1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
  26 #define _WIN32_WINNT 0x500
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm.h"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "services/attachListener.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/runtimeService.hpp"
  65 #include "utilities/decoder.hpp"
  66 #include "utilities/defaultStream.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/growableArray.hpp"
  69 #include "utilities/vmError.hpp"
  70 
  71 #ifdef _DEBUG
  72 #include <crtdbg.h>
  73 #endif
  74 
  75 
  76 #include <windows.h>
  77 #include <sys/types.h>
  78 #include <sys/stat.h>
  79 #include <sys/timeb.h>
  80 #include <objidl.h>
  81 #include <shlobj.h>
  82 
  83 #include <malloc.h>
  84 #include <signal.h>
  85 #include <direct.h>
  86 #include <errno.h>
  87 #include <fcntl.h>
  88 #include <io.h>
  89 #include <process.h>              // For _beginthreadex(), _endthreadex()
  90 #include <imagehlp.h>             // For os::dll_address_to_function_name
  91 /* for enumerating dll libraries */
  92 #include <vdmdbg.h>
  93 
  94 // for timer info max values which include all bits
  95 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  96 
  97 // For DLL loading/load error detection
  98 // Values of PE COFF
  99 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 100 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 101 
 102 static HANDLE main_process;
 103 static HANDLE main_thread;
 104 static int    main_thread_id;
 105 
 106 static FILETIME process_creation_time;
 107 static FILETIME process_exit_time;
 108 static FILETIME process_user_time;
 109 static FILETIME process_kernel_time;
 110 
 111 #ifdef _M_IA64
 112 #define __CPU__ ia64
 113 #elif _M_AMD64
 114 #define __CPU__ amd64
 115 #else
 116 #define __CPU__ i486
 117 #endif
 118 
 119 // save DLL module handle, used by GetModuleFileName
 120 
 121 HINSTANCE vm_lib_handle;
 122 
 123 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 124   switch (reason) {
 125     case DLL_PROCESS_ATTACH:
 126       vm_lib_handle = hinst;
 127       if(ForceTimeHighResolution)
 128         timeBeginPeriod(1L);
 129       break;
 130     case DLL_PROCESS_DETACH:
 131       if(ForceTimeHighResolution)
 132         timeEndPeriod(1L);
 133       break;
 134     default:
 135       break;
 136   }
 137   return true;
 138 }
 139 
 140 static inline double fileTimeAsDouble(FILETIME* time) {
 141   const double high  = (double) ((unsigned int) ~0);
 142   const double split = 10000000.0;
 143   double result = (time->dwLowDateTime / split) +
 144                    time->dwHighDateTime * (high/split);
 145   return result;
 146 }
 147 
 148 // Implementation of os
 149 
 150 bool os::getenv(const char* name, char* buffer, int len) {
 151  int result = GetEnvironmentVariable(name, buffer, len);
 152  return result > 0 && result < len;
 153 }
 154 
 155 
 156 // No setuid programs under Windows.
 157 bool os::have_special_privileges() {
 158   return false;
 159 }
 160 
 161 
 162 // This method is  a periodic task to check for misbehaving JNI applications
 163 // under CheckJNI, we can add any periodic checks here.
 164 // For Windows at the moment does nothing
 165 void os::run_periodic_checks() {
 166   return;
 167 }
 168 
 169 #ifndef _WIN64
 170 // previous UnhandledExceptionFilter, if there is one
 171 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 172 
 173 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 174 #endif
 175 void os::init_system_properties_values() {
 176   /* sysclasspath, java_home, dll_dir */
 177   {
 178       char *home_path;
 179       char *dll_path;
 180       char *pslash;
 181       char *bin = "\\bin";
 182       char home_dir[MAX_PATH];
 183 
 184       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 185           os::jvm_path(home_dir, sizeof(home_dir));
 186           // Found the full path to jvm.dll.
 187           // Now cut the path to <java_home>/jre if we can.
 188           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 189           pslash = strrchr(home_dir, '\\');
 190           if (pslash != NULL) {
 191               *pslash = '\0';                 /* get rid of \{client|server} */
 192               pslash = strrchr(home_dir, '\\');
 193               if (pslash != NULL)
 194                   *pslash = '\0';             /* get rid of \bin */
 195           }
 196       }
 197 
 198       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 199       if (home_path == NULL)
 200           return;
 201       strcpy(home_path, home_dir);
 202       Arguments::set_java_home(home_path);
 203 
 204       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
 205       if (dll_path == NULL)
 206           return;
 207       strcpy(dll_path, home_dir);
 208       strcat(dll_path, bin);
 209       Arguments::set_dll_dir(dll_path);
 210 
 211       if (!set_boot_path('\\', ';'))
 212           return;
 213   }
 214 
 215   /* library_path */
 216   #define EXT_DIR "\\lib\\ext"
 217   #define BIN_DIR "\\bin"
 218   #define PACKAGE_DIR "\\Sun\\Java"
 219   {
 220     /* Win32 library search order (See the documentation for LoadLibrary):
 221      *
 222      * 1. The directory from which application is loaded.
 223      * 2. The system wide Java Extensions directory (Java only)
 224      * 3. System directory (GetSystemDirectory)
 225      * 4. Windows directory (GetWindowsDirectory)
 226      * 5. The PATH environment variable
 227      * 6. The current directory
 228      */
 229 
 230     char *library_path;
 231     char tmp[MAX_PATH];
 232     char *path_str = ::getenv("PATH");
 233 
 234     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 235         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 236 
 237     library_path[0] = '\0';
 238 
 239     GetModuleFileName(NULL, tmp, sizeof(tmp));
 240     *(strrchr(tmp, '\\')) = '\0';
 241     strcat(library_path, tmp);
 242 
 243     GetWindowsDirectory(tmp, sizeof(tmp));
 244     strcat(library_path, ";");
 245     strcat(library_path, tmp);
 246     strcat(library_path, PACKAGE_DIR BIN_DIR);
 247 
 248     GetSystemDirectory(tmp, sizeof(tmp));
 249     strcat(library_path, ";");
 250     strcat(library_path, tmp);
 251 
 252     GetWindowsDirectory(tmp, sizeof(tmp));
 253     strcat(library_path, ";");
 254     strcat(library_path, tmp);
 255 
 256     if (path_str) {
 257         strcat(library_path, ";");
 258         strcat(library_path, path_str);
 259     }
 260 
 261     strcat(library_path, ";.");
 262 
 263     Arguments::set_library_path(library_path);
 264     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
 265   }
 266 
 267   /* Default extensions directory */
 268   {
 269     char path[MAX_PATH];
 270     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 271     GetWindowsDirectory(path, MAX_PATH);
 272     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 273         path, PACKAGE_DIR, EXT_DIR);
 274     Arguments::set_ext_dirs(buf);
 275   }
 276   #undef EXT_DIR
 277   #undef BIN_DIR
 278   #undef PACKAGE_DIR
 279 
 280   /* Default endorsed standards directory. */
 281   {
 282     #define ENDORSED_DIR "\\lib\\endorsed"
 283     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 284     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
 285     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 286     Arguments::set_endorsed_dirs(buf);
 287     #undef ENDORSED_DIR
 288   }
 289 
 290 #ifndef _WIN64
 291   // set our UnhandledExceptionFilter and save any previous one
 292   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 293 #endif
 294 
 295   // Done
 296   return;
 297 }
 298 
 299 void os::breakpoint() {
 300   DebugBreak();
 301 }
 302 
 303 // Invoked from the BREAKPOINT Macro
 304 extern "C" void breakpoint() {
 305   os::breakpoint();
 306 }
 307 
 308 /*
 309  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 310  * So far, this method is only used by Native Memory Tracking, which is
 311  * only supported on Windows XP or later.
 312  */
 313 address os::get_caller_pc(int n) {
 314 #ifdef _NMT_NOINLINE_
 315   n ++;
 316 #endif
 317   address pc;
 318   if (os::Kernel32Dll::RtlCaptureStackBackTrace(n + 1, 1, (PVOID*)&pc, NULL) == 1) {
 319     return pc;
 320   }
 321   return NULL;
 322 }
 323 
 324 
 325 // os::current_stack_base()
 326 //
 327 //   Returns the base of the stack, which is the stack's
 328 //   starting address.  This function must be called
 329 //   while running on the stack of the thread being queried.
 330 
 331 address os::current_stack_base() {
 332   MEMORY_BASIC_INFORMATION minfo;
 333   address stack_bottom;
 334   size_t stack_size;
 335 
 336   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 337   stack_bottom =  (address)minfo.AllocationBase;
 338   stack_size = minfo.RegionSize;
 339 
 340   // Add up the sizes of all the regions with the same
 341   // AllocationBase.
 342   while( 1 )
 343   {
 344     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 345     if ( stack_bottom == (address)minfo.AllocationBase )
 346       stack_size += minfo.RegionSize;
 347     else
 348       break;
 349   }
 350 
 351 #ifdef _M_IA64
 352   // IA64 has memory and register stacks
 353   //
 354   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 355   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 356   // growing downwards, 2MB summed up)
 357   //
 358   // ...
 359   // ------- top of stack (high address) -----
 360   // |
 361   // |      1MB
 362   // |      Backing Store (Register Stack)
 363   // |
 364   // |         / \
 365   // |          |
 366   // |          |
 367   // |          |
 368   // ------------------------ stack base -----
 369   // |      1MB
 370   // |      Memory Stack
 371   // |
 372   // |          |
 373   // |          |
 374   // |          |
 375   // |         \ /
 376   // |
 377   // ----- bottom of stack (low address) -----
 378   // ...
 379 
 380   stack_size = stack_size / 2;
 381 #endif
 382   return stack_bottom + stack_size;
 383 }
 384 
 385 size_t os::current_stack_size() {
 386   size_t sz;
 387   MEMORY_BASIC_INFORMATION minfo;
 388   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 389   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 390   return sz;
 391 }
 392 
 393 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 394   const struct tm* time_struct_ptr = localtime(clock);
 395   if (time_struct_ptr != NULL) {
 396     *res = *time_struct_ptr;
 397     return res;
 398   }
 399   return NULL;
 400 }
 401 
 402 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 403 
 404 // Thread start routine for all new Java threads
 405 static unsigned __stdcall java_start(Thread* thread) {
 406   // Try to randomize the cache line index of hot stack frames.
 407   // This helps when threads of the same stack traces evict each other's
 408   // cache lines. The threads can be either from the same JVM instance, or
 409   // from different JVM instances. The benefit is especially true for
 410   // processors with hyperthreading technology.
 411   static int counter = 0;
 412   int pid = os::current_process_id();
 413   _alloca(((pid ^ counter++) & 7) * 128);
 414 
 415   OSThread* osthr = thread->osthread();
 416   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 417 
 418   if (UseNUMA) {
 419     int lgrp_id = os::numa_get_group_id();
 420     if (lgrp_id != -1) {
 421       thread->set_lgrp_id(lgrp_id);
 422     }
 423   }
 424 
 425 
 426   // Install a win32 structured exception handler around every thread created
 427   // by VM, so VM can genrate error dump when an exception occurred in non-
 428   // Java thread (e.g. VM thread).
 429   __try {
 430      thread->run();
 431   } __except(topLevelExceptionFilter(
 432              (_EXCEPTION_POINTERS*)_exception_info())) {
 433       // Nothing to do.
 434   }
 435 
 436   // One less thread is executing
 437   // When the VMThread gets here, the main thread may have already exited
 438   // which frees the CodeHeap containing the Atomic::add code
 439   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 440     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 441   }
 442 
 443   return 0;
 444 }
 445 
 446 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 447   // Allocate the OSThread object
 448   OSThread* osthread = new OSThread(NULL, NULL);
 449   if (osthread == NULL) return NULL;
 450 
 451   // Initialize support for Java interrupts
 452   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 453   if (interrupt_event == NULL) {
 454     delete osthread;
 455     return NULL;
 456   }
 457   osthread->set_interrupt_event(interrupt_event);
 458 
 459   // Store info on the Win32 thread into the OSThread
 460   osthread->set_thread_handle(thread_handle);
 461   osthread->set_thread_id(thread_id);
 462 
 463   if (UseNUMA) {
 464     int lgrp_id = os::numa_get_group_id();
 465     if (lgrp_id != -1) {
 466       thread->set_lgrp_id(lgrp_id);
 467     }
 468   }
 469 
 470   // Initial thread state is INITIALIZED, not SUSPENDED
 471   osthread->set_state(INITIALIZED);
 472 
 473   return osthread;
 474 }
 475 
 476 
 477 bool os::create_attached_thread(JavaThread* thread) {
 478 #ifdef ASSERT
 479   thread->verify_not_published();
 480 #endif
 481   HANDLE thread_h;
 482   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 483                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 484     fatal("DuplicateHandle failed\n");
 485   }
 486   OSThread* osthread = create_os_thread(thread, thread_h,
 487                                         (int)current_thread_id());
 488   if (osthread == NULL) {
 489      return false;
 490   }
 491 
 492   // Initial thread state is RUNNABLE
 493   osthread->set_state(RUNNABLE);
 494 
 495   thread->set_osthread(osthread);
 496   return true;
 497 }
 498 
 499 bool os::create_main_thread(JavaThread* thread) {
 500 #ifdef ASSERT
 501   thread->verify_not_published();
 502 #endif
 503   if (_starting_thread == NULL) {
 504     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 505      if (_starting_thread == NULL) {
 506         return false;
 507      }
 508   }
 509 
 510   // The primordial thread is runnable from the start)
 511   _starting_thread->set_state(RUNNABLE);
 512 
 513   thread->set_osthread(_starting_thread);
 514   return true;
 515 }
 516 
 517 // Allocate and initialize a new OSThread
 518 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 519   unsigned thread_id;
 520 
 521   // Allocate the OSThread object
 522   OSThread* osthread = new OSThread(NULL, NULL);
 523   if (osthread == NULL) {
 524     return false;
 525   }
 526 
 527   // Initialize support for Java interrupts
 528   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 529   if (interrupt_event == NULL) {
 530     delete osthread;
 531     return NULL;
 532   }
 533   osthread->set_interrupt_event(interrupt_event);
 534   osthread->set_interrupted(false);
 535 
 536   thread->set_osthread(osthread);
 537 
 538   if (stack_size == 0) {
 539     switch (thr_type) {
 540     case os::java_thread:
 541       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 542       if (JavaThread::stack_size_at_create() > 0)
 543         stack_size = JavaThread::stack_size_at_create();
 544       break;
 545     case os::compiler_thread:
 546       if (CompilerThreadStackSize > 0) {
 547         stack_size = (size_t)(CompilerThreadStackSize * K);
 548         break;
 549       } // else fall through:
 550         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 551     case os::vm_thread:
 552     case os::pgc_thread:
 553     case os::cgc_thread:
 554     case os::watcher_thread:
 555       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 556       break;
 557     }
 558   }
 559 
 560   // Create the Win32 thread
 561   //
 562   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 563   // does not specify stack size. Instead, it specifies the size of
 564   // initially committed space. The stack size is determined by
 565   // PE header in the executable. If the committed "stack_size" is larger
 566   // than default value in the PE header, the stack is rounded up to the
 567   // nearest multiple of 1MB. For example if the launcher has default
 568   // stack size of 320k, specifying any size less than 320k does not
 569   // affect the actual stack size at all, it only affects the initial
 570   // commitment. On the other hand, specifying 'stack_size' larger than
 571   // default value may cause significant increase in memory usage, because
 572   // not only the stack space will be rounded up to MB, but also the
 573   // entire space is committed upfront.
 574   //
 575   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 576   // for CreateThread() that can treat 'stack_size' as stack size. However we
 577   // are not supposed to call CreateThread() directly according to MSDN
 578   // document because JVM uses C runtime library. The good news is that the
 579   // flag appears to work with _beginthredex() as well.
 580 
 581 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 582 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 583 #endif
 584 
 585   HANDLE thread_handle =
 586     (HANDLE)_beginthreadex(NULL,
 587                            (unsigned)stack_size,
 588                            (unsigned (__stdcall *)(void*)) java_start,
 589                            thread,
 590                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 591                            &thread_id);
 592   if (thread_handle == NULL) {
 593     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 594     // without the flag.
 595     thread_handle =
 596     (HANDLE)_beginthreadex(NULL,
 597                            (unsigned)stack_size,
 598                            (unsigned (__stdcall *)(void*)) java_start,
 599                            thread,
 600                            CREATE_SUSPENDED,
 601                            &thread_id);
 602   }
 603   if (thread_handle == NULL) {
 604     // Need to clean up stuff we've allocated so far
 605     CloseHandle(osthread->interrupt_event());
 606     thread->set_osthread(NULL);
 607     delete osthread;
 608     return NULL;
 609   }
 610 
 611   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 612 
 613   // Store info on the Win32 thread into the OSThread
 614   osthread->set_thread_handle(thread_handle);
 615   osthread->set_thread_id(thread_id);
 616 
 617   // Initial thread state is INITIALIZED, not SUSPENDED
 618   osthread->set_state(INITIALIZED);
 619 
 620   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 621   return true;
 622 }
 623 
 624 
 625 // Free Win32 resources related to the OSThread
 626 void os::free_thread(OSThread* osthread) {
 627   assert(osthread != NULL, "osthread not set");
 628   CloseHandle(osthread->thread_handle());
 629   CloseHandle(osthread->interrupt_event());
 630   delete osthread;
 631 }
 632 
 633 
 634 static int    has_performance_count = 0;
 635 static jlong first_filetime;
 636 static jlong initial_performance_count;
 637 static jlong performance_frequency;
 638 
 639 
 640 jlong as_long(LARGE_INTEGER x) {
 641   jlong result = 0; // initialization to avoid warning
 642   set_high(&result, x.HighPart);
 643   set_low(&result,  x.LowPart);
 644   return result;
 645 }
 646 
 647 
 648 jlong os::elapsed_counter() {
 649   LARGE_INTEGER count;
 650   if (has_performance_count) {
 651     QueryPerformanceCounter(&count);
 652     return as_long(count) - initial_performance_count;
 653   } else {
 654     FILETIME wt;
 655     GetSystemTimeAsFileTime(&wt);
 656     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 657   }
 658 }
 659 
 660 
 661 jlong os::elapsed_frequency() {
 662   if (has_performance_count) {
 663     return performance_frequency;
 664   } else {
 665    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 666    return 10000000;
 667   }
 668 }
 669 
 670 
 671 julong os::available_memory() {
 672   return win32::available_memory();
 673 }
 674 
 675 julong os::win32::available_memory() {
 676   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 677   // value if total memory is larger than 4GB
 678   MEMORYSTATUSEX ms;
 679   ms.dwLength = sizeof(ms);
 680   GlobalMemoryStatusEx(&ms);
 681 
 682   return (julong)ms.ullAvailPhys;
 683 }
 684 
 685 julong os::physical_memory() {
 686   return win32::physical_memory();
 687 }
 688 
 689 bool os::has_allocatable_memory_limit(julong* limit) {
 690   MEMORYSTATUSEX ms;
 691   ms.dwLength = sizeof(ms);
 692   GlobalMemoryStatusEx(&ms);
 693 #ifdef _LP64
 694   *limit = (julong)ms.ullAvailVirtual;
 695   return true;
 696 #else
 697   // Limit to 1400m because of the 2gb address space wall
 698   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 699   return true;
 700 #endif
 701 }
 702 
 703 // VC6 lacks DWORD_PTR
 704 #if _MSC_VER < 1300
 705 typedef UINT_PTR DWORD_PTR;
 706 #endif
 707 
 708 int os::active_processor_count() {
 709   DWORD_PTR lpProcessAffinityMask = 0;
 710   DWORD_PTR lpSystemAffinityMask = 0;
 711   int proc_count = processor_count();
 712   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 713       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 714     // Nof active processors is number of bits in process affinity mask
 715     int bitcount = 0;
 716     while (lpProcessAffinityMask != 0) {
 717       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 718       bitcount++;
 719     }
 720     return bitcount;
 721   } else {
 722     return proc_count;
 723   }
 724 }
 725 
 726 void os::set_native_thread_name(const char *name) {
 727   // Not yet implemented.
 728   return;
 729 }
 730 
 731 bool os::distribute_processes(uint length, uint* distribution) {
 732   // Not yet implemented.
 733   return false;
 734 }
 735 
 736 bool os::bind_to_processor(uint processor_id) {
 737   // Not yet implemented.
 738   return false;
 739 }
 740 
 741 static void initialize_performance_counter() {
 742   LARGE_INTEGER count;
 743   if (QueryPerformanceFrequency(&count)) {
 744     has_performance_count = 1;
 745     performance_frequency = as_long(count);
 746     QueryPerformanceCounter(&count);
 747     initial_performance_count = as_long(count);
 748   } else {
 749     has_performance_count = 0;
 750     FILETIME wt;
 751     GetSystemTimeAsFileTime(&wt);
 752     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 753   }
 754 }
 755 
 756 
 757 double os::elapsedTime() {
 758   return (double) elapsed_counter() / (double) elapsed_frequency();
 759 }
 760 
 761 
 762 // Windows format:
 763 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 764 // Java format:
 765 //   Java standards require the number of milliseconds since 1/1/1970
 766 
 767 // Constant offset - calculated using offset()
 768 static jlong  _offset   = 116444736000000000;
 769 // Fake time counter for reproducible results when debugging
 770 static jlong  fake_time = 0;
 771 
 772 #ifdef ASSERT
 773 // Just to be safe, recalculate the offset in debug mode
 774 static jlong _calculated_offset = 0;
 775 static int   _has_calculated_offset = 0;
 776 
 777 jlong offset() {
 778   if (_has_calculated_offset) return _calculated_offset;
 779   SYSTEMTIME java_origin;
 780   java_origin.wYear          = 1970;
 781   java_origin.wMonth         = 1;
 782   java_origin.wDayOfWeek     = 0; // ignored
 783   java_origin.wDay           = 1;
 784   java_origin.wHour          = 0;
 785   java_origin.wMinute        = 0;
 786   java_origin.wSecond        = 0;
 787   java_origin.wMilliseconds  = 0;
 788   FILETIME jot;
 789   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 790     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 791   }
 792   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 793   _has_calculated_offset = 1;
 794   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 795   return _calculated_offset;
 796 }
 797 #else
 798 jlong offset() {
 799   return _offset;
 800 }
 801 #endif
 802 
 803 jlong windows_to_java_time(FILETIME wt) {
 804   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 805   return (a - offset()) / 10000;
 806 }
 807 
 808 FILETIME java_to_windows_time(jlong l) {
 809   jlong a = (l * 10000) + offset();
 810   FILETIME result;
 811   result.dwHighDateTime = high(a);
 812   result.dwLowDateTime  = low(a);
 813   return result;
 814 }
 815 
 816 // For now, we say that Windows does not support vtime.  I have no idea
 817 // whether it can actually be made to (DLD, 9/13/05).
 818 
 819 bool os::supports_vtime() { return false; }
 820 bool os::enable_vtime() { return false; }
 821 bool os::vtime_enabled() { return false; }
 822 double os::elapsedVTime() {
 823   // better than nothing, but not much
 824   return elapsedTime();
 825 }
 826 
 827 jlong os::javaTimeMillis() {
 828   if (UseFakeTimers) {
 829     return fake_time++;
 830   } else {
 831     FILETIME wt;
 832     GetSystemTimeAsFileTime(&wt);
 833     return windows_to_java_time(wt);
 834   }
 835 }
 836 
 837 jlong os::javaTimeNanos() {
 838   if (!has_performance_count) {
 839     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 840   } else {
 841     LARGE_INTEGER current_count;
 842     QueryPerformanceCounter(&current_count);
 843     double current = as_long(current_count);
 844     double freq = performance_frequency;
 845     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 846     return time;
 847   }
 848 }
 849 
 850 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 851   if (!has_performance_count) {
 852     // javaTimeMillis() doesn't have much percision,
 853     // but it is not going to wrap -- so all 64 bits
 854     info_ptr->max_value = ALL_64_BITS;
 855 
 856     // this is a wall clock timer, so may skip
 857     info_ptr->may_skip_backward = true;
 858     info_ptr->may_skip_forward = true;
 859   } else {
 860     jlong freq = performance_frequency;
 861     if (freq < NANOSECS_PER_SEC) {
 862       // the performance counter is 64 bits and we will
 863       // be multiplying it -- so no wrap in 64 bits
 864       info_ptr->max_value = ALL_64_BITS;
 865     } else if (freq > NANOSECS_PER_SEC) {
 866       // use the max value the counter can reach to
 867       // determine the max value which could be returned
 868       julong max_counter = (julong)ALL_64_BITS;
 869       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 870     } else {
 871       // the performance counter is 64 bits and we will
 872       // be using it directly -- so no wrap in 64 bits
 873       info_ptr->max_value = ALL_64_BITS;
 874     }
 875 
 876     // using a counter, so no skipping
 877     info_ptr->may_skip_backward = false;
 878     info_ptr->may_skip_forward = false;
 879   }
 880   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 881 }
 882 
 883 char* os::local_time_string(char *buf, size_t buflen) {
 884   SYSTEMTIME st;
 885   GetLocalTime(&st);
 886   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 887                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 888   return buf;
 889 }
 890 
 891 bool os::getTimesSecs(double* process_real_time,
 892                      double* process_user_time,
 893                      double* process_system_time) {
 894   HANDLE h_process = GetCurrentProcess();
 895   FILETIME create_time, exit_time, kernel_time, user_time;
 896   BOOL result = GetProcessTimes(h_process,
 897                                &create_time,
 898                                &exit_time,
 899                                &kernel_time,
 900                                &user_time);
 901   if (result != 0) {
 902     FILETIME wt;
 903     GetSystemTimeAsFileTime(&wt);
 904     jlong rtc_millis = windows_to_java_time(wt);
 905     jlong user_millis = windows_to_java_time(user_time);
 906     jlong system_millis = windows_to_java_time(kernel_time);
 907     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 908     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 909     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 910     return true;
 911   } else {
 912     return false;
 913   }
 914 }
 915 
 916 void os::shutdown() {
 917 
 918   // allow PerfMemory to attempt cleanup of any persistent resources
 919   perfMemory_exit();
 920 
 921   // flush buffered output, finish log files
 922   ostream_abort();
 923 
 924   // Check for abort hook
 925   abort_hook_t abort_hook = Arguments::abort_hook();
 926   if (abort_hook != NULL) {
 927     abort_hook();
 928   }
 929 }
 930 
 931 
 932 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 933                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
 934 
 935 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
 936   HINSTANCE dbghelp;
 937   EXCEPTION_POINTERS ep;
 938   MINIDUMP_EXCEPTION_INFORMATION mei;
 939   MINIDUMP_EXCEPTION_INFORMATION* pmei;
 940 
 941   HANDLE hProcess = GetCurrentProcess();
 942   DWORD processId = GetCurrentProcessId();
 943   HANDLE dumpFile;
 944   MINIDUMP_TYPE dumpType;
 945   static const char* cwd;
 946 
 947   // If running on a client version of Windows and user has not explicitly enabled dumping
 948   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
 949     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
 950     return;
 951     // If running on a server version of Windows and user has explictly disabled dumping
 952   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 953     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 954     return;
 955   }
 956 
 957   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
 958 
 959   if (dbghelp == NULL) {
 960     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
 961     return;
 962   }
 963 
 964   _MiniDumpWriteDump = CAST_TO_FN_PTR(
 965     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 966     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
 967     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
 968 
 969   if (_MiniDumpWriteDump == NULL) {
 970     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
 971     return;
 972   }
 973 
 974   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
 975 
 976 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
 977 // API_VERSION_NUMBER 11 or higher contains the ones we want though
 978 #if API_VERSION_NUMBER >= 11
 979   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
 980     MiniDumpWithUnloadedModules);
 981 #endif
 982 
 983   cwd = get_current_directory(NULL, 0);
 984   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
 985   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
 986 
 987   if (dumpFile == INVALID_HANDLE_VALUE) {
 988     VMError::report_coredump_status("Failed to create file for dumping", false);
 989     return;
 990   }
 991   if (exceptionRecord != NULL && contextRecord != NULL) {
 992     ep.ContextRecord = (PCONTEXT) contextRecord;
 993     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
 994 
 995     mei.ThreadId = GetCurrentThreadId();
 996     mei.ExceptionPointers = &ep;
 997     pmei = &mei;
 998   } else {
 999     pmei = NULL;
1000   }
1001 
1002 
1003   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1004   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1005   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1006       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1007     VMError::report_coredump_status("Call to MiniDumpWriteDump() failed", false);
1008   } else {
1009     VMError::report_coredump_status(buffer, true);
1010   }
1011 
1012   CloseHandle(dumpFile);
1013 }
1014 
1015 
1016 
1017 void os::abort(bool dump_core)
1018 {
1019   os::shutdown();
1020   // no core dump on Windows
1021   ::exit(1);
1022 }
1023 
1024 // Die immediately, no exit hook, no abort hook, no cleanup.
1025 void os::die() {
1026   _exit(-1);
1027 }
1028 
1029 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1030 //  * dirent_md.c       1.15 00/02/02
1031 //
1032 // The declarations for DIR and struct dirent are in jvm_win32.h.
1033 
1034 /* Caller must have already run dirname through JVM_NativePath, which removes
1035    duplicate slashes and converts all instances of '/' into '\\'. */
1036 
1037 DIR *
1038 os::opendir(const char *dirname)
1039 {
1040     assert(dirname != NULL, "just checking");   // hotspot change
1041     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1042     DWORD fattr;                                // hotspot change
1043     char alt_dirname[4] = { 0, 0, 0, 0 };
1044 
1045     if (dirp == 0) {
1046         errno = ENOMEM;
1047         return 0;
1048     }
1049 
1050     /*
1051      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1052      * as a directory in FindFirstFile().  We detect this case here and
1053      * prepend the current drive name.
1054      */
1055     if (dirname[1] == '\0' && dirname[0] == '\\') {
1056         alt_dirname[0] = _getdrive() + 'A' - 1;
1057         alt_dirname[1] = ':';
1058         alt_dirname[2] = '\\';
1059         alt_dirname[3] = '\0';
1060         dirname = alt_dirname;
1061     }
1062 
1063     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1064     if (dirp->path == 0) {
1065         free(dirp, mtInternal);
1066         errno = ENOMEM;
1067         return 0;
1068     }
1069     strcpy(dirp->path, dirname);
1070 
1071     fattr = GetFileAttributes(dirp->path);
1072     if (fattr == 0xffffffff) {
1073         free(dirp->path, mtInternal);
1074         free(dirp, mtInternal);
1075         errno = ENOENT;
1076         return 0;
1077     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1078         free(dirp->path, mtInternal);
1079         free(dirp, mtInternal);
1080         errno = ENOTDIR;
1081         return 0;
1082     }
1083 
1084     /* Append "*.*", or possibly "\\*.*", to path */
1085     if (dirp->path[1] == ':'
1086         && (dirp->path[2] == '\0'
1087             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1088         /* No '\\' needed for cases like "Z:" or "Z:\" */
1089         strcat(dirp->path, "*.*");
1090     } else {
1091         strcat(dirp->path, "\\*.*");
1092     }
1093 
1094     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1095     if (dirp->handle == INVALID_HANDLE_VALUE) {
1096         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1097             free(dirp->path, mtInternal);
1098             free(dirp, mtInternal);
1099             errno = EACCES;
1100             return 0;
1101         }
1102     }
1103     return dirp;
1104 }
1105 
1106 /* parameter dbuf unused on Windows */
1107 
1108 struct dirent *
1109 os::readdir(DIR *dirp, dirent *dbuf)
1110 {
1111     assert(dirp != NULL, "just checking");      // hotspot change
1112     if (dirp->handle == INVALID_HANDLE_VALUE) {
1113         return 0;
1114     }
1115 
1116     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1117 
1118     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1119         if (GetLastError() == ERROR_INVALID_HANDLE) {
1120             errno = EBADF;
1121             return 0;
1122         }
1123         FindClose(dirp->handle);
1124         dirp->handle = INVALID_HANDLE_VALUE;
1125     }
1126 
1127     return &dirp->dirent;
1128 }
1129 
1130 int
1131 os::closedir(DIR *dirp)
1132 {
1133     assert(dirp != NULL, "just checking");      // hotspot change
1134     if (dirp->handle != INVALID_HANDLE_VALUE) {
1135         if (!FindClose(dirp->handle)) {
1136             errno = EBADF;
1137             return -1;
1138         }
1139         dirp->handle = INVALID_HANDLE_VALUE;
1140     }
1141     free(dirp->path, mtInternal);
1142     free(dirp, mtInternal);
1143     return 0;
1144 }
1145 
1146 // This must be hard coded because it's the system's temporary
1147 // directory not the java application's temp directory, ala java.io.tmpdir.
1148 const char* os::get_temp_directory() {
1149   static char path_buf[MAX_PATH];
1150   if (GetTempPath(MAX_PATH, path_buf)>0)
1151     return path_buf;
1152   else{
1153     path_buf[0]='\0';
1154     return path_buf;
1155   }
1156 }
1157 
1158 static bool file_exists(const char* filename) {
1159   if (filename == NULL || strlen(filename) == 0) {
1160     return false;
1161   }
1162   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1163 }
1164 
1165 bool os::dll_build_name(char *buffer, size_t buflen,
1166                         const char* pname, const char* fname) {
1167   bool retval = false;
1168   const size_t pnamelen = pname ? strlen(pname) : 0;
1169   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1170 
1171   // Return error on buffer overflow.
1172   if (pnamelen + strlen(fname) + 10 > buflen) {
1173     return retval;
1174   }
1175 
1176   if (pnamelen == 0) {
1177     jio_snprintf(buffer, buflen, "%s.dll", fname);
1178     retval = true;
1179   } else if (c == ':' || c == '\\') {
1180     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1181     retval = true;
1182   } else if (strchr(pname, *os::path_separator()) != NULL) {
1183     int n;
1184     char** pelements = split_path(pname, &n);
1185     for (int i = 0 ; i < n ; i++) {
1186       char* path = pelements[i];
1187       // Really shouldn't be NULL, but check can't hurt
1188       size_t plen = (path == NULL) ? 0 : strlen(path);
1189       if (plen == 0) {
1190         continue; // skip the empty path values
1191       }
1192       const char lastchar = path[plen - 1];
1193       if (lastchar == ':' || lastchar == '\\') {
1194         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1195       } else {
1196         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1197       }
1198       if (file_exists(buffer)) {
1199         retval = true;
1200         break;
1201       }
1202     }
1203     // release the storage
1204     for (int i = 0 ; i < n ; i++) {
1205       if (pelements[i] != NULL) {
1206         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1207       }
1208     }
1209     if (pelements != NULL) {
1210       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1211     }
1212   } else {
1213     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1214     retval = true;
1215   }
1216   return retval;
1217 }
1218 
1219 // Needs to be in os specific directory because windows requires another
1220 // header file <direct.h>
1221 const char* os::get_current_directory(char *buf, int buflen) {
1222   return _getcwd(buf, buflen);
1223 }
1224 
1225 //-----------------------------------------------------------
1226 // Helper functions for fatal error handler
1227 #ifdef _WIN64
1228 // Helper routine which returns true if address in
1229 // within the NTDLL address space.
1230 //
1231 static bool _addr_in_ntdll( address addr )
1232 {
1233   HMODULE hmod;
1234   MODULEINFO minfo;
1235 
1236   hmod = GetModuleHandle("NTDLL.DLL");
1237   if ( hmod == NULL ) return false;
1238   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
1239                                &minfo, sizeof(MODULEINFO)) )
1240     return false;
1241 
1242   if ( (addr >= minfo.lpBaseOfDll) &&
1243        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1244     return true;
1245   else
1246     return false;
1247 }
1248 #endif
1249 
1250 
1251 // Enumerate all modules for a given process ID
1252 //
1253 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1254 // different API for doing this. We use PSAPI.DLL on NT based
1255 // Windows and ToolHelp on 95/98/Me.
1256 
1257 // Callback function that is called by enumerate_modules() on
1258 // every DLL module.
1259 // Input parameters:
1260 //    int       pid,
1261 //    char*     module_file_name,
1262 //    address   module_base_addr,
1263 //    unsigned  module_size,
1264 //    void*     param
1265 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1266 
1267 // enumerate_modules for Windows NT, using PSAPI
1268 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1269 {
1270   HANDLE   hProcess ;
1271 
1272 # define MAX_NUM_MODULES 128
1273   HMODULE     modules[MAX_NUM_MODULES];
1274   static char filename[ MAX_PATH ];
1275   int         result = 0;
1276 
1277   if (!os::PSApiDll::PSApiAvailable()) {
1278     return 0;
1279   }
1280 
1281   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1282                          FALSE, pid ) ;
1283   if (hProcess == NULL) return 0;
1284 
1285   DWORD size_needed;
1286   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1287                            sizeof(modules), &size_needed)) {
1288       CloseHandle( hProcess );
1289       return 0;
1290   }
1291 
1292   // number of modules that are currently loaded
1293   int num_modules = size_needed / sizeof(HMODULE);
1294 
1295   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1296     // Get Full pathname:
1297     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1298                              filename, sizeof(filename))) {
1299         filename[0] = '\0';
1300     }
1301 
1302     MODULEINFO modinfo;
1303     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1304                                &modinfo, sizeof(modinfo))) {
1305         modinfo.lpBaseOfDll = NULL;
1306         modinfo.SizeOfImage = 0;
1307     }
1308 
1309     // Invoke callback function
1310     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1311                   modinfo.SizeOfImage, param);
1312     if (result) break;
1313   }
1314 
1315   CloseHandle( hProcess ) ;
1316   return result;
1317 }
1318 
1319 
1320 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1321 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1322 {
1323   HANDLE                hSnapShot ;
1324   static MODULEENTRY32  modentry ;
1325   int                   result = 0;
1326 
1327   if (!os::Kernel32Dll::HelpToolsAvailable()) {
1328     return 0;
1329   }
1330 
1331   // Get a handle to a Toolhelp snapshot of the system
1332   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1333   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1334       return FALSE ;
1335   }
1336 
1337   // iterate through all modules
1338   modentry.dwSize = sizeof(MODULEENTRY32) ;
1339   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
1340 
1341   while( not_done ) {
1342     // invoke the callback
1343     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1344                 modentry.modBaseSize, param);
1345     if (result) break;
1346 
1347     modentry.dwSize = sizeof(MODULEENTRY32) ;
1348     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
1349   }
1350 
1351   CloseHandle(hSnapShot);
1352   return result;
1353 }
1354 
1355 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1356 {
1357   // Get current process ID if caller doesn't provide it.
1358   if (!pid) pid = os::current_process_id();
1359 
1360   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1361   else                    return _enumerate_modules_windows(pid, func, param);
1362 }
1363 
1364 struct _modinfo {
1365    address addr;
1366    char*   full_path;   // point to a char buffer
1367    int     buflen;      // size of the buffer
1368    address base_addr;
1369 };
1370 
1371 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1372                                   unsigned size, void * param) {
1373    struct _modinfo *pmod = (struct _modinfo *)param;
1374    if (!pmod) return -1;
1375 
1376    if (base_addr     <= pmod->addr &&
1377        base_addr+size > pmod->addr) {
1378      // if a buffer is provided, copy path name to the buffer
1379      if (pmod->full_path) {
1380        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1381      }
1382      pmod->base_addr = base_addr;
1383      return 1;
1384    }
1385    return 0;
1386 }
1387 
1388 bool os::dll_address_to_library_name(address addr, char* buf,
1389                                      int buflen, int* offset) {
1390 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1391 //       return the full path to the DLL file, sometimes it returns path
1392 //       to the corresponding PDB file (debug info); sometimes it only
1393 //       returns partial path, which makes life painful.
1394 
1395    struct _modinfo mi;
1396    mi.addr      = addr;
1397    mi.full_path = buf;
1398    mi.buflen    = buflen;
1399    int pid = os::current_process_id();
1400    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1401       // buf already contains path name
1402       if (offset) *offset = addr - mi.base_addr;
1403       return true;
1404    } else {
1405       if (buf) buf[0] = '\0';
1406       if (offset) *offset = -1;
1407       return false;
1408    }
1409 }
1410 
1411 bool os::dll_address_to_function_name(address addr, char *buf,
1412                                       int buflen, int *offset) {
1413   if (Decoder::decode(addr, buf, buflen, offset)) {
1414     return true;
1415   }
1416   if (offset != NULL)  *offset  = -1;
1417   if (buf != NULL) buf[0] = '\0';
1418   return false;
1419 }
1420 
1421 // save the start and end address of jvm.dll into param[0] and param[1]
1422 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1423                     unsigned size, void * param) {
1424    if (!param) return -1;
1425 
1426    if (base_addr     <= (address)_locate_jvm_dll &&
1427        base_addr+size > (address)_locate_jvm_dll) {
1428          ((address*)param)[0] = base_addr;
1429          ((address*)param)[1] = base_addr + size;
1430          return 1;
1431    }
1432    return 0;
1433 }
1434 
1435 address vm_lib_location[2];    // start and end address of jvm.dll
1436 
1437 // check if addr is inside jvm.dll
1438 bool os::address_is_in_vm(address addr) {
1439   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1440     int pid = os::current_process_id();
1441     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1442       assert(false, "Can't find jvm module.");
1443       return false;
1444     }
1445   }
1446 
1447   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1448 }
1449 
1450 // print module info; param is outputStream*
1451 static int _print_module(int pid, char* fname, address base,
1452                          unsigned size, void* param) {
1453    if (!param) return -1;
1454 
1455    outputStream* st = (outputStream*)param;
1456 
1457    address end_addr = base + size;
1458    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1459    return 0;
1460 }
1461 
1462 // Loads .dll/.so and
1463 // in case of error it checks if .dll/.so was built for the
1464 // same architecture as Hotspot is running on
1465 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1466 {
1467   void * result = LoadLibrary(name);
1468   if (result != NULL)
1469   {
1470     return result;
1471   }
1472 
1473   DWORD errcode = GetLastError();
1474   if (errcode == ERROR_MOD_NOT_FOUND) {
1475     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1476     ebuf[ebuflen-1]='\0';
1477     return NULL;
1478   }
1479 
1480   // Parsing dll below
1481   // If we can read dll-info and find that dll was built
1482   // for an architecture other than Hotspot is running in
1483   // - then print to buffer "DLL was built for a different architecture"
1484   // else call os::lasterror to obtain system error message
1485 
1486   // Read system error message into ebuf
1487   // It may or may not be overwritten below (in the for loop and just above)
1488   lasterror(ebuf, (size_t) ebuflen);
1489   ebuf[ebuflen-1]='\0';
1490   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1491   if (file_descriptor<0)
1492   {
1493     return NULL;
1494   }
1495 
1496   uint32_t signature_offset;
1497   uint16_t lib_arch=0;
1498   bool failed_to_get_lib_arch=
1499   (
1500     //Go to position 3c in the dll
1501     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1502     ||
1503     // Read loacation of signature
1504     (sizeof(signature_offset)!=
1505       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1506     ||
1507     //Go to COFF File Header in dll
1508     //that is located after"signature" (4 bytes long)
1509     (os::seek_to_file_offset(file_descriptor,
1510       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1511     ||
1512     //Read field that contains code of architecture
1513     // that dll was build for
1514     (sizeof(lib_arch)!=
1515       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1516   );
1517 
1518   ::close(file_descriptor);
1519   if (failed_to_get_lib_arch)
1520   {
1521     // file i/o error - report os::lasterror(...) msg
1522     return NULL;
1523   }
1524 
1525   typedef struct
1526   {
1527     uint16_t arch_code;
1528     char* arch_name;
1529   } arch_t;
1530 
1531   static const arch_t arch_array[]={
1532     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1533     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1534     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1535   };
1536   #if   (defined _M_IA64)
1537     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1538   #elif (defined _M_AMD64)
1539     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1540   #elif (defined _M_IX86)
1541     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1542   #else
1543     #error Method os::dll_load requires that one of following \
1544            is defined :_M_IA64,_M_AMD64 or _M_IX86
1545   #endif
1546 
1547 
1548   // Obtain a string for printf operation
1549   // lib_arch_str shall contain string what platform this .dll was built for
1550   // running_arch_str shall string contain what platform Hotspot was built for
1551   char *running_arch_str=NULL,*lib_arch_str=NULL;
1552   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1553   {
1554     if (lib_arch==arch_array[i].arch_code)
1555       lib_arch_str=arch_array[i].arch_name;
1556     if (running_arch==arch_array[i].arch_code)
1557       running_arch_str=arch_array[i].arch_name;
1558   }
1559 
1560   assert(running_arch_str,
1561     "Didn't find runing architecture code in arch_array");
1562 
1563   // If the architure is right
1564   // but some other error took place - report os::lasterror(...) msg
1565   if (lib_arch == running_arch)
1566   {
1567     return NULL;
1568   }
1569 
1570   if (lib_arch_str!=NULL)
1571   {
1572     ::_snprintf(ebuf, ebuflen-1,
1573       "Can't load %s-bit .dll on a %s-bit platform",
1574       lib_arch_str,running_arch_str);
1575   }
1576   else
1577   {
1578     // don't know what architecture this dll was build for
1579     ::_snprintf(ebuf, ebuflen-1,
1580       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1581       lib_arch,running_arch_str);
1582   }
1583 
1584   return NULL;
1585 }
1586 
1587 
1588 void os::print_dll_info(outputStream *st) {
1589    int pid = os::current_process_id();
1590    st->print_cr("Dynamic libraries:");
1591    enumerate_modules(pid, _print_module, (void *)st);
1592 }
1593 
1594 void os::print_os_info_brief(outputStream* st) {
1595   os::print_os_info(st);
1596 }
1597 
1598 void os::print_os_info(outputStream* st) {
1599   st->print("OS:");
1600 
1601   os::win32::print_windows_version(st);
1602 }
1603 
1604 void os::win32::print_windows_version(outputStream* st) {
1605   OSVERSIONINFOEX osvi;
1606   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1607   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1608 
1609   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1610     st->print_cr("N/A");
1611     return;
1612   }
1613 
1614   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1615   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1616     switch (os_vers) {
1617     case 3051: st->print(" Windows NT 3.51"); break;
1618     case 4000: st->print(" Windows NT 4.0"); break;
1619     case 5000: st->print(" Windows 2000"); break;
1620     case 5001: st->print(" Windows XP"); break;
1621     case 5002:
1622     case 6000:
1623     case 6001:
1624     case 6002: {
1625       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1626       // find out whether we are running on 64 bit processor or not.
1627       SYSTEM_INFO si;
1628       ZeroMemory(&si, sizeof(SYSTEM_INFO));
1629         if (!os::Kernel32Dll::GetNativeSystemInfoAvailable()){
1630           GetSystemInfo(&si);
1631       } else {
1632         os::Kernel32Dll::GetNativeSystemInfo(&si);
1633       }
1634       if (os_vers == 5002) {
1635         if (osvi.wProductType == VER_NT_WORKSTATION &&
1636             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1637           st->print(" Windows XP x64 Edition");
1638         else
1639             st->print(" Windows Server 2003 family");
1640       } else if (os_vers == 6000) {
1641         if (osvi.wProductType == VER_NT_WORKSTATION)
1642             st->print(" Windows Vista");
1643         else
1644             st->print(" Windows Server 2008");
1645         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1646             st->print(" , 64 bit");
1647       } else if (os_vers == 6001) {
1648         if (osvi.wProductType == VER_NT_WORKSTATION) {
1649             st->print(" Windows 7");
1650         } else {
1651             // Unrecognized windows, print out its major and minor versions
1652             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1653         }
1654         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1655             st->print(" , 64 bit");
1656       } else if (os_vers == 6002) {
1657         if (osvi.wProductType == VER_NT_WORKSTATION) {
1658             st->print(" Windows 8");
1659         } else {
1660             st->print(" Windows Server 2012");
1661         }
1662         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1663             st->print(" , 64 bit");
1664       } else { // future os
1665         // Unrecognized windows, print out its major and minor versions
1666         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1667         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1668             st->print(" , 64 bit");
1669       }
1670       break;
1671     }
1672     default: // future windows, print out its major and minor versions
1673       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1674     }
1675   } else {
1676     switch (os_vers) {
1677     case 4000: st->print(" Windows 95"); break;
1678     case 4010: st->print(" Windows 98"); break;
1679     case 4090: st->print(" Windows Me"); break;
1680     default: // future windows, print out its major and minor versions
1681       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1682     }
1683   }
1684   st->print(" Build %d", osvi.dwBuildNumber);
1685   st->print(" %s", osvi.szCSDVersion);           // service pack
1686   st->cr();
1687 }
1688 
1689 void os::pd_print_cpu_info(outputStream* st) {
1690   // Nothing to do for now.
1691 }
1692 
1693 void os::print_memory_info(outputStream* st) {
1694   st->print("Memory:");
1695   st->print(" %dk page", os::vm_page_size()>>10);
1696 
1697   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1698   // value if total memory is larger than 4GB
1699   MEMORYSTATUSEX ms;
1700   ms.dwLength = sizeof(ms);
1701   GlobalMemoryStatusEx(&ms);
1702 
1703   st->print(", physical %uk", os::physical_memory() >> 10);
1704   st->print("(%uk free)", os::available_memory() >> 10);
1705 
1706   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1707   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1708   st->cr();
1709 }
1710 
1711 void os::print_siginfo(outputStream *st, void *siginfo) {
1712   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1713   st->print("siginfo:");
1714   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1715 
1716   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1717       er->NumberParameters >= 2) {
1718       switch (er->ExceptionInformation[0]) {
1719       case 0: st->print(", reading address"); break;
1720       case 1: st->print(", writing address"); break;
1721       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1722                             er->ExceptionInformation[0]);
1723       }
1724       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1725   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1726              er->NumberParameters >= 2 && UseSharedSpaces) {
1727     FileMapInfo* mapinfo = FileMapInfo::current_info();
1728     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1729       st->print("\n\nError accessing class data sharing archive."       \
1730                 " Mapped file inaccessible during execution, "          \
1731                 " possible disk/network problem.");
1732     }
1733   } else {
1734     int num = er->NumberParameters;
1735     if (num > 0) {
1736       st->print(", ExceptionInformation=");
1737       for (int i = 0; i < num; i++) {
1738         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1739       }
1740     }
1741   }
1742   st->cr();
1743 }
1744 
1745 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1746   // do nothing
1747 }
1748 
1749 static char saved_jvm_path[MAX_PATH] = {0};
1750 
1751 // Find the full path to the current module, jvm.dll
1752 void os::jvm_path(char *buf, jint buflen) {
1753   // Error checking.
1754   if (buflen < MAX_PATH) {
1755     assert(false, "must use a large-enough buffer");
1756     buf[0] = '\0';
1757     return;
1758   }
1759   // Lazy resolve the path to current module.
1760   if (saved_jvm_path[0] != 0) {
1761     strcpy(buf, saved_jvm_path);
1762     return;
1763   }
1764 
1765   buf[0] = '\0';
1766   if (Arguments::created_by_gamma_launcher()) {
1767      // Support for the gamma launcher. Check for an
1768      // JAVA_HOME environment variable
1769      // and fix up the path so it looks like
1770      // libjvm.so is installed there (append a fake suffix
1771      // hotspot/libjvm.so).
1772      char* java_home_var = ::getenv("JAVA_HOME");
1773      if (java_home_var != NULL && java_home_var[0] != 0) {
1774 
1775         strncpy(buf, java_home_var, buflen);
1776 
1777         // determine if this is a legacy image or modules image
1778         // modules image doesn't have "jre" subdirectory
1779         size_t len = strlen(buf);
1780         char* jrebin_p = buf + len;
1781         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1782         if (0 != _access(buf, 0)) {
1783           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1784         }
1785         len = strlen(buf);
1786         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1787      }
1788   }
1789 
1790   if(buf[0] == '\0') {
1791   GetModuleFileName(vm_lib_handle, buf, buflen);
1792   }
1793   strcpy(saved_jvm_path, buf);
1794 }
1795 
1796 
1797 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1798 #ifndef _WIN64
1799   st->print("_");
1800 #endif
1801 }
1802 
1803 
1804 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1805 #ifndef _WIN64
1806   st->print("@%d", args_size  * sizeof(int));
1807 #endif
1808 }
1809 
1810 // This method is a copy of JDK's sysGetLastErrorString
1811 // from src/windows/hpi/src/system_md.c
1812 
1813 size_t os::lasterror(char* buf, size_t len) {
1814   DWORD errval;
1815 
1816   if ((errval = GetLastError()) != 0) {
1817     // DOS error
1818     size_t n = (size_t)FormatMessage(
1819           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1820           NULL,
1821           errval,
1822           0,
1823           buf,
1824           (DWORD)len,
1825           NULL);
1826     if (n > 3) {
1827       // Drop final '.', CR, LF
1828       if (buf[n - 1] == '\n') n--;
1829       if (buf[n - 1] == '\r') n--;
1830       if (buf[n - 1] == '.') n--;
1831       buf[n] = '\0';
1832     }
1833     return n;
1834   }
1835 
1836   if (errno != 0) {
1837     // C runtime error that has no corresponding DOS error code
1838     const char* s = strerror(errno);
1839     size_t n = strlen(s);
1840     if (n >= len) n = len - 1;
1841     strncpy(buf, s, n);
1842     buf[n] = '\0';
1843     return n;
1844   }
1845 
1846   return 0;
1847 }
1848 
1849 int os::get_last_error() {
1850   DWORD error = GetLastError();
1851   if (error == 0)
1852     error = errno;
1853   return (int)error;
1854 }
1855 
1856 // sun.misc.Signal
1857 // NOTE that this is a workaround for an apparent kernel bug where if
1858 // a signal handler for SIGBREAK is installed then that signal handler
1859 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1860 // See bug 4416763.
1861 static void (*sigbreakHandler)(int) = NULL;
1862 
1863 static void UserHandler(int sig, void *siginfo, void *context) {
1864   os::signal_notify(sig);
1865   // We need to reinstate the signal handler each time...
1866   os::signal(sig, (void*)UserHandler);
1867 }
1868 
1869 void* os::user_handler() {
1870   return (void*) UserHandler;
1871 }
1872 
1873 void* os::signal(int signal_number, void* handler) {
1874   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1875     void (*oldHandler)(int) = sigbreakHandler;
1876     sigbreakHandler = (void (*)(int)) handler;
1877     return (void*) oldHandler;
1878   } else {
1879     return (void*)::signal(signal_number, (void (*)(int))handler);
1880   }
1881 }
1882 
1883 void os::signal_raise(int signal_number) {
1884   raise(signal_number);
1885 }
1886 
1887 // The Win32 C runtime library maps all console control events other than ^C
1888 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1889 // logoff, and shutdown events.  We therefore install our own console handler
1890 // that raises SIGTERM for the latter cases.
1891 //
1892 static BOOL WINAPI consoleHandler(DWORD event) {
1893   switch(event) {
1894     case CTRL_C_EVENT:
1895       if (is_error_reported()) {
1896         // Ctrl-C is pressed during error reporting, likely because the error
1897         // handler fails to abort. Let VM die immediately.
1898         os::die();
1899       }
1900 
1901       os::signal_raise(SIGINT);
1902       return TRUE;
1903       break;
1904     case CTRL_BREAK_EVENT:
1905       if (sigbreakHandler != NULL) {
1906         (*sigbreakHandler)(SIGBREAK);
1907       }
1908       return TRUE;
1909       break;
1910     case CTRL_LOGOFF_EVENT: {
1911       // Don't terminate JVM if it is running in a non-interactive session,
1912       // such as a service process.
1913       USEROBJECTFLAGS flags;
1914       HANDLE handle = GetProcessWindowStation();
1915       if (handle != NULL &&
1916           GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1917             sizeof( USEROBJECTFLAGS), NULL)) {
1918         // If it is a non-interactive session, let next handler to deal
1919         // with it.
1920         if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1921           return FALSE;
1922         }
1923       }
1924     }
1925     case CTRL_CLOSE_EVENT:
1926     case CTRL_SHUTDOWN_EVENT:
1927       os::signal_raise(SIGTERM);
1928       return TRUE;
1929       break;
1930     default:
1931       break;
1932   }
1933   return FALSE;
1934 }
1935 
1936 /*
1937  * The following code is moved from os.cpp for making this
1938  * code platform specific, which it is by its very nature.
1939  */
1940 
1941 // Return maximum OS signal used + 1 for internal use only
1942 // Used as exit signal for signal_thread
1943 int os::sigexitnum_pd(){
1944   return NSIG;
1945 }
1946 
1947 // a counter for each possible signal value, including signal_thread exit signal
1948 static volatile jint pending_signals[NSIG+1] = { 0 };
1949 static HANDLE sig_sem = NULL;
1950 
1951 void os::signal_init_pd() {
1952   // Initialize signal structures
1953   memset((void*)pending_signals, 0, sizeof(pending_signals));
1954 
1955   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1956 
1957   // Programs embedding the VM do not want it to attempt to receive
1958   // events like CTRL_LOGOFF_EVENT, which are used to implement the
1959   // shutdown hooks mechanism introduced in 1.3.  For example, when
1960   // the VM is run as part of a Windows NT service (i.e., a servlet
1961   // engine in a web server), the correct behavior is for any console
1962   // control handler to return FALSE, not TRUE, because the OS's
1963   // "final" handler for such events allows the process to continue if
1964   // it is a service (while terminating it if it is not a service).
1965   // To make this behavior uniform and the mechanism simpler, we
1966   // completely disable the VM's usage of these console events if -Xrs
1967   // (=ReduceSignalUsage) is specified.  This means, for example, that
1968   // the CTRL-BREAK thread dump mechanism is also disabled in this
1969   // case.  See bugs 4323062, 4345157, and related bugs.
1970 
1971   if (!ReduceSignalUsage) {
1972     // Add a CTRL-C handler
1973     SetConsoleCtrlHandler(consoleHandler, TRUE);
1974   }
1975 }
1976 
1977 void os::signal_notify(int signal_number) {
1978   BOOL ret;
1979   if (sig_sem != NULL) {
1980     Atomic::inc(&pending_signals[signal_number]);
1981     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1982     assert(ret != 0, "ReleaseSemaphore() failed");
1983   }
1984 }
1985 
1986 static int check_pending_signals(bool wait_for_signal) {
1987   DWORD ret;
1988   while (true) {
1989     for (int i = 0; i < NSIG + 1; i++) {
1990       jint n = pending_signals[i];
1991       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1992         return i;
1993       }
1994     }
1995     if (!wait_for_signal) {
1996       return -1;
1997     }
1998 
1999     JavaThread *thread = JavaThread::current();
2000 
2001     ThreadBlockInVM tbivm(thread);
2002 
2003     bool threadIsSuspended;
2004     do {
2005       thread->set_suspend_equivalent();
2006       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2007       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2008       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2009 
2010       // were we externally suspended while we were waiting?
2011       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2012       if (threadIsSuspended) {
2013         //
2014         // The semaphore has been incremented, but while we were waiting
2015         // another thread suspended us. We don't want to continue running
2016         // while suspended because that would surprise the thread that
2017         // suspended us.
2018         //
2019         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2020         assert(ret != 0, "ReleaseSemaphore() failed");
2021 
2022         thread->java_suspend_self();
2023       }
2024     } while (threadIsSuspended);
2025   }
2026 }
2027 
2028 int os::signal_lookup() {
2029   return check_pending_signals(false);
2030 }
2031 
2032 int os::signal_wait() {
2033   return check_pending_signals(true);
2034 }
2035 
2036 // Implicit OS exception handling
2037 
2038 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
2039   JavaThread* thread = JavaThread::current();
2040   // Save pc in thread
2041 #ifdef _M_IA64
2042   // Do not blow up if no thread info available.
2043   if (thread) {
2044     // Saving PRECISE pc (with slot information) in thread.
2045     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2046     // Convert precise PC into "Unix" format
2047     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2048     thread->set_saved_exception_pc((address)precise_pc);
2049   }
2050   // Set pc to handler
2051   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2052   // Clear out psr.ri (= Restart Instruction) in order to continue
2053   // at the beginning of the target bundle.
2054   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2055   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2056 #elif _M_AMD64
2057   // Do not blow up if no thread info available.
2058   if (thread) {
2059     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2060   }
2061   // Set pc to handler
2062   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2063 #else
2064   // Do not blow up if no thread info available.
2065   if (thread) {
2066     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2067   }
2068   // Set pc to handler
2069   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2070 #endif
2071 
2072   // Continue the execution
2073   return EXCEPTION_CONTINUE_EXECUTION;
2074 }
2075 
2076 
2077 // Used for PostMortemDump
2078 extern "C" void safepoints();
2079 extern "C" void find(int x);
2080 extern "C" void events();
2081 
2082 // According to Windows API documentation, an illegal instruction sequence should generate
2083 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2084 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2085 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2086 
2087 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2088 
2089 // From "Execution Protection in the Windows Operating System" draft 0.35
2090 // Once a system header becomes available, the "real" define should be
2091 // included or copied here.
2092 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2093 
2094 // Handle NAT Bit consumption on IA64.
2095 #ifdef _M_IA64
2096 #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2097 #endif
2098 
2099 // Windows Vista/2008 heap corruption check
2100 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2101 
2102 #define def_excpt(val) #val, val
2103 
2104 struct siglabel {
2105   char *name;
2106   int   number;
2107 };
2108 
2109 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2110 // C++ compiler contain this error code. Because this is a compiler-generated
2111 // error, the code is not listed in the Win32 API header files.
2112 // The code is actually a cryptic mnemonic device, with the initial "E"
2113 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2114 // ASCII values of "msc".
2115 
2116 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2117 
2118 
2119 struct siglabel exceptlabels[] = {
2120     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2121     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2122     def_excpt(EXCEPTION_BREAKPOINT),
2123     def_excpt(EXCEPTION_SINGLE_STEP),
2124     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2125     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2126     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2127     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2128     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2129     def_excpt(EXCEPTION_FLT_OVERFLOW),
2130     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2131     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2132     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2133     def_excpt(EXCEPTION_INT_OVERFLOW),
2134     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2135     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2136     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2137     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2138     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2139     def_excpt(EXCEPTION_STACK_OVERFLOW),
2140     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2141     def_excpt(EXCEPTION_GUARD_PAGE),
2142     def_excpt(EXCEPTION_INVALID_HANDLE),
2143     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2144     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2145 #ifdef _M_IA64
2146     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2147 #endif
2148     NULL, 0
2149 };
2150 
2151 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2152   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2153     if (exceptlabels[i].number == exception_code) {
2154        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2155        return buf;
2156     }
2157   }
2158 
2159   return NULL;
2160 }
2161 
2162 //-----------------------------------------------------------------------------
2163 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2164   // handle exception caused by idiv; should only happen for -MinInt/-1
2165   // (division by zero is handled explicitly)
2166 #ifdef _M_IA64
2167   assert(0, "Fix Handle_IDiv_Exception");
2168 #elif _M_AMD64
2169   PCONTEXT ctx = exceptionInfo->ContextRecord;
2170   address pc = (address)ctx->Rip;
2171   assert(pc[0] == 0xF7, "not an idiv opcode");
2172   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2173   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2174   // set correct result values and continue after idiv instruction
2175   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2176   ctx->Rax = (DWORD)min_jint;      // result
2177   ctx->Rdx = (DWORD)0;             // remainder
2178   // Continue the execution
2179 #else
2180   PCONTEXT ctx = exceptionInfo->ContextRecord;
2181   address pc = (address)ctx->Eip;
2182   assert(pc[0] == 0xF7, "not an idiv opcode");
2183   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2184   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2185   // set correct result values and continue after idiv instruction
2186   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2187   ctx->Eax = (DWORD)min_jint;      // result
2188   ctx->Edx = (DWORD)0;             // remainder
2189   // Continue the execution
2190 #endif
2191   return EXCEPTION_CONTINUE_EXECUTION;
2192 }
2193 
2194 #ifndef  _WIN64
2195 //-----------------------------------------------------------------------------
2196 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2197   // handle exception caused by native method modifying control word
2198   PCONTEXT ctx = exceptionInfo->ContextRecord;
2199   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2200 
2201   switch (exception_code) {
2202     case EXCEPTION_FLT_DENORMAL_OPERAND:
2203     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2204     case EXCEPTION_FLT_INEXACT_RESULT:
2205     case EXCEPTION_FLT_INVALID_OPERATION:
2206     case EXCEPTION_FLT_OVERFLOW:
2207     case EXCEPTION_FLT_STACK_CHECK:
2208     case EXCEPTION_FLT_UNDERFLOW:
2209       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2210       if (fp_control_word != ctx->FloatSave.ControlWord) {
2211         // Restore FPCW and mask out FLT exceptions
2212         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2213         // Mask out pending FLT exceptions
2214         ctx->FloatSave.StatusWord &=  0xffffff00;
2215         return EXCEPTION_CONTINUE_EXECUTION;
2216       }
2217   }
2218 
2219   if (prev_uef_handler != NULL) {
2220     // We didn't handle this exception so pass it to the previous
2221     // UnhandledExceptionFilter.
2222     return (prev_uef_handler)(exceptionInfo);
2223   }
2224 
2225   return EXCEPTION_CONTINUE_SEARCH;
2226 }
2227 #else //_WIN64
2228 /*
2229   On Windows, the mxcsr control bits are non-volatile across calls
2230   See also CR 6192333
2231   If EXCEPTION_FLT_* happened after some native method modified
2232   mxcsr - it is not a jvm fault.
2233   However should we decide to restore of mxcsr after a faulty
2234   native method we can uncomment following code
2235       jint MxCsr = INITIAL_MXCSR;
2236         // we can't use StubRoutines::addr_mxcsr_std()
2237         // because in Win64 mxcsr is not saved there
2238       if (MxCsr != ctx->MxCsr) {
2239         ctx->MxCsr = MxCsr;
2240         return EXCEPTION_CONTINUE_EXECUTION;
2241       }
2242 
2243 */
2244 #endif //_WIN64
2245 
2246 
2247 // Fatal error reporting is single threaded so we can make this a
2248 // static and preallocated.  If it's more than MAX_PATH silently ignore
2249 // it.
2250 static char saved_error_file[MAX_PATH] = {0};
2251 
2252 void os::set_error_file(const char *logfile) {
2253   if (strlen(logfile) <= MAX_PATH) {
2254     strncpy(saved_error_file, logfile, MAX_PATH);
2255   }
2256 }
2257 
2258 static inline void report_error(Thread* t, DWORD exception_code,
2259                                 address addr, void* siginfo, void* context) {
2260   VMError err(t, exception_code, addr, siginfo, context);
2261   err.report_and_die();
2262 
2263   // If UseOsErrorReporting, this will return here and save the error file
2264   // somewhere where we can find it in the minidump.
2265 }
2266 
2267 //-----------------------------------------------------------------------------
2268 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2269   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2270   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2271 #ifdef _M_IA64
2272   // On Itanium, we need the "precise pc", which has the slot number coded
2273   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2274   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2275   // Convert the pc to "Unix format", which has the slot number coded
2276   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2277   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2278   // information is saved in the Unix format.
2279   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2280 #elif _M_AMD64
2281   address pc = (address) exceptionInfo->ContextRecord->Rip;
2282 #else
2283   address pc = (address) exceptionInfo->ContextRecord->Eip;
2284 #endif
2285   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2286 
2287 #ifndef _WIN64
2288   // Execution protection violation - win32 running on AMD64 only
2289   // Handled first to avoid misdiagnosis as a "normal" access violation;
2290   // This is safe to do because we have a new/unique ExceptionInformation
2291   // code for this condition.
2292   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2293     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2294     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2295     address addr = (address) exceptionRecord->ExceptionInformation[1];
2296 
2297     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2298       int page_size = os::vm_page_size();
2299 
2300       // Make sure the pc and the faulting address are sane.
2301       //
2302       // If an instruction spans a page boundary, and the page containing
2303       // the beginning of the instruction is executable but the following
2304       // page is not, the pc and the faulting address might be slightly
2305       // different - we still want to unguard the 2nd page in this case.
2306       //
2307       // 15 bytes seems to be a (very) safe value for max instruction size.
2308       bool pc_is_near_addr =
2309         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2310       bool instr_spans_page_boundary =
2311         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2312                          (intptr_t) page_size) > 0);
2313 
2314       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2315         static volatile address last_addr =
2316           (address) os::non_memory_address_word();
2317 
2318         // In conservative mode, don't unguard unless the address is in the VM
2319         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2320             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2321 
2322           // Set memory to RWX and retry
2323           address page_start =
2324             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2325           bool res = os::protect_memory((char*) page_start, page_size,
2326                                         os::MEM_PROT_RWX);
2327 
2328           if (PrintMiscellaneous && Verbose) {
2329             char buf[256];
2330             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2331                          "at " INTPTR_FORMAT
2332                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2333                          page_start, (res ? "success" : strerror(errno)));
2334             tty->print_raw_cr(buf);
2335           }
2336 
2337           // Set last_addr so if we fault again at the same address, we don't
2338           // end up in an endless loop.
2339           //
2340           // There are two potential complications here.  Two threads trapping
2341           // at the same address at the same time could cause one of the
2342           // threads to think it already unguarded, and abort the VM.  Likely
2343           // very rare.
2344           //
2345           // The other race involves two threads alternately trapping at
2346           // different addresses and failing to unguard the page, resulting in
2347           // an endless loop.  This condition is probably even more unlikely
2348           // than the first.
2349           //
2350           // Although both cases could be avoided by using locks or thread
2351           // local last_addr, these solutions are unnecessary complication:
2352           // this handler is a best-effort safety net, not a complete solution.
2353           // It is disabled by default and should only be used as a workaround
2354           // in case we missed any no-execute-unsafe VM code.
2355 
2356           last_addr = addr;
2357 
2358           return EXCEPTION_CONTINUE_EXECUTION;
2359         }
2360       }
2361 
2362       // Last unguard failed or not unguarding
2363       tty->print_raw_cr("Execution protection violation");
2364       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2365                    exceptionInfo->ContextRecord);
2366       return EXCEPTION_CONTINUE_SEARCH;
2367     }
2368   }
2369 #endif // _WIN64
2370 
2371   // Check to see if we caught the safepoint code in the
2372   // process of write protecting the memory serialization page.
2373   // It write enables the page immediately after protecting it
2374   // so just return.
2375   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2376     JavaThread* thread = (JavaThread*) t;
2377     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2378     address addr = (address) exceptionRecord->ExceptionInformation[1];
2379     if ( os::is_memory_serialize_page(thread, addr) ) {
2380       // Block current thread until the memory serialize page permission restored.
2381       os::block_on_serialize_page_trap();
2382       return EXCEPTION_CONTINUE_EXECUTION;
2383     }
2384   }
2385 
2386   if (t != NULL && t->is_Java_thread()) {
2387     JavaThread* thread = (JavaThread*) t;
2388     bool in_java = thread->thread_state() == _thread_in_Java;
2389 
2390     // Handle potential stack overflows up front.
2391     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2392       if (os::uses_stack_guard_pages()) {
2393 #ifdef _M_IA64
2394         // Use guard page for register stack.
2395         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2396         address addr = (address) exceptionRecord->ExceptionInformation[1];
2397         // Check for a register stack overflow on Itanium
2398         if (thread->addr_inside_register_stack_red_zone(addr)) {
2399           // Fatal red zone violation happens if the Java program
2400           // catches a StackOverflow error and does so much processing
2401           // that it runs beyond the unprotected yellow guard zone. As
2402           // a result, we are out of here.
2403           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2404         } else if(thread->addr_inside_register_stack(addr)) {
2405           // Disable the yellow zone which sets the state that
2406           // we've got a stack overflow problem.
2407           if (thread->stack_yellow_zone_enabled()) {
2408             thread->disable_stack_yellow_zone();
2409           }
2410           // Give us some room to process the exception.
2411           thread->disable_register_stack_guard();
2412           // Tracing with +Verbose.
2413           if (Verbose) {
2414             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2415             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2416             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2417             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2418                           thread->register_stack_base(),
2419                           thread->register_stack_base() + thread->stack_size());
2420           }
2421 
2422           // Reguard the permanent register stack red zone just to be sure.
2423           // We saw Windows silently disabling this without telling us.
2424           thread->enable_register_stack_red_zone();
2425 
2426           return Handle_Exception(exceptionInfo,
2427             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2428         }
2429 #endif
2430         if (thread->stack_yellow_zone_enabled()) {
2431           // Yellow zone violation.  The o/s has unprotected the first yellow
2432           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2433           // update the enabled status, even if the zone contains only one page.
2434           thread->disable_stack_yellow_zone();
2435           // If not in java code, return and hope for the best.
2436           return in_java ? Handle_Exception(exceptionInfo,
2437             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2438             :  EXCEPTION_CONTINUE_EXECUTION;
2439         } else {
2440           // Fatal red zone violation.
2441           thread->disable_stack_red_zone();
2442           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2443           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2444                        exceptionInfo->ContextRecord);
2445           return EXCEPTION_CONTINUE_SEARCH;
2446         }
2447       } else if (in_java) {
2448         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2449         // a one-time-only guard page, which it has released to us.  The next
2450         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2451         return Handle_Exception(exceptionInfo,
2452           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2453       } else {
2454         // Can only return and hope for the best.  Further stack growth will
2455         // result in an ACCESS_VIOLATION.
2456         return EXCEPTION_CONTINUE_EXECUTION;
2457       }
2458     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2459       // Either stack overflow or null pointer exception.
2460       if (in_java) {
2461         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2462         address addr = (address) exceptionRecord->ExceptionInformation[1];
2463         address stack_end = thread->stack_base() - thread->stack_size();
2464         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2465           // Stack overflow.
2466           assert(!os::uses_stack_guard_pages(),
2467             "should be caught by red zone code above.");
2468           return Handle_Exception(exceptionInfo,
2469             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2470         }
2471         //
2472         // Check for safepoint polling and implicit null
2473         // We only expect null pointers in the stubs (vtable)
2474         // the rest are checked explicitly now.
2475         //
2476         CodeBlob* cb = CodeCache::find_blob(pc);
2477         if (cb != NULL) {
2478           if (os::is_poll_address(addr)) {
2479             address stub = SharedRuntime::get_poll_stub(pc);
2480             return Handle_Exception(exceptionInfo, stub);
2481           }
2482         }
2483         {
2484 #ifdef _WIN64
2485           //
2486           // If it's a legal stack address map the entire region in
2487           //
2488           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2489           address addr = (address) exceptionRecord->ExceptionInformation[1];
2490           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2491                   addr = (address)((uintptr_t)addr &
2492                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2493                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2494                                     false );
2495                   return EXCEPTION_CONTINUE_EXECUTION;
2496           }
2497           else
2498 #endif
2499           {
2500             // Null pointer exception.
2501 #ifdef _M_IA64
2502             // Process implicit null checks in compiled code. Note: Implicit null checks
2503             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2504             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2505               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2506               // Handle implicit null check in UEP method entry
2507               if (cb && (cb->is_frame_complete_at(pc) ||
2508                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2509                 if (Verbose) {
2510                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2511                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2512                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2513                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2514                                 *(bundle_start + 1), *bundle_start);
2515                 }
2516                 return Handle_Exception(exceptionInfo,
2517                   SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2518               }
2519             }
2520 
2521             // Implicit null checks were processed above.  Hence, we should not reach
2522             // here in the usual case => die!
2523             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2524             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2525                          exceptionInfo->ContextRecord);
2526             return EXCEPTION_CONTINUE_SEARCH;
2527 
2528 #else // !IA64
2529 
2530             // Windows 98 reports faulting addresses incorrectly
2531             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2532                 !os::win32::is_nt()) {
2533               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2534               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2535             }
2536             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2537                          exceptionInfo->ContextRecord);
2538             return EXCEPTION_CONTINUE_SEARCH;
2539 #endif
2540           }
2541         }
2542       }
2543 
2544 #ifdef _WIN64
2545       // Special care for fast JNI field accessors.
2546       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2547       // in and the heap gets shrunk before the field access.
2548       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2549         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2550         if (addr != (address)-1) {
2551           return Handle_Exception(exceptionInfo, addr);
2552         }
2553       }
2554 #endif
2555 
2556       // Stack overflow or null pointer exception in native code.
2557       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2558                    exceptionInfo->ContextRecord);
2559       return EXCEPTION_CONTINUE_SEARCH;
2560     } // /EXCEPTION_ACCESS_VIOLATION
2561     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2562 #if defined _M_IA64
2563     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2564               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2565       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2566 
2567       // Compiled method patched to be non entrant? Following conditions must apply:
2568       // 1. must be first instruction in bundle
2569       // 2. must be a break instruction with appropriate code
2570       if((((uint64_t) pc & 0x0F) == 0) &&
2571          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2572         return Handle_Exception(exceptionInfo,
2573                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2574       }
2575     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2576 #endif
2577 
2578 
2579     if (in_java) {
2580       switch (exception_code) {
2581       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2582         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2583 
2584       case EXCEPTION_INT_OVERFLOW:
2585         return Handle_IDiv_Exception(exceptionInfo);
2586 
2587       } // switch
2588     }
2589 #ifndef _WIN64
2590     if (((thread->thread_state() == _thread_in_Java) ||
2591         (thread->thread_state() == _thread_in_native)) &&
2592         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
2593     {
2594       LONG result=Handle_FLT_Exception(exceptionInfo);
2595       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2596     }
2597 #endif //_WIN64
2598   }
2599 
2600   if (exception_code != EXCEPTION_BREAKPOINT) {
2601     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2602                  exceptionInfo->ContextRecord);
2603   }
2604   return EXCEPTION_CONTINUE_SEARCH;
2605 }
2606 
2607 #ifndef _WIN64
2608 // Special care for fast JNI accessors.
2609 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2610 // the heap gets shrunk before the field access.
2611 // Need to install our own structured exception handler since native code may
2612 // install its own.
2613 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2614   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2615   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2616     address pc = (address) exceptionInfo->ContextRecord->Eip;
2617     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2618     if (addr != (address)-1) {
2619       return Handle_Exception(exceptionInfo, addr);
2620     }
2621   }
2622   return EXCEPTION_CONTINUE_SEARCH;
2623 }
2624 
2625 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2626 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2627   __try { \
2628     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2629   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2630   } \
2631   return 0; \
2632 }
2633 
2634 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2635 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2636 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2637 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2638 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2639 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2640 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2641 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2642 
2643 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2644   switch (type) {
2645     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2646     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2647     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2648     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2649     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2650     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2651     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2652     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2653     default:        ShouldNotReachHere();
2654   }
2655   return (address)-1;
2656 }
2657 #endif
2658 
2659 // Virtual Memory
2660 
2661 int os::vm_page_size() { return os::win32::vm_page_size(); }
2662 int os::vm_allocation_granularity() {
2663   return os::win32::vm_allocation_granularity();
2664 }
2665 
2666 // Windows large page support is available on Windows 2003. In order to use
2667 // large page memory, the administrator must first assign additional privilege
2668 // to the user:
2669 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2670 //   + select Local Policies -> User Rights Assignment
2671 //   + double click "Lock pages in memory", add users and/or groups
2672 //   + reboot
2673 // Note the above steps are needed for administrator as well, as administrators
2674 // by default do not have the privilege to lock pages in memory.
2675 //
2676 // Note about Windows 2003: although the API supports committing large page
2677 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2678 // scenario, I found through experiment it only uses large page if the entire
2679 // memory region is reserved and committed in a single VirtualAlloc() call.
2680 // This makes Windows large page support more or less like Solaris ISM, in
2681 // that the entire heap must be committed upfront. This probably will change
2682 // in the future, if so the code below needs to be revisited.
2683 
2684 #ifndef MEM_LARGE_PAGES
2685 #define MEM_LARGE_PAGES 0x20000000
2686 #endif
2687 
2688 static HANDLE    _hProcess;
2689 static HANDLE    _hToken;
2690 
2691 // Container for NUMA node list info
2692 class NUMANodeListHolder {
2693 private:
2694   int *_numa_used_node_list;  // allocated below
2695   int _numa_used_node_count;
2696 
2697   void free_node_list() {
2698     if (_numa_used_node_list != NULL) {
2699       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
2700     }
2701   }
2702 
2703 public:
2704   NUMANodeListHolder() {
2705     _numa_used_node_count = 0;
2706     _numa_used_node_list = NULL;
2707     // do rest of initialization in build routine (after function pointers are set up)
2708   }
2709 
2710   ~NUMANodeListHolder() {
2711     free_node_list();
2712   }
2713 
2714   bool build() {
2715     DWORD_PTR proc_aff_mask;
2716     DWORD_PTR sys_aff_mask;
2717     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2718     ULONG highest_node_number;
2719     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2720     free_node_list();
2721     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2722     for (unsigned int i = 0; i <= highest_node_number; i++) {
2723       ULONGLONG proc_mask_numa_node;
2724       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2725       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2726         _numa_used_node_list[_numa_used_node_count++] = i;
2727       }
2728     }
2729     return (_numa_used_node_count > 1);
2730   }
2731 
2732   int get_count() {return _numa_used_node_count;}
2733   int get_node_list_entry(int n) {
2734     // for indexes out of range, returns -1
2735     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2736   }
2737 
2738 } numa_node_list_holder;
2739 
2740 
2741 
2742 static size_t _large_page_size = 0;
2743 
2744 static bool resolve_functions_for_large_page_init() {
2745   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2746     os::Advapi32Dll::AdvapiAvailable();
2747 }
2748 
2749 static bool request_lock_memory_privilege() {
2750   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2751                                 os::current_process_id());
2752 
2753   LUID luid;
2754   if (_hProcess != NULL &&
2755       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2756       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2757 
2758     TOKEN_PRIVILEGES tp;
2759     tp.PrivilegeCount = 1;
2760     tp.Privileges[0].Luid = luid;
2761     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2762 
2763     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2764     // privilege. Check GetLastError() too. See MSDN document.
2765     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2766         (GetLastError() == ERROR_SUCCESS)) {
2767       return true;
2768     }
2769   }
2770 
2771   return false;
2772 }
2773 
2774 static void cleanup_after_large_page_init() {
2775   if (_hProcess) CloseHandle(_hProcess);
2776   _hProcess = NULL;
2777   if (_hToken) CloseHandle(_hToken);
2778   _hToken = NULL;
2779 }
2780 
2781 static bool numa_interleaving_init() {
2782   bool success = false;
2783   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2784 
2785   // print a warning if UseNUMAInterleaving flag is specified on command line
2786   bool warn_on_failure = use_numa_interleaving_specified;
2787 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2788 
2789   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2790   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2791   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2792 
2793   if (os::Kernel32Dll::NumaCallsAvailable()) {
2794     if (numa_node_list_holder.build()) {
2795       if (PrintMiscellaneous && Verbose) {
2796         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2797         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2798           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2799         }
2800         tty->print("\n");
2801       }
2802       success = true;
2803     } else {
2804       WARN("Process does not cover multiple NUMA nodes.");
2805     }
2806   } else {
2807     WARN("NUMA Interleaving is not supported by the operating system.");
2808   }
2809   if (!success) {
2810     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2811   }
2812   return success;
2813 #undef WARN
2814 }
2815 
2816 // this routine is used whenever we need to reserve a contiguous VA range
2817 // but we need to make separate VirtualAlloc calls for each piece of the range
2818 // Reasons for doing this:
2819 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2820 //  * UseNUMAInterleaving requires a separate node for each piece
2821 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
2822                                          bool should_inject_error=false) {
2823   char * p_buf;
2824   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2825   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2826   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2827 
2828   // first reserve enough address space in advance since we want to be
2829   // able to break a single contiguous virtual address range into multiple
2830   // large page commits but WS2003 does not allow reserving large page space
2831   // so we just use 4K pages for reserve, this gives us a legal contiguous
2832   // address space. then we will deallocate that reservation, and re alloc
2833   // using large pages
2834   const size_t size_of_reserve = bytes + chunk_size;
2835   if (bytes > size_of_reserve) {
2836     // Overflowed.
2837     return NULL;
2838   }
2839   p_buf = (char *) VirtualAlloc(addr,
2840                                 size_of_reserve,  // size of Reserve
2841                                 MEM_RESERVE,
2842                                 PAGE_READWRITE);
2843   // If reservation failed, return NULL
2844   if (p_buf == NULL) return NULL;
2845   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2846   os::release_memory(p_buf, bytes + chunk_size);
2847 
2848   // we still need to round up to a page boundary (in case we are using large pages)
2849   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2850   // instead we handle this in the bytes_to_rq computation below
2851   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2852 
2853   // now go through and allocate one chunk at a time until all bytes are
2854   // allocated
2855   size_t  bytes_remaining = bytes;
2856   // An overflow of align_size_up() would have been caught above
2857   // in the calculation of size_of_reserve.
2858   char * next_alloc_addr = p_buf;
2859   HANDLE hProc = GetCurrentProcess();
2860 
2861 #ifdef ASSERT
2862   // Variable for the failure injection
2863   long ran_num = os::random();
2864   size_t fail_after = ran_num % bytes;
2865 #endif
2866 
2867   int count=0;
2868   while (bytes_remaining) {
2869     // select bytes_to_rq to get to the next chunk_size boundary
2870 
2871     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2872     // Note allocate and commit
2873     char * p_new;
2874 
2875 #ifdef ASSERT
2876     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2877 #else
2878     const bool inject_error_now = false;
2879 #endif
2880 
2881     if (inject_error_now) {
2882       p_new = NULL;
2883     } else {
2884       if (!UseNUMAInterleaving) {
2885         p_new = (char *) VirtualAlloc(next_alloc_addr,
2886                                       bytes_to_rq,
2887                                       flags,
2888                                       prot);
2889       } else {
2890         // get the next node to use from the used_node_list
2891         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2892         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2893         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2894                                                             next_alloc_addr,
2895                                                             bytes_to_rq,
2896                                                             flags,
2897                                                             prot,
2898                                                             node);
2899       }
2900     }
2901 
2902     if (p_new == NULL) {
2903       // Free any allocated pages
2904       if (next_alloc_addr > p_buf) {
2905         // Some memory was committed so release it.
2906         size_t bytes_to_release = bytes - bytes_remaining;
2907         // NMT has yet to record any individual blocks, so it
2908         // need to create a dummy 'reserve' record to match
2909         // the release.
2910         MemTracker::record_virtual_memory_reserve((address)p_buf,
2911           bytes_to_release, CALLER_PC);
2912         os::release_memory(p_buf, bytes_to_release);
2913       }
2914 #ifdef ASSERT
2915       if (should_inject_error) {
2916         if (TracePageSizes && Verbose) {
2917           tty->print_cr("Reserving pages individually failed.");
2918         }
2919       }
2920 #endif
2921       return NULL;
2922     }
2923 
2924     bytes_remaining -= bytes_to_rq;
2925     next_alloc_addr += bytes_to_rq;
2926     count++;
2927   }
2928   // Although the memory is allocated individually, it is returned as one.
2929   // NMT records it as one block.
2930   address pc = CALLER_PC;
2931   MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, pc);
2932   if ((flags & MEM_COMMIT) != 0) {
2933     MemTracker::record_virtual_memory_commit((address)p_buf, bytes, pc);
2934   }
2935 
2936   // made it this far, success
2937   return p_buf;
2938 }
2939 
2940 
2941 
2942 void os::large_page_init() {
2943   if (!UseLargePages) return;
2944 
2945   // print a warning if any large page related flag is specified on command line
2946   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2947                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2948   bool success = false;
2949 
2950 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2951   if (resolve_functions_for_large_page_init()) {
2952     if (request_lock_memory_privilege()) {
2953       size_t s = os::Kernel32Dll::GetLargePageMinimum();
2954       if (s) {
2955 #if defined(IA32) || defined(AMD64)
2956         if (s > 4*M || LargePageSizeInBytes > 4*M) {
2957           WARN("JVM cannot use large pages bigger than 4mb.");
2958         } else {
2959 #endif
2960           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2961             _large_page_size = LargePageSizeInBytes;
2962           } else {
2963             _large_page_size = s;
2964           }
2965           success = true;
2966 #if defined(IA32) || defined(AMD64)
2967         }
2968 #endif
2969       } else {
2970         WARN("Large page is not supported by the processor.");
2971       }
2972     } else {
2973       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2974     }
2975   } else {
2976     WARN("Large page is not supported by the operating system.");
2977   }
2978 #undef WARN
2979 
2980   const size_t default_page_size = (size_t) vm_page_size();
2981   if (success && _large_page_size > default_page_size) {
2982     _page_sizes[0] = _large_page_size;
2983     _page_sizes[1] = default_page_size;
2984     _page_sizes[2] = 0;
2985   }
2986 
2987   cleanup_after_large_page_init();
2988   UseLargePages = success;
2989 }
2990 
2991 // On win32, one cannot release just a part of reserved memory, it's an
2992 // all or nothing deal.  When we split a reservation, we must break the
2993 // reservation into two reservations.
2994 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
2995                               bool realloc) {
2996   if (size > 0) {
2997     release_memory(base, size);
2998     if (realloc) {
2999       reserve_memory(split, base);
3000     }
3001     if (size != split) {
3002       reserve_memory(size - split, base + split);
3003     }
3004   }
3005 }
3006 
3007 // Multiple threads can race in this code but it's not possible to unmap small sections of
3008 // virtual space to get requested alignment, like posix-like os's.
3009 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3010 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3011   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3012       "Alignment must be a multiple of allocation granularity (page size)");
3013   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3014 
3015   size_t extra_size = size + alignment;
3016   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3017 
3018   char* aligned_base = NULL;
3019 
3020   do {
3021     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3022     if (extra_base == NULL) {
3023       return NULL;
3024     }
3025     // Do manual alignment
3026     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3027 
3028     os::release_memory(extra_base, extra_size);
3029 
3030     aligned_base = os::reserve_memory(size, aligned_base);
3031 
3032   } while (aligned_base == NULL);
3033 
3034   return aligned_base;
3035 }
3036 
3037 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3038   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3039          "reserve alignment");
3040   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
3041   char* res;
3042   // note that if UseLargePages is on, all the areas that require interleaving
3043   // will go thru reserve_memory_special rather than thru here.
3044   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3045   if (!use_individual) {
3046     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3047   } else {
3048     elapsedTimer reserveTimer;
3049     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
3050     // in numa interleaving, we have to allocate pages individually
3051     // (well really chunks of NUMAInterleaveGranularity size)
3052     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3053     if (res == NULL) {
3054       warning("NUMA page allocation failed");
3055     }
3056     if( Verbose && PrintMiscellaneous ) {
3057       reserveTimer.stop();
3058       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3059                     reserveTimer.milliseconds(), reserveTimer.ticks());
3060     }
3061   }
3062   assert(res == NULL || addr == NULL || addr == res,
3063          "Unexpected address from reserve.");
3064 
3065   return res;
3066 }
3067 
3068 // Reserve memory at an arbitrary address, only if that area is
3069 // available (and not reserved for something else).
3070 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3071   // Windows os::reserve_memory() fails of the requested address range is
3072   // not avilable.
3073   return reserve_memory(bytes, requested_addr);
3074 }
3075 
3076 size_t os::large_page_size() {
3077   return _large_page_size;
3078 }
3079 
3080 bool os::can_commit_large_page_memory() {
3081   // Windows only uses large page memory when the entire region is reserved
3082   // and committed in a single VirtualAlloc() call. This may change in the
3083   // future, but with Windows 2003 it's not possible to commit on demand.
3084   return false;
3085 }
3086 
3087 bool os::can_execute_large_page_memory() {
3088   return true;
3089 }
3090 
3091 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
3092 
3093   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3094   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3095 
3096   // with large pages, there are two cases where we need to use Individual Allocation
3097   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3098   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3099   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3100     if (TracePageSizes && Verbose) {
3101        tty->print_cr("Reserving large pages individually.");
3102     }
3103     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3104     if (p_buf == NULL) {
3105       // give an appropriate warning message
3106       if (UseNUMAInterleaving) {
3107         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3108       }
3109       if (UseLargePagesIndividualAllocation) {
3110         warning("Individually allocated large pages failed, "
3111                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3112       }
3113       return NULL;
3114     }
3115 
3116     return p_buf;
3117 
3118   } else {
3119     // normal policy just allocate it all at once
3120     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3121     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
3122     if (res != NULL) {
3123       address pc = CALLER_PC;
3124       MemTracker::record_virtual_memory_reserve((address)res, bytes, pc);
3125       MemTracker::record_virtual_memory_commit((address)res, bytes, pc);
3126     }
3127 
3128     return res;
3129   }
3130 }
3131 
3132 bool os::release_memory_special(char* base, size_t bytes) {
3133   assert(base != NULL, "Sanity check");
3134   // Memory allocated via reserve_memory_special() is committed
3135   MemTracker::record_virtual_memory_uncommit((address)base, bytes);
3136   return release_memory(base, bytes);
3137 }
3138 
3139 void os::print_statistics() {
3140 }
3141 
3142 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3143   if (bytes == 0) {
3144     // Don't bother the OS with noops.
3145     return true;
3146   }
3147   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3148   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3149   // Don't attempt to print anything if the OS call fails. We're
3150   // probably low on resources, so the print itself may cause crashes.
3151 
3152   // unless we have NUMAInterleaving enabled, the range of a commit
3153   // is always within a reserve covered by a single VirtualAlloc
3154   // in that case we can just do a single commit for the requested size
3155   if (!UseNUMAInterleaving) {
3156     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) return false;
3157     if (exec) {
3158       DWORD oldprot;
3159       // Windows doc says to use VirtualProtect to get execute permissions
3160       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) return false;
3161     }
3162     return true;
3163   } else {
3164 
3165     // when NUMAInterleaving is enabled, the commit might cover a range that
3166     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3167     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3168     // returns represents the number of bytes that can be committed in one step.
3169     size_t bytes_remaining = bytes;
3170     char * next_alloc_addr = addr;
3171     while (bytes_remaining > 0) {
3172       MEMORY_BASIC_INFORMATION alloc_info;
3173       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3174       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3175       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT, PAGE_READWRITE) == NULL)
3176         return false;
3177       if (exec) {
3178         DWORD oldprot;
3179         if (!VirtualProtect(next_alloc_addr, bytes_to_rq, PAGE_EXECUTE_READWRITE, &oldprot))
3180           return false;
3181       }
3182       bytes_remaining -= bytes_to_rq;
3183       next_alloc_addr += bytes_to_rq;
3184     }
3185   }
3186   // if we made it this far, return true
3187   return true;
3188 }
3189 
3190 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3191                        bool exec) {
3192   return commit_memory(addr, size, exec);
3193 }
3194 
3195 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3196   if (bytes == 0) {
3197     // Don't bother the OS with noops.
3198     return true;
3199   }
3200   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3201   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3202   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3203 }
3204 
3205 bool os::pd_release_memory(char* addr, size_t bytes) {
3206   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3207 }
3208 
3209 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3210   return os::commit_memory(addr, size);
3211 }
3212 
3213 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3214   return os::uncommit_memory(addr, size);
3215 }
3216 
3217 // Set protections specified
3218 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3219                         bool is_committed) {
3220   unsigned int p = 0;
3221   switch (prot) {
3222   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3223   case MEM_PROT_READ: p = PAGE_READONLY; break;
3224   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3225   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3226   default:
3227     ShouldNotReachHere();
3228   }
3229 
3230   DWORD old_status;
3231 
3232   // Strange enough, but on Win32 one can change protection only for committed
3233   // memory, not a big deal anyway, as bytes less or equal than 64K
3234   if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
3235     fatal("cannot commit protection page");
3236   }
3237   // One cannot use os::guard_memory() here, as on Win32 guard page
3238   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3239   //
3240   // Pages in the region become guard pages. Any attempt to access a guard page
3241   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3242   // the guard page status. Guard pages thus act as a one-time access alarm.
3243   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3244 }
3245 
3246 bool os::guard_memory(char* addr, size_t bytes) {
3247   DWORD old_status;
3248   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3249 }
3250 
3251 bool os::unguard_memory(char* addr, size_t bytes) {
3252   DWORD old_status;
3253   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3254 }
3255 
3256 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3257 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3258 void os::numa_make_global(char *addr, size_t bytes)    { }
3259 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3260 bool os::numa_topology_changed()                       { return false; }
3261 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3262 int os::numa_get_group_id()                            { return 0; }
3263 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3264   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3265     // Provide an answer for UMA systems
3266     ids[0] = 0;
3267     return 1;
3268   } else {
3269     // check for size bigger than actual groups_num
3270     size = MIN2(size, numa_get_groups_num());
3271     for (int i = 0; i < (int)size; i++) {
3272       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3273     }
3274     return size;
3275   }
3276 }
3277 
3278 bool os::get_page_info(char *start, page_info* info) {
3279   return false;
3280 }
3281 
3282 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3283   return end;
3284 }
3285 
3286 char* os::non_memory_address_word() {
3287   // Must never look like an address returned by reserve_memory,
3288   // even in its subfields (as defined by the CPU immediate fields,
3289   // if the CPU splits constants across multiple instructions).
3290   return (char*)-1;
3291 }
3292 
3293 #define MAX_ERROR_COUNT 100
3294 #define SYS_THREAD_ERROR 0xffffffffUL
3295 
3296 void os::pd_start_thread(Thread* thread) {
3297   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3298   // Returns previous suspend state:
3299   // 0:  Thread was not suspended
3300   // 1:  Thread is running now
3301   // >1: Thread is still suspended.
3302   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3303 }
3304 
3305 class HighResolutionInterval {
3306   // The default timer resolution seems to be 10 milliseconds.
3307   // (Where is this written down?)
3308   // If someone wants to sleep for only a fraction of the default,
3309   // then we set the timer resolution down to 1 millisecond for
3310   // the duration of their interval.
3311   // We carefully set the resolution back, since otherwise we
3312   // seem to incur an overhead (3%?) that we don't need.
3313   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3314   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3315   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3316   // timeBeginPeriod() if the relative error exceeded some threshold.
3317   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3318   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3319   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3320   // resolution timers running.
3321 private:
3322     jlong resolution;
3323 public:
3324   HighResolutionInterval(jlong ms) {
3325     resolution = ms % 10L;
3326     if (resolution != 0) {
3327       MMRESULT result = timeBeginPeriod(1L);
3328     }
3329   }
3330   ~HighResolutionInterval() {
3331     if (resolution != 0) {
3332       MMRESULT result = timeEndPeriod(1L);
3333     }
3334     resolution = 0L;
3335   }
3336 };
3337 
3338 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3339   jlong limit = (jlong) MAXDWORD;
3340 
3341   while(ms > limit) {
3342     int res;
3343     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
3344       return res;
3345     ms -= limit;
3346   }
3347 
3348   assert(thread == Thread::current(),  "thread consistency check");
3349   OSThread* osthread = thread->osthread();
3350   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3351   int result;
3352   if (interruptable) {
3353     assert(thread->is_Java_thread(), "must be java thread");
3354     JavaThread *jt = (JavaThread *) thread;
3355     ThreadBlockInVM tbivm(jt);
3356 
3357     jt->set_suspend_equivalent();
3358     // cleared by handle_special_suspend_equivalent_condition() or
3359     // java_suspend_self() via check_and_wait_while_suspended()
3360 
3361     HANDLE events[1];
3362     events[0] = osthread->interrupt_event();
3363     HighResolutionInterval *phri=NULL;
3364     if(!ForceTimeHighResolution)
3365       phri = new HighResolutionInterval( ms );
3366     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3367       result = OS_TIMEOUT;
3368     } else {
3369       ResetEvent(osthread->interrupt_event());
3370       osthread->set_interrupted(false);
3371       result = OS_INTRPT;
3372     }
3373     delete phri; //if it is NULL, harmless
3374 
3375     // were we externally suspended while we were waiting?
3376     jt->check_and_wait_while_suspended();
3377   } else {
3378     assert(!thread->is_Java_thread(), "must not be java thread");
3379     Sleep((long) ms);
3380     result = OS_TIMEOUT;
3381   }
3382   return result;
3383 }
3384 
3385 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3386 void os::infinite_sleep() {
3387   while (true) {    // sleep forever ...
3388     Sleep(100000);  // ... 100 seconds at a time
3389   }
3390 }
3391 
3392 typedef BOOL (WINAPI * STTSignature)(void) ;
3393 
3394 os::YieldResult os::NakedYield() {
3395   // Use either SwitchToThread() or Sleep(0)
3396   // Consider passing back the return value from SwitchToThread().
3397   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3398     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3399   } else {
3400     Sleep(0);
3401   }
3402   return os::YIELD_UNKNOWN ;
3403 }
3404 
3405 void os::yield() {  os::NakedYield(); }
3406 
3407 void os::yield_all(int attempts) {
3408   // Yields to all threads, including threads with lower priorities
3409   Sleep(1);
3410 }
3411 
3412 // Win32 only gives you access to seven real priorities at a time,
3413 // so we compress Java's ten down to seven.  It would be better
3414 // if we dynamically adjusted relative priorities.
3415 
3416 int os::java_to_os_priority[CriticalPriority + 1] = {
3417   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3418   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3419   THREAD_PRIORITY_LOWEST,                       // 2
3420   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3421   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3422   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3423   THREAD_PRIORITY_NORMAL,                       // 6
3424   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3425   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3426   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3427   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3428   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3429 };
3430 
3431 int prio_policy1[CriticalPriority + 1] = {
3432   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3433   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3434   THREAD_PRIORITY_LOWEST,                       // 2
3435   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3436   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3437   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3438   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3439   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3440   THREAD_PRIORITY_HIGHEST,                      // 8
3441   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3442   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3443   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3444 };
3445 
3446 static int prio_init() {
3447   // If ThreadPriorityPolicy is 1, switch tables
3448   if (ThreadPriorityPolicy == 1) {
3449     int i;
3450     for (i = 0; i < CriticalPriority + 1; i++) {
3451       os::java_to_os_priority[i] = prio_policy1[i];
3452     }
3453   }
3454   if (UseCriticalJavaThreadPriority) {
3455     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
3456   }
3457   return 0;
3458 }
3459 
3460 OSReturn os::set_native_priority(Thread* thread, int priority) {
3461   if (!UseThreadPriorities) return OS_OK;
3462   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3463   return ret ? OS_OK : OS_ERR;
3464 }
3465 
3466 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3467   if ( !UseThreadPriorities ) {
3468     *priority_ptr = java_to_os_priority[NormPriority];
3469     return OS_OK;
3470   }
3471   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3472   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3473     assert(false, "GetThreadPriority failed");
3474     return OS_ERR;
3475   }
3476   *priority_ptr = os_prio;
3477   return OS_OK;
3478 }
3479 
3480 
3481 // Hint to the underlying OS that a task switch would not be good.
3482 // Void return because it's a hint and can fail.
3483 void os::hint_no_preempt() {}
3484 
3485 void os::interrupt(Thread* thread) {
3486   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3487          "possibility of dangling Thread pointer");
3488 
3489   OSThread* osthread = thread->osthread();
3490   osthread->set_interrupted(true);
3491   // More than one thread can get here with the same value of osthread,
3492   // resulting in multiple notifications.  We do, however, want the store
3493   // to interrupted() to be visible to other threads before we post
3494   // the interrupt event.
3495   OrderAccess::release();
3496   SetEvent(osthread->interrupt_event());
3497   // For JSR166:  unpark after setting status
3498   if (thread->is_Java_thread())
3499     ((JavaThread*)thread)->parker()->unpark();
3500 
3501   ParkEvent * ev = thread->_ParkEvent ;
3502   if (ev != NULL) ev->unpark() ;
3503 
3504 }
3505 
3506 
3507 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3508   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3509          "possibility of dangling Thread pointer");
3510 
3511   OSThread* osthread = thread->osthread();
3512   bool interrupted = osthread->interrupted();
3513   // There is no synchronization between the setting of the interrupt
3514   // and it being cleared here. It is critical - see 6535709 - that
3515   // we only clear the interrupt state, and reset the interrupt event,
3516   // if we are going to report that we were indeed interrupted - else
3517   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3518   // depending on the timing
3519   if (interrupted && clear_interrupted) {
3520     osthread->set_interrupted(false);
3521     ResetEvent(osthread->interrupt_event());
3522   } // Otherwise leave the interrupted state alone
3523 
3524   return interrupted;
3525 }
3526 
3527 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3528 ExtendedPC os::get_thread_pc(Thread* thread) {
3529   CONTEXT context;
3530   context.ContextFlags = CONTEXT_CONTROL;
3531   HANDLE handle = thread->osthread()->thread_handle();
3532 #ifdef _M_IA64
3533   assert(0, "Fix get_thread_pc");
3534   return ExtendedPC(NULL);
3535 #else
3536   if (GetThreadContext(handle, &context)) {
3537 #ifdef _M_AMD64
3538     return ExtendedPC((address) context.Rip);
3539 #else
3540     return ExtendedPC((address) context.Eip);
3541 #endif
3542   } else {
3543     return ExtendedPC(NULL);
3544   }
3545 #endif
3546 }
3547 
3548 // GetCurrentThreadId() returns DWORD
3549 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3550 
3551 static int _initial_pid = 0;
3552 
3553 int os::current_process_id()
3554 {
3555   return (_initial_pid ? _initial_pid : _getpid());
3556 }
3557 
3558 int    os::win32::_vm_page_size       = 0;
3559 int    os::win32::_vm_allocation_granularity = 0;
3560 int    os::win32::_processor_type     = 0;
3561 // Processor level is not available on non-NT systems, use vm_version instead
3562 int    os::win32::_processor_level    = 0;
3563 julong os::win32::_physical_memory    = 0;
3564 size_t os::win32::_default_stack_size = 0;
3565 
3566          intx os::win32::_os_thread_limit    = 0;
3567 volatile intx os::win32::_os_thread_count    = 0;
3568 
3569 bool   os::win32::_is_nt              = false;
3570 bool   os::win32::_is_windows_2003    = false;
3571 bool   os::win32::_is_windows_server  = false;
3572 
3573 void os::win32::initialize_system_info() {
3574   SYSTEM_INFO si;
3575   GetSystemInfo(&si);
3576   _vm_page_size    = si.dwPageSize;
3577   _vm_allocation_granularity = si.dwAllocationGranularity;
3578   _processor_type  = si.dwProcessorType;
3579   _processor_level = si.wProcessorLevel;
3580   set_processor_count(si.dwNumberOfProcessors);
3581 
3582   MEMORYSTATUSEX ms;
3583   ms.dwLength = sizeof(ms);
3584 
3585   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3586   // dwMemoryLoad (% of memory in use)
3587   GlobalMemoryStatusEx(&ms);
3588   _physical_memory = ms.ullTotalPhys;
3589 
3590   OSVERSIONINFOEX oi;
3591   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3592   GetVersionEx((OSVERSIONINFO*)&oi);
3593   switch(oi.dwPlatformId) {
3594     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3595     case VER_PLATFORM_WIN32_NT:
3596       _is_nt = true;
3597       {
3598         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3599         if (os_vers == 5002) {
3600           _is_windows_2003 = true;
3601         }
3602         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3603           oi.wProductType == VER_NT_SERVER) {
3604             _is_windows_server = true;
3605         }
3606       }
3607       break;
3608     default: fatal("Unknown platform");
3609   }
3610 
3611   _default_stack_size = os::current_stack_size();
3612   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3613   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3614     "stack size not a multiple of page size");
3615 
3616   initialize_performance_counter();
3617 
3618   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3619   // known to deadlock the system, if the VM issues to thread operations with
3620   // a too high frequency, e.g., such as changing the priorities.
3621   // The 6000 seems to work well - no deadlocks has been notices on the test
3622   // programs that we have seen experience this problem.
3623   if (!os::win32::is_nt()) {
3624     StarvationMonitorInterval = 6000;
3625   }
3626 }
3627 
3628 
3629 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
3630   char path[MAX_PATH];
3631   DWORD size;
3632   DWORD pathLen = (DWORD)sizeof(path);
3633   HINSTANCE result = NULL;
3634 
3635   // only allow library name without path component
3636   assert(strchr(name, '\\') == NULL, "path not allowed");
3637   assert(strchr(name, ':') == NULL, "path not allowed");
3638   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3639     jio_snprintf(ebuf, ebuflen,
3640       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3641     return NULL;
3642   }
3643 
3644   // search system directory
3645   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3646     strcat(path, "\\");
3647     strcat(path, name);
3648     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3649       return result;
3650     }
3651   }
3652 
3653   // try Windows directory
3654   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3655     strcat(path, "\\");
3656     strcat(path, name);
3657     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3658       return result;
3659     }
3660   }
3661 
3662   jio_snprintf(ebuf, ebuflen,
3663     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3664   return NULL;
3665 }
3666 
3667 void os::win32::setmode_streams() {
3668   _setmode(_fileno(stdin), _O_BINARY);
3669   _setmode(_fileno(stdout), _O_BINARY);
3670   _setmode(_fileno(stderr), _O_BINARY);
3671 }
3672 
3673 
3674 bool os::is_debugger_attached() {
3675   return IsDebuggerPresent() ? true : false;
3676 }
3677 
3678 
3679 void os::wait_for_keypress_at_exit(void) {
3680   if (PauseAtExit) {
3681     fprintf(stderr, "Press any key to continue...\n");
3682     fgetc(stdin);
3683   }
3684 }
3685 
3686 
3687 int os::message_box(const char* title, const char* message) {
3688   int result = MessageBox(NULL, message, title,
3689                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3690   return result == IDYES;
3691 }
3692 
3693 int os::allocate_thread_local_storage() {
3694   return TlsAlloc();
3695 }
3696 
3697 
3698 void os::free_thread_local_storage(int index) {
3699   TlsFree(index);
3700 }
3701 
3702 
3703 void os::thread_local_storage_at_put(int index, void* value) {
3704   TlsSetValue(index, value);
3705   assert(thread_local_storage_at(index) == value, "Just checking");
3706 }
3707 
3708 
3709 void* os::thread_local_storage_at(int index) {
3710   return TlsGetValue(index);
3711 }
3712 
3713 
3714 #ifndef PRODUCT
3715 #ifndef _WIN64
3716 // Helpers to check whether NX protection is enabled
3717 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3718   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3719       pex->ExceptionRecord->NumberParameters > 0 &&
3720       pex->ExceptionRecord->ExceptionInformation[0] ==
3721       EXCEPTION_INFO_EXEC_VIOLATION) {
3722     return EXCEPTION_EXECUTE_HANDLER;
3723   }
3724   return EXCEPTION_CONTINUE_SEARCH;
3725 }
3726 
3727 void nx_check_protection() {
3728   // If NX is enabled we'll get an exception calling into code on the stack
3729   char code[] = { (char)0xC3 }; // ret
3730   void *code_ptr = (void *)code;
3731   __try {
3732     __asm call code_ptr
3733   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3734     tty->print_raw_cr("NX protection detected.");
3735   }
3736 }
3737 #endif // _WIN64
3738 #endif // PRODUCT
3739 
3740 // this is called _before_ the global arguments have been parsed
3741 void os::init(void) {
3742   _initial_pid = _getpid();
3743 
3744   init_random(1234567);
3745 
3746   win32::initialize_system_info();
3747   win32::setmode_streams();
3748   init_page_sizes((size_t) win32::vm_page_size());
3749 
3750   // For better scalability on MP systems (must be called after initialize_system_info)
3751 #ifndef PRODUCT
3752   if (is_MP()) {
3753     NoYieldsInMicrolock = true;
3754   }
3755 #endif
3756   // This may be overridden later when argument processing is done.
3757   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3758     os::win32::is_windows_2003());
3759 
3760   // Initialize main_process and main_thread
3761   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3762  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3763                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3764     fatal("DuplicateHandle failed\n");
3765   }
3766   main_thread_id = (int) GetCurrentThreadId();
3767 }
3768 
3769 // To install functions for atexit processing
3770 extern "C" {
3771   static void perfMemory_exit_helper() {
3772     perfMemory_exit();
3773   }
3774 }
3775 
3776 static jint initSock();
3777 
3778 // this is called _after_ the global arguments have been parsed
3779 jint os::init_2(void) {
3780   // Allocate a single page and mark it as readable for safepoint polling
3781   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3782   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3783 
3784   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3785   guarantee( return_page != NULL, "Commit Failed for polling page");
3786 
3787   os::set_polling_page( polling_page );
3788 
3789 #ifndef PRODUCT
3790   if( Verbose && PrintMiscellaneous )
3791     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3792 #endif
3793 
3794   if (!UseMembar) {
3795     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3796     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3797 
3798     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3799     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3800 
3801     os::set_memory_serialize_page( mem_serialize_page );
3802 
3803 #ifndef PRODUCT
3804     if(Verbose && PrintMiscellaneous)
3805       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3806 #endif
3807   }
3808 
3809   os::large_page_init();
3810 
3811   // Setup Windows Exceptions
3812 
3813   // for debugging float code generation bugs
3814   if (ForceFloatExceptions) {
3815 #ifndef  _WIN64
3816     static long fp_control_word = 0;
3817     __asm { fstcw fp_control_word }
3818     // see Intel PPro Manual, Vol. 2, p 7-16
3819     const long precision = 0x20;
3820     const long underflow = 0x10;
3821     const long overflow  = 0x08;
3822     const long zero_div  = 0x04;
3823     const long denorm    = 0x02;
3824     const long invalid   = 0x01;
3825     fp_control_word |= invalid;
3826     __asm { fldcw fp_control_word }
3827 #endif
3828   }
3829 
3830   // If stack_commit_size is 0, windows will reserve the default size,
3831   // but only commit a small portion of it.
3832   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3833   size_t default_reserve_size = os::win32::default_stack_size();
3834   size_t actual_reserve_size = stack_commit_size;
3835   if (stack_commit_size < default_reserve_size) {
3836     // If stack_commit_size == 0, we want this too
3837     actual_reserve_size = default_reserve_size;
3838   }
3839 
3840   // Check minimum allowable stack size for thread creation and to initialize
3841   // the java system classes, including StackOverflowError - depends on page
3842   // size.  Add a page for compiler2 recursion in main thread.
3843   // Add in 2*BytesPerWord times page size to account for VM stack during
3844   // class initialization depending on 32 or 64 bit VM.
3845   size_t min_stack_allowed =
3846             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3847             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3848   if (actual_reserve_size < min_stack_allowed) {
3849     tty->print_cr("\nThe stack size specified is too small, "
3850                   "Specify at least %dk",
3851                   min_stack_allowed / K);
3852     return JNI_ERR;
3853   }
3854 
3855   JavaThread::set_stack_size_at_create(stack_commit_size);
3856 
3857   // Calculate theoretical max. size of Threads to guard gainst artifical
3858   // out-of-memory situations, where all available address-space has been
3859   // reserved by thread stacks.
3860   assert(actual_reserve_size != 0, "Must have a stack");
3861 
3862   // Calculate the thread limit when we should start doing Virtual Memory
3863   // banging. Currently when the threads will have used all but 200Mb of space.
3864   //
3865   // TODO: consider performing a similar calculation for commit size instead
3866   // as reserve size, since on a 64-bit platform we'll run into that more
3867   // often than running out of virtual memory space.  We can use the
3868   // lower value of the two calculations as the os_thread_limit.
3869   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3870   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3871 
3872   // at exit methods are called in the reverse order of their registration.
3873   // there is no limit to the number of functions registered. atexit does
3874   // not set errno.
3875 
3876   if (PerfAllowAtExitRegistration) {
3877     // only register atexit functions if PerfAllowAtExitRegistration is set.
3878     // atexit functions can be delayed until process exit time, which
3879     // can be problematic for embedded VM situations. Embedded VMs should
3880     // call DestroyJavaVM() to assure that VM resources are released.
3881 
3882     // note: perfMemory_exit_helper atexit function may be removed in
3883     // the future if the appropriate cleanup code can be added to the
3884     // VM_Exit VMOperation's doit method.
3885     if (atexit(perfMemory_exit_helper) != 0) {
3886       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3887     }
3888   }
3889 
3890 #ifndef _WIN64
3891   // Print something if NX is enabled (win32 on AMD64)
3892   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3893 #endif
3894 
3895   // initialize thread priority policy
3896   prio_init();
3897 
3898   if (UseNUMA && !ForceNUMA) {
3899     UseNUMA = false; // We don't fully support this yet
3900   }
3901 
3902   if (UseNUMAInterleaving) {
3903     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
3904     bool success = numa_interleaving_init();
3905     if (!success) UseNUMAInterleaving = false;
3906   }
3907 
3908   if (initSock() != JNI_OK) {
3909     return JNI_ERR;
3910   }
3911 
3912   return JNI_OK;
3913 }
3914 
3915 void os::init_3(void) {
3916   return;
3917 }
3918 
3919 // Mark the polling page as unreadable
3920 void os::make_polling_page_unreadable(void) {
3921   DWORD old_status;
3922   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3923     fatal("Could not disable polling page");
3924 };
3925 
3926 // Mark the polling page as readable
3927 void os::make_polling_page_readable(void) {
3928   DWORD old_status;
3929   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3930     fatal("Could not enable polling page");
3931 };
3932 
3933 
3934 int os::stat(const char *path, struct stat *sbuf) {
3935   char pathbuf[MAX_PATH];
3936   if (strlen(path) > MAX_PATH - 1) {
3937     errno = ENAMETOOLONG;
3938     return -1;
3939   }
3940   os::native_path(strcpy(pathbuf, path));
3941   int ret = ::stat(pathbuf, sbuf);
3942   if (sbuf != NULL && UseUTCFileTimestamp) {
3943     // Fix for 6539723.  st_mtime returned from stat() is dependent on
3944     // the system timezone and so can return different values for the
3945     // same file if/when daylight savings time changes.  This adjustment
3946     // makes sure the same timestamp is returned regardless of the TZ.
3947     //
3948     // See:
3949     // http://msdn.microsoft.com/library/
3950     //   default.asp?url=/library/en-us/sysinfo/base/
3951     //   time_zone_information_str.asp
3952     // and
3953     // http://msdn.microsoft.com/library/default.asp?url=
3954     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
3955     //
3956     // NOTE: there is a insidious bug here:  If the timezone is changed
3957     // after the call to stat() but before 'GetTimeZoneInformation()', then
3958     // the adjustment we do here will be wrong and we'll return the wrong
3959     // value (which will likely end up creating an invalid class data
3960     // archive).  Absent a better API for this, or some time zone locking
3961     // mechanism, we'll have to live with this risk.
3962     TIME_ZONE_INFORMATION tz;
3963     DWORD tzid = GetTimeZoneInformation(&tz);
3964     int daylightBias =
3965       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
3966     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
3967   }
3968   return ret;
3969 }
3970 
3971 
3972 #define FT2INT64(ft) \
3973   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
3974 
3975 
3976 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3977 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3978 // of a thread.
3979 //
3980 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3981 // the fast estimate available on the platform.
3982 
3983 // current_thread_cpu_time() is not optimized for Windows yet
3984 jlong os::current_thread_cpu_time() {
3985   // return user + sys since the cost is the same
3986   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
3987 }
3988 
3989 jlong os::thread_cpu_time(Thread* thread) {
3990   // consistent with what current_thread_cpu_time() returns.
3991   return os::thread_cpu_time(thread, true /* user+sys */);
3992 }
3993 
3994 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3995   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3996 }
3997 
3998 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
3999   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4000   // If this function changes, os::is_thread_cpu_time_supported() should too
4001   if (os::win32::is_nt()) {
4002     FILETIME CreationTime;
4003     FILETIME ExitTime;
4004     FILETIME KernelTime;
4005     FILETIME UserTime;
4006 
4007     if ( GetThreadTimes(thread->osthread()->thread_handle(),
4008                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4009       return -1;
4010     else
4011       if (user_sys_cpu_time) {
4012         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4013       } else {
4014         return FT2INT64(UserTime) * 100;
4015       }
4016   } else {
4017     return (jlong) timeGetTime() * 1000000;
4018   }
4019 }
4020 
4021 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4022   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4023   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4024   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4025   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4026 }
4027 
4028 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4029   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4030   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4031   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4032   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4033 }
4034 
4035 bool os::is_thread_cpu_time_supported() {
4036   // see os::thread_cpu_time
4037   if (os::win32::is_nt()) {
4038     FILETIME CreationTime;
4039     FILETIME ExitTime;
4040     FILETIME KernelTime;
4041     FILETIME UserTime;
4042 
4043     if ( GetThreadTimes(GetCurrentThread(),
4044                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4045       return false;
4046     else
4047       return true;
4048   } else {
4049     return false;
4050   }
4051 }
4052 
4053 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4054 // It does have primitives (PDH API) to get CPU usage and run queue length.
4055 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4056 // If we wanted to implement loadavg on Windows, we have a few options:
4057 //
4058 // a) Query CPU usage and run queue length and "fake" an answer by
4059 //    returning the CPU usage if it's under 100%, and the run queue
4060 //    length otherwise.  It turns out that querying is pretty slow
4061 //    on Windows, on the order of 200 microseconds on a fast machine.
4062 //    Note that on the Windows the CPU usage value is the % usage
4063 //    since the last time the API was called (and the first call
4064 //    returns 100%), so we'd have to deal with that as well.
4065 //
4066 // b) Sample the "fake" answer using a sampling thread and store
4067 //    the answer in a global variable.  The call to loadavg would
4068 //    just return the value of the global, avoiding the slow query.
4069 //
4070 // c) Sample a better answer using exponential decay to smooth the
4071 //    value.  This is basically the algorithm used by UNIX kernels.
4072 //
4073 // Note that sampling thread starvation could affect both (b) and (c).
4074 int os::loadavg(double loadavg[], int nelem) {
4075   return -1;
4076 }
4077 
4078 
4079 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4080 bool os::dont_yield() {
4081   return DontYieldALot;
4082 }
4083 
4084 // This method is a slightly reworked copy of JDK's sysOpen
4085 // from src/windows/hpi/src/sys_api_md.c
4086 
4087 int os::open(const char *path, int oflag, int mode) {
4088   char pathbuf[MAX_PATH];
4089 
4090   if (strlen(path) > MAX_PATH - 1) {
4091     errno = ENAMETOOLONG;
4092           return -1;
4093   }
4094   os::native_path(strcpy(pathbuf, path));
4095   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4096 }
4097 
4098 // Is a (classpath) directory empty?
4099 bool os::dir_is_empty(const char* path) {
4100   WIN32_FIND_DATA fd;
4101   HANDLE f = FindFirstFile(path, &fd);
4102   if (f == INVALID_HANDLE_VALUE) {
4103     return true;
4104   }
4105   FindClose(f);
4106   return false;
4107 }
4108 
4109 // create binary file, rewriting existing file if required
4110 int os::create_binary_file(const char* path, bool rewrite_existing) {
4111   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4112   if (!rewrite_existing) {
4113     oflags |= _O_EXCL;
4114   }
4115   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4116 }
4117 
4118 // return current position of file pointer
4119 jlong os::current_file_offset(int fd) {
4120   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4121 }
4122 
4123 // move file pointer to the specified offset
4124 jlong os::seek_to_file_offset(int fd, jlong offset) {
4125   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4126 }
4127 
4128 
4129 jlong os::lseek(int fd, jlong offset, int whence) {
4130   return (jlong) ::_lseeki64(fd, offset, whence);
4131 }
4132 
4133 // This method is a slightly reworked copy of JDK's sysNativePath
4134 // from src/windows/hpi/src/path_md.c
4135 
4136 /* Convert a pathname to native format.  On win32, this involves forcing all
4137    separators to be '\\' rather than '/' (both are legal inputs, but Win95
4138    sometimes rejects '/') and removing redundant separators.  The input path is
4139    assumed to have been converted into the character encoding used by the local
4140    system.  Because this might be a double-byte encoding, care is taken to
4141    treat double-byte lead characters correctly.
4142 
4143    This procedure modifies the given path in place, as the result is never
4144    longer than the original.  There is no error return; this operation always
4145    succeeds. */
4146 char * os::native_path(char *path) {
4147   char *src = path, *dst = path, *end = path;
4148   char *colon = NULL;           /* If a drive specifier is found, this will
4149                                         point to the colon following the drive
4150                                         letter */
4151 
4152   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
4153   assert(((!::IsDBCSLeadByte('/'))
4154     && (!::IsDBCSLeadByte('\\'))
4155     && (!::IsDBCSLeadByte(':'))),
4156     "Illegal lead byte");
4157 
4158   /* Check for leading separators */
4159 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4160   while (isfilesep(*src)) {
4161     src++;
4162   }
4163 
4164   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4165     /* Remove leading separators if followed by drive specifier.  This
4166       hack is necessary to support file URLs containing drive
4167       specifiers (e.g., "file://c:/path").  As a side effect,
4168       "/c:/path" can be used as an alternative to "c:/path". */
4169     *dst++ = *src++;
4170     colon = dst;
4171     *dst++ = ':';
4172     src++;
4173   } else {
4174     src = path;
4175     if (isfilesep(src[0]) && isfilesep(src[1])) {
4176       /* UNC pathname: Retain first separator; leave src pointed at
4177          second separator so that further separators will be collapsed
4178          into the second separator.  The result will be a pathname
4179          beginning with "\\\\" followed (most likely) by a host name. */
4180       src = dst = path + 1;
4181       path[0] = '\\';     /* Force first separator to '\\' */
4182     }
4183   }
4184 
4185   end = dst;
4186 
4187   /* Remove redundant separators from remainder of path, forcing all
4188       separators to be '\\' rather than '/'. Also, single byte space
4189       characters are removed from the end of the path because those
4190       are not legal ending characters on this operating system.
4191   */
4192   while (*src != '\0') {
4193     if (isfilesep(*src)) {
4194       *dst++ = '\\'; src++;
4195       while (isfilesep(*src)) src++;
4196       if (*src == '\0') {
4197         /* Check for trailing separator */
4198         end = dst;
4199         if (colon == dst - 2) break;                      /* "z:\\" */
4200         if (dst == path + 1) break;                       /* "\\" */
4201         if (dst == path + 2 && isfilesep(path[0])) {
4202           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
4203             beginning of a UNC pathname.  Even though it is not, by
4204             itself, a valid UNC pathname, we leave it as is in order
4205             to be consistent with the path canonicalizer as well
4206             as the win32 APIs, which treat this case as an invalid
4207             UNC pathname rather than as an alias for the root
4208             directory of the current drive. */
4209           break;
4210         }
4211         end = --dst;  /* Path does not denote a root directory, so
4212                                     remove trailing separator */
4213         break;
4214       }
4215       end = dst;
4216     } else {
4217       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
4218         *dst++ = *src++;
4219         if (*src) *dst++ = *src++;
4220         end = dst;
4221       } else {         /* Copy a single-byte character */
4222         char c = *src++;
4223         *dst++ = c;
4224         /* Space is not a legal ending character */
4225         if (c != ' ') end = dst;
4226       }
4227     }
4228   }
4229 
4230   *end = '\0';
4231 
4232   /* For "z:", add "." to work around a bug in the C runtime library */
4233   if (colon == dst - 1) {
4234           path[2] = '.';
4235           path[3] = '\0';
4236   }
4237 
4238   #ifdef DEBUG
4239     jio_fprintf(stderr, "sysNativePath: %s\n", path);
4240   #endif DEBUG
4241   return path;
4242 }
4243 
4244 // This code is a copy of JDK's sysSetLength
4245 // from src/windows/hpi/src/sys_api_md.c
4246 
4247 int os::ftruncate(int fd, jlong length) {
4248   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4249   long high = (long)(length >> 32);
4250   DWORD ret;
4251 
4252   if (h == (HANDLE)(-1)) {
4253     return -1;
4254   }
4255 
4256   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4257   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4258       return -1;
4259   }
4260 
4261   if (::SetEndOfFile(h) == FALSE) {
4262     return -1;
4263   }
4264 
4265   return 0;
4266 }
4267 
4268 
4269 // This code is a copy of JDK's sysSync
4270 // from src/windows/hpi/src/sys_api_md.c
4271 // except for the legacy workaround for a bug in Win 98
4272 
4273 int os::fsync(int fd) {
4274   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4275 
4276   if ( (!::FlushFileBuffers(handle)) &&
4277          (GetLastError() != ERROR_ACCESS_DENIED) ) {
4278     /* from winerror.h */
4279     return -1;
4280   }
4281   return 0;
4282 }
4283 
4284 static int nonSeekAvailable(int, long *);
4285 static int stdinAvailable(int, long *);
4286 
4287 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4288 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4289 
4290 // This code is a copy of JDK's sysAvailable
4291 // from src/windows/hpi/src/sys_api_md.c
4292 
4293 int os::available(int fd, jlong *bytes) {
4294   jlong cur, end;
4295   struct _stati64 stbuf64;
4296 
4297   if (::_fstati64(fd, &stbuf64) >= 0) {
4298     int mode = stbuf64.st_mode;
4299     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4300       int ret;
4301       long lpbytes;
4302       if (fd == 0) {
4303         ret = stdinAvailable(fd, &lpbytes);
4304       } else {
4305         ret = nonSeekAvailable(fd, &lpbytes);
4306       }
4307       (*bytes) = (jlong)(lpbytes);
4308       return ret;
4309     }
4310     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4311       return FALSE;
4312     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4313       return FALSE;
4314     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4315       return FALSE;
4316     }
4317     *bytes = end - cur;
4318     return TRUE;
4319   } else {
4320     return FALSE;
4321   }
4322 }
4323 
4324 // This code is a copy of JDK's nonSeekAvailable
4325 // from src/windows/hpi/src/sys_api_md.c
4326 
4327 static int nonSeekAvailable(int fd, long *pbytes) {
4328   /* This is used for available on non-seekable devices
4329     * (like both named and anonymous pipes, such as pipes
4330     *  connected to an exec'd process).
4331     * Standard Input is a special case.
4332     *
4333     */
4334   HANDLE han;
4335 
4336   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4337     return FALSE;
4338   }
4339 
4340   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4341         /* PeekNamedPipe fails when at EOF.  In that case we
4342          * simply make *pbytes = 0 which is consistent with the
4343          * behavior we get on Solaris when an fd is at EOF.
4344          * The only alternative is to raise an Exception,
4345          * which isn't really warranted.
4346          */
4347     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4348       return FALSE;
4349     }
4350     *pbytes = 0;
4351   }
4352   return TRUE;
4353 }
4354 
4355 #define MAX_INPUT_EVENTS 2000
4356 
4357 // This code is a copy of JDK's stdinAvailable
4358 // from src/windows/hpi/src/sys_api_md.c
4359 
4360 static int stdinAvailable(int fd, long *pbytes) {
4361   HANDLE han;
4362   DWORD numEventsRead = 0;      /* Number of events read from buffer */
4363   DWORD numEvents = 0;  /* Number of events in buffer */
4364   DWORD i = 0;          /* Loop index */
4365   DWORD curLength = 0;  /* Position marker */
4366   DWORD actualLength = 0;       /* Number of bytes readable */
4367   BOOL error = FALSE;         /* Error holder */
4368   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
4369 
4370   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4371         return FALSE;
4372   }
4373 
4374   /* Construct an array of input records in the console buffer */
4375   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4376   if (error == 0) {
4377     return nonSeekAvailable(fd, pbytes);
4378   }
4379 
4380   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
4381   if (numEvents > MAX_INPUT_EVENTS) {
4382     numEvents = MAX_INPUT_EVENTS;
4383   }
4384 
4385   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4386   if (lpBuffer == NULL) {
4387     return FALSE;
4388   }
4389 
4390   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4391   if (error == 0) {
4392     os::free(lpBuffer, mtInternal);
4393     return FALSE;
4394   }
4395 
4396   /* Examine input records for the number of bytes available */
4397   for(i=0; i<numEvents; i++) {
4398     if (lpBuffer[i].EventType == KEY_EVENT) {
4399 
4400       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4401                                       &(lpBuffer[i].Event);
4402       if (keyRecord->bKeyDown == TRUE) {
4403         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4404         curLength++;
4405         if (*keyPressed == '\r') {
4406           actualLength = curLength;
4407         }
4408       }
4409     }
4410   }
4411 
4412   if(lpBuffer != NULL) {
4413     os::free(lpBuffer, mtInternal);
4414   }
4415 
4416   *pbytes = (long) actualLength;
4417   return TRUE;
4418 }
4419 
4420 // Map a block of memory.
4421 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4422                      char *addr, size_t bytes, bool read_only,
4423                      bool allow_exec) {
4424   HANDLE hFile;
4425   char* base;
4426 
4427   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4428                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4429   if (hFile == NULL) {
4430     if (PrintMiscellaneous && Verbose) {
4431       DWORD err = GetLastError();
4432       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4433     }
4434     return NULL;
4435   }
4436 
4437   if (allow_exec) {
4438     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4439     // unless it comes from a PE image (which the shared archive is not.)
4440     // Even VirtualProtect refuses to give execute access to mapped memory
4441     // that was not previously executable.
4442     //
4443     // Instead, stick the executable region in anonymous memory.  Yuck.
4444     // Penalty is that ~4 pages will not be shareable - in the future
4445     // we might consider DLLizing the shared archive with a proper PE
4446     // header so that mapping executable + sharing is possible.
4447 
4448     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4449                                 PAGE_READWRITE);
4450     if (base == NULL) {
4451       if (PrintMiscellaneous && Verbose) {
4452         DWORD err = GetLastError();
4453         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4454       }
4455       CloseHandle(hFile);
4456       return NULL;
4457     }
4458 
4459     DWORD bytes_read;
4460     OVERLAPPED overlapped;
4461     overlapped.Offset = (DWORD)file_offset;
4462     overlapped.OffsetHigh = 0;
4463     overlapped.hEvent = NULL;
4464     // ReadFile guarantees that if the return value is true, the requested
4465     // number of bytes were read before returning.
4466     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4467     if (!res) {
4468       if (PrintMiscellaneous && Verbose) {
4469         DWORD err = GetLastError();
4470         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4471       }
4472       release_memory(base, bytes);
4473       CloseHandle(hFile);
4474       return NULL;
4475     }
4476   } else {
4477     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4478                                     NULL /*file_name*/);
4479     if (hMap == NULL) {
4480       if (PrintMiscellaneous && Verbose) {
4481         DWORD err = GetLastError();
4482         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4483       }
4484       CloseHandle(hFile);
4485       return NULL;
4486     }
4487 
4488     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4489     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4490                                   (DWORD)bytes, addr);
4491     if (base == NULL) {
4492       if (PrintMiscellaneous && Verbose) {
4493         DWORD err = GetLastError();
4494         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4495       }
4496       CloseHandle(hMap);
4497       CloseHandle(hFile);
4498       return NULL;
4499     }
4500 
4501     if (CloseHandle(hMap) == 0) {
4502       if (PrintMiscellaneous && Verbose) {
4503         DWORD err = GetLastError();
4504         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4505       }
4506       CloseHandle(hFile);
4507       return base;
4508     }
4509   }
4510 
4511   if (allow_exec) {
4512     DWORD old_protect;
4513     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4514     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4515 
4516     if (!res) {
4517       if (PrintMiscellaneous && Verbose) {
4518         DWORD err = GetLastError();
4519         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4520       }
4521       // Don't consider this a hard error, on IA32 even if the
4522       // VirtualProtect fails, we should still be able to execute
4523       CloseHandle(hFile);
4524       return base;
4525     }
4526   }
4527 
4528   if (CloseHandle(hFile) == 0) {
4529     if (PrintMiscellaneous && Verbose) {
4530       DWORD err = GetLastError();
4531       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4532     }
4533     return base;
4534   }
4535 
4536   return base;
4537 }
4538 
4539 
4540 // Remap a block of memory.
4541 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4542                        char *addr, size_t bytes, bool read_only,
4543                        bool allow_exec) {
4544   // This OS does not allow existing memory maps to be remapped so we
4545   // have to unmap the memory before we remap it.
4546   if (!os::unmap_memory(addr, bytes)) {
4547     return NULL;
4548   }
4549 
4550   // There is a very small theoretical window between the unmap_memory()
4551   // call above and the map_memory() call below where a thread in native
4552   // code may be able to access an address that is no longer mapped.
4553 
4554   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4555            read_only, allow_exec);
4556 }
4557 
4558 
4559 // Unmap a block of memory.
4560 // Returns true=success, otherwise false.
4561 
4562 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4563   BOOL result = UnmapViewOfFile(addr);
4564   if (result == 0) {
4565     if (PrintMiscellaneous && Verbose) {
4566       DWORD err = GetLastError();
4567       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4568     }
4569     return false;
4570   }
4571   return true;
4572 }
4573 
4574 void os::pause() {
4575   char filename[MAX_PATH];
4576   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4577     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4578   } else {
4579     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4580   }
4581 
4582   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4583   if (fd != -1) {
4584     struct stat buf;
4585     ::close(fd);
4586     while (::stat(filename, &buf) == 0) {
4587       Sleep(100);
4588     }
4589   } else {
4590     jio_fprintf(stderr,
4591       "Could not open pause file '%s', continuing immediately.\n", filename);
4592   }
4593 }
4594 
4595 // An Event wraps a win32 "CreateEvent" kernel handle.
4596 //
4597 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4598 //
4599 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4600 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4601 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4602 //     In addition, an unpark() operation might fetch the handle field, but the
4603 //     event could recycle between the fetch and the SetEvent() operation.
4604 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4605 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4606 //     on an stale but recycled handle would be harmless, but in practice this might
4607 //     confuse other non-Sun code, so it's not a viable approach.
4608 //
4609 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4610 //     with the Event.  The event handle is never closed.  This could be construed
4611 //     as handle leakage, but only up to the maximum # of threads that have been extant
4612 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4613 //     permit a process to have hundreds of thousands of open handles.
4614 //
4615 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4616 //     and release unused handles.
4617 //
4618 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4619 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4620 //
4621 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4622 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4623 //
4624 // We use (2).
4625 //
4626 // TODO-FIXME:
4627 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4628 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4629 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4630 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4631 //     into a single win32 CreateEvent() handle.
4632 //
4633 // _Event transitions in park()
4634 //   -1 => -1 : illegal
4635 //    1 =>  0 : pass - return immediately
4636 //    0 => -1 : block
4637 //
4638 // _Event serves as a restricted-range semaphore :
4639 //    -1 : thread is blocked
4640 //     0 : neutral  - thread is running or ready
4641 //     1 : signaled - thread is running or ready
4642 //
4643 // Another possible encoding of _Event would be
4644 // with explicit "PARKED" and "SIGNALED" bits.
4645 
4646 int os::PlatformEvent::park (jlong Millis) {
4647     guarantee (_ParkHandle != NULL , "Invariant") ;
4648     guarantee (Millis > 0          , "Invariant") ;
4649     int v ;
4650 
4651     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4652     // the initial park() operation.
4653 
4654     for (;;) {
4655         v = _Event ;
4656         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4657     }
4658     guarantee ((v == 0) || (v == 1), "invariant") ;
4659     if (v != 0) return OS_OK ;
4660 
4661     // Do this the hard way by blocking ...
4662     // TODO: consider a brief spin here, gated on the success of recent
4663     // spin attempts by this thread.
4664     //
4665     // We decompose long timeouts into series of shorter timed waits.
4666     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4667     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4668     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4669     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4670     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4671     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4672     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4673     // for the already waited time.  This policy does not admit any new outcomes.
4674     // In the future, however, we might want to track the accumulated wait time and
4675     // adjust Millis accordingly if we encounter a spurious wakeup.
4676 
4677     const int MAXTIMEOUT = 0x10000000 ;
4678     DWORD rv = WAIT_TIMEOUT ;
4679     while (_Event < 0 && Millis > 0) {
4680        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
4681        if (Millis > MAXTIMEOUT) {
4682           prd = MAXTIMEOUT ;
4683        }
4684        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
4685        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
4686        if (rv == WAIT_TIMEOUT) {
4687            Millis -= prd ;
4688        }
4689     }
4690     v = _Event ;
4691     _Event = 0 ;
4692     // see comment at end of os::PlatformEvent::park() below:
4693     OrderAccess::fence() ;
4694     // If we encounter a nearly simultanous timeout expiry and unpark()
4695     // we return OS_OK indicating we awoke via unpark().
4696     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4697     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
4698 }
4699 
4700 void os::PlatformEvent::park () {
4701     guarantee (_ParkHandle != NULL, "Invariant") ;
4702     // Invariant: Only the thread associated with the Event/PlatformEvent
4703     // may call park().
4704     int v ;
4705     for (;;) {
4706         v = _Event ;
4707         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4708     }
4709     guarantee ((v == 0) || (v == 1), "invariant") ;
4710     if (v != 0) return ;
4711 
4712     // Do this the hard way by blocking ...
4713     // TODO: consider a brief spin here, gated on the success of recent
4714     // spin attempts by this thread.
4715     while (_Event < 0) {
4716        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
4717        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
4718     }
4719 
4720     // Usually we'll find _Event == 0 at this point, but as
4721     // an optional optimization we clear it, just in case can
4722     // multiple unpark() operations drove _Event up to 1.
4723     _Event = 0 ;
4724     OrderAccess::fence() ;
4725     guarantee (_Event >= 0, "invariant") ;
4726 }
4727 
4728 void os::PlatformEvent::unpark() {
4729   guarantee (_ParkHandle != NULL, "Invariant") ;
4730 
4731   // Transitions for _Event:
4732   //    0 :=> 1
4733   //    1 :=> 1
4734   //   -1 :=> either 0 or 1; must signal target thread
4735   //          That is, we can safely transition _Event from -1 to either
4736   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4737   //          unpark() calls.
4738   // See also: "Semaphores in Plan 9" by Mullender & Cox
4739   //
4740   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4741   // that it will take two back-to-back park() calls for the owning
4742   // thread to block. This has the benefit of forcing a spurious return
4743   // from the first park() call after an unpark() call which will help
4744   // shake out uses of park() and unpark() without condition variables.
4745 
4746   if (Atomic::xchg(1, &_Event) >= 0) return;
4747 
4748   ::SetEvent(_ParkHandle);
4749 }
4750 
4751 
4752 // JSR166
4753 // -------------------------------------------------------
4754 
4755 /*
4756  * The Windows implementation of Park is very straightforward: Basic
4757  * operations on Win32 Events turn out to have the right semantics to
4758  * use them directly. We opportunistically resuse the event inherited
4759  * from Monitor.
4760  */
4761 
4762 
4763 void Parker::park(bool isAbsolute, jlong time) {
4764   guarantee (_ParkEvent != NULL, "invariant") ;
4765   // First, demultiplex/decode time arguments
4766   if (time < 0) { // don't wait
4767     return;
4768   }
4769   else if (time == 0 && !isAbsolute) {
4770     time = INFINITE;
4771   }
4772   else if  (isAbsolute) {
4773     time -= os::javaTimeMillis(); // convert to relative time
4774     if (time <= 0) // already elapsed
4775       return;
4776   }
4777   else { // relative
4778     time /= 1000000; // Must coarsen from nanos to millis
4779     if (time == 0)   // Wait for the minimal time unit if zero
4780       time = 1;
4781   }
4782 
4783   JavaThread* thread = (JavaThread*)(Thread::current());
4784   assert(thread->is_Java_thread(), "Must be JavaThread");
4785   JavaThread *jt = (JavaThread *)thread;
4786 
4787   // Don't wait if interrupted or already triggered
4788   if (Thread::is_interrupted(thread, false) ||
4789     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4790     ResetEvent(_ParkEvent);
4791     return;
4792   }
4793   else {
4794     ThreadBlockInVM tbivm(jt);
4795     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4796     jt->set_suspend_equivalent();
4797 
4798     WaitForSingleObject(_ParkEvent,  time);
4799     ResetEvent(_ParkEvent);
4800 
4801     // If externally suspended while waiting, re-suspend
4802     if (jt->handle_special_suspend_equivalent_condition()) {
4803       jt->java_suspend_self();
4804     }
4805   }
4806 }
4807 
4808 void Parker::unpark() {
4809   guarantee (_ParkEvent != NULL, "invariant") ;
4810   SetEvent(_ParkEvent);
4811 }
4812 
4813 // Run the specified command in a separate process. Return its exit value,
4814 // or -1 on failure (e.g. can't create a new process).
4815 int os::fork_and_exec(char* cmd) {
4816   STARTUPINFO si;
4817   PROCESS_INFORMATION pi;
4818 
4819   memset(&si, 0, sizeof(si));
4820   si.cb = sizeof(si);
4821   memset(&pi, 0, sizeof(pi));
4822   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4823                             cmd,    // command line
4824                             NULL,   // process security attribute
4825                             NULL,   // thread security attribute
4826                             TRUE,   // inherits system handles
4827                             0,      // no creation flags
4828                             NULL,   // use parent's environment block
4829                             NULL,   // use parent's starting directory
4830                             &si,    // (in) startup information
4831                             &pi);   // (out) process information
4832 
4833   if (rslt) {
4834     // Wait until child process exits.
4835     WaitForSingleObject(pi.hProcess, INFINITE);
4836 
4837     DWORD exit_code;
4838     GetExitCodeProcess(pi.hProcess, &exit_code);
4839 
4840     // Close process and thread handles.
4841     CloseHandle(pi.hProcess);
4842     CloseHandle(pi.hThread);
4843 
4844     return (int)exit_code;
4845   } else {
4846     return -1;
4847   }
4848 }
4849 
4850 //--------------------------------------------------------------------------------------------------
4851 // Non-product code
4852 
4853 static int mallocDebugIntervalCounter = 0;
4854 static int mallocDebugCounter = 0;
4855 bool os::check_heap(bool force) {
4856   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4857   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4858     // Note: HeapValidate executes two hardware breakpoints when it finds something
4859     // wrong; at these points, eax contains the address of the offending block (I think).
4860     // To get to the exlicit error message(s) below, just continue twice.
4861     HANDLE heap = GetProcessHeap();
4862     { HeapLock(heap);
4863       PROCESS_HEAP_ENTRY phe;
4864       phe.lpData = NULL;
4865       while (HeapWalk(heap, &phe) != 0) {
4866         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
4867             !HeapValidate(heap, 0, phe.lpData)) {
4868           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
4869           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
4870           fatal("corrupted C heap");
4871         }
4872       }
4873       DWORD err = GetLastError();
4874       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
4875         fatal(err_msg("heap walk aborted with error %d", err));
4876       }
4877       HeapUnlock(heap);
4878     }
4879     mallocDebugIntervalCounter = 0;
4880   }
4881   return true;
4882 }
4883 
4884 
4885 bool os::find(address addr, outputStream* st) {
4886   // Nothing yet
4887   return false;
4888 }
4889 
4890 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
4891   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
4892 
4893   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
4894     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
4895     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
4896     address addr = (address) exceptionRecord->ExceptionInformation[1];
4897 
4898     if (os::is_memory_serialize_page(thread, addr))
4899       return EXCEPTION_CONTINUE_EXECUTION;
4900   }
4901 
4902   return EXCEPTION_CONTINUE_SEARCH;
4903 }
4904 
4905 // We don't build a headless jre for Windows
4906 bool os::is_headless_jre() { return false; }
4907 
4908 static jint initSock() {
4909   WSADATA wsadata;
4910 
4911   if (!os::WinSock2Dll::WinSock2Available()) {
4912     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
4913       ::GetLastError());
4914     return JNI_ERR;
4915   }
4916 
4917   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
4918     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
4919       ::GetLastError());
4920     return JNI_ERR;
4921   }
4922   return JNI_OK;
4923 }
4924 
4925 struct hostent* os::get_host_by_name(char* name) {
4926   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
4927 }
4928 
4929 int os::socket_close(int fd) {
4930   return ::closesocket(fd);
4931 }
4932 
4933 int os::socket_available(int fd, jint *pbytes) {
4934   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
4935   return (ret < 0) ? 0 : 1;
4936 }
4937 
4938 int os::socket(int domain, int type, int protocol) {
4939   return ::socket(domain, type, protocol);
4940 }
4941 
4942 int os::listen(int fd, int count) {
4943   return ::listen(fd, count);
4944 }
4945 
4946 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
4947   return ::connect(fd, him, len);
4948 }
4949 
4950 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
4951   return ::accept(fd, him, len);
4952 }
4953 
4954 int os::sendto(int fd, char* buf, size_t len, uint flags,
4955                struct sockaddr* to, socklen_t tolen) {
4956 
4957   return ::sendto(fd, buf, (int)len, flags, to, tolen);
4958 }
4959 
4960 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
4961                  sockaddr* from, socklen_t* fromlen) {
4962 
4963   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
4964 }
4965 
4966 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
4967   return ::recv(fd, buf, (int)nBytes, flags);
4968 }
4969 
4970 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
4971   return ::send(fd, buf, (int)nBytes, flags);
4972 }
4973 
4974 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
4975   return ::send(fd, buf, (int)nBytes, flags);
4976 }
4977 
4978 int os::timeout(int fd, long timeout) {
4979   fd_set tbl;
4980   struct timeval t;
4981 
4982   t.tv_sec  = timeout / 1000;
4983   t.tv_usec = (timeout % 1000) * 1000;
4984 
4985   tbl.fd_count    = 1;
4986   tbl.fd_array[0] = fd;
4987 
4988   return ::select(1, &tbl, 0, 0, &t);
4989 }
4990 
4991 int os::get_host_name(char* name, int namelen) {
4992   return ::gethostname(name, namelen);
4993 }
4994 
4995 int os::socket_shutdown(int fd, int howto) {
4996   return ::shutdown(fd, howto);
4997 }
4998 
4999 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
5000   return ::bind(fd, him, len);
5001 }
5002 
5003 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
5004   return ::getsockname(fd, him, len);
5005 }
5006 
5007 int os::get_sock_opt(int fd, int level, int optname,
5008                      char* optval, socklen_t* optlen) {
5009   return ::getsockopt(fd, level, optname, optval, optlen);
5010 }
5011 
5012 int os::set_sock_opt(int fd, int level, int optname,
5013                      const char* optval, socklen_t optlen) {
5014   return ::setsockopt(fd, level, optname, optval, optlen);
5015 }
5016 
5017 
5018 // Kernel32 API
5019 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5020 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5021 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
5022 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
5023 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5024 
5025 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5026 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5027 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5028 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5029 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5030 
5031 
5032 BOOL                        os::Kernel32Dll::initialized = FALSE;
5033 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5034   assert(initialized && _GetLargePageMinimum != NULL,
5035     "GetLargePageMinimumAvailable() not yet called");
5036   return _GetLargePageMinimum();
5037 }
5038 
5039 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5040   if (!initialized) {
5041     initialize();
5042   }
5043   return _GetLargePageMinimum != NULL;
5044 }
5045 
5046 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5047   if (!initialized) {
5048     initialize();
5049   }
5050   return _VirtualAllocExNuma != NULL;
5051 }
5052 
5053 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
5054   assert(initialized && _VirtualAllocExNuma != NULL,
5055     "NUMACallsAvailable() not yet called");
5056 
5057   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5058 }
5059 
5060 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5061   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5062     "NUMACallsAvailable() not yet called");
5063 
5064   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5065 }
5066 
5067 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
5068   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5069     "NUMACallsAvailable() not yet called");
5070 
5071   return _GetNumaNodeProcessorMask(node, proc_mask);
5072 }
5073 
5074 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5075   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
5076     if (!initialized) {
5077       initialize();
5078     }
5079 
5080     if (_RtlCaptureStackBackTrace != NULL) {
5081       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5082         BackTrace, BackTraceHash);
5083     } else {
5084       return 0;
5085     }
5086 }
5087 
5088 void os::Kernel32Dll::initializeCommon() {
5089   if (!initialized) {
5090     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5091     assert(handle != NULL, "Just check");
5092     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5093     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5094     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5095     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5096     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5097     initialized = TRUE;
5098   }
5099 }
5100 
5101 
5102 
5103 #ifndef JDK6_OR_EARLIER
5104 
5105 void os::Kernel32Dll::initialize() {
5106   initializeCommon();
5107 }
5108 
5109 
5110 // Kernel32 API
5111 inline BOOL os::Kernel32Dll::SwitchToThread() {
5112   return ::SwitchToThread();
5113 }
5114 
5115 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5116   return true;
5117 }
5118 
5119   // Help tools
5120 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5121   return true;
5122 }
5123 
5124 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5125   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5126 }
5127 
5128 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5129   return ::Module32First(hSnapshot, lpme);
5130 }
5131 
5132 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5133   return ::Module32Next(hSnapshot, lpme);
5134 }
5135 
5136 
5137 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5138   return true;
5139 }
5140 
5141 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5142   ::GetNativeSystemInfo(lpSystemInfo);
5143 }
5144 
5145 // PSAPI API
5146 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5147   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5148 }
5149 
5150 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5151   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5152 }
5153 
5154 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5155   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5156 }
5157 
5158 inline BOOL os::PSApiDll::PSApiAvailable() {
5159   return true;
5160 }
5161 
5162 
5163 // WinSock2 API
5164 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5165   return ::WSAStartup(wVersionRequested, lpWSAData);
5166 }
5167 
5168 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5169   return ::gethostbyname(name);
5170 }
5171 
5172 inline BOOL os::WinSock2Dll::WinSock2Available() {
5173   return true;
5174 }
5175 
5176 // Advapi API
5177 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5178    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5179    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5180      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5181        BufferLength, PreviousState, ReturnLength);
5182 }
5183 
5184 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5185   PHANDLE TokenHandle) {
5186     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5187 }
5188 
5189 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5190   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5191 }
5192 
5193 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5194   return true;
5195 }
5196 
5197 #else
5198 // Kernel32 API
5199 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5200 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
5201 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
5202 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
5203 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5204 
5205 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5206 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5207 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5208 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5209 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5210 
5211 void os::Kernel32Dll::initialize() {
5212   if (!initialized) {
5213     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5214     assert(handle != NULL, "Just check");
5215 
5216     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5217     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5218       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5219     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5220     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5221     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5222     initializeCommon();  // resolve the functions that always need resolving
5223 
5224     initialized = TRUE;
5225   }
5226 }
5227 
5228 BOOL os::Kernel32Dll::SwitchToThread() {
5229   assert(initialized && _SwitchToThread != NULL,
5230     "SwitchToThreadAvailable() not yet called");
5231   return _SwitchToThread();
5232 }
5233 
5234 
5235 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5236   if (!initialized) {
5237     initialize();
5238   }
5239   return _SwitchToThread != NULL;
5240 }
5241 
5242 // Help tools
5243 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5244   if (!initialized) {
5245     initialize();
5246   }
5247   return _CreateToolhelp32Snapshot != NULL &&
5248          _Module32First != NULL &&
5249          _Module32Next != NULL;
5250 }
5251 
5252 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5253   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5254     "HelpToolsAvailable() not yet called");
5255 
5256   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5257 }
5258 
5259 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5260   assert(initialized && _Module32First != NULL,
5261     "HelpToolsAvailable() not yet called");
5262 
5263   return _Module32First(hSnapshot, lpme);
5264 }
5265 
5266 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5267   assert(initialized && _Module32Next != NULL,
5268     "HelpToolsAvailable() not yet called");
5269 
5270   return _Module32Next(hSnapshot, lpme);
5271 }
5272 
5273 
5274 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5275   if (!initialized) {
5276     initialize();
5277   }
5278   return _GetNativeSystemInfo != NULL;
5279 }
5280 
5281 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5282   assert(initialized && _GetNativeSystemInfo != NULL,
5283     "GetNativeSystemInfoAvailable() not yet called");
5284 
5285   _GetNativeSystemInfo(lpSystemInfo);
5286 }
5287 
5288 // PSAPI API
5289 
5290 
5291 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5292 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
5293 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5294 
5295 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5296 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5297 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5298 BOOL                    os::PSApiDll::initialized = FALSE;
5299 
5300 void os::PSApiDll::initialize() {
5301   if (!initialized) {
5302     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5303     if (handle != NULL) {
5304       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5305         "EnumProcessModules");
5306       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5307         "GetModuleFileNameExA");
5308       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5309         "GetModuleInformation");
5310     }
5311     initialized = TRUE;
5312   }
5313 }
5314 
5315 
5316 
5317 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5318   assert(initialized && _EnumProcessModules != NULL,
5319     "PSApiAvailable() not yet called");
5320   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5321 }
5322 
5323 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5324   assert(initialized && _GetModuleFileNameEx != NULL,
5325     "PSApiAvailable() not yet called");
5326   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5327 }
5328 
5329 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5330   assert(initialized && _GetModuleInformation != NULL,
5331     "PSApiAvailable() not yet called");
5332   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5333 }
5334 
5335 BOOL os::PSApiDll::PSApiAvailable() {
5336   if (!initialized) {
5337     initialize();
5338   }
5339   return _EnumProcessModules != NULL &&
5340     _GetModuleFileNameEx != NULL &&
5341     _GetModuleInformation != NULL;
5342 }
5343 
5344 
5345 // WinSock2 API
5346 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5347 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5348 
5349 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5350 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5351 BOOL             os::WinSock2Dll::initialized = FALSE;
5352 
5353 void os::WinSock2Dll::initialize() {
5354   if (!initialized) {
5355     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5356     if (handle != NULL) {
5357       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5358       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5359     }
5360     initialized = TRUE;
5361   }
5362 }
5363 
5364 
5365 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5366   assert(initialized && _WSAStartup != NULL,
5367     "WinSock2Available() not yet called");
5368   return _WSAStartup(wVersionRequested, lpWSAData);
5369 }
5370 
5371 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5372   assert(initialized && _gethostbyname != NULL,
5373     "WinSock2Available() not yet called");
5374   return _gethostbyname(name);
5375 }
5376 
5377 BOOL os::WinSock2Dll::WinSock2Available() {
5378   if (!initialized) {
5379     initialize();
5380   }
5381   return _WSAStartup != NULL &&
5382     _gethostbyname != NULL;
5383 }
5384 
5385 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5386 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5387 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5388 
5389 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5390 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5391 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5392 BOOL                     os::Advapi32Dll::initialized = FALSE;
5393 
5394 void os::Advapi32Dll::initialize() {
5395   if (!initialized) {
5396     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5397     if (handle != NULL) {
5398       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5399         "AdjustTokenPrivileges");
5400       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5401         "OpenProcessToken");
5402       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5403         "LookupPrivilegeValueA");
5404     }
5405     initialized = TRUE;
5406   }
5407 }
5408 
5409 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5410    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5411    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5412    assert(initialized && _AdjustTokenPrivileges != NULL,
5413      "AdvapiAvailable() not yet called");
5414    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5415        BufferLength, PreviousState, ReturnLength);
5416 }
5417 
5418 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5419   PHANDLE TokenHandle) {
5420    assert(initialized && _OpenProcessToken != NULL,
5421      "AdvapiAvailable() not yet called");
5422     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5423 }
5424 
5425 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5426    assert(initialized && _LookupPrivilegeValue != NULL,
5427      "AdvapiAvailable() not yet called");
5428   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5429 }
5430 
5431 BOOL os::Advapi32Dll::AdvapiAvailable() {
5432   if (!initialized) {
5433     initialize();
5434   }
5435   return _AdjustTokenPrivileges != NULL &&
5436     _OpenProcessToken != NULL &&
5437     _LookupPrivilegeValue != NULL;
5438 }
5439 
5440 #endif