1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "memory/metadataFactory.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "oops/method.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "oops/symbol.hpp"
  39 #include "runtime/icache.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "utilities/events.hpp"
  43 
  44 
  45 // Every time a compiled IC is changed or its type is being accessed,
  46 // either the CompiledIC_lock must be set or we must be at a safe point.
  47 
  48 //-----------------------------------------------------------------------------
  49 // Low-level access to an inline cache. Private, since they might not be
  50 // MT-safe to use.
  51 
  52 void* CompiledIC::cached_value() const {
  53   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
  54   assert (!is_optimized(), "an optimized virtual call does not have a cached metadata");
  55 
  56   if (!is_in_transition_state()) {
  57     void* data = (void*)_value->data();
  58     // If we let the metadata value here be initialized to zero...
  59     assert(data != NULL || Universe::non_oop_word() == NULL,
  60            "no raw nulls in CompiledIC metadatas, because of patching races");
  61     return (data == (void*)Universe::non_oop_word()) ? NULL : data;
  62   } else {
  63     return InlineCacheBuffer::cached_value_for((CompiledIC *)this);
  64   }
  65 }
  66 
  67 
  68 void CompiledIC::internal_set_ic_destination(address entry_point, bool is_icstub, void* cache, bool is_icholder) {
  69   assert(entry_point != NULL, "must set legal entry point");
  70   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
  71   assert (!is_optimized() || cache == NULL, "an optimized virtual call does not have a cached metadata");
  72   assert (cache == NULL || cache != (Metadata*)badOopVal, "invalid metadata");
  73 
  74   assert(!is_icholder || is_icholder_entry(entry_point), "must be");
  75 
  76   // Don't use ic_destination for this test since that forwards
  77   // through ICBuffer instead of returning the actual current state of
  78   // the CompiledIC.
  79   if (is_icholder_entry(_ic_call->destination())) {
  80     // When patching for the ICStub case the cached value isn't
  81     // overwritten until the ICStub copied into the CompiledIC during
  82     // the next safepoint.  Make sure that the CompiledICHolder* is
  83     // marked for release at this point since it won't be identifiable
  84     // once the entry point is overwritten.
  85     InlineCacheBuffer::queue_for_release((CompiledICHolder*)_value->data());
  86   }
  87 
  88   if (TraceCompiledIC) {
  89     tty->print("  ");
  90     print_compiled_ic();
  91     tty->print(" changing destination to " INTPTR_FORMAT, entry_point);
  92     if (!is_optimized()) {
  93       tty->print(" changing cached %s to " INTPTR_FORMAT, is_icholder ? "icholder" : "metadata", (address)cache);
  94     }
  95     if (is_icstub) {
  96       tty->print(" (icstub)");
  97     }
  98     tty->cr();
  99   }
 100 
 101   {
 102   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
 103 #ifdef ASSERT
 104   CodeBlob* cb = CodeCache::find_blob_unsafe(_ic_call);
 105   assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
 106 #endif
 107   _ic_call->set_destination_mt_safe(entry_point);
 108 }
 109 
 110   if (is_optimized() || is_icstub) {
 111     // Optimized call sites don't have a cache value and ICStub call
 112     // sites only change the entry point.  Changing the value in that
 113     // case could lead to MT safety issues.
 114     assert(cache == NULL, "must be null");
 115     return;
 116   }
 117 
 118   if (cache == NULL)  cache = (void*)Universe::non_oop_word();
 119 
 120   _value->set_data((intptr_t)cache);
 121 }
 122 
 123 
 124 void CompiledIC::set_ic_destination(ICStub* stub) {
 125   internal_set_ic_destination(stub->code_begin(), true, NULL, false);
 126 }
 127 
 128 
 129 
 130 address CompiledIC::ic_destination() const {
 131  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 132  if (!is_in_transition_state()) {
 133    return _ic_call->destination();
 134  } else {
 135    return InlineCacheBuffer::ic_destination_for((CompiledIC *)this);
 136  }
 137 }
 138 
 139 
 140 bool CompiledIC::is_in_transition_state() const {
 141   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 142   return InlineCacheBuffer::contains(_ic_call->destination());
 143 }
 144 
 145 
 146 bool CompiledIC::is_icholder_call() const {
 147   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 148   return !_is_optimized && is_icholder_entry(ic_destination());
 149 }
 150 
 151 // Returns native address of 'call' instruction in inline-cache. Used by
 152 // the InlineCacheBuffer when it needs to find the stub.
 153 address CompiledIC::stub_address() const {
 154   assert(is_in_transition_state(), "should only be called when we are in a transition state");
 155   return _ic_call->destination();
 156 }
 157 
 158 
 159 //-----------------------------------------------------------------------------
 160 // High-level access to an inline cache. Guaranteed to be MT-safe.
 161 
 162 
 163 void CompiledIC::set_to_megamorphic(CallInfo* call_info, Bytecodes::Code bytecode, TRAPS) {
 164   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 165   assert(!is_optimized(), "cannot set an optimized virtual call to megamorphic");
 166   assert(is_call_to_compiled() || is_call_to_interpreted(), "going directly to megamorphic?");
 167 
 168   address entry;
 169   if (call_info->call_kind() == CallInfo::itable_call) {
 170     assert(bytecode == Bytecodes::_invokeinterface, "");
 171     int itable_index = call_info->itable_index();
 172     entry = VtableStubs::find_itable_stub(itable_index);
 173 #ifdef ASSERT
 174     assert(entry != NULL, "entry not computed");
 175     int index = call_info->resolved_method()->itable_index();
 176     assert(index == itable_index, "CallInfo pre-computes this");
 177 #endif //ASSERT
 178     InstanceKlass* k = call_info->resolved_method()->method_holder();
 179     assert(k->verify_itable_index(itable_index), "sanity check");
 180     InlineCacheBuffer::create_transition_stub(this, k, entry);
 181   } else {
 182     assert(call_info->call_kind() == CallInfo::vtable_call, "either itable or vtable");
 183     // Can be different than selected_method->vtable_index(), due to package-private etc.
 184     int vtable_index = call_info->vtable_index();
 185     assert(call_info->resolved_klass()->verify_vtable_index(vtable_index), "sanity check");
 186     entry = VtableStubs::find_vtable_stub(vtable_index);
 187     InlineCacheBuffer::create_transition_stub(this, NULL, entry);
 188   }
 189 
 190   if (TraceICs) {
 191     ResourceMark rm;
 192     tty->print_cr ("IC@" INTPTR_FORMAT ": to megamorphic %s entry: " INTPTR_FORMAT,
 193                    instruction_address(), call_info->selected_method()->print_value_string(), entry);
 194   }
 195 
 196   // We can't check this anymore. With lazy deopt we could have already
 197   // cleaned this IC entry before we even return. This is possible if
 198   // we ran out of space in the inline cache buffer trying to do the
 199   // set_next and we safepointed to free up space. This is a benign
 200   // race because the IC entry was complete when we safepointed so
 201   // cleaning it immediately is harmless.
 202   // assert(is_megamorphic(), "sanity check");
 203 }
 204 
 205 
 206 // true if destination is megamorphic stub
 207 bool CompiledIC::is_megamorphic() const {
 208   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 209   assert(!is_optimized(), "an optimized call cannot be megamorphic");
 210 
 211   // Cannot rely on cached_value. It is either an interface or a method.
 212   return VtableStubs::is_entry_point(ic_destination());
 213 }
 214 
 215 bool CompiledIC::is_call_to_compiled() const {
 216   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 217 
 218   // Use unsafe, since an inline cache might point to a zombie method. However, the zombie
 219   // method is guaranteed to still exist, since we only remove methods after all inline caches
 220   // has been cleaned up
 221   CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
 222   bool is_monomorphic = (cb != NULL && cb->is_nmethod());
 223   // Check that the cached_value is a klass for non-optimized monomorphic calls
 224   // This assertion is invalid for compiler1: a call that does not look optimized (no static stub) can be used
 225   // for calling directly to vep without using the inline cache (i.e., cached_value == NULL)
 226 #ifdef ASSERT
 227   CodeBlob* caller = CodeCache::find_blob_unsafe(instruction_address());
 228   bool is_c1_method = caller->is_compiled_by_c1();
 229   assert( is_c1_method ||
 230          !is_monomorphic ||
 231          is_optimized() ||
 232          (cached_metadata() != NULL && cached_metadata()->is_klass()), "sanity check");
 233 #endif // ASSERT
 234   return is_monomorphic;
 235 }
 236 
 237 
 238 bool CompiledIC::is_call_to_interpreted() const {
 239   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 240   // Call to interpreter if destination is either calling to a stub (if it
 241   // is optimized), or calling to an I2C blob
 242   bool is_call_to_interpreted = false;
 243   if (!is_optimized()) {
 244     // must use unsafe because the destination can be a zombie (and we're cleaning)
 245     // and the print_compiled_ic code wants to know if site (in the non-zombie)
 246     // is to the interpreter.
 247     CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
 248     is_call_to_interpreted = (cb != NULL && cb->is_adapter_blob());
 249     assert(!is_call_to_interpreted || (is_icholder_call() && cached_icholder() != NULL), "sanity check");
 250   } else {
 251     // Check if we are calling into our own codeblob (i.e., to a stub)
 252     CodeBlob* cb = CodeCache::find_blob(_ic_call->instruction_address());
 253     address dest = ic_destination();
 254 #ifdef ASSERT
 255     {
 256       CodeBlob* db = CodeCache::find_blob_unsafe(dest);
 257       assert(!db->is_adapter_blob(), "must use stub!");
 258     }
 259 #endif /* ASSERT */
 260     is_call_to_interpreted = cb->contains(dest);
 261   }
 262   return is_call_to_interpreted;
 263 }
 264 
 265 
 266 void CompiledIC::set_to_clean() {
 267   assert(SafepointSynchronize::is_at_safepoint() || CompiledIC_lock->is_locked() , "MT-unsafe call");
 268   if (TraceInlineCacheClearing || TraceICs) {
 269     tty->print_cr("IC@" INTPTR_FORMAT ": set to clean", instruction_address());
 270     print();
 271   }
 272 
 273   address entry;
 274   if (is_optimized()) {
 275     entry = SharedRuntime::get_resolve_opt_virtual_call_stub();
 276   } else {
 277     entry = SharedRuntime::get_resolve_virtual_call_stub();
 278   }
 279 
 280   // A zombie transition will always be safe, since the metadata has already been set to NULL, so
 281   // we only need to patch the destination
 282   bool safe_transition = is_optimized() || SafepointSynchronize::is_at_safepoint();
 283 
 284   if (safe_transition) {
 285     // Kill any leftover stub we might have too
 286     if (is_in_transition_state()) {
 287       ICStub* old_stub = ICStub_from_destination_address(stub_address());
 288       old_stub->clear();
 289     }
 290     if (is_optimized()) {
 291     set_ic_destination(entry);
 292   } else {
 293       set_ic_destination_and_value(entry, (void*)NULL);
 294     }
 295   } else {
 296     // Unsafe transition - create stub.
 297     InlineCacheBuffer::create_transition_stub(this, NULL, entry);
 298   }
 299   // We can't check this anymore. With lazy deopt we could have already
 300   // cleaned this IC entry before we even return. This is possible if
 301   // we ran out of space in the inline cache buffer trying to do the
 302   // set_next and we safepointed to free up space. This is a benign
 303   // race because the IC entry was complete when we safepointed so
 304   // cleaning it immediately is harmless.
 305   // assert(is_clean(), "sanity check");
 306 }
 307 
 308 
 309 bool CompiledIC::is_clean() const {
 310   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 311   bool is_clean = false;
 312   address dest = ic_destination();
 313   is_clean = dest == SharedRuntime::get_resolve_opt_virtual_call_stub() ||
 314              dest == SharedRuntime::get_resolve_virtual_call_stub();
 315   assert(!is_clean || is_optimized() || cached_value() == NULL, "sanity check");
 316   return is_clean;
 317 }
 318 
 319 
 320 void CompiledIC::set_to_monomorphic(CompiledICInfo& info) {
 321   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 322   // Updating a cache to the wrong entry can cause bugs that are very hard
 323   // to track down - if cache entry gets invalid - we just clean it. In
 324   // this way it is always the same code path that is responsible for
 325   // updating and resolving an inline cache
 326   //
 327   // The above is no longer true. SharedRuntime::fixup_callers_callsite will change optimized
 328   // callsites. In addition ic_miss code will update a site to monomorphic if it determines
 329   // that an monomorphic call to the interpreter can now be monomorphic to compiled code.
 330   //
 331   // In both of these cases the only thing being modifed is the jump/call target and these
 332   // transitions are mt_safe
 333 
 334   Thread *thread = Thread::current();
 335   if (info.to_interpreter()) {
 336     // Call to interpreter
 337     if (info.is_optimized() && is_optimized()) {
 338        assert(is_clean(), "unsafe IC path");
 339        MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
 340       // the call analysis (callee structure) specifies that the call is optimized
 341       // (either because of CHA or the static target is final)
 342       // At code generation time, this call has been emitted as static call
 343       // Call via stub
 344       assert(info.cached_metadata() != NULL && info.cached_metadata()->is_method(), "sanity check");
 345       CompiledStaticCall* csc = compiledStaticCall_at(instruction_address());
 346       methodHandle method (thread, (Method*)info.cached_metadata());
 347       csc->set_to_interpreted(method, info.entry());
 348       if (TraceICs) {
 349          ResourceMark rm(thread);
 350          tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter: %s",
 351            instruction_address(),
 352            method->print_value_string());
 353       }
 354     } else {
 355       // Call via method-klass-holder
 356       InlineCacheBuffer::create_transition_stub(this, info.claim_cached_icholder(), info.entry());
 357       if (TraceICs) {
 358          ResourceMark rm(thread);
 359          tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter via icholder ", instruction_address());
 360       }
 361     }
 362   } else {
 363     // Call to compiled code
 364     bool static_bound = info.is_optimized() || (info.cached_metadata() == NULL);
 365 #ifdef ASSERT
 366     CodeBlob* cb = CodeCache::find_blob_unsafe(info.entry());
 367     assert (cb->is_nmethod(), "must be compiled!");
 368 #endif /* ASSERT */
 369 
 370     // This is MT safe if we come from a clean-cache and go through a
 371     // non-verified entry point
 372     bool safe = SafepointSynchronize::is_at_safepoint() ||
 373                 (!is_in_transition_state() && (info.is_optimized() || static_bound || is_clean()));
 374 
 375     if (!safe) {
 376       InlineCacheBuffer::create_transition_stub(this, info.cached_metadata(), info.entry());
 377     } else {
 378       if (is_optimized()) {
 379       set_ic_destination(info.entry());
 380       } else {
 381         set_ic_destination_and_value(info.entry(), info.cached_metadata());
 382       }
 383     }
 384 
 385     if (TraceICs) {
 386       ResourceMark rm(thread);
 387       assert(info.cached_metadata() == NULL || info.cached_metadata()->is_klass(), "must be");
 388       tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to compiled (rcvr klass) %s: %s",
 389         instruction_address(),
 390         ((Klass*)info.cached_metadata())->print_value_string(),
 391         (safe) ? "" : "via stub");
 392     }
 393   }
 394   // We can't check this anymore. With lazy deopt we could have already
 395   // cleaned this IC entry before we even return. This is possible if
 396   // we ran out of space in the inline cache buffer trying to do the
 397   // set_next and we safepointed to free up space. This is a benign
 398   // race because the IC entry was complete when we safepointed so
 399   // cleaning it immediately is harmless.
 400   // assert(is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
 401 }
 402 
 403 
 404 // is_optimized: Compiler has generated an optimized call (i.e., no inline
 405 // cache) static_bound: The call can be static bound (i.e, no need to use
 406 // inline cache)
 407 void CompiledIC::compute_monomorphic_entry(methodHandle method,
 408                                            KlassHandle receiver_klass,
 409                                            bool is_optimized,
 410                                            bool static_bound,
 411                                            CompiledICInfo& info,
 412                                            TRAPS) {
 413   nmethod* method_code = method->code();
 414   address entry = NULL;
 415   if (method_code != NULL) {
 416     // Call to compiled code
 417     if (static_bound || is_optimized) {
 418       entry      = method_code->verified_entry_point();
 419     } else {
 420       entry      = method_code->entry_point();
 421     }
 422   }
 423   if (entry != NULL) {
 424     // Call to compiled code
 425     info.set_compiled_entry(entry, (static_bound || is_optimized) ? NULL : receiver_klass(), is_optimized);
 426   } else {
 427     // Note: the following problem exists with Compiler1:
 428     //   - at compile time we may or may not know if the destination is final
 429     //   - if we know that the destination is final, we will emit an optimized
 430     //     virtual call (no inline cache), and need a Method* to make a call
 431     //     to the interpreter
 432     //   - if we do not know if the destination is final, we emit a standard
 433     //     virtual call, and use CompiledICHolder to call interpreted code
 434     //     (no static call stub has been generated)
 435     //     However in that case we will now notice it is static_bound
 436     //     and convert the call into what looks to be an optimized
 437     //     virtual call. This causes problems in verifying the IC because
 438     //     it look vanilla but is optimized. Code in is_call_to_interpreted
 439     //     is aware of this and weakens its asserts.
 440 
 441     // static_bound should imply is_optimized -- otherwise we have a
 442     // performance bug (statically-bindable method is called via
 443     // dynamically-dispatched call note: the reverse implication isn't
 444     // necessarily true -- the call may have been optimized based on compiler
 445     // analysis (static_bound is only based on "final" etc.)
 446 #ifdef COMPILER2
 447 #ifdef TIERED
 448 #if defined(ASSERT)
 449     // can't check the assert because we don't have the CompiledIC with which to
 450     // find the address if the call instruction.
 451     //
 452     // CodeBlob* cb = find_blob_unsafe(instruction_address());
 453     // assert(cb->is_compiled_by_c1() || !static_bound || is_optimized, "static_bound should imply is_optimized");
 454 #endif // ASSERT
 455 #else
 456     assert(!static_bound || is_optimized, "static_bound should imply is_optimized");
 457 #endif // TIERED
 458 #endif // COMPILER2
 459     if (is_optimized) {
 460       // Use stub entry
 461       info.set_interpreter_entry(method()->get_c2i_entry(), method());
 462     } else {
 463       // Use icholder entry
 464       CompiledICHolder* holder = new CompiledICHolder(method(), receiver_klass());
 465       info.set_icholder_entry(method()->get_c2i_unverified_entry(), holder);
 466     }
 467   }
 468   assert(info.is_optimized() == is_optimized, "must agree");
 469 }
 470 
 471 
 472 bool CompiledIC::is_icholder_entry(address entry) {
 473   CodeBlob* cb = CodeCache::find_blob_unsafe(entry);
 474   return (cb != NULL && cb->is_adapter_blob());
 475 }
 476 
 477 // ----------------------------------------------------------------------------
 478 
 479 void CompiledStaticCall::set_to_clean() {
 480   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
 481   // Reset call site
 482   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
 483 #ifdef ASSERT
 484   CodeBlob* cb = CodeCache::find_blob_unsafe(this);
 485   assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
 486 #endif
 487   set_destination_mt_safe(SharedRuntime::get_resolve_static_call_stub());
 488 
 489   // Do not reset stub here:  It is too expensive to call find_stub.
 490   // Instead, rely on caller (nmethod::clear_inline_caches) to clear
 491   // both the call and its stub.
 492 }
 493 
 494 
 495 bool CompiledStaticCall::is_clean() const {
 496   return destination() == SharedRuntime::get_resolve_static_call_stub();
 497 }
 498 
 499 bool CompiledStaticCall::is_call_to_compiled() const {
 500   return CodeCache::contains(destination());
 501 }
 502 
 503 
 504 bool CompiledStaticCall::is_call_to_interpreted() const {
 505   // It is a call to interpreted, if it calls to a stub. Hence, the destination
 506   // must be in the stub part of the nmethod that contains the call
 507   nmethod* nm = CodeCache::find_nmethod(instruction_address());
 508   return nm->stub_contains(destination());
 509 }
 510 
 511 void CompiledStaticCall::set(const StaticCallInfo& info) {
 512   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
 513   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
 514   // Updating a cache to the wrong entry can cause bugs that are very hard
 515   // to track down - if cache entry gets invalid - we just clean it. In
 516   // this way it is always the same code path that is responsible for
 517   // updating and resolving an inline cache
 518   assert(is_clean(), "do not update a call entry - use clean");
 519 
 520   if (info._to_interpreter) {
 521     // Call to interpreted code
 522     set_to_interpreted(info.callee(), info.entry());
 523   } else {
 524     if (TraceICs) {
 525       ResourceMark rm;
 526       tty->print_cr("CompiledStaticCall@" INTPTR_FORMAT ": set_to_compiled " INTPTR_FORMAT,
 527                     instruction_address(),
 528                     info.entry());
 529     }
 530     // Call to compiled code
 531     assert (CodeCache::contains(info.entry()), "wrong entry point");
 532     set_destination_mt_safe(info.entry());
 533   }
 534 }
 535 
 536 
 537 // Compute settings for a CompiledStaticCall. Since we might have to set
 538 // the stub when calling to the interpreter, we need to return arguments.
 539 void CompiledStaticCall::compute_entry(methodHandle m, StaticCallInfo& info) {
 540   nmethod* m_code = m->code();
 541   info._callee = m;
 542   if (m_code != NULL) {
 543     info._to_interpreter = false;
 544     info._entry  = m_code->verified_entry_point();
 545   } else {
 546     // Callee is interpreted code.  In any case entering the interpreter
 547     // puts a converter-frame on the stack to save arguments.
 548     info._to_interpreter = true;
 549     info._entry      = m()->get_c2i_entry();
 550   }
 551 }
 552 
 553 address CompiledStaticCall::find_stub() {
 554   // Find reloc. information containing this call-site
 555   RelocIterator iter((nmethod*)NULL, instruction_address());
 556   while (iter.next()) {
 557     if (iter.addr() == instruction_address()) {
 558       switch(iter.type()) {
 559         case relocInfo::static_call_type:
 560           return iter.static_call_reloc()->static_stub();
 561         // We check here for opt_virtual_call_type, since we reuse the code
 562         // from the CompiledIC implementation
 563         case relocInfo::opt_virtual_call_type:
 564           return iter.opt_virtual_call_reloc()->static_stub();
 565         case relocInfo::poll_type:
 566         case relocInfo::poll_return_type: // A safepoint can't overlap a call.
 567         default:
 568           ShouldNotReachHere();
 569       }
 570     }
 571   }
 572   return NULL;
 573 }
 574 
 575 
 576 //-----------------------------------------------------------------------------
 577 // Non-product mode code
 578 #ifndef PRODUCT
 579 
 580 void CompiledIC::verify() {
 581   // make sure code pattern is actually a call imm32 instruction
 582   _ic_call->verify();
 583   if (os::is_MP()) {
 584     _ic_call->verify_alignment();
 585   }
 586   assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted()
 587           || is_optimized() || is_megamorphic(), "sanity check");
 588 }
 589 
 590 void CompiledIC::print() {
 591   print_compiled_ic();
 592   tty->cr();
 593 }
 594 
 595 void CompiledIC::print_compiled_ic() {
 596   tty->print("Inline cache at " INTPTR_FORMAT ", calling %s " INTPTR_FORMAT " cached_value " INTPTR_FORMAT,
 597              instruction_address(), is_call_to_interpreted() ? "interpreted " : "", ic_destination(), is_optimized() ? NULL : cached_value());
 598 }
 599 
 600 void CompiledStaticCall::print() {
 601   tty->print("static call at " INTPTR_FORMAT " -> ", instruction_address());
 602   if (is_clean()) {
 603     tty->print("clean");
 604   } else if (is_call_to_compiled()) {
 605     tty->print("compiled");
 606   } else if (is_call_to_interpreted()) {
 607     tty->print("interpreted");
 608   }
 609   tty->cr();
 610 }
 611 
 612 #endif // !PRODUCT