1 /*
   2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/compile.hpp"
  34 #include "opto/escape.hpp"
  35 #include "opto/phaseX.hpp"
  36 #include "opto/rootnode.hpp"
  37 
  38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  39   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  40   _collecting(true),
  41   _verify(false),
  42   _compile(C),
  43   _igvn(igvn),
  44   _node_map(C->comp_arena()) {
  45   // Add unknown java object.
  46   add_java_object(C->top(), PointsToNode::GlobalEscape);
  47   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  48   // Add ConP(#NULL) and ConN(#NULL) nodes.
  49   Node* oop_null = igvn->zerocon(T_OBJECT);
  50   assert(oop_null->_idx < nodes_size(), "should be created already");
  51   add_java_object(oop_null, PointsToNode::NoEscape);
  52   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  53   if (UseCompressedOops) {
  54     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  55     assert(noop_null->_idx < nodes_size(), "should be created already");
  56     map_ideal_node(noop_null, null_obj);
  57   }
  58   _pcmp_neq = NULL; // Should be initialized
  59   _pcmp_eq  = NULL;
  60 }
  61 
  62 bool ConnectionGraph::has_candidates(Compile *C) {
  63   // EA brings benefits only when the code has allocations and/or locks which
  64   // are represented by ideal Macro nodes.
  65   int cnt = C->macro_count();
  66   for (int i = 0; i < cnt; i++) {
  67     Node *n = C->macro_node(i);
  68     if (n->is_Allocate())
  69       return true;
  70     if (n->is_Lock()) {
  71       Node* obj = n->as_Lock()->obj_node()->uncast();
  72       if (!(obj->is_Parm() || obj->is_Con()))
  73         return true;
  74     }
  75     if (n->is_CallStaticJava() &&
  76         n->as_CallStaticJava()->is_boxing_method()) {
  77       return true;
  78     }
  79   }
  80   return false;
  81 }
  82 
  83 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  84   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
  85   ResourceMark rm;
  86 
  87   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  88   // to create space for them in ConnectionGraph::_nodes[].
  89   Node* oop_null = igvn->zerocon(T_OBJECT);
  90   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  91   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  92   // Perform escape analysis
  93   if (congraph->compute_escape()) {
  94     // There are non escaping objects.
  95     C->set_congraph(congraph);
  96   }
  97   // Cleanup.
  98   if (oop_null->outcnt() == 0)
  99     igvn->hash_delete(oop_null);
 100   if (noop_null->outcnt() == 0)
 101     igvn->hash_delete(noop_null);
 102 }
 103 
 104 bool ConnectionGraph::compute_escape() {
 105   Compile* C = _compile;
 106   PhaseGVN* igvn = _igvn;
 107 
 108   // Worklists used by EA.
 109   Unique_Node_List delayed_worklist;
 110   GrowableArray<Node*> alloc_worklist;
 111   GrowableArray<Node*> ptr_cmp_worklist;
 112   GrowableArray<Node*> storestore_worklist;
 113   GrowableArray<PointsToNode*>   ptnodes_worklist;
 114   GrowableArray<JavaObjectNode*> java_objects_worklist;
 115   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 116   GrowableArray<FieldNode*>      oop_fields_worklist;
 117   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 118 
 119   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
 120 
 121   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 122   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 123   // Initialize worklist
 124   if (C->root() != NULL) {
 125     ideal_nodes.push(C->root());
 126   }
 127   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 128     Node* n = ideal_nodes.at(next);
 129     // Create PointsTo nodes and add them to Connection Graph. Called
 130     // only once per ideal node since ideal_nodes is Unique_Node list.
 131     add_node_to_connection_graph(n, &delayed_worklist);
 132     PointsToNode* ptn = ptnode_adr(n->_idx);
 133     if (ptn != NULL) {
 134       ptnodes_worklist.append(ptn);
 135       if (ptn->is_JavaObject()) {
 136         java_objects_worklist.append(ptn->as_JavaObject());
 137         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 138             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 139           // Only allocations and java static calls results are interesting.
 140           non_escaped_worklist.append(ptn->as_JavaObject());
 141         }
 142       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 143         oop_fields_worklist.append(ptn->as_Field());
 144       }
 145     }
 146     if (n->is_MergeMem()) {
 147       // Collect all MergeMem nodes to add memory slices for
 148       // scalar replaceable objects in split_unique_types().
 149       _mergemem_worklist.append(n->as_MergeMem());
 150     } else if (OptimizePtrCompare && n->is_Cmp() &&
 151                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 152       // Collect compare pointers nodes.
 153       ptr_cmp_worklist.append(n);
 154     } else if (n->is_MemBarStoreStore()) {
 155       // Collect all MemBarStoreStore nodes so that depending on the
 156       // escape status of the associated Allocate node some of them
 157       // may be eliminated.
 158       storestore_worklist.append(n);
 159     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 160                (n->req() > MemBarNode::Precedent)) {
 161       record_for_optimizer(n);
 162 #ifdef ASSERT
 163     } else if (n->is_AddP()) {
 164       // Collect address nodes for graph verification.
 165       addp_worklist.append(n);
 166 #endif
 167     }
 168     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 169       Node* m = n->fast_out(i);   // Get user
 170       ideal_nodes.push(m);
 171     }
 172   }
 173   if (non_escaped_worklist.length() == 0) {
 174     _collecting = false;
 175     return false; // Nothing to do.
 176   }
 177   // Add final simple edges to graph.
 178   while(delayed_worklist.size() > 0) {
 179     Node* n = delayed_worklist.pop();
 180     add_final_edges(n);
 181   }
 182   int ptnodes_length = ptnodes_worklist.length();
 183 
 184 #ifdef ASSERT
 185   if (VerifyConnectionGraph) {
 186     // Verify that no new simple edges could be created and all
 187     // local vars has edges.
 188     _verify = true;
 189     for (int next = 0; next < ptnodes_length; ++next) {
 190       PointsToNode* ptn = ptnodes_worklist.at(next);
 191       add_final_edges(ptn->ideal_node());
 192       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 193         ptn->dump();
 194         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 195       }
 196     }
 197     _verify = false;
 198   }
 199 #endif
 200 
 201   // 2. Finish Graph construction by propagating references to all
 202   //    java objects through graph.
 203   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 204                                  java_objects_worklist, oop_fields_worklist)) {
 205     // All objects escaped or hit time or iterations limits.
 206     _collecting = false;
 207     return false;
 208   }
 209 
 210   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 211   //    scalar replaceable allocations on alloc_worklist for processing
 212   //    in split_unique_types().
 213   int non_escaped_length = non_escaped_worklist.length();
 214   for (int next = 0; next < non_escaped_length; next++) {
 215     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 216     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 217     Node* n = ptn->ideal_node();
 218     if (n->is_Allocate()) {
 219       n->as_Allocate()->_is_non_escaping = noescape;
 220     }
 221     if (n->is_CallStaticJava()) {
 222       n->as_CallStaticJava()->_is_non_escaping = noescape;
 223     }
 224     if (noescape && ptn->scalar_replaceable()) {
 225       adjust_scalar_replaceable_state(ptn);
 226       if (ptn->scalar_replaceable()) {
 227         alloc_worklist.append(ptn->ideal_node());
 228       }
 229     }
 230   }
 231 
 232 #ifdef ASSERT
 233   if (VerifyConnectionGraph) {
 234     // Verify that graph is complete - no new edges could be added or needed.
 235     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 236                             java_objects_worklist, addp_worklist);
 237   }
 238   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 239   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 240          null_obj->edge_count() == 0 &&
 241          !null_obj->arraycopy_src() &&
 242          !null_obj->arraycopy_dst(), "sanity");
 243 #endif
 244 
 245   _collecting = false;
 246 
 247   } // TracePhase t3("connectionGraph")
 248 
 249   // 4. Optimize ideal graph based on EA information.
 250   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 251   if (has_non_escaping_obj) {
 252     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 253   }
 254 
 255 #ifndef PRODUCT
 256   if (PrintEscapeAnalysis) {
 257     dump(ptnodes_worklist); // Dump ConnectionGraph
 258   }
 259 #endif
 260 
 261   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 262 #ifdef ASSERT
 263   if (VerifyConnectionGraph) {
 264     int alloc_length = alloc_worklist.length();
 265     for (int next = 0; next < alloc_length; ++next) {
 266       Node* n = alloc_worklist.at(next);
 267       PointsToNode* ptn = ptnode_adr(n->_idx);
 268       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 269     }
 270   }
 271 #endif
 272 
 273   // 5. Separate memory graph for scalar replaceable allcations.
 274   if (has_scalar_replaceable_candidates &&
 275       C->AliasLevel() >= 3 && EliminateAllocations) {
 276     // Now use the escape information to create unique types for
 277     // scalar replaceable objects.
 278     split_unique_types(alloc_worklist);
 279     if (C->failing())  return false;
 280     C->print_method(PHASE_AFTER_EA, 2);
 281 
 282 #ifdef ASSERT
 283   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 284     tty->print("=== No allocations eliminated for ");
 285     C->method()->print_short_name();
 286     if(!EliminateAllocations) {
 287       tty->print(" since EliminateAllocations is off ===");
 288     } else if(!has_scalar_replaceable_candidates) {
 289       tty->print(" since there are no scalar replaceable candidates ===");
 290     } else if(C->AliasLevel() < 3) {
 291       tty->print(" since AliasLevel < 3 ===");
 292     }
 293     tty->cr();
 294 #endif
 295   }
 296   return has_non_escaping_obj;
 297 }
 298 
 299 // Utility function for nodes that load an object
 300 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 301   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 302   // ThreadLocal has RawPtr type.
 303   const Type* t = _igvn->type(n);
 304   if (t->make_ptr() != NULL) {
 305     Node* adr = n->in(MemNode::Address);
 306 #ifdef ASSERT
 307     if (!adr->is_AddP()) {
 308       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 309     } else {
 310       assert((ptnode_adr(adr->_idx) == NULL ||
 311               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 312     }
 313 #endif
 314     add_local_var_and_edge(n, PointsToNode::NoEscape,
 315                            adr, delayed_worklist);
 316   }
 317 }
 318 
 319 // Populate Connection Graph with PointsTo nodes and create simple
 320 // connection graph edges.
 321 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 322   assert(!_verify, "this method sould not be called for verification");
 323   PhaseGVN* igvn = _igvn;
 324   uint n_idx = n->_idx;
 325   PointsToNode* n_ptn = ptnode_adr(n_idx);
 326   if (n_ptn != NULL)
 327     return; // No need to redefine PointsTo node during first iteration.
 328 
 329   if (n->is_Call()) {
 330     // Arguments to allocation and locking don't escape.
 331     if (n->is_AbstractLock()) {
 332       // Put Lock and Unlock nodes on IGVN worklist to process them during
 333       // first IGVN optimization when escape information is still available.
 334       record_for_optimizer(n);
 335     } else if (n->is_Allocate()) {
 336       add_call_node(n->as_Call());
 337       record_for_optimizer(n);
 338     } else {
 339       if (n->is_CallStaticJava()) {
 340         const char* name = n->as_CallStaticJava()->_name;
 341         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 342           return; // Skip uncommon traps
 343       }
 344       // Don't mark as processed since call's arguments have to be processed.
 345       delayed_worklist->push(n);
 346       // Check if a call returns an object.
 347       if ((n->as_Call()->returns_pointer() &&
 348            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
 349           (n->is_CallStaticJava() &&
 350            n->as_CallStaticJava()->is_boxing_method())) {
 351         add_call_node(n->as_Call());
 352       }
 353     }
 354     return;
 355   }
 356   // Put this check here to process call arguments since some call nodes
 357   // point to phantom_obj.
 358   if (n_ptn == phantom_obj || n_ptn == null_obj)
 359     return; // Skip predefined nodes.
 360 
 361   int opcode = n->Opcode();
 362   switch (opcode) {
 363     case Op_AddP: {
 364       Node* base = get_addp_base(n);
 365       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 366       // Field nodes are created for all field types. They are used in
 367       // adjust_scalar_replaceable_state() and split_unique_types().
 368       // Note, non-oop fields will have only base edges in Connection
 369       // Graph because such fields are not used for oop loads and stores.
 370       int offset = address_offset(n, igvn);
 371       add_field(n, PointsToNode::NoEscape, offset);
 372       if (ptn_base == NULL) {
 373         delayed_worklist->push(n); // Process it later.
 374       } else {
 375         n_ptn = ptnode_adr(n_idx);
 376         add_base(n_ptn->as_Field(), ptn_base);
 377       }
 378       break;
 379     }
 380     case Op_CastX2P: {
 381       map_ideal_node(n, phantom_obj);
 382       break;
 383     }
 384     case Op_CastPP:
 385     case Op_CheckCastPP:
 386     case Op_EncodeP:
 387     case Op_DecodeN:
 388     case Op_EncodePKlass:
 389     case Op_DecodeNKlass: {
 390       add_local_var_and_edge(n, PointsToNode::NoEscape,
 391                              n->in(1), delayed_worklist);
 392       break;
 393     }
 394     case Op_CMoveP: {
 395       add_local_var(n, PointsToNode::NoEscape);
 396       // Do not add edges during first iteration because some could be
 397       // not defined yet.
 398       delayed_worklist->push(n);
 399       break;
 400     }
 401     case Op_ConP:
 402     case Op_ConN:
 403     case Op_ConNKlass: {
 404       // assume all oop constants globally escape except for null
 405       PointsToNode::EscapeState es;
 406       const Type* t = igvn->type(n);
 407       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 408         es = PointsToNode::NoEscape;
 409       } else {
 410         es = PointsToNode::GlobalEscape;
 411       }
 412       add_java_object(n, es);
 413       break;
 414     }
 415     case Op_CreateEx: {
 416       // assume that all exception objects globally escape
 417       add_java_object(n, PointsToNode::GlobalEscape);
 418       break;
 419     }
 420     case Op_LoadKlass:
 421     case Op_LoadNKlass: {
 422       // Unknown class is loaded
 423       map_ideal_node(n, phantom_obj);
 424       break;
 425     }
 426     case Op_LoadP:
 427     case Op_LoadN:
 428     case Op_LoadPLocked: {
 429       add_objload_to_connection_graph(n, delayed_worklist);
 430       break;
 431     }
 432     case Op_Parm: {
 433       map_ideal_node(n, phantom_obj);
 434       break;
 435     }
 436     case Op_PartialSubtypeCheck: {
 437       // Produces Null or notNull and is used in only in CmpP so
 438       // phantom_obj could be used.
 439       map_ideal_node(n, phantom_obj); // Result is unknown
 440       break;
 441     }
 442     case Op_Phi: {
 443       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 444       // ThreadLocal has RawPtr type.
 445       const Type* t = n->as_Phi()->type();
 446       if (t->make_ptr() != NULL) {
 447         add_local_var(n, PointsToNode::NoEscape);
 448         // Do not add edges during first iteration because some could be
 449         // not defined yet.
 450         delayed_worklist->push(n);
 451       }
 452       break;
 453     }
 454     case Op_Proj: {
 455       // we are only interested in the oop result projection from a call
 456       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 457           n->in(0)->as_Call()->returns_pointer()) {
 458         add_local_var_and_edge(n, PointsToNode::NoEscape,
 459                                n->in(0), delayed_worklist);
 460       }
 461       break;
 462     }
 463     case Op_Rethrow: // Exception object escapes
 464     case Op_Return: {
 465       if (n->req() > TypeFunc::Parms &&
 466           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 467         // Treat Return value as LocalVar with GlobalEscape escape state.
 468         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 469                                n->in(TypeFunc::Parms), delayed_worklist);
 470       }
 471       break;
 472     }
 473     case Op_GetAndSetP:
 474     case Op_GetAndSetN: {
 475       add_objload_to_connection_graph(n, delayed_worklist);
 476       // fallthrough
 477     }
 478     case Op_StoreP:
 479     case Op_StoreN:
 480     case Op_StoreNKlass:
 481     case Op_StorePConditional:
 482     case Op_CompareAndSwapP:
 483     case Op_CompareAndSwapN: {
 484       Node* adr = n->in(MemNode::Address);
 485       const Type *adr_type = igvn->type(adr);
 486       adr_type = adr_type->make_ptr();
 487       if (adr_type == NULL) {
 488         break; // skip dead nodes
 489       }
 490       if (adr_type->isa_oopptr() ||
 491           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 492                         (adr_type == TypeRawPtr::NOTNULL &&
 493                          adr->in(AddPNode::Address)->is_Proj() &&
 494                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 495         delayed_worklist->push(n); // Process it later.
 496 #ifdef ASSERT
 497         assert(adr->is_AddP(), "expecting an AddP");
 498         if (adr_type == TypeRawPtr::NOTNULL) {
 499           // Verify a raw address for a store captured by Initialize node.
 500           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 501           assert(offs != Type::OffsetBot, "offset must be a constant");
 502         }
 503 #endif
 504       } else {
 505         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 506         if (adr->is_BoxLock())
 507           break;
 508         // Stored value escapes in unsafe access.
 509         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 510           // Pointer stores in G1 barriers looks like unsafe access.
 511           // Ignore such stores to be able scalar replace non-escaping
 512           // allocations.
 513           if (UseG1GC && adr->is_AddP()) {
 514             Node* base = get_addp_base(adr);
 515             if (base->Opcode() == Op_LoadP &&
 516                 base->in(MemNode::Address)->is_AddP()) {
 517               adr = base->in(MemNode::Address);
 518               Node* tls = get_addp_base(adr);
 519               if (tls->Opcode() == Op_ThreadLocal) {
 520                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 521                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
 522                                      PtrQueue::byte_offset_of_buf())) {
 523                   break; // G1 pre barier previous oop value store.
 524                 }
 525                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
 526                                      PtrQueue::byte_offset_of_buf())) {
 527                   break; // G1 post barier card address store.
 528                 }
 529               }
 530             }
 531           }
 532           delayed_worklist->push(n); // Process unsafe access later.
 533           break;
 534         }
 535 #ifdef ASSERT
 536         n->dump(1);
 537         assert(false, "not unsafe or G1 barrier raw StoreP");
 538 #endif
 539       }
 540       break;
 541     }
 542     case Op_AryEq:
 543     case Op_StrComp:
 544     case Op_StrEquals:
 545     case Op_StrIndexOf:
 546     case Op_EncodeISOArray: {
 547       add_local_var(n, PointsToNode::ArgEscape);
 548       delayed_worklist->push(n); // Process it later.
 549       break;
 550     }
 551     case Op_ThreadLocal: {
 552       add_java_object(n, PointsToNode::ArgEscape);
 553       break;
 554     }
 555     default:
 556       ; // Do nothing for nodes not related to EA.
 557   }
 558   return;
 559 }
 560 
 561 #ifdef ASSERT
 562 #define ELSE_FAIL(name)                               \
 563       /* Should not be called for not pointer type. */  \
 564       n->dump(1);                                       \
 565       assert(false, name);                              \
 566       break;
 567 #else
 568 #define ELSE_FAIL(name) \
 569       break;
 570 #endif
 571 
 572 // Add final simple edges to graph.
 573 void ConnectionGraph::add_final_edges(Node *n) {
 574   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 575 #ifdef ASSERT
 576   if (_verify && n_ptn->is_JavaObject())
 577     return; // This method does not change graph for JavaObject.
 578 #endif
 579 
 580   if (n->is_Call()) {
 581     process_call_arguments(n->as_Call());
 582     return;
 583   }
 584   assert(n->is_Store() || n->is_LoadStore() ||
 585          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 586          "node should be registered already");
 587   int opcode = n->Opcode();
 588   switch (opcode) {
 589     case Op_AddP: {
 590       Node* base = get_addp_base(n);
 591       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 592       assert(ptn_base != NULL, "field's base should be registered");
 593       add_base(n_ptn->as_Field(), ptn_base);
 594       break;
 595     }
 596     case Op_CastPP:
 597     case Op_CheckCastPP:
 598     case Op_EncodeP:
 599     case Op_DecodeN:
 600     case Op_EncodePKlass:
 601     case Op_DecodeNKlass: {
 602       add_local_var_and_edge(n, PointsToNode::NoEscape,
 603                              n->in(1), NULL);
 604       break;
 605     }
 606     case Op_CMoveP: {
 607       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 608         Node* in = n->in(i);
 609         if (in == NULL)
 610           continue;  // ignore NULL
 611         Node* uncast_in = in->uncast();
 612         if (uncast_in->is_top() || uncast_in == n)
 613           continue;  // ignore top or inputs which go back this node
 614         PointsToNode* ptn = ptnode_adr(in->_idx);
 615         assert(ptn != NULL, "node should be registered");
 616         add_edge(n_ptn, ptn);
 617       }
 618       break;
 619     }
 620     case Op_LoadP:
 621     case Op_LoadN:
 622     case Op_LoadPLocked: {
 623       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 624       // ThreadLocal has RawPtr type.
 625       const Type* t = _igvn->type(n);
 626       if (t->make_ptr() != NULL) {
 627         Node* adr = n->in(MemNode::Address);
 628         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 629         break;
 630       }
 631       ELSE_FAIL("Op_LoadP");
 632     }
 633     case Op_Phi: {
 634       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 635       // ThreadLocal has RawPtr type.
 636       const Type* t = n->as_Phi()->type();
 637       if (t->make_ptr() != NULL) {
 638         for (uint i = 1; i < n->req(); i++) {
 639           Node* in = n->in(i);
 640           if (in == NULL)
 641             continue;  // ignore NULL
 642           Node* uncast_in = in->uncast();
 643           if (uncast_in->is_top() || uncast_in == n)
 644             continue;  // ignore top or inputs which go back this node
 645           PointsToNode* ptn = ptnode_adr(in->_idx);
 646           assert(ptn != NULL, "node should be registered");
 647           add_edge(n_ptn, ptn);
 648         }
 649         break;
 650       }
 651       ELSE_FAIL("Op_Phi");
 652     }
 653     case Op_Proj: {
 654       // we are only interested in the oop result projection from a call
 655       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 656           n->in(0)->as_Call()->returns_pointer()) {
 657         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 658         break;
 659       }
 660       ELSE_FAIL("Op_Proj");
 661     }
 662     case Op_Rethrow: // Exception object escapes
 663     case Op_Return: {
 664       if (n->req() > TypeFunc::Parms &&
 665           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 666         // Treat Return value as LocalVar with GlobalEscape escape state.
 667         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 668                                n->in(TypeFunc::Parms), NULL);
 669         break;
 670       }
 671       ELSE_FAIL("Op_Return");
 672     }
 673     case Op_StoreP:
 674     case Op_StoreN:
 675     case Op_StoreNKlass:
 676     case Op_StorePConditional:
 677     case Op_CompareAndSwapP:
 678     case Op_CompareAndSwapN:
 679     case Op_GetAndSetP:
 680     case Op_GetAndSetN: {
 681       Node* adr = n->in(MemNode::Address);
 682       const Type *adr_type = _igvn->type(adr);
 683       adr_type = adr_type->make_ptr();
 684 #ifdef ASSERT
 685       if (adr_type == NULL) {
 686         n->dump(1);
 687         assert(adr_type != NULL, "dead node should not be on list");
 688         break;
 689       }
 690 #endif
 691       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
 692         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 693       }
 694       if (adr_type->isa_oopptr() ||
 695           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 696                         (adr_type == TypeRawPtr::NOTNULL &&
 697                          adr->in(AddPNode::Address)->is_Proj() &&
 698                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 699         // Point Address to Value
 700         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 701         assert(adr_ptn != NULL &&
 702                adr_ptn->as_Field()->is_oop(), "node should be registered");
 703         Node *val = n->in(MemNode::ValueIn);
 704         PointsToNode* ptn = ptnode_adr(val->_idx);
 705         assert(ptn != NULL, "node should be registered");
 706         add_edge(adr_ptn, ptn);
 707         break;
 708       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 709         // Stored value escapes in unsafe access.
 710         Node *val = n->in(MemNode::ValueIn);
 711         PointsToNode* ptn = ptnode_adr(val->_idx);
 712         assert(ptn != NULL, "node should be registered");
 713         ptn->set_escape_state(PointsToNode::GlobalEscape);
 714         // Add edge to object for unsafe access with offset.
 715         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 716         assert(adr_ptn != NULL, "node should be registered");
 717         if (adr_ptn->is_Field()) {
 718           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 719           add_edge(adr_ptn, ptn);
 720         }
 721         break;
 722       }
 723       ELSE_FAIL("Op_StoreP");
 724     }
 725     case Op_AryEq:
 726     case Op_StrComp:
 727     case Op_StrEquals:
 728     case Op_StrIndexOf:
 729     case Op_EncodeISOArray: {
 730       // char[] arrays passed to string intrinsic do not escape but
 731       // they are not scalar replaceable. Adjust escape state for them.
 732       // Start from in(2) edge since in(1) is memory edge.
 733       for (uint i = 2; i < n->req(); i++) {
 734         Node* adr = n->in(i);
 735         const Type* at = _igvn->type(adr);
 736         if (!adr->is_top() && at->isa_ptr()) {
 737           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 738                  at->isa_ptr() != NULL, "expecting a pointer");
 739           if (adr->is_AddP()) {
 740             adr = get_addp_base(adr);
 741           }
 742           PointsToNode* ptn = ptnode_adr(adr->_idx);
 743           assert(ptn != NULL, "node should be registered");
 744           add_edge(n_ptn, ptn);
 745         }
 746       }
 747       break;
 748     }
 749     default: {
 750       // This method should be called only for EA specific nodes which may
 751       // miss some edges when they were created.
 752 #ifdef ASSERT
 753       n->dump(1);
 754 #endif
 755       guarantee(false, "unknown node");
 756     }
 757   }
 758   return;
 759 }
 760 
 761 void ConnectionGraph::add_call_node(CallNode* call) {
 762   assert(call->returns_pointer(), "only for call which returns pointer");
 763   uint call_idx = call->_idx;
 764   if (call->is_Allocate()) {
 765     Node* k = call->in(AllocateNode::KlassNode);
 766     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 767     assert(kt != NULL, "TypeKlassPtr  required.");
 768     ciKlass* cik = kt->klass();
 769     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 770     bool scalar_replaceable = true;
 771     if (call->is_AllocateArray()) {
 772       if (!cik->is_array_klass()) { // StressReflectiveCode
 773         es = PointsToNode::GlobalEscape;
 774       } else {
 775         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 776         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 777           // Not scalar replaceable if the length is not constant or too big.
 778           scalar_replaceable = false;
 779         }
 780       }
 781     } else {  // Allocate instance
 782       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 783          !cik->is_instance_klass() || // StressReflectiveCode
 784           cik->as_instance_klass()->has_finalizer()) {
 785         es = PointsToNode::GlobalEscape;
 786       }
 787     }
 788     add_java_object(call, es);
 789     PointsToNode* ptn = ptnode_adr(call_idx);
 790     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 791       ptn->set_scalar_replaceable(false);
 792     }
 793   } else if (call->is_CallStaticJava()) {
 794     // Call nodes could be different types:
 795     //
 796     // 1. CallDynamicJavaNode (what happened during call is unknown):
 797     //
 798     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 799     //
 800     //    - all oop arguments are escaping globally;
 801     //
 802     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 803     //
 804     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 805     //
 806     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 807     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 808     //      during call is returned;
 809     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 810     //      which are returned and does not escape during call;
 811     //
 812     //    - oop arguments escaping status is defined by bytecode analysis;
 813     //
 814     // For a static call, we know exactly what method is being called.
 815     // Use bytecode estimator to record whether the call's return value escapes.
 816     ciMethod* meth = call->as_CallJava()->method();
 817     if (meth == NULL) {
 818       const char* name = call->as_CallStaticJava()->_name;
 819       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 820       // Returns a newly allocated unescaped object.
 821       add_java_object(call, PointsToNode::NoEscape);
 822       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 823     } else if (meth->is_boxing_method()) {
 824       // Returns boxing object
 825       PointsToNode::EscapeState es;
 826       vmIntrinsics::ID intr = meth->intrinsic_id();
 827       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 828         // It does not escape if object is always allocated.
 829         es = PointsToNode::NoEscape;
 830       } else {
 831         // It escapes globally if object could be loaded from cache.
 832         es = PointsToNode::GlobalEscape;
 833       }
 834       add_java_object(call, es);
 835     } else {
 836       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 837       call_analyzer->copy_dependencies(_compile->dependencies());
 838       if (call_analyzer->is_return_allocated()) {
 839         // Returns a newly allocated unescaped object, simply
 840         // update dependency information.
 841         // Mark it as NoEscape so that objects referenced by
 842         // it's fields will be marked as NoEscape at least.
 843         add_java_object(call, PointsToNode::NoEscape);
 844         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 845       } else {
 846         // Determine whether any arguments are returned.
 847         const TypeTuple* d = call->tf()->domain();
 848         bool ret_arg = false;
 849         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 850           if (d->field_at(i)->isa_ptr() != NULL &&
 851               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 852             ret_arg = true;
 853             break;
 854           }
 855         }
 856         if (ret_arg) {
 857           add_local_var(call, PointsToNode::ArgEscape);
 858         } else {
 859           // Returns unknown object.
 860           map_ideal_node(call, phantom_obj);
 861         }
 862       }
 863     }
 864   } else {
 865     // An other type of call, assume the worst case:
 866     // returned value is unknown and globally escapes.
 867     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 868     map_ideal_node(call, phantom_obj);
 869   }
 870 }
 871 
 872 void ConnectionGraph::process_call_arguments(CallNode *call) {
 873     bool is_arraycopy = false;
 874     switch (call->Opcode()) {
 875 #ifdef ASSERT
 876     case Op_Allocate:
 877     case Op_AllocateArray:
 878     case Op_Lock:
 879     case Op_Unlock:
 880       assert(false, "should be done already");
 881       break;
 882 #endif
 883     case Op_CallLeafNoFP:
 884       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
 885                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
 886       // fall through
 887     case Op_CallLeaf: {
 888       // Stub calls, objects do not escape but they are not scale replaceable.
 889       // Adjust escape state for outgoing arguments.
 890       const TypeTuple * d = call->tf()->domain();
 891       bool src_has_oops = false;
 892       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 893         const Type* at = d->field_at(i);
 894         Node *arg = call->in(i);
 895         const Type *aat = _igvn->type(arg);
 896         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 897           continue;
 898         if (arg->is_AddP()) {
 899           //
 900           // The inline_native_clone() case when the arraycopy stub is called
 901           // after the allocation before Initialize and CheckCastPP nodes.
 902           // Or normal arraycopy for object arrays case.
 903           //
 904           // Set AddP's base (Allocate) as not scalar replaceable since
 905           // pointer to the base (with offset) is passed as argument.
 906           //
 907           arg = get_addp_base(arg);
 908         }
 909         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 910         assert(arg_ptn != NULL, "should be registered");
 911         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 912         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 913           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 914                  aat->isa_ptr() != NULL, "expecting an Ptr");
 915           bool arg_has_oops = aat->isa_oopptr() &&
 916                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 917                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 918           if (i == TypeFunc::Parms) {
 919             src_has_oops = arg_has_oops;
 920           }
 921           //
 922           // src or dst could be j.l.Object when other is basic type array:
 923           //
 924           //   arraycopy(char[],0,Object*,0,size);
 925           //   arraycopy(Object*,0,char[],0,size);
 926           //
 927           // Don't add edges in such cases.
 928           //
 929           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 930                                        arg_has_oops && (i > TypeFunc::Parms);
 931 #ifdef ASSERT
 932           if (!(is_arraycopy ||
 933                 (call->as_CallLeaf()->_name != NULL &&
 934                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
 935                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
 936                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 937                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 938                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 939                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0)
 940                   ))) {
 941             call->dump();
 942             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
 943           }
 944 #endif
 945           // Always process arraycopy's destination object since
 946           // we need to add all possible edges to references in
 947           // source object.
 948           if (arg_esc >= PointsToNode::ArgEscape &&
 949               !arg_is_arraycopy_dest) {
 950             continue;
 951           }
 952           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
 953           if (arg_is_arraycopy_dest) {
 954             Node* src = call->in(TypeFunc::Parms);
 955             if (src->is_AddP()) {
 956               src = get_addp_base(src);
 957             }
 958             PointsToNode* src_ptn = ptnode_adr(src->_idx);
 959             assert(src_ptn != NULL, "should be registered");
 960             if (arg_ptn != src_ptn) {
 961               // Special arraycopy edge:
 962               // A destination object's field can't have the source object
 963               // as base since objects escape states are not related.
 964               // Only escape state of destination object's fields affects
 965               // escape state of fields in source object.
 966               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
 967             }
 968           }
 969         }
 970       }
 971       break;
 972     }
 973     case Op_CallStaticJava: {
 974       // For a static call, we know exactly what method is being called.
 975       // Use bytecode estimator to record the call's escape affects
 976 #ifdef ASSERT
 977       const char* name = call->as_CallStaticJava()->_name;
 978       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
 979 #endif
 980       ciMethod* meth = call->as_CallJava()->method();
 981       if ((meth != NULL) && meth->is_boxing_method()) {
 982         break; // Boxing methods do not modify any oops.
 983       }
 984       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
 985       // fall-through if not a Java method or no analyzer information
 986       if (call_analyzer != NULL) {
 987         PointsToNode* call_ptn = ptnode_adr(call->_idx);
 988         const TypeTuple* d = call->tf()->domain();
 989         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 990           const Type* at = d->field_at(i);
 991           int k = i - TypeFunc::Parms;
 992           Node* arg = call->in(i);
 993           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 994           if (at->isa_ptr() != NULL &&
 995               call_analyzer->is_arg_returned(k)) {
 996             // The call returns arguments.
 997             if (call_ptn != NULL) { // Is call's result used?
 998               assert(call_ptn->is_LocalVar(), "node should be registered");
 999               assert(arg_ptn != NULL, "node should be registered");
1000               add_edge(call_ptn, arg_ptn);
1001             }
1002           }
1003           if (at->isa_oopptr() != NULL &&
1004               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1005             if (!call_analyzer->is_arg_stack(k)) {
1006               // The argument global escapes
1007               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1008             } else {
1009               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1010               if (!call_analyzer->is_arg_local(k)) {
1011                 // The argument itself doesn't escape, but any fields might
1012                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1013               }
1014             }
1015           }
1016         }
1017         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1018           // The call returns arguments.
1019           assert(call_ptn->edge_count() > 0, "sanity");
1020           if (!call_analyzer->is_return_local()) {
1021             // Returns also unknown object.
1022             add_edge(call_ptn, phantom_obj);
1023           }
1024         }
1025         break;
1026       }
1027     }
1028     default: {
1029       // Fall-through here if not a Java method or no analyzer information
1030       // or some other type of call, assume the worst case: all arguments
1031       // globally escape.
1032       const TypeTuple* d = call->tf()->domain();
1033       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1034         const Type* at = d->field_at(i);
1035         if (at->isa_oopptr() != NULL) {
1036           Node* arg = call->in(i);
1037           if (arg->is_AddP()) {
1038             arg = get_addp_base(arg);
1039           }
1040           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1041           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1042         }
1043       }
1044     }
1045   }
1046 }
1047 
1048 
1049 // Finish Graph construction.
1050 bool ConnectionGraph::complete_connection_graph(
1051                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1052                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1053                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1054                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1055   // Normally only 1-3 passes needed to build Connection Graph depending
1056   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1057   // Set limit to 20 to catch situation when something did go wrong and
1058   // bailout Escape Analysis.
1059   // Also limit build time to 30 sec (60 in debug VM).
1060 #define CG_BUILD_ITER_LIMIT 20
1061 #ifdef ASSERT
1062 #define CG_BUILD_TIME_LIMIT 60.0
1063 #else
1064 #define CG_BUILD_TIME_LIMIT 30.0
1065 #endif
1066 
1067   // Propagate GlobalEscape and ArgEscape escape states and check that
1068   // we still have non-escaping objects. The method pushs on _worklist
1069   // Field nodes which reference phantom_object.
1070   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1071     return false; // Nothing to do.
1072   }
1073   // Now propagate references to all JavaObject nodes.
1074   int java_objects_length = java_objects_worklist.length();
1075   elapsedTimer time;
1076   int new_edges = 1;
1077   int iterations = 0;
1078   do {
1079     while ((new_edges > 0) &&
1080           (iterations++   < CG_BUILD_ITER_LIMIT) &&
1081           (time.seconds() < CG_BUILD_TIME_LIMIT)) {
1082       time.start();
1083       new_edges = 0;
1084       // Propagate references to phantom_object for nodes pushed on _worklist
1085       // by find_non_escaped_objects() and find_field_value().
1086       new_edges += add_java_object_edges(phantom_obj, false);
1087       for (int next = 0; next < java_objects_length; ++next) {
1088         JavaObjectNode* ptn = java_objects_worklist.at(next);
1089         new_edges += add_java_object_edges(ptn, true);
1090       }
1091       if (new_edges > 0) {
1092         // Update escape states on each iteration if graph was updated.
1093         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1094           return false; // Nothing to do.
1095         }
1096       }
1097       time.stop();
1098     }
1099     if ((iterations     < CG_BUILD_ITER_LIMIT) &&
1100         (time.seconds() < CG_BUILD_TIME_LIMIT)) {
1101       time.start();
1102       // Find fields which have unknown value.
1103       int fields_length = oop_fields_worklist.length();
1104       for (int next = 0; next < fields_length; next++) {
1105         FieldNode* field = oop_fields_worklist.at(next);
1106         if (field->edge_count() == 0) {
1107           new_edges += find_field_value(field);
1108           // This code may added new edges to phantom_object.
1109           // Need an other cycle to propagate references to phantom_object.
1110         }
1111       }
1112       time.stop();
1113     } else {
1114       new_edges = 0; // Bailout
1115     }
1116   } while (new_edges > 0);
1117 
1118   // Bailout if passed limits.
1119   if ((iterations     >= CG_BUILD_ITER_LIMIT) ||
1120       (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
1121     Compile* C = _compile;
1122     if (C->log() != NULL) {
1123       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1124       C->log()->text("%s", (iterations >= CG_BUILD_ITER_LIMIT) ? "iterations" : "time");
1125       C->log()->end_elem(" limit'");
1126     }
1127     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1128            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
1129     // Possible infinite build_connection_graph loop,
1130     // bailout (no changes to ideal graph were made).
1131     return false;
1132   }
1133 #ifdef ASSERT
1134   if (Verbose && PrintEscapeAnalysis) {
1135     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1136                   iterations, nodes_size(), ptnodes_worklist.length());
1137   }
1138 #endif
1139 
1140 #undef CG_BUILD_ITER_LIMIT
1141 #undef CG_BUILD_TIME_LIMIT
1142 
1143   // Find fields initialized by NULL for non-escaping Allocations.
1144   int non_escaped_length = non_escaped_worklist.length();
1145   for (int next = 0; next < non_escaped_length; next++) {
1146     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1147     PointsToNode::EscapeState es = ptn->escape_state();
1148     assert(es <= PointsToNode::ArgEscape, "sanity");
1149     if (es == PointsToNode::NoEscape) {
1150       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1151         // Adding references to NULL object does not change escape states
1152         // since it does not escape. Also no fields are added to NULL object.
1153         add_java_object_edges(null_obj, false);
1154       }
1155     }
1156     Node* n = ptn->ideal_node();
1157     if (n->is_Allocate()) {
1158       // The object allocated by this Allocate node will never be
1159       // seen by an other thread. Mark it so that when it is
1160       // expanded no MemBarStoreStore is added.
1161       InitializeNode* ini = n->as_Allocate()->initialization();
1162       if (ini != NULL)
1163         ini->set_does_not_escape();
1164     }
1165   }
1166   return true; // Finished graph construction.
1167 }
1168 
1169 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1170 // and check that we still have non-escaping java objects.
1171 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1172                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1173   GrowableArray<PointsToNode*> escape_worklist;
1174   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1175   int ptnodes_length = ptnodes_worklist.length();
1176   for (int next = 0; next < ptnodes_length; ++next) {
1177     PointsToNode* ptn = ptnodes_worklist.at(next);
1178     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1179         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1180       escape_worklist.push(ptn);
1181     }
1182   }
1183   // Set escape states to referenced nodes (edges list).
1184   while (escape_worklist.length() > 0) {
1185     PointsToNode* ptn = escape_worklist.pop();
1186     PointsToNode::EscapeState es  = ptn->escape_state();
1187     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1188     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1189         es >= PointsToNode::ArgEscape) {
1190       // GlobalEscape or ArgEscape state of field means it has unknown value.
1191       if (add_edge(ptn, phantom_obj)) {
1192         // New edge was added
1193         add_field_uses_to_worklist(ptn->as_Field());
1194       }
1195     }
1196     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1197       PointsToNode* e = i.get();
1198       if (e->is_Arraycopy()) {
1199         assert(ptn->arraycopy_dst(), "sanity");
1200         // Propagate only fields escape state through arraycopy edge.
1201         if (e->fields_escape_state() < field_es) {
1202           set_fields_escape_state(e, field_es);
1203           escape_worklist.push(e);
1204         }
1205       } else if (es >= field_es) {
1206         // fields_escape_state is also set to 'es' if it is less than 'es'.
1207         if (e->escape_state() < es) {
1208           set_escape_state(e, es);
1209           escape_worklist.push(e);
1210         }
1211       } else {
1212         // Propagate field escape state.
1213         bool es_changed = false;
1214         if (e->fields_escape_state() < field_es) {
1215           set_fields_escape_state(e, field_es);
1216           es_changed = true;
1217         }
1218         if ((e->escape_state() < field_es) &&
1219             e->is_Field() && ptn->is_JavaObject() &&
1220             e->as_Field()->is_oop()) {
1221           // Change escape state of referenced fileds.
1222           set_escape_state(e, field_es);
1223           es_changed = true;;
1224         } else if (e->escape_state() < es) {
1225           set_escape_state(e, es);
1226           es_changed = true;;
1227         }
1228         if (es_changed) {
1229           escape_worklist.push(e);
1230         }
1231       }
1232     }
1233   }
1234   // Remove escaped objects from non_escaped list.
1235   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1236     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1237     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1238       non_escaped_worklist.delete_at(next);
1239     }
1240     if (ptn->escape_state() == PointsToNode::NoEscape) {
1241       // Find fields in non-escaped allocations which have unknown value.
1242       find_init_values(ptn, phantom_obj, NULL);
1243     }
1244   }
1245   return (non_escaped_worklist.length() > 0);
1246 }
1247 
1248 // Add all references to JavaObject node by walking over all uses.
1249 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1250   int new_edges = 0;
1251   if (populate_worklist) {
1252     // Populate _worklist by uses of jobj's uses.
1253     for (UseIterator i(jobj); i.has_next(); i.next()) {
1254       PointsToNode* use = i.get();
1255       if (use->is_Arraycopy())
1256         continue;
1257       add_uses_to_worklist(use);
1258       if (use->is_Field() && use->as_Field()->is_oop()) {
1259         // Put on worklist all field's uses (loads) and
1260         // related field nodes (same base and offset).
1261         add_field_uses_to_worklist(use->as_Field());
1262       }
1263     }
1264   }
1265   while(_worklist.length() > 0) {
1266     PointsToNode* use = _worklist.pop();
1267     if (PointsToNode::is_base_use(use)) {
1268       // Add reference from jobj to field and from field to jobj (field's base).
1269       use = PointsToNode::get_use_node(use)->as_Field();
1270       if (add_base(use->as_Field(), jobj)) {
1271         new_edges++;
1272       }
1273       continue;
1274     }
1275     assert(!use->is_JavaObject(), "sanity");
1276     if (use->is_Arraycopy()) {
1277       if (jobj == null_obj) // NULL object does not have field edges
1278         continue;
1279       // Added edge from Arraycopy node to arraycopy's source java object
1280       if (add_edge(use, jobj)) {
1281         jobj->set_arraycopy_src();
1282         new_edges++;
1283       }
1284       // and stop here.
1285       continue;
1286     }
1287     if (!add_edge(use, jobj))
1288       continue; // No new edge added, there was such edge already.
1289     new_edges++;
1290     if (use->is_LocalVar()) {
1291       add_uses_to_worklist(use);
1292       if (use->arraycopy_dst()) {
1293         for (EdgeIterator i(use); i.has_next(); i.next()) {
1294           PointsToNode* e = i.get();
1295           if (e->is_Arraycopy()) {
1296             if (jobj == null_obj) // NULL object does not have field edges
1297               continue;
1298             // Add edge from arraycopy's destination java object to Arraycopy node.
1299             if (add_edge(jobj, e)) {
1300               new_edges++;
1301               jobj->set_arraycopy_dst();
1302             }
1303           }
1304         }
1305       }
1306     } else {
1307       // Added new edge to stored in field values.
1308       // Put on worklist all field's uses (loads) and
1309       // related field nodes (same base and offset).
1310       add_field_uses_to_worklist(use->as_Field());
1311     }
1312   }
1313   return new_edges;
1314 }
1315 
1316 // Put on worklist all related field nodes.
1317 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1318   assert(field->is_oop(), "sanity");
1319   int offset = field->offset();
1320   add_uses_to_worklist(field);
1321   // Loop over all bases of this field and push on worklist Field nodes
1322   // with the same offset and base (since they may reference the same field).
1323   for (BaseIterator i(field); i.has_next(); i.next()) {
1324     PointsToNode* base = i.get();
1325     add_fields_to_worklist(field, base);
1326     // Check if the base was source object of arraycopy and go over arraycopy's
1327     // destination objects since values stored to a field of source object are
1328     // accessable by uses (loads) of fields of destination objects.
1329     if (base->arraycopy_src()) {
1330       for (UseIterator j(base); j.has_next(); j.next()) {
1331         PointsToNode* arycp = j.get();
1332         if (arycp->is_Arraycopy()) {
1333           for (UseIterator k(arycp); k.has_next(); k.next()) {
1334             PointsToNode* abase = k.get();
1335             if (abase->arraycopy_dst() && abase != base) {
1336               // Look for the same arracopy reference.
1337               add_fields_to_worklist(field, abase);
1338             }
1339           }
1340         }
1341       }
1342     }
1343   }
1344 }
1345 
1346 // Put on worklist all related field nodes.
1347 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1348   int offset = field->offset();
1349   if (base->is_LocalVar()) {
1350     for (UseIterator j(base); j.has_next(); j.next()) {
1351       PointsToNode* f = j.get();
1352       if (PointsToNode::is_base_use(f)) { // Field
1353         f = PointsToNode::get_use_node(f);
1354         if (f == field || !f->as_Field()->is_oop())
1355           continue;
1356         int offs = f->as_Field()->offset();
1357         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1358           add_to_worklist(f);
1359         }
1360       }
1361     }
1362   } else {
1363     assert(base->is_JavaObject(), "sanity");
1364     if (// Skip phantom_object since it is only used to indicate that
1365         // this field's content globally escapes.
1366         (base != phantom_obj) &&
1367         // NULL object node does not have fields.
1368         (base != null_obj)) {
1369       for (EdgeIterator i(base); i.has_next(); i.next()) {
1370         PointsToNode* f = i.get();
1371         // Skip arraycopy edge since store to destination object field
1372         // does not update value in source object field.
1373         if (f->is_Arraycopy()) {
1374           assert(base->arraycopy_dst(), "sanity");
1375           continue;
1376         }
1377         if (f == field || !f->as_Field()->is_oop())
1378           continue;
1379         int offs = f->as_Field()->offset();
1380         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1381           add_to_worklist(f);
1382         }
1383       }
1384     }
1385   }
1386 }
1387 
1388 // Find fields which have unknown value.
1389 int ConnectionGraph::find_field_value(FieldNode* field) {
1390   // Escaped fields should have init value already.
1391   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1392   int new_edges = 0;
1393   for (BaseIterator i(field); i.has_next(); i.next()) {
1394     PointsToNode* base = i.get();
1395     if (base->is_JavaObject()) {
1396       // Skip Allocate's fields which will be processed later.
1397       if (base->ideal_node()->is_Allocate())
1398         return 0;
1399       assert(base == null_obj, "only NULL ptr base expected here");
1400     }
1401   }
1402   if (add_edge(field, phantom_obj)) {
1403     // New edge was added
1404     new_edges++;
1405     add_field_uses_to_worklist(field);
1406   }
1407   return new_edges;
1408 }
1409 
1410 // Find fields initializing values for allocations.
1411 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1412   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1413   int new_edges = 0;
1414   Node* alloc = pta->ideal_node();
1415   if (init_val == phantom_obj) {
1416     // Do nothing for Allocate nodes since its fields values are "known".
1417     if (alloc->is_Allocate())
1418       return 0;
1419     assert(alloc->as_CallStaticJava(), "sanity");
1420 #ifdef ASSERT
1421     if (alloc->as_CallStaticJava()->method() == NULL) {
1422       const char* name = alloc->as_CallStaticJava()->_name;
1423       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1424     }
1425 #endif
1426     // Non-escaped allocation returned from Java or runtime call have
1427     // unknown values in fields.
1428     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1429       PointsToNode* field = i.get();
1430       if (field->is_Field() && field->as_Field()->is_oop()) {
1431         if (add_edge(field, phantom_obj)) {
1432           // New edge was added
1433           new_edges++;
1434           add_field_uses_to_worklist(field->as_Field());
1435         }
1436       }
1437     }
1438     return new_edges;
1439   }
1440   assert(init_val == null_obj, "sanity");
1441   // Do nothing for Call nodes since its fields values are unknown.
1442   if (!alloc->is_Allocate())
1443     return 0;
1444 
1445   InitializeNode* ini = alloc->as_Allocate()->initialization();
1446   Compile* C = _compile;
1447   bool visited_bottom_offset = false;
1448   GrowableArray<int> offsets_worklist;
1449 
1450   // Check if an oop field's initializing value is recorded and add
1451   // a corresponding NULL if field's value if it is not recorded.
1452   // Connection Graph does not record a default initialization by NULL
1453   // captured by Initialize node.
1454   //
1455   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1456     PointsToNode* field = i.get(); // Field (AddP)
1457     if (!field->is_Field() || !field->as_Field()->is_oop())
1458       continue; // Not oop field
1459     int offset = field->as_Field()->offset();
1460     if (offset == Type::OffsetBot) {
1461       if (!visited_bottom_offset) {
1462         // OffsetBot is used to reference array's element,
1463         // always add reference to NULL to all Field nodes since we don't
1464         // known which element is referenced.
1465         if (add_edge(field, null_obj)) {
1466           // New edge was added
1467           new_edges++;
1468           add_field_uses_to_worklist(field->as_Field());
1469           visited_bottom_offset = true;
1470         }
1471       }
1472     } else {
1473       // Check only oop fields.
1474       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1475       if (adr_type->isa_rawptr()) {
1476 #ifdef ASSERT
1477         // Raw pointers are used for initializing stores so skip it
1478         // since it should be recorded already
1479         Node* base = get_addp_base(field->ideal_node());
1480         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1481                (base->in(0) == alloc),"unexpected pointer type");
1482 #endif
1483         continue;
1484       }
1485       if (!offsets_worklist.contains(offset)) {
1486         offsets_worklist.append(offset);
1487         Node* value = NULL;
1488         if (ini != NULL) {
1489           // StoreP::memory_type() == T_ADDRESS
1490           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1491           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1492           // Make sure initializing store has the same type as this AddP.
1493           // This AddP may reference non existing field because it is on a
1494           // dead branch of bimorphic call which is not eliminated yet.
1495           if (store != NULL && store->is_Store() &&
1496               store->as_Store()->memory_type() == ft) {
1497             value = store->in(MemNode::ValueIn);
1498 #ifdef ASSERT
1499             if (VerifyConnectionGraph) {
1500               // Verify that AddP already points to all objects the value points to.
1501               PointsToNode* val = ptnode_adr(value->_idx);
1502               assert((val != NULL), "should be processed already");
1503               PointsToNode* missed_obj = NULL;
1504               if (val->is_JavaObject()) {
1505                 if (!field->points_to(val->as_JavaObject())) {
1506                   missed_obj = val;
1507                 }
1508               } else {
1509                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1510                   tty->print_cr("----------init store has invalid value -----");
1511                   store->dump();
1512                   val->dump();
1513                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1514                 }
1515                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1516                   PointsToNode* obj = j.get();
1517                   if (obj->is_JavaObject()) {
1518                     if (!field->points_to(obj->as_JavaObject())) {
1519                       missed_obj = obj;
1520                       break;
1521                     }
1522                   }
1523                 }
1524               }
1525               if (missed_obj != NULL) {
1526                 tty->print_cr("----------field---------------------------------");
1527                 field->dump();
1528                 tty->print_cr("----------missed referernce to object-----------");
1529                 missed_obj->dump();
1530                 tty->print_cr("----------object referernced by init store -----");
1531                 store->dump();
1532                 val->dump();
1533                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1534               }
1535             }
1536 #endif
1537           } else {
1538             // There could be initializing stores which follow allocation.
1539             // For example, a volatile field store is not collected
1540             // by Initialize node.
1541             //
1542             // Need to check for dependent loads to separate such stores from
1543             // stores which follow loads. For now, add initial value NULL so
1544             // that compare pointers optimization works correctly.
1545           }
1546         }
1547         if (value == NULL) {
1548           // A field's initializing value was not recorded. Add NULL.
1549           if (add_edge(field, null_obj)) {
1550             // New edge was added
1551             new_edges++;
1552             add_field_uses_to_worklist(field->as_Field());
1553           }
1554         }
1555       }
1556     }
1557   }
1558   return new_edges;
1559 }
1560 
1561 // Adjust scalar_replaceable state after Connection Graph is built.
1562 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1563   // Search for non-escaping objects which are not scalar replaceable
1564   // and mark them to propagate the state to referenced objects.
1565 
1566   // 1. An object is not scalar replaceable if the field into which it is
1567   // stored has unknown offset (stored into unknown element of an array).
1568   //
1569   for (UseIterator i(jobj); i.has_next(); i.next()) {
1570     PointsToNode* use = i.get();
1571     assert(!use->is_Arraycopy(), "sanity");
1572     if (use->is_Field()) {
1573       FieldNode* field = use->as_Field();
1574       assert(field->is_oop() && field->scalar_replaceable() &&
1575              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
1576       if (field->offset() == Type::OffsetBot) {
1577         jobj->set_scalar_replaceable(false);
1578         return;
1579       }
1580     }
1581     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1582     // 2. An object is not scalar replaceable if it is merged with other objects.
1583     for (EdgeIterator j(use); j.has_next(); j.next()) {
1584       PointsToNode* ptn = j.get();
1585       if (ptn->is_JavaObject() && ptn != jobj) {
1586         // Mark all objects.
1587         jobj->set_scalar_replaceable(false);
1588          ptn->set_scalar_replaceable(false);
1589       }
1590     }
1591     if (!jobj->scalar_replaceable()) {
1592       return;
1593     }
1594   }
1595 
1596   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1597     // Non-escaping object node should point only to field nodes.
1598     FieldNode* field = j.get()->as_Field();
1599     int offset = field->as_Field()->offset();
1600 
1601     // 3. An object is not scalar replaceable if it has a field with unknown
1602     // offset (array's element is accessed in loop).
1603     if (offset == Type::OffsetBot) {
1604       jobj->set_scalar_replaceable(false);
1605       return;
1606     }
1607     // 4. Currently an object is not scalar replaceable if a LoadStore node
1608     // access its field since the field value is unknown after it.
1609     //
1610     Node* n = field->ideal_node();
1611     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1612       if (n->fast_out(i)->is_LoadStore()) {
1613         jobj->set_scalar_replaceable(false);
1614         return;
1615       }
1616     }
1617 
1618     // 5. Or the address may point to more then one object. This may produce
1619     // the false positive result (set not scalar replaceable)
1620     // since the flow-insensitive escape analysis can't separate
1621     // the case when stores overwrite the field's value from the case
1622     // when stores happened on different control branches.
1623     //
1624     // Note: it will disable scalar replacement in some cases:
1625     //
1626     //    Point p[] = new Point[1];
1627     //    p[0] = new Point(); // Will be not scalar replaced
1628     //
1629     // but it will save us from incorrect optimizations in next cases:
1630     //
1631     //    Point p[] = new Point[1];
1632     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1633     //
1634     if (field->base_count() > 1) {
1635       for (BaseIterator i(field); i.has_next(); i.next()) {
1636         PointsToNode* base = i.get();
1637         // Don't take into account LocalVar nodes which
1638         // may point to only one object which should be also
1639         // this field's base by now.
1640         if (base->is_JavaObject() && base != jobj) {
1641           // Mark all bases.
1642           jobj->set_scalar_replaceable(false);
1643           base->set_scalar_replaceable(false);
1644         }
1645       }
1646     }
1647   }
1648 }
1649 
1650 #ifdef ASSERT
1651 void ConnectionGraph::verify_connection_graph(
1652                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1653                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1654                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1655                          GrowableArray<Node*>& addp_worklist) {
1656   // Verify that graph is complete - no new edges could be added.
1657   int java_objects_length = java_objects_worklist.length();
1658   int non_escaped_length  = non_escaped_worklist.length();
1659   int new_edges = 0;
1660   for (int next = 0; next < java_objects_length; ++next) {
1661     JavaObjectNode* ptn = java_objects_worklist.at(next);
1662     new_edges += add_java_object_edges(ptn, true);
1663   }
1664   assert(new_edges == 0, "graph was not complete");
1665   // Verify that escape state is final.
1666   int length = non_escaped_worklist.length();
1667   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1668   assert((non_escaped_length == non_escaped_worklist.length()) &&
1669          (non_escaped_length == length) &&
1670          (_worklist.length() == 0), "escape state was not final");
1671 
1672   // Verify fields information.
1673   int addp_length = addp_worklist.length();
1674   for (int next = 0; next < addp_length; ++next ) {
1675     Node* n = addp_worklist.at(next);
1676     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1677     if (field->is_oop()) {
1678       // Verify that field has all bases
1679       Node* base = get_addp_base(n);
1680       PointsToNode* ptn = ptnode_adr(base->_idx);
1681       if (ptn->is_JavaObject()) {
1682         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1683       } else {
1684         assert(ptn->is_LocalVar(), "sanity");
1685         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1686           PointsToNode* e = i.get();
1687           if (e->is_JavaObject()) {
1688             assert(field->has_base(e->as_JavaObject()), "sanity");
1689           }
1690         }
1691       }
1692       // Verify that all fields have initializing values.
1693       if (field->edge_count() == 0) {
1694         tty->print_cr("----------field does not have references----------");
1695         field->dump();
1696         for (BaseIterator i(field); i.has_next(); i.next()) {
1697           PointsToNode* base = i.get();
1698           tty->print_cr("----------field has next base---------------------");
1699           base->dump();
1700           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1701             tty->print_cr("----------base has fields-------------------------");
1702             for (EdgeIterator j(base); j.has_next(); j.next()) {
1703               j.get()->dump();
1704             }
1705             tty->print_cr("----------base has references---------------------");
1706             for (UseIterator j(base); j.has_next(); j.next()) {
1707               j.get()->dump();
1708             }
1709           }
1710         }
1711         for (UseIterator i(field); i.has_next(); i.next()) {
1712           i.get()->dump();
1713         }
1714         assert(field->edge_count() > 0, "sanity");
1715       }
1716     }
1717   }
1718 }
1719 #endif
1720 
1721 // Optimize ideal graph.
1722 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1723                                            GrowableArray<Node*>& storestore_worklist) {
1724   Compile* C = _compile;
1725   PhaseIterGVN* igvn = _igvn;
1726   if (EliminateLocks) {
1727     // Mark locks before changing ideal graph.
1728     int cnt = C->macro_count();
1729     for( int i=0; i < cnt; i++ ) {
1730       Node *n = C->macro_node(i);
1731       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1732         AbstractLockNode* alock = n->as_AbstractLock();
1733         if (!alock->is_non_esc_obj()) {
1734           if (not_global_escape(alock->obj_node())) {
1735             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1736             // The lock could be marked eliminated by lock coarsening
1737             // code during first IGVN before EA. Replace coarsened flag
1738             // to eliminate all associated locks/unlocks.
1739             alock->set_non_esc_obj();
1740           }
1741         }
1742       }
1743     }
1744   }
1745 
1746   if (OptimizePtrCompare) {
1747     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1748     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1749     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1750     // Optimize objects compare.
1751     while (ptr_cmp_worklist.length() != 0) {
1752       Node *n = ptr_cmp_worklist.pop();
1753       Node *res = optimize_ptr_compare(n);
1754       if (res != NULL) {
1755 #ifndef PRODUCT
1756         if (PrintOptimizePtrCompare) {
1757           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1758           if (Verbose) {
1759             n->dump(1);
1760           }
1761         }
1762 #endif
1763         igvn->replace_node(n, res);
1764       }
1765     }
1766     // cleanup
1767     if (_pcmp_neq->outcnt() == 0)
1768       igvn->hash_delete(_pcmp_neq);
1769     if (_pcmp_eq->outcnt()  == 0)
1770       igvn->hash_delete(_pcmp_eq);
1771   }
1772 
1773   // For MemBarStoreStore nodes added in library_call.cpp, check
1774   // escape status of associated AllocateNode and optimize out
1775   // MemBarStoreStore node if the allocated object never escapes.
1776   while (storestore_worklist.length() != 0) {
1777     Node *n = storestore_worklist.pop();
1778     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1779     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1780     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1781     if (not_global_escape(alloc)) {
1782       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1783       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1784       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1785       igvn->register_new_node_with_optimizer(mb);
1786       igvn->replace_node(storestore, mb);
1787     }
1788   }
1789 }
1790 
1791 // Optimize objects compare.
1792 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1793   assert(OptimizePtrCompare, "sanity");
1794   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1795   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1796   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1797   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1798   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1799   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1800 
1801   // Check simple cases first.
1802   if (jobj1 != NULL) {
1803     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1804       if (jobj1 == jobj2) {
1805         // Comparing the same not escaping object.
1806         return _pcmp_eq;
1807       }
1808       Node* obj = jobj1->ideal_node();
1809       // Comparing not escaping allocation.
1810       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1811           !ptn2->points_to(jobj1)) {
1812         return _pcmp_neq; // This includes nullness check.
1813       }
1814     }
1815   }
1816   if (jobj2 != NULL) {
1817     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1818       Node* obj = jobj2->ideal_node();
1819       // Comparing not escaping allocation.
1820       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1821           !ptn1->points_to(jobj2)) {
1822         return _pcmp_neq; // This includes nullness check.
1823       }
1824     }
1825   }
1826   if (jobj1 != NULL && jobj1 != phantom_obj &&
1827       jobj2 != NULL && jobj2 != phantom_obj &&
1828       jobj1->ideal_node()->is_Con() &&
1829       jobj2->ideal_node()->is_Con()) {
1830     // Klass or String constants compare. Need to be careful with
1831     // compressed pointers - compare types of ConN and ConP instead of nodes.
1832     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1833     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1834     if (t1->make_ptr() == t2->make_ptr()) {
1835       return _pcmp_eq;
1836     } else {
1837       return _pcmp_neq;
1838     }
1839   }
1840   if (ptn1->meet(ptn2)) {
1841     return NULL; // Sets are not disjoint
1842   }
1843 
1844   // Sets are disjoint.
1845   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1846   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1847   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1848   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1849   if (set1_has_unknown_ptr && set2_has_null_ptr ||
1850       set2_has_unknown_ptr && set1_has_null_ptr) {
1851     // Check nullness of unknown object.
1852     return NULL;
1853   }
1854 
1855   // Disjointness by itself is not sufficient since
1856   // alias analysis is not complete for escaped objects.
1857   // Disjoint sets are definitely unrelated only when
1858   // at least one set has only not escaping allocations.
1859   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1860     if (ptn1->non_escaping_allocation()) {
1861       return _pcmp_neq;
1862     }
1863   }
1864   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1865     if (ptn2->non_escaping_allocation()) {
1866       return _pcmp_neq;
1867     }
1868   }
1869   return NULL;
1870 }
1871 
1872 // Connection Graph constuction functions.
1873 
1874 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1875   PointsToNode* ptadr = _nodes.at(n->_idx);
1876   if (ptadr != NULL) {
1877     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1878     return;
1879   }
1880   Compile* C = _compile;
1881   ptadr = new (C->comp_arena()) LocalVarNode(C, n, es);
1882   _nodes.at_put(n->_idx, ptadr);
1883 }
1884 
1885 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
1886   PointsToNode* ptadr = _nodes.at(n->_idx);
1887   if (ptadr != NULL) {
1888     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
1889     return;
1890   }
1891   Compile* C = _compile;
1892   ptadr = new (C->comp_arena()) JavaObjectNode(C, n, es);
1893   _nodes.at_put(n->_idx, ptadr);
1894 }
1895 
1896 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
1897   PointsToNode* ptadr = _nodes.at(n->_idx);
1898   if (ptadr != NULL) {
1899     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
1900     return;
1901   }
1902   bool unsafe = false;
1903   bool is_oop = is_oop_field(n, offset, &unsafe);
1904   if (unsafe) {
1905     es = PointsToNode::GlobalEscape;
1906   }
1907   Compile* C = _compile;
1908   FieldNode* field = new (C->comp_arena()) FieldNode(C, n, es, offset, is_oop);
1909   _nodes.at_put(n->_idx, field);
1910 }
1911 
1912 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
1913                                     PointsToNode* src, PointsToNode* dst) {
1914   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
1915   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
1916   PointsToNode* ptadr = _nodes.at(n->_idx);
1917   if (ptadr != NULL) {
1918     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
1919     return;
1920   }
1921   Compile* C = _compile;
1922   ptadr = new (C->comp_arena()) ArraycopyNode(C, n, es);
1923   _nodes.at_put(n->_idx, ptadr);
1924   // Add edge from arraycopy node to source object.
1925   (void)add_edge(ptadr, src);
1926   src->set_arraycopy_src();
1927   // Add edge from destination object to arraycopy node.
1928   (void)add_edge(dst, ptadr);
1929   dst->set_arraycopy_dst();
1930 }
1931 
1932 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
1933   const Type* adr_type = n->as_AddP()->bottom_type();
1934   BasicType bt = T_INT;
1935   if (offset == Type::OffsetBot) {
1936     // Check only oop fields.
1937     if (!adr_type->isa_aryptr() ||
1938         (adr_type->isa_aryptr()->klass() == NULL) ||
1939          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
1940       // OffsetBot is used to reference array's element. Ignore first AddP.
1941       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
1942         bt = T_OBJECT;
1943       }
1944     }
1945   } else if (offset != oopDesc::klass_offset_in_bytes()) {
1946     if (adr_type->isa_instptr()) {
1947       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
1948       if (field != NULL) {
1949         bt = field->layout_type();
1950       } else {
1951         // Check for unsafe oop field access
1952         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1953           int opcode = n->fast_out(i)->Opcode();
1954           if (opcode == Op_StoreP || opcode == Op_LoadP ||
1955               opcode == Op_StoreN || opcode == Op_LoadN) {
1956             bt = T_OBJECT;
1957             (*unsafe) = true;
1958             break;
1959           }
1960         }
1961       }
1962     } else if (adr_type->isa_aryptr()) {
1963       if (offset == arrayOopDesc::length_offset_in_bytes()) {
1964         // Ignore array length load.
1965       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
1966         // Ignore first AddP.
1967       } else {
1968         const Type* elemtype = adr_type->isa_aryptr()->elem();
1969         bt = elemtype->array_element_basic_type();
1970       }
1971     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
1972       // Allocation initialization, ThreadLocal field access, unsafe access
1973       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1974         int opcode = n->fast_out(i)->Opcode();
1975         if (opcode == Op_StoreP || opcode == Op_LoadP ||
1976             opcode == Op_StoreN || opcode == Op_LoadN) {
1977           bt = T_OBJECT;
1978           break;
1979         }
1980       }
1981     }
1982   }
1983   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
1984 }
1985 
1986 // Returns unique pointed java object or NULL.
1987 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
1988   assert(!_collecting, "should not call when contructed graph");
1989   // If the node was created after the escape computation we can't answer.
1990   uint idx = n->_idx;
1991   if (idx >= nodes_size()) {
1992     return NULL;
1993   }
1994   PointsToNode* ptn = ptnode_adr(idx);
1995   if (ptn->is_JavaObject()) {
1996     return ptn->as_JavaObject();
1997   }
1998   assert(ptn->is_LocalVar(), "sanity");
1999   // Check all java objects it points to.
2000   JavaObjectNode* jobj = NULL;
2001   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2002     PointsToNode* e = i.get();
2003     if (e->is_JavaObject()) {
2004       if (jobj == NULL) {
2005         jobj = e->as_JavaObject();
2006       } else if (jobj != e) {
2007         return NULL;
2008       }
2009     }
2010   }
2011   return jobj;
2012 }
2013 
2014 // Return true if this node points only to non-escaping allocations.
2015 bool PointsToNode::non_escaping_allocation() {
2016   if (is_JavaObject()) {
2017     Node* n = ideal_node();
2018     if (n->is_Allocate() || n->is_CallStaticJava()) {
2019       return (escape_state() == PointsToNode::NoEscape);
2020     } else {
2021       return false;
2022     }
2023   }
2024   assert(is_LocalVar(), "sanity");
2025   // Check all java objects it points to.
2026   for (EdgeIterator i(this); i.has_next(); i.next()) {
2027     PointsToNode* e = i.get();
2028     if (e->is_JavaObject()) {
2029       Node* n = e->ideal_node();
2030       if ((e->escape_state() != PointsToNode::NoEscape) ||
2031           !(n->is_Allocate() || n->is_CallStaticJava())) {
2032         return false;
2033       }
2034     }
2035   }
2036   return true;
2037 }
2038 
2039 // Return true if we know the node does not escape globally.
2040 bool ConnectionGraph::not_global_escape(Node *n) {
2041   assert(!_collecting, "should not call during graph construction");
2042   // If the node was created after the escape computation we can't answer.
2043   uint idx = n->_idx;
2044   if (idx >= nodes_size()) {
2045     return false;
2046   }
2047   PointsToNode* ptn = ptnode_adr(idx);
2048   PointsToNode::EscapeState es = ptn->escape_state();
2049   // If we have already computed a value, return it.
2050   if (es >= PointsToNode::GlobalEscape)
2051     return false;
2052   if (ptn->is_JavaObject()) {
2053     return true; // (es < PointsToNode::GlobalEscape);
2054   }
2055   assert(ptn->is_LocalVar(), "sanity");
2056   // Check all java objects it points to.
2057   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2058     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2059       return false;
2060   }
2061   return true;
2062 }
2063 
2064 
2065 // Helper functions
2066 
2067 // Return true if this node points to specified node or nodes it points to.
2068 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2069   if (is_JavaObject()) {
2070     return (this == ptn);
2071   }
2072   assert(is_LocalVar() || is_Field(), "sanity");
2073   for (EdgeIterator i(this); i.has_next(); i.next()) {
2074     if (i.get() == ptn)
2075       return true;
2076   }
2077   return false;
2078 }
2079 
2080 // Return true if one node points to an other.
2081 bool PointsToNode::meet(PointsToNode* ptn) {
2082   if (this == ptn) {
2083     return true;
2084   } else if (ptn->is_JavaObject()) {
2085     return this->points_to(ptn->as_JavaObject());
2086   } else if (this->is_JavaObject()) {
2087     return ptn->points_to(this->as_JavaObject());
2088   }
2089   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2090   int ptn_count =  ptn->edge_count();
2091   for (EdgeIterator i(this); i.has_next(); i.next()) {
2092     PointsToNode* this_e = i.get();
2093     for (int j = 0; j < ptn_count; j++) {
2094       if (this_e == ptn->edge(j))
2095         return true;
2096     }
2097   }
2098   return false;
2099 }
2100 
2101 #ifdef ASSERT
2102 // Return true if bases point to this java object.
2103 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2104   for (BaseIterator i(this); i.has_next(); i.next()) {
2105     if (i.get() == jobj)
2106       return true;
2107   }
2108   return false;
2109 }
2110 #endif
2111 
2112 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2113   const Type *adr_type = phase->type(adr);
2114   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2115       adr->in(AddPNode::Address)->is_Proj() &&
2116       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2117     // We are computing a raw address for a store captured by an Initialize
2118     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2119     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2120     assert(offs != Type::OffsetBot ||
2121            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2122            "offset must be a constant or it is initialization of array");
2123     return offs;
2124   }
2125   const TypePtr *t_ptr = adr_type->isa_ptr();
2126   assert(t_ptr != NULL, "must be a pointer type");
2127   return t_ptr->offset();
2128 }
2129 
2130 Node* ConnectionGraph::get_addp_base(Node *addp) {
2131   assert(addp->is_AddP(), "must be AddP");
2132   //
2133   // AddP cases for Base and Address inputs:
2134   // case #1. Direct object's field reference:
2135   //     Allocate
2136   //       |
2137   //     Proj #5 ( oop result )
2138   //       |
2139   //     CheckCastPP (cast to instance type)
2140   //      | |
2141   //     AddP  ( base == address )
2142   //
2143   // case #2. Indirect object's field reference:
2144   //      Phi
2145   //       |
2146   //     CastPP (cast to instance type)
2147   //      | |
2148   //     AddP  ( base == address )
2149   //
2150   // case #3. Raw object's field reference for Initialize node:
2151   //      Allocate
2152   //        |
2153   //      Proj #5 ( oop result )
2154   //  top   |
2155   //     \  |
2156   //     AddP  ( base == top )
2157   //
2158   // case #4. Array's element reference:
2159   //   {CheckCastPP | CastPP}
2160   //     |  | |
2161   //     |  AddP ( array's element offset )
2162   //     |  |
2163   //     AddP ( array's offset )
2164   //
2165   // case #5. Raw object's field reference for arraycopy stub call:
2166   //          The inline_native_clone() case when the arraycopy stub is called
2167   //          after the allocation before Initialize and CheckCastPP nodes.
2168   //      Allocate
2169   //        |
2170   //      Proj #5 ( oop result )
2171   //       | |
2172   //       AddP  ( base == address )
2173   //
2174   // case #6. Constant Pool, ThreadLocal, CastX2P or
2175   //          Raw object's field reference:
2176   //      {ConP, ThreadLocal, CastX2P, raw Load}
2177   //  top   |
2178   //     \  |
2179   //     AddP  ( base == top )
2180   //
2181   // case #7. Klass's field reference.
2182   //      LoadKlass
2183   //       | |
2184   //       AddP  ( base == address )
2185   //
2186   // case #8. narrow Klass's field reference.
2187   //      LoadNKlass
2188   //       |
2189   //      DecodeN
2190   //       | |
2191   //       AddP  ( base == address )
2192   //
2193   Node *base = addp->in(AddPNode::Base);
2194   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2195     base = addp->in(AddPNode::Address);
2196     while (base->is_AddP()) {
2197       // Case #6 (unsafe access) may have several chained AddP nodes.
2198       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2199       base = base->in(AddPNode::Address);
2200     }
2201     Node* uncast_base = base->uncast();
2202     int opcode = uncast_base->Opcode();
2203     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2204            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2205            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2206            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2207   }
2208   return base;
2209 }
2210 
2211 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2212   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2213   Node* addp2 = addp->raw_out(0);
2214   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2215       addp2->in(AddPNode::Base) == n &&
2216       addp2->in(AddPNode::Address) == addp) {
2217     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2218     //
2219     // Find array's offset to push it on worklist first and
2220     // as result process an array's element offset first (pushed second)
2221     // to avoid CastPP for the array's offset.
2222     // Otherwise the inserted CastPP (LocalVar) will point to what
2223     // the AddP (Field) points to. Which would be wrong since
2224     // the algorithm expects the CastPP has the same point as
2225     // as AddP's base CheckCastPP (LocalVar).
2226     //
2227     //    ArrayAllocation
2228     //     |
2229     //    CheckCastPP
2230     //     |
2231     //    memProj (from ArrayAllocation CheckCastPP)
2232     //     |  ||
2233     //     |  ||   Int (element index)
2234     //     |  ||    |   ConI (log(element size))
2235     //     |  ||    |   /
2236     //     |  ||   LShift
2237     //     |  ||  /
2238     //     |  AddP (array's element offset)
2239     //     |  |
2240     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2241     //     | / /
2242     //     AddP (array's offset)
2243     //      |
2244     //     Load/Store (memory operation on array's element)
2245     //
2246     return addp2;
2247   }
2248   return NULL;
2249 }
2250 
2251 //
2252 // Adjust the type and inputs of an AddP which computes the
2253 // address of a field of an instance
2254 //
2255 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2256   PhaseGVN* igvn = _igvn;
2257   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2258   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2259   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2260   if (t == NULL) {
2261     // We are computing a raw address for a store captured by an Initialize
2262     // compute an appropriate address type (cases #3 and #5).
2263     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2264     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2265     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2266     assert(offs != Type::OffsetBot, "offset must be a constant");
2267     t = base_t->add_offset(offs)->is_oopptr();
2268   }
2269   int inst_id =  base_t->instance_id();
2270   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2271                              "old type must be non-instance or match new type");
2272 
2273   // The type 't' could be subclass of 'base_t'.
2274   // As result t->offset() could be large then base_t's size and it will
2275   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2276   // constructor verifies correctness of the offset.
2277   //
2278   // It could happened on subclass's branch (from the type profiling
2279   // inlining) which was not eliminated during parsing since the exactness
2280   // of the allocation type was not propagated to the subclass type check.
2281   //
2282   // Or the type 't' could be not related to 'base_t' at all.
2283   // It could happened when CHA type is different from MDO type on a dead path
2284   // (for example, from instanceof check) which is not collapsed during parsing.
2285   //
2286   // Do nothing for such AddP node and don't process its users since
2287   // this code branch will go away.
2288   //
2289   if (!t->is_known_instance() &&
2290       !base_t->klass()->is_subtype_of(t->klass())) {
2291      return false; // bail out
2292   }
2293   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2294   // Do NOT remove the next line: ensure a new alias index is allocated
2295   // for the instance type. Note: C++ will not remove it since the call
2296   // has side effect.
2297   int alias_idx = _compile->get_alias_index(tinst);
2298   igvn->set_type(addp, tinst);
2299   // record the allocation in the node map
2300   set_map(addp, get_map(base->_idx));
2301   // Set addp's Base and Address to 'base'.
2302   Node *abase = addp->in(AddPNode::Base);
2303   Node *adr   = addp->in(AddPNode::Address);
2304   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2305       adr->in(0)->_idx == (uint)inst_id) {
2306     // Skip AddP cases #3 and #5.
2307   } else {
2308     assert(!abase->is_top(), "sanity"); // AddP case #3
2309     if (abase != base) {
2310       igvn->hash_delete(addp);
2311       addp->set_req(AddPNode::Base, base);
2312       if (abase == adr) {
2313         addp->set_req(AddPNode::Address, base);
2314       } else {
2315         // AddP case #4 (adr is array's element offset AddP node)
2316 #ifdef ASSERT
2317         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2318         assert(adr->is_AddP() && atype != NULL &&
2319                atype->instance_id() == inst_id, "array's element offset should be processed first");
2320 #endif
2321       }
2322       igvn->hash_insert(addp);
2323     }
2324   }
2325   // Put on IGVN worklist since at least addp's type was changed above.
2326   record_for_optimizer(addp);
2327   return true;
2328 }
2329 
2330 //
2331 // Create a new version of orig_phi if necessary. Returns either the newly
2332 // created phi or an existing phi.  Sets create_new to indicate whether a new
2333 // phi was created.  Cache the last newly created phi in the node map.
2334 //
2335 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2336   Compile *C = _compile;
2337   PhaseGVN* igvn = _igvn;
2338   new_created = false;
2339   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2340   // nothing to do if orig_phi is bottom memory or matches alias_idx
2341   if (phi_alias_idx == alias_idx) {
2342     return orig_phi;
2343   }
2344   // Have we recently created a Phi for this alias index?
2345   PhiNode *result = get_map_phi(orig_phi->_idx);
2346   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2347     return result;
2348   }
2349   // Previous check may fail when the same wide memory Phi was split into Phis
2350   // for different memory slices. Search all Phis for this region.
2351   if (result != NULL) {
2352     Node* region = orig_phi->in(0);
2353     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2354       Node* phi = region->fast_out(i);
2355       if (phi->is_Phi() &&
2356           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2357         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2358         return phi->as_Phi();
2359       }
2360     }
2361   }
2362   if ((int) (C->live_nodes() + 2*NodeLimitFudgeFactor) > MaxNodeLimit) {
2363     if (C->do_escape_analysis() == true && !C->failing()) {
2364       // Retry compilation without escape analysis.
2365       // If this is the first failure, the sentinel string will "stick"
2366       // to the Compile object, and the C2Compiler will see it and retry.
2367       C->record_failure(C2Compiler::retry_no_escape_analysis());
2368     }
2369     return NULL;
2370   }
2371   orig_phi_worklist.append_if_missing(orig_phi);
2372   const TypePtr *atype = C->get_adr_type(alias_idx);
2373   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2374   C->copy_node_notes_to(result, orig_phi);
2375   igvn->set_type(result, result->bottom_type());
2376   record_for_optimizer(result);
2377   set_map(orig_phi, result);
2378   new_created = true;
2379   return result;
2380 }
2381 
2382 //
2383 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2384 // specified alias index.
2385 //
2386 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2387   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2388   Compile *C = _compile;
2389   PhaseGVN* igvn = _igvn;
2390   bool new_phi_created;
2391   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2392   if (!new_phi_created) {
2393     return result;
2394   }
2395   GrowableArray<PhiNode *>  phi_list;
2396   GrowableArray<uint>  cur_input;
2397   PhiNode *phi = orig_phi;
2398   uint idx = 1;
2399   bool finished = false;
2400   while(!finished) {
2401     while (idx < phi->req()) {
2402       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2403       if (mem != NULL && mem->is_Phi()) {
2404         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2405         if (new_phi_created) {
2406           // found an phi for which we created a new split, push current one on worklist and begin
2407           // processing new one
2408           phi_list.push(phi);
2409           cur_input.push(idx);
2410           phi = mem->as_Phi();
2411           result = newphi;
2412           idx = 1;
2413           continue;
2414         } else {
2415           mem = newphi;
2416         }
2417       }
2418       if (C->failing()) {
2419         return NULL;
2420       }
2421       result->set_req(idx++, mem);
2422     }
2423 #ifdef ASSERT
2424     // verify that the new Phi has an input for each input of the original
2425     assert( phi->req() == result->req(), "must have same number of inputs.");
2426     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2427 #endif
2428     // Check if all new phi's inputs have specified alias index.
2429     // Otherwise use old phi.
2430     for (uint i = 1; i < phi->req(); i++) {
2431       Node* in = result->in(i);
2432       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2433     }
2434     // we have finished processing a Phi, see if there are any more to do
2435     finished = (phi_list.length() == 0 );
2436     if (!finished) {
2437       phi = phi_list.pop();
2438       idx = cur_input.pop();
2439       PhiNode *prev_result = get_map_phi(phi->_idx);
2440       prev_result->set_req(idx++, result);
2441       result = prev_result;
2442     }
2443   }
2444   return result;
2445 }
2446 
2447 //
2448 // The next methods are derived from methods in MemNode.
2449 //
2450 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2451   Node *mem = mmem;
2452   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2453   // means an array I have not precisely typed yet.  Do not do any
2454   // alias stuff with it any time soon.
2455   if (toop->base() != Type::AnyPtr &&
2456       !(toop->klass() != NULL &&
2457         toop->klass()->is_java_lang_Object() &&
2458         toop->offset() == Type::OffsetBot)) {
2459     mem = mmem->memory_at(alias_idx);
2460     // Update input if it is progress over what we have now
2461   }
2462   return mem;
2463 }
2464 
2465 //
2466 // Move memory users to their memory slices.
2467 //
2468 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2469   Compile* C = _compile;
2470   PhaseGVN* igvn = _igvn;
2471   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2472   assert(tp != NULL, "ptr type");
2473   int alias_idx = C->get_alias_index(tp);
2474   int general_idx = C->get_general_index(alias_idx);
2475 
2476   // Move users first
2477   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2478     Node* use = n->fast_out(i);
2479     if (use->is_MergeMem()) {
2480       MergeMemNode* mmem = use->as_MergeMem();
2481       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2482       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2483         continue; // Nothing to do
2484       }
2485       // Replace previous general reference to mem node.
2486       uint orig_uniq = C->unique();
2487       Node* m = find_inst_mem(n, general_idx, orig_phis);
2488       assert(orig_uniq == C->unique(), "no new nodes");
2489       mmem->set_memory_at(general_idx, m);
2490       --imax;
2491       --i;
2492     } else if (use->is_MemBar()) {
2493       assert(!use->is_Initialize(), "initializing stores should not be moved");
2494       if (use->req() > MemBarNode::Precedent &&
2495           use->in(MemBarNode::Precedent) == n) {
2496         // Don't move related membars.
2497         record_for_optimizer(use);
2498         continue;
2499       }
2500       tp = use->as_MemBar()->adr_type()->isa_ptr();
2501       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2502           alias_idx == general_idx) {
2503         continue; // Nothing to do
2504       }
2505       // Move to general memory slice.
2506       uint orig_uniq = C->unique();
2507       Node* m = find_inst_mem(n, general_idx, orig_phis);
2508       assert(orig_uniq == C->unique(), "no new nodes");
2509       igvn->hash_delete(use);
2510       imax -= use->replace_edge(n, m);
2511       igvn->hash_insert(use);
2512       record_for_optimizer(use);
2513       --i;
2514 #ifdef ASSERT
2515     } else if (use->is_Mem()) {
2516       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2517         // Don't move related cardmark.
2518         continue;
2519       }
2520       // Memory nodes should have new memory input.
2521       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2522       assert(tp != NULL, "ptr type");
2523       int idx = C->get_alias_index(tp);
2524       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2525              "Following memory nodes should have new memory input or be on the same memory slice");
2526     } else if (use->is_Phi()) {
2527       // Phi nodes should be split and moved already.
2528       tp = use->as_Phi()->adr_type()->isa_ptr();
2529       assert(tp != NULL, "ptr type");
2530       int idx = C->get_alias_index(tp);
2531       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2532     } else {
2533       use->dump();
2534       assert(false, "should not be here");
2535 #endif
2536     }
2537   }
2538 }
2539 
2540 //
2541 // Search memory chain of "mem" to find a MemNode whose address
2542 // is the specified alias index.
2543 //
2544 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2545   if (orig_mem == NULL)
2546     return orig_mem;
2547   Compile* C = _compile;
2548   PhaseGVN* igvn = _igvn;
2549   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2550   bool is_instance = (toop != NULL) && toop->is_known_instance();
2551   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2552   Node *prev = NULL;
2553   Node *result = orig_mem;
2554   while (prev != result) {
2555     prev = result;
2556     if (result == start_mem)
2557       break;  // hit one of our sentinels
2558     if (result->is_Mem()) {
2559       const Type *at = igvn->type(result->in(MemNode::Address));
2560       if (at == Type::TOP)
2561         break; // Dead
2562       assert (at->isa_ptr() != NULL, "pointer type required.");
2563       int idx = C->get_alias_index(at->is_ptr());
2564       if (idx == alias_idx)
2565         break; // Found
2566       if (!is_instance && (at->isa_oopptr() == NULL ||
2567                            !at->is_oopptr()->is_known_instance())) {
2568         break; // Do not skip store to general memory slice.
2569       }
2570       result = result->in(MemNode::Memory);
2571     }
2572     if (!is_instance)
2573       continue;  // don't search further for non-instance types
2574     // skip over a call which does not affect this memory slice
2575     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2576       Node *proj_in = result->in(0);
2577       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2578         break;  // hit one of our sentinels
2579       } else if (proj_in->is_Call()) {
2580         CallNode *call = proj_in->as_Call();
2581         if (!call->may_modify(toop, igvn)) {
2582           result = call->in(TypeFunc::Memory);
2583         }
2584       } else if (proj_in->is_Initialize()) {
2585         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2586         // Stop if this is the initialization for the object instance which
2587         // which contains this memory slice, otherwise skip over it.
2588         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2589           result = proj_in->in(TypeFunc::Memory);
2590         }
2591       } else if (proj_in->is_MemBar()) {
2592         result = proj_in->in(TypeFunc::Memory);
2593       }
2594     } else if (result->is_MergeMem()) {
2595       MergeMemNode *mmem = result->as_MergeMem();
2596       result = step_through_mergemem(mmem, alias_idx, toop);
2597       if (result == mmem->base_memory()) {
2598         // Didn't find instance memory, search through general slice recursively.
2599         result = mmem->memory_at(C->get_general_index(alias_idx));
2600         result = find_inst_mem(result, alias_idx, orig_phis);
2601         if (C->failing()) {
2602           return NULL;
2603         }
2604         mmem->set_memory_at(alias_idx, result);
2605       }
2606     } else if (result->is_Phi() &&
2607                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2608       Node *un = result->as_Phi()->unique_input(igvn);
2609       if (un != NULL) {
2610         orig_phis.append_if_missing(result->as_Phi());
2611         result = un;
2612       } else {
2613         break;
2614       }
2615     } else if (result->is_ClearArray()) {
2616       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2617         // Can not bypass initialization of the instance
2618         // we are looking for.
2619         break;
2620       }
2621       // Otherwise skip it (the call updated 'result' value).
2622     } else if (result->Opcode() == Op_SCMemProj) {
2623       Node* mem = result->in(0);
2624       Node* adr = NULL;
2625       if (mem->is_LoadStore()) {
2626         adr = mem->in(MemNode::Address);
2627       } else {
2628         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
2629         adr = mem->in(3); // Memory edge corresponds to destination array
2630       }
2631       const Type *at = igvn->type(adr);
2632       if (at != Type::TOP) {
2633         assert (at->isa_ptr() != NULL, "pointer type required.");
2634         int idx = C->get_alias_index(at->is_ptr());
2635         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
2636         break;
2637       }
2638       result = mem->in(MemNode::Memory);
2639     }
2640   }
2641   if (result->is_Phi()) {
2642     PhiNode *mphi = result->as_Phi();
2643     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2644     const TypePtr *t = mphi->adr_type();
2645     if (!is_instance) {
2646       // Push all non-instance Phis on the orig_phis worklist to update inputs
2647       // during Phase 4 if needed.
2648       orig_phis.append_if_missing(mphi);
2649     } else if (C->get_alias_index(t) != alias_idx) {
2650       // Create a new Phi with the specified alias index type.
2651       result = split_memory_phi(mphi, alias_idx, orig_phis);
2652     }
2653   }
2654   // the result is either MemNode, PhiNode, InitializeNode.
2655   return result;
2656 }
2657 
2658 //
2659 //  Convert the types of unescaped object to instance types where possible,
2660 //  propagate the new type information through the graph, and update memory
2661 //  edges and MergeMem inputs to reflect the new type.
2662 //
2663 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2664 //  The processing is done in 4 phases:
2665 //
2666 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2667 //            types for the CheckCastPP for allocations where possible.
2668 //            Propagate the the new types through users as follows:
2669 //               casts and Phi:  push users on alloc_worklist
2670 //               AddP:  cast Base and Address inputs to the instance type
2671 //                      push any AddP users on alloc_worklist and push any memnode
2672 //                      users onto memnode_worklist.
2673 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2674 //            search the Memory chain for a store with the appropriate type
2675 //            address type.  If a Phi is found, create a new version with
2676 //            the appropriate memory slices from each of the Phi inputs.
2677 //            For stores, process the users as follows:
2678 //               MemNode:  push on memnode_worklist
2679 //               MergeMem: push on mergemem_worklist
2680 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2681 //            moving the first node encountered of each  instance type to the
2682 //            the input corresponding to its alias index.
2683 //            appropriate memory slice.
2684 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2685 //
2686 // In the following example, the CheckCastPP nodes are the cast of allocation
2687 // results and the allocation of node 29 is unescaped and eligible to be an
2688 // instance type.
2689 //
2690 // We start with:
2691 //
2692 //     7 Parm #memory
2693 //    10  ConI  "12"
2694 //    19  CheckCastPP   "Foo"
2695 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2696 //    29  CheckCastPP   "Foo"
2697 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2698 //
2699 //    40  StoreP  25   7  20   ... alias_index=4
2700 //    50  StoreP  35  40  30   ... alias_index=4
2701 //    60  StoreP  45  50  20   ... alias_index=4
2702 //    70  LoadP    _  60  30   ... alias_index=4
2703 //    80  Phi     75  50  60   Memory alias_index=4
2704 //    90  LoadP    _  80  30   ... alias_index=4
2705 //   100  LoadP    _  80  20   ... alias_index=4
2706 //
2707 //
2708 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2709 // and creating a new alias index for node 30.  This gives:
2710 //
2711 //     7 Parm #memory
2712 //    10  ConI  "12"
2713 //    19  CheckCastPP   "Foo"
2714 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2715 //    29  CheckCastPP   "Foo"  iid=24
2716 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2717 //
2718 //    40  StoreP  25   7  20   ... alias_index=4
2719 //    50  StoreP  35  40  30   ... alias_index=6
2720 //    60  StoreP  45  50  20   ... alias_index=4
2721 //    70  LoadP    _  60  30   ... alias_index=6
2722 //    80  Phi     75  50  60   Memory alias_index=4
2723 //    90  LoadP    _  80  30   ... alias_index=6
2724 //   100  LoadP    _  80  20   ... alias_index=4
2725 //
2726 // In phase 2, new memory inputs are computed for the loads and stores,
2727 // And a new version of the phi is created.  In phase 4, the inputs to
2728 // node 80 are updated and then the memory nodes are updated with the
2729 // values computed in phase 2.  This results in:
2730 //
2731 //     7 Parm #memory
2732 //    10  ConI  "12"
2733 //    19  CheckCastPP   "Foo"
2734 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2735 //    29  CheckCastPP   "Foo"  iid=24
2736 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2737 //
2738 //    40  StoreP  25  7   20   ... alias_index=4
2739 //    50  StoreP  35  7   30   ... alias_index=6
2740 //    60  StoreP  45  40  20   ... alias_index=4
2741 //    70  LoadP    _  50  30   ... alias_index=6
2742 //    80  Phi     75  40  60   Memory alias_index=4
2743 //   120  Phi     75  50  50   Memory alias_index=6
2744 //    90  LoadP    _ 120  30   ... alias_index=6
2745 //   100  LoadP    _  80  20   ... alias_index=4
2746 //
2747 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
2748   GrowableArray<Node *>  memnode_worklist;
2749   GrowableArray<PhiNode *>  orig_phis;
2750   PhaseIterGVN  *igvn = _igvn;
2751   uint new_index_start = (uint) _compile->num_alias_types();
2752   Arena* arena = Thread::current()->resource_area();
2753   VectorSet visited(arena);
2754   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2755   uint unique_old = _compile->unique();
2756 
2757   //  Phase 1:  Process possible allocations from alloc_worklist.
2758   //  Create instance types for the CheckCastPP for allocations where possible.
2759   //
2760   // (Note: don't forget to change the order of the second AddP node on
2761   //  the alloc_worklist if the order of the worklist processing is changed,
2762   //  see the comment in find_second_addp().)
2763   //
2764   while (alloc_worklist.length() != 0) {
2765     Node *n = alloc_worklist.pop();
2766     uint ni = n->_idx;
2767     if (n->is_Call()) {
2768       CallNode *alloc = n->as_Call();
2769       // copy escape information to call node
2770       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2771       PointsToNode::EscapeState es = ptn->escape_state();
2772       // We have an allocation or call which returns a Java object,
2773       // see if it is unescaped.
2774       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2775         continue;
2776       // Find CheckCastPP for the allocate or for the return value of a call
2777       n = alloc->result_cast();
2778       if (n == NULL) {            // No uses except Initialize node
2779         if (alloc->is_Allocate()) {
2780           // Set the scalar_replaceable flag for allocation
2781           // so it could be eliminated if it has no uses.
2782           alloc->as_Allocate()->_is_scalar_replaceable = true;
2783         }
2784         if (alloc->is_CallStaticJava()) {
2785           // Set the scalar_replaceable flag for boxing method
2786           // so it could be eliminated if it has no uses.
2787           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2788         }
2789         continue;
2790       }
2791       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2792         assert(!alloc->is_Allocate(), "allocation should have unique type");
2793         continue;
2794       }
2795 
2796       // The inline code for Object.clone() casts the allocation result to
2797       // java.lang.Object and then to the actual type of the allocated
2798       // object. Detect this case and use the second cast.
2799       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2800       // the allocation result is cast to java.lang.Object and then
2801       // to the actual Array type.
2802       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2803           && (alloc->is_AllocateArray() ||
2804               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2805         Node *cast2 = NULL;
2806         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2807           Node *use = n->fast_out(i);
2808           if (use->is_CheckCastPP()) {
2809             cast2 = use;
2810             break;
2811           }
2812         }
2813         if (cast2 != NULL) {
2814           n = cast2;
2815         } else {
2816           // Non-scalar replaceable if the allocation type is unknown statically
2817           // (reflection allocation), the object can't be restored during
2818           // deoptimization without precise type.
2819           continue;
2820         }
2821       }
2822       if (alloc->is_Allocate()) {
2823         // Set the scalar_replaceable flag for allocation
2824         // so it could be eliminated.
2825         alloc->as_Allocate()->_is_scalar_replaceable = true;
2826       }
2827       if (alloc->is_CallStaticJava()) {
2828         // Set the scalar_replaceable flag for boxing method
2829         // so it could be eliminated.
2830         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2831       }
2832       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2833       // in order for an object to be scalar-replaceable, it must be:
2834       //   - a direct allocation (not a call returning an object)
2835       //   - non-escaping
2836       //   - eligible to be a unique type
2837       //   - not determined to be ineligible by escape analysis
2838       set_map(alloc, n);
2839       set_map(n, alloc);
2840       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2841       if (t == NULL)
2842         continue;  // not a TypeOopPtr
2843       const TypeOopPtr* tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
2844       igvn->hash_delete(n);
2845       igvn->set_type(n,  tinst);
2846       n->raise_bottom_type(tinst);
2847       igvn->hash_insert(n);
2848       record_for_optimizer(n);
2849       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2850 
2851         // First, put on the worklist all Field edges from Connection Graph
2852         // which is more accurate then putting immediate users from Ideal Graph.
2853         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2854           PointsToNode* tgt = e.get();
2855           Node* use = tgt->ideal_node();
2856           assert(tgt->is_Field() && use->is_AddP(),
2857                  "only AddP nodes are Field edges in CG");
2858           if (use->outcnt() > 0) { // Don't process dead nodes
2859             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
2860             if (addp2 != NULL) {
2861               assert(alloc->is_AllocateArray(),"array allocation was expected");
2862               alloc_worklist.append_if_missing(addp2);
2863             }
2864             alloc_worklist.append_if_missing(use);
2865           }
2866         }
2867 
2868         // An allocation may have an Initialize which has raw stores. Scan
2869         // the users of the raw allocation result and push AddP users
2870         // on alloc_worklist.
2871         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
2872         assert (raw_result != NULL, "must have an allocation result");
2873         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
2874           Node *use = raw_result->fast_out(i);
2875           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
2876             Node* addp2 = find_second_addp(use, raw_result);
2877             if (addp2 != NULL) {
2878               assert(alloc->is_AllocateArray(),"array allocation was expected");
2879               alloc_worklist.append_if_missing(addp2);
2880             }
2881             alloc_worklist.append_if_missing(use);
2882           } else if (use->is_MemBar()) {
2883             memnode_worklist.append_if_missing(use);
2884           }
2885         }
2886       }
2887     } else if (n->is_AddP()) {
2888       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
2889       if (jobj == NULL || jobj == phantom_obj) {
2890 #ifdef ASSERT
2891         ptnode_adr(get_addp_base(n)->_idx)->dump();
2892         ptnode_adr(n->_idx)->dump();
2893         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2894 #endif
2895         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2896         return;
2897       }
2898       Node *base = get_map(jobj->idx());  // CheckCastPP node
2899       if (!split_AddP(n, base)) continue; // wrong type from dead path
2900     } else if (n->is_Phi() ||
2901                n->is_CheckCastPP() ||
2902                n->is_EncodeP() ||
2903                n->is_DecodeN() ||
2904                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
2905       if (visited.test_set(n->_idx)) {
2906         assert(n->is_Phi(), "loops only through Phi's");
2907         continue;  // already processed
2908       }
2909       JavaObjectNode* jobj = unique_java_object(n);
2910       if (jobj == NULL || jobj == phantom_obj) {
2911 #ifdef ASSERT
2912         ptnode_adr(n->_idx)->dump();
2913         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2914 #endif
2915         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2916         return;
2917       } else {
2918         Node *val = get_map(jobj->idx());   // CheckCastPP node
2919         TypeNode *tn = n->as_Type();
2920         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
2921         assert(tinst != NULL && tinst->is_known_instance() &&
2922                tinst->instance_id() == jobj->idx() , "instance type expected.");
2923 
2924         const Type *tn_type = igvn->type(tn);
2925         const TypeOopPtr *tn_t;
2926         if (tn_type->isa_narrowoop()) {
2927           tn_t = tn_type->make_ptr()->isa_oopptr();
2928         } else {
2929           tn_t = tn_type->isa_oopptr();
2930         }
2931         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
2932           if (tn_type->isa_narrowoop()) {
2933             tn_type = tinst->make_narrowoop();
2934           } else {
2935             tn_type = tinst;
2936           }
2937           igvn->hash_delete(tn);
2938           igvn->set_type(tn, tn_type);
2939           tn->set_type(tn_type);
2940           igvn->hash_insert(tn);
2941           record_for_optimizer(n);
2942         } else {
2943           assert(tn_type == TypePtr::NULL_PTR ||
2944                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
2945                  "unexpected type");
2946           continue; // Skip dead path with different type
2947         }
2948       }
2949     } else {
2950       debug_only(n->dump();)
2951       assert(false, "EA: unexpected node");
2952       continue;
2953     }
2954     // push allocation's users on appropriate worklist
2955     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2956       Node *use = n->fast_out(i);
2957       if(use->is_Mem() && use->in(MemNode::Address) == n) {
2958         // Load/store to instance's field
2959         memnode_worklist.append_if_missing(use);
2960       } else if (use->is_MemBar()) {
2961         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
2962           memnode_worklist.append_if_missing(use);
2963         }
2964       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
2965         Node* addp2 = find_second_addp(use, n);
2966         if (addp2 != NULL) {
2967           alloc_worklist.append_if_missing(addp2);
2968         }
2969         alloc_worklist.append_if_missing(use);
2970       } else if (use->is_Phi() ||
2971                  use->is_CheckCastPP() ||
2972                  use->is_EncodeNarrowPtr() ||
2973                  use->is_DecodeNarrowPtr() ||
2974                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
2975         alloc_worklist.append_if_missing(use);
2976 #ifdef ASSERT
2977       } else if (use->is_Mem()) {
2978         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
2979       } else if (use->is_MergeMem()) {
2980         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
2981       } else if (use->is_SafePoint()) {
2982         // Look for MergeMem nodes for calls which reference unique allocation
2983         // (through CheckCastPP nodes) even for debug info.
2984         Node* m = use->in(TypeFunc::Memory);
2985         if (m->is_MergeMem()) {
2986           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
2987         }
2988       } else if (use->Opcode() == Op_EncodeISOArray) {
2989         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
2990           // EncodeISOArray overwrites destination array
2991           memnode_worklist.append_if_missing(use);
2992         }
2993       } else {
2994         uint op = use->Opcode();
2995         if (!(op == Op_CmpP || op == Op_Conv2B ||
2996               op == Op_CastP2X || op == Op_StoreCM ||
2997               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
2998               op == Op_StrEquals || op == Op_StrIndexOf)) {
2999           n->dump();
3000           use->dump();
3001           assert(false, "EA: missing allocation reference path");
3002         }
3003 #endif
3004       }
3005     }
3006 
3007   }
3008   // New alias types were created in split_AddP().
3009   uint new_index_end = (uint) _compile->num_alias_types();
3010   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3011 
3012   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3013   //            compute new values for Memory inputs  (the Memory inputs are not
3014   //            actually updated until phase 4.)
3015   if (memnode_worklist.length() == 0)
3016     return;  // nothing to do
3017   while (memnode_worklist.length() != 0) {
3018     Node *n = memnode_worklist.pop();
3019     if (visited.test_set(n->_idx))
3020       continue;
3021     if (n->is_Phi() || n->is_ClearArray()) {
3022       // we don't need to do anything, but the users must be pushed
3023     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3024       // we don't need to do anything, but the users must be pushed
3025       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
3026       if (n == NULL)
3027         continue;
3028     } else if (n->Opcode() == Op_EncodeISOArray) {
3029       // get the memory projection
3030       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3031         Node *use = n->fast_out(i);
3032         if (use->Opcode() == Op_SCMemProj) {
3033           n = use;
3034           break;
3035         }
3036       }
3037       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3038     } else {
3039       assert(n->is_Mem(), "memory node required.");
3040       Node *addr = n->in(MemNode::Address);
3041       const Type *addr_t = igvn->type(addr);
3042       if (addr_t == Type::TOP)
3043         continue;
3044       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3045       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3046       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3047       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3048       if (_compile->failing()) {
3049         return;
3050       }
3051       if (mem != n->in(MemNode::Memory)) {
3052         // We delay the memory edge update since we need old one in
3053         // MergeMem code below when instances memory slices are separated.
3054         set_map(n, mem);
3055       }
3056       if (n->is_Load()) {
3057         continue;  // don't push users
3058       } else if (n->is_LoadStore()) {
3059         // get the memory projection
3060         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3061           Node *use = n->fast_out(i);
3062           if (use->Opcode() == Op_SCMemProj) {
3063             n = use;
3064             break;
3065           }
3066         }
3067         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3068       }
3069     }
3070     // push user on appropriate worklist
3071     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3072       Node *use = n->fast_out(i);
3073       if (use->is_Phi() || use->is_ClearArray()) {
3074         memnode_worklist.append_if_missing(use);
3075       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3076         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3077           continue;
3078         memnode_worklist.append_if_missing(use);
3079       } else if (use->is_MemBar()) {
3080         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3081           memnode_worklist.append_if_missing(use);
3082         }
3083 #ifdef ASSERT
3084       } else if(use->is_Mem()) {
3085         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3086       } else if (use->is_MergeMem()) {
3087         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3088       } else if (use->Opcode() == Op_EncodeISOArray) {
3089         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3090           // EncodeISOArray overwrites destination array
3091           memnode_worklist.append_if_missing(use);
3092         }
3093       } else {
3094         uint op = use->Opcode();
3095         if (!(op == Op_StoreCM ||
3096               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
3097                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
3098               op == Op_AryEq || op == Op_StrComp ||
3099               op == Op_StrEquals || op == Op_StrIndexOf)) {
3100           n->dump();
3101           use->dump();
3102           assert(false, "EA: missing memory path");
3103         }
3104 #endif
3105       }
3106     }
3107   }
3108 
3109   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3110   //            Walk each memory slice moving the first node encountered of each
3111   //            instance type to the the input corresponding to its alias index.
3112   uint length = _mergemem_worklist.length();
3113   for( uint next = 0; next < length; ++next ) {
3114     MergeMemNode* nmm = _mergemem_worklist.at(next);
3115     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3116     // Note: we don't want to use MergeMemStream here because we only want to
3117     // scan inputs which exist at the start, not ones we add during processing.
3118     // Note 2: MergeMem may already contains instance memory slices added
3119     // during find_inst_mem() call when memory nodes were processed above.
3120     igvn->hash_delete(nmm);
3121     uint nslices = nmm->req();
3122     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3123       Node* mem = nmm->in(i);
3124       Node* cur = NULL;
3125       if (mem == NULL || mem->is_top())
3126         continue;
3127       // First, update mergemem by moving memory nodes to corresponding slices
3128       // if their type became more precise since this mergemem was created.
3129       while (mem->is_Mem()) {
3130         const Type *at = igvn->type(mem->in(MemNode::Address));
3131         if (at != Type::TOP) {
3132           assert (at->isa_ptr() != NULL, "pointer type required.");
3133           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3134           if (idx == i) {
3135             if (cur == NULL)
3136               cur = mem;
3137           } else {
3138             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3139               nmm->set_memory_at(idx, mem);
3140             }
3141           }
3142         }
3143         mem = mem->in(MemNode::Memory);
3144       }
3145       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3146       // Find any instance of the current type if we haven't encountered
3147       // already a memory slice of the instance along the memory chain.
3148       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3149         if((uint)_compile->get_general_index(ni) == i) {
3150           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3151           if (nmm->is_empty_memory(m)) {
3152             Node* result = find_inst_mem(mem, ni, orig_phis);
3153             if (_compile->failing()) {
3154               return;
3155             }
3156             nmm->set_memory_at(ni, result);
3157           }
3158         }
3159       }
3160     }
3161     // Find the rest of instances values
3162     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3163       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3164       Node* result = step_through_mergemem(nmm, ni, tinst);
3165       if (result == nmm->base_memory()) {
3166         // Didn't find instance memory, search through general slice recursively.
3167         result = nmm->memory_at(_compile->get_general_index(ni));
3168         result = find_inst_mem(result, ni, orig_phis);
3169         if (_compile->failing()) {
3170           return;
3171         }
3172         nmm->set_memory_at(ni, result);
3173       }
3174     }
3175     igvn->hash_insert(nmm);
3176     record_for_optimizer(nmm);
3177   }
3178 
3179   //  Phase 4:  Update the inputs of non-instance memory Phis and
3180   //            the Memory input of memnodes
3181   // First update the inputs of any non-instance Phi's from
3182   // which we split out an instance Phi.  Note we don't have
3183   // to recursively process Phi's encounted on the input memory
3184   // chains as is done in split_memory_phi() since they  will
3185   // also be processed here.
3186   for (int j = 0; j < orig_phis.length(); j++) {
3187     PhiNode *phi = orig_phis.at(j);
3188     int alias_idx = _compile->get_alias_index(phi->adr_type());
3189     igvn->hash_delete(phi);
3190     for (uint i = 1; i < phi->req(); i++) {
3191       Node *mem = phi->in(i);
3192       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3193       if (_compile->failing()) {
3194         return;
3195       }
3196       if (mem != new_mem) {
3197         phi->set_req(i, new_mem);
3198       }
3199     }
3200     igvn->hash_insert(phi);
3201     record_for_optimizer(phi);
3202   }
3203 
3204   // Update the memory inputs of MemNodes with the value we computed
3205   // in Phase 2 and move stores memory users to corresponding memory slices.
3206   // Disable memory split verification code until the fix for 6984348.
3207   // Currently it produces false negative results since it does not cover all cases.
3208 #if 0 // ifdef ASSERT
3209   visited.Reset();
3210   Node_Stack old_mems(arena, _compile->unique() >> 2);
3211 #endif
3212   for (uint i = 0; i < ideal_nodes.size(); i++) {
3213     Node*    n = ideal_nodes.at(i);
3214     Node* nmem = get_map(n->_idx);
3215     assert(nmem != NULL, "sanity");
3216     if (n->is_Mem()) {
3217 #if 0 // ifdef ASSERT
3218       Node* old_mem = n->in(MemNode::Memory);
3219       if (!visited.test_set(old_mem->_idx)) {
3220         old_mems.push(old_mem, old_mem->outcnt());
3221       }
3222 #endif
3223       assert(n->in(MemNode::Memory) != nmem, "sanity");
3224       if (!n->is_Load()) {
3225         // Move memory users of a store first.
3226         move_inst_mem(n, orig_phis);
3227       }
3228       // Now update memory input
3229       igvn->hash_delete(n);
3230       n->set_req(MemNode::Memory, nmem);
3231       igvn->hash_insert(n);
3232       record_for_optimizer(n);
3233     } else {
3234       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3235              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3236     }
3237   }
3238 #if 0 // ifdef ASSERT
3239   // Verify that memory was split correctly
3240   while (old_mems.is_nonempty()) {
3241     Node* old_mem = old_mems.node();
3242     uint  old_cnt = old_mems.index();
3243     old_mems.pop();
3244     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3245   }
3246 #endif
3247 }
3248 
3249 #ifndef PRODUCT
3250 static const char *node_type_names[] = {
3251   "UnknownType",
3252   "JavaObject",
3253   "LocalVar",
3254   "Field",
3255   "Arraycopy"
3256 };
3257 
3258 static const char *esc_names[] = {
3259   "UnknownEscape",
3260   "NoEscape",
3261   "ArgEscape",
3262   "GlobalEscape"
3263 };
3264 
3265 void PointsToNode::dump(bool print_state) const {
3266   NodeType nt = node_type();
3267   tty->print("%s ", node_type_names[(int) nt]);
3268   if (print_state) {
3269     EscapeState es = escape_state();
3270     EscapeState fields_es = fields_escape_state();
3271     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3272     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3273       tty->print("NSR ");
3274   }
3275   if (is_Field()) {
3276     FieldNode* f = (FieldNode*)this;
3277     if (f->is_oop())
3278       tty->print("oop ");
3279     if (f->offset() > 0)
3280       tty->print("+%d ", f->offset());
3281     tty->print("(");
3282     for (BaseIterator i(f); i.has_next(); i.next()) {
3283       PointsToNode* b = i.get();
3284       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3285     }
3286     tty->print(" )");
3287   }
3288   tty->print("[");
3289   for (EdgeIterator i(this); i.has_next(); i.next()) {
3290     PointsToNode* e = i.get();
3291     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3292   }
3293   tty->print(" [");
3294   for (UseIterator i(this); i.has_next(); i.next()) {
3295     PointsToNode* u = i.get();
3296     bool is_base = false;
3297     if (PointsToNode::is_base_use(u)) {
3298       is_base = true;
3299       u = PointsToNode::get_use_node(u)->as_Field();
3300     }
3301     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3302   }
3303   tty->print(" ]]  ");
3304   if (_node == NULL)
3305     tty->print_cr("<null>");
3306   else
3307     _node->dump();
3308 }
3309 
3310 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3311   bool first = true;
3312   int ptnodes_length = ptnodes_worklist.length();
3313   for (int i = 0; i < ptnodes_length; i++) {
3314     PointsToNode *ptn = ptnodes_worklist.at(i);
3315     if (ptn == NULL || !ptn->is_JavaObject())
3316       continue;
3317     PointsToNode::EscapeState es = ptn->escape_state();
3318     if ((es != PointsToNode::NoEscape) && !Verbose) {
3319       continue;
3320     }
3321     Node* n = ptn->ideal_node();
3322     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3323                              n->as_CallStaticJava()->is_boxing_method())) {
3324       if (first) {
3325         tty->cr();
3326         tty->print("======== Connection graph for ");
3327         _compile->method()->print_short_name();
3328         tty->cr();
3329         first = false;
3330       }
3331       ptn->dump();
3332       // Print all locals and fields which reference this allocation
3333       for (UseIterator j(ptn); j.has_next(); j.next()) {
3334         PointsToNode* use = j.get();
3335         if (use->is_LocalVar()) {
3336           use->dump(Verbose);
3337         } else if (Verbose) {
3338           use->dump();
3339         }
3340       }
3341       tty->cr();
3342     }
3343   }
3344 }
3345 #endif