1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/parse.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "opto/subnode.hpp"
  39 #include "prims/nativeLookup.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "trace/traceMacros.hpp"
  42 
  43 class LibraryIntrinsic : public InlineCallGenerator {
  44   // Extend the set of intrinsics known to the runtime:
  45  public:
  46  private:
  47   bool             _is_virtual;
  48   bool             _is_predicted;
  49   vmIntrinsics::ID _intrinsic_id;
  50 
  51  public:
  52   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, vmIntrinsics::ID id)
  53     : InlineCallGenerator(m),
  54       _is_virtual(is_virtual),
  55       _is_predicted(is_predicted),
  56       _intrinsic_id(id)
  57   {
  58   }
  59   virtual bool is_intrinsic() const { return true; }
  60   virtual bool is_virtual()   const { return _is_virtual; }
  61   virtual bool is_predicted()   const { return _is_predicted; }
  62   virtual JVMState* generate(JVMState* jvms);
  63   virtual Node* generate_predicate(JVMState* jvms);
  64   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  65 };
  66 
  67 
  68 // Local helper class for LibraryIntrinsic:
  69 class LibraryCallKit : public GraphKit {
  70  private:
  71   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  72   Node*             _result;        // the result node, if any
  73   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  74 
  75   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  76 
  77  public:
  78   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  79     : GraphKit(jvms),
  80       _intrinsic(intrinsic),
  81       _result(NULL)
  82   {
  83     // Check if this is a root compile.  In that case we don't have a caller.
  84     if (!jvms->has_method()) {
  85       _reexecute_sp = sp();
  86     } else {
  87       // Find out how many arguments the interpreter needs when deoptimizing
  88       // and save the stack pointer value so it can used by uncommon_trap.
  89       // We find the argument count by looking at the declared signature.
  90       bool ignored_will_link;
  91       ciSignature* declared_signature = NULL;
  92       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  93       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
  94       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
  95     }
  96   }
  97 
  98   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
  99 
 100   ciMethod*         caller()    const    { return jvms()->method(); }
 101   int               bci()       const    { return jvms()->bci(); }
 102   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 103   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 104   ciMethod*         callee()    const    { return _intrinsic->method(); }
 105 
 106   bool try_to_inline();
 107   Node* try_to_predicate();
 108 
 109   void push_result() {
 110     // Push the result onto the stack.
 111     if (!stopped() && result() != NULL) {
 112       BasicType bt = result()->bottom_type()->basic_type();
 113       push_node(bt, result());
 114     }
 115   }
 116 
 117  private:
 118   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 119     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 120   }
 121 
 122   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 123   void  set_result(RegionNode* region, PhiNode* value);
 124   Node*     result() { return _result; }
 125 
 126   virtual int reexecute_sp() { return _reexecute_sp; }
 127 
 128   // Helper functions to inline natives
 129   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 130   Node* generate_slow_guard(Node* test, RegionNode* region);
 131   Node* generate_fair_guard(Node* test, RegionNode* region);
 132   Node* generate_negative_guard(Node* index, RegionNode* region,
 133                                 // resulting CastII of index:
 134                                 Node* *pos_index = NULL);
 135   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 136                                    // resulting CastII of index:
 137                                    Node* *pos_index = NULL);
 138   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 139                              Node* array_length,
 140                              RegionNode* region);
 141   Node* generate_current_thread(Node* &tls_output);
 142   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 143                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 144   Node* load_mirror_from_klass(Node* klass);
 145   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 146                                       RegionNode* region, int null_path,
 147                                       int offset);
 148   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 149                                RegionNode* region, int null_path) {
 150     int offset = java_lang_Class::klass_offset_in_bytes();
 151     return load_klass_from_mirror_common(mirror, never_see_null,
 152                                          region, null_path,
 153                                          offset);
 154   }
 155   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 156                                      RegionNode* region, int null_path) {
 157     int offset = java_lang_Class::array_klass_offset_in_bytes();
 158     return load_klass_from_mirror_common(mirror, never_see_null,
 159                                          region, null_path,
 160                                          offset);
 161   }
 162   Node* generate_access_flags_guard(Node* kls,
 163                                     int modifier_mask, int modifier_bits,
 164                                     RegionNode* region);
 165   Node* generate_interface_guard(Node* kls, RegionNode* region);
 166   Node* generate_array_guard(Node* kls, RegionNode* region) {
 167     return generate_array_guard_common(kls, region, false, false);
 168   }
 169   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 170     return generate_array_guard_common(kls, region, false, true);
 171   }
 172   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 173     return generate_array_guard_common(kls, region, true, false);
 174   }
 175   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 176     return generate_array_guard_common(kls, region, true, true);
 177   }
 178   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 179                                     bool obj_array, bool not_array);
 180   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 181   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 182                                      bool is_virtual = false, bool is_static = false);
 183   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 184     return generate_method_call(method_id, false, true);
 185   }
 186   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 187     return generate_method_call(method_id, true, false);
 188   }
 189   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 190 
 191   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 192   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 193   bool inline_string_compareTo();
 194   bool inline_string_indexOf();
 195   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 196   bool inline_string_equals();
 197   Node* round_double_node(Node* n);
 198   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 199   bool inline_math_native(vmIntrinsics::ID id);
 200   bool inline_trig(vmIntrinsics::ID id);
 201   bool inline_math(vmIntrinsics::ID id);
 202   bool inline_exp();
 203   bool inline_pow();
 204   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 205   bool inline_min_max(vmIntrinsics::ID id);
 206   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 207   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 208   int classify_unsafe_addr(Node* &base, Node* &offset);
 209   Node* make_unsafe_address(Node* base, Node* offset);
 210   // Helper for inline_unsafe_access.
 211   // Generates the guards that check whether the result of
 212   // Unsafe.getObject should be recorded in an SATB log buffer.
 213   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 214   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 215   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 216   bool inline_unsafe_allocate();
 217   bool inline_unsafe_copyMemory();
 218   bool inline_native_currentThread();
 219 #ifdef TRACE_HAVE_INTRINSICS
 220   bool inline_native_classID();
 221   bool inline_native_threadID();
 222 #endif
 223   bool inline_native_time_funcs(address method, const char* funcName);
 224   bool inline_native_isInterrupted();
 225   bool inline_native_Class_query(vmIntrinsics::ID id);
 226   bool inline_native_subtype_check();
 227 
 228   bool inline_native_newArray();
 229   bool inline_native_getLength();
 230   bool inline_array_copyOf(bool is_copyOfRange);
 231   bool inline_array_equals();
 232   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 233   bool inline_native_clone(bool is_virtual);
 234   bool inline_native_Reflection_getCallerClass();
 235   // Helper function for inlining native object hash method
 236   bool inline_native_hashcode(bool is_virtual, bool is_static);
 237   bool inline_native_getClass();
 238 
 239   // Helper functions for inlining arraycopy
 240   bool inline_arraycopy();
 241   void generate_arraycopy(const TypePtr* adr_type,
 242                           BasicType basic_elem_type,
 243                           Node* src,  Node* src_offset,
 244                           Node* dest, Node* dest_offset,
 245                           Node* copy_length,
 246                           bool disjoint_bases = false,
 247                           bool length_never_negative = false,
 248                           RegionNode* slow_region = NULL);
 249   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 250                                                 RegionNode* slow_region);
 251   void generate_clear_array(const TypePtr* adr_type,
 252                             Node* dest,
 253                             BasicType basic_elem_type,
 254                             Node* slice_off,
 255                             Node* slice_len,
 256                             Node* slice_end);
 257   bool generate_block_arraycopy(const TypePtr* adr_type,
 258                                 BasicType basic_elem_type,
 259                                 AllocateNode* alloc,
 260                                 Node* src,  Node* src_offset,
 261                                 Node* dest, Node* dest_offset,
 262                                 Node* dest_size, bool dest_uninitialized);
 263   void generate_slow_arraycopy(const TypePtr* adr_type,
 264                                Node* src,  Node* src_offset,
 265                                Node* dest, Node* dest_offset,
 266                                Node* copy_length, bool dest_uninitialized);
 267   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 268                                      Node* dest_elem_klass,
 269                                      Node* src,  Node* src_offset,
 270                                      Node* dest, Node* dest_offset,
 271                                      Node* copy_length, bool dest_uninitialized);
 272   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 273                                    Node* src,  Node* src_offset,
 274                                    Node* dest, Node* dest_offset,
 275                                    Node* copy_length, bool dest_uninitialized);
 276   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 277                                     BasicType basic_elem_type,
 278                                     bool disjoint_bases,
 279                                     Node* src,  Node* src_offset,
 280                                     Node* dest, Node* dest_offset,
 281                                     Node* copy_length, bool dest_uninitialized);
 282   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 283   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 284   bool inline_unsafe_ordered_store(BasicType type);
 285   bool inline_unsafe_fence(vmIntrinsics::ID id);
 286   bool inline_fp_conversions(vmIntrinsics::ID id);
 287   bool inline_number_methods(vmIntrinsics::ID id);
 288   bool inline_reference_get();
 289   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 290   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 291   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 292   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 293   bool inline_encodeISOArray();
 294 };
 295 
 296 
 297 //---------------------------make_vm_intrinsic----------------------------
 298 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 299   vmIntrinsics::ID id = m->intrinsic_id();
 300   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 301 
 302   if (DisableIntrinsic[0] != '\0'
 303       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 304     // disabled by a user request on the command line:
 305     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 306     return NULL;
 307   }
 308 
 309   if (!m->is_loaded()) {
 310     // do not attempt to inline unloaded methods
 311     return NULL;
 312   }
 313 
 314   // Only a few intrinsics implement a virtual dispatch.
 315   // They are expensive calls which are also frequently overridden.
 316   if (is_virtual) {
 317     switch (id) {
 318     case vmIntrinsics::_hashCode:
 319     case vmIntrinsics::_clone:
 320       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 321       break;
 322     default:
 323       return NULL;
 324     }
 325   }
 326 
 327   // -XX:-InlineNatives disables nearly all intrinsics:
 328   if (!InlineNatives) {
 329     switch (id) {
 330     case vmIntrinsics::_indexOf:
 331     case vmIntrinsics::_compareTo:
 332     case vmIntrinsics::_equals:
 333     case vmIntrinsics::_equalsC:
 334     case vmIntrinsics::_getAndAddInt:
 335     case vmIntrinsics::_getAndAddLong:
 336     case vmIntrinsics::_getAndSetInt:
 337     case vmIntrinsics::_getAndSetLong:
 338     case vmIntrinsics::_getAndSetObject:
 339     case vmIntrinsics::_loadFence:
 340     case vmIntrinsics::_storeFence:
 341     case vmIntrinsics::_fullFence:
 342       break;  // InlineNatives does not control String.compareTo
 343     case vmIntrinsics::_Reference_get:
 344       break;  // InlineNatives does not control Reference.get
 345     default:
 346       return NULL;
 347     }
 348   }
 349 
 350   bool is_predicted = false;
 351 
 352   switch (id) {
 353   case vmIntrinsics::_compareTo:
 354     if (!SpecialStringCompareTo)  return NULL;
 355     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 356     break;
 357   case vmIntrinsics::_indexOf:
 358     if (!SpecialStringIndexOf)  return NULL;
 359     break;
 360   case vmIntrinsics::_equals:
 361     if (!SpecialStringEquals)  return NULL;
 362     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 363     break;
 364   case vmIntrinsics::_equalsC:
 365     if (!SpecialArraysEquals)  return NULL;
 366     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 367     break;
 368   case vmIntrinsics::_arraycopy:
 369     if (!InlineArrayCopy)  return NULL;
 370     break;
 371   case vmIntrinsics::_copyMemory:
 372     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 373     if (!InlineArrayCopy)  return NULL;
 374     break;
 375   case vmIntrinsics::_hashCode:
 376     if (!InlineObjectHash)  return NULL;
 377     break;
 378   case vmIntrinsics::_clone:
 379   case vmIntrinsics::_copyOf:
 380   case vmIntrinsics::_copyOfRange:
 381     if (!InlineObjectCopy)  return NULL;
 382     // These also use the arraycopy intrinsic mechanism:
 383     if (!InlineArrayCopy)  return NULL;
 384     break;
 385   case vmIntrinsics::_encodeISOArray:
 386     if (!SpecialEncodeISOArray)  return NULL;
 387     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 388     break;
 389   case vmIntrinsics::_checkIndex:
 390     // We do not intrinsify this.  The optimizer does fine with it.
 391     return NULL;
 392 
 393   case vmIntrinsics::_getCallerClass:
 394     if (!UseNewReflection)  return NULL;
 395     if (!InlineReflectionGetCallerClass)  return NULL;
 396     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 397     break;
 398 
 399   case vmIntrinsics::_bitCount_i:
 400     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 401     break;
 402 
 403   case vmIntrinsics::_bitCount_l:
 404     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 405     break;
 406 
 407   case vmIntrinsics::_numberOfLeadingZeros_i:
 408     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 409     break;
 410 
 411   case vmIntrinsics::_numberOfLeadingZeros_l:
 412     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 413     break;
 414 
 415   case vmIntrinsics::_numberOfTrailingZeros_i:
 416     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 417     break;
 418 
 419   case vmIntrinsics::_numberOfTrailingZeros_l:
 420     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 421     break;
 422 
 423   case vmIntrinsics::_reverseBytes_c:
 424     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 425     break;
 426   case vmIntrinsics::_reverseBytes_s:
 427     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 428     break;
 429   case vmIntrinsics::_reverseBytes_i:
 430     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 431     break;
 432   case vmIntrinsics::_reverseBytes_l:
 433     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 434     break;
 435 
 436   case vmIntrinsics::_Reference_get:
 437     // Use the intrinsic version of Reference.get() so that the value in
 438     // the referent field can be registered by the G1 pre-barrier code.
 439     // Also add memory barrier to prevent commoning reads from this field
 440     // across safepoint since GC can change it value.
 441     break;
 442 
 443   case vmIntrinsics::_compareAndSwapObject:
 444 #ifdef _LP64
 445     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 446 #endif
 447     break;
 448 
 449   case vmIntrinsics::_compareAndSwapLong:
 450     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 451     break;
 452 
 453   case vmIntrinsics::_getAndAddInt:
 454     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 455     break;
 456 
 457   case vmIntrinsics::_getAndAddLong:
 458     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 459     break;
 460 
 461   case vmIntrinsics::_getAndSetInt:
 462     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 463     break;
 464 
 465   case vmIntrinsics::_getAndSetLong:
 466     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 467     break;
 468 
 469   case vmIntrinsics::_getAndSetObject:
 470 #ifdef _LP64
 471     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 472     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 473     break;
 474 #else
 475     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 476     break;
 477 #endif
 478 
 479   case vmIntrinsics::_aescrypt_encryptBlock:
 480   case vmIntrinsics::_aescrypt_decryptBlock:
 481     if (!UseAESIntrinsics) return NULL;
 482     break;
 483 
 484   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 485   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 486     if (!UseAESIntrinsics) return NULL;
 487     // these two require the predicated logic
 488     is_predicted = true;
 489     break;
 490 
 491  default:
 492     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 493     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 494     break;
 495   }
 496 
 497   // -XX:-InlineClassNatives disables natives from the Class class.
 498   // The flag applies to all reflective calls, notably Array.newArray
 499   // (visible to Java programmers as Array.newInstance).
 500   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 501       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 502     if (!InlineClassNatives)  return NULL;
 503   }
 504 
 505   // -XX:-InlineThreadNatives disables natives from the Thread class.
 506   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 507     if (!InlineThreadNatives)  return NULL;
 508   }
 509 
 510   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 511   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 512       m->holder()->name() == ciSymbol::java_lang_Float() ||
 513       m->holder()->name() == ciSymbol::java_lang_Double()) {
 514     if (!InlineMathNatives)  return NULL;
 515   }
 516 
 517   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 518   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 519     if (!InlineUnsafeOps)  return NULL;
 520   }
 521 
 522   return new LibraryIntrinsic(m, is_virtual, is_predicted, (vmIntrinsics::ID) id);
 523 }
 524 
 525 //----------------------register_library_intrinsics-----------------------
 526 // Initialize this file's data structures, for each Compile instance.
 527 void Compile::register_library_intrinsics() {
 528   // Nothing to do here.
 529 }
 530 
 531 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 532   LibraryCallKit kit(jvms, this);
 533   Compile* C = kit.C;
 534   int nodes = C->unique();
 535 #ifndef PRODUCT
 536   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 537     char buf[1000];
 538     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 539     tty->print_cr("Intrinsic %s", str);
 540   }
 541 #endif
 542   ciMethod* callee = kit.callee();
 543   const int bci    = kit.bci();
 544 
 545   // Try to inline the intrinsic.
 546   if (kit.try_to_inline()) {
 547     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 548       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 549     }
 550     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 551     if (C->log()) {
 552       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 553                      vmIntrinsics::name_at(intrinsic_id()),
 554                      (is_virtual() ? " virtual='1'" : ""),
 555                      C->unique() - nodes);
 556     }
 557     // Push the result from the inlined method onto the stack.
 558     kit.push_result();
 559     return kit.transfer_exceptions_into_jvms();
 560   }
 561 
 562   // The intrinsic bailed out
 563   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 564     if (jvms->has_method()) {
 565       // Not a root compile.
 566       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 567       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 568     } else {
 569       // Root compile
 570       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 571                vmIntrinsics::name_at(intrinsic_id()),
 572                (is_virtual() ? " (virtual)" : ""), bci);
 573     }
 574   }
 575   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 576   return NULL;
 577 }
 578 
 579 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 580   LibraryCallKit kit(jvms, this);
 581   Compile* C = kit.C;
 582   int nodes = C->unique();
 583 #ifndef PRODUCT
 584   assert(is_predicted(), "sanity");
 585   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 586     char buf[1000];
 587     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 588     tty->print_cr("Predicate for intrinsic %s", str);
 589   }
 590 #endif
 591   ciMethod* callee = kit.callee();
 592   const int bci    = kit.bci();
 593 
 594   Node* slow_ctl = kit.try_to_predicate();
 595   if (!kit.failing()) {
 596     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 597       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 598     }
 599     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 600     if (C->log()) {
 601       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 602                      vmIntrinsics::name_at(intrinsic_id()),
 603                      (is_virtual() ? " virtual='1'" : ""),
 604                      C->unique() - nodes);
 605     }
 606     return slow_ctl; // Could be NULL if the check folds.
 607   }
 608 
 609   // The intrinsic bailed out
 610   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 611     if (jvms->has_method()) {
 612       // Not a root compile.
 613       const char* msg = "failed to generate predicate for intrinsic";
 614       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 615     } else {
 616       // Root compile
 617       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 618                                         vmIntrinsics::name_at(intrinsic_id()),
 619                                         (is_virtual() ? " (virtual)" : ""), bci);
 620     }
 621   }
 622   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 623   return NULL;
 624 }
 625 
 626 bool LibraryCallKit::try_to_inline() {
 627   // Handle symbolic names for otherwise undistinguished boolean switches:
 628   const bool is_store       = true;
 629   const bool is_native_ptr  = true;
 630   const bool is_static      = true;
 631   const bool is_volatile    = true;
 632 
 633   if (!jvms()->has_method()) {
 634     // Root JVMState has a null method.
 635     assert(map()->memory()->Opcode() == Op_Parm, "");
 636     // Insert the memory aliasing node
 637     set_all_memory(reset_memory());
 638   }
 639   assert(merged_memory(), "");
 640 
 641 
 642   switch (intrinsic_id()) {
 643   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 644   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 645   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 646 
 647   case vmIntrinsics::_dsin:
 648   case vmIntrinsics::_dcos:
 649   case vmIntrinsics::_dtan:
 650   case vmIntrinsics::_dabs:
 651   case vmIntrinsics::_datan2:
 652   case vmIntrinsics::_dsqrt:
 653   case vmIntrinsics::_dexp:
 654   case vmIntrinsics::_dlog:
 655   case vmIntrinsics::_dlog10:
 656   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 657 
 658   case vmIntrinsics::_min:
 659   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 660 
 661   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 662 
 663   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 664   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 665   case vmIntrinsics::_equals:                   return inline_string_equals();
 666 
 667   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 668   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 669   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 670   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 671   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 672   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 673   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 674   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 675   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 676 
 677   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 678   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 679   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 680   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 681   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 682   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 683   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 684   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 685   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 686 
 687   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 688   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 689   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 690   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 691   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 692   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 693   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 694   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 695 
 696   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 697   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 698   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 699   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 700   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 701   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 702   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 703   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 704 
 705   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 706   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 707   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 708   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 709   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 710   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 711   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 712   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 713   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 714 
 715   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 716   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 717   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 718   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 719   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 720   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 721   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 722   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 723   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 724 
 725   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 726   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 727   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 728   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 729 
 730   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 731   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 732   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 733 
 734   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 735   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 736   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 737 
 738   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 739   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 740   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 741   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 742   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 743 
 744   case vmIntrinsics::_loadFence:
 745   case vmIntrinsics::_storeFence:
 746   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 747 
 748   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 749   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 750 
 751 #ifdef TRACE_HAVE_INTRINSICS
 752   case vmIntrinsics::_classID:                  return inline_native_classID();
 753   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 754   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 755 #endif
 756   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 757   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 758   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 759   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 760   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 761   case vmIntrinsics::_getLength:                return inline_native_getLength();
 762   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 763   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 764   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 765   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 766 
 767   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 768 
 769   case vmIntrinsics::_isInstance:
 770   case vmIntrinsics::_getModifiers:
 771   case vmIntrinsics::_isInterface:
 772   case vmIntrinsics::_isArray:
 773   case vmIntrinsics::_isPrimitive:
 774   case vmIntrinsics::_getSuperclass:
 775   case vmIntrinsics::_getComponentType:
 776   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 777 
 778   case vmIntrinsics::_floatToRawIntBits:
 779   case vmIntrinsics::_floatToIntBits:
 780   case vmIntrinsics::_intBitsToFloat:
 781   case vmIntrinsics::_doubleToRawLongBits:
 782   case vmIntrinsics::_doubleToLongBits:
 783   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 784 
 785   case vmIntrinsics::_numberOfLeadingZeros_i:
 786   case vmIntrinsics::_numberOfLeadingZeros_l:
 787   case vmIntrinsics::_numberOfTrailingZeros_i:
 788   case vmIntrinsics::_numberOfTrailingZeros_l:
 789   case vmIntrinsics::_bitCount_i:
 790   case vmIntrinsics::_bitCount_l:
 791   case vmIntrinsics::_reverseBytes_i:
 792   case vmIntrinsics::_reverseBytes_l:
 793   case vmIntrinsics::_reverseBytes_s:
 794   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 795 
 796   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 797 
 798   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 799 
 800   case vmIntrinsics::_aescrypt_encryptBlock:
 801   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 802 
 803   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 804   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 805     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 806 
 807   case vmIntrinsics::_encodeISOArray:
 808     return inline_encodeISOArray();
 809 
 810   default:
 811     // If you get here, it may be that someone has added a new intrinsic
 812     // to the list in vmSymbols.hpp without implementing it here.
 813 #ifndef PRODUCT
 814     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 815       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 816                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 817     }
 818 #endif
 819     return false;
 820   }
 821 }
 822 
 823 Node* LibraryCallKit::try_to_predicate() {
 824   if (!jvms()->has_method()) {
 825     // Root JVMState has a null method.
 826     assert(map()->memory()->Opcode() == Op_Parm, "");
 827     // Insert the memory aliasing node
 828     set_all_memory(reset_memory());
 829   }
 830   assert(merged_memory(), "");
 831 
 832   switch (intrinsic_id()) {
 833   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 834     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 835   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 836     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 837 
 838   default:
 839     // If you get here, it may be that someone has added a new intrinsic
 840     // to the list in vmSymbols.hpp without implementing it here.
 841 #ifndef PRODUCT
 842     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 843       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 844                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 845     }
 846 #endif
 847     Node* slow_ctl = control();
 848     set_control(top()); // No fast path instrinsic
 849     return slow_ctl;
 850   }
 851 }
 852 
 853 //------------------------------set_result-------------------------------
 854 // Helper function for finishing intrinsics.
 855 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 856   record_for_igvn(region);
 857   set_control(_gvn.transform(region));
 858   set_result( _gvn.transform(value));
 859   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 860 }
 861 
 862 //------------------------------generate_guard---------------------------
 863 // Helper function for generating guarded fast-slow graph structures.
 864 // The given 'test', if true, guards a slow path.  If the test fails
 865 // then a fast path can be taken.  (We generally hope it fails.)
 866 // In all cases, GraphKit::control() is updated to the fast path.
 867 // The returned value represents the control for the slow path.
 868 // The return value is never 'top'; it is either a valid control
 869 // or NULL if it is obvious that the slow path can never be taken.
 870 // Also, if region and the slow control are not NULL, the slow edge
 871 // is appended to the region.
 872 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 873   if (stopped()) {
 874     // Already short circuited.
 875     return NULL;
 876   }
 877 
 878   // Build an if node and its projections.
 879   // If test is true we take the slow path, which we assume is uncommon.
 880   if (_gvn.type(test) == TypeInt::ZERO) {
 881     // The slow branch is never taken.  No need to build this guard.
 882     return NULL;
 883   }
 884 
 885   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 886 
 887   Node* if_slow = _gvn.transform( new (C) IfTrueNode(iff) );
 888   if (if_slow == top()) {
 889     // The slow branch is never taken.  No need to build this guard.
 890     return NULL;
 891   }
 892 
 893   if (region != NULL)
 894     region->add_req(if_slow);
 895 
 896   Node* if_fast = _gvn.transform( new (C) IfFalseNode(iff) );
 897   set_control(if_fast);
 898 
 899   return if_slow;
 900 }
 901 
 902 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 903   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 904 }
 905 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 906   return generate_guard(test, region, PROB_FAIR);
 907 }
 908 
 909 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 910                                                      Node* *pos_index) {
 911   if (stopped())
 912     return NULL;                // already stopped
 913   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 914     return NULL;                // index is already adequately typed
 915   Node* cmp_lt = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
 916   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
 917   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 918   if (is_neg != NULL && pos_index != NULL) {
 919     // Emulate effect of Parse::adjust_map_after_if.
 920     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
 921     ccast->set_req(0, control());
 922     (*pos_index) = _gvn.transform(ccast);
 923   }
 924   return is_neg;
 925 }
 926 
 927 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 928                                                         Node* *pos_index) {
 929   if (stopped())
 930     return NULL;                // already stopped
 931   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 932     return NULL;                // index is already adequately typed
 933   Node* cmp_le = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
 934   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 935   Node* bol_le = _gvn.transform( new (C) BoolNode(cmp_le, le_or_eq) );
 936   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 937   if (is_notp != NULL && pos_index != NULL) {
 938     // Emulate effect of Parse::adjust_map_after_if.
 939     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
 940     ccast->set_req(0, control());
 941     (*pos_index) = _gvn.transform(ccast);
 942   }
 943   return is_notp;
 944 }
 945 
 946 // Make sure that 'position' is a valid limit index, in [0..length].
 947 // There are two equivalent plans for checking this:
 948 //   A. (offset + copyLength)  unsigned<=  arrayLength
 949 //   B. offset  <=  (arrayLength - copyLength)
 950 // We require that all of the values above, except for the sum and
 951 // difference, are already known to be non-negative.
 952 // Plan A is robust in the face of overflow, if offset and copyLength
 953 // are both hugely positive.
 954 //
 955 // Plan B is less direct and intuitive, but it does not overflow at
 956 // all, since the difference of two non-negatives is always
 957 // representable.  Whenever Java methods must perform the equivalent
 958 // check they generally use Plan B instead of Plan A.
 959 // For the moment we use Plan A.
 960 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 961                                                   Node* subseq_length,
 962                                                   Node* array_length,
 963                                                   RegionNode* region) {
 964   if (stopped())
 965     return NULL;                // already stopped
 966   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 967   if (zero_offset && subseq_length->eqv_uncast(array_length))
 968     return NULL;                // common case of whole-array copy
 969   Node* last = subseq_length;
 970   if (!zero_offset)             // last += offset
 971     last = _gvn.transform( new (C) AddINode(last, offset));
 972   Node* cmp_lt = _gvn.transform( new (C) CmpUNode(array_length, last) );
 973   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
 974   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 975   return is_over;
 976 }
 977 
 978 
 979 //--------------------------generate_current_thread--------------------
 980 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 981   ciKlass*    thread_klass = env()->Thread_klass();
 982   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 983   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
 984   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 985   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
 986   tls_output = thread;
 987   return threadObj;
 988 }
 989 
 990 
 991 //------------------------------make_string_method_node------------------------
 992 // Helper method for String intrinsic functions. This version is called
 993 // with str1 and str2 pointing to String object nodes.
 994 //
 995 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
 996   Node* no_ctrl = NULL;
 997 
 998   // Get start addr of string
 999   Node* str1_value   = load_String_value(no_ctrl, str1);
1000   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1001   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1002 
1003   // Get length of string 1
1004   Node* str1_len  = load_String_length(no_ctrl, str1);
1005 
1006   Node* str2_value   = load_String_value(no_ctrl, str2);
1007   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1008   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1009 
1010   Node* str2_len = NULL;
1011   Node* result = NULL;
1012 
1013   switch (opcode) {
1014   case Op_StrIndexOf:
1015     // Get length of string 2
1016     str2_len = load_String_length(no_ctrl, str2);
1017 
1018     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1019                                  str1_start, str1_len, str2_start, str2_len);
1020     break;
1021   case Op_StrComp:
1022     // Get length of string 2
1023     str2_len = load_String_length(no_ctrl, str2);
1024 
1025     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1026                                  str1_start, str1_len, str2_start, str2_len);
1027     break;
1028   case Op_StrEquals:
1029     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1030                                str1_start, str2_start, str1_len);
1031     break;
1032   default:
1033     ShouldNotReachHere();
1034     return NULL;
1035   }
1036 
1037   // All these intrinsics have checks.
1038   C->set_has_split_ifs(true); // Has chance for split-if optimization
1039 
1040   return _gvn.transform(result);
1041 }
1042 
1043 // Helper method for String intrinsic functions. This version is called
1044 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1045 // to Int nodes containing the lenghts of str1 and str2.
1046 //
1047 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1048   Node* result = NULL;
1049   switch (opcode) {
1050   case Op_StrIndexOf:
1051     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1052                                  str1_start, cnt1, str2_start, cnt2);
1053     break;
1054   case Op_StrComp:
1055     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1056                                  str1_start, cnt1, str2_start, cnt2);
1057     break;
1058   case Op_StrEquals:
1059     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1060                                  str1_start, str2_start, cnt1);
1061     break;
1062   default:
1063     ShouldNotReachHere();
1064     return NULL;
1065   }
1066 
1067   // All these intrinsics have checks.
1068   C->set_has_split_ifs(true); // Has chance for split-if optimization
1069 
1070   return _gvn.transform(result);
1071 }
1072 
1073 //------------------------------inline_string_compareTo------------------------
1074 // public int java.lang.String.compareTo(String anotherString);
1075 bool LibraryCallKit::inline_string_compareTo() {
1076   Node* receiver = null_check(argument(0));
1077   Node* arg      = null_check(argument(1));
1078   if (stopped()) {
1079     return true;
1080   }
1081   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1082   return true;
1083 }
1084 
1085 //------------------------------inline_string_equals------------------------
1086 bool LibraryCallKit::inline_string_equals() {
1087   Node* receiver = null_check_receiver();
1088   // NOTE: Do not null check argument for String.equals() because spec
1089   // allows to specify NULL as argument.
1090   Node* argument = this->argument(1);
1091   if (stopped()) {
1092     return true;
1093   }
1094 
1095   // paths (plus control) merge
1096   RegionNode* region = new (C) RegionNode(5);
1097   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1098 
1099   // does source == target string?
1100   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1101   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1102 
1103   Node* if_eq = generate_slow_guard(bol, NULL);
1104   if (if_eq != NULL) {
1105     // receiver == argument
1106     phi->init_req(2, intcon(1));
1107     region->init_req(2, if_eq);
1108   }
1109 
1110   // get String klass for instanceOf
1111   ciInstanceKlass* klass = env()->String_klass();
1112 
1113   if (!stopped()) {
1114     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1115     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1116     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1117 
1118     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1119     //instanceOf == true, fallthrough
1120 
1121     if (inst_false != NULL) {
1122       phi->init_req(3, intcon(0));
1123       region->init_req(3, inst_false);
1124     }
1125   }
1126 
1127   if (!stopped()) {
1128     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1129 
1130     // Properly cast the argument to String
1131     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1132     // This path is taken only when argument's type is String:NotNull.
1133     argument = cast_not_null(argument, false);
1134 
1135     Node* no_ctrl = NULL;
1136 
1137     // Get start addr of receiver
1138     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1139     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1140     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1141 
1142     // Get length of receiver
1143     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1144 
1145     // Get start addr of argument
1146     Node* argument_val    = load_String_value(no_ctrl, argument);
1147     Node* argument_offset = load_String_offset(no_ctrl, argument);
1148     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1149 
1150     // Get length of argument
1151     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1152 
1153     // Check for receiver count != argument count
1154     Node* cmp = _gvn.transform( new(C) CmpINode(receiver_cnt, argument_cnt) );
1155     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::ne) );
1156     Node* if_ne = generate_slow_guard(bol, NULL);
1157     if (if_ne != NULL) {
1158       phi->init_req(4, intcon(0));
1159       region->init_req(4, if_ne);
1160     }
1161 
1162     // Check for count == 0 is done by assembler code for StrEquals.
1163 
1164     if (!stopped()) {
1165       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1166       phi->init_req(1, equals);
1167       region->init_req(1, control());
1168     }
1169   }
1170 
1171   // post merge
1172   set_control(_gvn.transform(region));
1173   record_for_igvn(region);
1174 
1175   set_result(_gvn.transform(phi));
1176   return true;
1177 }
1178 
1179 //------------------------------inline_array_equals----------------------------
1180 bool LibraryCallKit::inline_array_equals() {
1181   Node* arg1 = argument(0);
1182   Node* arg2 = argument(1);
1183   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1184   return true;
1185 }
1186 
1187 // Java version of String.indexOf(constant string)
1188 // class StringDecl {
1189 //   StringDecl(char[] ca) {
1190 //     offset = 0;
1191 //     count = ca.length;
1192 //     value = ca;
1193 //   }
1194 //   int offset;
1195 //   int count;
1196 //   char[] value;
1197 // }
1198 //
1199 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1200 //                             int targetOffset, int cache_i, int md2) {
1201 //   int cache = cache_i;
1202 //   int sourceOffset = string_object.offset;
1203 //   int sourceCount = string_object.count;
1204 //   int targetCount = target_object.length;
1205 //
1206 //   int targetCountLess1 = targetCount - 1;
1207 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1208 //
1209 //   char[] source = string_object.value;
1210 //   char[] target = target_object;
1211 //   int lastChar = target[targetCountLess1];
1212 //
1213 //  outer_loop:
1214 //   for (int i = sourceOffset; i < sourceEnd; ) {
1215 //     int src = source[i + targetCountLess1];
1216 //     if (src == lastChar) {
1217 //       // With random strings and a 4-character alphabet,
1218 //       // reverse matching at this point sets up 0.8% fewer
1219 //       // frames, but (paradoxically) makes 0.3% more probes.
1220 //       // Since those probes are nearer the lastChar probe,
1221 //       // there is may be a net D$ win with reverse matching.
1222 //       // But, reversing loop inhibits unroll of inner loop
1223 //       // for unknown reason.  So, does running outer loop from
1224 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1225 //       for (int j = 0; j < targetCountLess1; j++) {
1226 //         if (target[targetOffset + j] != source[i+j]) {
1227 //           if ((cache & (1 << source[i+j])) == 0) {
1228 //             if (md2 < j+1) {
1229 //               i += j+1;
1230 //               continue outer_loop;
1231 //             }
1232 //           }
1233 //           i += md2;
1234 //           continue outer_loop;
1235 //         }
1236 //       }
1237 //       return i - sourceOffset;
1238 //     }
1239 //     if ((cache & (1 << src)) == 0) {
1240 //       i += targetCountLess1;
1241 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1242 //     i++;
1243 //   }
1244 //   return -1;
1245 // }
1246 
1247 //------------------------------string_indexOf------------------------
1248 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1249                                      jint cache_i, jint md2_i) {
1250 
1251   Node* no_ctrl  = NULL;
1252   float likely   = PROB_LIKELY(0.9);
1253   float unlikely = PROB_UNLIKELY(0.9);
1254 
1255   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1256 
1257   Node* source        = load_String_value(no_ctrl, string_object);
1258   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1259   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1260 
1261   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
1262   jint target_length = target_array->length();
1263   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1264   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1265 
1266   IdealKit kit(this, false, true);
1267 #define __ kit.
1268   Node* zero             = __ ConI(0);
1269   Node* one              = __ ConI(1);
1270   Node* cache            = __ ConI(cache_i);
1271   Node* md2              = __ ConI(md2_i);
1272   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1273   Node* targetCount      = __ ConI(target_length);
1274   Node* targetCountLess1 = __ ConI(target_length - 1);
1275   Node* targetOffset     = __ ConI(targetOffset_i);
1276   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1277 
1278   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1279   Node* outer_loop = __ make_label(2 /* goto */);
1280   Node* return_    = __ make_label(1);
1281 
1282   __ set(rtn,__ ConI(-1));
1283   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1284        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1285        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1286        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1287        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1288          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1289               Node* tpj = __ AddI(targetOffset, __ value(j));
1290               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1291               Node* ipj  = __ AddI(__ value(i), __ value(j));
1292               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1293               __ if_then(targ, BoolTest::ne, src2); {
1294                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1295                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1296                     __ increment(i, __ AddI(__ value(j), one));
1297                     __ goto_(outer_loop);
1298                   } __ end_if(); __ dead(j);
1299                 }__ end_if(); __ dead(j);
1300                 __ increment(i, md2);
1301                 __ goto_(outer_loop);
1302               }__ end_if();
1303               __ increment(j, one);
1304          }__ end_loop(); __ dead(j);
1305          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1306          __ goto_(return_);
1307        }__ end_if();
1308        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1309          __ increment(i, targetCountLess1);
1310        }__ end_if();
1311        __ increment(i, one);
1312        __ bind(outer_loop);
1313   }__ end_loop(); __ dead(i);
1314   __ bind(return_);
1315 
1316   // Final sync IdealKit and GraphKit.
1317   final_sync(kit);
1318   Node* result = __ value(rtn);
1319 #undef __
1320   C->set_has_loops(true);
1321   return result;
1322 }
1323 
1324 //------------------------------inline_string_indexOf------------------------
1325 bool LibraryCallKit::inline_string_indexOf() {
1326   Node* receiver = argument(0);
1327   Node* arg      = argument(1);
1328 
1329   Node* result;
1330   // Disable the use of pcmpestri until it can be guaranteed that
1331   // the load doesn't cross into the uncommited space.
1332   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1333       UseSSE42Intrinsics) {
1334     // Generate SSE4.2 version of indexOf
1335     // We currently only have match rules that use SSE4.2
1336 
1337     receiver = null_check(receiver);
1338     arg      = null_check(arg);
1339     if (stopped()) {
1340       return true;
1341     }
1342 
1343     ciInstanceKlass* str_klass = env()->String_klass();
1344     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1345 
1346     // Make the merge point
1347     RegionNode* result_rgn = new (C) RegionNode(4);
1348     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1349     Node* no_ctrl  = NULL;
1350 
1351     // Get start addr of source string
1352     Node* source = load_String_value(no_ctrl, receiver);
1353     Node* source_offset = load_String_offset(no_ctrl, receiver);
1354     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1355 
1356     // Get length of source string
1357     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1358 
1359     // Get start addr of substring
1360     Node* substr = load_String_value(no_ctrl, arg);
1361     Node* substr_offset = load_String_offset(no_ctrl, arg);
1362     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1363 
1364     // Get length of source string
1365     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1366 
1367     // Check for substr count > string count
1368     Node* cmp = _gvn.transform( new(C) CmpINode(substr_cnt, source_cnt) );
1369     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::gt) );
1370     Node* if_gt = generate_slow_guard(bol, NULL);
1371     if (if_gt != NULL) {
1372       result_phi->init_req(2, intcon(-1));
1373       result_rgn->init_req(2, if_gt);
1374     }
1375 
1376     if (!stopped()) {
1377       // Check for substr count == 0
1378       cmp = _gvn.transform( new(C) CmpINode(substr_cnt, intcon(0)) );
1379       bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
1380       Node* if_zero = generate_slow_guard(bol, NULL);
1381       if (if_zero != NULL) {
1382         result_phi->init_req(3, intcon(0));
1383         result_rgn->init_req(3, if_zero);
1384       }
1385     }
1386 
1387     if (!stopped()) {
1388       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1389       result_phi->init_req(1, result);
1390       result_rgn->init_req(1, control());
1391     }
1392     set_control(_gvn.transform(result_rgn));
1393     record_for_igvn(result_rgn);
1394     result = _gvn.transform(result_phi);
1395 
1396   } else { // Use LibraryCallKit::string_indexOf
1397     // don't intrinsify if argument isn't a constant string.
1398     if (!arg->is_Con()) {
1399      return false;
1400     }
1401     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1402     if (str_type == NULL) {
1403       return false;
1404     }
1405     ciInstanceKlass* klass = env()->String_klass();
1406     ciObject* str_const = str_type->const_oop();
1407     if (str_const == NULL || str_const->klass() != klass) {
1408       return false;
1409     }
1410     ciInstance* str = str_const->as_instance();
1411     assert(str != NULL, "must be instance");
1412 
1413     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1414     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1415 
1416     int o;
1417     int c;
1418     if (java_lang_String::has_offset_field()) {
1419       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1420       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1421     } else {
1422       o = 0;
1423       c = pat->length();
1424     }
1425 
1426     // constant strings have no offset and count == length which
1427     // simplifies the resulting code somewhat so lets optimize for that.
1428     if (o != 0 || c != pat->length()) {
1429      return false;
1430     }
1431 
1432     receiver = null_check(receiver, T_OBJECT);
1433     // NOTE: No null check on the argument is needed since it's a constant String oop.
1434     if (stopped()) {
1435       return true;
1436     }
1437 
1438     // The null string as a pattern always returns 0 (match at beginning of string)
1439     if (c == 0) {
1440       set_result(intcon(0));
1441       return true;
1442     }
1443 
1444     // Generate default indexOf
1445     jchar lastChar = pat->char_at(o + (c - 1));
1446     int cache = 0;
1447     int i;
1448     for (i = 0; i < c - 1; i++) {
1449       assert(i < pat->length(), "out of range");
1450       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1451     }
1452 
1453     int md2 = c;
1454     for (i = 0; i < c - 1; i++) {
1455       assert(i < pat->length(), "out of range");
1456       if (pat->char_at(o + i) == lastChar) {
1457         md2 = (c - 1) - i;
1458       }
1459     }
1460 
1461     result = string_indexOf(receiver, pat, o, cache, md2);
1462   }
1463   set_result(result);
1464   return true;
1465 }
1466 
1467 //--------------------------round_double_node--------------------------------
1468 // Round a double node if necessary.
1469 Node* LibraryCallKit::round_double_node(Node* n) {
1470   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1471     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1472   return n;
1473 }
1474 
1475 //------------------------------inline_math-----------------------------------
1476 // public static double Math.abs(double)
1477 // public static double Math.sqrt(double)
1478 // public static double Math.log(double)
1479 // public static double Math.log10(double)
1480 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1481   Node* arg = round_double_node(argument(0));
1482   Node* n;
1483   switch (id) {
1484   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1485   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1486   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1487   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1488   default:  fatal_unexpected_iid(id);  break;
1489   }
1490   set_result(_gvn.transform(n));
1491   return true;
1492 }
1493 
1494 //------------------------------inline_trig----------------------------------
1495 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1496 // argument reduction which will turn into a fast/slow diamond.
1497 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1498   Node* arg = round_double_node(argument(0));
1499   Node* n = NULL;
1500 
1501   switch (id) {
1502   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1503   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1504   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1505   default:  fatal_unexpected_iid(id);  break;
1506   }
1507   n = _gvn.transform(n);
1508 
1509   // Rounding required?  Check for argument reduction!
1510   if (Matcher::strict_fp_requires_explicit_rounding) {
1511     static const double     pi_4 =  0.7853981633974483;
1512     static const double neg_pi_4 = -0.7853981633974483;
1513     // pi/2 in 80-bit extended precision
1514     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1515     // -pi/2 in 80-bit extended precision
1516     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1517     // Cutoff value for using this argument reduction technique
1518     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1519     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1520 
1521     // Pseudocode for sin:
1522     // if (x <= Math.PI / 4.0) {
1523     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1524     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1525     // } else {
1526     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1527     // }
1528     // return StrictMath.sin(x);
1529 
1530     // Pseudocode for cos:
1531     // if (x <= Math.PI / 4.0) {
1532     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1533     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1534     // } else {
1535     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1536     // }
1537     // return StrictMath.cos(x);
1538 
1539     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1540     // requires a special machine instruction to load it.  Instead we'll try
1541     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1542     // probably do the math inside the SIN encoding.
1543 
1544     // Make the merge point
1545     RegionNode* r = new (C) RegionNode(3);
1546     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1547 
1548     // Flatten arg so we need only 1 test
1549     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1550     // Node for PI/4 constant
1551     Node *pi4 = makecon(TypeD::make(pi_4));
1552     // Check PI/4 : abs(arg)
1553     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1554     // Check: If PI/4 < abs(arg) then go slow
1555     Node *bol = _gvn.transform( new (C) BoolNode( cmp, BoolTest::lt ) );
1556     // Branch either way
1557     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1558     set_control(opt_iff(r,iff));
1559 
1560     // Set fast path result
1561     phi->init_req(2, n);
1562 
1563     // Slow path - non-blocking leaf call
1564     Node* call = NULL;
1565     switch (id) {
1566     case vmIntrinsics::_dsin:
1567       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1568                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1569                                "Sin", NULL, arg, top());
1570       break;
1571     case vmIntrinsics::_dcos:
1572       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1573                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1574                                "Cos", NULL, arg, top());
1575       break;
1576     case vmIntrinsics::_dtan:
1577       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1578                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1579                                "Tan", NULL, arg, top());
1580       break;
1581     }
1582     assert(control()->in(0) == call, "");
1583     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1584     r->init_req(1, control());
1585     phi->init_req(1, slow_result);
1586 
1587     // Post-merge
1588     set_control(_gvn.transform(r));
1589     record_for_igvn(r);
1590     n = _gvn.transform(phi);
1591 
1592     C->set_has_split_ifs(true); // Has chance for split-if optimization
1593   }
1594   set_result(n);
1595   return true;
1596 }
1597 
1598 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1599   //-------------------
1600   //result=(result.isNaN())? funcAddr():result;
1601   // Check: If isNaN() by checking result!=result? then either trap
1602   // or go to runtime
1603   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1604   // Build the boolean node
1605   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1606 
1607   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1608     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1609       // The pow or exp intrinsic returned a NaN, which requires a call
1610       // to the runtime.  Recompile with the runtime call.
1611       uncommon_trap(Deoptimization::Reason_intrinsic,
1612                     Deoptimization::Action_make_not_entrant);
1613     }
1614     set_result(result);
1615   } else {
1616     // If this inlining ever returned NaN in the past, we compile a call
1617     // to the runtime to properly handle corner cases
1618 
1619     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1620     Node* if_slow = _gvn.transform( new (C) IfFalseNode(iff) );
1621     Node* if_fast = _gvn.transform( new (C) IfTrueNode(iff) );
1622 
1623     if (!if_slow->is_top()) {
1624       RegionNode* result_region = new (C) RegionNode(3);
1625       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1626 
1627       result_region->init_req(1, if_fast);
1628       result_val->init_req(1, result);
1629 
1630       set_control(if_slow);
1631 
1632       const TypePtr* no_memory_effects = NULL;
1633       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1634                                    no_memory_effects,
1635                                    x, top(), y, y ? top() : NULL);
1636       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1637 #ifdef ASSERT
1638       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1639       assert(value_top == top(), "second value must be top");
1640 #endif
1641 
1642       result_region->init_req(2, control());
1643       result_val->init_req(2, value);
1644       set_result(result_region, result_val);
1645     } else {
1646       set_result(result);
1647     }
1648   }
1649 }
1650 
1651 //------------------------------inline_exp-------------------------------------
1652 // Inline exp instructions, if possible.  The Intel hardware only misses
1653 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1654 bool LibraryCallKit::inline_exp() {
1655   Node* arg = round_double_node(argument(0));
1656   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1657 
1658   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1659 
1660   C->set_has_split_ifs(true); // Has chance for split-if optimization
1661   return true;
1662 }
1663 
1664 //------------------------------inline_pow-------------------------------------
1665 // Inline power instructions, if possible.
1666 bool LibraryCallKit::inline_pow() {
1667   // Pseudocode for pow
1668   // if (x <= 0.0) {
1669   //   long longy = (long)y;
1670   //   if ((double)longy == y) { // if y is long
1671   //     if (y + 1 == y) longy = 0; // huge number: even
1672   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1673   //   } else {
1674   //     result = NaN;
1675   //   }
1676   // } else {
1677   //   result = DPow(x,y);
1678   // }
1679   // if (result != result)?  {
1680   //   result = uncommon_trap() or runtime_call();
1681   // }
1682   // return result;
1683 
1684   Node* x = round_double_node(argument(0));
1685   Node* y = round_double_node(argument(2));
1686 
1687   Node* result = NULL;
1688 
1689   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1690     // Short form: skip the fancy tests and just check for NaN result.
1691     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1692   } else {
1693     // If this inlining ever returned NaN in the past, include all
1694     // checks + call to the runtime.
1695 
1696     // Set the merge point for If node with condition of (x <= 0.0)
1697     // There are four possible paths to region node and phi node
1698     RegionNode *r = new (C) RegionNode(4);
1699     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1700 
1701     // Build the first if node: if (x <= 0.0)
1702     // Node for 0 constant
1703     Node *zeronode = makecon(TypeD::ZERO);
1704     // Check x:0
1705     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1706     // Check: If (x<=0) then go complex path
1707     Node *bol1 = _gvn.transform( new (C) BoolNode( cmp, BoolTest::le ) );
1708     // Branch either way
1709     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1710     // Fast path taken; set region slot 3
1711     Node *fast_taken = _gvn.transform( new (C) IfFalseNode(if1) );
1712     r->init_req(3,fast_taken); // Capture fast-control
1713 
1714     // Fast path not-taken, i.e. slow path
1715     Node *complex_path = _gvn.transform( new (C) IfTrueNode(if1) );
1716 
1717     // Set fast path result
1718     Node *fast_result = _gvn.transform( new (C) PowDNode(C, control(), x, y) );
1719     phi->init_req(3, fast_result);
1720 
1721     // Complex path
1722     // Build the second if node (if y is long)
1723     // Node for (long)y
1724     Node *longy = _gvn.transform( new (C) ConvD2LNode(y));
1725     // Node for (double)((long) y)
1726     Node *doublelongy= _gvn.transform( new (C) ConvL2DNode(longy));
1727     // Check (double)((long) y) : y
1728     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1729     // Check if (y isn't long) then go to slow path
1730 
1731     Node *bol2 = _gvn.transform( new (C) BoolNode( cmplongy, BoolTest::ne ) );
1732     // Branch either way
1733     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1734     Node* ylong_path = _gvn.transform( new (C) IfFalseNode(if2));
1735 
1736     Node *slow_path = _gvn.transform( new (C) IfTrueNode(if2) );
1737 
1738     // Calculate DPow(abs(x), y)*(1 & (long)y)
1739     // Node for constant 1
1740     Node *conone = longcon(1);
1741     // 1& (long)y
1742     Node *signnode= _gvn.transform( new (C) AndLNode(conone, longy) );
1743 
1744     // A huge number is always even. Detect a huge number by checking
1745     // if y + 1 == y and set integer to be tested for parity to 0.
1746     // Required for corner case:
1747     // (long)9.223372036854776E18 = max_jlong
1748     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1749     // max_jlong is odd but 9.223372036854776E18 is even
1750     Node* yplus1 = _gvn.transform( new (C) AddDNode(y, makecon(TypeD::make(1))));
1751     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1752     Node *bolyplus1 = _gvn.transform( new (C) BoolNode( cmpyplus1, BoolTest::eq ) );
1753     Node* correctedsign = NULL;
1754     if (ConditionalMoveLimit != 0) {
1755       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1756     } else {
1757       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1758       RegionNode *r = new (C) RegionNode(3);
1759       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1760       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyplus1)));
1761       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyplus1)));
1762       phi->init_req(1, signnode);
1763       phi->init_req(2, longcon(0));
1764       correctedsign = _gvn.transform(phi);
1765       ylong_path = _gvn.transform(r);
1766       record_for_igvn(r);
1767     }
1768 
1769     // zero node
1770     Node *conzero = longcon(0);
1771     // Check (1&(long)y)==0?
1772     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1773     // Check if (1&(long)y)!=0?, if so the result is negative
1774     Node *bol3 = _gvn.transform( new (C) BoolNode( cmpeq1, BoolTest::ne ) );
1775     // abs(x)
1776     Node *absx=_gvn.transform( new (C) AbsDNode(x));
1777     // abs(x)^y
1778     Node *absxpowy = _gvn.transform( new (C) PowDNode(C, control(), absx, y) );
1779     // -abs(x)^y
1780     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1781     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1782     Node *signresult = NULL;
1783     if (ConditionalMoveLimit != 0) {
1784       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1785     } else {
1786       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1787       RegionNode *r = new (C) RegionNode(3);
1788       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1789       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyeven)));
1790       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyeven)));
1791       phi->init_req(1, absxpowy);
1792       phi->init_req(2, negabsxpowy);
1793       signresult = _gvn.transform(phi);
1794       ylong_path = _gvn.transform(r);
1795       record_for_igvn(r);
1796     }
1797     // Set complex path fast result
1798     r->init_req(2, ylong_path);
1799     phi->init_req(2, signresult);
1800 
1801     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1802     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1803     r->init_req(1,slow_path);
1804     phi->init_req(1,slow_result);
1805 
1806     // Post merge
1807     set_control(_gvn.transform(r));
1808     record_for_igvn(r);
1809     result = _gvn.transform(phi);
1810   }
1811 
1812   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1813 
1814   C->set_has_split_ifs(true); // Has chance for split-if optimization
1815   return true;
1816 }
1817 
1818 //------------------------------runtime_math-----------------------------
1819 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1820   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1821          "must be (DD)D or (D)D type");
1822 
1823   // Inputs
1824   Node* a = round_double_node(argument(0));
1825   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1826 
1827   const TypePtr* no_memory_effects = NULL;
1828   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1829                                  no_memory_effects,
1830                                  a, top(), b, b ? top() : NULL);
1831   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1832 #ifdef ASSERT
1833   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1834   assert(value_top == top(), "second value must be top");
1835 #endif
1836 
1837   set_result(value);
1838   return true;
1839 }
1840 
1841 //------------------------------inline_math_native-----------------------------
1842 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1843 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1844   switch (id) {
1845     // These intrinsics are not properly supported on all hardware
1846   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1847     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1848   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1849     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1850   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1851     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1852 
1853   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1854     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1855   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1856     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1857 
1858     // These intrinsics are supported on all hardware
1859   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
1860   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1861 
1862   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1863     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1864   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1865     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1866 #undef FN_PTR
1867 
1868    // These intrinsics are not yet correctly implemented
1869   case vmIntrinsics::_datan2:
1870     return false;
1871 
1872   default:
1873     fatal_unexpected_iid(id);
1874     return false;
1875   }
1876 }
1877 
1878 static bool is_simple_name(Node* n) {
1879   return (n->req() == 1         // constant
1880           || (n->is_Type() && n->as_Type()->type()->singleton())
1881           || n->is_Proj()       // parameter or return value
1882           || n->is_Phi()        // local of some sort
1883           );
1884 }
1885 
1886 //----------------------------inline_min_max-----------------------------------
1887 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1888   set_result(generate_min_max(id, argument(0), argument(1)));
1889   return true;
1890 }
1891 
1892 Node*
1893 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1894   // These are the candidate return value:
1895   Node* xvalue = x0;
1896   Node* yvalue = y0;
1897 
1898   if (xvalue == yvalue) {
1899     return xvalue;
1900   }
1901 
1902   bool want_max = (id == vmIntrinsics::_max);
1903 
1904   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1905   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1906   if (txvalue == NULL || tyvalue == NULL)  return top();
1907   // This is not really necessary, but it is consistent with a
1908   // hypothetical MaxINode::Value method:
1909   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1910 
1911   // %%% This folding logic should (ideally) be in a different place.
1912   // Some should be inside IfNode, and there to be a more reliable
1913   // transformation of ?: style patterns into cmoves.  We also want
1914   // more powerful optimizations around cmove and min/max.
1915 
1916   // Try to find a dominating comparison of these guys.
1917   // It can simplify the index computation for Arrays.copyOf
1918   // and similar uses of System.arraycopy.
1919   // First, compute the normalized version of CmpI(x, y).
1920   int   cmp_op = Op_CmpI;
1921   Node* xkey = xvalue;
1922   Node* ykey = yvalue;
1923   Node* ideal_cmpxy = _gvn.transform( new(C) CmpINode(xkey, ykey) );
1924   if (ideal_cmpxy->is_Cmp()) {
1925     // E.g., if we have CmpI(length - offset, count),
1926     // it might idealize to CmpI(length, count + offset)
1927     cmp_op = ideal_cmpxy->Opcode();
1928     xkey = ideal_cmpxy->in(1);
1929     ykey = ideal_cmpxy->in(2);
1930   }
1931 
1932   // Start by locating any relevant comparisons.
1933   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1934   Node* cmpxy = NULL;
1935   Node* cmpyx = NULL;
1936   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1937     Node* cmp = start_from->fast_out(k);
1938     if (cmp->outcnt() > 0 &&            // must have prior uses
1939         cmp->in(0) == NULL &&           // must be context-independent
1940         cmp->Opcode() == cmp_op) {      // right kind of compare
1941       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1942       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1943     }
1944   }
1945 
1946   const int NCMPS = 2;
1947   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1948   int cmpn;
1949   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1950     if (cmps[cmpn] != NULL)  break;     // find a result
1951   }
1952   if (cmpn < NCMPS) {
1953     // Look for a dominating test that tells us the min and max.
1954     int depth = 0;                // Limit search depth for speed
1955     Node* dom = control();
1956     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1957       if (++depth >= 100)  break;
1958       Node* ifproj = dom;
1959       if (!ifproj->is_Proj())  continue;
1960       Node* iff = ifproj->in(0);
1961       if (!iff->is_If())  continue;
1962       Node* bol = iff->in(1);
1963       if (!bol->is_Bool())  continue;
1964       Node* cmp = bol->in(1);
1965       if (cmp == NULL)  continue;
1966       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1967         if (cmps[cmpn] == cmp)  break;
1968       if (cmpn == NCMPS)  continue;
1969       BoolTest::mask btest = bol->as_Bool()->_test._test;
1970       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1971       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1972       // At this point, we know that 'x btest y' is true.
1973       switch (btest) {
1974       case BoolTest::eq:
1975         // They are proven equal, so we can collapse the min/max.
1976         // Either value is the answer.  Choose the simpler.
1977         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1978           return yvalue;
1979         return xvalue;
1980       case BoolTest::lt:          // x < y
1981       case BoolTest::le:          // x <= y
1982         return (want_max ? yvalue : xvalue);
1983       case BoolTest::gt:          // x > y
1984       case BoolTest::ge:          // x >= y
1985         return (want_max ? xvalue : yvalue);
1986       }
1987     }
1988   }
1989 
1990   // We failed to find a dominating test.
1991   // Let's pick a test that might GVN with prior tests.
1992   Node*          best_bol   = NULL;
1993   BoolTest::mask best_btest = BoolTest::illegal;
1994   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1995     Node* cmp = cmps[cmpn];
1996     if (cmp == NULL)  continue;
1997     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1998       Node* bol = cmp->fast_out(j);
1999       if (!bol->is_Bool())  continue;
2000       BoolTest::mask btest = bol->as_Bool()->_test._test;
2001       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2002       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2003       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2004         best_bol   = bol->as_Bool();
2005         best_btest = btest;
2006       }
2007     }
2008   }
2009 
2010   Node* answer_if_true  = NULL;
2011   Node* answer_if_false = NULL;
2012   switch (best_btest) {
2013   default:
2014     if (cmpxy == NULL)
2015       cmpxy = ideal_cmpxy;
2016     best_bol = _gvn.transform( new(C) BoolNode(cmpxy, BoolTest::lt) );
2017     // and fall through:
2018   case BoolTest::lt:          // x < y
2019   case BoolTest::le:          // x <= y
2020     answer_if_true  = (want_max ? yvalue : xvalue);
2021     answer_if_false = (want_max ? xvalue : yvalue);
2022     break;
2023   case BoolTest::gt:          // x > y
2024   case BoolTest::ge:          // x >= y
2025     answer_if_true  = (want_max ? xvalue : yvalue);
2026     answer_if_false = (want_max ? yvalue : xvalue);
2027     break;
2028   }
2029 
2030   jint hi, lo;
2031   if (want_max) {
2032     // We can sharpen the minimum.
2033     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2034     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2035   } else {
2036     // We can sharpen the maximum.
2037     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2038     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2039   }
2040 
2041   // Use a flow-free graph structure, to avoid creating excess control edges
2042   // which could hinder other optimizations.
2043   // Since Math.min/max is often used with arraycopy, we want
2044   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2045   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2046                                answer_if_false, answer_if_true,
2047                                TypeInt::make(lo, hi, widen));
2048 
2049   return _gvn.transform(cmov);
2050 
2051   /*
2052   // This is not as desirable as it may seem, since Min and Max
2053   // nodes do not have a full set of optimizations.
2054   // And they would interfere, anyway, with 'if' optimizations
2055   // and with CMoveI canonical forms.
2056   switch (id) {
2057   case vmIntrinsics::_min:
2058     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2059   case vmIntrinsics::_max:
2060     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2061   default:
2062     ShouldNotReachHere();
2063   }
2064   */
2065 }
2066 
2067 inline int
2068 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2069   const TypePtr* base_type = TypePtr::NULL_PTR;
2070   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2071   if (base_type == NULL) {
2072     // Unknown type.
2073     return Type::AnyPtr;
2074   } else if (base_type == TypePtr::NULL_PTR) {
2075     // Since this is a NULL+long form, we have to switch to a rawptr.
2076     base   = _gvn.transform( new (C) CastX2PNode(offset) );
2077     offset = MakeConX(0);
2078     return Type::RawPtr;
2079   } else if (base_type->base() == Type::RawPtr) {
2080     return Type::RawPtr;
2081   } else if (base_type->isa_oopptr()) {
2082     // Base is never null => always a heap address.
2083     if (base_type->ptr() == TypePtr::NotNull) {
2084       return Type::OopPtr;
2085     }
2086     // Offset is small => always a heap address.
2087     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2088     if (offset_type != NULL &&
2089         base_type->offset() == 0 &&     // (should always be?)
2090         offset_type->_lo >= 0 &&
2091         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2092       return Type::OopPtr;
2093     }
2094     // Otherwise, it might either be oop+off or NULL+addr.
2095     return Type::AnyPtr;
2096   } else {
2097     // No information:
2098     return Type::AnyPtr;
2099   }
2100 }
2101 
2102 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2103   int kind = classify_unsafe_addr(base, offset);
2104   if (kind == Type::RawPtr) {
2105     return basic_plus_adr(top(), base, offset);
2106   } else {
2107     return basic_plus_adr(base, offset);
2108   }
2109 }
2110 
2111 //--------------------------inline_number_methods-----------------------------
2112 // inline int     Integer.numberOfLeadingZeros(int)
2113 // inline int        Long.numberOfLeadingZeros(long)
2114 //
2115 // inline int     Integer.numberOfTrailingZeros(int)
2116 // inline int        Long.numberOfTrailingZeros(long)
2117 //
2118 // inline int     Integer.bitCount(int)
2119 // inline int        Long.bitCount(long)
2120 //
2121 // inline char  Character.reverseBytes(char)
2122 // inline short     Short.reverseBytes(short)
2123 // inline int     Integer.reverseBytes(int)
2124 // inline long       Long.reverseBytes(long)
2125 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2126   Node* arg = argument(0);
2127   Node* n;
2128   switch (id) {
2129   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2130   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2131   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2132   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2133   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2134   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2135   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2136   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2137   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2138   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2139   default:  fatal_unexpected_iid(id);  break;
2140   }
2141   set_result(_gvn.transform(n));
2142   return true;
2143 }
2144 
2145 //----------------------------inline_unsafe_access----------------------------
2146 
2147 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2148 
2149 // Helper that guards and inserts a pre-barrier.
2150 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2151                                         Node* pre_val, bool need_mem_bar) {
2152   // We could be accessing the referent field of a reference object. If so, when G1
2153   // is enabled, we need to log the value in the referent field in an SATB buffer.
2154   // This routine performs some compile time filters and generates suitable
2155   // runtime filters that guard the pre-barrier code.
2156   // Also add memory barrier for non volatile load from the referent field
2157   // to prevent commoning of loads across safepoint.
2158   if (!UseG1GC && !need_mem_bar)
2159     return;
2160 
2161   // Some compile time checks.
2162 
2163   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2164   const TypeX* otype = offset->find_intptr_t_type();
2165   if (otype != NULL && otype->is_con() &&
2166       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2167     // Constant offset but not the reference_offset so just return
2168     return;
2169   }
2170 
2171   // We only need to generate the runtime guards for instances.
2172   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2173   if (btype != NULL) {
2174     if (btype->isa_aryptr()) {
2175       // Array type so nothing to do
2176       return;
2177     }
2178 
2179     const TypeInstPtr* itype = btype->isa_instptr();
2180     if (itype != NULL) {
2181       // Can the klass of base_oop be statically determined to be
2182       // _not_ a sub-class of Reference and _not_ Object?
2183       ciKlass* klass = itype->klass();
2184       if ( klass->is_loaded() &&
2185           !klass->is_subtype_of(env()->Reference_klass()) &&
2186           !env()->Object_klass()->is_subtype_of(klass)) {
2187         return;
2188       }
2189     }
2190   }
2191 
2192   // The compile time filters did not reject base_oop/offset so
2193   // we need to generate the following runtime filters
2194   //
2195   // if (offset == java_lang_ref_Reference::_reference_offset) {
2196   //   if (instance_of(base, java.lang.ref.Reference)) {
2197   //     pre_barrier(_, pre_val, ...);
2198   //   }
2199   // }
2200 
2201   float likely   = PROB_LIKELY(  0.999);
2202   float unlikely = PROB_UNLIKELY(0.999);
2203 
2204   IdealKit ideal(this);
2205 #define __ ideal.
2206 
2207   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2208 
2209   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2210       // Update graphKit memory and control from IdealKit.
2211       sync_kit(ideal);
2212 
2213       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2214       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2215 
2216       // Update IdealKit memory and control from graphKit.
2217       __ sync_kit(this);
2218 
2219       Node* one = __ ConI(1);
2220       // is_instof == 0 if base_oop == NULL
2221       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2222 
2223         // Update graphKit from IdeakKit.
2224         sync_kit(ideal);
2225 
2226         // Use the pre-barrier to record the value in the referent field
2227         pre_barrier(false /* do_load */,
2228                     __ ctrl(),
2229                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2230                     pre_val /* pre_val */,
2231                     T_OBJECT);
2232         if (need_mem_bar) {
2233           // Add memory barrier to prevent commoning reads from this field
2234           // across safepoint since GC can change its value.
2235           insert_mem_bar(Op_MemBarCPUOrder);
2236         }
2237         // Update IdealKit from graphKit.
2238         __ sync_kit(this);
2239 
2240       } __ end_if(); // _ref_type != ref_none
2241   } __ end_if(); // offset == referent_offset
2242 
2243   // Final sync IdealKit and GraphKit.
2244   final_sync(ideal);
2245 #undef __
2246 }
2247 
2248 
2249 // Interpret Unsafe.fieldOffset cookies correctly:
2250 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2251 
2252 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2253   // Attempt to infer a sharper value type from the offset and base type.
2254   ciKlass* sharpened_klass = NULL;
2255 
2256   // See if it is an instance field, with an object type.
2257   if (alias_type->field() != NULL) {
2258     assert(!is_native_ptr, "native pointer op cannot use a java address");
2259     if (alias_type->field()->type()->is_klass()) {
2260       sharpened_klass = alias_type->field()->type()->as_klass();
2261     }
2262   }
2263 
2264   // See if it is a narrow oop array.
2265   if (adr_type->isa_aryptr()) {
2266     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2267       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2268       if (elem_type != NULL) {
2269         sharpened_klass = elem_type->klass();
2270       }
2271     }
2272   }
2273 
2274   // The sharpened class might be unloaded if there is no class loader
2275   // contraint in place.
2276   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2277     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2278 
2279 #ifndef PRODUCT
2280     if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2281       tty->print("  from base type: ");  adr_type->dump();
2282       tty->print("  sharpened value: ");  tjp->dump();
2283     }
2284 #endif
2285     // Sharpen the value type.
2286     return tjp;
2287   }
2288   return NULL;
2289 }
2290 
2291 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2292   if (callee()->is_static())  return false;  // caller must have the capability!
2293 
2294 #ifndef PRODUCT
2295   {
2296     ResourceMark rm;
2297     // Check the signatures.
2298     ciSignature* sig = callee()->signature();
2299 #ifdef ASSERT
2300     if (!is_store) {
2301       // Object getObject(Object base, int/long offset), etc.
2302       BasicType rtype = sig->return_type()->basic_type();
2303       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2304           rtype = T_ADDRESS;  // it is really a C void*
2305       assert(rtype == type, "getter must return the expected value");
2306       if (!is_native_ptr) {
2307         assert(sig->count() == 2, "oop getter has 2 arguments");
2308         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2309         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2310       } else {
2311         assert(sig->count() == 1, "native getter has 1 argument");
2312         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2313       }
2314     } else {
2315       // void putObject(Object base, int/long offset, Object x), etc.
2316       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2317       if (!is_native_ptr) {
2318         assert(sig->count() == 3, "oop putter has 3 arguments");
2319         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2320         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2321       } else {
2322         assert(sig->count() == 2, "native putter has 2 arguments");
2323         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2324       }
2325       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2326       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2327         vtype = T_ADDRESS;  // it is really a C void*
2328       assert(vtype == type, "putter must accept the expected value");
2329     }
2330 #endif // ASSERT
2331  }
2332 #endif //PRODUCT
2333 
2334   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2335 
2336   Node* receiver = argument(0);  // type: oop
2337 
2338   // Build address expression.  See the code in inline_unsafe_prefetch.
2339   Node* adr;
2340   Node* heap_base_oop = top();
2341   Node* offset = top();
2342   Node* val;
2343 
2344   if (!is_native_ptr) {
2345     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2346     Node* base = argument(1);  // type: oop
2347     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2348     offset = argument(2);  // type: long
2349     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2350     // to be plain byte offsets, which are also the same as those accepted
2351     // by oopDesc::field_base.
2352     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2353            "fieldOffset must be byte-scaled");
2354     // 32-bit machines ignore the high half!
2355     offset = ConvL2X(offset);
2356     adr = make_unsafe_address(base, offset);
2357     heap_base_oop = base;
2358     val = is_store ? argument(4) : NULL;
2359   } else {
2360     Node* ptr = argument(1);  // type: long
2361     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2362     adr = make_unsafe_address(NULL, ptr);
2363     val = is_store ? argument(3) : NULL;
2364   }
2365 
2366   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2367 
2368   // First guess at the value type.
2369   const Type *value_type = Type::get_const_basic_type(type);
2370 
2371   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2372   // there was not enough information to nail it down.
2373   Compile::AliasType* alias_type = C->alias_type(adr_type);
2374   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2375 
2376   // We will need memory barriers unless we can determine a unique
2377   // alias category for this reference.  (Note:  If for some reason
2378   // the barriers get omitted and the unsafe reference begins to "pollute"
2379   // the alias analysis of the rest of the graph, either Compile::can_alias
2380   // or Compile::must_alias will throw a diagnostic assert.)
2381   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2382 
2383   // If we are reading the value of the referent field of a Reference
2384   // object (either by using Unsafe directly or through reflection)
2385   // then, if G1 is enabled, we need to record the referent in an
2386   // SATB log buffer using the pre-barrier mechanism.
2387   // Also we need to add memory barrier to prevent commoning reads
2388   // from this field across safepoint since GC can change its value.
2389   bool need_read_barrier = !is_native_ptr && !is_store &&
2390                            offset != top() && heap_base_oop != top();
2391 
2392   if (!is_store && type == T_OBJECT) {
2393     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2394     if (tjp != NULL) {
2395       value_type = tjp;
2396     }
2397   }
2398 
2399   receiver = null_check(receiver);
2400   if (stopped()) {
2401     return true;
2402   }
2403   // Heap pointers get a null-check from the interpreter,
2404   // as a courtesy.  However, this is not guaranteed by Unsafe,
2405   // and it is not possible to fully distinguish unintended nulls
2406   // from intended ones in this API.
2407 
2408   if (is_volatile) {
2409     // We need to emit leading and trailing CPU membars (see below) in
2410     // addition to memory membars when is_volatile. This is a little
2411     // too strong, but avoids the need to insert per-alias-type
2412     // volatile membars (for stores; compare Parse::do_put_xxx), which
2413     // we cannot do effectively here because we probably only have a
2414     // rough approximation of type.
2415     need_mem_bar = true;
2416     // For Stores, place a memory ordering barrier now.
2417     if (is_store)
2418       insert_mem_bar(Op_MemBarRelease);
2419   }
2420 
2421   // Memory barrier to prevent normal and 'unsafe' accesses from
2422   // bypassing each other.  Happens after null checks, so the
2423   // exception paths do not take memory state from the memory barrier,
2424   // so there's no problems making a strong assert about mixing users
2425   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2426   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2427   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2428 
2429   if (!is_store) {
2430     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2431     // load value
2432     switch (type) {
2433     case T_BOOLEAN:
2434     case T_CHAR:
2435     case T_BYTE:
2436     case T_SHORT:
2437     case T_INT:
2438     case T_LONG:
2439     case T_FLOAT:
2440     case T_DOUBLE:
2441       break;
2442     case T_OBJECT:
2443       if (need_read_barrier) {
2444         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2445       }
2446       break;
2447     case T_ADDRESS:
2448       // Cast to an int type.
2449       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2450       p = ConvX2L(p);
2451       break;
2452     default:
2453       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2454       break;
2455     }
2456     // The load node has the control of the preceding MemBarCPUOrder.  All
2457     // following nodes will have the control of the MemBarCPUOrder inserted at
2458     // the end of this method.  So, pushing the load onto the stack at a later
2459     // point is fine.
2460     set_result(p);
2461   } else {
2462     // place effect of store into memory
2463     switch (type) {
2464     case T_DOUBLE:
2465       val = dstore_rounding(val);
2466       break;
2467     case T_ADDRESS:
2468       // Repackage the long as a pointer.
2469       val = ConvL2X(val);
2470       val = _gvn.transform( new (C) CastX2PNode(val) );
2471       break;
2472     }
2473 
2474     if (type != T_OBJECT ) {
2475       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2476     } else {
2477       // Possibly an oop being stored to Java heap or native memory
2478       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2479         // oop to Java heap.
2480         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2481       } else {
2482         // We can't tell at compile time if we are storing in the Java heap or outside
2483         // of it. So we need to emit code to conditionally do the proper type of
2484         // store.
2485 
2486         IdealKit ideal(this);
2487 #define __ ideal.
2488         // QQQ who knows what probability is here??
2489         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2490           // Sync IdealKit and graphKit.
2491           sync_kit(ideal);
2492           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2493           // Update IdealKit memory.
2494           __ sync_kit(this);
2495         } __ else_(); {
2496           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2497         } __ end_if();
2498         // Final sync IdealKit and GraphKit.
2499         final_sync(ideal);
2500 #undef __
2501       }
2502     }
2503   }
2504 
2505   if (is_volatile) {
2506     if (!is_store)
2507       insert_mem_bar(Op_MemBarAcquire);
2508     else
2509       insert_mem_bar(Op_MemBarVolatile);
2510   }
2511 
2512   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2513 
2514   return true;
2515 }
2516 
2517 //----------------------------inline_unsafe_prefetch----------------------------
2518 
2519 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2520 #ifndef PRODUCT
2521   {
2522     ResourceMark rm;
2523     // Check the signatures.
2524     ciSignature* sig = callee()->signature();
2525 #ifdef ASSERT
2526     // Object getObject(Object base, int/long offset), etc.
2527     BasicType rtype = sig->return_type()->basic_type();
2528     if (!is_native_ptr) {
2529       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2530       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2531       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2532     } else {
2533       assert(sig->count() == 1, "native prefetch has 1 argument");
2534       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2535     }
2536 #endif // ASSERT
2537   }
2538 #endif // !PRODUCT
2539 
2540   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2541 
2542   const int idx = is_static ? 0 : 1;
2543   if (!is_static) {
2544     null_check_receiver();
2545     if (stopped()) {
2546       return true;
2547     }
2548   }
2549 
2550   // Build address expression.  See the code in inline_unsafe_access.
2551   Node *adr;
2552   if (!is_native_ptr) {
2553     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2554     Node* base   = argument(idx + 0);  // type: oop
2555     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2556     Node* offset = argument(idx + 1);  // type: long
2557     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2558     // to be plain byte offsets, which are also the same as those accepted
2559     // by oopDesc::field_base.
2560     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2561            "fieldOffset must be byte-scaled");
2562     // 32-bit machines ignore the high half!
2563     offset = ConvL2X(offset);
2564     adr = make_unsafe_address(base, offset);
2565   } else {
2566     Node* ptr = argument(idx + 0);  // type: long
2567     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2568     adr = make_unsafe_address(NULL, ptr);
2569   }
2570 
2571   // Generate the read or write prefetch
2572   Node *prefetch;
2573   if (is_store) {
2574     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2575   } else {
2576     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2577   }
2578   prefetch->init_req(0, control());
2579   set_i_o(_gvn.transform(prefetch));
2580 
2581   return true;
2582 }
2583 
2584 //----------------------------inline_unsafe_load_store----------------------------
2585 // This method serves a couple of different customers (depending on LoadStoreKind):
2586 //
2587 // LS_cmpxchg:
2588 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2589 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2590 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2591 //
2592 // LS_xadd:
2593 //   public int  getAndAddInt( Object o, long offset, int  delta)
2594 //   public long getAndAddLong(Object o, long offset, long delta)
2595 //
2596 // LS_xchg:
2597 //   int    getAndSet(Object o, long offset, int    newValue)
2598 //   long   getAndSet(Object o, long offset, long   newValue)
2599 //   Object getAndSet(Object o, long offset, Object newValue)
2600 //
2601 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2602   // This basic scheme here is the same as inline_unsafe_access, but
2603   // differs in enough details that combining them would make the code
2604   // overly confusing.  (This is a true fact! I originally combined
2605   // them, but even I was confused by it!) As much code/comments as
2606   // possible are retained from inline_unsafe_access though to make
2607   // the correspondences clearer. - dl
2608 
2609   if (callee()->is_static())  return false;  // caller must have the capability!
2610 
2611 #ifndef PRODUCT
2612   BasicType rtype;
2613   {
2614     ResourceMark rm;
2615     // Check the signatures.
2616     ciSignature* sig = callee()->signature();
2617     rtype = sig->return_type()->basic_type();
2618     if (kind == LS_xadd || kind == LS_xchg) {
2619       // Check the signatures.
2620 #ifdef ASSERT
2621       assert(rtype == type, "get and set must return the expected type");
2622       assert(sig->count() == 3, "get and set has 3 arguments");
2623       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2624       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2625       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2626 #endif // ASSERT
2627     } else if (kind == LS_cmpxchg) {
2628       // Check the signatures.
2629 #ifdef ASSERT
2630       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2631       assert(sig->count() == 4, "CAS has 4 arguments");
2632       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2633       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2634 #endif // ASSERT
2635     } else {
2636       ShouldNotReachHere();
2637     }
2638   }
2639 #endif //PRODUCT
2640 
2641   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2642 
2643   // Get arguments:
2644   Node* receiver = NULL;
2645   Node* base     = NULL;
2646   Node* offset   = NULL;
2647   Node* oldval   = NULL;
2648   Node* newval   = NULL;
2649   if (kind == LS_cmpxchg) {
2650     const bool two_slot_type = type2size[type] == 2;
2651     receiver = argument(0);  // type: oop
2652     base     = argument(1);  // type: oop
2653     offset   = argument(2);  // type: long
2654     oldval   = argument(4);  // type: oop, int, or long
2655     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2656   } else if (kind == LS_xadd || kind == LS_xchg){
2657     receiver = argument(0);  // type: oop
2658     base     = argument(1);  // type: oop
2659     offset   = argument(2);  // type: long
2660     oldval   = NULL;
2661     newval   = argument(4);  // type: oop, int, or long
2662   }
2663 
2664   // Null check receiver.
2665   receiver = null_check(receiver);
2666   if (stopped()) {
2667     return true;
2668   }
2669 
2670   // Build field offset expression.
2671   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2672   // to be plain byte offsets, which are also the same as those accepted
2673   // by oopDesc::field_base.
2674   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2675   // 32-bit machines ignore the high half of long offsets
2676   offset = ConvL2X(offset);
2677   Node* adr = make_unsafe_address(base, offset);
2678   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2679 
2680   // For CAS, unlike inline_unsafe_access, there seems no point in
2681   // trying to refine types. Just use the coarse types here.
2682   const Type *value_type = Type::get_const_basic_type(type);
2683   Compile::AliasType* alias_type = C->alias_type(adr_type);
2684   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2685 
2686   if (kind == LS_xchg && type == T_OBJECT) {
2687     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2688     if (tjp != NULL) {
2689       value_type = tjp;
2690     }
2691   }
2692 
2693   int alias_idx = C->get_alias_index(adr_type);
2694 
2695   // Memory-model-wise, a LoadStore acts like a little synchronized
2696   // block, so needs barriers on each side.  These don't translate
2697   // into actual barriers on most machines, but we still need rest of
2698   // compiler to respect ordering.
2699 
2700   insert_mem_bar(Op_MemBarRelease);
2701   insert_mem_bar(Op_MemBarCPUOrder);
2702 
2703   // 4984716: MemBars must be inserted before this
2704   //          memory node in order to avoid a false
2705   //          dependency which will confuse the scheduler.
2706   Node *mem = memory(alias_idx);
2707 
2708   // For now, we handle only those cases that actually exist: ints,
2709   // longs, and Object. Adding others should be straightforward.
2710   Node* load_store;
2711   switch(type) {
2712   case T_INT:
2713     if (kind == LS_xadd) {
2714       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2715     } else if (kind == LS_xchg) {
2716       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2717     } else if (kind == LS_cmpxchg) {
2718       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2719     } else {
2720       ShouldNotReachHere();
2721     }
2722     break;
2723   case T_LONG:
2724     if (kind == LS_xadd) {
2725       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2726     } else if (kind == LS_xchg) {
2727       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2728     } else if (kind == LS_cmpxchg) {
2729       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2730     } else {
2731       ShouldNotReachHere();
2732     }
2733     break;
2734   case T_OBJECT:
2735     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2736     // could be delayed during Parse (for example, in adjust_map_after_if()).
2737     // Execute transformation here to avoid barrier generation in such case.
2738     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2739       newval = _gvn.makecon(TypePtr::NULL_PTR);
2740 
2741     // Reference stores need a store barrier.
2742     pre_barrier(true /* do_load*/,
2743                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2744                 NULL /* pre_val*/,
2745                 T_OBJECT);
2746 #ifdef _LP64
2747     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2748       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2749       if (kind == LS_xchg) {
2750         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2751                                                               newval_enc, adr_type, value_type->make_narrowoop()));
2752       } else {
2753         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2754         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2755         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2756                                                                    newval_enc, oldval_enc));
2757       }
2758     } else
2759 #endif
2760     {
2761       if (kind == LS_xchg) {
2762         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2763       } else {
2764         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2765         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2766       }
2767     }
2768     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2769     break;
2770   default:
2771     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2772     break;
2773   }
2774 
2775   // SCMemProjNodes represent the memory state of a LoadStore. Their
2776   // main role is to prevent LoadStore nodes from being optimized away
2777   // when their results aren't used.
2778   Node* proj = _gvn.transform( new (C) SCMemProjNode(load_store));
2779   set_memory(proj, alias_idx);
2780 
2781   // Add the trailing membar surrounding the access
2782   insert_mem_bar(Op_MemBarCPUOrder);
2783   insert_mem_bar(Op_MemBarAcquire);
2784 
2785 #ifdef _LP64
2786   if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
2787     load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
2788   }
2789 #endif
2790 
2791   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2792   set_result(load_store);
2793   return true;
2794 }
2795 
2796 //----------------------------inline_unsafe_ordered_store----------------------
2797 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2798 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2799 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2800 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2801   // This is another variant of inline_unsafe_access, differing in
2802   // that it always issues store-store ("release") barrier and ensures
2803   // store-atomicity (which only matters for "long").
2804 
2805   if (callee()->is_static())  return false;  // caller must have the capability!
2806 
2807 #ifndef PRODUCT
2808   {
2809     ResourceMark rm;
2810     // Check the signatures.
2811     ciSignature* sig = callee()->signature();
2812 #ifdef ASSERT
2813     BasicType rtype = sig->return_type()->basic_type();
2814     assert(rtype == T_VOID, "must return void");
2815     assert(sig->count() == 3, "has 3 arguments");
2816     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2817     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2818 #endif // ASSERT
2819   }
2820 #endif //PRODUCT
2821 
2822   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2823 
2824   // Get arguments:
2825   Node* receiver = argument(0);  // type: oop
2826   Node* base     = argument(1);  // type: oop
2827   Node* offset   = argument(2);  // type: long
2828   Node* val      = argument(4);  // type: oop, int, or long
2829 
2830   // Null check receiver.
2831   receiver = null_check(receiver);
2832   if (stopped()) {
2833     return true;
2834   }
2835 
2836   // Build field offset expression.
2837   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2838   // 32-bit machines ignore the high half of long offsets
2839   offset = ConvL2X(offset);
2840   Node* adr = make_unsafe_address(base, offset);
2841   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2842   const Type *value_type = Type::get_const_basic_type(type);
2843   Compile::AliasType* alias_type = C->alias_type(adr_type);
2844 
2845   insert_mem_bar(Op_MemBarRelease);
2846   insert_mem_bar(Op_MemBarCPUOrder);
2847   // Ensure that the store is atomic for longs:
2848   const bool require_atomic_access = true;
2849   Node* store;
2850   if (type == T_OBJECT) // reference stores need a store barrier.
2851     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2852   else {
2853     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2854   }
2855   insert_mem_bar(Op_MemBarCPUOrder);
2856   return true;
2857 }
2858 
2859 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2860   // Regardless of form, don't allow previous ld/st to move down,
2861   // then issue acquire, release, or volatile mem_bar.
2862   insert_mem_bar(Op_MemBarCPUOrder);
2863   switch(id) {
2864     case vmIntrinsics::_loadFence:
2865       insert_mem_bar(Op_MemBarAcquire);
2866       return true;
2867     case vmIntrinsics::_storeFence:
2868       insert_mem_bar(Op_MemBarRelease);
2869       return true;
2870     case vmIntrinsics::_fullFence:
2871       insert_mem_bar(Op_MemBarVolatile);
2872       return true;
2873     default:
2874       fatal_unexpected_iid(id);
2875       return false;
2876   }
2877 }
2878 
2879 //----------------------------inline_unsafe_allocate---------------------------
2880 // public native Object sun.mics.Unsafe.allocateInstance(Class<?> cls);
2881 bool LibraryCallKit::inline_unsafe_allocate() {
2882   if (callee()->is_static())  return false;  // caller must have the capability!
2883 
2884   null_check_receiver();  // null-check, then ignore
2885   Node* cls = null_check(argument(1));
2886   if (stopped())  return true;
2887 
2888   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2889   kls = null_check(kls);
2890   if (stopped())  return true;  // argument was like int.class
2891 
2892   // Note:  The argument might still be an illegal value like
2893   // Serializable.class or Object[].class.   The runtime will handle it.
2894   // But we must make an explicit check for initialization.
2895   Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2896   // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2897   // can generate code to load it as unsigned byte.
2898   Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
2899   Node* bits = intcon(InstanceKlass::fully_initialized);
2900   Node* test = _gvn.transform(new (C) SubINode(inst, bits));
2901   // The 'test' is non-zero if we need to take a slow path.
2902 
2903   Node* obj = new_instance(kls, test);
2904   set_result(obj);
2905   return true;
2906 }
2907 
2908 #ifdef TRACE_HAVE_INTRINSICS
2909 /*
2910  * oop -> myklass
2911  * myklass->trace_id |= USED
2912  * return myklass->trace_id & ~0x3
2913  */
2914 bool LibraryCallKit::inline_native_classID() {
2915   null_check_receiver();  // null-check, then ignore
2916   Node* cls = null_check(argument(1), T_OBJECT);
2917   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2918   kls = null_check(kls, T_OBJECT);
2919   ByteSize offset = TRACE_ID_OFFSET;
2920   Node* insp = basic_plus_adr(kls, in_bytes(offset));
2921   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
2922   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
2923   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
2924   Node* clsused = longcon(0x01l); // set the class bit
2925   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
2926 
2927   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2928   store_to_memory(control(), insp, orl, T_LONG, adr_type);
2929   set_result(andl);
2930   return true;
2931 }
2932 
2933 bool LibraryCallKit::inline_native_threadID() {
2934   Node* tls_ptr = NULL;
2935   Node* cur_thr = generate_current_thread(tls_ptr);
2936   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2937   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2938   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
2939 
2940   Node* threadid = NULL;
2941   size_t thread_id_size = OSThread::thread_id_size();
2942   if (thread_id_size == (size_t) BytesPerLong) {
2943     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
2944   } else if (thread_id_size == (size_t) BytesPerInt) {
2945     threadid = make_load(control(), p, TypeInt::INT, T_INT);
2946   } else {
2947     ShouldNotReachHere();
2948   }
2949   set_result(threadid);
2950   return true;
2951 }
2952 #endif
2953 
2954 //------------------------inline_native_time_funcs--------------
2955 // inline code for System.currentTimeMillis() and System.nanoTime()
2956 // these have the same type and signature
2957 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2958   const TypeFunc* tf = OptoRuntime::void_long_Type();
2959   const TypePtr* no_memory_effects = NULL;
2960   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2961   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
2962 #ifdef ASSERT
2963   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
2964   assert(value_top == top(), "second value must be top");
2965 #endif
2966   set_result(value);
2967   return true;
2968 }
2969 
2970 //------------------------inline_native_currentThread------------------
2971 bool LibraryCallKit::inline_native_currentThread() {
2972   Node* junk = NULL;
2973   set_result(generate_current_thread(junk));
2974   return true;
2975 }
2976 
2977 //------------------------inline_native_isInterrupted------------------
2978 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
2979 bool LibraryCallKit::inline_native_isInterrupted() {
2980   // Add a fast path to t.isInterrupted(clear_int):
2981   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2982   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2983   // So, in the common case that the interrupt bit is false,
2984   // we avoid making a call into the VM.  Even if the interrupt bit
2985   // is true, if the clear_int argument is false, we avoid the VM call.
2986   // However, if the receiver is not currentThread, we must call the VM,
2987   // because there must be some locking done around the operation.
2988 
2989   // We only go to the fast case code if we pass two guards.
2990   // Paths which do not pass are accumulated in the slow_region.
2991 
2992   enum {
2993     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
2994     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
2995     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
2996     PATH_LIMIT
2997   };
2998 
2999   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3000   // out of the function.
3001   insert_mem_bar(Op_MemBarCPUOrder);
3002 
3003   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3004   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3005 
3006   RegionNode* slow_region = new (C) RegionNode(1);
3007   record_for_igvn(slow_region);
3008 
3009   // (a) Receiving thread must be the current thread.
3010   Node* rec_thr = argument(0);
3011   Node* tls_ptr = NULL;
3012   Node* cur_thr = generate_current_thread(tls_ptr);
3013   Node* cmp_thr = _gvn.transform( new (C) CmpPNode(cur_thr, rec_thr) );
3014   Node* bol_thr = _gvn.transform( new (C) BoolNode(cmp_thr, BoolTest::ne) );
3015 
3016   generate_slow_guard(bol_thr, slow_region);
3017 
3018   // (b) Interrupt bit on TLS must be false.
3019   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3020   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
3021   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3022 
3023   // Set the control input on the field _interrupted read to prevent it floating up.
3024   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
3025   Node* cmp_bit = _gvn.transform( new (C) CmpINode(int_bit, intcon(0)) );
3026   Node* bol_bit = _gvn.transform( new (C) BoolNode(cmp_bit, BoolTest::ne) );
3027 
3028   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3029 
3030   // First fast path:  if (!TLS._interrupted) return false;
3031   Node* false_bit = _gvn.transform( new (C) IfFalseNode(iff_bit) );
3032   result_rgn->init_req(no_int_result_path, false_bit);
3033   result_val->init_req(no_int_result_path, intcon(0));
3034 
3035   // drop through to next case
3036   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)) );
3037 
3038   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3039   Node* clr_arg = argument(1);
3040   Node* cmp_arg = _gvn.transform( new (C) CmpINode(clr_arg, intcon(0)) );
3041   Node* bol_arg = _gvn.transform( new (C) BoolNode(cmp_arg, BoolTest::ne) );
3042   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3043 
3044   // Second fast path:  ... else if (!clear_int) return true;
3045   Node* false_arg = _gvn.transform( new (C) IfFalseNode(iff_arg) );
3046   result_rgn->init_req(no_clear_result_path, false_arg);
3047   result_val->init_req(no_clear_result_path, intcon(1));
3048 
3049   // drop through to next case
3050   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)) );
3051 
3052   // (d) Otherwise, go to the slow path.
3053   slow_region->add_req(control());
3054   set_control( _gvn.transform(slow_region) );
3055 
3056   if (stopped()) {
3057     // There is no slow path.
3058     result_rgn->init_req(slow_result_path, top());
3059     result_val->init_req(slow_result_path, top());
3060   } else {
3061     // non-virtual because it is a private non-static
3062     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3063 
3064     Node* slow_val = set_results_for_java_call(slow_call);
3065     // this->control() comes from set_results_for_java_call
3066 
3067     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3068     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3069 
3070     // These two phis are pre-filled with copies of of the fast IO and Memory
3071     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3072     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3073 
3074     result_rgn->init_req(slow_result_path, control());
3075     result_io ->init_req(slow_result_path, i_o());
3076     result_mem->init_req(slow_result_path, reset_memory());
3077     result_val->init_req(slow_result_path, slow_val);
3078 
3079     set_all_memory(_gvn.transform(result_mem));
3080     set_i_o(       _gvn.transform(result_io));
3081   }
3082 
3083   C->set_has_split_ifs(true); // Has chance for split-if optimization
3084   set_result(result_rgn, result_val);
3085   return true;
3086 }
3087 
3088 //---------------------------load_mirror_from_klass----------------------------
3089 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3090 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3091   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3092   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
3093 }
3094 
3095 //-----------------------load_klass_from_mirror_common-------------------------
3096 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3097 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3098 // and branch to the given path on the region.
3099 // If never_see_null, take an uncommon trap on null, so we can optimistically
3100 // compile for the non-null case.
3101 // If the region is NULL, force never_see_null = true.
3102 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3103                                                     bool never_see_null,
3104                                                     RegionNode* region,
3105                                                     int null_path,
3106                                                     int offset) {
3107   if (region == NULL)  never_see_null = true;
3108   Node* p = basic_plus_adr(mirror, offset);
3109   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3110   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
3111   Node* null_ctl = top();
3112   kls = null_check_oop(kls, &null_ctl, never_see_null);
3113   if (region != NULL) {
3114     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3115     region->init_req(null_path, null_ctl);
3116   } else {
3117     assert(null_ctl == top(), "no loose ends");
3118   }
3119   return kls;
3120 }
3121 
3122 //--------------------(inline_native_Class_query helpers)---------------------
3123 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3124 // Fall through if (mods & mask) == bits, take the guard otherwise.
3125 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3126   // Branch around if the given klass has the given modifier bit set.
3127   // Like generate_guard, adds a new path onto the region.
3128   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3129   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
3130   Node* mask = intcon(modifier_mask);
3131   Node* bits = intcon(modifier_bits);
3132   Node* mbit = _gvn.transform( new (C) AndINode(mods, mask) );
3133   Node* cmp  = _gvn.transform( new (C) CmpINode(mbit, bits) );
3134   Node* bol  = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ne) );
3135   return generate_fair_guard(bol, region);
3136 }
3137 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3138   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3139 }
3140 
3141 //-------------------------inline_native_Class_query-------------------
3142 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3143   const Type* return_type = TypeInt::BOOL;
3144   Node* prim_return_value = top();  // what happens if it's a primitive class?
3145   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3146   bool expect_prim = false;     // most of these guys expect to work on refs
3147 
3148   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3149 
3150   Node* mirror = argument(0);
3151   Node* obj    = top();
3152 
3153   switch (id) {
3154   case vmIntrinsics::_isInstance:
3155     // nothing is an instance of a primitive type
3156     prim_return_value = intcon(0);
3157     obj = argument(1);
3158     break;
3159   case vmIntrinsics::_getModifiers:
3160     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3161     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3162     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3163     break;
3164   case vmIntrinsics::_isInterface:
3165     prim_return_value = intcon(0);
3166     break;
3167   case vmIntrinsics::_isArray:
3168     prim_return_value = intcon(0);
3169     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3170     break;
3171   case vmIntrinsics::_isPrimitive:
3172     prim_return_value = intcon(1);
3173     expect_prim = true;  // obviously
3174     break;
3175   case vmIntrinsics::_getSuperclass:
3176     prim_return_value = null();
3177     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3178     break;
3179   case vmIntrinsics::_getComponentType:
3180     prim_return_value = null();
3181     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3182     break;
3183   case vmIntrinsics::_getClassAccessFlags:
3184     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3185     return_type = TypeInt::INT;  // not bool!  6297094
3186     break;
3187   default:
3188     fatal_unexpected_iid(id);
3189     break;
3190   }
3191 
3192   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3193   if (mirror_con == NULL)  return false;  // cannot happen?
3194 
3195 #ifndef PRODUCT
3196   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
3197     ciType* k = mirror_con->java_mirror_type();
3198     if (k) {
3199       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3200       k->print_name();
3201       tty->cr();
3202     }
3203   }
3204 #endif
3205 
3206   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3207   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3208   record_for_igvn(region);
3209   PhiNode* phi = new (C) PhiNode(region, return_type);
3210 
3211   // The mirror will never be null of Reflection.getClassAccessFlags, however
3212   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3213   // if it is. See bug 4774291.
3214 
3215   // For Reflection.getClassAccessFlags(), the null check occurs in
3216   // the wrong place; see inline_unsafe_access(), above, for a similar
3217   // situation.
3218   mirror = null_check(mirror);
3219   // If mirror or obj is dead, only null-path is taken.
3220   if (stopped())  return true;
3221 
3222   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3223 
3224   // Now load the mirror's klass metaobject, and null-check it.
3225   // Side-effects region with the control path if the klass is null.
3226   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3227   // If kls is null, we have a primitive mirror.
3228   phi->init_req(_prim_path, prim_return_value);
3229   if (stopped()) { set_result(region, phi); return true; }
3230 
3231   Node* p;  // handy temp
3232   Node* null_ctl;
3233 
3234   // Now that we have the non-null klass, we can perform the real query.
3235   // For constant classes, the query will constant-fold in LoadNode::Value.
3236   Node* query_value = top();
3237   switch (id) {
3238   case vmIntrinsics::_isInstance:
3239     // nothing is an instance of a primitive type
3240     query_value = gen_instanceof(obj, kls);
3241     break;
3242 
3243   case vmIntrinsics::_getModifiers:
3244     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3245     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3246     break;
3247 
3248   case vmIntrinsics::_isInterface:
3249     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3250     if (generate_interface_guard(kls, region) != NULL)
3251       // A guard was added.  If the guard is taken, it was an interface.
3252       phi->add_req(intcon(1));
3253     // If we fall through, it's a plain class.
3254     query_value = intcon(0);
3255     break;
3256 
3257   case vmIntrinsics::_isArray:
3258     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3259     if (generate_array_guard(kls, region) != NULL)
3260       // A guard was added.  If the guard is taken, it was an array.
3261       phi->add_req(intcon(1));
3262     // If we fall through, it's a plain class.
3263     query_value = intcon(0);
3264     break;
3265 
3266   case vmIntrinsics::_isPrimitive:
3267     query_value = intcon(0); // "normal" path produces false
3268     break;
3269 
3270   case vmIntrinsics::_getSuperclass:
3271     // The rules here are somewhat unfortunate, but we can still do better
3272     // with random logic than with a JNI call.
3273     // Interfaces store null or Object as _super, but must report null.
3274     // Arrays store an intermediate super as _super, but must report Object.
3275     // Other types can report the actual _super.
3276     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3277     if (generate_interface_guard(kls, region) != NULL)
3278       // A guard was added.  If the guard is taken, it was an interface.
3279       phi->add_req(null());
3280     if (generate_array_guard(kls, region) != NULL)
3281       // A guard was added.  If the guard is taken, it was an array.
3282       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3283     // If we fall through, it's a plain class.  Get its _super.
3284     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3285     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
3286     null_ctl = top();
3287     kls = null_check_oop(kls, &null_ctl);
3288     if (null_ctl != top()) {
3289       // If the guard is taken, Object.superClass is null (both klass and mirror).
3290       region->add_req(null_ctl);
3291       phi   ->add_req(null());
3292     }
3293     if (!stopped()) {
3294       query_value = load_mirror_from_klass(kls);
3295     }
3296     break;
3297 
3298   case vmIntrinsics::_getComponentType:
3299     if (generate_array_guard(kls, region) != NULL) {
3300       // Be sure to pin the oop load to the guard edge just created:
3301       Node* is_array_ctrl = region->in(region->req()-1);
3302       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3303       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3304       phi->add_req(cmo);
3305     }
3306     query_value = null();  // non-array case is null
3307     break;
3308 
3309   case vmIntrinsics::_getClassAccessFlags:
3310     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3311     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3312     break;
3313 
3314   default:
3315     fatal_unexpected_iid(id);
3316     break;
3317   }
3318 
3319   // Fall-through is the normal case of a query to a real class.
3320   phi->init_req(1, query_value);
3321   region->init_req(1, control());
3322 
3323   C->set_has_split_ifs(true); // Has chance for split-if optimization
3324   set_result(region, phi);
3325   return true;
3326 }
3327 
3328 //--------------------------inline_native_subtype_check------------------------
3329 // This intrinsic takes the JNI calls out of the heart of
3330 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3331 bool LibraryCallKit::inline_native_subtype_check() {
3332   // Pull both arguments off the stack.
3333   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3334   args[0] = argument(0);
3335   args[1] = argument(1);
3336   Node* klasses[2];             // corresponding Klasses: superk, subk
3337   klasses[0] = klasses[1] = top();
3338 
3339   enum {
3340     // A full decision tree on {superc is prim, subc is prim}:
3341     _prim_0_path = 1,           // {P,N} => false
3342                                 // {P,P} & superc!=subc => false
3343     _prim_same_path,            // {P,P} & superc==subc => true
3344     _prim_1_path,               // {N,P} => false
3345     _ref_subtype_path,          // {N,N} & subtype check wins => true
3346     _both_ref_path,             // {N,N} & subtype check loses => false
3347     PATH_LIMIT
3348   };
3349 
3350   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3351   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3352   record_for_igvn(region);
3353 
3354   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3355   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3356   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3357 
3358   // First null-check both mirrors and load each mirror's klass metaobject.
3359   int which_arg;
3360   for (which_arg = 0; which_arg <= 1; which_arg++) {
3361     Node* arg = args[which_arg];
3362     arg = null_check(arg);
3363     if (stopped())  break;
3364     args[which_arg] = arg;
3365 
3366     Node* p = basic_plus_adr(arg, class_klass_offset);
3367     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3368     klasses[which_arg] = _gvn.transform(kls);
3369   }
3370 
3371   // Having loaded both klasses, test each for null.
3372   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3373   for (which_arg = 0; which_arg <= 1; which_arg++) {
3374     Node* kls = klasses[which_arg];
3375     Node* null_ctl = top();
3376     kls = null_check_oop(kls, &null_ctl, never_see_null);
3377     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3378     region->init_req(prim_path, null_ctl);
3379     if (stopped())  break;
3380     klasses[which_arg] = kls;
3381   }
3382 
3383   if (!stopped()) {
3384     // now we have two reference types, in klasses[0..1]
3385     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3386     Node* superk = klasses[0];  // the receiver
3387     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3388     // now we have a successful reference subtype check
3389     region->set_req(_ref_subtype_path, control());
3390   }
3391 
3392   // If both operands are primitive (both klasses null), then
3393   // we must return true when they are identical primitives.
3394   // It is convenient to test this after the first null klass check.
3395   set_control(region->in(_prim_0_path)); // go back to first null check
3396   if (!stopped()) {
3397     // Since superc is primitive, make a guard for the superc==subc case.
3398     Node* cmp_eq = _gvn.transform( new (C) CmpPNode(args[0], args[1]) );
3399     Node* bol_eq = _gvn.transform( new (C) BoolNode(cmp_eq, BoolTest::eq) );
3400     generate_guard(bol_eq, region, PROB_FAIR);
3401     if (region->req() == PATH_LIMIT+1) {
3402       // A guard was added.  If the added guard is taken, superc==subc.
3403       region->swap_edges(PATH_LIMIT, _prim_same_path);
3404       region->del_req(PATH_LIMIT);
3405     }
3406     region->set_req(_prim_0_path, control()); // Not equal after all.
3407   }
3408 
3409   // these are the only paths that produce 'true':
3410   phi->set_req(_prim_same_path,   intcon(1));
3411   phi->set_req(_ref_subtype_path, intcon(1));
3412 
3413   // pull together the cases:
3414   assert(region->req() == PATH_LIMIT, "sane region");
3415   for (uint i = 1; i < region->req(); i++) {
3416     Node* ctl = region->in(i);
3417     if (ctl == NULL || ctl == top()) {
3418       region->set_req(i, top());
3419       phi   ->set_req(i, top());
3420     } else if (phi->in(i) == NULL) {
3421       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3422     }
3423   }
3424 
3425   set_control(_gvn.transform(region));
3426   set_result(_gvn.transform(phi));
3427   return true;
3428 }
3429 
3430 //---------------------generate_array_guard_common------------------------
3431 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3432                                                   bool obj_array, bool not_array) {
3433   // If obj_array/non_array==false/false:
3434   // Branch around if the given klass is in fact an array (either obj or prim).
3435   // If obj_array/non_array==false/true:
3436   // Branch around if the given klass is not an array klass of any kind.
3437   // If obj_array/non_array==true/true:
3438   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3439   // If obj_array/non_array==true/false:
3440   // Branch around if the kls is an oop array (Object[] or subtype)
3441   //
3442   // Like generate_guard, adds a new path onto the region.
3443   jint  layout_con = 0;
3444   Node* layout_val = get_layout_helper(kls, layout_con);
3445   if (layout_val == NULL) {
3446     bool query = (obj_array
3447                   ? Klass::layout_helper_is_objArray(layout_con)
3448                   : Klass::layout_helper_is_array(layout_con));
3449     if (query == not_array) {
3450       return NULL;                       // never a branch
3451     } else {                             // always a branch
3452       Node* always_branch = control();
3453       if (region != NULL)
3454         region->add_req(always_branch);
3455       set_control(top());
3456       return always_branch;
3457     }
3458   }
3459   // Now test the correct condition.
3460   jint  nval = (obj_array
3461                 ? ((jint)Klass::_lh_array_tag_type_value
3462                    <<    Klass::_lh_array_tag_shift)
3463                 : Klass::_lh_neutral_value);
3464   Node* cmp = _gvn.transform( new(C) CmpINode(layout_val, intcon(nval)) );
3465   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3466   // invert the test if we are looking for a non-array
3467   if (not_array)  btest = BoolTest(btest).negate();
3468   Node* bol = _gvn.transform( new(C) BoolNode(cmp, btest) );
3469   return generate_fair_guard(bol, region);
3470 }
3471 
3472 
3473 //-----------------------inline_native_newArray--------------------------
3474 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3475 bool LibraryCallKit::inline_native_newArray() {
3476   Node* mirror    = argument(0);
3477   Node* count_val = argument(1);
3478 
3479   mirror = null_check(mirror);
3480   // If mirror or obj is dead, only null-path is taken.
3481   if (stopped())  return true;
3482 
3483   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3484   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3485   PhiNode*    result_val = new(C) PhiNode(result_reg,
3486                                           TypeInstPtr::NOTNULL);
3487   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3488   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3489                                           TypePtr::BOTTOM);
3490 
3491   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3492   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3493                                                   result_reg, _slow_path);
3494   Node* normal_ctl   = control();
3495   Node* no_array_ctl = result_reg->in(_slow_path);
3496 
3497   // Generate code for the slow case.  We make a call to newArray().
3498   set_control(no_array_ctl);
3499   if (!stopped()) {
3500     // Either the input type is void.class, or else the
3501     // array klass has not yet been cached.  Either the
3502     // ensuing call will throw an exception, or else it
3503     // will cache the array klass for next time.
3504     PreserveJVMState pjvms(this);
3505     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3506     Node* slow_result = set_results_for_java_call(slow_call);
3507     // this->control() comes from set_results_for_java_call
3508     result_reg->set_req(_slow_path, control());
3509     result_val->set_req(_slow_path, slow_result);
3510     result_io ->set_req(_slow_path, i_o());
3511     result_mem->set_req(_slow_path, reset_memory());
3512   }
3513 
3514   set_control(normal_ctl);
3515   if (!stopped()) {
3516     // Normal case:  The array type has been cached in the java.lang.Class.
3517     // The following call works fine even if the array type is polymorphic.
3518     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3519     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3520     result_reg->init_req(_normal_path, control());
3521     result_val->init_req(_normal_path, obj);
3522     result_io ->init_req(_normal_path, i_o());
3523     result_mem->init_req(_normal_path, reset_memory());
3524   }
3525 
3526   // Return the combined state.
3527   set_i_o(        _gvn.transform(result_io)  );
3528   set_all_memory( _gvn.transform(result_mem) );
3529 
3530   C->set_has_split_ifs(true); // Has chance for split-if optimization
3531   set_result(result_reg, result_val);
3532   return true;
3533 }
3534 
3535 //----------------------inline_native_getLength--------------------------
3536 // public static native int java.lang.reflect.Array.getLength(Object array);
3537 bool LibraryCallKit::inline_native_getLength() {
3538   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3539 
3540   Node* array = null_check(argument(0));
3541   // If array is dead, only null-path is taken.
3542   if (stopped())  return true;
3543 
3544   // Deoptimize if it is a non-array.
3545   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3546 
3547   if (non_array != NULL) {
3548     PreserveJVMState pjvms(this);
3549     set_control(non_array);
3550     uncommon_trap(Deoptimization::Reason_intrinsic,
3551                   Deoptimization::Action_maybe_recompile);
3552   }
3553 
3554   // If control is dead, only non-array-path is taken.
3555   if (stopped())  return true;
3556 
3557   // The works fine even if the array type is polymorphic.
3558   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3559   Node* result = load_array_length(array);
3560 
3561   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3562   set_result(result);
3563   return true;
3564 }
3565 
3566 //------------------------inline_array_copyOf----------------------------
3567 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3568 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3569 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3570   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3571 
3572   // Get the arguments.
3573   Node* original          = argument(0);
3574   Node* start             = is_copyOfRange? argument(1): intcon(0);
3575   Node* end               = is_copyOfRange? argument(2): argument(1);
3576   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3577 
3578   Node* newcopy;
3579 
3580   // Set the original stack and the reexecute bit for the interpreter to reexecute
3581   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3582   { PreserveReexecuteState preexecs(this);
3583     jvms()->set_should_reexecute(true);
3584 
3585     array_type_mirror = null_check(array_type_mirror);
3586     original          = null_check(original);
3587 
3588     // Check if a null path was taken unconditionally.
3589     if (stopped())  return true;
3590 
3591     Node* orig_length = load_array_length(original);
3592 
3593     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3594     klass_node = null_check(klass_node);
3595 
3596     RegionNode* bailout = new (C) RegionNode(1);
3597     record_for_igvn(bailout);
3598 
3599     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3600     // Bail out if that is so.
3601     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3602     if (not_objArray != NULL) {
3603       // Improve the klass node's type from the new optimistic assumption:
3604       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3605       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3606       Node* cast = new (C) CastPPNode(klass_node, akls);
3607       cast->init_req(0, control());
3608       klass_node = _gvn.transform(cast);
3609     }
3610 
3611     // Bail out if either start or end is negative.
3612     generate_negative_guard(start, bailout, &start);
3613     generate_negative_guard(end,   bailout, &end);
3614 
3615     Node* length = end;
3616     if (_gvn.type(start) != TypeInt::ZERO) {
3617       length = _gvn.transform(new (C) SubINode(end, start));
3618     }
3619 
3620     // Bail out if length is negative.
3621     // Without this the new_array would throw
3622     // NegativeArraySizeException but IllegalArgumentException is what
3623     // should be thrown
3624     generate_negative_guard(length, bailout, &length);
3625 
3626     if (bailout->req() > 1) {
3627       PreserveJVMState pjvms(this);
3628       set_control(_gvn.transform(bailout));
3629       uncommon_trap(Deoptimization::Reason_intrinsic,
3630                     Deoptimization::Action_maybe_recompile);
3631     }
3632 
3633     if (!stopped()) {
3634       // How many elements will we copy from the original?
3635       // The answer is MinI(orig_length - start, length).
3636       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3637       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3638 
3639       newcopy = new_array(klass_node, length, 0);  // no argments to push
3640 
3641       // Generate a direct call to the right arraycopy function(s).
3642       // We know the copy is disjoint but we might not know if the
3643       // oop stores need checking.
3644       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3645       // This will fail a store-check if x contains any non-nulls.
3646       bool disjoint_bases = true;
3647       // if start > orig_length then the length of the copy may be
3648       // negative.
3649       bool length_never_negative = !is_copyOfRange;
3650       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3651                          original, start, newcopy, intcon(0), moved,
3652                          disjoint_bases, length_never_negative);
3653     }
3654   } // original reexecute is set back here
3655 
3656   C->set_has_split_ifs(true); // Has chance for split-if optimization
3657   if (!stopped()) {
3658     set_result(newcopy);
3659   }
3660   return true;
3661 }
3662 
3663 
3664 //----------------------generate_virtual_guard---------------------------
3665 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3666 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3667                                              RegionNode* slow_region) {
3668   ciMethod* method = callee();
3669   int vtable_index = method->vtable_index();
3670   // Get the Method* out of the appropriate vtable entry.
3671   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3672                      vtable_index*vtableEntry::size()) * wordSize +
3673                      vtableEntry::method_offset_in_bytes();
3674   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3675   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
3676 
3677   // Compare the target method with the expected method (e.g., Object.hashCode).
3678   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3679 
3680   Node* native_call = makecon(native_call_addr);
3681   Node* chk_native  = _gvn.transform( new(C) CmpPNode(target_call, native_call) );
3682   Node* test_native = _gvn.transform( new(C) BoolNode(chk_native, BoolTest::ne) );
3683 
3684   return generate_slow_guard(test_native, slow_region);
3685 }
3686 
3687 //-----------------------generate_method_call----------------------------
3688 // Use generate_method_call to make a slow-call to the real
3689 // method if the fast path fails.  An alternative would be to
3690 // use a stub like OptoRuntime::slow_arraycopy_Java.
3691 // This only works for expanding the current library call,
3692 // not another intrinsic.  (E.g., don't use this for making an
3693 // arraycopy call inside of the copyOf intrinsic.)
3694 CallJavaNode*
3695 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3696   // When compiling the intrinsic method itself, do not use this technique.
3697   guarantee(callee() != C->method(), "cannot make slow-call to self");
3698 
3699   ciMethod* method = callee();
3700   // ensure the JVMS we have will be correct for this call
3701   guarantee(method_id == method->intrinsic_id(), "must match");
3702 
3703   const TypeFunc* tf = TypeFunc::make(method);
3704   CallJavaNode* slow_call;
3705   if (is_static) {
3706     assert(!is_virtual, "");
3707     slow_call = new(C) CallStaticJavaNode(C, tf,
3708                            SharedRuntime::get_resolve_static_call_stub(),
3709                            method, bci());
3710   } else if (is_virtual) {
3711     null_check_receiver();
3712     int vtable_index = Method::invalid_vtable_index;
3713     if (UseInlineCaches) {
3714       // Suppress the vtable call
3715     } else {
3716       // hashCode and clone are not a miranda methods,
3717       // so the vtable index is fixed.
3718       // No need to use the linkResolver to get it.
3719        vtable_index = method->vtable_index();
3720     }
3721     slow_call = new(C) CallDynamicJavaNode(tf,
3722                           SharedRuntime::get_resolve_virtual_call_stub(),
3723                           method, vtable_index, bci());
3724   } else {  // neither virtual nor static:  opt_virtual
3725     null_check_receiver();
3726     slow_call = new(C) CallStaticJavaNode(C, tf,
3727                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3728                                 method, bci());
3729     slow_call->set_optimized_virtual(true);
3730   }
3731   set_arguments_for_java_call(slow_call);
3732   set_edges_for_java_call(slow_call);
3733   return slow_call;
3734 }
3735 
3736 
3737 //------------------------------inline_native_hashcode--------------------
3738 // Build special case code for calls to hashCode on an object.
3739 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3740   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3741   assert(!(is_virtual && is_static), "either virtual, special, or static");
3742 
3743   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3744 
3745   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3746   PhiNode*    result_val = new(C) PhiNode(result_reg,
3747                                           TypeInt::INT);
3748   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3749   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3750                                           TypePtr::BOTTOM);
3751   Node* obj = NULL;
3752   if (!is_static) {
3753     // Check for hashing null object
3754     obj = null_check_receiver();
3755     if (stopped())  return true;        // unconditionally null
3756     result_reg->init_req(_null_path, top());
3757     result_val->init_req(_null_path, top());
3758   } else {
3759     // Do a null check, and return zero if null.
3760     // System.identityHashCode(null) == 0
3761     obj = argument(0);
3762     Node* null_ctl = top();
3763     obj = null_check_oop(obj, &null_ctl);
3764     result_reg->init_req(_null_path, null_ctl);
3765     result_val->init_req(_null_path, _gvn.intcon(0));
3766   }
3767 
3768   // Unconditionally null?  Then return right away.
3769   if (stopped()) {
3770     set_control( result_reg->in(_null_path));
3771     if (!stopped())
3772       set_result(result_val->in(_null_path));
3773     return true;
3774   }
3775 
3776   // After null check, get the object's klass.
3777   Node* obj_klass = load_object_klass(obj);
3778 
3779   // This call may be virtual (invokevirtual) or bound (invokespecial).
3780   // For each case we generate slightly different code.
3781 
3782   // We only go to the fast case code if we pass a number of guards.  The
3783   // paths which do not pass are accumulated in the slow_region.
3784   RegionNode* slow_region = new (C) RegionNode(1);
3785   record_for_igvn(slow_region);
3786 
3787   // If this is a virtual call, we generate a funny guard.  We pull out
3788   // the vtable entry corresponding to hashCode() from the target object.
3789   // If the target method which we are calling happens to be the native
3790   // Object hashCode() method, we pass the guard.  We do not need this
3791   // guard for non-virtual calls -- the caller is known to be the native
3792   // Object hashCode().
3793   if (is_virtual) {
3794     generate_virtual_guard(obj_klass, slow_region);
3795   }
3796 
3797   // Get the header out of the object, use LoadMarkNode when available
3798   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3799   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
3800 
3801   // Test the header to see if it is unlocked.
3802   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3803   Node *lmasked_header = _gvn.transform( new (C) AndXNode(header, lock_mask) );
3804   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3805   Node *chk_unlocked   = _gvn.transform( new (C) CmpXNode( lmasked_header, unlocked_val));
3806   Node *test_unlocked  = _gvn.transform( new (C) BoolNode( chk_unlocked, BoolTest::ne) );
3807 
3808   generate_slow_guard(test_unlocked, slow_region);
3809 
3810   // Get the hash value and check to see that it has been properly assigned.
3811   // We depend on hash_mask being at most 32 bits and avoid the use of
3812   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3813   // vm: see markOop.hpp.
3814   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3815   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3816   Node *hshifted_header= _gvn.transform( new (C) URShiftXNode(header, hash_shift) );
3817   // This hack lets the hash bits live anywhere in the mark object now, as long
3818   // as the shift drops the relevant bits into the low 32 bits.  Note that
3819   // Java spec says that HashCode is an int so there's no point in capturing
3820   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3821   hshifted_header      = ConvX2I(hshifted_header);
3822   Node *hash_val       = _gvn.transform( new (C) AndINode(hshifted_header, hash_mask) );
3823 
3824   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3825   Node *chk_assigned   = _gvn.transform( new (C) CmpINode( hash_val, no_hash_val));
3826   Node *test_assigned  = _gvn.transform( new (C) BoolNode( chk_assigned, BoolTest::eq) );
3827 
3828   generate_slow_guard(test_assigned, slow_region);
3829 
3830   Node* init_mem = reset_memory();
3831   // fill in the rest of the null path:
3832   result_io ->init_req(_null_path, i_o());
3833   result_mem->init_req(_null_path, init_mem);
3834 
3835   result_val->init_req(_fast_path, hash_val);
3836   result_reg->init_req(_fast_path, control());
3837   result_io ->init_req(_fast_path, i_o());
3838   result_mem->init_req(_fast_path, init_mem);
3839 
3840   // Generate code for the slow case.  We make a call to hashCode().
3841   set_control(_gvn.transform(slow_region));
3842   if (!stopped()) {
3843     // No need for PreserveJVMState, because we're using up the present state.
3844     set_all_memory(init_mem);
3845     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
3846     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3847     Node* slow_result = set_results_for_java_call(slow_call);
3848     // this->control() comes from set_results_for_java_call
3849     result_reg->init_req(_slow_path, control());
3850     result_val->init_req(_slow_path, slow_result);
3851     result_io  ->set_req(_slow_path, i_o());
3852     result_mem ->set_req(_slow_path, reset_memory());
3853   }
3854 
3855   // Return the combined state.
3856   set_i_o(        _gvn.transform(result_io)  );
3857   set_all_memory( _gvn.transform(result_mem) );
3858 
3859   set_result(result_reg, result_val);
3860   return true;
3861 }
3862 
3863 //---------------------------inline_native_getClass----------------------------
3864 // public final native Class<?> java.lang.Object.getClass();
3865 //
3866 // Build special case code for calls to getClass on an object.
3867 bool LibraryCallKit::inline_native_getClass() {
3868   Node* obj = null_check_receiver();
3869   if (stopped())  return true;
3870   set_result(load_mirror_from_klass(load_object_klass(obj)));
3871   return true;
3872 }
3873 
3874 //-----------------inline_native_Reflection_getCallerClass---------------------
3875 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
3876 //
3877 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3878 //
3879 // NOTE: This code must perform the same logic as JVM_GetCallerClass
3880 // in that it must skip particular security frames and checks for
3881 // caller sensitive methods.
3882 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3883 #ifndef PRODUCT
3884   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3885     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3886   }
3887 #endif
3888 
3889   if (!jvms()->has_method()) {
3890 #ifndef PRODUCT
3891     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3892       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3893     }
3894 #endif
3895     return false;
3896   }
3897 
3898   // Walk back up the JVM state to find the caller at the required
3899   // depth.
3900   JVMState* caller_jvms = jvms();
3901 
3902   // Cf. JVM_GetCallerClass
3903   // NOTE: Start the loop at depth 1 because the current JVM state does
3904   // not include the Reflection.getCallerClass() frame.
3905   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
3906     ciMethod* m = caller_jvms->method();
3907     switch (n) {
3908     case 0:
3909       fatal("current JVM state does not include the Reflection.getCallerClass frame");
3910       break;
3911     case 1:
3912       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
3913       if (!m->caller_sensitive()) {
3914 #ifndef PRODUCT
3915         if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3916           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
3917         }
3918 #endif
3919         return false;  // bail-out; let JVM_GetCallerClass do the work
3920       }
3921       break;
3922     default:
3923       if (!m->is_ignored_by_security_stack_walk()) {
3924         // We have reached the desired frame; return the holder class.
3925         // Acquire method holder as java.lang.Class and push as constant.
3926         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
3927         ciInstance* caller_mirror = caller_klass->java_mirror();
3928         set_result(makecon(TypeInstPtr::make(caller_mirror)));
3929 
3930 #ifndef PRODUCT
3931         if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3932           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
3933           tty->print_cr("  JVM state at this point:");
3934           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
3935             ciMethod* m = jvms()->of_depth(i)->method();
3936             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
3937           }
3938         }
3939 #endif
3940         return true;
3941       }
3942       break;
3943     }
3944   }
3945 
3946 #ifndef PRODUCT
3947   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3948     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
3949     tty->print_cr("  JVM state at this point:");
3950     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
3951       ciMethod* m = jvms()->of_depth(i)->method();
3952       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
3953     }
3954   }
3955 #endif
3956 
3957   return false;  // bail-out; let JVM_GetCallerClass do the work
3958 }
3959 
3960 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
3961   Node* arg = argument(0);
3962   Node* result;
3963 
3964   switch (id) {
3965   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
3966   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
3967   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
3968   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
3969 
3970   case vmIntrinsics::_doubleToLongBits: {
3971     // two paths (plus control) merge in a wood
3972     RegionNode *r = new (C) RegionNode(3);
3973     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
3974 
3975     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
3976     // Build the boolean node
3977     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
3978 
3979     // Branch either way.
3980     // NaN case is less traveled, which makes all the difference.
3981     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3982     Node *opt_isnan = _gvn.transform(ifisnan);
3983     assert( opt_isnan->is_If(), "Expect an IfNode");
3984     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3985     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
3986 
3987     set_control(iftrue);
3988 
3989     static const jlong nan_bits = CONST64(0x7ff8000000000000);
3990     Node *slow_result = longcon(nan_bits); // return NaN
3991     phi->init_req(1, _gvn.transform( slow_result ));
3992     r->init_req(1, iftrue);
3993 
3994     // Else fall through
3995     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
3996     set_control(iffalse);
3997 
3998     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
3999     r->init_req(2, iffalse);
4000 
4001     // Post merge
4002     set_control(_gvn.transform(r));
4003     record_for_igvn(r);
4004 
4005     C->set_has_split_ifs(true); // Has chance for split-if optimization
4006     result = phi;
4007     assert(result->bottom_type()->isa_long(), "must be");
4008     break;
4009   }
4010 
4011   case vmIntrinsics::_floatToIntBits: {
4012     // two paths (plus control) merge in a wood
4013     RegionNode *r = new (C) RegionNode(3);
4014     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4015 
4016     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4017     // Build the boolean node
4018     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4019 
4020     // Branch either way.
4021     // NaN case is less traveled, which makes all the difference.
4022     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4023     Node *opt_isnan = _gvn.transform(ifisnan);
4024     assert( opt_isnan->is_If(), "Expect an IfNode");
4025     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4026     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
4027 
4028     set_control(iftrue);
4029 
4030     static const jint nan_bits = 0x7fc00000;
4031     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4032     phi->init_req(1, _gvn.transform( slow_result ));
4033     r->init_req(1, iftrue);
4034 
4035     // Else fall through
4036     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4037     set_control(iffalse);
4038 
4039     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4040     r->init_req(2, iffalse);
4041 
4042     // Post merge
4043     set_control(_gvn.transform(r));
4044     record_for_igvn(r);
4045 
4046     C->set_has_split_ifs(true); // Has chance for split-if optimization
4047     result = phi;
4048     assert(result->bottom_type()->isa_int(), "must be");
4049     break;
4050   }
4051 
4052   default:
4053     fatal_unexpected_iid(id);
4054     break;
4055   }
4056   set_result(_gvn.transform(result));
4057   return true;
4058 }
4059 
4060 #ifdef _LP64
4061 #define XTOP ,top() /*additional argument*/
4062 #else  //_LP64
4063 #define XTOP        /*no additional argument*/
4064 #endif //_LP64
4065 
4066 //----------------------inline_unsafe_copyMemory-------------------------
4067 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4068 bool LibraryCallKit::inline_unsafe_copyMemory() {
4069   if (callee()->is_static())  return false;  // caller must have the capability!
4070   null_check_receiver();  // null-check receiver
4071   if (stopped())  return true;
4072 
4073   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4074 
4075   Node* src_ptr =         argument(1);   // type: oop
4076   Node* src_off = ConvL2X(argument(2));  // type: long
4077   Node* dst_ptr =         argument(4);   // type: oop
4078   Node* dst_off = ConvL2X(argument(5));  // type: long
4079   Node* size    = ConvL2X(argument(7));  // type: long
4080 
4081   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4082          "fieldOffset must be byte-scaled");
4083 
4084   Node* src = make_unsafe_address(src_ptr, src_off);
4085   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4086 
4087   // Conservatively insert a memory barrier on all memory slices.
4088   // Do not let writes of the copy source or destination float below the copy.
4089   insert_mem_bar(Op_MemBarCPUOrder);
4090 
4091   // Call it.  Note that the length argument is not scaled.
4092   make_runtime_call(RC_LEAF|RC_NO_FP,
4093                     OptoRuntime::fast_arraycopy_Type(),
4094                     StubRoutines::unsafe_arraycopy(),
4095                     "unsafe_arraycopy",
4096                     TypeRawPtr::BOTTOM,
4097                     src, dst, size XTOP);
4098 
4099   // Do not let reads of the copy destination float above the copy.
4100   insert_mem_bar(Op_MemBarCPUOrder);
4101 
4102   return true;
4103 }
4104 
4105 //------------------------clone_coping-----------------------------------
4106 // Helper function for inline_native_clone.
4107 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4108   assert(obj_size != NULL, "");
4109   Node* raw_obj = alloc_obj->in(1);
4110   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4111 
4112   AllocateNode* alloc = NULL;
4113   if (ReduceBulkZeroing) {
4114     // We will be completely responsible for initializing this object -
4115     // mark Initialize node as complete.
4116     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4117     // The object was just allocated - there should be no any stores!
4118     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4119     // Mark as complete_with_arraycopy so that on AllocateNode
4120     // expansion, we know this AllocateNode is initialized by an array
4121     // copy and a StoreStore barrier exists after the array copy.
4122     alloc->initialization()->set_complete_with_arraycopy();
4123   }
4124 
4125   // Copy the fastest available way.
4126   // TODO: generate fields copies for small objects instead.
4127   Node* src  = obj;
4128   Node* dest = alloc_obj;
4129   Node* size = _gvn.transform(obj_size);
4130 
4131   // Exclude the header but include array length to copy by 8 bytes words.
4132   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4133   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4134                             instanceOopDesc::base_offset_in_bytes();
4135   // base_off:
4136   // 8  - 32-bit VM
4137   // 12 - 64-bit VM, compressed klass
4138   // 16 - 64-bit VM, normal klass
4139   if (base_off % BytesPerLong != 0) {
4140     assert(UseCompressedKlassPointers, "");
4141     if (is_array) {
4142       // Exclude length to copy by 8 bytes words.
4143       base_off += sizeof(int);
4144     } else {
4145       // Include klass to copy by 8 bytes words.
4146       base_off = instanceOopDesc::klass_offset_in_bytes();
4147     }
4148     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4149   }
4150   src  = basic_plus_adr(src,  base_off);
4151   dest = basic_plus_adr(dest, base_off);
4152 
4153   // Compute the length also, if needed:
4154   Node* countx = size;
4155   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(base_off)) );
4156   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4157 
4158   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4159   bool disjoint_bases = true;
4160   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4161                                src, NULL, dest, NULL, countx,
4162                                /*dest_uninitialized*/true);
4163 
4164   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4165   if (card_mark) {
4166     assert(!is_array, "");
4167     // Put in store barrier for any and all oops we are sticking
4168     // into this object.  (We could avoid this if we could prove
4169     // that the object type contains no oop fields at all.)
4170     Node* no_particular_value = NULL;
4171     Node* no_particular_field = NULL;
4172     int raw_adr_idx = Compile::AliasIdxRaw;
4173     post_barrier(control(),
4174                  memory(raw_adr_type),
4175                  alloc_obj,
4176                  no_particular_field,
4177                  raw_adr_idx,
4178                  no_particular_value,
4179                  T_OBJECT,
4180                  false);
4181   }
4182 
4183   // Do not let reads from the cloned object float above the arraycopy.
4184   if (alloc != NULL) {
4185     // Do not let stores that initialize this object be reordered with
4186     // a subsequent store that would make this object accessible by
4187     // other threads.
4188     // Record what AllocateNode this StoreStore protects so that
4189     // escape analysis can go from the MemBarStoreStoreNode to the
4190     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4191     // based on the escape status of the AllocateNode.
4192     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4193   } else {
4194     insert_mem_bar(Op_MemBarCPUOrder);
4195   }
4196 }
4197 
4198 //------------------------inline_native_clone----------------------------
4199 // protected native Object java.lang.Object.clone();
4200 //
4201 // Here are the simple edge cases:
4202 //  null receiver => normal trap
4203 //  virtual and clone was overridden => slow path to out-of-line clone
4204 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4205 //
4206 // The general case has two steps, allocation and copying.
4207 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4208 //
4209 // Copying also has two cases, oop arrays and everything else.
4210 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4211 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4212 //
4213 // These steps fold up nicely if and when the cloned object's klass
4214 // can be sharply typed as an object array, a type array, or an instance.
4215 //
4216 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4217   PhiNode* result_val;
4218 
4219   // Set the reexecute bit for the interpreter to reexecute
4220   // the bytecode that invokes Object.clone if deoptimization happens.
4221   { PreserveReexecuteState preexecs(this);
4222     jvms()->set_should_reexecute(true);
4223 
4224     Node* obj = null_check_receiver();
4225     if (stopped())  return true;
4226 
4227     Node* obj_klass = load_object_klass(obj);
4228     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4229     const TypeOopPtr*   toop   = ((tklass != NULL)
4230                                 ? tklass->as_instance_type()
4231                                 : TypeInstPtr::NOTNULL);
4232 
4233     // Conservatively insert a memory barrier on all memory slices.
4234     // Do not let writes into the original float below the clone.
4235     insert_mem_bar(Op_MemBarCPUOrder);
4236 
4237     // paths into result_reg:
4238     enum {
4239       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4240       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4241       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4242       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4243       PATH_LIMIT
4244     };
4245     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4246     result_val             = new(C) PhiNode(result_reg,
4247                                             TypeInstPtr::NOTNULL);
4248     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4249     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4250                                             TypePtr::BOTTOM);
4251     record_for_igvn(result_reg);
4252 
4253     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4254     int raw_adr_idx = Compile::AliasIdxRaw;
4255 
4256     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4257     if (array_ctl != NULL) {
4258       // It's an array.
4259       PreserveJVMState pjvms(this);
4260       set_control(array_ctl);
4261       Node* obj_length = load_array_length(obj);
4262       Node* obj_size  = NULL;
4263       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4264 
4265       if (!use_ReduceInitialCardMarks()) {
4266         // If it is an oop array, it requires very special treatment,
4267         // because card marking is required on each card of the array.
4268         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4269         if (is_obja != NULL) {
4270           PreserveJVMState pjvms2(this);
4271           set_control(is_obja);
4272           // Generate a direct call to the right arraycopy function(s).
4273           bool disjoint_bases = true;
4274           bool length_never_negative = true;
4275           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4276                              obj, intcon(0), alloc_obj, intcon(0),
4277                              obj_length,
4278                              disjoint_bases, length_never_negative);
4279           result_reg->init_req(_objArray_path, control());
4280           result_val->init_req(_objArray_path, alloc_obj);
4281           result_i_o ->set_req(_objArray_path, i_o());
4282           result_mem ->set_req(_objArray_path, reset_memory());
4283         }
4284       }
4285       // Otherwise, there are no card marks to worry about.
4286       // (We can dispense with card marks if we know the allocation
4287       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4288       //  causes the non-eden paths to take compensating steps to
4289       //  simulate a fresh allocation, so that no further
4290       //  card marks are required in compiled code to initialize
4291       //  the object.)
4292 
4293       if (!stopped()) {
4294         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4295 
4296         // Present the results of the copy.
4297         result_reg->init_req(_array_path, control());
4298         result_val->init_req(_array_path, alloc_obj);
4299         result_i_o ->set_req(_array_path, i_o());
4300         result_mem ->set_req(_array_path, reset_memory());
4301       }
4302     }
4303 
4304     // We only go to the instance fast case code if we pass a number of guards.
4305     // The paths which do not pass are accumulated in the slow_region.
4306     RegionNode* slow_region = new (C) RegionNode(1);
4307     record_for_igvn(slow_region);
4308     if (!stopped()) {
4309       // It's an instance (we did array above).  Make the slow-path tests.
4310       // If this is a virtual call, we generate a funny guard.  We grab
4311       // the vtable entry corresponding to clone() from the target object.
4312       // If the target method which we are calling happens to be the
4313       // Object clone() method, we pass the guard.  We do not need this
4314       // guard for non-virtual calls; the caller is known to be the native
4315       // Object clone().
4316       if (is_virtual) {
4317         generate_virtual_guard(obj_klass, slow_region);
4318       }
4319 
4320       // The object must be cloneable and must not have a finalizer.
4321       // Both of these conditions may be checked in a single test.
4322       // We could optimize the cloneable test further, but we don't care.
4323       generate_access_flags_guard(obj_klass,
4324                                   // Test both conditions:
4325                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4326                                   // Must be cloneable but not finalizer:
4327                                   JVM_ACC_IS_CLONEABLE,
4328                                   slow_region);
4329     }
4330 
4331     if (!stopped()) {
4332       // It's an instance, and it passed the slow-path tests.
4333       PreserveJVMState pjvms(this);
4334       Node* obj_size  = NULL;
4335       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4336 
4337       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4338 
4339       // Present the results of the slow call.
4340       result_reg->init_req(_instance_path, control());
4341       result_val->init_req(_instance_path, alloc_obj);
4342       result_i_o ->set_req(_instance_path, i_o());
4343       result_mem ->set_req(_instance_path, reset_memory());
4344     }
4345 
4346     // Generate code for the slow case.  We make a call to clone().
4347     set_control(_gvn.transform(slow_region));
4348     if (!stopped()) {
4349       PreserveJVMState pjvms(this);
4350       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4351       Node* slow_result = set_results_for_java_call(slow_call);
4352       // this->control() comes from set_results_for_java_call
4353       result_reg->init_req(_slow_path, control());
4354       result_val->init_req(_slow_path, slow_result);
4355       result_i_o ->set_req(_slow_path, i_o());
4356       result_mem ->set_req(_slow_path, reset_memory());
4357     }
4358 
4359     // Return the combined state.
4360     set_control(    _gvn.transform(result_reg) );
4361     set_i_o(        _gvn.transform(result_i_o) );
4362     set_all_memory( _gvn.transform(result_mem) );
4363   } // original reexecute is set back here
4364 
4365   set_result(_gvn.transform(result_val));
4366   return true;
4367 }
4368 
4369 //------------------------------basictype2arraycopy----------------------------
4370 address LibraryCallKit::basictype2arraycopy(BasicType t,
4371                                             Node* src_offset,
4372                                             Node* dest_offset,
4373                                             bool disjoint_bases,
4374                                             const char* &name,
4375                                             bool dest_uninitialized) {
4376   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4377   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4378 
4379   bool aligned = false;
4380   bool disjoint = disjoint_bases;
4381 
4382   // if the offsets are the same, we can treat the memory regions as
4383   // disjoint, because either the memory regions are in different arrays,
4384   // or they are identical (which we can treat as disjoint.)  We can also
4385   // treat a copy with a destination index  less that the source index
4386   // as disjoint since a low->high copy will work correctly in this case.
4387   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4388       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4389     // both indices are constants
4390     int s_offs = src_offset_inttype->get_con();
4391     int d_offs = dest_offset_inttype->get_con();
4392     int element_size = type2aelembytes(t);
4393     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4394               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4395     if (s_offs >= d_offs)  disjoint = true;
4396   } else if (src_offset == dest_offset && src_offset != NULL) {
4397     // This can occur if the offsets are identical non-constants.
4398     disjoint = true;
4399   }
4400 
4401   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4402 }
4403 
4404 
4405 //------------------------------inline_arraycopy-----------------------
4406 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4407 //                                                      Object dest, int destPos,
4408 //                                                      int length);
4409 bool LibraryCallKit::inline_arraycopy() {
4410   // Get the arguments.
4411   Node* src         = argument(0);  // type: oop
4412   Node* src_offset  = argument(1);  // type: int
4413   Node* dest        = argument(2);  // type: oop
4414   Node* dest_offset = argument(3);  // type: int
4415   Node* length      = argument(4);  // type: int
4416 
4417   // Compile time checks.  If any of these checks cannot be verified at compile time,
4418   // we do not make a fast path for this call.  Instead, we let the call remain as it
4419   // is.  The checks we choose to mandate at compile time are:
4420   //
4421   // (1) src and dest are arrays.
4422   const Type* src_type  = src->Value(&_gvn);
4423   const Type* dest_type = dest->Value(&_gvn);
4424   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4425   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4426   if (top_src  == NULL || top_src->klass()  == NULL ||
4427       top_dest == NULL || top_dest->klass() == NULL) {
4428     // Conservatively insert a memory barrier on all memory slices.
4429     // Do not let writes into the source float below the arraycopy.
4430     insert_mem_bar(Op_MemBarCPUOrder);
4431 
4432     // Call StubRoutines::generic_arraycopy stub.
4433     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4434                        src, src_offset, dest, dest_offset, length);
4435 
4436     // Do not let reads from the destination float above the arraycopy.
4437     // Since we cannot type the arrays, we don't know which slices
4438     // might be affected.  We could restrict this barrier only to those
4439     // memory slices which pertain to array elements--but don't bother.
4440     if (!InsertMemBarAfterArraycopy)
4441       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4442       insert_mem_bar(Op_MemBarCPUOrder);
4443     return true;
4444   }
4445 
4446   // (2) src and dest arrays must have elements of the same BasicType
4447   // Figure out the size and type of the elements we will be copying.
4448   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4449   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4450   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4451   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4452 
4453   if (src_elem != dest_elem || dest_elem == T_VOID) {
4454     // The component types are not the same or are not recognized.  Punt.
4455     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4456     generate_slow_arraycopy(TypePtr::BOTTOM,
4457                             src, src_offset, dest, dest_offset, length,
4458                             /*dest_uninitialized*/false);
4459     return true;
4460   }
4461 
4462   //---------------------------------------------------------------------------
4463   // We will make a fast path for this call to arraycopy.
4464 
4465   // We have the following tests left to perform:
4466   //
4467   // (3) src and dest must not be null.
4468   // (4) src_offset must not be negative.
4469   // (5) dest_offset must not be negative.
4470   // (6) length must not be negative.
4471   // (7) src_offset + length must not exceed length of src.
4472   // (8) dest_offset + length must not exceed length of dest.
4473   // (9) each element of an oop array must be assignable
4474 
4475   RegionNode* slow_region = new (C) RegionNode(1);
4476   record_for_igvn(slow_region);
4477 
4478   // (3) operands must not be null
4479   // We currently perform our null checks with the null_check routine.
4480   // This means that the null exceptions will be reported in the caller
4481   // rather than (correctly) reported inside of the native arraycopy call.
4482   // This should be corrected, given time.  We do our null check with the
4483   // stack pointer restored.
4484   src  = null_check(src,  T_ARRAY);
4485   dest = null_check(dest, T_ARRAY);
4486 
4487   // (4) src_offset must not be negative.
4488   generate_negative_guard(src_offset, slow_region);
4489 
4490   // (5) dest_offset must not be negative.
4491   generate_negative_guard(dest_offset, slow_region);
4492 
4493   // (6) length must not be negative (moved to generate_arraycopy()).
4494   // generate_negative_guard(length, slow_region);
4495 
4496   // (7) src_offset + length must not exceed length of src.
4497   generate_limit_guard(src_offset, length,
4498                        load_array_length(src),
4499                        slow_region);
4500 
4501   // (8) dest_offset + length must not exceed length of dest.
4502   generate_limit_guard(dest_offset, length,
4503                        load_array_length(dest),
4504                        slow_region);
4505 
4506   // (9) each element of an oop array must be assignable
4507   // The generate_arraycopy subroutine checks this.
4508 
4509   // This is where the memory effects are placed:
4510   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4511   generate_arraycopy(adr_type, dest_elem,
4512                      src, src_offset, dest, dest_offset, length,
4513                      false, false, slow_region);
4514 
4515   return true;
4516 }
4517 
4518 //-----------------------------generate_arraycopy----------------------
4519 // Generate an optimized call to arraycopy.
4520 // Caller must guard against non-arrays.
4521 // Caller must determine a common array basic-type for both arrays.
4522 // Caller must validate offsets against array bounds.
4523 // The slow_region has already collected guard failure paths
4524 // (such as out of bounds length or non-conformable array types).
4525 // The generated code has this shape, in general:
4526 //
4527 //     if (length == 0)  return   // via zero_path
4528 //     slowval = -1
4529 //     if (types unknown) {
4530 //       slowval = call generic copy loop
4531 //       if (slowval == 0)  return  // via checked_path
4532 //     } else if (indexes in bounds) {
4533 //       if ((is object array) && !(array type check)) {
4534 //         slowval = call checked copy loop
4535 //         if (slowval == 0)  return  // via checked_path
4536 //       } else {
4537 //         call bulk copy loop
4538 //         return  // via fast_path
4539 //       }
4540 //     }
4541 //     // adjust params for remaining work:
4542 //     if (slowval != -1) {
4543 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4544 //     }
4545 //   slow_region:
4546 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4547 //     return  // via slow_call_path
4548 //
4549 // This routine is used from several intrinsics:  System.arraycopy,
4550 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4551 //
4552 void
4553 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4554                                    BasicType basic_elem_type,
4555                                    Node* src,  Node* src_offset,
4556                                    Node* dest, Node* dest_offset,
4557                                    Node* copy_length,
4558                                    bool disjoint_bases,
4559                                    bool length_never_negative,
4560                                    RegionNode* slow_region) {
4561 
4562   if (slow_region == NULL) {
4563     slow_region = new(C) RegionNode(1);
4564     record_for_igvn(slow_region);
4565   }
4566 
4567   Node* original_dest      = dest;
4568   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4569   bool  dest_uninitialized = false;
4570 
4571   // See if this is the initialization of a newly-allocated array.
4572   // If so, we will take responsibility here for initializing it to zero.
4573   // (Note:  Because tightly_coupled_allocation performs checks on the
4574   // out-edges of the dest, we need to avoid making derived pointers
4575   // from it until we have checked its uses.)
4576   if (ReduceBulkZeroing
4577       && !ZeroTLAB              // pointless if already zeroed
4578       && basic_elem_type != T_CONFLICT // avoid corner case
4579       && !src->eqv_uncast(dest)
4580       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4581           != NULL)
4582       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4583       && alloc->maybe_set_complete(&_gvn)) {
4584     // "You break it, you buy it."
4585     InitializeNode* init = alloc->initialization();
4586     assert(init->is_complete(), "we just did this");
4587     init->set_complete_with_arraycopy();
4588     assert(dest->is_CheckCastPP(), "sanity");
4589     assert(dest->in(0)->in(0) == init, "dest pinned");
4590     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4591     // From this point on, every exit path is responsible for
4592     // initializing any non-copied parts of the object to zero.
4593     // Also, if this flag is set we make sure that arraycopy interacts properly
4594     // with G1, eliding pre-barriers. See CR 6627983.
4595     dest_uninitialized = true;
4596   } else {
4597     // No zeroing elimination here.
4598     alloc             = NULL;
4599     //original_dest   = dest;
4600     //dest_uninitialized = false;
4601   }
4602 
4603   // Results are placed here:
4604   enum { fast_path        = 1,  // normal void-returning assembly stub
4605          checked_path     = 2,  // special assembly stub with cleanup
4606          slow_call_path   = 3,  // something went wrong; call the VM
4607          zero_path        = 4,  // bypass when length of copy is zero
4608          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4609          PATH_LIMIT       = 6
4610   };
4611   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4612   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4613   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4614   record_for_igvn(result_region);
4615   _gvn.set_type_bottom(result_i_o);
4616   _gvn.set_type_bottom(result_memory);
4617   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4618 
4619   // The slow_control path:
4620   Node* slow_control;
4621   Node* slow_i_o = i_o();
4622   Node* slow_mem = memory(adr_type);
4623   debug_only(slow_control = (Node*) badAddress);
4624 
4625   // Checked control path:
4626   Node* checked_control = top();
4627   Node* checked_mem     = NULL;
4628   Node* checked_i_o     = NULL;
4629   Node* checked_value   = NULL;
4630 
4631   if (basic_elem_type == T_CONFLICT) {
4632     assert(!dest_uninitialized, "");
4633     Node* cv = generate_generic_arraycopy(adr_type,
4634                                           src, src_offset, dest, dest_offset,
4635                                           copy_length, dest_uninitialized);
4636     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4637     checked_control = control();
4638     checked_i_o     = i_o();
4639     checked_mem     = memory(adr_type);
4640     checked_value   = cv;
4641     set_control(top());         // no fast path
4642   }
4643 
4644   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4645   if (not_pos != NULL) {
4646     PreserveJVMState pjvms(this);
4647     set_control(not_pos);
4648 
4649     // (6) length must not be negative.
4650     if (!length_never_negative) {
4651       generate_negative_guard(copy_length, slow_region);
4652     }
4653 
4654     // copy_length is 0.
4655     if (!stopped() && dest_uninitialized) {
4656       Node* dest_length = alloc->in(AllocateNode::ALength);
4657       if (copy_length->eqv_uncast(dest_length)
4658           || _gvn.find_int_con(dest_length, 1) <= 0) {
4659         // There is no zeroing to do. No need for a secondary raw memory barrier.
4660       } else {
4661         // Clear the whole thing since there are no source elements to copy.
4662         generate_clear_array(adr_type, dest, basic_elem_type,
4663                              intcon(0), NULL,
4664                              alloc->in(AllocateNode::AllocSize));
4665         // Use a secondary InitializeNode as raw memory barrier.
4666         // Currently it is needed only on this path since other
4667         // paths have stub or runtime calls as raw memory barriers.
4668         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4669                                                        Compile::AliasIdxRaw,
4670                                                        top())->as_Initialize();
4671         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4672       }
4673     }
4674 
4675     // Present the results of the fast call.
4676     result_region->init_req(zero_path, control());
4677     result_i_o   ->init_req(zero_path, i_o());
4678     result_memory->init_req(zero_path, memory(adr_type));
4679   }
4680 
4681   if (!stopped() && dest_uninitialized) {
4682     // We have to initialize the *uncopied* part of the array to zero.
4683     // The copy destination is the slice dest[off..off+len].  The other slices
4684     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4685     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4686     Node* dest_length = alloc->in(AllocateNode::ALength);
4687     Node* dest_tail   = _gvn.transform( new(C) AddINode(dest_offset,
4688                                                           copy_length) );
4689 
4690     // If there is a head section that needs zeroing, do it now.
4691     if (find_int_con(dest_offset, -1) != 0) {
4692       generate_clear_array(adr_type, dest, basic_elem_type,
4693                            intcon(0), dest_offset,
4694                            NULL);
4695     }
4696 
4697     // Next, perform a dynamic check on the tail length.
4698     // It is often zero, and we can win big if we prove this.
4699     // There are two wins:  Avoid generating the ClearArray
4700     // with its attendant messy index arithmetic, and upgrade
4701     // the copy to a more hardware-friendly word size of 64 bits.
4702     Node* tail_ctl = NULL;
4703     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
4704       Node* cmp_lt   = _gvn.transform( new(C) CmpINode(dest_tail, dest_length) );
4705       Node* bol_lt   = _gvn.transform( new(C) BoolNode(cmp_lt, BoolTest::lt) );
4706       tail_ctl = generate_slow_guard(bol_lt, NULL);
4707       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4708     }
4709 
4710     // At this point, let's assume there is no tail.
4711     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4712       // There is no tail.  Try an upgrade to a 64-bit copy.
4713       bool didit = false;
4714       { PreserveJVMState pjvms(this);
4715         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4716                                          src, src_offset, dest, dest_offset,
4717                                          dest_size, dest_uninitialized);
4718         if (didit) {
4719           // Present the results of the block-copying fast call.
4720           result_region->init_req(bcopy_path, control());
4721           result_i_o   ->init_req(bcopy_path, i_o());
4722           result_memory->init_req(bcopy_path, memory(adr_type));
4723         }
4724       }
4725       if (didit)
4726         set_control(top());     // no regular fast path
4727     }
4728 
4729     // Clear the tail, if any.
4730     if (tail_ctl != NULL) {
4731       Node* notail_ctl = stopped() ? NULL : control();
4732       set_control(tail_ctl);
4733       if (notail_ctl == NULL) {
4734         generate_clear_array(adr_type, dest, basic_elem_type,
4735                              dest_tail, NULL,
4736                              dest_size);
4737       } else {
4738         // Make a local merge.
4739         Node* done_ctl = new(C) RegionNode(3);
4740         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
4741         done_ctl->init_req(1, notail_ctl);
4742         done_mem->init_req(1, memory(adr_type));
4743         generate_clear_array(adr_type, dest, basic_elem_type,
4744                              dest_tail, NULL,
4745                              dest_size);
4746         done_ctl->init_req(2, control());
4747         done_mem->init_req(2, memory(adr_type));
4748         set_control( _gvn.transform(done_ctl) );
4749         set_memory(  _gvn.transform(done_mem), adr_type );
4750       }
4751     }
4752   }
4753 
4754   BasicType copy_type = basic_elem_type;
4755   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4756   if (!stopped() && copy_type == T_OBJECT) {
4757     // If src and dest have compatible element types, we can copy bits.
4758     // Types S[] and D[] are compatible if D is a supertype of S.
4759     //
4760     // If they are not, we will use checked_oop_disjoint_arraycopy,
4761     // which performs a fast optimistic per-oop check, and backs off
4762     // further to JVM_ArrayCopy on the first per-oop check that fails.
4763     // (Actually, we don't move raw bits only; the GC requires card marks.)
4764 
4765     // Get the Klass* for both src and dest
4766     Node* src_klass  = load_object_klass(src);
4767     Node* dest_klass = load_object_klass(dest);
4768 
4769     // Generate the subtype check.
4770     // This might fold up statically, or then again it might not.
4771     //
4772     // Non-static example:  Copying List<String>.elements to a new String[].
4773     // The backing store for a List<String> is always an Object[],
4774     // but its elements are always type String, if the generic types
4775     // are correct at the source level.
4776     //
4777     // Test S[] against D[], not S against D, because (probably)
4778     // the secondary supertype cache is less busy for S[] than S.
4779     // This usually only matters when D is an interface.
4780     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4781     // Plug failing path into checked_oop_disjoint_arraycopy
4782     if (not_subtype_ctrl != top()) {
4783       PreserveJVMState pjvms(this);
4784       set_control(not_subtype_ctrl);
4785       // (At this point we can assume disjoint_bases, since types differ.)
4786       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
4787       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4788       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4789       Node* dest_elem_klass = _gvn.transform(n1);
4790       Node* cv = generate_checkcast_arraycopy(adr_type,
4791                                               dest_elem_klass,
4792                                               src, src_offset, dest, dest_offset,
4793                                               ConvI2X(copy_length), dest_uninitialized);
4794       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4795       checked_control = control();
4796       checked_i_o     = i_o();
4797       checked_mem     = memory(adr_type);
4798       checked_value   = cv;
4799     }
4800     // At this point we know we do not need type checks on oop stores.
4801 
4802     // Let's see if we need card marks:
4803     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4804       // If we do not need card marks, copy using the jint or jlong stub.
4805       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4806       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4807              "sizes agree");
4808     }
4809   }
4810 
4811   if (!stopped()) {
4812     // Generate the fast path, if possible.
4813     PreserveJVMState pjvms(this);
4814     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4815                                  src, src_offset, dest, dest_offset,
4816                                  ConvI2X(copy_length), dest_uninitialized);
4817 
4818     // Present the results of the fast call.
4819     result_region->init_req(fast_path, control());
4820     result_i_o   ->init_req(fast_path, i_o());
4821     result_memory->init_req(fast_path, memory(adr_type));
4822   }
4823 
4824   // Here are all the slow paths up to this point, in one bundle:
4825   slow_control = top();
4826   if (slow_region != NULL)
4827     slow_control = _gvn.transform(slow_region);
4828   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
4829 
4830   set_control(checked_control);
4831   if (!stopped()) {
4832     // Clean up after the checked call.
4833     // The returned value is either 0 or -1^K,
4834     // where K = number of partially transferred array elements.
4835     Node* cmp = _gvn.transform( new(C) CmpINode(checked_value, intcon(0)) );
4836     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
4837     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4838 
4839     // If it is 0, we are done, so transfer to the end.
4840     Node* checks_done = _gvn.transform( new(C) IfTrueNode(iff) );
4841     result_region->init_req(checked_path, checks_done);
4842     result_i_o   ->init_req(checked_path, checked_i_o);
4843     result_memory->init_req(checked_path, checked_mem);
4844 
4845     // If it is not zero, merge into the slow call.
4846     set_control( _gvn.transform( new(C) IfFalseNode(iff) ));
4847     RegionNode* slow_reg2 = new(C) RegionNode(3);
4848     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
4849     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4850     record_for_igvn(slow_reg2);
4851     slow_reg2  ->init_req(1, slow_control);
4852     slow_i_o2  ->init_req(1, slow_i_o);
4853     slow_mem2  ->init_req(1, slow_mem);
4854     slow_reg2  ->init_req(2, control());
4855     slow_i_o2  ->init_req(2, checked_i_o);
4856     slow_mem2  ->init_req(2, checked_mem);
4857 
4858     slow_control = _gvn.transform(slow_reg2);
4859     slow_i_o     = _gvn.transform(slow_i_o2);
4860     slow_mem     = _gvn.transform(slow_mem2);
4861 
4862     if (alloc != NULL) {
4863       // We'll restart from the very beginning, after zeroing the whole thing.
4864       // This can cause double writes, but that's OK since dest is brand new.
4865       // So we ignore the low 31 bits of the value returned from the stub.
4866     } else {
4867       // We must continue the copy exactly where it failed, or else
4868       // another thread might see the wrong number of writes to dest.
4869       Node* checked_offset = _gvn.transform( new(C) XorINode(checked_value, intcon(-1)) );
4870       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
4871       slow_offset->init_req(1, intcon(0));
4872       slow_offset->init_req(2, checked_offset);
4873       slow_offset  = _gvn.transform(slow_offset);
4874 
4875       // Adjust the arguments by the conditionally incoming offset.
4876       Node* src_off_plus  = _gvn.transform( new(C) AddINode(src_offset,  slow_offset) );
4877       Node* dest_off_plus = _gvn.transform( new(C) AddINode(dest_offset, slow_offset) );
4878       Node* length_minus  = _gvn.transform( new(C) SubINode(copy_length, slow_offset) );
4879 
4880       // Tweak the node variables to adjust the code produced below:
4881       src_offset  = src_off_plus;
4882       dest_offset = dest_off_plus;
4883       copy_length = length_minus;
4884     }
4885   }
4886 
4887   set_control(slow_control);
4888   if (!stopped()) {
4889     // Generate the slow path, if needed.
4890     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4891 
4892     set_memory(slow_mem, adr_type);
4893     set_i_o(slow_i_o);
4894 
4895     if (dest_uninitialized) {
4896       generate_clear_array(adr_type, dest, basic_elem_type,
4897                            intcon(0), NULL,
4898                            alloc->in(AllocateNode::AllocSize));
4899     }
4900 
4901     generate_slow_arraycopy(adr_type,
4902                             src, src_offset, dest, dest_offset,
4903                             copy_length, /*dest_uninitialized*/false);
4904 
4905     result_region->init_req(slow_call_path, control());
4906     result_i_o   ->init_req(slow_call_path, i_o());
4907     result_memory->init_req(slow_call_path, memory(adr_type));
4908   }
4909 
4910   // Remove unused edges.
4911   for (uint i = 1; i < result_region->req(); i++) {
4912     if (result_region->in(i) == NULL)
4913       result_region->init_req(i, top());
4914   }
4915 
4916   // Finished; return the combined state.
4917   set_control( _gvn.transform(result_region) );
4918   set_i_o(     _gvn.transform(result_i_o)    );
4919   set_memory(  _gvn.transform(result_memory), adr_type );
4920 
4921   // The memory edges above are precise in order to model effects around
4922   // array copies accurately to allow value numbering of field loads around
4923   // arraycopy.  Such field loads, both before and after, are common in Java
4924   // collections and similar classes involving header/array data structures.
4925   //
4926   // But with low number of register or when some registers are used or killed
4927   // by arraycopy calls it causes registers spilling on stack. See 6544710.
4928   // The next memory barrier is added to avoid it. If the arraycopy can be
4929   // optimized away (which it can, sometimes) then we can manually remove
4930   // the membar also.
4931   //
4932   // Do not let reads from the cloned object float above the arraycopy.
4933   if (alloc != NULL) {
4934     // Do not let stores that initialize this object be reordered with
4935     // a subsequent store that would make this object accessible by
4936     // other threads.
4937     // Record what AllocateNode this StoreStore protects so that
4938     // escape analysis can go from the MemBarStoreStoreNode to the
4939     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4940     // based on the escape status of the AllocateNode.
4941     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4942   } else if (InsertMemBarAfterArraycopy)
4943     insert_mem_bar(Op_MemBarCPUOrder);
4944 }
4945 
4946 
4947 // Helper function which determines if an arraycopy immediately follows
4948 // an allocation, with no intervening tests or other escapes for the object.
4949 AllocateArrayNode*
4950 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4951                                            RegionNode* slow_region) {
4952   if (stopped())             return NULL;  // no fast path
4953   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4954 
4955   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4956   if (alloc == NULL)  return NULL;
4957 
4958   Node* rawmem = memory(Compile::AliasIdxRaw);
4959   // Is the allocation's memory state untouched?
4960   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4961     // Bail out if there have been raw-memory effects since the allocation.
4962     // (Example:  There might have been a call or safepoint.)
4963     return NULL;
4964   }
4965   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4966   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4967     return NULL;
4968   }
4969 
4970   // There must be no unexpected observers of this allocation.
4971   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4972     Node* obs = ptr->fast_out(i);
4973     if (obs != this->map()) {
4974       return NULL;
4975     }
4976   }
4977 
4978   // This arraycopy must unconditionally follow the allocation of the ptr.
4979   Node* alloc_ctl = ptr->in(0);
4980   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4981 
4982   Node* ctl = control();
4983   while (ctl != alloc_ctl) {
4984     // There may be guards which feed into the slow_region.
4985     // Any other control flow means that we might not get a chance
4986     // to finish initializing the allocated object.
4987     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4988       IfNode* iff = ctl->in(0)->as_If();
4989       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4990       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4991       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4992         ctl = iff->in(0);       // This test feeds the known slow_region.
4993         continue;
4994       }
4995       // One more try:  Various low-level checks bottom out in
4996       // uncommon traps.  If the debug-info of the trap omits
4997       // any reference to the allocation, as we've already
4998       // observed, then there can be no objection to the trap.
4999       bool found_trap = false;
5000       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5001         Node* obs = not_ctl->fast_out(j);
5002         if (obs->in(0) == not_ctl && obs->is_Call() &&
5003             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5004           found_trap = true; break;
5005         }
5006       }
5007       if (found_trap) {
5008         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5009         continue;
5010       }
5011     }
5012     return NULL;
5013   }
5014 
5015   // If we get this far, we have an allocation which immediately
5016   // precedes the arraycopy, and we can take over zeroing the new object.
5017   // The arraycopy will finish the initialization, and provide
5018   // a new control state to which we will anchor the destination pointer.
5019 
5020   return alloc;
5021 }
5022 
5023 // Helper for initialization of arrays, creating a ClearArray.
5024 // It writes zero bits in [start..end), within the body of an array object.
5025 // The memory effects are all chained onto the 'adr_type' alias category.
5026 //
5027 // Since the object is otherwise uninitialized, we are free
5028 // to put a little "slop" around the edges of the cleared area,
5029 // as long as it does not go back into the array's header,
5030 // or beyond the array end within the heap.
5031 //
5032 // The lower edge can be rounded down to the nearest jint and the
5033 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5034 //
5035 // Arguments:
5036 //   adr_type           memory slice where writes are generated
5037 //   dest               oop of the destination array
5038 //   basic_elem_type    element type of the destination
5039 //   slice_idx          array index of first element to store
5040 //   slice_len          number of elements to store (or NULL)
5041 //   dest_size          total size in bytes of the array object
5042 //
5043 // Exactly one of slice_len or dest_size must be non-NULL.
5044 // If dest_size is non-NULL, zeroing extends to the end of the object.
5045 // If slice_len is non-NULL, the slice_idx value must be a constant.
5046 void
5047 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5048                                      Node* dest,
5049                                      BasicType basic_elem_type,
5050                                      Node* slice_idx,
5051                                      Node* slice_len,
5052                                      Node* dest_size) {
5053   // one or the other but not both of slice_len and dest_size:
5054   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5055   if (slice_len == NULL)  slice_len = top();
5056   if (dest_size == NULL)  dest_size = top();
5057 
5058   // operate on this memory slice:
5059   Node* mem = memory(adr_type); // memory slice to operate on
5060 
5061   // scaling and rounding of indexes:
5062   int scale = exact_log2(type2aelembytes(basic_elem_type));
5063   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5064   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5065   int bump_bit  = (-1 << scale) & BytesPerInt;
5066 
5067   // determine constant starts and ends
5068   const intptr_t BIG_NEG = -128;
5069   assert(BIG_NEG + 2*abase < 0, "neg enough");
5070   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5071   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5072   if (slice_len_con == 0) {
5073     return;                     // nothing to do here
5074   }
5075   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5076   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5077   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5078     assert(end_con < 0, "not two cons");
5079     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5080                        BytesPerLong);
5081   }
5082 
5083   if (start_con >= 0 && end_con >= 0) {
5084     // Constant start and end.  Simple.
5085     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5086                                        start_con, end_con, &_gvn);
5087   } else if (start_con >= 0 && dest_size != top()) {
5088     // Constant start, pre-rounded end after the tail of the array.
5089     Node* end = dest_size;
5090     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5091                                        start_con, end, &_gvn);
5092   } else if (start_con >= 0 && slice_len != top()) {
5093     // Constant start, non-constant end.  End needs rounding up.
5094     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5095     intptr_t end_base  = abase + (slice_idx_con << scale);
5096     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5097     Node*    end       = ConvI2X(slice_len);
5098     if (scale != 0)
5099       end = _gvn.transform( new(C) LShiftXNode(end, intcon(scale) ));
5100     end_base += end_round;
5101     end = _gvn.transform( new(C) AddXNode(end, MakeConX(end_base)) );
5102     end = _gvn.transform( new(C) AndXNode(end, MakeConX(~end_round)) );
5103     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5104                                        start_con, end, &_gvn);
5105   } else if (start_con < 0 && dest_size != top()) {
5106     // Non-constant start, pre-rounded end after the tail of the array.
5107     // This is almost certainly a "round-to-end" operation.
5108     Node* start = slice_idx;
5109     start = ConvI2X(start);
5110     if (scale != 0)
5111       start = _gvn.transform( new(C) LShiftXNode( start, intcon(scale) ));
5112     start = _gvn.transform( new(C) AddXNode(start, MakeConX(abase)) );
5113     if ((bump_bit | clear_low) != 0) {
5114       int to_clear = (bump_bit | clear_low);
5115       // Align up mod 8, then store a jint zero unconditionally
5116       // just before the mod-8 boundary.
5117       if (((abase + bump_bit) & ~to_clear) - bump_bit
5118           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5119         bump_bit = 0;
5120         assert((abase & to_clear) == 0, "array base must be long-aligned");
5121       } else {
5122         // Bump 'start' up to (or past) the next jint boundary:
5123         start = _gvn.transform( new(C) AddXNode(start, MakeConX(bump_bit)) );
5124         assert((abase & clear_low) == 0, "array base must be int-aligned");
5125       }
5126       // Round bumped 'start' down to jlong boundary in body of array.
5127       start = _gvn.transform( new(C) AndXNode(start, MakeConX(~to_clear)) );
5128       if (bump_bit != 0) {
5129         // Store a zero to the immediately preceding jint:
5130         Node* x1 = _gvn.transform( new(C) AddXNode(start, MakeConX(-bump_bit)) );
5131         Node* p1 = basic_plus_adr(dest, x1);
5132         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5133         mem = _gvn.transform(mem);
5134       }
5135     }
5136     Node* end = dest_size; // pre-rounded
5137     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5138                                        start, end, &_gvn);
5139   } else {
5140     // Non-constant start, unrounded non-constant end.
5141     // (Nobody zeroes a random midsection of an array using this routine.)
5142     ShouldNotReachHere();       // fix caller
5143   }
5144 
5145   // Done.
5146   set_memory(mem, adr_type);
5147 }
5148 
5149 
5150 bool
5151 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5152                                          BasicType basic_elem_type,
5153                                          AllocateNode* alloc,
5154                                          Node* src,  Node* src_offset,
5155                                          Node* dest, Node* dest_offset,
5156                                          Node* dest_size, bool dest_uninitialized) {
5157   // See if there is an advantage from block transfer.
5158   int scale = exact_log2(type2aelembytes(basic_elem_type));
5159   if (scale >= LogBytesPerLong)
5160     return false;               // it is already a block transfer
5161 
5162   // Look at the alignment of the starting offsets.
5163   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5164 
5165   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5166   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5167   if (src_off_con < 0 || dest_off_con < 0)
5168     // At present, we can only understand constants.
5169     return false;
5170 
5171   intptr_t src_off  = abase + (src_off_con  << scale);
5172   intptr_t dest_off = abase + (dest_off_con << scale);
5173 
5174   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5175     // Non-aligned; too bad.
5176     // One more chance:  Pick off an initial 32-bit word.
5177     // This is a common case, since abase can be odd mod 8.
5178     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5179         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5180       Node* sptr = basic_plus_adr(src,  src_off);
5181       Node* dptr = basic_plus_adr(dest, dest_off);
5182       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5183       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5184       src_off += BytesPerInt;
5185       dest_off += BytesPerInt;
5186     } else {
5187       return false;
5188     }
5189   }
5190   assert(src_off % BytesPerLong == 0, "");
5191   assert(dest_off % BytesPerLong == 0, "");
5192 
5193   // Do this copy by giant steps.
5194   Node* sptr  = basic_plus_adr(src,  src_off);
5195   Node* dptr  = basic_plus_adr(dest, dest_off);
5196   Node* countx = dest_size;
5197   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(dest_off)) );
5198   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5199 
5200   bool disjoint_bases = true;   // since alloc != NULL
5201   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5202                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5203 
5204   return true;
5205 }
5206 
5207 
5208 // Helper function; generates code for the slow case.
5209 // We make a call to a runtime method which emulates the native method,
5210 // but without the native wrapper overhead.
5211 void
5212 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5213                                         Node* src,  Node* src_offset,
5214                                         Node* dest, Node* dest_offset,
5215                                         Node* copy_length, bool dest_uninitialized) {
5216   assert(!dest_uninitialized, "Invariant");
5217   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5218                                  OptoRuntime::slow_arraycopy_Type(),
5219                                  OptoRuntime::slow_arraycopy_Java(),
5220                                  "slow_arraycopy", adr_type,
5221                                  src, src_offset, dest, dest_offset,
5222                                  copy_length);
5223 
5224   // Handle exceptions thrown by this fellow:
5225   make_slow_call_ex(call, env()->Throwable_klass(), false);
5226 }
5227 
5228 // Helper function; generates code for cases requiring runtime checks.
5229 Node*
5230 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5231                                              Node* dest_elem_klass,
5232                                              Node* src,  Node* src_offset,
5233                                              Node* dest, Node* dest_offset,
5234                                              Node* copy_length, bool dest_uninitialized) {
5235   if (stopped())  return NULL;
5236 
5237   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5238   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5239     return NULL;
5240   }
5241 
5242   // Pick out the parameters required to perform a store-check
5243   // for the target array.  This is an optimistic check.  It will
5244   // look in each non-null element's class, at the desired klass's
5245   // super_check_offset, for the desired klass.
5246   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5247   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5248   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5249   Node* check_offset = ConvI2X(_gvn.transform(n3));
5250   Node* check_value  = dest_elem_klass;
5251 
5252   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5253   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5254 
5255   // (We know the arrays are never conjoint, because their types differ.)
5256   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5257                                  OptoRuntime::checkcast_arraycopy_Type(),
5258                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5259                                  // five arguments, of which two are
5260                                  // intptr_t (jlong in LP64)
5261                                  src_start, dest_start,
5262                                  copy_length XTOP,
5263                                  check_offset XTOP,
5264                                  check_value);
5265 
5266   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5267 }
5268 
5269 
5270 // Helper function; generates code for cases requiring runtime checks.
5271 Node*
5272 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5273                                            Node* src,  Node* src_offset,
5274                                            Node* dest, Node* dest_offset,
5275                                            Node* copy_length, bool dest_uninitialized) {
5276   assert(!dest_uninitialized, "Invariant");
5277   if (stopped())  return NULL;
5278   address copyfunc_addr = StubRoutines::generic_arraycopy();
5279   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5280     return NULL;
5281   }
5282 
5283   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5284                     OptoRuntime::generic_arraycopy_Type(),
5285                     copyfunc_addr, "generic_arraycopy", adr_type,
5286                     src, src_offset, dest, dest_offset, copy_length);
5287 
5288   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5289 }
5290 
5291 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5292 void
5293 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5294                                              BasicType basic_elem_type,
5295                                              bool disjoint_bases,
5296                                              Node* src,  Node* src_offset,
5297                                              Node* dest, Node* dest_offset,
5298                                              Node* copy_length, bool dest_uninitialized) {
5299   if (stopped())  return;               // nothing to do
5300 
5301   Node* src_start  = src;
5302   Node* dest_start = dest;
5303   if (src_offset != NULL || dest_offset != NULL) {
5304     assert(src_offset != NULL && dest_offset != NULL, "");
5305     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5306     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5307   }
5308 
5309   // Figure out which arraycopy runtime method to call.
5310   const char* copyfunc_name = "arraycopy";
5311   address     copyfunc_addr =
5312       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5313                           disjoint_bases, copyfunc_name, dest_uninitialized);
5314 
5315   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5316   make_runtime_call(RC_LEAF|RC_NO_FP,
5317                     OptoRuntime::fast_arraycopy_Type(),
5318                     copyfunc_addr, copyfunc_name, adr_type,
5319                     src_start, dest_start, copy_length XTOP);
5320 }
5321 
5322 //-------------inline_encodeISOArray-----------------------------------
5323 // encode char[] to byte[] in ISO_8859_1
5324 bool LibraryCallKit::inline_encodeISOArray() {
5325   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5326   // no receiver since it is static method
5327   Node *src         = argument(0);
5328   Node *src_offset  = argument(1);
5329   Node *dst         = argument(2);
5330   Node *dst_offset  = argument(3);
5331   Node *length      = argument(4);
5332 
5333   const Type* src_type = src->Value(&_gvn);
5334   const Type* dst_type = dst->Value(&_gvn);
5335   const TypeAryPtr* top_src = src_type->isa_aryptr();
5336   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5337   if (top_src  == NULL || top_src->klass()  == NULL ||
5338       top_dest == NULL || top_dest->klass() == NULL) {
5339     // failed array check
5340     return false;
5341   }
5342 
5343   // Figure out the size and type of the elements we will be copying.
5344   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5345   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5346   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5347     return false;
5348   }
5349   Node* src_start = array_element_address(src, src_offset, src_elem);
5350   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5351   // 'src_start' points to src array + scaled offset
5352   // 'dst_start' points to dst array + scaled offset
5353 
5354   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5355   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5356   enc = _gvn.transform(enc);
5357   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5358   set_memory(res_mem, mtype);
5359   set_result(enc);
5360   return true;
5361 }
5362 
5363 //----------------------------inline_reference_get----------------------------
5364 // public T java.lang.ref.Reference.get();
5365 bool LibraryCallKit::inline_reference_get() {
5366   const int referent_offset = java_lang_ref_Reference::referent_offset;
5367   guarantee(referent_offset > 0, "should have already been set");
5368 
5369   // Get the argument:
5370   Node* reference_obj = null_check_receiver();
5371   if (stopped()) return true;
5372 
5373   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5374 
5375   ciInstanceKlass* klass = env()->Object_klass();
5376   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5377 
5378   Node* no_ctrl = NULL;
5379   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
5380 
5381   // Use the pre-barrier to record the value in the referent field
5382   pre_barrier(false /* do_load */,
5383               control(),
5384               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5385               result /* pre_val */,
5386               T_OBJECT);
5387 
5388   // Add memory barrier to prevent commoning reads from this field
5389   // across safepoint since GC can change its value.
5390   insert_mem_bar(Op_MemBarCPUOrder);
5391 
5392   set_result(result);
5393   return true;
5394 }
5395 
5396 
5397 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5398                                               bool is_exact=true, bool is_static=false) {
5399 
5400   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5401   assert(tinst != NULL, "obj is null");
5402   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5403   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5404 
5405   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5406                                                                           ciSymbol::make(fieldTypeString),
5407                                                                           is_static);
5408   if (field == NULL) return (Node *) NULL;
5409   assert (field != NULL, "undefined field");
5410 
5411   // Next code  copied from Parse::do_get_xxx():
5412 
5413   // Compute address and memory type.
5414   int offset  = field->offset_in_bytes();
5415   bool is_vol = field->is_volatile();
5416   ciType* field_klass = field->type();
5417   assert(field_klass->is_loaded(), "should be loaded");
5418   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5419   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5420   BasicType bt = field->layout_type();
5421 
5422   // Build the resultant type of the load
5423   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5424 
5425   // Build the load.
5426   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
5427   return loadedField;
5428 }
5429 
5430 
5431 //------------------------------inline_aescrypt_Block-----------------------
5432 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5433   address stubAddr;
5434   const char *stubName;
5435   assert(UseAES, "need AES instruction support");
5436 
5437   switch(id) {
5438   case vmIntrinsics::_aescrypt_encryptBlock:
5439     stubAddr = StubRoutines::aescrypt_encryptBlock();
5440     stubName = "aescrypt_encryptBlock";
5441     break;
5442   case vmIntrinsics::_aescrypt_decryptBlock:
5443     stubAddr = StubRoutines::aescrypt_decryptBlock();
5444     stubName = "aescrypt_decryptBlock";
5445     break;
5446   }
5447   if (stubAddr == NULL) return false;
5448 
5449   Node* aescrypt_object = argument(0);
5450   Node* src             = argument(1);
5451   Node* src_offset      = argument(2);
5452   Node* dest            = argument(3);
5453   Node* dest_offset     = argument(4);
5454 
5455   // (1) src and dest are arrays.
5456   const Type* src_type = src->Value(&_gvn);
5457   const Type* dest_type = dest->Value(&_gvn);
5458   const TypeAryPtr* top_src = src_type->isa_aryptr();
5459   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5460   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5461 
5462   // for the quick and dirty code we will skip all the checks.
5463   // we are just trying to get the call to be generated.
5464   Node* src_start  = src;
5465   Node* dest_start = dest;
5466   if (src_offset != NULL || dest_offset != NULL) {
5467     assert(src_offset != NULL && dest_offset != NULL, "");
5468     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5469     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5470   }
5471 
5472   // now need to get the start of its expanded key array
5473   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5474   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5475   if (k_start == NULL) return false;
5476 
5477   // Call the stub.
5478   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5479                     stubAddr, stubName, TypePtr::BOTTOM,
5480                     src_start, dest_start, k_start);
5481 
5482   return true;
5483 }
5484 
5485 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5486 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5487   address stubAddr;
5488   const char *stubName;
5489 
5490   assert(UseAES, "need AES instruction support");
5491 
5492   switch(id) {
5493   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5494     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5495     stubName = "cipherBlockChaining_encryptAESCrypt";
5496     break;
5497   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5498     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5499     stubName = "cipherBlockChaining_decryptAESCrypt";
5500     break;
5501   }
5502   if (stubAddr == NULL) return false;
5503 
5504   Node* cipherBlockChaining_object = argument(0);
5505   Node* src                        = argument(1);
5506   Node* src_offset                 = argument(2);
5507   Node* len                        = argument(3);
5508   Node* dest                       = argument(4);
5509   Node* dest_offset                = argument(5);
5510 
5511   // (1) src and dest are arrays.
5512   const Type* src_type = src->Value(&_gvn);
5513   const Type* dest_type = dest->Value(&_gvn);
5514   const TypeAryPtr* top_src = src_type->isa_aryptr();
5515   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5516   assert (top_src  != NULL && top_src->klass()  != NULL
5517           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5518 
5519   // checks are the responsibility of the caller
5520   Node* src_start  = src;
5521   Node* dest_start = dest;
5522   if (src_offset != NULL || dest_offset != NULL) {
5523     assert(src_offset != NULL && dest_offset != NULL, "");
5524     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5525     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5526   }
5527 
5528   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5529   // (because of the predicated logic executed earlier).
5530   // so we cast it here safely.
5531   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5532 
5533   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5534   if (embeddedCipherObj == NULL) return false;
5535 
5536   // cast it to what we know it will be at runtime
5537   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5538   assert(tinst != NULL, "CBC obj is null");
5539   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5540   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5541   if (!klass_AESCrypt->is_loaded()) return false;
5542 
5543   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5544   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5545   const TypeOopPtr* xtype = aklass->as_instance_type();
5546   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
5547   aescrypt_object = _gvn.transform(aescrypt_object);
5548 
5549   // we need to get the start of the aescrypt_object's expanded key array
5550   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5551   if (k_start == NULL) return false;
5552 
5553   // similarly, get the start address of the r vector
5554   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5555   if (objRvec == NULL) return false;
5556   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5557 
5558   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5559   make_runtime_call(RC_LEAF|RC_NO_FP,
5560                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5561                     stubAddr, stubName, TypePtr::BOTTOM,
5562                     src_start, dest_start, k_start, r_start, len);
5563 
5564   // return is void so no result needs to be pushed
5565 
5566   return true;
5567 }
5568 
5569 //------------------------------get_key_start_from_aescrypt_object-----------------------
5570 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5571   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5572   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5573   if (objAESCryptKey == NULL) return (Node *) NULL;
5574 
5575   // now have the array, need to get the start address of the K array
5576   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5577   return k_start;
5578 }
5579 
5580 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5581 // Return node representing slow path of predicate check.
5582 // the pseudo code we want to emulate with this predicate is:
5583 // for encryption:
5584 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5585 // for decryption:
5586 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5587 //    note cipher==plain is more conservative than the original java code but that's OK
5588 //
5589 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5590   // First, check receiver for NULL since it is virtual method.
5591   Node* objCBC = argument(0);
5592   objCBC = null_check(objCBC);
5593 
5594   if (stopped()) return NULL; // Always NULL
5595 
5596   // Load embeddedCipher field of CipherBlockChaining object.
5597   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5598 
5599   // get AESCrypt klass for instanceOf check
5600   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5601   // will have same classloader as CipherBlockChaining object
5602   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5603   assert(tinst != NULL, "CBCobj is null");
5604   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5605 
5606   // we want to do an instanceof comparison against the AESCrypt class
5607   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5608   if (!klass_AESCrypt->is_loaded()) {
5609     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5610     Node* ctrl = control();
5611     set_control(top()); // no regular fast path
5612     return ctrl;
5613   }
5614   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5615 
5616   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5617   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
5618   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
5619 
5620   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5621 
5622   // for encryption, we are done
5623   if (!decrypting)
5624     return instof_false;  // even if it is NULL
5625 
5626   // for decryption, we need to add a further check to avoid
5627   // taking the intrinsic path when cipher and plain are the same
5628   // see the original java code for why.
5629   RegionNode* region = new(C) RegionNode(3);
5630   region->init_req(1, instof_false);
5631   Node* src = argument(1);
5632   Node* dest = argument(4);
5633   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
5634   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
5635   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5636   region->init_req(2, src_dest_conjoint);
5637 
5638   record_for_igvn(region);
5639   return _gvn.transform(region);
5640 }