1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_InstructionPrinter.hpp"
  27 #include "c1/c1_LIR.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_ValueStack.hpp"
  30 #include "ci/ciInstance.hpp"
  31 #include "runtime/sharedRuntime.hpp"
  32 
  33 Register LIR_OprDesc::as_register() const {
  34   return FrameMap::cpu_rnr2reg(cpu_regnr());
  35 }
  36 
  37 Register LIR_OprDesc::as_register_lo() const {
  38   return FrameMap::cpu_rnr2reg(cpu_regnrLo());
  39 }
  40 
  41 Register LIR_OprDesc::as_register_hi() const {
  42   return FrameMap::cpu_rnr2reg(cpu_regnrHi());
  43 }
  44 
  45 #if defined(X86)
  46 
  47 XMMRegister LIR_OprDesc::as_xmm_float_reg() const {
  48   return FrameMap::nr2xmmreg(xmm_regnr());
  49 }
  50 
  51 XMMRegister LIR_OprDesc::as_xmm_double_reg() const {
  52   assert(xmm_regnrLo() == xmm_regnrHi(), "assumed in calculation");
  53   return FrameMap::nr2xmmreg(xmm_regnrLo());
  54 }
  55 
  56 #endif // X86
  57 
  58 #if defined(SPARC) || defined(PPC)
  59 
  60 FloatRegister LIR_OprDesc::as_float_reg() const {
  61   return FrameMap::nr2floatreg(fpu_regnr());
  62 }
  63 
  64 FloatRegister LIR_OprDesc::as_double_reg() const {
  65   return FrameMap::nr2floatreg(fpu_regnrHi());
  66 }
  67 
  68 #endif
  69 
  70 #ifdef ARM
  71 
  72 FloatRegister LIR_OprDesc::as_float_reg() const {
  73   return as_FloatRegister(fpu_regnr());
  74 }
  75 
  76 FloatRegister LIR_OprDesc::as_double_reg() const {
  77   return as_FloatRegister(fpu_regnrLo());
  78 }
  79 
  80 #endif
  81 
  82 
  83 LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal();
  84 
  85 LIR_Opr LIR_OprFact::value_type(ValueType* type) {
  86   ValueTag tag = type->tag();
  87   switch (tag) {
  88   case metaDataTag : {
  89     ClassConstant* c = type->as_ClassConstant();
  90     if (c != NULL && !c->value()->is_loaded()) {
  91       return LIR_OprFact::metadataConst(NULL);
  92     } else if (c != NULL) {
  93       return LIR_OprFact::metadataConst(c->value()->constant_encoding());
  94     } else {
  95       MethodConstant* m = type->as_MethodConstant();
  96       assert (m != NULL, "not a class or a method?");
  97       return LIR_OprFact::metadataConst(m->value()->constant_encoding());
  98     }
  99   }
 100   case objectTag : {
 101       return LIR_OprFact::oopConst(type->as_ObjectType()->encoding());
 102     }
 103   case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value());
 104   case intTag    : return LIR_OprFact::intConst(type->as_IntConstant()->value());
 105   case floatTag  : return LIR_OprFact::floatConst(type->as_FloatConstant()->value());
 106   case longTag   : return LIR_OprFact::longConst(type->as_LongConstant()->value());
 107   case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value());
 108   default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 109   }
 110 }
 111 
 112 
 113 LIR_Opr LIR_OprFact::dummy_value_type(ValueType* type) {
 114   switch (type->tag()) {
 115     case objectTag: return LIR_OprFact::oopConst(NULL);
 116     case addressTag:return LIR_OprFact::addressConst(0);
 117     case intTag:    return LIR_OprFact::intConst(0);
 118     case floatTag:  return LIR_OprFact::floatConst(0.0);
 119     case longTag:   return LIR_OprFact::longConst(0);
 120     case doubleTag: return LIR_OprFact::doubleConst(0.0);
 121     default:        ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 122   }
 123   return illegalOpr;
 124 }
 125 
 126 
 127 
 128 //---------------------------------------------------
 129 
 130 
 131 LIR_Address::Scale LIR_Address::scale(BasicType type) {
 132   int elem_size = type2aelembytes(type);
 133   switch (elem_size) {
 134   case 1: return LIR_Address::times_1;
 135   case 2: return LIR_Address::times_2;
 136   case 4: return LIR_Address::times_4;
 137   case 8: return LIR_Address::times_8;
 138   }
 139   ShouldNotReachHere();
 140   return LIR_Address::times_1;
 141 }
 142 
 143 
 144 #ifndef PRODUCT
 145 void LIR_Address::verify() const {
 146 #if defined(SPARC) || defined(PPC)
 147   assert(scale() == times_1, "Scaled addressing mode not available on SPARC/PPC and should not be used");
 148   assert(disp() == 0 || index()->is_illegal(), "can't have both");
 149 #endif
 150 #ifdef ARM
 151   assert(disp() == 0 || index()->is_illegal(), "can't have both");
 152   // Note: offsets higher than 4096 must not be rejected here. They can
 153   // be handled by the back-end or will be rejected if not.
 154 #endif
 155 #ifdef _LP64
 156   assert(base()->is_cpu_register(), "wrong base operand");
 157   assert(index()->is_illegal() || index()->is_double_cpu(), "wrong index operand");
 158   assert(base()->type() == T_OBJECT || base()->type() == T_LONG || base()->type() == T_METADATA,
 159          "wrong type for addresses");
 160 #else
 161   assert(base()->is_single_cpu(), "wrong base operand");
 162   assert(index()->is_illegal() || index()->is_single_cpu(), "wrong index operand");
 163   assert(base()->type() == T_OBJECT || base()->type() == T_INT || base()->type() == T_METADATA,
 164          "wrong type for addresses");
 165 #endif
 166 }
 167 #endif
 168 
 169 
 170 //---------------------------------------------------
 171 
 172 char LIR_OprDesc::type_char(BasicType t) {
 173   switch (t) {
 174     case T_ARRAY:
 175       t = T_OBJECT;
 176     case T_BOOLEAN:
 177     case T_CHAR:
 178     case T_FLOAT:
 179     case T_DOUBLE:
 180     case T_BYTE:
 181     case T_SHORT:
 182     case T_INT:
 183     case T_LONG:
 184     case T_OBJECT:
 185     case T_ADDRESS:
 186     case T_METADATA:
 187     case T_VOID:
 188       return ::type2char(t);
 189 
 190     case T_ILLEGAL:
 191       return '?';
 192 
 193     default:
 194       ShouldNotReachHere();
 195       return '?';
 196   }
 197 }
 198 
 199 #ifndef PRODUCT
 200 void LIR_OprDesc::validate_type() const {
 201 
 202 #ifdef ASSERT
 203   if (!is_pointer() && !is_illegal()) {
 204     OprKind kindfield = kind_field(); // Factored out because of compiler bug, see 8002160
 205     switch (as_BasicType(type_field())) {
 206     case T_LONG:
 207       assert((kindfield == cpu_register || kindfield == stack_value) &&
 208              size_field() == double_size, "must match");
 209       break;
 210     case T_FLOAT:
 211       // FP return values can be also in CPU registers on ARM and PPC (softfp ABI)
 212       assert((kindfield == fpu_register || kindfield == stack_value
 213              ARM_ONLY(|| kindfield == cpu_register)
 214              PPC_ONLY(|| kindfield == cpu_register) ) &&
 215              size_field() == single_size, "must match");
 216       break;
 217     case T_DOUBLE:
 218       // FP return values can be also in CPU registers on ARM and PPC (softfp ABI)
 219       assert((kindfield == fpu_register || kindfield == stack_value
 220              ARM_ONLY(|| kindfield == cpu_register)
 221              PPC_ONLY(|| kindfield == cpu_register) ) &&
 222              size_field() == double_size, "must match");
 223       break;
 224     case T_BOOLEAN:
 225     case T_CHAR:
 226     case T_BYTE:
 227     case T_SHORT:
 228     case T_INT:
 229     case T_ADDRESS:
 230     case T_OBJECT:
 231     case T_METADATA:
 232     case T_ARRAY:
 233       assert((kindfield == cpu_register || kindfield == stack_value) &&
 234              size_field() == single_size, "must match");
 235       break;
 236 
 237     case T_ILLEGAL:
 238       // XXX TKR also means unknown right now
 239       // assert(is_illegal(), "must match");
 240       break;
 241 
 242     default:
 243       ShouldNotReachHere();
 244     }
 245   }
 246 #endif
 247 
 248 }
 249 #endif // PRODUCT
 250 
 251 
 252 bool LIR_OprDesc::is_oop() const {
 253   if (is_pointer()) {
 254     return pointer()->is_oop_pointer();
 255   } else {
 256     OprType t= type_field();
 257     assert(t != unknown_type, "not set");
 258     return t == object_type;
 259   }
 260 }
 261 
 262 
 263 
 264 void LIR_Op2::verify() const {
 265 #ifdef ASSERT
 266   switch (code()) {
 267     case lir_cmove:
 268     case lir_xchg:
 269       break;
 270 
 271     default:
 272       assert(!result_opr()->is_register() || !result_opr()->is_oop_register(),
 273              "can't produce oops from arith");
 274   }
 275 
 276   if (TwoOperandLIRForm) {
 277     switch (code()) {
 278     case lir_add:
 279     case lir_sub:
 280     case lir_mul:
 281     case lir_mul_strictfp:
 282     case lir_div:
 283     case lir_div_strictfp:
 284     case lir_rem:
 285     case lir_logic_and:
 286     case lir_logic_or:
 287     case lir_logic_xor:
 288     case lir_shl:
 289     case lir_shr:
 290       assert(in_opr1() == result_opr(), "opr1 and result must match");
 291       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 292       break;
 293 
 294     // special handling for lir_ushr because of write barriers
 295     case lir_ushr:
 296       assert(in_opr1() == result_opr() || in_opr2()->is_constant(), "opr1 and result must match or shift count is constant");
 297       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 298       break;
 299 
 300     }
 301   }
 302 #endif
 303 }
 304 
 305 
 306 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block)
 307   : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 308   , _cond(cond)
 309   , _type(type)
 310   , _label(block->label())
 311   , _block(block)
 312   , _ublock(NULL)
 313   , _stub(NULL) {
 314 }
 315 
 316 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub) :
 317   LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 318   , _cond(cond)
 319   , _type(type)
 320   , _label(stub->entry())
 321   , _block(NULL)
 322   , _ublock(NULL)
 323   , _stub(stub) {
 324 }
 325 
 326 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock)
 327   : LIR_Op(lir_cond_float_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 328   , _cond(cond)
 329   , _type(type)
 330   , _label(block->label())
 331   , _block(block)
 332   , _ublock(ublock)
 333   , _stub(NULL)
 334 {
 335 }
 336 
 337 void LIR_OpBranch::change_block(BlockBegin* b) {
 338   assert(_block != NULL, "must have old block");
 339   assert(_block->label() == label(), "must be equal");
 340 
 341   _block = b;
 342   _label = b->label();
 343 }
 344 
 345 void LIR_OpBranch::change_ublock(BlockBegin* b) {
 346   assert(_ublock != NULL, "must have old block");
 347   _ublock = b;
 348 }
 349 
 350 void LIR_OpBranch::negate_cond() {
 351   switch (_cond) {
 352     case lir_cond_equal:        _cond = lir_cond_notEqual;     break;
 353     case lir_cond_notEqual:     _cond = lir_cond_equal;        break;
 354     case lir_cond_less:         _cond = lir_cond_greaterEqual; break;
 355     case lir_cond_lessEqual:    _cond = lir_cond_greater;      break;
 356     case lir_cond_greaterEqual: _cond = lir_cond_less;         break;
 357     case lir_cond_greater:      _cond = lir_cond_lessEqual;    break;
 358     default: ShouldNotReachHere();
 359   }
 360 }
 361 
 362 
 363 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
 364                                  LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
 365                                  bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch,
 366                                  CodeStub* stub)
 367 
 368   : LIR_Op(code, result, NULL)
 369   , _object(object)
 370   , _array(LIR_OprFact::illegalOpr)
 371   , _klass(klass)
 372   , _tmp1(tmp1)
 373   , _tmp2(tmp2)
 374   , _tmp3(tmp3)
 375   , _fast_check(fast_check)
 376   , _stub(stub)
 377   , _info_for_patch(info_for_patch)
 378   , _info_for_exception(info_for_exception)
 379   , _profiled_method(NULL)
 380   , _profiled_bci(-1)
 381   , _should_profile(false)
 382 {
 383   if (code == lir_checkcast) {
 384     assert(info_for_exception != NULL, "checkcast throws exceptions");
 385   } else if (code == lir_instanceof) {
 386     assert(info_for_exception == NULL, "instanceof throws no exceptions");
 387   } else {
 388     ShouldNotReachHere();
 389   }
 390 }
 391 
 392 
 393 
 394 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception)
 395   : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)
 396   , _object(object)
 397   , _array(array)
 398   , _klass(NULL)
 399   , _tmp1(tmp1)
 400   , _tmp2(tmp2)
 401   , _tmp3(tmp3)
 402   , _fast_check(false)
 403   , _stub(NULL)
 404   , _info_for_patch(NULL)
 405   , _info_for_exception(info_for_exception)
 406   , _profiled_method(NULL)
 407   , _profiled_bci(-1)
 408   , _should_profile(false)
 409 {
 410   if (code == lir_store_check) {
 411     _stub = new ArrayStoreExceptionStub(object, info_for_exception);
 412     assert(info_for_exception != NULL, "store_check throws exceptions");
 413   } else {
 414     ShouldNotReachHere();
 415   }
 416 }
 417 
 418 
 419 LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length,
 420                                  LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info)
 421   : LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info)
 422   , _tmp(tmp)
 423   , _src(src)
 424   , _src_pos(src_pos)
 425   , _dst(dst)
 426   , _dst_pos(dst_pos)
 427   , _flags(flags)
 428   , _expected_type(expected_type)
 429   , _length(length) {
 430   _stub = new ArrayCopyStub(this);
 431 }
 432 
 433 LIR_OpUpdateCRC32::LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)
 434   : LIR_Op(lir_updatecrc32, res, NULL)
 435   , _crc(crc)
 436   , _val(val) {
 437 }
 438 
 439 //-------------------verify--------------------------
 440 
 441 void LIR_Op1::verify() const {
 442   switch(code()) {
 443   case lir_move:
 444     assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be");
 445     break;
 446   case lir_null_check:
 447     assert(in_opr()->is_register(), "must be");
 448     break;
 449   case lir_return:
 450     assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be");
 451     break;
 452   }
 453 }
 454 
 455 void LIR_OpRTCall::verify() const {
 456   assert(strcmp(Runtime1::name_for_address(addr()), "<unknown function>") != 0, "unknown function");
 457 }
 458 
 459 //-------------------visits--------------------------
 460 
 461 // complete rework of LIR instruction visitor.
 462 // The virtual calls for each instruction type is replaced by a big
 463 // switch that adds the operands for each instruction
 464 
 465 void LIR_OpVisitState::visit(LIR_Op* op) {
 466   // copy information from the LIR_Op
 467   reset();
 468   set_op(op);
 469 
 470   switch (op->code()) {
 471 
 472 // LIR_Op0
 473     case lir_word_align:               // result and info always invalid
 474     case lir_backwardbranch_target:    // result and info always invalid
 475     case lir_build_frame:              // result and info always invalid
 476     case lir_fpop_raw:                 // result and info always invalid
 477     case lir_24bit_FPU:                // result and info always invalid
 478     case lir_reset_FPU:                // result and info always invalid
 479     case lir_breakpoint:               // result and info always invalid
 480     case lir_membar:                   // result and info always invalid
 481     case lir_membar_acquire:           // result and info always invalid
 482     case lir_membar_release:           // result and info always invalid
 483     case lir_membar_loadload:          // result and info always invalid
 484     case lir_membar_storestore:        // result and info always invalid
 485     case lir_membar_loadstore:         // result and info always invalid
 486     case lir_membar_storeload:         // result and info always invalid
 487     {
 488       assert(op->as_Op0() != NULL, "must be");
 489       assert(op->_info == NULL, "info not used by this instruction");
 490       assert(op->_result->is_illegal(), "not used");
 491       break;
 492     }
 493 
 494     case lir_nop:                      // may have info, result always invalid
 495     case lir_std_entry:                // may have result, info always invalid
 496     case lir_osr_entry:                // may have result, info always invalid
 497     case lir_get_thread:               // may have result, info always invalid
 498     {
 499       assert(op->as_Op0() != NULL, "must be");
 500       if (op->_info != NULL)           do_info(op->_info);
 501       if (op->_result->is_valid())     do_output(op->_result);
 502       break;
 503     }
 504 
 505 
 506 // LIR_OpLabel
 507     case lir_label:                    // result and info always invalid
 508     {
 509       assert(op->as_OpLabel() != NULL, "must be");
 510       assert(op->_info == NULL, "info not used by this instruction");
 511       assert(op->_result->is_illegal(), "not used");
 512       break;
 513     }
 514 
 515 
 516 // LIR_Op1
 517     case lir_fxch:           // input always valid, result and info always invalid
 518     case lir_fld:            // input always valid, result and info always invalid
 519     case lir_ffree:          // input always valid, result and info always invalid
 520     case lir_push:           // input always valid, result and info always invalid
 521     case lir_pop:            // input always valid, result and info always invalid
 522     case lir_return:         // input always valid, result and info always invalid
 523     case lir_leal:           // input and result always valid, info always invalid
 524     case lir_neg:            // input and result always valid, info always invalid
 525     case lir_monaddr:        // input and result always valid, info always invalid
 526     case lir_null_check:     // input and info always valid, result always invalid
 527     case lir_move:           // input and result always valid, may have info
 528     case lir_pack64:         // input and result always valid
 529     case lir_unpack64:       // input and result always valid
 530     case lir_prefetchr:      // input always valid, result and info always invalid
 531     case lir_prefetchw:      // input always valid, result and info always invalid
 532     {
 533       assert(op->as_Op1() != NULL, "must be");
 534       LIR_Op1* op1 = (LIR_Op1*)op;
 535 
 536       if (op1->_info)                  do_info(op1->_info);
 537       if (op1->_opr->is_valid())       do_input(op1->_opr);
 538       if (op1->_result->is_valid())    do_output(op1->_result);
 539 
 540       break;
 541     }
 542 
 543     case lir_safepoint:
 544     {
 545       assert(op->as_Op1() != NULL, "must be");
 546       LIR_Op1* op1 = (LIR_Op1*)op;
 547 
 548       assert(op1->_info != NULL, "");  do_info(op1->_info);
 549       if (op1->_opr->is_valid())       do_temp(op1->_opr); // safepoints on SPARC need temporary register
 550       assert(op1->_result->is_illegal(), "safepoint does not produce value");
 551 
 552       break;
 553     }
 554 
 555 // LIR_OpConvert;
 556     case lir_convert:        // input and result always valid, info always invalid
 557     {
 558       assert(op->as_OpConvert() != NULL, "must be");
 559       LIR_OpConvert* opConvert = (LIR_OpConvert*)op;
 560 
 561       assert(opConvert->_info == NULL, "must be");
 562       if (opConvert->_opr->is_valid())       do_input(opConvert->_opr);
 563       if (opConvert->_result->is_valid())    do_output(opConvert->_result);
 564 #ifdef PPC
 565       if (opConvert->_tmp1->is_valid())      do_temp(opConvert->_tmp1);
 566       if (opConvert->_tmp2->is_valid())      do_temp(opConvert->_tmp2);
 567 #endif
 568       do_stub(opConvert->_stub);
 569 
 570       break;
 571     }
 572 
 573 // LIR_OpBranch;
 574     case lir_branch:                   // may have info, input and result register always invalid
 575     case lir_cond_float_branch:        // may have info, input and result register always invalid
 576     {
 577       assert(op->as_OpBranch() != NULL, "must be");
 578       LIR_OpBranch* opBranch = (LIR_OpBranch*)op;
 579 
 580       if (opBranch->_info != NULL)     do_info(opBranch->_info);
 581       assert(opBranch->_result->is_illegal(), "not used");
 582       if (opBranch->_stub != NULL)     opBranch->stub()->visit(this);
 583 
 584       break;
 585     }
 586 
 587 
 588 // LIR_OpAllocObj
 589     case lir_alloc_object:
 590     {
 591       assert(op->as_OpAllocObj() != NULL, "must be");
 592       LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op;
 593 
 594       if (opAllocObj->_info)                     do_info(opAllocObj->_info);
 595       if (opAllocObj->_opr->is_valid()) {        do_input(opAllocObj->_opr);
 596                                                  do_temp(opAllocObj->_opr);
 597                                         }
 598       if (opAllocObj->_tmp1->is_valid())         do_temp(opAllocObj->_tmp1);
 599       if (opAllocObj->_tmp2->is_valid())         do_temp(opAllocObj->_tmp2);
 600       if (opAllocObj->_tmp3->is_valid())         do_temp(opAllocObj->_tmp3);
 601       if (opAllocObj->_tmp4->is_valid())         do_temp(opAllocObj->_tmp4);
 602       if (opAllocObj->_result->is_valid())       do_output(opAllocObj->_result);
 603                                                  do_stub(opAllocObj->_stub);
 604       break;
 605     }
 606 
 607 
 608 // LIR_OpRoundFP;
 609     case lir_roundfp: {
 610       assert(op->as_OpRoundFP() != NULL, "must be");
 611       LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op;
 612 
 613       assert(op->_info == NULL, "info not used by this instruction");
 614       assert(opRoundFP->_tmp->is_illegal(), "not used");
 615       do_input(opRoundFP->_opr);
 616       do_output(opRoundFP->_result);
 617 
 618       break;
 619     }
 620 
 621 
 622 // LIR_Op2
 623     case lir_cmp:
 624     case lir_cmp_l2i:
 625     case lir_ucmp_fd2i:
 626     case lir_cmp_fd2i:
 627     case lir_add:
 628     case lir_sub:
 629     case lir_mul:
 630     case lir_div:
 631     case lir_rem:
 632     case lir_sqrt:
 633     case lir_abs:
 634     case lir_logic_and:
 635     case lir_logic_or:
 636     case lir_logic_xor:
 637     case lir_shl:
 638     case lir_shr:
 639     case lir_ushr:
 640     case lir_xadd:
 641     case lir_xchg:
 642     case lir_assert:
 643     {
 644       assert(op->as_Op2() != NULL, "must be");
 645       LIR_Op2* op2 = (LIR_Op2*)op;
 646       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 647              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 648 
 649       if (op2->_info)                     do_info(op2->_info);
 650       if (op2->_opr1->is_valid())         do_input(op2->_opr1);
 651       if (op2->_opr2->is_valid())         do_input(op2->_opr2);
 652       if (op2->_tmp1->is_valid())         do_temp(op2->_tmp1);
 653       if (op2->_result->is_valid())       do_output(op2->_result);
 654       if (op->code() == lir_xchg || op->code() == lir_xadd) {
 655         // on ARM and PPC, return value is loaded first so could
 656         // destroy inputs. On other platforms that implement those
 657         // (x86, sparc), the extra constrainsts are harmless.
 658         if (op2->_opr1->is_valid())       do_temp(op2->_opr1);
 659         if (op2->_opr2->is_valid())       do_temp(op2->_opr2);
 660       }
 661 
 662       break;
 663     }
 664 
 665     // special handling for cmove: right input operand must not be equal
 666     // to the result operand, otherwise the backend fails
 667     case lir_cmove:
 668     {
 669       assert(op->as_Op2() != NULL, "must be");
 670       LIR_Op2* op2 = (LIR_Op2*)op;
 671 
 672       assert(op2->_info == NULL && op2->_tmp1->is_illegal() && op2->_tmp2->is_illegal() &&
 673              op2->_tmp3->is_illegal() && op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 674       assert(op2->_opr1->is_valid() && op2->_opr2->is_valid() && op2->_result->is_valid(), "used");
 675 
 676       do_input(op2->_opr1);
 677       do_input(op2->_opr2);
 678       do_temp(op2->_opr2);
 679       do_output(op2->_result);
 680 
 681       break;
 682     }
 683 
 684     // vspecial handling for strict operations: register input operands
 685     // as temp to guarantee that they do not overlap with other
 686     // registers
 687     case lir_mul_strictfp:
 688     case lir_div_strictfp:
 689     {
 690       assert(op->as_Op2() != NULL, "must be");
 691       LIR_Op2* op2 = (LIR_Op2*)op;
 692 
 693       assert(op2->_info == NULL, "not used");
 694       assert(op2->_opr1->is_valid(), "used");
 695       assert(op2->_opr2->is_valid(), "used");
 696       assert(op2->_result->is_valid(), "used");
 697       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 698              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 699 
 700       do_input(op2->_opr1); do_temp(op2->_opr1);
 701       do_input(op2->_opr2); do_temp(op2->_opr2);
 702       if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1);
 703       do_output(op2->_result);
 704 
 705       break;
 706     }
 707 
 708     case lir_throw: {
 709       assert(op->as_Op2() != NULL, "must be");
 710       LIR_Op2* op2 = (LIR_Op2*)op;
 711 
 712       if (op2->_info)                     do_info(op2->_info);
 713       if (op2->_opr1->is_valid())         do_temp(op2->_opr1);
 714       if (op2->_opr2->is_valid())         do_input(op2->_opr2); // exception object is input parameter
 715       assert(op2->_result->is_illegal(), "no result");
 716       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 717              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 718 
 719       break;
 720     }
 721 
 722     case lir_unwind: {
 723       assert(op->as_Op1() != NULL, "must be");
 724       LIR_Op1* op1 = (LIR_Op1*)op;
 725 
 726       assert(op1->_info == NULL, "no info");
 727       assert(op1->_opr->is_valid(), "exception oop");         do_input(op1->_opr);
 728       assert(op1->_result->is_illegal(), "no result");
 729 
 730       break;
 731     }
 732 
 733 
 734     case lir_tan:
 735     case lir_sin:
 736     case lir_cos:
 737     case lir_log:
 738     case lir_log10:
 739     case lir_exp: {
 740       assert(op->as_Op2() != NULL, "must be");
 741       LIR_Op2* op2 = (LIR_Op2*)op;
 742 
 743       // On x86 tan/sin/cos need two temporary fpu stack slots and
 744       // log/log10 need one so handle opr2 and tmp as temp inputs.
 745       // Register input operand as temp to guarantee that it doesn't
 746       // overlap with the input.
 747       assert(op2->_info == NULL, "not used");
 748       assert(op2->_tmp5->is_illegal(), "not used");
 749       assert(op2->_tmp2->is_valid() == (op->code() == lir_exp), "not used");
 750       assert(op2->_tmp3->is_valid() == (op->code() == lir_exp), "not used");
 751       assert(op2->_tmp4->is_valid() == (op->code() == lir_exp), "not used");
 752       assert(op2->_opr1->is_valid(), "used");
 753       do_input(op2->_opr1); do_temp(op2->_opr1);
 754 
 755       if (op2->_opr2->is_valid())         do_temp(op2->_opr2);
 756       if (op2->_tmp1->is_valid())         do_temp(op2->_tmp1);
 757       if (op2->_tmp2->is_valid())         do_temp(op2->_tmp2);
 758       if (op2->_tmp3->is_valid())         do_temp(op2->_tmp3);
 759       if (op2->_tmp4->is_valid())         do_temp(op2->_tmp4);
 760       if (op2->_result->is_valid())       do_output(op2->_result);
 761 
 762       break;
 763     }
 764 
 765     case lir_pow: {
 766       assert(op->as_Op2() != NULL, "must be");
 767       LIR_Op2* op2 = (LIR_Op2*)op;
 768 
 769       // On x86 pow needs two temporary fpu stack slots: tmp1 and
 770       // tmp2. Register input operands as temps to guarantee that it
 771       // doesn't overlap with the temporary slots.
 772       assert(op2->_info == NULL, "not used");
 773       assert(op2->_opr1->is_valid() && op2->_opr2->is_valid(), "used");
 774       assert(op2->_tmp1->is_valid() && op2->_tmp2->is_valid() && op2->_tmp3->is_valid()
 775              && op2->_tmp4->is_valid() && op2->_tmp5->is_valid(), "used");
 776       assert(op2->_result->is_valid(), "used");
 777 
 778       do_input(op2->_opr1); do_temp(op2->_opr1);
 779       do_input(op2->_opr2); do_temp(op2->_opr2);
 780       do_temp(op2->_tmp1);
 781       do_temp(op2->_tmp2);
 782       do_temp(op2->_tmp3);
 783       do_temp(op2->_tmp4);
 784       do_temp(op2->_tmp5);
 785       do_output(op2->_result);
 786 
 787       break;
 788     }
 789 
 790 // LIR_Op3
 791     case lir_idiv:
 792     case lir_irem: {
 793       assert(op->as_Op3() != NULL, "must be");
 794       LIR_Op3* op3= (LIR_Op3*)op;
 795 
 796       if (op3->_info)                     do_info(op3->_info);
 797       if (op3->_opr1->is_valid())         do_input(op3->_opr1);
 798 
 799       // second operand is input and temp, so ensure that second operand
 800       // and third operand get not the same register
 801       if (op3->_opr2->is_valid())         do_input(op3->_opr2);
 802       if (op3->_opr2->is_valid())         do_temp(op3->_opr2);
 803       if (op3->_opr3->is_valid())         do_temp(op3->_opr3);
 804 
 805       if (op3->_result->is_valid())       do_output(op3->_result);
 806 
 807       break;
 808     }
 809 
 810 
 811 // LIR_OpJavaCall
 812     case lir_static_call:
 813     case lir_optvirtual_call:
 814     case lir_icvirtual_call:
 815     case lir_virtual_call:
 816     case lir_dynamic_call: {
 817       LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall();
 818       assert(opJavaCall != NULL, "must be");
 819 
 820       if (opJavaCall->_receiver->is_valid())     do_input(opJavaCall->_receiver);
 821 
 822       // only visit register parameters
 823       int n = opJavaCall->_arguments->length();
 824       for (int i = opJavaCall->_receiver->is_valid() ? 1 : 0; i < n; i++) {
 825         if (!opJavaCall->_arguments->at(i)->is_pointer()) {
 826           do_input(*opJavaCall->_arguments->adr_at(i));
 827         }
 828       }
 829 
 830       if (opJavaCall->_info)                     do_info(opJavaCall->_info);
 831       if (opJavaCall->is_method_handle_invoke()) {
 832         opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr();
 833         do_temp(opJavaCall->_method_handle_invoke_SP_save_opr);
 834       }
 835       do_call();
 836       if (opJavaCall->_result->is_valid())       do_output(opJavaCall->_result);
 837 
 838       break;
 839     }
 840 
 841 
 842 // LIR_OpRTCall
 843     case lir_rtcall: {
 844       assert(op->as_OpRTCall() != NULL, "must be");
 845       LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op;
 846 
 847       // only visit register parameters
 848       int n = opRTCall->_arguments->length();
 849       for (int i = 0; i < n; i++) {
 850         if (!opRTCall->_arguments->at(i)->is_pointer()) {
 851           do_input(*opRTCall->_arguments->adr_at(i));
 852         }
 853       }
 854       if (opRTCall->_info)                     do_info(opRTCall->_info);
 855       if (opRTCall->_tmp->is_valid())          do_temp(opRTCall->_tmp);
 856       do_call();
 857       if (opRTCall->_result->is_valid())       do_output(opRTCall->_result);
 858 
 859       break;
 860     }
 861 
 862 
 863 // LIR_OpArrayCopy
 864     case lir_arraycopy: {
 865       assert(op->as_OpArrayCopy() != NULL, "must be");
 866       LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op;
 867 
 868       assert(opArrayCopy->_result->is_illegal(), "unused");
 869       assert(opArrayCopy->_src->is_valid(), "used");          do_input(opArrayCopy->_src);     do_temp(opArrayCopy->_src);
 870       assert(opArrayCopy->_src_pos->is_valid(), "used");      do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos);
 871       assert(opArrayCopy->_dst->is_valid(), "used");          do_input(opArrayCopy->_dst);     do_temp(opArrayCopy->_dst);
 872       assert(opArrayCopy->_dst_pos->is_valid(), "used");      do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos);
 873       assert(opArrayCopy->_length->is_valid(), "used");       do_input(opArrayCopy->_length);  do_temp(opArrayCopy->_length);
 874       assert(opArrayCopy->_tmp->is_valid(), "used");          do_temp(opArrayCopy->_tmp);
 875       if (opArrayCopy->_info)                     do_info(opArrayCopy->_info);
 876 
 877       // the implementation of arraycopy always has a call into the runtime
 878       do_call();
 879 
 880       break;
 881     }
 882 
 883 
 884 // LIR_OpUpdateCRC32
 885     case lir_updatecrc32: {
 886       assert(op->as_OpUpdateCRC32() != NULL, "must be");
 887       LIR_OpUpdateCRC32* opUp = (LIR_OpUpdateCRC32*)op;
 888 
 889       assert(opUp->_crc->is_valid(), "used");          do_input(opUp->_crc);     do_temp(opUp->_crc);
 890       assert(opUp->_val->is_valid(), "used");          do_input(opUp->_val);     do_temp(opUp->_val);
 891       assert(opUp->_result->is_valid(), "used");       do_output(opUp->_result);
 892       assert(opUp->_info == NULL, "no info for LIR_OpUpdateCRC32");
 893 
 894       break;
 895     }
 896 
 897 
 898 // LIR_OpLock
 899     case lir_lock:
 900     case lir_unlock: {
 901       assert(op->as_OpLock() != NULL, "must be");
 902       LIR_OpLock* opLock = (LIR_OpLock*)op;
 903 
 904       if (opLock->_info)                          do_info(opLock->_info);
 905 
 906       // TODO: check if these operands really have to be temp
 907       // (or if input is sufficient). This may have influence on the oop map!
 908       assert(opLock->_lock->is_valid(), "used");  do_temp(opLock->_lock);
 909       assert(opLock->_hdr->is_valid(),  "used");  do_temp(opLock->_hdr);
 910       assert(opLock->_obj->is_valid(),  "used");  do_temp(opLock->_obj);
 911 
 912       if (opLock->_scratch->is_valid())           do_temp(opLock->_scratch);
 913       assert(opLock->_result->is_illegal(), "unused");
 914 
 915       do_stub(opLock->_stub);
 916 
 917       break;
 918     }
 919 
 920 
 921 // LIR_OpDelay
 922     case lir_delay_slot: {
 923       assert(op->as_OpDelay() != NULL, "must be");
 924       LIR_OpDelay* opDelay = (LIR_OpDelay*)op;
 925 
 926       visit(opDelay->delay_op());
 927       break;
 928     }
 929 
 930 // LIR_OpTypeCheck
 931     case lir_instanceof:
 932     case lir_checkcast:
 933     case lir_store_check: {
 934       assert(op->as_OpTypeCheck() != NULL, "must be");
 935       LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op;
 936 
 937       if (opTypeCheck->_info_for_exception)       do_info(opTypeCheck->_info_for_exception);
 938       if (opTypeCheck->_info_for_patch)           do_info(opTypeCheck->_info_for_patch);
 939       if (opTypeCheck->_object->is_valid())       do_input(opTypeCheck->_object);
 940       if (op->code() == lir_store_check && opTypeCheck->_object->is_valid()) {
 941         do_temp(opTypeCheck->_object);
 942       }
 943       if (opTypeCheck->_array->is_valid())        do_input(opTypeCheck->_array);
 944       if (opTypeCheck->_tmp1->is_valid())         do_temp(opTypeCheck->_tmp1);
 945       if (opTypeCheck->_tmp2->is_valid())         do_temp(opTypeCheck->_tmp2);
 946       if (opTypeCheck->_tmp3->is_valid())         do_temp(opTypeCheck->_tmp3);
 947       if (opTypeCheck->_result->is_valid())       do_output(opTypeCheck->_result);
 948                                                   do_stub(opTypeCheck->_stub);
 949       break;
 950     }
 951 
 952 // LIR_OpCompareAndSwap
 953     case lir_cas_long:
 954     case lir_cas_obj:
 955     case lir_cas_int: {
 956       assert(op->as_OpCompareAndSwap() != NULL, "must be");
 957       LIR_OpCompareAndSwap* opCompareAndSwap = (LIR_OpCompareAndSwap*)op;
 958 
 959       assert(opCompareAndSwap->_addr->is_valid(),      "used");
 960       assert(opCompareAndSwap->_cmp_value->is_valid(), "used");
 961       assert(opCompareAndSwap->_new_value->is_valid(), "used");
 962       if (opCompareAndSwap->_info)                    do_info(opCompareAndSwap->_info);
 963                                                       do_input(opCompareAndSwap->_addr);
 964                                                       do_temp(opCompareAndSwap->_addr);
 965                                                       do_input(opCompareAndSwap->_cmp_value);
 966                                                       do_temp(opCompareAndSwap->_cmp_value);
 967                                                       do_input(opCompareAndSwap->_new_value);
 968                                                       do_temp(opCompareAndSwap->_new_value);
 969       if (opCompareAndSwap->_tmp1->is_valid())        do_temp(opCompareAndSwap->_tmp1);
 970       if (opCompareAndSwap->_tmp2->is_valid())        do_temp(opCompareAndSwap->_tmp2);
 971       if (opCompareAndSwap->_result->is_valid())      do_output(opCompareAndSwap->_result);
 972 
 973       break;
 974     }
 975 
 976 
 977 // LIR_OpAllocArray;
 978     case lir_alloc_array: {
 979       assert(op->as_OpAllocArray() != NULL, "must be");
 980       LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op;
 981 
 982       if (opAllocArray->_info)                        do_info(opAllocArray->_info);
 983       if (opAllocArray->_klass->is_valid())           do_input(opAllocArray->_klass); do_temp(opAllocArray->_klass);
 984       if (opAllocArray->_len->is_valid())             do_input(opAllocArray->_len);   do_temp(opAllocArray->_len);
 985       if (opAllocArray->_tmp1->is_valid())            do_temp(opAllocArray->_tmp1);
 986       if (opAllocArray->_tmp2->is_valid())            do_temp(opAllocArray->_tmp2);
 987       if (opAllocArray->_tmp3->is_valid())            do_temp(opAllocArray->_tmp3);
 988       if (opAllocArray->_tmp4->is_valid())            do_temp(opAllocArray->_tmp4);
 989       if (opAllocArray->_result->is_valid())          do_output(opAllocArray->_result);
 990                                                       do_stub(opAllocArray->_stub);
 991       break;
 992     }
 993 
 994 // LIR_OpProfileCall:
 995     case lir_profile_call: {
 996       assert(op->as_OpProfileCall() != NULL, "must be");
 997       LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op;
 998 
 999       if (opProfileCall->_recv->is_valid())              do_temp(opProfileCall->_recv);
1000       assert(opProfileCall->_mdo->is_valid(), "used");   do_temp(opProfileCall->_mdo);
1001       assert(opProfileCall->_tmp1->is_valid(), "used");  do_temp(opProfileCall->_tmp1);
1002       break;
1003     }
1004   default:
1005     ShouldNotReachHere();
1006   }
1007 }
1008 
1009 
1010 void LIR_OpVisitState::do_stub(CodeStub* stub) {
1011   if (stub != NULL) {
1012     stub->visit(this);
1013   }
1014 }
1015 
1016 XHandlers* LIR_OpVisitState::all_xhandler() {
1017   XHandlers* result = NULL;
1018 
1019   int i;
1020   for (i = 0; i < info_count(); i++) {
1021     if (info_at(i)->exception_handlers() != NULL) {
1022       result = info_at(i)->exception_handlers();
1023       break;
1024     }
1025   }
1026 
1027 #ifdef ASSERT
1028   for (i = 0; i < info_count(); i++) {
1029     assert(info_at(i)->exception_handlers() == NULL ||
1030            info_at(i)->exception_handlers() == result,
1031            "only one xhandler list allowed per LIR-operation");
1032   }
1033 #endif
1034 
1035   if (result != NULL) {
1036     return result;
1037   } else {
1038     return new XHandlers();
1039   }
1040 
1041   return result;
1042 }
1043 
1044 
1045 #ifdef ASSERT
1046 bool LIR_OpVisitState::no_operands(LIR_Op* op) {
1047   visit(op);
1048 
1049   return opr_count(inputMode) == 0 &&
1050          opr_count(outputMode) == 0 &&
1051          opr_count(tempMode) == 0 &&
1052          info_count() == 0 &&
1053          !has_call() &&
1054          !has_slow_case();
1055 }
1056 #endif
1057 
1058 //---------------------------------------------------
1059 
1060 
1061 void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) {
1062   masm->emit_call(this);
1063 }
1064 
1065 void LIR_OpRTCall::emit_code(LIR_Assembler* masm) {
1066   masm->emit_rtcall(this);
1067 }
1068 
1069 void LIR_OpLabel::emit_code(LIR_Assembler* masm) {
1070   masm->emit_opLabel(this);
1071 }
1072 
1073 void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) {
1074   masm->emit_arraycopy(this);
1075   masm->emit_code_stub(stub());
1076 }
1077 
1078 void LIR_OpUpdateCRC32::emit_code(LIR_Assembler* masm) {
1079   masm->emit_updatecrc32(this);
1080 }
1081 
1082 void LIR_Op0::emit_code(LIR_Assembler* masm) {
1083   masm->emit_op0(this);
1084 }
1085 
1086 void LIR_Op1::emit_code(LIR_Assembler* masm) {
1087   masm->emit_op1(this);
1088 }
1089 
1090 void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) {
1091   masm->emit_alloc_obj(this);
1092   masm->emit_code_stub(stub());
1093 }
1094 
1095 void LIR_OpBranch::emit_code(LIR_Assembler* masm) {
1096   masm->emit_opBranch(this);
1097   if (stub()) {
1098     masm->emit_code_stub(stub());
1099   }
1100 }
1101 
1102 void LIR_OpConvert::emit_code(LIR_Assembler* masm) {
1103   masm->emit_opConvert(this);
1104   if (stub() != NULL) {
1105     masm->emit_code_stub(stub());
1106   }
1107 }
1108 
1109 void LIR_Op2::emit_code(LIR_Assembler* masm) {
1110   masm->emit_op2(this);
1111 }
1112 
1113 void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) {
1114   masm->emit_alloc_array(this);
1115   masm->emit_code_stub(stub());
1116 }
1117 
1118 void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) {
1119   masm->emit_opTypeCheck(this);
1120   if (stub()) {
1121     masm->emit_code_stub(stub());
1122   }
1123 }
1124 
1125 void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) {
1126   masm->emit_compare_and_swap(this);
1127 }
1128 
1129 void LIR_Op3::emit_code(LIR_Assembler* masm) {
1130   masm->emit_op3(this);
1131 }
1132 
1133 void LIR_OpLock::emit_code(LIR_Assembler* masm) {
1134   masm->emit_lock(this);
1135   if (stub()) {
1136     masm->emit_code_stub(stub());
1137   }
1138 }
1139 
1140 #ifdef ASSERT
1141 void LIR_OpAssert::emit_code(LIR_Assembler* masm) {
1142   masm->emit_assert(this);
1143 }
1144 #endif
1145 
1146 void LIR_OpDelay::emit_code(LIR_Assembler* masm) {
1147   masm->emit_delay(this);
1148 }
1149 
1150 void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) {
1151   masm->emit_profile_call(this);
1152 }
1153 
1154 // LIR_List
1155 LIR_List::LIR_List(Compilation* compilation, BlockBegin* block)
1156   : _operations(8)
1157   , _compilation(compilation)
1158 #ifndef PRODUCT
1159   , _block(block)
1160 #endif
1161 #ifdef ASSERT
1162   , _file(NULL)
1163   , _line(0)
1164 #endif
1165 { }
1166 
1167 
1168 #ifdef ASSERT
1169 void LIR_List::set_file_and_line(const char * file, int line) {
1170   const char * f = strrchr(file, '/');
1171   if (f == NULL) f = strrchr(file, '\\');
1172   if (f == NULL) {
1173     f = file;
1174   } else {
1175     f++;
1176   }
1177   _file = f;
1178   _line = line;
1179 }
1180 #endif
1181 
1182 
1183 void LIR_List::append(LIR_InsertionBuffer* buffer) {
1184   assert(this == buffer->lir_list(), "wrong lir list");
1185   const int n = _operations.length();
1186 
1187   if (buffer->number_of_ops() > 0) {
1188     // increase size of instructions list
1189     _operations.at_grow(n + buffer->number_of_ops() - 1, NULL);
1190     // insert ops from buffer into instructions list
1191     int op_index = buffer->number_of_ops() - 1;
1192     int ip_index = buffer->number_of_insertion_points() - 1;
1193     int from_index = n - 1;
1194     int to_index = _operations.length() - 1;
1195     for (; ip_index >= 0; ip_index --) {
1196       int index = buffer->index_at(ip_index);
1197       // make room after insertion point
1198       while (index < from_index) {
1199         _operations.at_put(to_index --, _operations.at(from_index --));
1200       }
1201       // insert ops from buffer
1202       for (int i = buffer->count_at(ip_index); i > 0; i --) {
1203         _operations.at_put(to_index --, buffer->op_at(op_index --));
1204       }
1205     }
1206   }
1207 
1208   buffer->finish();
1209 }
1210 
1211 
1212 void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) {
1213   assert(reg->type() == T_OBJECT, "bad reg");
1214   append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),  reg, T_OBJECT, lir_patch_normal, info));
1215 }
1216 
1217 void LIR_List::klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info) {
1218   assert(reg->type() == T_METADATA, "bad reg");
1219   append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg, T_METADATA, lir_patch_normal, info));
1220 }
1221 
1222 void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1223   append(new LIR_Op1(
1224             lir_move,
1225             LIR_OprFact::address(addr),
1226             src,
1227             addr->type(),
1228             patch_code,
1229             info));
1230 }
1231 
1232 
1233 void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1234   append(new LIR_Op1(
1235             lir_move,
1236             LIR_OprFact::address(address),
1237             dst,
1238             address->type(),
1239             patch_code,
1240             info, lir_move_volatile));
1241 }
1242 
1243 void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1244   append(new LIR_Op1(
1245             lir_move,
1246             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1247             dst,
1248             type,
1249             patch_code,
1250             info, lir_move_volatile));
1251 }
1252 
1253 
1254 void LIR_List::prefetch(LIR_Address* addr, bool is_store) {
1255   append(new LIR_Op1(
1256             is_store ? lir_prefetchw : lir_prefetchr,
1257             LIR_OprFact::address(addr)));
1258 }
1259 
1260 
1261 void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1262   append(new LIR_Op1(
1263             lir_move,
1264             LIR_OprFact::intConst(v),
1265             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1266             type,
1267             patch_code,
1268             info));
1269 }
1270 
1271 
1272 void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1273   append(new LIR_Op1(
1274             lir_move,
1275             LIR_OprFact::oopConst(o),
1276             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1277             type,
1278             patch_code,
1279             info));
1280 }
1281 
1282 
1283 void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1284   append(new LIR_Op1(
1285             lir_move,
1286             src,
1287             LIR_OprFact::address(addr),
1288             addr->type(),
1289             patch_code,
1290             info));
1291 }
1292 
1293 
1294 void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1295   append(new LIR_Op1(
1296             lir_move,
1297             src,
1298             LIR_OprFact::address(addr),
1299             addr->type(),
1300             patch_code,
1301             info,
1302             lir_move_volatile));
1303 }
1304 
1305 void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1306   append(new LIR_Op1(
1307             lir_move,
1308             src,
1309             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1310             type,
1311             patch_code,
1312             info, lir_move_volatile));
1313 }
1314 
1315 
1316 void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1317   append(new LIR_Op3(
1318                     lir_idiv,
1319                     left,
1320                     right,
1321                     tmp,
1322                     res,
1323                     info));
1324 }
1325 
1326 
1327 void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1328   append(new LIR_Op3(
1329                     lir_idiv,
1330                     left,
1331                     LIR_OprFact::intConst(right),
1332                     tmp,
1333                     res,
1334                     info));
1335 }
1336 
1337 
1338 void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1339   append(new LIR_Op3(
1340                     lir_irem,
1341                     left,
1342                     right,
1343                     tmp,
1344                     res,
1345                     info));
1346 }
1347 
1348 
1349 void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1350   append(new LIR_Op3(
1351                     lir_irem,
1352                     left,
1353                     LIR_OprFact::intConst(right),
1354                     tmp,
1355                     res,
1356                     info));
1357 }
1358 
1359 
1360 void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
1361   append(new LIR_Op2(
1362                     lir_cmp,
1363                     condition,
1364                     LIR_OprFact::address(new LIR_Address(base, disp, T_INT)),
1365                     LIR_OprFact::intConst(c),
1366                     info));
1367 }
1368 
1369 
1370 void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) {
1371   append(new LIR_Op2(
1372                     lir_cmp,
1373                     condition,
1374                     reg,
1375                     LIR_OprFact::address(addr),
1376                     info));
1377 }
1378 
1379 void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1380                                int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) {
1381   append(new LIR_OpAllocObj(
1382                            klass,
1383                            dst,
1384                            t1,
1385                            t2,
1386                            t3,
1387                            t4,
1388                            header_size,
1389                            object_size,
1390                            init_check,
1391                            stub));
1392 }
1393 
1394 void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub) {
1395   append(new LIR_OpAllocArray(
1396                            klass,
1397                            len,
1398                            dst,
1399                            t1,
1400                            t2,
1401                            t3,
1402                            t4,
1403                            type,
1404                            stub));
1405 }
1406 
1407 void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1408  append(new LIR_Op2(
1409                     lir_shl,
1410                     value,
1411                     count,
1412                     dst,
1413                     tmp));
1414 }
1415 
1416 void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1417  append(new LIR_Op2(
1418                     lir_shr,
1419                     value,
1420                     count,
1421                     dst,
1422                     tmp));
1423 }
1424 
1425 
1426 void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1427  append(new LIR_Op2(
1428                     lir_ushr,
1429                     value,
1430                     count,
1431                     dst,
1432                     tmp));
1433 }
1434 
1435 void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) {
1436   append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i,
1437                      left,
1438                      right,
1439                      dst));
1440 }
1441 
1442 void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) {
1443   append(new LIR_OpLock(
1444                     lir_lock,
1445                     hdr,
1446                     obj,
1447                     lock,
1448                     scratch,
1449                     stub,
1450                     info));
1451 }
1452 
1453 void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) {
1454   append(new LIR_OpLock(
1455                     lir_unlock,
1456                     hdr,
1457                     obj,
1458                     lock,
1459                     scratch,
1460                     stub,
1461                     NULL));
1462 }
1463 
1464 
1465 void check_LIR() {
1466   // cannot do the proper checking as PRODUCT and other modes return different results
1467   // guarantee(sizeof(LIR_OprDesc) == wordSize, "may not have a v-table");
1468 }
1469 
1470 
1471 
1472 void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
1473                           LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1474                           CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1475                           ciMethod* profiled_method, int profiled_bci) {
1476   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass,
1477                                            tmp1, tmp2, tmp3, fast_check, info_for_exception, info_for_patch, stub);
1478   if (profiled_method != NULL) {
1479     c->set_profiled_method(profiled_method);
1480     c->set_profiled_bci(profiled_bci);
1481     c->set_should_profile(true);
1482   }
1483   append(c);
1484 }
1485 
1486 void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) {
1487   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, NULL, info_for_patch, NULL);
1488   if (profiled_method != NULL) {
1489     c->set_profiled_method(profiled_method);
1490     c->set_profiled_bci(profiled_bci);
1491     c->set_should_profile(true);
1492   }
1493   append(c);
1494 }
1495 
1496 
1497 void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
1498                            CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci) {
1499   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception);
1500   if (profiled_method != NULL) {
1501     c->set_profiled_method(profiled_method);
1502     c->set_profiled_bci(profiled_bci);
1503     c->set_should_profile(true);
1504   }
1505   append(c);
1506 }
1507 
1508 
1509 void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1510                         LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1511   append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result));
1512 }
1513 
1514 void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1515                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1516   append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result));
1517 }
1518 
1519 void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1520                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1521   append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result));
1522 }
1523 
1524 
1525 #ifdef PRODUCT
1526 
1527 void print_LIR(BlockList* blocks) {
1528 }
1529 
1530 #else
1531 // LIR_OprDesc
1532 void LIR_OprDesc::print() const {
1533   print(tty);
1534 }
1535 
1536 void LIR_OprDesc::print(outputStream* out) const {
1537   if (is_illegal()) {
1538     return;
1539   }
1540 
1541   out->print("[");
1542   if (is_pointer()) {
1543     pointer()->print_value_on(out);
1544   } else if (is_single_stack()) {
1545     out->print("stack:%d", single_stack_ix());
1546   } else if (is_double_stack()) {
1547     out->print("dbl_stack:%d",double_stack_ix());
1548   } else if (is_virtual()) {
1549     out->print("R%d", vreg_number());
1550   } else if (is_single_cpu()) {
1551     out->print(as_register()->name());
1552   } else if (is_double_cpu()) {
1553     out->print(as_register_hi()->name());
1554     out->print(as_register_lo()->name());
1555 #if defined(X86)
1556   } else if (is_single_xmm()) {
1557     out->print(as_xmm_float_reg()->name());
1558   } else if (is_double_xmm()) {
1559     out->print(as_xmm_double_reg()->name());
1560   } else if (is_single_fpu()) {
1561     out->print("fpu%d", fpu_regnr());
1562   } else if (is_double_fpu()) {
1563     out->print("fpu%d", fpu_regnrLo());
1564 #elif defined(ARM)
1565   } else if (is_single_fpu()) {
1566     out->print("s%d", fpu_regnr());
1567   } else if (is_double_fpu()) {
1568     out->print("d%d", fpu_regnrLo() >> 1);
1569 #else
1570   } else if (is_single_fpu()) {
1571     out->print(as_float_reg()->name());
1572   } else if (is_double_fpu()) {
1573     out->print(as_double_reg()->name());
1574 #endif
1575 
1576   } else if (is_illegal()) {
1577     out->print("-");
1578   } else {
1579     out->print("Unknown Operand");
1580   }
1581   if (!is_illegal()) {
1582     out->print("|%c", type_char());
1583   }
1584   if (is_register() && is_last_use()) {
1585     out->print("(last_use)");
1586   }
1587   out->print("]");
1588 }
1589 
1590 
1591 // LIR_Address
1592 void LIR_Const::print_value_on(outputStream* out) const {
1593   switch (type()) {
1594     case T_ADDRESS:out->print("address:%d",as_jint());          break;
1595     case T_INT:    out->print("int:%d",   as_jint());           break;
1596     case T_LONG:   out->print("lng:" JLONG_FORMAT, as_jlong()); break;
1597     case T_FLOAT:  out->print("flt:%f",   as_jfloat());         break;
1598     case T_DOUBLE: out->print("dbl:%f",   as_jdouble());        break;
1599     case T_OBJECT: out->print("obj:0x%x", as_jobject());        break;
1600     case T_METADATA: out->print("metadata:0x%x", as_metadata());break;
1601     default:       out->print("%3d:0x%x",type(), as_jdouble()); break;
1602   }
1603 }
1604 
1605 // LIR_Address
1606 void LIR_Address::print_value_on(outputStream* out) const {
1607   out->print("Base:"); _base->print(out);
1608   if (!_index->is_illegal()) {
1609     out->print(" Index:"); _index->print(out);
1610     switch (scale()) {
1611     case times_1: break;
1612     case times_2: out->print(" * 2"); break;
1613     case times_4: out->print(" * 4"); break;
1614     case times_8: out->print(" * 8"); break;
1615     }
1616   }
1617   out->print(" Disp: %d", _disp);
1618 }
1619 
1620 // debug output of block header without InstructionPrinter
1621 //       (because phi functions are not necessary for LIR)
1622 static void print_block(BlockBegin* x) {
1623   // print block id
1624   BlockEnd* end = x->end();
1625   tty->print("B%d ", x->block_id());
1626 
1627   // print flags
1628   if (x->is_set(BlockBegin::std_entry_flag))               tty->print("std ");
1629   if (x->is_set(BlockBegin::osr_entry_flag))               tty->print("osr ");
1630   if (x->is_set(BlockBegin::exception_entry_flag))         tty->print("ex ");
1631   if (x->is_set(BlockBegin::subroutine_entry_flag))        tty->print("jsr ");
1632   if (x->is_set(BlockBegin::backward_branch_target_flag))  tty->print("bb ");
1633   if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh ");
1634   if (x->is_set(BlockBegin::linear_scan_loop_end_flag))    tty->print("le ");
1635 
1636   // print block bci range
1637   tty->print("[%d, %d] ", x->bci(), (end == NULL ? -1 : end->printable_bci()));
1638 
1639   // print predecessors and successors
1640   if (x->number_of_preds() > 0) {
1641     tty->print("preds: ");
1642     for (int i = 0; i < x->number_of_preds(); i ++) {
1643       tty->print("B%d ", x->pred_at(i)->block_id());
1644     }
1645   }
1646 
1647   if (x->number_of_sux() > 0) {
1648     tty->print("sux: ");
1649     for (int i = 0; i < x->number_of_sux(); i ++) {
1650       tty->print("B%d ", x->sux_at(i)->block_id());
1651     }
1652   }
1653 
1654   // print exception handlers
1655   if (x->number_of_exception_handlers() > 0) {
1656     tty->print("xhandler: ");
1657     for (int i = 0; i < x->number_of_exception_handlers();  i++) {
1658       tty->print("B%d ", x->exception_handler_at(i)->block_id());
1659     }
1660   }
1661 
1662   tty->cr();
1663 }
1664 
1665 void print_LIR(BlockList* blocks) {
1666   tty->print_cr("LIR:");
1667   int i;
1668   for (i = 0; i < blocks->length(); i++) {
1669     BlockBegin* bb = blocks->at(i);
1670     print_block(bb);
1671     tty->print("__id_Instruction___________________________________________"); tty->cr();
1672     bb->lir()->print_instructions();
1673   }
1674 }
1675 
1676 void LIR_List::print_instructions() {
1677   for (int i = 0; i < _operations.length(); i++) {
1678     _operations.at(i)->print(); tty->cr();
1679   }
1680   tty->cr();
1681 }
1682 
1683 // LIR_Ops printing routines
1684 // LIR_Op
1685 void LIR_Op::print_on(outputStream* out) const {
1686   if (id() != -1 || PrintCFGToFile) {
1687     out->print("%4d ", id());
1688   } else {
1689     out->print("     ");
1690   }
1691   out->print(name()); out->print(" ");
1692   print_instr(out);
1693   if (info() != NULL) out->print(" [bci:%d]", info()->stack()->bci());
1694 #ifdef ASSERT
1695   if (Verbose && _file != NULL) {
1696     out->print(" (%s:%d)", _file, _line);
1697   }
1698 #endif
1699 }
1700 
1701 const char * LIR_Op::name() const {
1702   const char* s = NULL;
1703   switch(code()) {
1704      // LIR_Op0
1705      case lir_membar:                s = "membar";        break;
1706      case lir_membar_acquire:        s = "membar_acquire"; break;
1707      case lir_membar_release:        s = "membar_release"; break;
1708      case lir_membar_loadload:       s = "membar_loadload";   break;
1709      case lir_membar_storestore:     s = "membar_storestore"; break;
1710      case lir_membar_loadstore:      s = "membar_loadstore";  break;
1711      case lir_membar_storeload:      s = "membar_storeload";  break;
1712      case lir_word_align:            s = "word_align";    break;
1713      case lir_label:                 s = "label";         break;
1714      case lir_nop:                   s = "nop";           break;
1715      case lir_backwardbranch_target: s = "backbranch";    break;
1716      case lir_std_entry:             s = "std_entry";     break;
1717      case lir_osr_entry:             s = "osr_entry";     break;
1718      case lir_build_frame:           s = "build_frm";     break;
1719      case lir_fpop_raw:              s = "fpop_raw";      break;
1720      case lir_24bit_FPU:             s = "24bit_FPU";     break;
1721      case lir_reset_FPU:             s = "reset_FPU";     break;
1722      case lir_breakpoint:            s = "breakpoint";    break;
1723      case lir_get_thread:            s = "get_thread";    break;
1724      // LIR_Op1
1725      case lir_fxch:                  s = "fxch";          break;
1726      case lir_fld:                   s = "fld";           break;
1727      case lir_ffree:                 s = "ffree";         break;
1728      case lir_push:                  s = "push";          break;
1729      case lir_pop:                   s = "pop";           break;
1730      case lir_null_check:            s = "null_check";    break;
1731      case lir_return:                s = "return";        break;
1732      case lir_safepoint:             s = "safepoint";     break;
1733      case lir_neg:                   s = "neg";           break;
1734      case lir_leal:                  s = "leal";          break;
1735      case lir_branch:                s = "branch";        break;
1736      case lir_cond_float_branch:     s = "flt_cond_br";   break;
1737      case lir_move:                  s = "move";          break;
1738      case lir_roundfp:               s = "roundfp";       break;
1739      case lir_rtcall:                s = "rtcall";        break;
1740      case lir_throw:                 s = "throw";         break;
1741      case lir_unwind:                s = "unwind";        break;
1742      case lir_convert:               s = "convert";       break;
1743      case lir_alloc_object:          s = "alloc_obj";     break;
1744      case lir_monaddr:               s = "mon_addr";      break;
1745      case lir_pack64:                s = "pack64";        break;
1746      case lir_unpack64:              s = "unpack64";      break;
1747      // LIR_Op2
1748      case lir_cmp:                   s = "cmp";           break;
1749      case lir_cmp_l2i:               s = "cmp_l2i";       break;
1750      case lir_ucmp_fd2i:             s = "ucomp_fd2i";    break;
1751      case lir_cmp_fd2i:              s = "comp_fd2i";     break;
1752      case lir_cmove:                 s = "cmove";         break;
1753      case lir_add:                   s = "add";           break;
1754      case lir_sub:                   s = "sub";           break;
1755      case lir_mul:                   s = "mul";           break;
1756      case lir_mul_strictfp:          s = "mul_strictfp";  break;
1757      case lir_div:                   s = "div";           break;
1758      case lir_div_strictfp:          s = "div_strictfp";  break;
1759      case lir_rem:                   s = "rem";           break;
1760      case lir_abs:                   s = "abs";           break;
1761      case lir_sqrt:                  s = "sqrt";          break;
1762      case lir_sin:                   s = "sin";           break;
1763      case lir_cos:                   s = "cos";           break;
1764      case lir_tan:                   s = "tan";           break;
1765      case lir_log:                   s = "log";           break;
1766      case lir_log10:                 s = "log10";         break;
1767      case lir_exp:                   s = "exp";           break;
1768      case lir_pow:                   s = "pow";           break;
1769      case lir_logic_and:             s = "logic_and";     break;
1770      case lir_logic_or:              s = "logic_or";      break;
1771      case lir_logic_xor:             s = "logic_xor";     break;
1772      case lir_shl:                   s = "shift_left";    break;
1773      case lir_shr:                   s = "shift_right";   break;
1774      case lir_ushr:                  s = "ushift_right";  break;
1775      case lir_alloc_array:           s = "alloc_array";   break;
1776      case lir_xadd:                  s = "xadd";          break;
1777      case lir_xchg:                  s = "xchg";          break;
1778      // LIR_Op3
1779      case lir_idiv:                  s = "idiv";          break;
1780      case lir_irem:                  s = "irem";          break;
1781      // LIR_OpJavaCall
1782      case lir_static_call:           s = "static";        break;
1783      case lir_optvirtual_call:       s = "optvirtual";    break;
1784      case lir_icvirtual_call:        s = "icvirtual";     break;
1785      case lir_virtual_call:          s = "virtual";       break;
1786      case lir_dynamic_call:          s = "dynamic";       break;
1787      // LIR_OpArrayCopy
1788      case lir_arraycopy:             s = "arraycopy";     break;
1789      // LIR_OpUpdateCRC32
1790      case lir_updatecrc32:           s = "updatecrc32";   break;
1791      // LIR_OpLock
1792      case lir_lock:                  s = "lock";          break;
1793      case lir_unlock:                s = "unlock";        break;
1794      // LIR_OpDelay
1795      case lir_delay_slot:            s = "delay";         break;
1796      // LIR_OpTypeCheck
1797      case lir_instanceof:            s = "instanceof";    break;
1798      case lir_checkcast:             s = "checkcast";     break;
1799      case lir_store_check:           s = "store_check";   break;
1800      // LIR_OpCompareAndSwap
1801      case lir_cas_long:              s = "cas_long";      break;
1802      case lir_cas_obj:               s = "cas_obj";      break;
1803      case lir_cas_int:               s = "cas_int";      break;
1804      // LIR_OpProfileCall
1805      case lir_profile_call:          s = "profile_call";  break;
1806      // LIR_OpAssert
1807 #ifdef ASSERT
1808      case lir_assert:                s = "assert";        break;
1809 #endif
1810      case lir_none:                  ShouldNotReachHere();break;
1811     default:                         s = "illegal_op";    break;
1812   }
1813   return s;
1814 }
1815 
1816 // LIR_OpJavaCall
1817 void LIR_OpJavaCall::print_instr(outputStream* out) const {
1818   out->print("call: ");
1819   out->print("[addr: 0x%x]", address());
1820   if (receiver()->is_valid()) {
1821     out->print(" [recv: ");   receiver()->print(out);   out->print("]");
1822   }
1823   if (result_opr()->is_valid()) {
1824     out->print(" [result: "); result_opr()->print(out); out->print("]");
1825   }
1826 }
1827 
1828 // LIR_OpLabel
1829 void LIR_OpLabel::print_instr(outputStream* out) const {
1830   out->print("[label:0x%x]", _label);
1831 }
1832 
1833 // LIR_OpArrayCopy
1834 void LIR_OpArrayCopy::print_instr(outputStream* out) const {
1835   src()->print(out);     out->print(" ");
1836   src_pos()->print(out); out->print(" ");
1837   dst()->print(out);     out->print(" ");
1838   dst_pos()->print(out); out->print(" ");
1839   length()->print(out);  out->print(" ");
1840   tmp()->print(out);     out->print(" ");
1841 }
1842 
1843 // LIR_OpUpdateCRC32
1844 void LIR_OpUpdateCRC32::print_instr(outputStream* out) const {
1845   crc()->print(out);     out->print(" ");
1846   val()->print(out);     out->print(" ");
1847   result_opr()->print(out); out->print(" ");
1848 }
1849 
1850 // LIR_OpCompareAndSwap
1851 void LIR_OpCompareAndSwap::print_instr(outputStream* out) const {
1852   addr()->print(out);      out->print(" ");
1853   cmp_value()->print(out); out->print(" ");
1854   new_value()->print(out); out->print(" ");
1855   tmp1()->print(out);      out->print(" ");
1856   tmp2()->print(out);      out->print(" ");
1857 
1858 }
1859 
1860 // LIR_Op0
1861 void LIR_Op0::print_instr(outputStream* out) const {
1862   result_opr()->print(out);
1863 }
1864 
1865 // LIR_Op1
1866 const char * LIR_Op1::name() const {
1867   if (code() == lir_move) {
1868     switch (move_kind()) {
1869     case lir_move_normal:
1870       return "move";
1871     case lir_move_unaligned:
1872       return "unaligned move";
1873     case lir_move_volatile:
1874       return "volatile_move";
1875     case lir_move_wide:
1876       return "wide_move";
1877     default:
1878       ShouldNotReachHere();
1879     return "illegal_op";
1880     }
1881   } else {
1882     return LIR_Op::name();
1883   }
1884 }
1885 
1886 
1887 void LIR_Op1::print_instr(outputStream* out) const {
1888   _opr->print(out);         out->print(" ");
1889   result_opr()->print(out); out->print(" ");
1890   print_patch_code(out, patch_code());
1891 }
1892 
1893 
1894 // LIR_Op1
1895 void LIR_OpRTCall::print_instr(outputStream* out) const {
1896   intx a = (intx)addr();
1897   out->print(Runtime1::name_for_address(addr()));
1898   out->print(" ");
1899   tmp()->print(out);
1900 }
1901 
1902 void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) {
1903   switch(code) {
1904     case lir_patch_none:                                 break;
1905     case lir_patch_low:    out->print("[patch_low]");    break;
1906     case lir_patch_high:   out->print("[patch_high]");   break;
1907     case lir_patch_normal: out->print("[patch_normal]"); break;
1908     default: ShouldNotReachHere();
1909   }
1910 }
1911 
1912 // LIR_OpBranch
1913 void LIR_OpBranch::print_instr(outputStream* out) const {
1914   print_condition(out, cond());             out->print(" ");
1915   if (block() != NULL) {
1916     out->print("[B%d] ", block()->block_id());
1917   } else if (stub() != NULL) {
1918     out->print("[");
1919     stub()->print_name(out);
1920     out->print(": 0x%x]", stub());
1921     if (stub()->info() != NULL) out->print(" [bci:%d]", stub()->info()->stack()->bci());
1922   } else {
1923     out->print("[label:0x%x] ", label());
1924   }
1925   if (ublock() != NULL) {
1926     out->print("unordered: [B%d] ", ublock()->block_id());
1927   }
1928 }
1929 
1930 void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) {
1931   switch(cond) {
1932     case lir_cond_equal:           out->print("[EQ]");      break;
1933     case lir_cond_notEqual:        out->print("[NE]");      break;
1934     case lir_cond_less:            out->print("[LT]");      break;
1935     case lir_cond_lessEqual:       out->print("[LE]");      break;
1936     case lir_cond_greaterEqual:    out->print("[GE]");      break;
1937     case lir_cond_greater:         out->print("[GT]");      break;
1938     case lir_cond_belowEqual:      out->print("[BE]");      break;
1939     case lir_cond_aboveEqual:      out->print("[AE]");      break;
1940     case lir_cond_always:          out->print("[AL]");      break;
1941     default:                       out->print("[%d]",cond); break;
1942   }
1943 }
1944 
1945 // LIR_OpConvert
1946 void LIR_OpConvert::print_instr(outputStream* out) const {
1947   print_bytecode(out, bytecode());
1948   in_opr()->print(out);                  out->print(" ");
1949   result_opr()->print(out);              out->print(" ");
1950 #ifdef PPC
1951   if(tmp1()->is_valid()) {
1952     tmp1()->print(out); out->print(" ");
1953     tmp2()->print(out); out->print(" ");
1954   }
1955 #endif
1956 }
1957 
1958 void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) {
1959   switch(code) {
1960     case Bytecodes::_d2f: out->print("[d2f] "); break;
1961     case Bytecodes::_d2i: out->print("[d2i] "); break;
1962     case Bytecodes::_d2l: out->print("[d2l] "); break;
1963     case Bytecodes::_f2d: out->print("[f2d] "); break;
1964     case Bytecodes::_f2i: out->print("[f2i] "); break;
1965     case Bytecodes::_f2l: out->print("[f2l] "); break;
1966     case Bytecodes::_i2b: out->print("[i2b] "); break;
1967     case Bytecodes::_i2c: out->print("[i2c] "); break;
1968     case Bytecodes::_i2d: out->print("[i2d] "); break;
1969     case Bytecodes::_i2f: out->print("[i2f] "); break;
1970     case Bytecodes::_i2l: out->print("[i2l] "); break;
1971     case Bytecodes::_i2s: out->print("[i2s] "); break;
1972     case Bytecodes::_l2i: out->print("[l2i] "); break;
1973     case Bytecodes::_l2f: out->print("[l2f] "); break;
1974     case Bytecodes::_l2d: out->print("[l2d] "); break;
1975     default:
1976       out->print("[?%d]",code);
1977     break;
1978   }
1979 }
1980 
1981 void LIR_OpAllocObj::print_instr(outputStream* out) const {
1982   klass()->print(out);                      out->print(" ");
1983   obj()->print(out);                        out->print(" ");
1984   tmp1()->print(out);                       out->print(" ");
1985   tmp2()->print(out);                       out->print(" ");
1986   tmp3()->print(out);                       out->print(" ");
1987   tmp4()->print(out);                       out->print(" ");
1988   out->print("[hdr:%d]", header_size()); out->print(" ");
1989   out->print("[obj:%d]", object_size()); out->print(" ");
1990   out->print("[lbl:0x%x]", stub()->entry());
1991 }
1992 
1993 void LIR_OpRoundFP::print_instr(outputStream* out) const {
1994   _opr->print(out);         out->print(" ");
1995   tmp()->print(out);        out->print(" ");
1996   result_opr()->print(out); out->print(" ");
1997 }
1998 
1999 // LIR_Op2
2000 void LIR_Op2::print_instr(outputStream* out) const {
2001   if (code() == lir_cmove) {
2002     print_condition(out, condition());         out->print(" ");
2003   }
2004   in_opr1()->print(out);    out->print(" ");
2005   in_opr2()->print(out);    out->print(" ");
2006   if (tmp1_opr()->is_valid()) { tmp1_opr()->print(out);    out->print(" "); }
2007   if (tmp2_opr()->is_valid()) { tmp2_opr()->print(out);    out->print(" "); }
2008   if (tmp3_opr()->is_valid()) { tmp3_opr()->print(out);    out->print(" "); }
2009   if (tmp4_opr()->is_valid()) { tmp4_opr()->print(out);    out->print(" "); }
2010   if (tmp5_opr()->is_valid()) { tmp5_opr()->print(out);    out->print(" "); }
2011   result_opr()->print(out);
2012 }
2013 
2014 void LIR_OpAllocArray::print_instr(outputStream* out) const {
2015   klass()->print(out);                   out->print(" ");
2016   len()->print(out);                     out->print(" ");
2017   obj()->print(out);                     out->print(" ");
2018   tmp1()->print(out);                    out->print(" ");
2019   tmp2()->print(out);                    out->print(" ");
2020   tmp3()->print(out);                    out->print(" ");
2021   tmp4()->print(out);                    out->print(" ");
2022   out->print("[type:0x%x]", type());     out->print(" ");
2023   out->print("[label:0x%x]", stub()->entry());
2024 }
2025 
2026 
2027 void LIR_OpTypeCheck::print_instr(outputStream* out) const {
2028   object()->print(out);                  out->print(" ");
2029   if (code() == lir_store_check) {
2030     array()->print(out);                 out->print(" ");
2031   }
2032   if (code() != lir_store_check) {
2033     klass()->print_name_on(out);         out->print(" ");
2034     if (fast_check())                 out->print("fast_check ");
2035   }
2036   tmp1()->print(out);                    out->print(" ");
2037   tmp2()->print(out);                    out->print(" ");
2038   tmp3()->print(out);                    out->print(" ");
2039   result_opr()->print(out);              out->print(" ");
2040   if (info_for_exception() != NULL) out->print(" [bci:%d]", info_for_exception()->stack()->bci());
2041 }
2042 
2043 
2044 // LIR_Op3
2045 void LIR_Op3::print_instr(outputStream* out) const {
2046   in_opr1()->print(out);    out->print(" ");
2047   in_opr2()->print(out);    out->print(" ");
2048   in_opr3()->print(out);    out->print(" ");
2049   result_opr()->print(out);
2050 }
2051 
2052 
2053 void LIR_OpLock::print_instr(outputStream* out) const {
2054   hdr_opr()->print(out);   out->print(" ");
2055   obj_opr()->print(out);   out->print(" ");
2056   lock_opr()->print(out);  out->print(" ");
2057   if (_scratch->is_valid()) {
2058     _scratch->print(out);  out->print(" ");
2059   }
2060   out->print("[lbl:0x%x]", stub()->entry());
2061 }
2062 
2063 #ifdef ASSERT
2064 void LIR_OpAssert::print_instr(outputStream* out) const {
2065   print_condition(out, condition()); out->print(" ");
2066   in_opr1()->print(out);             out->print(" ");
2067   in_opr2()->print(out);             out->print(", \"");
2068   out->print(msg());                 out->print("\"");
2069 }
2070 #endif
2071 
2072 
2073 void LIR_OpDelay::print_instr(outputStream* out) const {
2074   _op->print_on(out);
2075 }
2076 
2077 
2078 // LIR_OpProfileCall
2079 void LIR_OpProfileCall::print_instr(outputStream* out) const {
2080   profiled_method()->name()->print_symbol_on(out);
2081   out->print(".");
2082   profiled_method()->holder()->name()->print_symbol_on(out);
2083   out->print(" @ %d ", profiled_bci());
2084   mdo()->print(out);           out->print(" ");
2085   recv()->print(out);          out->print(" ");
2086   tmp1()->print(out);          out->print(" ");
2087 }
2088 
2089 #endif // PRODUCT
2090 
2091 // Implementation of LIR_InsertionBuffer
2092 
2093 void LIR_InsertionBuffer::append(int index, LIR_Op* op) {
2094   assert(_index_and_count.length() % 2 == 0, "must have a count for each index");
2095 
2096   int i = number_of_insertion_points() - 1;
2097   if (i < 0 || index_at(i) < index) {
2098     append_new(index, 1);
2099   } else {
2100     assert(index_at(i) == index, "can append LIR_Ops in ascending order only");
2101     assert(count_at(i) > 0, "check");
2102     set_count_at(i, count_at(i) + 1);
2103   }
2104   _ops.push(op);
2105 
2106   DEBUG_ONLY(verify());
2107 }
2108 
2109 #ifdef ASSERT
2110 void LIR_InsertionBuffer::verify() {
2111   int sum = 0;
2112   int prev_idx = -1;
2113 
2114   for (int i = 0; i < number_of_insertion_points(); i++) {
2115     assert(prev_idx < index_at(i), "index must be ordered ascending");
2116     sum += count_at(i);
2117   }
2118   assert(sum == number_of_ops(), "wrong total sum");
2119 }
2120 #endif