(op) { }
 354     int option() const{ return _option; }
 355     int shift() const { return _shift; }
 356     ext::operation op() const { return _op; }
 357   };
 358   class uxtw : public extend {
 359   public:
 360     uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { }
 361   };
 362   class lsl : public extend {
 363   public:
 364     lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { }
 365   };
 366   class sxtw : public extend {
 367   public:
 368     sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { }
 369   };
 370   class sxtx : public extend {
 371   public:
 372     sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { }
 373   };
 374 
 375  private:
 376   Register _base;
 377   Register _index;
 378   long _offset;
 379   enum mode _mode;
 380   extend _ext;
 381 
 382   RelocationHolder _rspec;
 383 
 384   // Typically we use AddressLiterals we want to use their rval
 385   // However in some situations we want the lval (effect address) of
 386   // the item.  We provide a special factory for making those lvals.
 387   bool _is_lval;
 388 
 389   // If the target is far we'll need to load the ea of this to a
 390   // register to reach it. Otherwise if near we can do PC-relative
 391   // addressing.
 392   address          _target;
 393 
 394  public:
 395   Address()
 396     : _mode(no_mode) { }
 397   Address(Register r)
 398     : _mode(base_plus_offset), _base(r), _offset(0), _index(noreg), _target(0) { }
 399   Address(Register r, int o)
 400     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 401   Address(Register r, long o)
 402     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 403   Address(Register r, unsigned long o)
 404     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 405 #ifdef ASSERT
 406   Address(Register r, ByteSize disp)
 407     : _mode(base_plus_offset), _base(r), _offset(in_bytes(disp)),
 408       _index(noreg), _target(0) { }
 409 #endif
 410   Address(Register r, Register r1, extend ext = lsl())
 411     : _mode(base_plus_offset_reg), _base(r), _index(r1),
 412     _ext(ext), _offset(0), _target(0) { }
 413   Address(Pre p)
 414     : _mode(pre), _base(p.reg()), _offset(p.offset()) { }
 415   Address(Post p)
 416     : _mode(post), _base(p.reg()), _offset(p.offset()), _target(0) { }
 417   Address(address target, RelocationHolder const& rspec)
 418     : _mode(literal),
 419       _rspec(rspec),
 420       _is_lval(false),
 421       _target(target)  { }
 422   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 423   Address(Register base, RegisterOrConstant index, extend ext = lsl())
 424     : _base (base),
 425       _ext(ext), _offset(0), _target(0) {
 426     if (index.is_register()) {
 427       _mode = base_plus_offset_reg;
 428       _index = index.as_register();
 429     } else {
 430       guarantee(ext.option() == ext::uxtx, "should be");
 431       assert(index.is_constant(), "should be");
 432       _mode = base_plus_offset;
 433       _offset = index.as_constant() << ext.shift();
 434     }
 435   }
 436 
 437   Register base() const {
 438     guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg
 439                | _mode == post),
 440               "wrong mode");
 441     return _base;
 442   }
 443   long offset() const {
 444     return _offset;
 445   }
 446   Register index() const {
 447     return _index;
 448   }
 449   mode getMode() const {
 450     return _mode;
 451   }
 452   bool uses(Register reg) const { return _base == reg || _index == reg; }
 453   address target() const { return _target; }
 454   const RelocationHolder& rspec() const { return _rspec; }
 455 
 456   void encode(Instruction_aarch64 *i) const {
 457     i->f(0b111, 29, 27);
 458     i->srf(_base, 5);
 459 
 460     switch(_mode) {
 461     case base_plus_offset:
 462       {
 463         unsigned size = i->get(31, 30);
 464         if (i->get(26, 26) && i->get(23, 23)) {
 465           // SIMD Q Type - Size = 128 bits
 466           assert(size == 0, "bad size");
 467           size = 0b100;
 468         }
 469         unsigned mask = (1 << size) - 1;
 470         if (_offset < 0 || _offset & mask)
 471           {
 472             i->f(0b00, 25, 24);
 473             i->f(0, 21), i->f(0b00, 11, 10);
 474             i->sf(_offset, 20, 12);
 475           } else {
 476             i->f(0b01, 25, 24);
 477             i->f(_offset >> size, 21, 10);
 478           }
 479       }
 480       break;
 481 
 482     case base_plus_offset_reg:
 483       {
 484         i->f(0b00, 25, 24);
 485         i->f(1, 21);
 486         i->rf(_index, 16);
 487         i->f(_ext.option(), 15, 13);
 488         unsigned size = i->get(31, 30);
 489         if (i->get(26, 26) && i->get(23, 23)) {
 490           // SIMD Q Type - Size = 128 bits
 491           assert(size == 0, "bad size");
 492           size = 0b100;
 493         }
 494         if (size == 0) // It's a byte
 495           i->f(_ext.shift() >= 0, 12);
 496         else {
 497           if (_ext.shift() > 0)
 498             assert(_ext.shift() == (int)size, "bad shift");
 499           i->f(_ext.shift() > 0, 12);
 500         }
 501         i->f(0b10, 11, 10);
 502       }
 503       break;
 504 
 505     case pre:
 506       i->f(0b00, 25, 24);
 507       i->f(0, 21), i->f(0b11, 11, 10);
 508       i->sf(_offset, 20, 12);
 509       break;
 510 
 511     case post:
 512       i->f(0b00, 25, 24);
 513       i->f(0, 21), i->f(0b01, 11, 10);
 514       i->sf(_offset, 20, 12);
 515       break;
 516 
 517     default:
 518       ShouldNotReachHere();
 519     }
 520   }
 521 
 522   void encode_pair(Instruction_aarch64 *i) const {
 523     switch(_mode) {
 524     case base_plus_offset:
 525       i->f(0b010, 25, 23);
 526       break;
 527     case pre:
 528       i->f(0b011, 25, 23);
 529       break;
 530     case post:
 531       i->f(0b001, 25, 23);
 532       break;
 533     default:
 534       ShouldNotReachHere();
 535     }
 536 
 537     unsigned size; // Operand shift in 32-bit words
 538 
 539     if (i->get(26, 26)) { // float
 540       switch(i->get(31, 30)) {
 541       case 0b10:
 542         size = 2; break;
 543       case 0b01:
 544         size = 1; break;
 545       case 0b00:
 546         size = 0; break;
 547       default:
 548         ShouldNotReachHere();
 549         size = 0;  // unreachable
 550       }
 551     } else {
 552       size = i->get(31, 31);
 553     }
 554 
 555     size = 4 << size;
 556     guarantee(_offset % size == 0, "bad offset");
 557     i->sf(_offset / size, 21, 15);
 558     i->srf(_base, 5);
 559   }
 560 
 561   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 562     // Only base + offset is allowed
 563     i->f(0b000, 25, 23);
 564     unsigned size = i->get(31, 31);
 565     size = 4 << size;
 566     guarantee(_offset % size == 0, "bad offset");
 567     i->sf(_offset / size, 21, 15);
 568     i->srf(_base, 5);
 569     guarantee(_mode == Address::base_plus_offset,
 570               "Bad addressing mode for non-temporal op");
 571   }
 572 
 573   void lea(MacroAssembler *, Register) const;
 574 
 575   static bool offset_ok_for_immed(long offset, int shift = 0) {
 576     unsigned mask = (1 << shift) - 1;
 577     if (offset < 0 || offset & mask) {
 578       return (uabs(offset) < (1 << (20 - 12))); // Unscaled offset
 579     } else {
 580       return ((offset >> shift) < (1 << (21 - 10 + 1))); // Scaled, unsigned offset
 581     }
 582   }
 583 };
 584 
 585 // Convience classes
 586 class RuntimeAddress: public Address {
 587 
 588   public:
 589 
 590   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 591 
 592 };
 593 
 594 class OopAddress: public Address {
 595 
 596   public:
 597 
 598   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 599 
 600 };
 601 
 602 class ExternalAddress: public Address {
 603  private:
 604   static relocInfo::relocType reloc_for_target(address target) {
 605     // Sometimes ExternalAddress is used for values which aren't
 606     // exactly addresses, like the card table base.
 607     // external_word_type can't be used for values in the first page
 608     // so just skip the reloc in that case.
 609     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 610   }
 611 
 612  public:
 613 
 614   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 615 
 616 };
 617 
 618 class InternalAddress: public Address {
 619 
 620   public:
 621 
 622   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 623 };
 624 
 625 const int FPUStateSizeInWords = 32 * 2;
 626 typedef enum {
 627   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 628   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 629   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 630 } prfop;
 631 
 632 class Assembler : public AbstractAssembler {
 633 
 634 #ifndef PRODUCT
 635   static const unsigned long asm_bp;
 636 
 637   void emit_long(jint x) {
 638     if ((unsigned long)pc() == asm_bp)
 639       asm volatile ("nop");
 640     AbstractAssembler::emit_int32(x);
 641   }
 642 #else
 643   void emit_long(jint x) {
 644     AbstractAssembler::emit_int32(x);
 645   }
 646 #endif
 647 
 648 public:
 649 
 650   enum { instruction_size = 4 };
 651 
 652   Address adjust(Register base, int offset, bool preIncrement) {
 653     if (preIncrement)
 654       return Address(Pre(base, offset));
 655     else
 656       return Address(Post(base, offset));
 657   }
 658 
 659   Address pre(Register base, int offset) {
 660     return adjust(base, offset, true);
 661   }
 662 
 663   Address post (Register base, int offset) {
 664     return adjust(base, offset, false);
 665   }
 666 
 667   Instruction_aarch64* current;
 668 
 669   void set_current(Instruction_aarch64* i) { current = i; }
 670 
 671   void f(unsigned val, int msb, int lsb) {
 672     current->f(val, msb, lsb);
 673   }
 674   void f(unsigned val, int msb) {
 675     current->f(val, msb, msb);
 676   }
 677   void sf(long val, int msb, int lsb) {
 678     current->sf(val, msb, lsb);
 679   }
 680   void rf(Register reg, int lsb) {
 681     current->rf(reg, lsb);
 682   }
 683   void srf(Register reg, int lsb) {
 684     current->srf(reg, lsb);
 685   }
 686   void zrf(Register reg, int lsb) {
 687     current->zrf(reg, lsb);
 688   }
 689   void rf(FloatRegister reg, int lsb) {
 690     current->rf(reg, lsb);
 691   }
 692   void fixed(unsigned value, unsigned mask) {
 693     current->fixed(value, mask);
 694   }
 695 
 696   void emit() {
 697     emit_long(current->get_insn());
 698     assert_cond(current->get_bits() == 0xffffffff);
 699     current = NULL;
 700   }
 701 
 702   typedef void (Assembler::* uncond_branch_insn)(address dest);
 703   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 704   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 705   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 706 
 707   void wrap_label(Label &L, uncond_branch_insn insn);
 708   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 709   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 710   void wrap_label(Label &L, prfop, prefetch_insn insn);
 711 
 712   // PC-rel. addressing
 713 
 714   void adr(Register Rd, address dest);
 715   void _adrp(Register Rd, address dest);
 716 
 717   void adr(Register Rd, const Address &dest);
 718   void _adrp(Register Rd, const Address &dest);
 719 
 720   void adr(Register Rd, Label &L) {
 721     wrap_label(Rd, L, &Assembler::Assembler::adr);
 722   }
 723   void _adrp(Register Rd, Label &L) {
 724     wrap_label(Rd, L, &Assembler::_adrp);
 725   }
 726 
 727   void adrp(Register Rd, const Address &dest, unsigned long &offset);
 728 
 729 #undef INSN
 730 
 731   void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op,
 732                          int negated_op);
 733 
 734   // Add/subtract (immediate)
 735 #define INSN(NAME, decode, negated)                                     \
 736   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 737     starti;                                                             \
 738     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 739     zrf(Rd, 0), srf(Rn, 5);                                             \
 740   }                                                                     \
 741                                                                         \
 742   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 743     starti;                                                             \
 744     add_sub_immediate(Rd, Rn, imm, decode, negated);                    \
 745   }
 746 
 747   INSN(addsw, 0b001, 0b011);
 748   INSN(subsw, 0b011, 0b001);
 749   INSN(adds,  0b101, 0b111);
 750   INSN(subs,  0b111, 0b101);
 751 
 752 #undef INSN
 753 
 754 #define INSN(NAME, decode, negated)                     \
 755   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 756     starti;                                             \
 757     add_sub_immediate(Rd, Rn, imm, decode, negated);    \
 758   }
 759 
 760   INSN(addw, 0b000, 0b010);
 761   INSN(subw, 0b010, 0b000);
 762   INSN(add,  0b100, 0b110);
 763   INSN(sub,  0b110, 0b100);
 764 
 765 #undef INSN
 766 
 767  // Logical (immediate)
 768 #define INSN(NAME, decode, is32)                                \
 769   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 770     starti;                                                     \
 771     uint32_t val = encode_logical_immediate(is32, imm);         \
 772     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 773     srf(Rd, 0), zrf(Rn, 5);                                     \
 774   }
 775 
 776   INSN(andw, 0b000, true);
 777   INSN(orrw, 0b001, true);
 778   INSN(eorw, 0b010, true);
 779   INSN(andr,  0b100, false);
 780   INSN(orr,  0b101, false);
 781   INSN(eor,  0b110, false);
 782 
 783 #undef INSN
 784 
 785 #define INSN(NAME, decode, is32)                                \
 786   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 787     starti;                                                     \
 788     uint32_t val = encode_logical_immediate(is32, imm);         \
 789     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 790     zrf(Rd, 0), zrf(Rn, 5);                                     \
 791   }
 792 
 793   INSN(ands, 0b111, false);
 794   INSN(andsw, 0b011, true);
 795 
 796 #undef INSN
 797 
 798   // Move wide (immediate)
 799 #define INSN(NAME, opcode)                                              \
 800   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 801     assert_cond((shift/16)*16 == shift);                                \
 802     starti;                                                             \
 803     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 804       f(imm, 20, 5);                                                    \
 805     rf(Rd, 0);                                                          \
 806   }
 807 
 808   INSN(movnw, 0b000);
 809   INSN(movzw, 0b010);
 810   INSN(movkw, 0b011);
 811   INSN(movn, 0b100);
 812   INSN(movz, 0b110);
 813   INSN(movk, 0b111);
 814 
 815 #undef INSN
 816 
 817   // Bitfield
 818 #define INSN(NAME, opcode)                                              \
 819   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 820     starti;                                                             \
 821     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 822     zrf(Rn, 5), rf(Rd, 0);                                              \
 823   }
 824 
 825   INSN(sbfmw, 0b0001001100);
 826   INSN(bfmw,  0b0011001100);
 827   INSN(ubfmw, 0b0101001100);
 828   INSN(sbfm,  0b1001001101);
 829   INSN(bfm,   0b1011001101);
 830   INSN(ubfm,  0b1101001101);
 831 
 832 #undef INSN
 833 
 834   // Extract
 835 #define INSN(NAME, opcode)                                              \
 836   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 837     starti;                                                             \
 838     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 839     rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                                   \
 840   }
 841 
 842   INSN(extrw, 0b00010011100);
 843   INSN(extr,  0b10010011110);
 844 
 845 #undef INSN
 846 
 847   // The maximum range of a branch is fixed for the AArch64
 848   // architecture.  In debug mode we shrink it in order to test
 849   // trampolines, but not so small that branches in the interpreter
 850   // are out of range.
 851   static const unsigned long branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
 852 
 853   static bool reachable_from_branch_at(address branch, address target) {
 854     return uabs(target - branch) < branch_range;
 855   }
 856 
 857   // Unconditional branch (immediate)
 858 #define INSN(NAME, opcode)                                              \
 859   void NAME(address dest) {                                             \
 860     starti;                                                             \
 861     long offset = (dest - pc()) >> 2;                                   \
 862     DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
 863     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);               \
 864   }                                                                     \
 865   void NAME(Label &L) {                                                 \
 866     wrap_label(L, &Assembler::NAME);                                    \
 867   }                                                                     \
 868   void NAME(const Address &dest);
 869 
 870   INSN(b, 0);
 871   INSN(bl, 1);
 872 
 873 #undef INSN
 874 
 875   // Compare & branch (immediate)
 876 #define INSN(NAME, opcode)                              \
 877   void NAME(Register Rt, address dest) {                \
 878     long offset = (dest - pc()) >> 2;                   \
 879     starti;                                             \
 880     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 881   }                                                     \
 882   void NAME(Register Rt, Label &L) {                    \
 883     wrap_label(Rt, L, &Assembler::NAME);                \
 884   }
 885 
 886   INSN(cbzw,  0b00110100);
 887   INSN(cbnzw, 0b00110101);
 888   INSN(cbz,   0b10110100);
 889   INSN(cbnz,  0b10110101);
 890 
 891 #undef INSN
 892 
 893   // Test & branch (immediate)
 894 #define INSN(NAME, opcode)                                              \
 895   void NAME(Register Rt, int bitpos, address dest) {                    \
 896     long offset = (dest - pc()) >> 2;                                   \
 897     int b5 = bitpos >> 5;                                               \
 898     bitpos &= 0x1f;                                                     \
 899     starti;                                                             \
 900     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 901     rf(Rt, 0);                                                          \
 902   }                                                                     \
 903   void NAME(Register Rt, int bitpos, Label &L) {                        \
 904     wrap_label(Rt, bitpos, L, &Assembler::NAME);                        \
 905   }
 906 
 907   INSN(tbz,  0b0110110);
 908   INSN(tbnz, 0b0110111);
 909 
 910 #undef INSN
 911 
 912   // Conditional branch (immediate)
 913   enum Condition
 914     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 915 
 916   void br(Condition  cond, address dest) {
 917     long offset = (dest - pc()) >> 2;
 918     starti;
 919     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
 920   }
 921 
 922 #define INSN(NAME, cond)                        \
 923   void NAME(address dest) {                     \
 924     br(cond, dest);                             \
 925   }
 926 
 927   INSN(beq, EQ);
 928   INSN(bne, NE);
 929   INSN(bhs, HS);
 930   INSN(bcs, CS);
 931   INSN(blo, LO);
 932   INSN(bcc, CC);
 933   INSN(bmi, MI);
 934   INSN(bpl, PL);
 935   INSN(bvs, VS);
 936   INSN(bvc, VC);
 937   INSN(bhi, HI);
 938   INSN(bls, LS);
 939   INSN(bge, GE);
 940   INSN(blt, LT);
 941   INSN(bgt, GT);
 942   INSN(ble, LE);
 943   INSN(bal, AL);
 944   INSN(bnv, NV);
 945 
 946   void br(Condition cc, Label &L);
 947 
 948 #undef INSN
 949 
 950   // Exception generation
 951   void generate_exception(int opc, int op2, int LL, unsigned imm) {
 952     starti;
 953     f(0b11010100, 31, 24);
 954     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
 955   }
 956 
 957 #define INSN(NAME, opc, op2, LL)                \
 958   void NAME(unsigned imm) {                     \
 959     generate_exception(opc, op2, LL, imm);      \
 960   }
 961 
 962   INSN(svc, 0b000, 0, 0b01);
 963   INSN(hvc, 0b000, 0, 0b10);
 964   INSN(smc, 0b000, 0, 0b11);
 965   INSN(brk, 0b001, 0, 0b00);
 966   INSN(hlt, 0b010, 0, 0b00);
 967   INSN(dpcs1, 0b101, 0, 0b01);
 968   INSN(dpcs2, 0b101, 0, 0b10);
 969   INSN(dpcs3, 0b101, 0, 0b11);
 970 
 971 #undef INSN
 972 
 973   // System
 974   void system(int op0, int op1, int CRn, int CRm, int op2,
 975               Register rt = dummy_reg)
 976   {
 977     starti;
 978     f(0b11010101000, 31, 21);
 979     f(op0, 20, 19);
 980     f(op1, 18, 16);
 981     f(CRn, 15, 12);
 982     f(CRm, 11, 8);
 983     f(op2, 7, 5);
 984     rf(rt, 0);
 985   }
 986 
 987   void hint(int imm) {
 988     system(0b00, 0b011, 0b0010, 0b0000, imm);
 989   }
 990 
 991   void nop() {
 992     hint(0);
 993   }
 994 
 995   void yield() {
 996     hint(1);
 997   }
 998 
 999   void wfe() {
1000     hint(2);
1001   }
1002 
1003   void wfi() {
1004     hint(3);
1005   }
1006 
1007   void sev() {
1008     hint(4);
1009   }
1010 
1011   void sevl() {
1012     hint(5);
1013   }
1014 
1015   // we only provide mrs and msr for the special purpose system
1016   // registers where op1 (instr[20:19]) == 11 and, (currently) only
1017   // use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
1018 
1019   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
1020     starti;
1021     f(0b1101010100011, 31, 19);
1022     f(op1, 18, 16);
1023     f(CRn, 15, 12);
1024     f(CRm, 11, 8);
1025     f(op2, 7, 5);
1026     // writing zr is ok
1027     zrf(rt, 0);
1028   }
1029 
1030   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1031     starti;
1032     f(0b1101010100111, 31, 19);
1033     f(op1, 18, 16);
1034     f(CRn, 15, 12);
1035     f(CRm, 11, 8);
1036     f(op2, 7, 5);
1037     // reading to zr is a mistake
1038     rf(rt, 0);
1039   }
1040 
1041   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1042                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1043 
1044   void dsb(barrier imm) {
1045     system(0b00, 0b011, 0b00011, imm, 0b100);
1046   }
1047 
1048   void dmb(barrier imm) {
1049     system(0b00, 0b011, 0b00011, imm, 0b101);
1050   }
1051 
1052   void isb() {
1053     system(0b00, 0b011, 0b00011, SY, 0b110);
1054   }
1055 
1056   void sys(int op1, int CRn, int CRm, int op2,
1057            Register rt = (Register)0b11111) {
1058     system(0b01, op1, CRn, CRm, op2, rt);
1059   }
1060 
1061   // Only implement operations accessible from EL0 or higher, i.e.,
1062   //            op1    CRn    CRm    op2
1063   // IC IVAU     3      7      5      1
1064   // DC CVAC     3      7      10     1
1065   // DC CVAU     3      7      11     1
1066   // DC CIVAC    3      7      14     1
1067   // DC ZVA      3      7      4      1
1068   // So only deal with the CRm field.
1069   enum icache_maintenance {IVAU = 0b0101};
1070   enum dcache_maintenance {CVAC = 0b1010, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100};
1071 
1072   void dc(dcache_maintenance cm, Register Rt) {
1073     sys(0b011, 0b0111, cm, 0b001, Rt);
1074   }
1075 
1076   void ic(icache_maintenance cm, Register Rt) {
1077     sys(0b011, 0b0111, cm, 0b001, Rt);
1078   }
1079 
1080   // A more convenient access to dmb for our purposes
1081   enum Membar_mask_bits {
1082     // We can use ISH for a barrier because the ARM ARM says "This
1083     // architecture assumes that all Processing Elements that use the
1084     // same operating system or hypervisor are in the same Inner
1085     // Shareable shareability domain."
1086     StoreStore = ISHST,
1087     LoadStore  = ISHLD,
1088     LoadLoad   = ISHLD,
1089     StoreLoad  = ISH,
1090     AnyAny     = ISH
1091   };
1092 
1093   void membar(Membar_mask_bits order_constraint) {
1094     dmb(Assembler::barrier(order_constraint));
1095   }
1096 
1097   // Unconditional branch (register)
1098   void branch_reg(Register R, int opc) {
1099     starti;
1100     f(0b1101011, 31, 25);
1101     f(opc, 24, 21);
1102     f(0b11111000000, 20, 10);
1103     rf(R, 5);
1104     f(0b00000, 4, 0);
1105   }
1106 
1107 #define INSN(NAME, opc)                         \
1108   void NAME(Register R) {                       \
1109     branch_reg(R, opc);                         \
1110   }
1111 
1112   INSN(br, 0b0000);
1113   INSN(blr, 0b0001);
1114   INSN(ret, 0b0010);
1115 
1116   void ret(void *p); // This forces a compile-time error for ret(0)
1117 
1118 #undef INSN
1119 
1120 #define INSN(NAME, opc)                         \
1121   void NAME() {                 \
1122     branch_reg(dummy_reg, opc);         \
1123   }
1124 
1125   INSN(eret, 0b0100);
1126   INSN(drps, 0b0101);
1127 
1128 #undef INSN
1129 
1130   // Load/store exclusive
1131   enum operand_size { byte, halfword, word, xword };
1132 
1133   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1134     Register Rn, enum operand_size sz, int op, bool ordered) {
1135     starti;
1136     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1137     rf(Rs, 16), f(ordered, 15), rf(Rt2, 10), rf(Rn, 5), rf(Rt1, 0);
1138   }
1139 
1140   void load_exclusive(Register dst, Register addr,
1141                       enum operand_size sz, bool ordered) {
1142     load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
1143                          sz, 0b010, ordered);
1144   }
1145 
1146   void store_exclusive(Register status, Register new_val, Register addr,
1147                        enum operand_size sz, bool ordered) {
1148     load_store_exclusive(status, new_val, dummy_reg, addr,
1149                          sz, 0b000, ordered);
1150   }
1151 
1152 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1153   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1154     guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1155     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1156   }
1157 
1158 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1159   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1160     guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction");       \
1161     load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
1162   }
1163 
1164 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1165   void NAME(Register Rt, Register Rn) {                                 \
1166     load_store_exclusive(dummy_reg, Rt, dummy_reg, \
1167                          Rn, sz, op, o0);                               \
1168   }
1169 
1170 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1171   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1172     guarantee(Rt1 != Rt2, "unpredictable instruction");                 \
1173     load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0);          \
1174   }
1175 
1176   // bytes
1177   INSN3(stxrb, byte, 0b000, 0);
1178   INSN3(stlxrb, byte, 0b000, 1);
1179   INSN2(ldxrb, byte, 0b010, 0);
1180   INSN2(ldaxrb, byte, 0b010, 1);
1181   INSN2(stlrb, byte, 0b100, 1);
1182   INSN2(ldarb, byte, 0b110, 1);
1183 
1184   // halfwords
1185   INSN3(stxrh, halfword, 0b000, 0);
1186   INSN3(stlxrh, halfword, 0b000, 1);
1187   INSN2(ldxrh, halfword, 0b010, 0);
1188   INSN2(ldaxrh, halfword, 0b010, 1);
1189   INSN2(stlrh, halfword, 0b100, 1);
1190   INSN2(ldarh, halfword, 0b110, 1);
1191 
1192   // words
1193   INSN3(stxrw, word, 0b000, 0);
1194   INSN3(stlxrw, word, 0b000, 1);
1195   INSN4(stxpw, word, 0b001, 0);
1196   INSN4(stlxpw, word, 0b001, 1);
1197   INSN2(ldxrw, word, 0b010, 0);
1198   INSN2(ldaxrw, word, 0b010, 1);
1199   INSN_FOO(ldxpw, word, 0b011, 0);
1200   INSN_FOO(ldaxpw, word, 0b011, 1);
1201   INSN2(stlrw, word, 0b100, 1);
1202   INSN2(ldarw, word, 0b110, 1);
1203 
1204   // xwords
1205   INSN3(stxr, xword, 0b000, 0);
1206   INSN3(stlxr, xword, 0b000, 1);
1207   INSN4(stxp, xword, 0b001, 0);
1208   INSN4(stlxp, xword, 0b001, 1);
1209   INSN2(ldxr, xword, 0b010, 0);
1210   INSN2(ldaxr, xword, 0b010, 1);
1211   INSN_FOO(ldxp, xword, 0b011, 0);
1212   INSN_FOO(ldaxp, xword, 0b011, 1);
1213   INSN2(stlr, xword, 0b100, 1);
1214   INSN2(ldar, xword, 0b110, 1);
1215 
1216 #undef INSN2
1217 #undef INSN3
1218 #undef INSN4
1219 #undef INSN_FOO
1220 
1221   // 8.1 Compare and swap extensions
1222   void lse_cas(Register Rs, Register Rt, Register Rn,
1223                         enum operand_size sz, bool a, bool r, bool not_pair) {
1224     starti;
1225     if (! not_pair) { // Pair
1226       assert(sz == word || sz == xword, "invalid size");
1227       /* The size bit is in bit 30, not 31 */
1228       sz = (operand_size)(sz == word ? 0b00:0b01);
1229     }
1230     f(sz, 31, 30), f(0b001000, 29, 24), f(1, 23), f(a, 22), f(1, 21);
1231     rf(Rs, 16), f(r, 15), f(0b11111, 14, 10), rf(Rn, 5), rf(Rt, 0);
1232   }
1233 
1234   // CAS
1235 #define INSN(NAME, a, r)                                                \
1236   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1237     assert(Rs != Rn && Rs != Rt, "unpredictable instruction");          \
1238     lse_cas(Rs, Rt, Rn, sz, a, r, true);                                \
1239   }
1240   INSN(cas,    false, false)
1241   INSN(casa,   true,  false)
1242   INSN(casl,   false, true)
1243   INSN(casal,  true,  true)
1244 #undef INSN
1245 
1246   // CASP
1247 #define INSN(NAME, a, r)                                                \
1248   void NAME(operand_size sz, Register Rs, Register Rs1,                 \
1249             Register Rt, Register Rt1, Register Rn) {                   \
1250     assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 &&    \
1251            Rs->successor() == Rs1 && Rt->successor() == Rt1 &&          \
1252            Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers");     \
1253     lse_cas(Rs, Rt, Rn, sz, a, r, false);                               \
1254   }
1255   INSN(casp,    false, false)
1256   INSN(caspa,   true,  false)
1257   INSN(caspl,   false, true)
1258   INSN(caspal,  true,  true)
1259 #undef INSN
1260 
1261   // 8.1 Atomic operations
1262   void lse_atomic(Register Rs, Register Rt, Register Rn,
1263                   enum operand_size sz, int op1, int op2, bool a, bool r) {
1264     starti;
1265     f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
1266     rf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), rf(Rn, 5), zrf(Rt, 0);
1267   }
1268 
1269 #define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2)                   \
1270   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1271     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false);                 \
1272   }                                                                     \
1273   void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1274     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false);                  \
1275   }                                                                     \
1276   void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1277     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true);                  \
1278   }                                                                     \
1279   void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
1280     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true);                   \
1281   }
1282   INSN(ldadd,  ldadda,  ldaddl,  ldaddal,  0, 0b000);
1283   INSN(ldbic,  ldbica,  ldbicl,  ldbical,  0, 0b001);
1284   INSN(ldeor,  ldeora,  ldeorl,  ldeoral,  0, 0b010);
1285   INSN(ldorr,  ldorra,  ldorrl,  ldorral,  0, 0b011);
1286   INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
1287   INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
1288   INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
1289   INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
1290   INSN(swp,    swpa,    swpl,    swpal,    1, 0b000);
1291 #undef INSN
1292 
1293   // Load register (literal)
1294 #define INSN(NAME, opc, V)                                              \
1295   void NAME(Register Rt, address dest) {                                \
1296     long offset = (dest - pc()) >> 2;                                   \
1297     starti;                                                             \
1298     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1299       sf(offset, 23, 5);                                                \
1300     rf(Rt, 0);                                                          \
1301   }                                                                     \
1302   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1303     InstructionMark im(this);                                           \
1304     guarantee(rtype == relocInfo::internal_word_type,                   \
1305               "only internal_word_type relocs make sense here");        \
1306     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1307     NAME(Rt, dest);                                                     \
1308   }                                                                     \
1309   void NAME(Register Rt, Label &L) {                                    \
1310     wrap_label(Rt, L, &Assembler::NAME);                                \
1311   }
1312 
1313   INSN(ldrw, 0b00, 0);
1314   INSN(ldr, 0b01, 0);
1315   INSN(ldrsw, 0b10, 0);
1316 
1317 #undef INSN
1318 
1319 #define INSN(NAME, opc, V)                                              \
1320   void NAME(FloatRegister Rt, address dest) {                           \
1321     long offset = (dest - pc()) >> 2;                                   \
1322     starti;                                                             \
1323     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1324       sf(offset, 23, 5);                                                \
1325     rf((Register)Rt, 0);                                                \
1326   }
1327 
1328   INSN(ldrs, 0b00, 1);
1329   INSN(ldrd, 0b01, 1);
1330   INSN(ldrq, 0b10, 1);
1331 
1332 #undef INSN
1333 
1334 #define INSN(NAME, opc, V)                                              \
1335   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1336     long offset = (dest - pc()) >> 2;                                   \
1337     starti;                                                             \
1338     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1339       sf(offset, 23, 5);                                                \
1340     f(op, 4, 0);                                                        \
1341   }                                                                     \
1342   void NAME(Label &L, prfop op = PLDL1KEEP) {                           \
1343     wrap_label(L, op, &Assembler::NAME);                                \
1344   }
1345 
1346   INSN(prfm, 0b11, 0);
1347 
1348 #undef INSN
1349 
1350   // Load/store
1351   void ld_st1(int opc, int p1, int V, int L,
1352               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1353     starti;
1354     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1355     zrf(Rt2, 10), zrf(Rt1, 0);
1356     if (no_allocate) {
1357       adr.encode_nontemporal_pair(current);
1358     } else {
1359       adr.encode_pair(current);
1360     }
1361   }
1362 
1363   // Load/store register pair (offset)
1364 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1365   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1366     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1367    }
1368 
1369   INSN(stpw, 0b00, 0b101, 0, 0, false);
1370   INSN(ldpw, 0b00, 0b101, 0, 1, false);
1371   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1372   INSN(stp, 0b10, 0b101, 0, 0, false);
1373   INSN(ldp, 0b10, 0b101, 0, 1, false);
1374 
1375   // Load/store no-allocate pair (offset)
1376   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1377   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1378   INSN(stnp, 0b10, 0b101, 0, 0, true);
1379   INSN(ldnp, 0b10, 0b101, 0, 1, true);
1380 
1381 #undef INSN
1382 
1383 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1384   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1385     ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \
1386    }
1387 
1388   INSN(stps, 0b00, 0b101, 1, 0, false);
1389   INSN(ldps, 0b00, 0b101, 1, 1, false);
1390   INSN(stpd, 0b01, 0b101, 1, 0, false);
1391   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1392   INSN(stpq, 0b10, 0b101, 1, 0, false);
1393   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1394 
1395 #undef INSN
1396 
1397   // Load/store register (all modes)
1398   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1399     starti;
1400 
1401     f(V, 26); // general reg?
1402     zrf(Rt, 0);
1403 
1404     // Encoding for literal loads is done here (rather than pushed
1405     // down into Address::encode) because the encoding of this
1406     // instruction is too different from all of the other forms to
1407     // make it worth sharing.
1408     if (adr.getMode() == Address::literal) {
1409       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1410       assert(op == 0b01, "literal form can only be used with loads");
1411       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1412       long offset = (adr.target() - pc()) >> 2;
1413       sf(offset, 23, 5);
1414       code_section()->relocate(pc(), adr.rspec());
1415       return;
1416     }
1417 
1418     f(size, 31, 30);
1419     f(op, 23, 22); // str
1420     adr.encode(current);
1421   }
1422 
1423 #define INSN(NAME, size, op)                            \
1424   void NAME(Register Rt, const Address &adr) {          \
1425     ld_st2(Rt, adr, size, op);                          \
1426   }                                                     \
1427 
1428   INSN(str, 0b11, 0b00);
1429   INSN(strw, 0b10, 0b00);
1430   INSN(strb, 0b00, 0b00);
1431   INSN(strh, 0b01, 0b00);
1432 
1433   INSN(ldr, 0b11, 0b01);
1434   INSN(ldrw, 0b10, 0b01);
1435   INSN(ldrb, 0b00, 0b01);
1436   INSN(ldrh, 0b01, 0b01);
1437 
1438   INSN(ldrsb, 0b00, 0b10);
1439   INSN(ldrsbw, 0b00, 0b11);
1440   INSN(ldrsh, 0b01, 0b10);
1441   INSN(ldrshw, 0b01, 0b11);
1442   INSN(ldrsw, 0b10, 0b10);
1443 
1444 #undef INSN
1445 
1446 #define INSN(NAME, size, op)                                    \
1447   void NAME(const Address &adr, prfop pfop = PLDL1KEEP) {       \
1448     ld_st2((Register)pfop, adr, size, op);                      \
1449   }
1450 
1451   INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with
1452                           // writeback modes, but the assembler
1453                           // doesn't enfore that.
1454 
1455 #undef INSN
1456 
1457 #define INSN(NAME, size, op)                            \
1458   void NAME(FloatRegister Rt, const Address &adr) {     \
1459     ld_st2((Register)Rt, adr, size, op, 1);             \
1460   }
1461 
1462   INSN(strd, 0b11, 0b00);
1463   INSN(strs, 0b10, 0b00);
1464   INSN(ldrd, 0b11, 0b01);
1465   INSN(ldrs, 0b10, 0b01);
1466   INSN(strq, 0b00, 0b10);
1467   INSN(ldrq, 0x00, 0b11);
1468 
1469 #undef INSN
1470 
1471   enum shift_kind { LSL, LSR, ASR, ROR };
1472 
1473   void op_shifted_reg(unsigned decode,
1474                       enum shift_kind kind, unsigned shift,
1475                       unsigned size, unsigned op) {
1476     f(size, 31);
1477     f(op, 30, 29);
1478     f(decode, 28, 24);
1479     f(shift, 15, 10);
1480     f(kind, 23, 22);
1481   }
1482 
1483   // Logical (shifted register)
1484 #define INSN(NAME, size, op, N)                                 \
1485   void NAME(Register Rd, Register Rn, Register Rm,              \
1486             enum shift_kind kind = LSL, unsigned shift = 0) {   \
1487     starti;                                                     \
1488     f(N, 21);                                                   \
1489     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                        \
1490     op_shifted_reg(0b01010, kind, shift, size, op);             \
1491   }
1492 
1493   INSN(andr, 1, 0b00, 0);
1494   INSN(orr, 1, 0b01, 0);
1495   INSN(eor, 1, 0b10, 0);
1496   INSN(ands, 1, 0b11, 0);
1497   INSN(andw, 0, 0b00, 0);
1498   INSN(orrw, 0, 0b01, 0);
1499   INSN(eorw, 0, 0b10, 0);
1500   INSN(andsw, 0, 0b11, 0);
1501 
1502   INSN(bic, 1, 0b00, 1);
1503   INSN(orn, 1, 0b01, 1);
1504   INSN(eon, 1, 0b10, 1);
1505   INSN(bics, 1, 0b11, 1);
1506   INSN(bicw, 0, 0b00, 1);
1507   INSN(ornw, 0, 0b01, 1);
1508   INSN(eonw, 0, 0b10, 1);
1509   INSN(bicsw, 0, 0b11, 1);
1510 
1511 #undef INSN
1512 
1513   // Aliases for short forms of orn
1514 void mvn(Register Rd, Register Rm,
1515             enum shift_kind kind = LSL, unsigned shift = 0) {
1516   orn(Rd, zr, Rm, kind, shift);
1517 }
1518 
1519 void mvnw(Register Rd, Register Rm,
1520             enum shift_kind kind = LSL, unsigned shift = 0) {
1521   ornw(Rd, zr, Rm, kind, shift);
1522 }
1523 
1524   // Add/subtract (shifted register)
1525 #define INSN(NAME, size, op)                            \
1526   void NAME(Register Rd, Register Rn, Register Rm,      \
1527             enum shift_kind kind, unsigned shift = 0) { \
1528     starti;                                             \
1529     f(0, 21);                                           \
1530     assert_cond(kind != ROR);                           \
1531     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1532     op_shifted_reg(0b01011, kind, shift, size, op);     \
1533   }
1534 
1535   INSN(add, 1, 0b000);
1536   INSN(sub, 1, 0b10);
1537   INSN(addw, 0, 0b000);
1538   INSN(subw, 0, 0b10);
1539 
1540   INSN(adds, 1, 0b001);
1541   INSN(subs, 1, 0b11);
1542   INSN(addsw, 0, 0b001);
1543   INSN(subsw, 0, 0b11);
1544 
1545 #undef INSN
1546 
1547   // Add/subtract (extended register)
1548 #define INSN(NAME, op)                                                  \
1549   void NAME(Register Rd, Register Rn, Register Rm,                      \
1550            ext::operation option, int amount = 0) {                     \
1551     starti;                                                             \
1552     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1553     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1554   }
1555 
1556   void add_sub_extended_reg(unsigned op, unsigned decode,
1557     Register Rd, Register Rn, Register Rm,
1558     unsigned opt, ext::operation option, unsigned imm) {
1559     guarantee(imm <= 4, "shift amount must be < 4");
1560     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1561     f(option, 15, 13), f(imm, 12, 10);
1562   }
1563 
1564   INSN(addw, 0b000);
1565   INSN(subw, 0b010);
1566   INSN(add, 0b100);
1567   INSN(sub, 0b110);
1568 
1569 #undef INSN
1570 
1571 #define INSN(NAME, op)                                                  \
1572   void NAME(Register Rd, Register Rn, Register Rm,                      \
1573            ext::operation option, int amount = 0) {                     \
1574     starti;                                                             \
1575     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1576     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1577   }
1578 
1579   INSN(addsw, 0b001);
1580   INSN(subsw, 0b011);
1581   INSN(adds, 0b101);
1582   INSN(subs, 0b111);
1583 
1584 #undef INSN
1585 
1586   // Aliases for short forms of add and sub
1587 #define INSN(NAME)                                      \
1588   void NAME(Register Rd, Register Rn, Register Rm) {    \
1589     if (Rd == sp || Rn == sp)                           \
1590       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1591     else                                                \
1592       NAME(Rd, Rn, Rm, LSL);                            \
1593   }
1594 
1595   INSN(addw);
1596   INSN(subw);
1597   INSN(add);
1598   INSN(sub);
1599 
1600   INSN(addsw);
1601   INSN(subsw);
1602   INSN(adds);
1603   INSN(subs);
1604 
1605 #undef INSN
1606 
1607   // Add/subtract (with carry)
1608   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1609     starti;
1610     f(op, 31, 29);
1611     f(0b11010000, 28, 21);
1612     f(0b000000, 15, 10);
1613     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1614   }
1615 
1616   #define INSN(NAME, op)                                \
1617     void NAME(Register Rd, Register Rn, Register Rm) {  \
1618       add_sub_carry(op, Rd, Rn, Rm);                    \
1619     }
1620 
1621   INSN(adcw, 0b000);
1622   INSN(adcsw, 0b001);
1623   INSN(sbcw, 0b010);
1624   INSN(sbcsw, 0b011);
1625   INSN(adc, 0b100);
1626   INSN(adcs, 0b101);
1627   INSN(sbc,0b110);
1628   INSN(sbcs, 0b111);
1629 
1630 #undef INSN
1631 
1632   // Conditional compare (both kinds)
1633   void conditional_compare(unsigned op, int o2, int o3,
1634                            Register Rn, unsigned imm5, unsigned nzcv,
1635                            unsigned cond) {
1636     f(op, 31, 29);
1637     f(0b11010010, 28, 21);
1638     f(cond, 15, 12);
1639     f(o2, 10);
1640     f(o3, 4);
1641     f(nzcv, 3, 0);
1642     f(imm5, 20, 16), rf(Rn, 5);
1643   }
1644 
1645 #define INSN(NAME, op)                                                  \
1646   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1647     starti;                                                             \
1648     f(0, 11);                                                           \
1649     conditional_compare(op, 0, 0, Rn, (uintptr_t)Rm, imm, cond);        \
1650   }                                                                     \
1651                                                                         \
1652   void NAME(Register Rn, int imm5, int imm, Condition cond) {   \
1653     starti;                                                             \
1654     f(1, 11);                                                           \
1655     conditional_compare(op, 0, 0, Rn, imm5, imm, cond);                 \
1656   }
1657 
1658   INSN(ccmnw, 0b001);
1659   INSN(ccmpw, 0b011);
1660   INSN(ccmn, 0b101);
1661   INSN(ccmp, 0b111);
1662 
1663 #undef INSN
1664 
1665   // Conditional select
1666   void conditional_select(unsigned op, unsigned op2,
1667                           Register Rd, Register Rn, Register Rm,
1668                           unsigned cond) {
1669     starti;
1670     f(op, 31, 29);
1671     f(0b11010100, 28, 21);
1672     f(cond, 15, 12);
1673     f(op2, 11, 10);
1674     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1675   }
1676 
1677 #define INSN(NAME, op, op2)                                             \
1678   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
1679     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1680   }
1681 
1682   INSN(cselw, 0b000, 0b00);
1683   INSN(csincw, 0b000, 0b01);
1684   INSN(csinvw, 0b010, 0b00);
1685   INSN(csnegw, 0b010, 0b01);
1686   INSN(csel, 0b100, 0b00);
1687   INSN(csinc, 0b100, 0b01);
1688   INSN(csinv, 0b110, 0b00);
1689   INSN(csneg, 0b110, 0b01);
1690 
1691 #undef INSN
1692 
1693   // Data processing
1694   void data_processing(unsigned op29, unsigned opcode,
1695                        Register Rd, Register Rn) {
1696     f(op29, 31, 29), f(0b11010110, 28, 21);
1697     f(opcode, 15, 10);
1698     rf(Rn, 5), rf(Rd, 0);
1699   }
1700 
1701   // (1 source)
1702 #define INSN(NAME, op29, opcode2, opcode)       \
1703   void NAME(Register Rd, Register Rn) {         \
1704     starti;                                     \
1705     f(opcode2, 20, 16);                         \
1706     data_processing(op29, opcode, Rd, Rn);      \
1707   }
1708 
1709   INSN(rbitw,  0b010, 0b00000, 0b00000);
1710   INSN(rev16w, 0b010, 0b00000, 0b00001);
1711   INSN(revw,   0b010, 0b00000, 0b00010);
1712   INSN(clzw,   0b010, 0b00000, 0b00100);
1713   INSN(clsw,   0b010, 0b00000, 0b00101);
1714 
1715   INSN(rbit,   0b110, 0b00000, 0b00000);
1716   INSN(rev16,  0b110, 0b00000, 0b00001);
1717   INSN(rev32,  0b110, 0b00000, 0b00010);
1718   INSN(rev,    0b110, 0b00000, 0b00011);
1719   INSN(clz,    0b110, 0b00000, 0b00100);
1720   INSN(cls,    0b110, 0b00000, 0b00101);
1721 
1722 #undef INSN
1723 
1724   // (2 sources)
1725 #define INSN(NAME, op29, opcode)                        \
1726   void NAME(Register Rd, Register Rn, Register Rm) {    \
1727     starti;                                             \
1728     rf(Rm, 16);                                         \
1729     data_processing(op29, opcode, Rd, Rn);              \
1730   }
1731 
1732   INSN(udivw, 0b000, 0b000010);
1733   INSN(sdivw, 0b000, 0b000011);
1734   INSN(lslvw, 0b000, 0b001000);
1735   INSN(lsrvw, 0b000, 0b001001);
1736   INSN(asrvw, 0b000, 0b001010);
1737   INSN(rorvw, 0b000, 0b001011);
1738 
1739   INSN(udiv, 0b100, 0b000010);
1740   INSN(sdiv, 0b100, 0b000011);
1741   INSN(lslv, 0b100, 0b001000);
1742   INSN(lsrv, 0b100, 0b001001);
1743   INSN(asrv, 0b100, 0b001010);
1744   INSN(rorv, 0b100, 0b001011);
1745 
1746 #undef INSN
1747 
1748   // (3 sources)
1749   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1750                        Register Rd, Register Rn, Register Rm,
1751                        Register Ra) {
1752     starti;
1753     f(op54, 31, 29), f(0b11011, 28, 24);
1754     f(op31, 23, 21), f(o0, 15);
1755     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1756   }
1757 
1758 #define INSN(NAME, op54, op31, o0)                                      \
1759   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1760     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1761   }
1762 
1763   INSN(maddw, 0b000, 0b000, 0);
1764   INSN(msubw, 0b000, 0b000, 1);
1765   INSN(madd, 0b100, 0b000, 0);
1766   INSN(msub, 0b100, 0b000, 1);
1767   INSN(smaddl, 0b100, 0b001, 0);
1768   INSN(smsubl, 0b100, 0b001, 1);
1769   INSN(umaddl, 0b100, 0b101, 0);
1770   INSN(umsubl, 0b100, 0b101, 1);
1771 
1772 #undef INSN
1773 
1774 #define INSN(NAME, op54, op31, o0)                      \
1775   void NAME(Register Rd, Register Rn, Register Rm) {    \
1776     data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31);  \
1777   }
1778 
1779   INSN(smulh, 0b100, 0b010, 0);
1780   INSN(umulh, 0b100, 0b110, 0);
1781 
1782 #undef INSN
1783 
1784   // Floating-point data-processing (1 source)
1785   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1786                        FloatRegister Vd, FloatRegister Vn) {
1787     starti;
1788     f(op31, 31, 29);
1789     f(0b11110, 28, 24);
1790     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
1791     rf(Vn, 5), rf(Vd, 0);
1792   }
1793 
1794 #define INSN(NAME, op31, type, opcode)                  \
1795   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
1796     data_processing(op31, type, opcode, Vd, Vn);        \
1797   }
1798 
1799 private:
1800   INSN(i_fmovs, 0b000, 0b00, 0b000000);
1801 public:
1802   INSN(fabss, 0b000, 0b00, 0b000001);
1803   INSN(fnegs, 0b000, 0b00, 0b000010);
1804   INSN(fsqrts, 0b000, 0b00, 0b000011);
1805   INSN(fcvts, 0b000, 0b00, 0b000101);   // Single-precision to double-precision
1806 
1807 private:
1808   INSN(i_fmovd, 0b000, 0b01, 0b000000);
1809 public:
1810   INSN(fabsd, 0b000, 0b01, 0b000001);
1811   INSN(fnegd, 0b000, 0b01, 0b000010);
1812   INSN(fsqrtd, 0b000, 0b01, 0b000011);
1813   INSN(fcvtd, 0b000, 0b01, 0b000100);   // Double-precision to single-precision
1814 
1815   void fmovd(FloatRegister Vd, FloatRegister Vn) {
1816     assert(Vd != Vn, "should be");
1817     i_fmovd(Vd, Vn);
1818   }
1819 
1820   void fmovs(FloatRegister Vd, FloatRegister Vn) {
1821     assert(Vd != Vn, "should be");
1822     i_fmovs(Vd, Vn);
1823   }
1824 
1825 #undef INSN
1826 
1827   // Floating-point data-processing (2 source)
1828   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1829                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
1830     starti;
1831     f(op31, 31, 29);
1832     f(0b11110, 28, 24);
1833     f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10);
1834     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1835   }
1836 
1837 #define INSN(NAME, op31, type, opcode)                  \
1838   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
1839     data_processing(op31, type, opcode, Vd, Vn, Vm);    \
1840   }
1841 
1842   INSN(fmuls, 0b000, 0b00, 0b0000);
1843   INSN(fdivs, 0b000, 0b00, 0b0001);
1844   INSN(fadds, 0b000, 0b00, 0b0010);
1845   INSN(fsubs, 0b000, 0b00, 0b0011);
1846   INSN(fnmuls, 0b000, 0b00, 0b1000);
1847 
1848   INSN(fmuld, 0b000, 0b01, 0b0000);
1849   INSN(fdivd, 0b000, 0b01, 0b0001);
1850   INSN(faddd, 0b000, 0b01, 0b0010);
1851   INSN(fsubd, 0b000, 0b01, 0b0011);
1852   INSN(fnmuld, 0b000, 0b01, 0b1000);
1853 
1854 #undef INSN
1855 
1856    // Floating-point data-processing (3 source)
1857   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
1858                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
1859                        FloatRegister Va) {
1860     starti;
1861     f(op31, 31, 29);
1862     f(0b11111, 28, 24);
1863     f(type, 23, 22), f(o1, 21), f(o0, 15);
1864     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
1865   }
1866 
1867 #define INSN(NAME, op31, type, o1, o0)                                  \
1868   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
1869             FloatRegister Va) {                                         \
1870     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
1871   }
1872 
1873   INSN(fmadds, 0b000, 0b00, 0, 0);
1874   INSN(fmsubs, 0b000, 0b00, 0, 1);
1875   INSN(fnmadds, 0b000, 0b00, 1, 0);
1876   INSN(fnmsubs, 0b000, 0b00, 1, 1);
1877 
1878   INSN(fmaddd, 0b000, 0b01, 0, 0);
1879   INSN(fmsubd, 0b000, 0b01, 0, 1);
1880   INSN(fnmaddd, 0b000, 0b01, 1, 0);
1881   INSN(fnmsub, 0b000, 0b01, 1, 1);
1882 
1883 #undef INSN
1884 
1885    // Floating-point conditional select
1886   void fp_conditional_select(unsigned op31, unsigned type,
1887                              unsigned op1, unsigned op2,
1888                              Condition cond, FloatRegister Vd,
1889                              FloatRegister Vn, FloatRegister Vm) {
1890     starti;
1891     f(op31, 31, 29);
1892     f(0b11110, 28, 24);
1893     f(type, 23, 22);
1894     f(op1, 21, 21);
1895     f(op2, 11, 10);
1896     f(cond, 15, 12);
1897     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1898   }
1899 
1900 #define INSN(NAME, op31, type, op1, op2)                                \
1901   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
1902             FloatRegister Vm, Condition cond) {                         \
1903     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
1904   }
1905 
1906   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
1907   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
1908 
1909 #undef INSN
1910 
1911    // Floating-point<->integer conversions
1912   void float_int_convert(unsigned op31, unsigned type,
1913                          unsigned rmode, unsigned opcode,
1914                          Register Rd, Register Rn) {
1915     starti;
1916     f(op31, 31, 29);
1917     f(0b11110, 28, 24);
1918     f(type, 23, 22), f(1, 21), f(rmode, 20, 19);
1919     f(opcode, 18, 16), f(0b000000, 15, 10);
1920     zrf(Rn, 5), zrf(Rd, 0);
1921   }
1922 
1923 #define INSN(NAME, op31, type, rmode, opcode)                           \
1924   void NAME(Register Rd, FloatRegister Vn) {                            \
1925     float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn);     \
1926   }
1927 
1928   INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000);
1929   INSN(fcvtzs,  0b100, 0b00, 0b11, 0b000);
1930   INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000);
1931   INSN(fcvtzd,  0b100, 0b01, 0b11, 0b000);
1932 
1933   INSN(fmovs, 0b000, 0b00, 0b00, 0b110);
1934   INSN(fmovd, 0b100, 0b01, 0b00, 0b110);
1935 
1936   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b110);
1937 
1938 #undef INSN
1939 
1940 #define INSN(NAME, op31, type, rmode, opcode)                           \
1941   void NAME(FloatRegister Vd, Register Rn) {                            \
1942     float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn);     \
1943   }
1944 
1945   INSN(fmovs, 0b000, 0b00, 0b00, 0b111);
1946   INSN(fmovd, 0b100, 0b01, 0b00, 0b111);
1947 
1948   INSN(scvtfws, 0b000, 0b00, 0b00, 0b010);
1949   INSN(scvtfs,  0b100, 0b00, 0b00, 0b010);
1950   INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010);
1951   INSN(scvtfd,  0b100, 0b01, 0b00, 0b010);
1952 
1953   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
1954 
1955 #undef INSN
1956 
1957   // Floating-point compare
1958   void float_compare(unsigned op31, unsigned type,
1959                      unsigned op, unsigned op2,
1960                      FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) {
1961     starti;
1962     f(op31, 31, 29);
1963     f(0b11110, 28, 24);
1964     f(type, 23, 22), f(1, 21);
1965     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
1966     rf(Vn, 5), rf(Vm, 16);
1967   }
1968 
1969 
1970 #define INSN(NAME, op31, type, op, op2)                 \
1971   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
1972     float_compare(op31, type, op, op2, Vn, Vm);         \
1973   }
1974 
1975 #define INSN1(NAME, op31, type, op, op2)        \
1976   void NAME(FloatRegister Vn, double d) {       \
1977     assert_cond(d == 0.0);                      \
1978     float_compare(op31, type, op, op2, Vn);     \
1979   }
1980 
1981   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
1982   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
1983   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
1984   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
1985 
1986   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
1987   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
1988   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
1989   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
1990 
1991 #undef INSN
1992 #undef INSN1
1993 
1994   // Floating-point Move (immediate)
1995 private:
1996   unsigned pack(double value);
1997 
1998   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
1999     starti;
2000     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
2001     f(pack(value), 20, 13), f(0b10000000, 12, 5);
2002     rf(Vn, 0);
2003   }
2004 
2005 public:
2006 
2007   void fmovs(FloatRegister Vn, double value) {
2008     if (value)
2009       fmov_imm(Vn, value, 0b00);
2010     else
2011       fmovs(Vn, zr);
2012   }
2013   void fmovd(FloatRegister Vn, double value) {
2014     if (value)
2015       fmov_imm(Vn, value, 0b01);
2016     else
2017       fmovd(Vn, zr);
2018   }
2019 
2020 /* SIMD extensions
2021  *
2022  * We just use FloatRegister in the following. They are exactly the same
2023  * as SIMD registers.
2024  */
2025  public:
2026 
2027   enum SIMD_Arrangement {
2028        T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q
2029   };
2030 
2031   enum SIMD_RegVariant {
2032        B, H, S, D, Q
2033   };
2034 
2035 #define INSN(NAME, op)                                            \
2036   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {   \
2037     ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
2038   }                                                                      \
2039 
2040   INSN(ldr, 1);
2041   INSN(str, 0);
2042 
2043 #undef INSN
2044 
2045  private:
2046 
2047   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
2048     starti;
2049     f(0,31), f((int)T & 1, 30);
2050     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
2051     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2052   }
2053   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2054              int imm, int op1, int op2) {
2055     starti;
2056     f(0,31), f((int)T & 1, 30);
2057     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
2058     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2059   }
2060   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2061              Register Xm, int op1, int op2) {
2062     starti;
2063     f(0,31), f((int)T & 1, 30);
2064     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
2065     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2066   }
2067 
2068  void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2) {
2069    switch (a.getMode()) {
2070    case Address::base_plus_offset:
2071      guarantee(a.offset() == 0, "no offset allowed here");
2072      ld_st(Vt, T, a.base(), op1, op2);
2073      break;
2074    case Address::post:
2075      ld_st(Vt, T, a.base(), a.offset(), op1, op2);
2076      break;
2077    case Address::base_plus_offset_reg:
2078      ld_st(Vt, T, a.base(), a.index(), op1, op2);
2079      break;
2080    default:
2081      ShouldNotReachHere();
2082    }
2083  }
2084 
2085  public:
2086 
2087 #define INSN1(NAME, op1, op2)                                   \
2088   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {   \
2089    ld_st(Vt, T, a, op1, op2);                                           \
2090  }
2091 
2092 #define INSN2(NAME, op1, op2)                                           \
2093   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
2094     assert(Vt->successor() == Vt2, "Registers must be ordered");        \
2095     ld_st(Vt, T, a, op1, op2);                                          \
2096   }
2097 
2098 #define INSN3(NAME, op1, op2)                                           \
2099   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2100             SIMD_Arrangement T, const Address &a) {                     \
2101     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,           \
2102            "Registers must be ordered");                                \
2103     ld_st(Vt, T, a, op1, op2);                                          \
2104   }
2105 
2106 #define INSN4(NAME, op1, op2)                                           \
2107   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2108             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {  \
2109     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&         \
2110            Vt3->successor() == Vt4, "Registers must be ordered");       \
2111     ld_st(Vt, T, a, op1, op2);                                          \
2112   }
2113 
2114   INSN1(ld1,  0b001100010, 0b0111);
2115   INSN2(ld1,  0b001100010, 0b1010);
2116   INSN3(ld1,  0b001100010, 0b0110);
2117   INSN4(ld1,  0b001100010, 0b0010);
2118 
2119   INSN2(ld2,  0b001100010, 0b1000);
2120   INSN3(ld3,  0b001100010, 0b0100);
2121   INSN4(ld4,  0b001100010, 0b0000);
2122 
2123   INSN1(st1,  0b001100000, 0b0111);
2124   INSN2(st1,  0b001100000, 0b1010);
2125   INSN3(st1,  0b001100000, 0b0110);
2126   INSN4(st1,  0b001100000, 0b0010);
2127 
2128   INSN2(st2,  0b001100000, 0b1000);
2129   INSN3(st3,  0b001100000, 0b0100);
2130   INSN4(st4,  0b001100000, 0b0000);
2131 
2132   INSN1(ld1r, 0b001101010, 0b1100);
2133   INSN2(ld2r, 0b001101011, 0b1100);
2134   INSN3(ld3r, 0b001101010, 0b1110);
2135   INSN4(ld4r, 0b001101011, 0b1110);
2136 
2137 #undef INSN1
2138 #undef INSN2
2139 #undef INSN3
2140 #undef INSN4
2141 
2142 #define INSN(NAME, opc)                                                                 \
2143   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2144     starti;                                                                             \
2145     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2146     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2147     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2148   }
2149 
2150   INSN(eor,  0b101110001);
2151   INSN(orr,  0b001110101);
2152   INSN(andr, 0b001110001);
2153   INSN(bic,  0b001110011);
2154   INSN(bif,  0b101110111);
2155   INSN(bit,  0b101110101);
2156   INSN(bsl,  0b101110011);
2157   INSN(orn,  0b001110111);
2158 
2159 #undef INSN
2160 
2161 #define INSN(NAME, opc, opc2)                                                                 \
2162   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2163     starti;                                                                             \
2164     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2165     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2166     rf(Vn, 5), rf(Vd, 0);                                                               \
2167   }
2168 
2169   INSN(addv, 0, 0b100001);
2170   INSN(subv, 1, 0b100001);
2171   INSN(mulv, 0, 0b100111);
2172   INSN(mlav, 0, 0b100101);
2173   INSN(mlsv, 1, 0b100101);
2174   INSN(sshl, 0, 0b010001);
2175   INSN(ushl, 1, 0b010001);
2176 
2177 #undef INSN
2178 
2179 #define INSN(NAME, opc, opc2) \
2180   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2181     starti;                                                                             \
2182     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2183     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2184     rf(Vn, 5), rf(Vd, 0);                                                               \
2185   }
2186 
2187   INSN(absr,  0, 0b100000101110);
2188   INSN(negr,  1, 0b100000101110);
2189   INSN(notr,  1, 0b100000010110);
2190   INSN(addv,  0, 0b110001101110);
2191   INSN(cls,   0, 0b100000010010);
2192   INSN(clz,   1, 0b100000010010);
2193   INSN(cnt,   0, 0b100000010110);
2194 
2195 #undef INSN
2196 
2197 #define INSN(NAME, op0, cmode0) \
2198   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2199     unsigned cmode = cmode0;                                                           \
2200     unsigned op = op0;                                                                 \
2201     starti;                                                                            \
2202     assert(lsl == 0 ||                                                                 \
2203            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2204            ((T == T2S || T == T4S) && ((lsl >> 3) < 4)), "invalid shift");             \
2205     cmode |= lsl >> 2;                                                                 \
2206     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2207     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2208       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2209       cmode = 0b1110;                                                                  \
2210       if (T == T1D || T == T2D) op = 1;                                                \
2211     }                                                                                  \
2212     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2213     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2214     rf(Vd, 0);                                                                         \
2215   }
2216 
2217   INSN(movi, 0, 0);
2218   INSN(orri, 0, 1);
2219   INSN(mvni, 1, 0);
2220   INSN(bici, 1, 1);
2221 
2222 #undef INSN
2223 
2224 #define INSN(NAME, op1, op2, op3) \
2225   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2226     starti;                                                                             \
2227     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                    \
2228     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23);            \
2229     f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0);    \
2230   }
2231 
2232   INSN(fadd, 0, 0, 0b110101);
2233   INSN(fdiv, 1, 0, 0b111111);
2234   INSN(fmul, 1, 0, 0b110111);
2235   INSN(fsub, 0, 1, 0b110101);
2236   INSN(fmla, 0, 0, 0b110011);
2237   INSN(fmls, 0, 1, 0b110011);
2238 
2239 #undef INSN
2240 
2241 #define INSN(NAME, opc)                                                                 \
2242   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2243     starti;                                                                             \
2244     assert(T == T4S, "arrangement must be T4S");                                        \
2245     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2246   }
2247 
2248   INSN(sha1c,     0b000000);
2249   INSN(sha1m,     0b001000);
2250   INSN(sha1p,     0b000100);
2251   INSN(sha1su0,   0b001100);
2252   INSN(sha256h2,  0b010100);
2253   INSN(sha256h,   0b010000);
2254   INSN(sha256su1, 0b011000);
2255 
2256 #undef INSN
2257 
2258 #define INSN(NAME, opc)                                                                 \
2259   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2260     starti;                                                                             \
2261     assert(T == T4S, "arrangement must be T4S");                                        \
2262     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2263   }
2264 
2265   INSN(sha1h,     0b000010);
2266   INSN(sha1su1,   0b000110);
2267   INSN(sha256su0, 0b001010);
2268 
2269 #undef INSN
2270 
2271 #define INSN(NAME, opc)                           \
2272   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2273     starti;                                       \
2274     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2275   }
2276 
2277   INSN(aese, 0b0100111000101000010010);
2278   INSN(aesd, 0b0100111000101000010110);
2279   INSN(aesmc, 0b0100111000101000011010);
2280   INSN(aesimc, 0b0100111000101000011110);
2281 
2282 #undef INSN
2283 
2284   // vect1 += vect2*scalar. FMLA-Vector-Scalar-Double
2285   void fmlavsd(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, int index) {
2286     assert(index == 0 || index == 1, "Incorrect index");
2287     starti;
2288     f(0b01001111110, 31, 21);
2289     rf(Vm, 16);
2290     f(0b0001, 15, 12);
2291     f(index, 11);
2292     f(0, 10);
2293     rf(Vn, 5);
2294     rf(Vd, 0);
2295   }
2296 
2297   // vect1 += vect2*vect3. FMLA-Vector-Vector-Double
2298   void fmlavvd(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
2299     starti;
2300     // 01001110011 Rm 110011 Rn Rd
2301     f(0b01001110011, 31, 21);
2302     rf(Vm, 16);
2303     f(0b110011, 15, 10);
2304     rf(Vn, 5);
2305     rf(Vd, 0);
2306   }
2307 
2308   // Floating-point Reciprocal Estimate for single precision
2309   void frecpe(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {
2310     assert(type == D || type == S, "Wrong type for frecpe");
2311     starti;
2312     f(0b010111101, 31, 23);
2313     f(type == D ? 1 : 0, 22);
2314     f(0b100001110110, 21, 10);
2315     rf(Vn, 5), rf(Vd, 0);
2316   }
2317 
2318   // (double) {a, b} -> (a + b)
2319   void faddpd(FloatRegister Vd, FloatRegister Vn) {
2320     starti;
2321     f(0b0111111001110000110110, 31, 10);
2322     rf(Vn, 5), rf(Vd, 0);
2323   }
2324 
2325   // fmulxvd is vect(Vn)*Vm[index]. FMULX-Vector-Scalar-Double
2326   void fmulxvsd(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, int index) {
2327     assert(index == 0 || index == 1, "Incorrect index");
2328     //Q=1, sz=1,L=0, M:Rm = Vm, H=index for T2D
2329     starti;
2330     f(0b01101111110, 31, 21);
2331     rf(Vm, 16);
2332     f(0b1001, 15, 12);
2333     f(index, 11);
2334     f(0, 10);
2335     rf(Vn, 5);
2336     rf(Vd, 0);
2337   }
2338 
2339   // fmulxsd is LO64(Vn)*Vm[index]. FULX-Scalar-Double
2340   void fmulxssd(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, int index) {
2341     // sz = 1, L = 0, H = index, M:Rm = Vm
2342     starti;
2343     f(0b01111111110, 31, 21);
2344     rf(Vm, 16);
2345     f(0b1001, 15, 12);
2346     f(index, 11);
2347     f(0, 10);
2348     rf(Vn, 5);
2349     rf(Vd, 0);
2350   }
2351 
2352   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2353     starti;
2354     assert(T != Q, "invalid register variant");
2355     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2356     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2357   }
2358 
2359   void umov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {
2360     starti;
2361     f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21);
2362     f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001111, 15, 10);
2363     rf(Vn, 5), rf(Rd, 0);
2364   }
2365 
2366 #define INSN(NAME, opc, opc2, isSHR)                                    \
2367   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \
2368     starti;                                                             \
2369     /* The encodings for the immh:immb fields (bits 22:16) in *SHR are  \
2370      *   0001 xxx       8B/16B, shift = 16  - UInt(immh:immb)           \
2371      *   001x xxx       4H/8H,  shift = 32  - UInt(immh:immb)           \
2372      *   01xx xxx       2S/4S,  shift = 64  - UInt(immh:immb)           \
2373      *   1xxx xxx       1D/2D,  shift = 128 - UInt(immh:immb)           \
2374      *   (1D is RESERVED)                                               \
2375      * for SHL shift is calculated as:                                  \
2376      *   0001 xxx       8B/16B, shift = UInt(immh:immb) - 8             \
2377      *   001x xxx       4H/8H,  shift = UInt(immh:immb) - 16            \
2378      *   01xx xxx       2S/4S,  shift = UInt(immh:immb) - 32            \
2379      *   1xxx xxx       1D/2D,  shift = UInt(immh:immb) - 64            \
2380      *   (1D is RESERVED)                                               \
2381      */                                                                 \
2382     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");           \
2383     int cVal = (1 << (((T >> 1) + 3) + (isSHR ? 1 : 0)));               \
2384     int encodedShift = isSHR ? cVal - shift : cVal + shift;             \
2385     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),            \
2386     f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);     \
2387   }
2388 
2389   INSN(shl,  0, 0b010101, /* isSHR = */ false);
2390   INSN(sshr, 0, 0b000001, /* isSHR = */ true);
2391   INSN(ushr, 1, 0b000001, /* isSHR = */ true);
2392 
2393 #undef INSN
2394 
2395   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2396     starti;
2397     /* The encodings for the immh:immb fields (bits 22:16) are
2398      *   0001 xxx       8H, 8B/16b shift = xxx
2399      *   001x xxx       4S, 4H/8H  shift = xxxx
2400      *   01xx xxx       2D, 2S/4S  shift = xxxxx
2401      *   1xxx xxx       RESERVED
2402      */
2403     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
2404     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
2405     f(0, 31), f(Tb & 1, 30), f(0b1011110, 29, 23), f((1 << ((Tb>>1)+3))|shift, 22, 16);
2406     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2407   }
2408   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2409     ushll(Vd, Ta, Vn, Tb, shift);
2410   }
2411 
2412   void uzp1(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,  SIMD_Arrangement T, int op = 0){
2413     starti;
2414     f(0, 31), f((T & 0x1), 30), f(0b001110, 29, 24), f((T >> 1), 23, 22), f(0, 21);
2415     rf(Vm, 16), f(0, 15), f(op, 14), f(0b0110, 13, 10), rf(Vn, 5), rf(Vd, 0);
2416   }
2417   void uzp2(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,  SIMD_Arrangement T){
2418     uzp1(Vd, Vn, Vm, T, 1);
2419   }
2420 
2421   // Move from general purpose register
2422   //   mov  Vd.T[index], Rn
2423   void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) {
2424     starti;
2425     f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2426     f(0b000111, 15, 10), rf(Xn, 5), rf(Vd, 0);
2427   }
2428 
2429   // Move to general purpose register
2430   //   mov  Rd, Vn.T[index]
2431   void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) {
2432     starti;
2433     f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21);
2434     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2435     f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
2436   }
2437 
2438   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2439     starti;
2440     assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
2441            (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
2442     int size = (Ta == T1Q) ? 0b11 : 0b00;
2443     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
2444     f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
2445   }
2446   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2447     assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
2448     pmull(Vd, Ta, Vn, Vm, Tb);
2449   }
2450 
2451   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2452     starti;
2453     int size_b = (int)Tb >> 1;
2454     int size_a = (int)Ta >> 1;
2455     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2456     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
2457     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2458   }
2459 
2460   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
2461   {
2462     starti;
2463     assert(T != T1D, "reserved encoding");
2464     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2465     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), rf(Xs, 5), rf(Vd, 0);
2466   }
2467 
2468   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
2469   {
2470     starti;
2471     assert(T != T1D, "reserved encoding");
2472     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2473     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2474     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2475   }
2476 
2477   // AdvSIMD ZIP/UZP/TRN
2478 #define INSN(NAME, opcode)                                              \
2479   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2480     starti;                                                             \
2481     f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0, 15);                  \
2482     f(opcode, 14, 12), f(0b10, 11, 10);                                 \
2483     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);                                   \
2484     f(T & 1, 30), f(T >> 1, 23, 22);                                    \
2485   }
2486 
2487   INSN(uzp1, 0b001);
2488   INSN(trn1, 0b010);
2489   INSN(zip1, 0b011);
2490   INSN(uzp2, 0b101);
2491   INSN(trn2, 0b110);
2492   INSN(zip2, 0b111);
2493 
2494 #undef INSN
2495 
2496   // CRC32 instructions
2497 #define INSN(NAME, c, sf, sz)                                             \
2498   void NAME(Register Rd, Register Rn, Register Rm) {                      \
2499     starti;                                                               \
2500     f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12);       \
2501     f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                      \
2502   }
2503 
2504   INSN(crc32b,  0, 0, 0b00);
2505   INSN(crc32h,  0, 0, 0b01);
2506   INSN(crc32w,  0, 0, 0b10);
2507   INSN(crc32x,  0, 1, 0b11);
2508   INSN(crc32cb, 1, 0, 0b00);
2509   INSN(crc32ch, 1, 0, 0b01);
2510   INSN(crc32cw, 1, 0, 0b10);
2511   INSN(crc32cx, 1, 1, 0b11);
2512 
2513 #undef INSN
2514 
2515   // Table vector lookup
2516 #define INSN(NAME, op)                                                  \
2517   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
2518     starti;                                                             \
2519     assert(T == T8B || T == T16B, "invalid arrangement");               \
2520     assert(0 < registers && registers <= 4, "invalid number of registers"); \
2521     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
2522     f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
2523   }
2524 
2525   INSN(tbl, 0);
2526   INSN(tbx, 1);
2527 
2528 #undef INSN
2529 
2530   // AdvSIMD two-reg misc
2531 #define INSN(NAME, U, opcode)                                                       \
2532   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {               \
2533        starti;                                                                      \
2534        assert((ASSERTION), MSG);                                                    \
2535        f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24);                   \
2536        f((int)(T >> 1), 23, 22), f(0b10000, 21, 17), f(opcode, 16, 12);             \
2537        f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);                                       \
2538  }
2539 
2540 #define MSG "invalid arrangement"
2541 
2542 #define ASSERTION (T == T2S || T == T4S || T == T2D)
2543   INSN(fsqrt, 1, 0b11111);
2544   INSN(fabs,  0, 0b01111);
2545   INSN(fneg,  1, 0b01111);
2546 #undef ASSERTION
2547 
2548 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
2549   INSN(rev64, 0, 0b00000);
2550 #undef ASSERTION
2551 
2552 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
2553   INSN(rev32, 1, 0b00000);
2554 private:
2555   INSN(_rbit, 1, 0b00101);
2556 public:
2557 
2558 #undef ASSERTION
2559 
2560 #define ASSERTION (T == T8B || T == T16B)
2561   INSN(rev16, 0, 0b00001);
2562   // RBIT only allows T8B and T16B but encodes them oddly.  Argh...
2563   void rbit(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
2564     assert((ASSERTION), MSG);
2565     _rbit(Vd, SIMD_Arrangement(T & 1 | 0b010), Vn);
2566   }
2567 #undef ASSERTION
2568 
2569 #undef MSG
2570 
2571 #undef INSN
2572 
2573 void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
2574   {
2575     starti;
2576     assert(T == T8B || T == T16B, "invalid arrangement");
2577     assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
2578     f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
2579     rf(Vm, 16), f(0, 15), f(index, 14, 11);
2580     f(0, 10), rf(Vn, 5), rf(Vd, 0);
2581   }
2582 
2583 /* Simulator extensions to the ISA
2584 
2585    haltsim
2586 
2587    takes no arguments, causes the sim to enter a debug break and then
2588    return from the simulator run() call with STATUS_HALT? The linking
2589    code will call fatal() when it sees STATUS_HALT.
2590 
2591    blrt Xn, Wm
2592    blrt Xn, #gpargs, #fpargs, #type
2593    Xn holds the 64 bit x86 branch_address
2594    call format is encoded either as immediate data in the call
2595    or in register Wm. In the latter case
2596      Wm[13..6] = #gpargs,
2597      Wm[5..2] = #fpargs,
2598      Wm[1,0] = #type
2599 
2600    calls the x86 code address 'branch_address' supplied in Xn passing
2601    arguments taken from the general and floating point registers according
2602    to the supplied counts 'gpargs' and 'fpargs'. may return a result in r0
2603    or v0 according to the the return type #type' where
2604 
2605    address branch_address;
2606    uimm4 gpargs;
2607    uimm4 fpargs;
2608    enum ReturnType type;
2609 
2610    enum ReturnType
2611      {
2612        void_ret = 0,
2613        int_ret = 1,
2614        long_ret = 1,
2615        obj_ret = 1, // i.e. same as long
2616        float_ret = 2,
2617        double_ret = 3
2618      }
2619 
2620    notify
2621 
2622    notifies the simulator of a transfer of control. instr[14:0]
2623    identifies the type of change of control.
2624 
2625    0 ==> initial entry to a method.
2626 
2627    1 ==> return into a method from a submethod call.
2628 
2629    2 ==> exit out of Java method code.
2630 
2631    3 ==> start execution for a new bytecode.
2632 
2633    in cases 1 and 2 the simulator is expected to use a JVM callback to
2634    identify the name of the specific method being executed. in case 4
2635    the simulator is expected to use a JVM callback to identify the
2636    bytecode index.
2637 
2638    Instruction encodings
2639    ---------------------
2640 
2641    These are encoded in the space with instr[28:25] = 00 which is
2642    unallocated. Encodings are
2643 
2644                      10987654321098765432109876543210
2645    PSEUDO_HALT   = 0x11100000000000000000000000000000
2646    PSEUDO_BLRT  = 0x11000000000000000_______________
2647    PSEUDO_BLRTR = 0x1100000000000000100000__________
2648    PSEUDO_NOTIFY = 0x10100000000000000_______________
2649 
2650    instr[31,29] = op1 : 111 ==> HALT, 110 ==> BLRT/BLRTR, 101 ==> NOTIFY
2651 
2652    for BLRT
2653      instr[14,11] = #gpargs, instr[10,7] = #fpargs
2654      instr[6,5] = #type, instr[4,0] = Rn
2655    for BLRTR
2656      instr[9,5] = Rm, instr[4,0] = Rn
2657    for NOTIFY
2658      instr[14:0] = type : 0 ==> entry, 1 ==> reentry, 2 ==> exit, 3 ==> bcstart
2659 */
2660 
2661   enum NotifyType { method_entry, method_reentry, method_exit, bytecode_start };
2662 
2663   virtual void notify(int type) {
2664     if (UseBuiltinSim) {
2665       starti;
2666       //  109
2667       f(0b101, 31, 29);
2668       //  87654321098765
2669       f(0b00000000000000, 28, 15);
2670       f(type, 14, 0);
2671     }
2672   }
2673 
2674   void blrt(Register Rn, int gpargs, int fpargs, int type) {
2675     if (UseBuiltinSim) {
2676       starti;
2677       f(0b110, 31 ,29);
2678       f(0b00, 28, 25);
2679       //  4321098765
2680       f(0b0000000000, 24, 15);
2681       f(gpargs, 14, 11);
2682       f(fpargs, 10, 7);
2683       f(type, 6, 5);
2684       rf(Rn, 0);
2685     } else {
2686       blr(Rn);
2687     }
2688   }
2689 
2690   void blrt(Register Rn, Register Rm) {
2691     if (UseBuiltinSim) {
2692       starti;
2693       f(0b110, 31 ,29);
2694       f(0b00, 28, 25);
2695       //  4321098765
2696       f(0b0000000001, 24, 15);
2697       //  43210
2698       f(0b00000, 14, 10);
2699       rf(Rm, 5);
2700       rf(Rn, 0);
2701     } else {
2702       blr(Rn);
2703     }
2704   }
2705 
2706   void haltsim() {
2707     starti;
2708     f(0b111, 31 ,29);
2709     f(0b00, 28, 27);
2710     //  654321098765432109876543210
2711     f(0b000000000000000000000000000, 26, 0);
2712   }
2713 
2714   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2715   }
2716 
2717   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
2718                                                 Register tmp,
2719                                                 int offset) {
2720     ShouldNotCallThis();
2721     return RegisterOrConstant();
2722   }
2723 
2724   // Stack overflow checking
2725   virtual void bang_stack_with_offset(int offset);
2726 
2727   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
2728   static bool operand_valid_for_add_sub_immediate(long imm);
2729   static bool operand_valid_for_float_immediate(double imm);
2730 
2731   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
2732   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
2733 };
2734 
2735 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
2736                                              Assembler::Membar_mask_bits b) {
2737   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
2738 }
2739 
2740 Instruction_aarch64::~Instruction_aarch64() {
2741   assem->emit();
2742 }
2743 
2744 #undef starti
2745 
2746 // Invert a condition
2747 inline const Assembler::Condition operator~(const Assembler::Condition cond) {
2748   return Assembler::Condition(int(cond) ^ 1);
2749 }
2750 
2751 class BiasedLockingCounters;
2752 
2753 extern "C" void das(uint64_t start, int len);
2754 
2755 #endif // CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP