1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterGenerator.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "interpreter/templateTable.hpp"
  30 
  31 #ifndef CC_INTERP
  32 
  33 # define __ _masm->
  34 
  35 void TemplateInterpreter::initialize() {
  36   if (_code != NULL) return;
  37   // assertions
  38   assert((int)Bytecodes::number_of_codes <= (int)DispatchTable::length,
  39          "dispatch table too small");
  40 
  41   AbstractInterpreter::initialize();
  42 
  43   TemplateTable::initialize();
  44 
  45   // generate interpreter
  46   { ResourceMark rm;
  47     TraceTime timer("Interpreter generation", TraceStartupTime);
  48     int code_size = InterpreterCodeSize;
  49     NOT_PRODUCT(code_size *= 4;)  // debug uses extra interpreter code space
  50     _code = new StubQueue(new InterpreterCodeletInterface, code_size, NULL,
  51                           "Interpreter");
  52     InterpreterGenerator g(_code);
  53     if (PrintInterpreter) print();
  54   }
  55 
  56   // initialize dispatch table
  57   _active_table = _normal_table;
  58 }
  59 
  60 //------------------------------------------------------------------------------------------------------------------------
  61 // Implementation of EntryPoint
  62 
  63 EntryPoint::EntryPoint() {
  64   assert(number_of_states == 9, "check the code below");
  65   _entry[btos] = NULL;
  66   _entry[ctos] = NULL;
  67   _entry[stos] = NULL;
  68   _entry[atos] = NULL;
  69   _entry[itos] = NULL;
  70   _entry[ltos] = NULL;
  71   _entry[ftos] = NULL;
  72   _entry[dtos] = NULL;
  73   _entry[vtos] = NULL;
  74 }
  75 
  76 
  77 EntryPoint::EntryPoint(address bentry, address centry, address sentry, address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) {
  78   assert(number_of_states == 9, "check the code below");
  79   _entry[btos] = bentry;
  80   _entry[ctos] = centry;
  81   _entry[stos] = sentry;
  82   _entry[atos] = aentry;
  83   _entry[itos] = ientry;
  84   _entry[ltos] = lentry;
  85   _entry[ftos] = fentry;
  86   _entry[dtos] = dentry;
  87   _entry[vtos] = ventry;
  88 }
  89 
  90 
  91 void EntryPoint::set_entry(TosState state, address entry) {
  92   assert(0 <= state && state < number_of_states, "state out of bounds");
  93   _entry[state] = entry;
  94 }
  95 
  96 
  97 address EntryPoint::entry(TosState state) const {
  98   assert(0 <= state && state < number_of_states, "state out of bounds");
  99   return _entry[state];
 100 }
 101 
 102 
 103 void EntryPoint::print() {
 104   tty->print("[");
 105   for (int i = 0; i < number_of_states; i++) {
 106     if (i > 0) tty->print(", ");
 107     tty->print(INTPTR_FORMAT, _entry[i]);
 108   }
 109   tty->print("]");
 110 }
 111 
 112 
 113 bool EntryPoint::operator == (const EntryPoint& y) {
 114   int i = number_of_states;
 115   while (i-- > 0) {
 116     if (_entry[i] != y._entry[i]) return false;
 117   }
 118   return true;
 119 }
 120 
 121 
 122 //------------------------------------------------------------------------------------------------------------------------
 123 // Implementation of DispatchTable
 124 
 125 EntryPoint DispatchTable::entry(int i) const {
 126   assert(0 <= i && i < length, "index out of bounds");
 127   return
 128     EntryPoint(
 129       _table[btos][i],
 130       _table[ctos][i],
 131       _table[stos][i],
 132       _table[atos][i],
 133       _table[itos][i],
 134       _table[ltos][i],
 135       _table[ftos][i],
 136       _table[dtos][i],
 137       _table[vtos][i]
 138     );
 139 }
 140 
 141 
 142 void DispatchTable::set_entry(int i, EntryPoint& entry) {
 143   assert(0 <= i && i < length, "index out of bounds");
 144   assert(number_of_states == 9, "check the code below");
 145   _table[btos][i] = entry.entry(btos);
 146   _table[ctos][i] = entry.entry(ctos);
 147   _table[stos][i] = entry.entry(stos);
 148   _table[atos][i] = entry.entry(atos);
 149   _table[itos][i] = entry.entry(itos);
 150   _table[ltos][i] = entry.entry(ltos);
 151   _table[ftos][i] = entry.entry(ftos);
 152   _table[dtos][i] = entry.entry(dtos);
 153   _table[vtos][i] = entry.entry(vtos);
 154 }
 155 
 156 
 157 bool DispatchTable::operator == (DispatchTable& y) {
 158   int i = length;
 159   while (i-- > 0) {
 160     EntryPoint t = y.entry(i); // for compiler compatibility (BugId 4150096)
 161     if (!(entry(i) == t)) return false;
 162   }
 163   return true;
 164 }
 165 
 166 address    TemplateInterpreter::_remove_activation_entry                    = NULL;
 167 address    TemplateInterpreter::_remove_activation_preserving_args_entry    = NULL;
 168 
 169 
 170 address    TemplateInterpreter::_throw_ArrayIndexOutOfBoundsException_entry = NULL;
 171 address    TemplateInterpreter::_throw_ArrayStoreException_entry            = NULL;
 172 address    TemplateInterpreter::_throw_ArithmeticException_entry            = NULL;
 173 address    TemplateInterpreter::_throw_ClassCastException_entry             = NULL;
 174 address    TemplateInterpreter::_throw_NullPointerException_entry           = NULL;
 175 address    TemplateInterpreter::_throw_StackOverflowError_entry             = NULL;
 176 address    TemplateInterpreter::_throw_exception_entry                      = NULL;
 177 
 178 #ifndef PRODUCT
 179 EntryPoint TemplateInterpreter::_trace_code;
 180 #endif // !PRODUCT
 181 EntryPoint TemplateInterpreter::_return_entry[TemplateInterpreter::number_of_return_entries];
 182 EntryPoint TemplateInterpreter::_earlyret_entry;
 183 EntryPoint TemplateInterpreter::_deopt_entry [TemplateInterpreter::number_of_deopt_entries ];
 184 EntryPoint TemplateInterpreter::_continuation_entry;
 185 EntryPoint TemplateInterpreter::_safept_entry;
 186 
 187 address    TemplateInterpreter::_return_3_addrs_by_index[TemplateInterpreter::number_of_return_addrs];
 188 address    TemplateInterpreter::_return_5_addrs_by_index[TemplateInterpreter::number_of_return_addrs];
 189 
 190 DispatchTable TemplateInterpreter::_active_table;
 191 DispatchTable TemplateInterpreter::_normal_table;
 192 DispatchTable TemplateInterpreter::_safept_table;
 193 address    TemplateInterpreter::_wentry_point[DispatchTable::length];
 194 
 195 TemplateInterpreterGenerator::TemplateInterpreterGenerator(StubQueue* _code): AbstractInterpreterGenerator(_code) {
 196   _unimplemented_bytecode    = NULL;
 197   _illegal_bytecode_sequence = NULL;
 198 }
 199 
 200 static const BasicType types[Interpreter::number_of_result_handlers] = {
 201   T_BOOLEAN,
 202   T_CHAR   ,
 203   T_BYTE   ,
 204   T_SHORT  ,
 205   T_INT    ,
 206   T_LONG   ,
 207   T_VOID   ,
 208   T_FLOAT  ,
 209   T_DOUBLE ,
 210   T_OBJECT
 211 };
 212 
 213 void TemplateInterpreterGenerator::generate_all() {
 214   AbstractInterpreterGenerator::generate_all();
 215 
 216   { CodeletMark cm(_masm, "error exits");
 217     _unimplemented_bytecode    = generate_error_exit("unimplemented bytecode");
 218     _illegal_bytecode_sequence = generate_error_exit("illegal bytecode sequence - method not verified");
 219   }
 220 
 221 #ifndef PRODUCT
 222   if (TraceBytecodes) {
 223     CodeletMark cm(_masm, "bytecode tracing support");
 224     Interpreter::_trace_code =
 225       EntryPoint(
 226         generate_trace_code(btos),
 227         generate_trace_code(ctos),
 228         generate_trace_code(stos),
 229         generate_trace_code(atos),
 230         generate_trace_code(itos),
 231         generate_trace_code(ltos),
 232         generate_trace_code(ftos),
 233         generate_trace_code(dtos),
 234         generate_trace_code(vtos)
 235       );
 236   }
 237 #endif // !PRODUCT
 238 
 239   { CodeletMark cm(_masm, "return entry points");
 240     for (int i = 0; i < Interpreter::number_of_return_entries; i++) {
 241       Interpreter::_return_entry[i] =
 242         EntryPoint(
 243           generate_return_entry_for(itos, i),
 244           generate_return_entry_for(itos, i),
 245           generate_return_entry_for(itos, i),
 246           generate_return_entry_for(atos, i),
 247           generate_return_entry_for(itos, i),
 248           generate_return_entry_for(ltos, i),
 249           generate_return_entry_for(ftos, i),
 250           generate_return_entry_for(dtos, i),
 251           generate_return_entry_for(vtos, i)
 252         );
 253     }
 254   }
 255 
 256   { CodeletMark cm(_masm, "earlyret entry points");
 257     Interpreter::_earlyret_entry =
 258       EntryPoint(
 259         generate_earlyret_entry_for(btos),
 260         generate_earlyret_entry_for(ctos),
 261         generate_earlyret_entry_for(stos),
 262         generate_earlyret_entry_for(atos),
 263         generate_earlyret_entry_for(itos),
 264         generate_earlyret_entry_for(ltos),
 265         generate_earlyret_entry_for(ftos),
 266         generate_earlyret_entry_for(dtos),
 267         generate_earlyret_entry_for(vtos)
 268       );
 269   }
 270 
 271   { CodeletMark cm(_masm, "deoptimization entry points");
 272     for (int i = 0; i < Interpreter::number_of_deopt_entries; i++) {
 273       Interpreter::_deopt_entry[i] =
 274         EntryPoint(
 275           generate_deopt_entry_for(itos, i),
 276           generate_deopt_entry_for(itos, i),
 277           generate_deopt_entry_for(itos, i),
 278           generate_deopt_entry_for(atos, i),
 279           generate_deopt_entry_for(itos, i),
 280           generate_deopt_entry_for(ltos, i),
 281           generate_deopt_entry_for(ftos, i),
 282           generate_deopt_entry_for(dtos, i),
 283           generate_deopt_entry_for(vtos, i)
 284         );
 285     }
 286   }
 287 
 288   { CodeletMark cm(_masm, "result handlers for native calls");
 289     // The various result converter stublets.
 290     int is_generated[Interpreter::number_of_result_handlers];
 291     memset(is_generated, 0, sizeof(is_generated));
 292 
 293     for (int i = 0; i < Interpreter::number_of_result_handlers; i++) {
 294       BasicType type = types[i];
 295       if (!is_generated[Interpreter::BasicType_as_index(type)]++) {
 296         Interpreter::_native_abi_to_tosca[Interpreter::BasicType_as_index(type)] = generate_result_handler_for(type);
 297       }
 298     }
 299   }
 300 
 301   for (int j = 0; j < number_of_states; j++) {
 302     const TosState states[] = {btos, ctos, stos, itos, ltos, ftos, dtos, atos, vtos};
 303     int index = Interpreter::TosState_as_index(states[j]);
 304     Interpreter::_return_3_addrs_by_index[index] = Interpreter::return_entry(states[j], 3);
 305     Interpreter::_return_5_addrs_by_index[index] = Interpreter::return_entry(states[j], 5);
 306   }
 307 
 308   { CodeletMark cm(_masm, "continuation entry points");
 309     Interpreter::_continuation_entry =
 310       EntryPoint(
 311         generate_continuation_for(btos),
 312         generate_continuation_for(ctos),
 313         generate_continuation_for(stos),
 314         generate_continuation_for(atos),
 315         generate_continuation_for(itos),
 316         generate_continuation_for(ltos),
 317         generate_continuation_for(ftos),
 318         generate_continuation_for(dtos),
 319         generate_continuation_for(vtos)
 320       );
 321   }
 322 
 323   { CodeletMark cm(_masm, "safepoint entry points");
 324     Interpreter::_safept_entry =
 325       EntryPoint(
 326         generate_safept_entry_for(btos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 327         generate_safept_entry_for(ctos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 328         generate_safept_entry_for(stos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 329         generate_safept_entry_for(atos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 330         generate_safept_entry_for(itos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 331         generate_safept_entry_for(ltos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 332         generate_safept_entry_for(ftos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 333         generate_safept_entry_for(dtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 334         generate_safept_entry_for(vtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint))
 335       );
 336   }
 337 
 338   { CodeletMark cm(_masm, "exception handling");
 339     // (Note: this is not safepoint safe because thread may return to compiled code)
 340     generate_throw_exception();
 341   }
 342 
 343   { CodeletMark cm(_masm, "throw exception entrypoints");
 344     Interpreter::_throw_ArrayIndexOutOfBoundsException_entry = generate_ArrayIndexOutOfBounds_handler("java/lang/ArrayIndexOutOfBoundsException");
 345     Interpreter::_throw_ArrayStoreException_entry            = generate_klass_exception_handler("java/lang/ArrayStoreException"                 );
 346     Interpreter::_throw_ArithmeticException_entry            = generate_exception_handler("java/lang/ArithmeticException"           , "/ by zero");
 347     Interpreter::_throw_ClassCastException_entry             = generate_ClassCastException_handler();
 348     Interpreter::_throw_NullPointerException_entry           = generate_exception_handler("java/lang/NullPointerException"          , NULL       );
 349     Interpreter::_throw_StackOverflowError_entry             = generate_StackOverflowError_handler();
 350   }
 351 
 352 
 353 
 354 #define method_entry(kind)                                                                    \
 355   { CodeletMark cm(_masm, "method entry point (kind = " #kind ")");                    \
 356     Interpreter::_entry_table[Interpreter::kind] = generate_method_entry(Interpreter::kind);  \
 357   }
 358 
 359   // all non-native method kinds
 360   method_entry(zerolocals)
 361   method_entry(zerolocals_synchronized)
 362   method_entry(empty)
 363   method_entry(accessor)
 364   method_entry(abstract)
 365   method_entry(java_lang_math_sin  )
 366   method_entry(java_lang_math_cos  )
 367   method_entry(java_lang_math_tan  )
 368   method_entry(java_lang_math_abs  )
 369   method_entry(java_lang_math_sqrt )
 370   method_entry(java_lang_math_log  )
 371   method_entry(java_lang_math_log10)
 372   method_entry(java_lang_math_exp  )
 373   method_entry(java_lang_math_pow  )
 374   method_entry(java_lang_ref_reference_get)
 375 
 376   if (UseCRC32Intrinsics) {
 377     method_entry(java_util_zip_CRC32_update)
 378     method_entry(java_util_zip_CRC32_updateBytes)
 379     method_entry(java_util_zip_CRC32_updateByteBuffer)
 380   }
 381 
 382   initialize_method_handle_entries();
 383 
 384   // all native method kinds (must be one contiguous block)
 385   Interpreter::_native_entry_begin = Interpreter::code()->code_end();
 386   method_entry(native)
 387   method_entry(native_synchronized)
 388   Interpreter::_native_entry_end = Interpreter::code()->code_end();
 389 
 390 #undef method_entry
 391 
 392   // Bytecodes
 393   set_entry_points_for_all_bytes();
 394   set_safepoints_for_all_bytes();
 395 }
 396 
 397 //------------------------------------------------------------------------------------------------------------------------
 398 
 399 address TemplateInterpreterGenerator::generate_error_exit(const char* msg) {
 400   address entry = __ pc();
 401   __ stop(msg);
 402   return entry;
 403 }
 404 
 405 
 406 //------------------------------------------------------------------------------------------------------------------------
 407 
 408 void TemplateInterpreterGenerator::set_entry_points_for_all_bytes() {
 409   for (int i = 0; i < DispatchTable::length; i++) {
 410     Bytecodes::Code code = (Bytecodes::Code)i;
 411     if (Bytecodes::is_defined(code)) {
 412       set_entry_points(code);
 413     } else {
 414       set_unimplemented(i);
 415     }
 416   }
 417 }
 418 
 419 
 420 void TemplateInterpreterGenerator::set_safepoints_for_all_bytes() {
 421   for (int i = 0; i < DispatchTable::length; i++) {
 422     Bytecodes::Code code = (Bytecodes::Code)i;
 423     if (Bytecodes::is_defined(code)) Interpreter::_safept_table.set_entry(code, Interpreter::_safept_entry);
 424   }
 425 }
 426 
 427 
 428 void TemplateInterpreterGenerator::set_unimplemented(int i) {
 429   address e = _unimplemented_bytecode;
 430   EntryPoint entry(e, e, e, e, e, e, e, e, e);
 431   Interpreter::_normal_table.set_entry(i, entry);
 432   Interpreter::_wentry_point[i] = _unimplemented_bytecode;
 433 }
 434 
 435 
 436 void TemplateInterpreterGenerator::set_entry_points(Bytecodes::Code code) {
 437   CodeletMark cm(_masm, Bytecodes::name(code), code);
 438   // initialize entry points
 439   assert(_unimplemented_bytecode    != NULL, "should have been generated before");
 440   assert(_illegal_bytecode_sequence != NULL, "should have been generated before");
 441   address bep = _illegal_bytecode_sequence;
 442   address cep = _illegal_bytecode_sequence;
 443   address sep = _illegal_bytecode_sequence;
 444   address aep = _illegal_bytecode_sequence;
 445   address iep = _illegal_bytecode_sequence;
 446   address lep = _illegal_bytecode_sequence;
 447   address fep = _illegal_bytecode_sequence;
 448   address dep = _illegal_bytecode_sequence;
 449   address vep = _unimplemented_bytecode;
 450   address wep = _unimplemented_bytecode;
 451   // code for short & wide version of bytecode
 452   if (Bytecodes::is_defined(code)) {
 453     Template* t = TemplateTable::template_for(code);
 454     assert(t->is_valid(), "just checking");
 455     set_short_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);
 456   }
 457   if (Bytecodes::wide_is_defined(code)) {
 458     Template* t = TemplateTable::template_for_wide(code);
 459     assert(t->is_valid(), "just checking");
 460     set_wide_entry_point(t, wep);
 461   }
 462   // set entry points
 463   EntryPoint entry(bep, cep, sep, aep, iep, lep, fep, dep, vep);
 464   Interpreter::_normal_table.set_entry(code, entry);
 465   Interpreter::_wentry_point[code] = wep;
 466 }
 467 
 468 
 469 void TemplateInterpreterGenerator::set_wide_entry_point(Template* t, address& wep) {
 470   assert(t->is_valid(), "template must exist");
 471   assert(t->tos_in() == vtos, "only vtos tos_in supported for wide instructions");
 472   wep = __ pc(); generate_and_dispatch(t);
 473 }
 474 
 475 
 476 void TemplateInterpreterGenerator::set_short_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
 477   assert(t->is_valid(), "template must exist");
 478   switch (t->tos_in()) {
 479     case btos:
 480     case ctos:
 481     case stos:
 482       ShouldNotReachHere();  // btos/ctos/stos should use itos.
 483       break;
 484     case atos: vep = __ pc(); __ pop(atos); aep = __ pc(); generate_and_dispatch(t); break;
 485     case itos: vep = __ pc(); __ pop(itos); iep = __ pc(); generate_and_dispatch(t); break;
 486     case ltos: vep = __ pc(); __ pop(ltos); lep = __ pc(); generate_and_dispatch(t); break;
 487     case ftos: vep = __ pc(); __ pop(ftos); fep = __ pc(); generate_and_dispatch(t); break;
 488     case dtos: vep = __ pc(); __ pop(dtos); dep = __ pc(); generate_and_dispatch(t); break;
 489     case vtos: set_vtos_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);     break;
 490     default  : ShouldNotReachHere();                                                 break;
 491   }
 492 }
 493 
 494 
 495 //------------------------------------------------------------------------------------------------------------------------
 496 
 497 void TemplateInterpreterGenerator::generate_and_dispatch(Template* t, TosState tos_out) {
 498   if (PrintBytecodeHistogram)                                    histogram_bytecode(t);
 499 #ifndef PRODUCT
 500   // debugging code
 501   if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) count_bytecode();
 502   if (PrintBytecodePairHistogram)                                histogram_bytecode_pair(t);
 503   if (TraceBytecodes)                                            trace_bytecode(t);
 504   if (StopInterpreterAt > 0)                                     stop_interpreter_at();
 505   __ verify_FPU(1, t->tos_in());
 506 #endif // !PRODUCT
 507   int step;
 508   if (!t->does_dispatch()) {
 509     step = t->is_wide() ? Bytecodes::wide_length_for(t->bytecode()) : Bytecodes::length_for(t->bytecode());
 510     if (tos_out == ilgl) tos_out = t->tos_out();
 511     // compute bytecode size
 512     assert(step > 0, "just checkin'");
 513     // setup stuff for dispatching next bytecode
 514     if (ProfileInterpreter && VerifyDataPointer
 515         && MethodData::bytecode_has_profile(t->bytecode())) {
 516       __ verify_method_data_pointer();
 517     }
 518     __ dispatch_prolog(tos_out, step);
 519   }
 520   // generate template
 521   t->generate(_masm);
 522   // advance
 523   if (t->does_dispatch()) {
 524 #ifdef ASSERT
 525     // make sure execution doesn't go beyond this point if code is broken
 526     __ should_not_reach_here();
 527 #endif // ASSERT
 528   } else {
 529     // dispatch to next bytecode
 530     __ dispatch_epilog(tos_out, step);
 531   }
 532 }
 533 
 534 //------------------------------------------------------------------------------------------------------------------------
 535 // Entry points
 536 
 537 address TemplateInterpreter::return_entry(TosState state, int length) {
 538   guarantee(0 <= length && length < Interpreter::number_of_return_entries, "illegal length");
 539   return _return_entry[length].entry(state);
 540 }
 541 
 542 
 543 address TemplateInterpreter::deopt_entry(TosState state, int length) {
 544   guarantee(0 <= length && length < Interpreter::number_of_deopt_entries, "illegal length");
 545   return _deopt_entry[length].entry(state);
 546 }
 547 
 548 //------------------------------------------------------------------------------------------------------------------------
 549 // Suport for invokes
 550 
 551 int TemplateInterpreter::TosState_as_index(TosState state) {
 552   assert( state < number_of_states , "Invalid state in TosState_as_index");
 553   assert(0 <= (int)state && (int)state < TemplateInterpreter::number_of_return_addrs, "index out of bounds");
 554   return (int)state;
 555 }
 556 
 557 
 558 //------------------------------------------------------------------------------------------------------------------------
 559 // Safepoint suppport
 560 
 561 static inline void copy_table(address* from, address* to, int size) {
 562   // Copy non-overlapping tables. The copy has to occur word wise for MT safety.
 563   while (size-- > 0) *to++ = *from++;
 564 }
 565 
 566 void TemplateInterpreter::notice_safepoints() {
 567   if (!_notice_safepoints) {
 568     // switch to safepoint dispatch table
 569     _notice_safepoints = true;
 570     copy_table((address*)&_safept_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
 571   }
 572 }
 573 
 574 // switch from the dispatch table which notices safepoints back to the
 575 // normal dispatch table.  So that we can notice single stepping points,
 576 // keep the safepoint dispatch table if we are single stepping in JVMTI.
 577 // Note that the should_post_single_step test is exactly as fast as the
 578 // JvmtiExport::_enabled test and covers both cases.
 579 void TemplateInterpreter::ignore_safepoints() {
 580   if (_notice_safepoints) {
 581     if (!JvmtiExport::should_post_single_step()) {
 582       // switch to normal dispatch table
 583       _notice_safepoints = false;
 584       copy_table((address*)&_normal_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
 585     }
 586   }
 587 }
 588 
 589 //------------------------------------------------------------------------------------------------------------------------
 590 // Deoptimization support
 591 
 592 // If deoptimization happens, this function returns the point of next bytecode to continue execution
 593 address TemplateInterpreter::deopt_continue_after_entry(Method* method, address bcp, int callee_parameters, bool is_top_frame) {
 594   return AbstractInterpreter::deopt_continue_after_entry(method, bcp, callee_parameters, is_top_frame);
 595 }
 596 
 597 // If deoptimization happens, this function returns the point where the interpreter reexecutes
 598 // the bytecode.
 599 // Note: Bytecodes::_athrow (C1 only) and Bytecodes::_return are the special cases
 600 //       that do not return "Interpreter::deopt_entry(vtos, 0)"
 601 address TemplateInterpreter::deopt_reexecute_entry(Method* method, address bcp) {
 602   assert(method->contains(bcp), "just checkin'");
 603   Bytecodes::Code code   = Bytecodes::java_code_at(method, bcp);
 604   if (code == Bytecodes::_return) {
 605     // This is used for deopt during registration of finalizers
 606     // during Object.<init>.  We simply need to resume execution at
 607     // the standard return vtos bytecode to pop the frame normally.
 608     // reexecuting the real bytecode would cause double registration
 609     // of the finalizable object.
 610     return _normal_table.entry(Bytecodes::_return).entry(vtos);
 611   } else {
 612     return AbstractInterpreter::deopt_reexecute_entry(method, bcp);
 613   }
 614 }
 615 
 616 // If deoptimization happens, the interpreter should reexecute this bytecode.
 617 // This function mainly helps the compilers to set up the reexecute bit.
 618 bool TemplateInterpreter::bytecode_should_reexecute(Bytecodes::Code code) {
 619   if (code == Bytecodes::_return) {
 620     //Yes, we consider Bytecodes::_return as a special case of reexecution
 621     return true;
 622   } else {
 623     return AbstractInterpreter::bytecode_should_reexecute(code);
 624   }
 625 }
 626 
 627 #endif // !CC_INTERP