1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/dictionary.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "gc_implementation/shared/markSweep.inline.hpp"
  31 #include "gc_interface/collectedHeap.inline.hpp"
  32 #include "memory/heapInspection.hpp"
  33 #include "memory/metadataFactory.hpp"
  34 #include "memory/oopFactory.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/instanceKlass.hpp"
  37 #include "oops/klass.inline.hpp"
  38 #include "oops/oop.inline2.hpp"
  39 #include "runtime/atomic.hpp"
  40 #include "trace/traceMacros.hpp"
  41 #include "utilities/stack.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
  45 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
  46 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  47 #endif // INCLUDE_ALL_GCS
  48 
  49 void Klass::set_name(Symbol* n) {
  50   _name = n;
  51   if (_name != NULL) _name->increment_refcount();
  52 }
  53 
  54 bool Klass::is_subclass_of(const Klass* k) const {
  55   // Run up the super chain and check
  56   if (this == k) return true;
  57 
  58   Klass* t = const_cast<Klass*>(this)->super();
  59 
  60   while (t != NULL) {
  61     if (t == k) return true;
  62     t = t->super();
  63   }
  64   return false;
  65 }
  66 
  67 bool Klass::search_secondary_supers(Klass* k) const {
  68   // Put some extra logic here out-of-line, before the search proper.
  69   // This cuts down the size of the inline method.
  70 
  71   // This is necessary, since I am never in my own secondary_super list.
  72   if (this == k)
  73     return true;
  74   // Scan the array-of-objects for a match
  75   int cnt = secondary_supers()->length();
  76   for (int i = 0; i < cnt; i++) {
  77     if (secondary_supers()->at(i) == k) {
  78       ((Klass*)this)->set_secondary_super_cache(k);
  79       return true;
  80     }
  81   }
  82   return false;
  83 }
  84 
  85 // Return self, except for abstract classes with exactly 1
  86 // implementor.  Then return the 1 concrete implementation.
  87 Klass *Klass::up_cast_abstract() {
  88   Klass *r = this;
  89   while( r->is_abstract() ) {   // Receiver is abstract?
  90     Klass *s = r->subklass();   // Check for exactly 1 subklass
  91     if( !s || s->next_sibling() ) // Oops; wrong count; give up
  92       return this;              // Return 'this' as a no-progress flag
  93     r = s;                    // Loop till find concrete class
  94   }
  95   return r;                   // Return the 1 concrete class
  96 }
  97 
  98 // Find LCA in class hierarchy
  99 Klass *Klass::LCA( Klass *k2 ) {
 100   Klass *k1 = this;
 101   while( 1 ) {
 102     if( k1->is_subtype_of(k2) ) return k2;
 103     if( k2->is_subtype_of(k1) ) return k1;
 104     k1 = k1->super();
 105     k2 = k2->super();
 106   }
 107 }
 108 
 109 
 110 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
 111   ResourceMark rm(THREAD);
 112   THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
 113             : vmSymbols::java_lang_InstantiationException(), external_name());
 114 }
 115 
 116 
 117 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
 118   THROW(vmSymbols::java_lang_ArrayStoreException());
 119 }
 120 
 121 
 122 void Klass::initialize(TRAPS) {
 123   ShouldNotReachHere();
 124 }
 125 
 126 bool Klass::compute_is_subtype_of(Klass* k) {
 127   assert(k->is_klass(), "argument must be a class");
 128   return is_subclass_of(k);
 129 }
 130 
 131 
 132 Method* Klass::uncached_lookup_method(Symbol* name, Symbol* signature) const {
 133 #ifdef ASSERT
 134   tty->print_cr("Error: uncached_lookup_method called on a klass oop."
 135                 " Likely error: reflection method does not correctly"
 136                 " wrap return value in a mirror object.");
 137 #endif
 138   ShouldNotReachHere();
 139   return NULL;
 140 }
 141 
 142 void* Klass::operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, TRAPS) {
 143   return Metaspace::allocate(loader_data, word_size, /*read_only*/false,
 144                              MetaspaceObj::ClassType, CHECK_NULL);
 145 }
 146 
 147 Klass::Klass() {
 148   Klass* k = this;
 149 
 150   // Preinitialize supertype information.
 151   // A later call to initialize_supers() may update these settings:
 152   set_super(NULL);
 153   for (juint i = 0; i < Klass::primary_super_limit(); i++) {
 154     _primary_supers[i] = NULL;
 155   }
 156   set_secondary_supers(NULL);
 157   set_secondary_super_cache(NULL);
 158   _primary_supers[0] = k;
 159   set_super_check_offset(in_bytes(primary_supers_offset()));
 160 
 161   set_java_mirror(NULL);
 162   set_modifier_flags(0);
 163   set_layout_helper(Klass::_lh_neutral_value);
 164   set_name(NULL);
 165   AccessFlags af;
 166   af.set_flags(0);
 167   set_access_flags(af);
 168   set_subklass(NULL);
 169   set_next_sibling(NULL);
 170   set_next_link(NULL);
 171   TRACE_INIT_ID(this);
 172 
 173   set_prototype_header(markOopDesc::prototype());
 174   set_biased_lock_revocation_count(0);
 175   set_last_biased_lock_bulk_revocation_time(0);
 176 
 177   // The klass doesn't have any references at this point.
 178   clear_modified_oops();
 179   clear_accumulated_modified_oops();
 180 }
 181 
 182 jint Klass::array_layout_helper(BasicType etype) {
 183   assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
 184   // Note that T_ARRAY is not allowed here.
 185   int  hsize = arrayOopDesc::base_offset_in_bytes(etype);
 186   int  esize = type2aelembytes(etype);
 187   bool isobj = (etype == T_OBJECT);
 188   int  tag   =  isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
 189   int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
 190 
 191   assert(lh < (int)_lh_neutral_value, "must look like an array layout");
 192   assert(layout_helper_is_array(lh), "correct kind");
 193   assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
 194   assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
 195   assert(layout_helper_header_size(lh) == hsize, "correct decode");
 196   assert(layout_helper_element_type(lh) == etype, "correct decode");
 197   assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
 198 
 199   return lh;
 200 }
 201 
 202 bool Klass::can_be_primary_super_slow() const {
 203   if (super() == NULL)
 204     return true;
 205   else if (super()->super_depth() >= primary_super_limit()-1)
 206     return false;
 207   else
 208     return true;
 209 }
 210 
 211 void Klass::initialize_supers(Klass* k, TRAPS) {
 212   if (FastSuperclassLimit == 0) {
 213     // None of the other machinery matters.
 214     set_super(k);
 215     return;
 216   }
 217   if (k == NULL) {
 218     set_super(NULL);
 219     _primary_supers[0] = this;
 220     assert(super_depth() == 0, "Object must already be initialized properly");
 221   } else if (k != super() || k == SystemDictionary::Object_klass()) {
 222     assert(super() == NULL || super() == SystemDictionary::Object_klass(),
 223            "initialize this only once to a non-trivial value");
 224     set_super(k);
 225     Klass* sup = k;
 226     int sup_depth = sup->super_depth();
 227     juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
 228     if (!can_be_primary_super_slow())
 229       my_depth = primary_super_limit();
 230     for (juint i = 0; i < my_depth; i++) {
 231       _primary_supers[i] = sup->_primary_supers[i];
 232     }
 233     Klass* *super_check_cell;
 234     if (my_depth < primary_super_limit()) {
 235       _primary_supers[my_depth] = this;
 236       super_check_cell = &_primary_supers[my_depth];
 237     } else {
 238       // Overflow of the primary_supers array forces me to be secondary.
 239       super_check_cell = &_secondary_super_cache;
 240     }
 241     set_super_check_offset((address)super_check_cell - (address) this);
 242 
 243 #ifdef ASSERT
 244     {
 245       juint j = super_depth();
 246       assert(j == my_depth, "computed accessor gets right answer");
 247       Klass* t = this;
 248       while (!t->can_be_primary_super()) {
 249         t = t->super();
 250         j = t->super_depth();
 251       }
 252       for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
 253         assert(primary_super_of_depth(j1) == NULL, "super list padding");
 254       }
 255       while (t != NULL) {
 256         assert(primary_super_of_depth(j) == t, "super list initialization");
 257         t = t->super();
 258         --j;
 259       }
 260       assert(j == (juint)-1, "correct depth count");
 261     }
 262 #endif
 263   }
 264 
 265   if (secondary_supers() == NULL) {
 266     KlassHandle this_kh (THREAD, this);
 267 
 268     // Now compute the list of secondary supertypes.
 269     // Secondaries can occasionally be on the super chain,
 270     // if the inline "_primary_supers" array overflows.
 271     int extras = 0;
 272     Klass* p;
 273     for (p = super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
 274       ++extras;
 275     }
 276 
 277     ResourceMark rm(THREAD);  // need to reclaim GrowableArrays allocated below
 278 
 279     // Compute the "real" non-extra secondaries.
 280     GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras);
 281     if (secondaries == NULL) {
 282       // secondary_supers set by compute_secondary_supers
 283       return;
 284     }
 285 
 286     GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);
 287 
 288     for (p = this_kh->super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
 289       int i;                    // Scan for overflow primaries being duplicates of 2nd'arys
 290 
 291       // This happens frequently for very deeply nested arrays: the
 292       // primary superclass chain overflows into the secondary.  The
 293       // secondary list contains the element_klass's secondaries with
 294       // an extra array dimension added.  If the element_klass's
 295       // secondary list already contains some primary overflows, they
 296       // (with the extra level of array-ness) will collide with the
 297       // normal primary superclass overflows.
 298       for( i = 0; i < secondaries->length(); i++ ) {
 299         if( secondaries->at(i) == p )
 300           break;
 301       }
 302       if( i < secondaries->length() )
 303         continue;               // It's a dup, don't put it in
 304       primaries->push(p);
 305     }
 306     // Combine the two arrays into a metadata object to pack the array.
 307     // The primaries are added in the reverse order, then the secondaries.
 308     int new_length = primaries->length() + secondaries->length();
 309     Array<Klass*>* s2 = MetadataFactory::new_array<Klass*>(
 310                                        class_loader_data(), new_length, CHECK);
 311     int fill_p = primaries->length();
 312     for (int j = 0; j < fill_p; j++) {
 313       s2->at_put(j, primaries->pop());  // add primaries in reverse order.
 314     }
 315     for( int j = 0; j < secondaries->length(); j++ ) {
 316       s2->at_put(j+fill_p, secondaries->at(j));  // add secondaries on the end.
 317     }
 318 
 319   #ifdef ASSERT
 320       // We must not copy any NULL placeholders left over from bootstrap.
 321     for (int j = 0; j < s2->length(); j++) {
 322       assert(s2->at(j) != NULL, "correct bootstrapping order");
 323     }
 324   #endif
 325 
 326     this_kh->set_secondary_supers(s2);
 327   }
 328 }
 329 
 330 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots) {
 331   assert(num_extra_slots == 0, "override for complex klasses");
 332   set_secondary_supers(Universe::the_empty_klass_array());
 333   return NULL;
 334 }
 335 
 336 
 337 Klass* Klass::subklass() const {
 338   return _subklass == NULL ? NULL : _subklass;
 339 }
 340 
 341 InstanceKlass* Klass::superklass() const {
 342   assert(super() == NULL || super()->oop_is_instance(), "must be instance klass");
 343   return _super == NULL ? NULL : InstanceKlass::cast(_super);
 344 }
 345 
 346 Klass* Klass::next_sibling() const {
 347   return _next_sibling == NULL ? NULL : _next_sibling;
 348 }
 349 
 350 void Klass::set_subklass(Klass* s) {
 351   assert(s != this, "sanity check");
 352   _subklass = s;
 353 }
 354 
 355 void Klass::set_next_sibling(Klass* s) {
 356   assert(s != this, "sanity check");
 357   _next_sibling = s;
 358 }
 359 
 360 void Klass::append_to_sibling_list() {
 361   debug_only(verify();)
 362   // add ourselves to superklass' subklass list
 363   InstanceKlass* super = superklass();
 364   if (super == NULL) return;        // special case: class Object
 365   assert((!super->is_interface()    // interfaces cannot be supers
 366           && (super->superklass() == NULL || !is_interface())),
 367          "an interface can only be a subklass of Object");
 368   Klass* prev_first_subklass = super->subklass_oop();
 369   if (prev_first_subklass != NULL) {
 370     // set our sibling to be the superklass' previous first subklass
 371     set_next_sibling(prev_first_subklass);
 372   }
 373   // make ourselves the superklass' first subklass
 374   super->set_subklass(this);
 375   debug_only(verify();)
 376 }
 377 
 378 bool Klass::is_loader_alive(BoolObjectClosure* is_alive) {
 379   assert(ClassLoaderDataGraph::contains((address)this), "is in the metaspace");
 380 
 381 #ifdef ASSERT
 382   // The class is alive iff the class loader is alive.
 383   oop loader = class_loader();
 384   bool loader_alive = (loader == NULL) || is_alive->do_object_b(loader);
 385 #endif // ASSERT
 386 
 387   // The class is alive if it's mirror is alive (which should be marked if the
 388   // loader is alive) unless it's an anoymous class.
 389   bool mirror_alive = is_alive->do_object_b(java_mirror());
 390   assert(!mirror_alive || loader_alive, "loader must be alive if the mirror is"
 391                         " but not the other way around with anonymous classes");
 392   return mirror_alive;
 393 }
 394 
 395 void Klass::clean_weak_klass_links(BoolObjectClosure* is_alive) {
 396   if (!ClassUnloading) {
 397     return;
 398   }
 399 
 400   Klass* root = SystemDictionary::Object_klass();
 401   Stack<Klass*, mtGC> stack;
 402 
 403   stack.push(root);
 404   while (!stack.is_empty()) {
 405     Klass* current = stack.pop();
 406 
 407     assert(current->is_loader_alive(is_alive), "just checking, this should be live");
 408 
 409     // Find and set the first alive subklass
 410     Klass* sub = current->subklass_oop();
 411     while (sub != NULL && !sub->is_loader_alive(is_alive)) {
 412 #ifndef PRODUCT
 413       if (TraceClassUnloading && WizardMode) {
 414         ResourceMark rm;
 415         tty->print_cr("[Unlinking class (subclass) %s]", sub->external_name());
 416       }
 417 #endif
 418       sub = sub->next_sibling_oop();
 419     }
 420     current->set_subklass(sub);
 421     if (sub != NULL) {
 422       stack.push(sub);
 423     }
 424 
 425     // Find and set the first alive sibling
 426     Klass* sibling = current->next_sibling_oop();
 427     while (sibling != NULL && !sibling->is_loader_alive(is_alive)) {
 428       if (TraceClassUnloading && WizardMode) {
 429         ResourceMark rm;
 430         tty->print_cr("[Unlinking class (sibling) %s]", sibling->external_name());
 431       }
 432       sibling = sibling->next_sibling_oop();
 433     }
 434     current->set_next_sibling(sibling);
 435     if (sibling != NULL) {
 436       stack.push(sibling);
 437     }
 438 
 439     // Clean the implementors list and method data.
 440     if (current->oop_is_instance()) {
 441       InstanceKlass* ik = InstanceKlass::cast(current);
 442       ik->clean_implementors_list(is_alive);
 443       ik->clean_method_data(is_alive);
 444     }
 445   }
 446 }
 447 
 448 void Klass::klass_update_barrier_set(oop v) {
 449   record_modified_oops();
 450 }
 451 
 452 void Klass::klass_update_barrier_set_pre(void* p, oop v) {
 453   // This barrier used by G1, where it's used remember the old oop values,
 454   // so that we don't forget any objects that were live at the snapshot at
 455   // the beginning. This function is only used when we write oops into
 456   // Klasses. Since the Klasses are used as roots in G1, we don't have to
 457   // do anything here.
 458 }
 459 
 460 void Klass::klass_oop_store(oop* p, oop v) {
 461   assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
 462   assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");
 463 
 464   // do the store
 465   if (always_do_update_barrier) {
 466     klass_oop_store((volatile oop*)p, v);
 467   } else {
 468     klass_update_barrier_set_pre((void*)p, v);
 469     *p = v;
 470     klass_update_barrier_set(v);
 471   }
 472 }
 473 
 474 void Klass::klass_oop_store(volatile oop* p, oop v) {
 475   assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
 476   assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");
 477 
 478   klass_update_barrier_set_pre((void*)p, v);
 479   OrderAccess::release_store_ptr(p, v);
 480   klass_update_barrier_set(v);
 481 }
 482 
 483 void Klass::oops_do(OopClosure* cl) {
 484   cl->do_oop(&_java_mirror);
 485 }
 486 
 487 void Klass::remove_unshareable_info() {
 488   if (!DumpSharedSpaces) {
 489     // Clean up after OOM during class loading
 490     if (class_loader_data() != NULL) {
 491       class_loader_data()->remove_class(this);
 492     }
 493   }
 494   set_subklass(NULL);
 495   set_next_sibling(NULL);
 496   // Clear the java mirror
 497   set_java_mirror(NULL);
 498   set_next_link(NULL);
 499 
 500   // Null out class_loader_data because we don't share that yet.
 501   set_class_loader_data(NULL);
 502 }
 503 
 504 void Klass::restore_unshareable_info(TRAPS) {
 505   ClassLoaderData* loader_data = ClassLoaderData::the_null_class_loader_data();
 506   // Restore class_loader_data to the null class loader data
 507   set_class_loader_data(loader_data);
 508 
 509   // Add to null class loader list first before creating the mirror
 510   // (same order as class file parsing)
 511   loader_data->add_class(this);
 512 
 513   // Recreate the class mirror.  The protection_domain is always null for
 514   // boot loader, for now.
 515   java_lang_Class::create_mirror(this, Handle(NULL), CHECK);
 516 }
 517 
 518 Klass* Klass::array_klass_or_null(int rank) {
 519   EXCEPTION_MARK;
 520   // No exception can be thrown by array_klass_impl when called with or_null == true.
 521   // (In anycase, the execption mark will fail if it do so)
 522   return array_klass_impl(true, rank, THREAD);
 523 }
 524 
 525 
 526 Klass* Klass::array_klass_or_null() {
 527   EXCEPTION_MARK;
 528   // No exception can be thrown by array_klass_impl when called with or_null == true.
 529   // (In anycase, the execption mark will fail if it do so)
 530   return array_klass_impl(true, THREAD);
 531 }
 532 
 533 
 534 Klass* Klass::array_klass_impl(bool or_null, int rank, TRAPS) {
 535   fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
 536   return NULL;
 537 }
 538 
 539 
 540 Klass* Klass::array_klass_impl(bool or_null, TRAPS) {
 541   fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
 542   return NULL;
 543 }
 544 
 545 oop Klass::class_loader() const { return class_loader_data()->class_loader(); }
 546 
 547 const char* Klass::external_name() const {
 548   if (oop_is_instance()) {
 549     InstanceKlass* ik = (InstanceKlass*) this;
 550     if (ik->is_anonymous()) {
 551       assert(EnableInvokeDynamic, "");
 552       intptr_t hash = 0;
 553       if (ik->java_mirror() != NULL) {
 554         // java_mirror might not be created yet, return 0 as hash.
 555         hash = ik->java_mirror()->identity_hash();
 556       }
 557       char     hash_buf[40];
 558       sprintf(hash_buf, "/" UINTX_FORMAT, (uintx)hash);
 559       size_t   hash_len = strlen(hash_buf);
 560 
 561       size_t result_len = name()->utf8_length();
 562       char*  result     = NEW_RESOURCE_ARRAY(char, result_len + hash_len + 1);
 563       name()->as_klass_external_name(result, (int) result_len + 1);
 564       assert(strlen(result) == result_len, "");
 565       strcpy(result + result_len, hash_buf);
 566       assert(strlen(result) == result_len + hash_len, "");
 567       return result;
 568     }
 569   }
 570   if (name() == NULL)  return "<unknown>";
 571   return name()->as_klass_external_name();
 572 }
 573 
 574 
 575 const char* Klass::signature_name() const {
 576   if (name() == NULL)  return "<unknown>";
 577   return name()->as_C_string();
 578 }
 579 
 580 // Unless overridden, modifier_flags is 0.
 581 jint Klass::compute_modifier_flags(TRAPS) const {
 582   return 0;
 583 }
 584 
 585 int Klass::atomic_incr_biased_lock_revocation_count() {
 586   return (int) Atomic::add(1, &_biased_lock_revocation_count);
 587 }
 588 
 589 // Unless overridden, jvmti_class_status has no flags set.
 590 jint Klass::jvmti_class_status() const {
 591   return 0;
 592 }
 593 
 594 
 595 // Printing
 596 
 597 void Klass::print_on(outputStream* st) const {
 598   ResourceMark rm;
 599   // print title
 600   st->print("%s", internal_name());
 601   print_address_on(st);
 602   st->cr();
 603 }
 604 
 605 void Klass::oop_print_on(oop obj, outputStream* st) {
 606   ResourceMark rm;
 607   // print title
 608   st->print_cr("%s ", internal_name());
 609   obj->print_address_on(st);
 610 
 611   if (WizardMode) {
 612      // print header
 613      obj->mark()->print_on(st);
 614   }
 615 
 616   // print class
 617   st->print(" - klass: ");
 618   obj->klass()->print_value_on(st);
 619   st->cr();
 620 }
 621 
 622 void Klass::oop_print_value_on(oop obj, outputStream* st) {
 623   // print title
 624   ResourceMark rm;              // Cannot print in debug mode without this
 625   st->print("%s", internal_name());
 626   obj->print_address_on(st);
 627 }
 628 
 629 #if INCLUDE_SERVICES
 630 // Size Statistics
 631 void Klass::collect_statistics(KlassSizeStats *sz) const {
 632   sz->_klass_bytes = sz->count(this);
 633   sz->_mirror_bytes = sz->count(java_mirror());
 634   sz->_secondary_supers_bytes = sz->count_array(secondary_supers());
 635 
 636   sz->_ro_bytes += sz->_secondary_supers_bytes;
 637   sz->_rw_bytes += sz->_klass_bytes + sz->_mirror_bytes;
 638 }
 639 #endif // INCLUDE_SERVICES
 640 
 641 // Verification
 642 
 643 void Klass::verify_on(outputStream* st, bool check_dictionary) {
 644 
 645   // This can be expensive, but it is worth checking that this klass is actually
 646   // in the CLD graph but not in production.
 647   assert(ClassLoaderDataGraph::contains((address)this), "Should be");
 648 
 649   guarantee(this->is_klass(),"should be klass");
 650 
 651   if (super() != NULL) {
 652     guarantee(super()->is_klass(), "should be klass");
 653   }
 654   if (secondary_super_cache() != NULL) {
 655     Klass* ko = secondary_super_cache();
 656     guarantee(ko->is_klass(), "should be klass");
 657   }
 658   for ( uint i = 0; i < primary_super_limit(); i++ ) {
 659     Klass* ko = _primary_supers[i];
 660     if (ko != NULL) {
 661       guarantee(ko->is_klass(), "should be klass");
 662     }
 663   }
 664 
 665   if (java_mirror() != NULL) {
 666     guarantee(java_mirror()->is_oop(), "should be instance");
 667   }
 668 }
 669 
 670 void Klass::oop_verify_on(oop obj, outputStream* st) {
 671   guarantee(obj->is_oop(),  "should be oop");
 672   guarantee(obj->klass()->is_klass(), "klass field is not a klass");
 673 }
 674 
 675 #ifndef PRODUCT
 676 
 677 bool Klass::verify_vtable_index(int i) {
 678   if (oop_is_instance()) {
 679     int limit = ((InstanceKlass*)this)->vtable_length()/vtableEntry::size();
 680     assert(i >= 0 && i < limit, err_msg("index %d out of bounds %d", i, limit));
 681   } else {
 682     assert(oop_is_array(), "Must be");
 683     int limit = ((ArrayKlass*)this)->vtable_length()/vtableEntry::size();
 684     assert(i >= 0 && i < limit, err_msg("index %d out of bounds %d", i, limit));
 685   }
 686   return true;
 687 }
 688 
 689 bool Klass::verify_itable_index(int i) {
 690   assert(oop_is_instance(), "");
 691   int method_count = klassItable::method_count_for_interface(this);
 692   assert(i >= 0 && i < method_count, "index out of bounds");
 693   return true;
 694 }
 695 
 696 #endif