1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/parse.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "opto/subnode.hpp"
  39 #include "prims/nativeLookup.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "trace/traceMacros.hpp"
  42 
  43 class LibraryIntrinsic : public InlineCallGenerator {
  44   // Extend the set of intrinsics known to the runtime:
  45  public:
  46  private:
  47   bool             _is_virtual;
  48   bool             _is_predicted;
  49   vmIntrinsics::ID _intrinsic_id;
  50 
  51  public:
  52   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, vmIntrinsics::ID id)
  53     : InlineCallGenerator(m),
  54       _is_virtual(is_virtual),
  55       _is_predicted(is_predicted),
  56       _intrinsic_id(id)
  57   {
  58   }
  59   virtual bool is_intrinsic() const { return true; }
  60   virtual bool is_virtual()   const { return _is_virtual; }
  61   virtual bool is_predicted()   const { return _is_predicted; }
  62   virtual JVMState* generate(JVMState* jvms);
  63   virtual Node* generate_predicate(JVMState* jvms);
  64   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  65 };
  66 
  67 
  68 // Local helper class for LibraryIntrinsic:
  69 class LibraryCallKit : public GraphKit {
  70  private:
  71   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  72   Node*             _result;        // the result node, if any
  73   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  74 
  75   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  76 
  77  public:
  78   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  79     : GraphKit(jvms),
  80       _intrinsic(intrinsic),
  81       _result(NULL)
  82   {
  83     // Check if this is a root compile.  In that case we don't have a caller.
  84     if (!jvms->has_method()) {
  85       _reexecute_sp = sp();
  86     } else {
  87       // Find out how many arguments the interpreter needs when deoptimizing
  88       // and save the stack pointer value so it can used by uncommon_trap.
  89       // We find the argument count by looking at the declared signature.
  90       bool ignored_will_link;
  91       ciSignature* declared_signature = NULL;
  92       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  93       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
  94       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
  95     }
  96   }
  97 
  98   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
  99 
 100   ciMethod*         caller()    const    { return jvms()->method(); }
 101   int               bci()       const    { return jvms()->bci(); }
 102   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 103   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 104   ciMethod*         callee()    const    { return _intrinsic->method(); }
 105 
 106   bool try_to_inline();
 107   Node* try_to_predicate();
 108 
 109   void push_result() {
 110     // Push the result onto the stack.
 111     if (!stopped() && result() != NULL) {
 112       BasicType bt = result()->bottom_type()->basic_type();
 113       push_node(bt, result());
 114     }
 115   }
 116 
 117  private:
 118   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 119     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 120   }
 121 
 122   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 123   void  set_result(RegionNode* region, PhiNode* value);
 124   Node*     result() { return _result; }
 125 
 126   virtual int reexecute_sp() { return _reexecute_sp; }
 127 
 128   // Helper functions to inline natives
 129   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 130   Node* generate_slow_guard(Node* test, RegionNode* region);
 131   Node* generate_fair_guard(Node* test, RegionNode* region);
 132   Node* generate_negative_guard(Node* index, RegionNode* region,
 133                                 // resulting CastII of index:
 134                                 Node* *pos_index = NULL);
 135   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 136                                    // resulting CastII of index:
 137                                    Node* *pos_index = NULL);
 138   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 139                              Node* array_length,
 140                              RegionNode* region);
 141   Node* generate_current_thread(Node* &tls_output);
 142   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 143                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 144   Node* load_mirror_from_klass(Node* klass);
 145   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 146                                       RegionNode* region, int null_path,
 147                                       int offset);
 148   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 149                                RegionNode* region, int null_path) {
 150     int offset = java_lang_Class::klass_offset_in_bytes();
 151     return load_klass_from_mirror_common(mirror, never_see_null,
 152                                          region, null_path,
 153                                          offset);
 154   }
 155   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 156                                      RegionNode* region, int null_path) {
 157     int offset = java_lang_Class::array_klass_offset_in_bytes();
 158     return load_klass_from_mirror_common(mirror, never_see_null,
 159                                          region, null_path,
 160                                          offset);
 161   }
 162   Node* generate_access_flags_guard(Node* kls,
 163                                     int modifier_mask, int modifier_bits,
 164                                     RegionNode* region);
 165   Node* generate_interface_guard(Node* kls, RegionNode* region);
 166   Node* generate_array_guard(Node* kls, RegionNode* region) {
 167     return generate_array_guard_common(kls, region, false, false);
 168   }
 169   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 170     return generate_array_guard_common(kls, region, false, true);
 171   }
 172   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 173     return generate_array_guard_common(kls, region, true, false);
 174   }
 175   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 176     return generate_array_guard_common(kls, region, true, true);
 177   }
 178   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 179                                     bool obj_array, bool not_array);
 180   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 181   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 182                                      bool is_virtual = false, bool is_static = false);
 183   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 184     return generate_method_call(method_id, false, true);
 185   }
 186   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 187     return generate_method_call(method_id, true, false);
 188   }
 189   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 190 
 191   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 192   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 193   bool inline_string_compareTo();
 194   bool inline_string_indexOf();
 195   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 196   bool inline_string_equals();
 197   Node* round_double_node(Node* n);
 198   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 199   bool inline_math_native(vmIntrinsics::ID id);
 200   bool inline_trig(vmIntrinsics::ID id);
 201   bool inline_math(vmIntrinsics::ID id);
 202   bool inline_exp();
 203   bool inline_pow();
 204   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 205   bool inline_min_max(vmIntrinsics::ID id);
 206   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 207   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 208   int classify_unsafe_addr(Node* &base, Node* &offset);
 209   Node* make_unsafe_address(Node* base, Node* offset);
 210   // Helper for inline_unsafe_access.
 211   // Generates the guards that check whether the result of
 212   // Unsafe.getObject should be recorded in an SATB log buffer.
 213   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 214   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 215   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 216   static bool klass_needs_init_guard(Node* kls);
 217   bool inline_unsafe_allocate();
 218   bool inline_unsafe_copyMemory();
 219   bool inline_native_currentThread();
 220 #ifdef TRACE_HAVE_INTRINSICS
 221   bool inline_native_classID();
 222   bool inline_native_threadID();
 223 #endif
 224   bool inline_native_time_funcs(address method, const char* funcName);
 225   bool inline_native_isInterrupted();
 226   bool inline_native_Class_query(vmIntrinsics::ID id);
 227   bool inline_native_subtype_check();
 228 
 229   bool inline_native_newArray();
 230   bool inline_native_getLength();
 231   bool inline_array_copyOf(bool is_copyOfRange);
 232   bool inline_array_equals();
 233   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 234   bool inline_native_clone(bool is_virtual);
 235   bool inline_native_Reflection_getCallerClass();
 236   // Helper function for inlining native object hash method
 237   bool inline_native_hashcode(bool is_virtual, bool is_static);
 238   bool inline_native_getClass();
 239 
 240   // Helper functions for inlining arraycopy
 241   bool inline_arraycopy();
 242   void generate_arraycopy(const TypePtr* adr_type,
 243                           BasicType basic_elem_type,
 244                           Node* src,  Node* src_offset,
 245                           Node* dest, Node* dest_offset,
 246                           Node* copy_length,
 247                           bool disjoint_bases = false,
 248                           bool length_never_negative = false,
 249                           RegionNode* slow_region = NULL);
 250   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 251                                                 RegionNode* slow_region);
 252   void generate_clear_array(const TypePtr* adr_type,
 253                             Node* dest,
 254                             BasicType basic_elem_type,
 255                             Node* slice_off,
 256                             Node* slice_len,
 257                             Node* slice_end);
 258   bool generate_block_arraycopy(const TypePtr* adr_type,
 259                                 BasicType basic_elem_type,
 260                                 AllocateNode* alloc,
 261                                 Node* src,  Node* src_offset,
 262                                 Node* dest, Node* dest_offset,
 263                                 Node* dest_size, bool dest_uninitialized);
 264   void generate_slow_arraycopy(const TypePtr* adr_type,
 265                                Node* src,  Node* src_offset,
 266                                Node* dest, Node* dest_offset,
 267                                Node* copy_length, bool dest_uninitialized);
 268   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 269                                      Node* dest_elem_klass,
 270                                      Node* src,  Node* src_offset,
 271                                      Node* dest, Node* dest_offset,
 272                                      Node* copy_length, bool dest_uninitialized);
 273   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 274                                    Node* src,  Node* src_offset,
 275                                    Node* dest, Node* dest_offset,
 276                                    Node* copy_length, bool dest_uninitialized);
 277   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 278                                     BasicType basic_elem_type,
 279                                     bool disjoint_bases,
 280                                     Node* src,  Node* src_offset,
 281                                     Node* dest, Node* dest_offset,
 282                                     Node* copy_length, bool dest_uninitialized);
 283   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 284   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 285   bool inline_unsafe_ordered_store(BasicType type);
 286   bool inline_unsafe_fence(vmIntrinsics::ID id);
 287   bool inline_fp_conversions(vmIntrinsics::ID id);
 288   bool inline_number_methods(vmIntrinsics::ID id);
 289   bool inline_reference_get();
 290   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 291   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 292   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 293   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 294   bool inline_encodeISOArray();
 295   bool inline_updateCRC32();
 296   bool inline_updateBytesCRC32();
 297   bool inline_updateByteBufferCRC32();
 298 };
 299 
 300 
 301 //---------------------------make_vm_intrinsic----------------------------
 302 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 303   vmIntrinsics::ID id = m->intrinsic_id();
 304   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 305 
 306   if (DisableIntrinsic[0] != '\0'
 307       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 308     // disabled by a user request on the command line:
 309     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 310     return NULL;
 311   }
 312 
 313   if (!m->is_loaded()) {
 314     // do not attempt to inline unloaded methods
 315     return NULL;
 316   }
 317 
 318   // Only a few intrinsics implement a virtual dispatch.
 319   // They are expensive calls which are also frequently overridden.
 320   if (is_virtual) {
 321     switch (id) {
 322     case vmIntrinsics::_hashCode:
 323     case vmIntrinsics::_clone:
 324       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 325       break;
 326     default:
 327       return NULL;
 328     }
 329   }
 330 
 331   // -XX:-InlineNatives disables nearly all intrinsics:
 332   if (!InlineNatives) {
 333     switch (id) {
 334     case vmIntrinsics::_indexOf:
 335     case vmIntrinsics::_compareTo:
 336     case vmIntrinsics::_equals:
 337     case vmIntrinsics::_equalsC:
 338     case vmIntrinsics::_getAndAddInt:
 339     case vmIntrinsics::_getAndAddLong:
 340     case vmIntrinsics::_getAndSetInt:
 341     case vmIntrinsics::_getAndSetLong:
 342     case vmIntrinsics::_getAndSetObject:
 343     case vmIntrinsics::_loadFence:
 344     case vmIntrinsics::_storeFence:
 345     case vmIntrinsics::_fullFence:
 346       break;  // InlineNatives does not control String.compareTo
 347     case vmIntrinsics::_Reference_get:
 348       break;  // InlineNatives does not control Reference.get
 349     default:
 350       return NULL;
 351     }
 352   }
 353 
 354   bool is_predicted = false;
 355 
 356   switch (id) {
 357   case vmIntrinsics::_compareTo:
 358     if (!SpecialStringCompareTo)  return NULL;
 359     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 360     break;
 361   case vmIntrinsics::_indexOf:
 362     if (!SpecialStringIndexOf)  return NULL;
 363     break;
 364   case vmIntrinsics::_equals:
 365     if (!SpecialStringEquals)  return NULL;
 366     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 367     break;
 368   case vmIntrinsics::_equalsC:
 369     if (!SpecialArraysEquals)  return NULL;
 370     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 371     break;
 372   case vmIntrinsics::_arraycopy:
 373     if (!InlineArrayCopy)  return NULL;
 374     break;
 375   case vmIntrinsics::_copyMemory:
 376     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 377     if (!InlineArrayCopy)  return NULL;
 378     break;
 379   case vmIntrinsics::_hashCode:
 380     if (!InlineObjectHash)  return NULL;
 381     break;
 382   case vmIntrinsics::_clone:
 383   case vmIntrinsics::_copyOf:
 384   case vmIntrinsics::_copyOfRange:
 385     if (!InlineObjectCopy)  return NULL;
 386     // These also use the arraycopy intrinsic mechanism:
 387     if (!InlineArrayCopy)  return NULL;
 388     break;
 389   case vmIntrinsics::_encodeISOArray:
 390     if (!SpecialEncodeISOArray)  return NULL;
 391     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 392     break;
 393   case vmIntrinsics::_checkIndex:
 394     // We do not intrinsify this.  The optimizer does fine with it.
 395     return NULL;
 396 
 397   case vmIntrinsics::_getCallerClass:
 398     if (!UseNewReflection)  return NULL;
 399     if (!InlineReflectionGetCallerClass)  return NULL;
 400     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 401     break;
 402 
 403   case vmIntrinsics::_bitCount_i:
 404     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 405     break;
 406 
 407   case vmIntrinsics::_bitCount_l:
 408     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 409     break;
 410 
 411   case vmIntrinsics::_numberOfLeadingZeros_i:
 412     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 413     break;
 414 
 415   case vmIntrinsics::_numberOfLeadingZeros_l:
 416     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 417     break;
 418 
 419   case vmIntrinsics::_numberOfTrailingZeros_i:
 420     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 421     break;
 422 
 423   case vmIntrinsics::_numberOfTrailingZeros_l:
 424     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 425     break;
 426 
 427   case vmIntrinsics::_reverseBytes_c:
 428     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 429     break;
 430   case vmIntrinsics::_reverseBytes_s:
 431     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 432     break;
 433   case vmIntrinsics::_reverseBytes_i:
 434     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 435     break;
 436   case vmIntrinsics::_reverseBytes_l:
 437     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 438     break;
 439 
 440   case vmIntrinsics::_Reference_get:
 441     // Use the intrinsic version of Reference.get() so that the value in
 442     // the referent field can be registered by the G1 pre-barrier code.
 443     // Also add memory barrier to prevent commoning reads from this field
 444     // across safepoint since GC can change it value.
 445     break;
 446 
 447   case vmIntrinsics::_compareAndSwapObject:
 448 #ifdef _LP64
 449     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 450 #endif
 451     break;
 452 
 453   case vmIntrinsics::_compareAndSwapLong:
 454     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 455     break;
 456 
 457   case vmIntrinsics::_getAndAddInt:
 458     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 459     break;
 460 
 461   case vmIntrinsics::_getAndAddLong:
 462     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 463     break;
 464 
 465   case vmIntrinsics::_getAndSetInt:
 466     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 467     break;
 468 
 469   case vmIntrinsics::_getAndSetLong:
 470     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 471     break;
 472 
 473   case vmIntrinsics::_getAndSetObject:
 474 #ifdef _LP64
 475     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 476     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 477     break;
 478 #else
 479     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 480     break;
 481 #endif
 482 
 483   case vmIntrinsics::_aescrypt_encryptBlock:
 484   case vmIntrinsics::_aescrypt_decryptBlock:
 485     if (!UseAESIntrinsics) return NULL;
 486     break;
 487 
 488   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 489   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 490     if (!UseAESIntrinsics) return NULL;
 491     // these two require the predicated logic
 492     is_predicted = true;
 493     break;
 494 
 495   case vmIntrinsics::_updateCRC32:
 496   case vmIntrinsics::_updateBytesCRC32:
 497   case vmIntrinsics::_updateByteBufferCRC32:
 498     if (!UseCRC32Intrinsics) return NULL;
 499     break;
 500 
 501  default:
 502     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 503     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 504     break;
 505   }
 506 
 507   // -XX:-InlineClassNatives disables natives from the Class class.
 508   // The flag applies to all reflective calls, notably Array.newArray
 509   // (visible to Java programmers as Array.newInstance).
 510   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 511       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 512     if (!InlineClassNatives)  return NULL;
 513   }
 514 
 515   // -XX:-InlineThreadNatives disables natives from the Thread class.
 516   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 517     if (!InlineThreadNatives)  return NULL;
 518   }
 519 
 520   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 521   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 522       m->holder()->name() == ciSymbol::java_lang_Float() ||
 523       m->holder()->name() == ciSymbol::java_lang_Double()) {
 524     if (!InlineMathNatives)  return NULL;
 525   }
 526 
 527   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 528   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 529     if (!InlineUnsafeOps)  return NULL;
 530   }
 531 
 532   return new LibraryIntrinsic(m, is_virtual, is_predicted, (vmIntrinsics::ID) id);
 533 }
 534 
 535 //----------------------register_library_intrinsics-----------------------
 536 // Initialize this file's data structures, for each Compile instance.
 537 void Compile::register_library_intrinsics() {
 538   // Nothing to do here.
 539 }
 540 
 541 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 542   LibraryCallKit kit(jvms, this);
 543   Compile* C = kit.C;
 544   int nodes = C->unique();
 545 #ifndef PRODUCT
 546   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 547     char buf[1000];
 548     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 549     tty->print_cr("Intrinsic %s", str);
 550   }
 551 #endif
 552   ciMethod* callee = kit.callee();
 553   const int bci    = kit.bci();
 554 
 555   // Try to inline the intrinsic.
 556   if (kit.try_to_inline()) {
 557     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 558       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 559     }
 560     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 561     if (C->log()) {
 562       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 563                      vmIntrinsics::name_at(intrinsic_id()),
 564                      (is_virtual() ? " virtual='1'" : ""),
 565                      C->unique() - nodes);
 566     }
 567     // Push the result from the inlined method onto the stack.
 568     kit.push_result();
 569     return kit.transfer_exceptions_into_jvms();
 570   }
 571 
 572   // The intrinsic bailed out
 573   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 574     if (jvms->has_method()) {
 575       // Not a root compile.
 576       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 577       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 578     } else {
 579       // Root compile
 580       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 581                vmIntrinsics::name_at(intrinsic_id()),
 582                (is_virtual() ? " (virtual)" : ""), bci);
 583     }
 584   }
 585   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 586   return NULL;
 587 }
 588 
 589 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 590   LibraryCallKit kit(jvms, this);
 591   Compile* C = kit.C;
 592   int nodes = C->unique();
 593 #ifndef PRODUCT
 594   assert(is_predicted(), "sanity");
 595   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 596     char buf[1000];
 597     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 598     tty->print_cr("Predicate for intrinsic %s", str);
 599   }
 600 #endif
 601   ciMethod* callee = kit.callee();
 602   const int bci    = kit.bci();
 603 
 604   Node* slow_ctl = kit.try_to_predicate();
 605   if (!kit.failing()) {
 606     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 607       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 608     }
 609     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 610     if (C->log()) {
 611       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 612                      vmIntrinsics::name_at(intrinsic_id()),
 613                      (is_virtual() ? " virtual='1'" : ""),
 614                      C->unique() - nodes);
 615     }
 616     return slow_ctl; // Could be NULL if the check folds.
 617   }
 618 
 619   // The intrinsic bailed out
 620   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 621     if (jvms->has_method()) {
 622       // Not a root compile.
 623       const char* msg = "failed to generate predicate for intrinsic";
 624       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 625     } else {
 626       // Root compile
 627       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 628                                         vmIntrinsics::name_at(intrinsic_id()),
 629                                         (is_virtual() ? " (virtual)" : ""), bci);
 630     }
 631   }
 632   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 633   return NULL;
 634 }
 635 
 636 bool LibraryCallKit::try_to_inline() {
 637   // Handle symbolic names for otherwise undistinguished boolean switches:
 638   const bool is_store       = true;
 639   const bool is_native_ptr  = true;
 640   const bool is_static      = true;
 641   const bool is_volatile    = true;
 642 
 643   if (!jvms()->has_method()) {
 644     // Root JVMState has a null method.
 645     assert(map()->memory()->Opcode() == Op_Parm, "");
 646     // Insert the memory aliasing node
 647     set_all_memory(reset_memory());
 648   }
 649   assert(merged_memory(), "");
 650 
 651 
 652   switch (intrinsic_id()) {
 653   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 654   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 655   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 656 
 657   case vmIntrinsics::_dsin:
 658   case vmIntrinsics::_dcos:
 659   case vmIntrinsics::_dtan:
 660   case vmIntrinsics::_dabs:
 661   case vmIntrinsics::_datan2:
 662   case vmIntrinsics::_dsqrt:
 663   case vmIntrinsics::_dexp:
 664   case vmIntrinsics::_dlog:
 665   case vmIntrinsics::_dlog10:
 666   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 667 
 668   case vmIntrinsics::_min:
 669   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 670 
 671   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 672 
 673   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 674   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 675   case vmIntrinsics::_equals:                   return inline_string_equals();
 676 
 677   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 678   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 679   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 680   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 681   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 682   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 683   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 684   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 685   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 686 
 687   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 688   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 689   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 690   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 691   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 692   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 693   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 694   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 695   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 696 
 697   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 698   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 699   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 700   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 701   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 702   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 703   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 704   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 705 
 706   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 707   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 708   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 709   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 710   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 711   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 712   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 713   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 714 
 715   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 716   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 717   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 718   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 719   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 720   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 721   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 722   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 723   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 724 
 725   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 726   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 727   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 728   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 729   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 730   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 731   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 732   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 733   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 734 
 735   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 736   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 737   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 738   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 739 
 740   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 741   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 742   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 743 
 744   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 745   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 746   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 747 
 748   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 749   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 750   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 751   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 752   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 753 
 754   case vmIntrinsics::_loadFence:
 755   case vmIntrinsics::_storeFence:
 756   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 757 
 758   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 759   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 760 
 761 #ifdef TRACE_HAVE_INTRINSICS
 762   case vmIntrinsics::_classID:                  return inline_native_classID();
 763   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 764   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 765 #endif
 766   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 767   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 768   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 769   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 770   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 771   case vmIntrinsics::_getLength:                return inline_native_getLength();
 772   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 773   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 774   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 775   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 776 
 777   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 778 
 779   case vmIntrinsics::_isInstance:
 780   case vmIntrinsics::_getModifiers:
 781   case vmIntrinsics::_isInterface:
 782   case vmIntrinsics::_isArray:
 783   case vmIntrinsics::_isPrimitive:
 784   case vmIntrinsics::_getSuperclass:
 785   case vmIntrinsics::_getComponentType:
 786   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 787 
 788   case vmIntrinsics::_floatToRawIntBits:
 789   case vmIntrinsics::_floatToIntBits:
 790   case vmIntrinsics::_intBitsToFloat:
 791   case vmIntrinsics::_doubleToRawLongBits:
 792   case vmIntrinsics::_doubleToLongBits:
 793   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 794 
 795   case vmIntrinsics::_numberOfLeadingZeros_i:
 796   case vmIntrinsics::_numberOfLeadingZeros_l:
 797   case vmIntrinsics::_numberOfTrailingZeros_i:
 798   case vmIntrinsics::_numberOfTrailingZeros_l:
 799   case vmIntrinsics::_bitCount_i:
 800   case vmIntrinsics::_bitCount_l:
 801   case vmIntrinsics::_reverseBytes_i:
 802   case vmIntrinsics::_reverseBytes_l:
 803   case vmIntrinsics::_reverseBytes_s:
 804   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 805 
 806   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 807 
 808   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 809 
 810   case vmIntrinsics::_aescrypt_encryptBlock:
 811   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 812 
 813   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 814   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 815     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 816 
 817   case vmIntrinsics::_encodeISOArray:
 818     return inline_encodeISOArray();
 819 
 820   case vmIntrinsics::_updateCRC32:
 821     return inline_updateCRC32();
 822   case vmIntrinsics::_updateBytesCRC32:
 823     return inline_updateBytesCRC32();
 824   case vmIntrinsics::_updateByteBufferCRC32:
 825     return inline_updateByteBufferCRC32();
 826 
 827   default:
 828     // If you get here, it may be that someone has added a new intrinsic
 829     // to the list in vmSymbols.hpp without implementing it here.
 830 #ifndef PRODUCT
 831     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 832       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 833                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 834     }
 835 #endif
 836     return false;
 837   }
 838 }
 839 
 840 Node* LibraryCallKit::try_to_predicate() {
 841   if (!jvms()->has_method()) {
 842     // Root JVMState has a null method.
 843     assert(map()->memory()->Opcode() == Op_Parm, "");
 844     // Insert the memory aliasing node
 845     set_all_memory(reset_memory());
 846   }
 847   assert(merged_memory(), "");
 848 
 849   switch (intrinsic_id()) {
 850   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 851     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 852   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 853     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 854 
 855   default:
 856     // If you get here, it may be that someone has added a new intrinsic
 857     // to the list in vmSymbols.hpp without implementing it here.
 858 #ifndef PRODUCT
 859     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 860       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 861                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 862     }
 863 #endif
 864     Node* slow_ctl = control();
 865     set_control(top()); // No fast path instrinsic
 866     return slow_ctl;
 867   }
 868 }
 869 
 870 //------------------------------set_result-------------------------------
 871 // Helper function for finishing intrinsics.
 872 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 873   record_for_igvn(region);
 874   set_control(_gvn.transform(region));
 875   set_result( _gvn.transform(value));
 876   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 877 }
 878 
 879 //------------------------------generate_guard---------------------------
 880 // Helper function for generating guarded fast-slow graph structures.
 881 // The given 'test', if true, guards a slow path.  If the test fails
 882 // then a fast path can be taken.  (We generally hope it fails.)
 883 // In all cases, GraphKit::control() is updated to the fast path.
 884 // The returned value represents the control for the slow path.
 885 // The return value is never 'top'; it is either a valid control
 886 // or NULL if it is obvious that the slow path can never be taken.
 887 // Also, if region and the slow control are not NULL, the slow edge
 888 // is appended to the region.
 889 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 890   if (stopped()) {
 891     // Already short circuited.
 892     return NULL;
 893   }
 894 
 895   // Build an if node and its projections.
 896   // If test is true we take the slow path, which we assume is uncommon.
 897   if (_gvn.type(test) == TypeInt::ZERO) {
 898     // The slow branch is never taken.  No need to build this guard.
 899     return NULL;
 900   }
 901 
 902   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 903 
 904   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
 905   if (if_slow == top()) {
 906     // The slow branch is never taken.  No need to build this guard.
 907     return NULL;
 908   }
 909 
 910   if (region != NULL)
 911     region->add_req(if_slow);
 912 
 913   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
 914   set_control(if_fast);
 915 
 916   return if_slow;
 917 }
 918 
 919 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 920   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 921 }
 922 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 923   return generate_guard(test, region, PROB_FAIR);
 924 }
 925 
 926 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 927                                                      Node* *pos_index) {
 928   if (stopped())
 929     return NULL;                // already stopped
 930   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 931     return NULL;                // index is already adequately typed
 932   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
 933   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
 934   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 935   if (is_neg != NULL && pos_index != NULL) {
 936     // Emulate effect of Parse::adjust_map_after_if.
 937     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
 938     ccast->set_req(0, control());
 939     (*pos_index) = _gvn.transform(ccast);
 940   }
 941   return is_neg;
 942 }
 943 
 944 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 945                                                         Node* *pos_index) {
 946   if (stopped())
 947     return NULL;                // already stopped
 948   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 949     return NULL;                // index is already adequately typed
 950   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
 951   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 952   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
 953   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 954   if (is_notp != NULL && pos_index != NULL) {
 955     // Emulate effect of Parse::adjust_map_after_if.
 956     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
 957     ccast->set_req(0, control());
 958     (*pos_index) = _gvn.transform(ccast);
 959   }
 960   return is_notp;
 961 }
 962 
 963 // Make sure that 'position' is a valid limit index, in [0..length].
 964 // There are two equivalent plans for checking this:
 965 //   A. (offset + copyLength)  unsigned<=  arrayLength
 966 //   B. offset  <=  (arrayLength - copyLength)
 967 // We require that all of the values above, except for the sum and
 968 // difference, are already known to be non-negative.
 969 // Plan A is robust in the face of overflow, if offset and copyLength
 970 // are both hugely positive.
 971 //
 972 // Plan B is less direct and intuitive, but it does not overflow at
 973 // all, since the difference of two non-negatives is always
 974 // representable.  Whenever Java methods must perform the equivalent
 975 // check they generally use Plan B instead of Plan A.
 976 // For the moment we use Plan A.
 977 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 978                                                   Node* subseq_length,
 979                                                   Node* array_length,
 980                                                   RegionNode* region) {
 981   if (stopped())
 982     return NULL;                // already stopped
 983   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 984   if (zero_offset && subseq_length->eqv_uncast(array_length))
 985     return NULL;                // common case of whole-array copy
 986   Node* last = subseq_length;
 987   if (!zero_offset)             // last += offset
 988     last = _gvn.transform(new (C) AddINode(last, offset));
 989   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
 990   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
 991   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 992   return is_over;
 993 }
 994 
 995 
 996 //--------------------------generate_current_thread--------------------
 997 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 998   ciKlass*    thread_klass = env()->Thread_klass();
 999   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1000   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1001   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1002   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
1003   tls_output = thread;
1004   return threadObj;
1005 }
1006 
1007 
1008 //------------------------------make_string_method_node------------------------
1009 // Helper method for String intrinsic functions. This version is called
1010 // with str1 and str2 pointing to String object nodes.
1011 //
1012 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1013   Node* no_ctrl = NULL;
1014 
1015   // Get start addr of string
1016   Node* str1_value   = load_String_value(no_ctrl, str1);
1017   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1018   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1019 
1020   // Get length of string 1
1021   Node* str1_len  = load_String_length(no_ctrl, str1);
1022 
1023   Node* str2_value   = load_String_value(no_ctrl, str2);
1024   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1025   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1026 
1027   Node* str2_len = NULL;
1028   Node* result = NULL;
1029 
1030   switch (opcode) {
1031   case Op_StrIndexOf:
1032     // Get length of string 2
1033     str2_len = load_String_length(no_ctrl, str2);
1034 
1035     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1036                                  str1_start, str1_len, str2_start, str2_len);
1037     break;
1038   case Op_StrComp:
1039     // Get length of string 2
1040     str2_len = load_String_length(no_ctrl, str2);
1041 
1042     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1043                                  str1_start, str1_len, str2_start, str2_len);
1044     break;
1045   case Op_StrEquals:
1046     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1047                                str1_start, str2_start, str1_len);
1048     break;
1049   default:
1050     ShouldNotReachHere();
1051     return NULL;
1052   }
1053 
1054   // All these intrinsics have checks.
1055   C->set_has_split_ifs(true); // Has chance for split-if optimization
1056 
1057   return _gvn.transform(result);
1058 }
1059 
1060 // Helper method for String intrinsic functions. This version is called
1061 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1062 // to Int nodes containing the lenghts of str1 and str2.
1063 //
1064 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1065   Node* result = NULL;
1066   switch (opcode) {
1067   case Op_StrIndexOf:
1068     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1069                                  str1_start, cnt1, str2_start, cnt2);
1070     break;
1071   case Op_StrComp:
1072     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1073                                  str1_start, cnt1, str2_start, cnt2);
1074     break;
1075   case Op_StrEquals:
1076     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1077                                  str1_start, str2_start, cnt1);
1078     break;
1079   default:
1080     ShouldNotReachHere();
1081     return NULL;
1082   }
1083 
1084   // All these intrinsics have checks.
1085   C->set_has_split_ifs(true); // Has chance for split-if optimization
1086 
1087   return _gvn.transform(result);
1088 }
1089 
1090 //------------------------------inline_string_compareTo------------------------
1091 // public int java.lang.String.compareTo(String anotherString);
1092 bool LibraryCallKit::inline_string_compareTo() {
1093   Node* receiver = null_check(argument(0));
1094   Node* arg      = null_check(argument(1));
1095   if (stopped()) {
1096     return true;
1097   }
1098   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1099   return true;
1100 }
1101 
1102 //------------------------------inline_string_equals------------------------
1103 bool LibraryCallKit::inline_string_equals() {
1104   Node* receiver = null_check_receiver();
1105   // NOTE: Do not null check argument for String.equals() because spec
1106   // allows to specify NULL as argument.
1107   Node* argument = this->argument(1);
1108   if (stopped()) {
1109     return true;
1110   }
1111 
1112   // paths (plus control) merge
1113   RegionNode* region = new (C) RegionNode(5);
1114   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1115 
1116   // does source == target string?
1117   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1118   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1119 
1120   Node* if_eq = generate_slow_guard(bol, NULL);
1121   if (if_eq != NULL) {
1122     // receiver == argument
1123     phi->init_req(2, intcon(1));
1124     region->init_req(2, if_eq);
1125   }
1126 
1127   // get String klass for instanceOf
1128   ciInstanceKlass* klass = env()->String_klass();
1129 
1130   if (!stopped()) {
1131     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1132     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1133     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1134 
1135     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1136     //instanceOf == true, fallthrough
1137 
1138     if (inst_false != NULL) {
1139       phi->init_req(3, intcon(0));
1140       region->init_req(3, inst_false);
1141     }
1142   }
1143 
1144   if (!stopped()) {
1145     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1146 
1147     // Properly cast the argument to String
1148     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1149     // This path is taken only when argument's type is String:NotNull.
1150     argument = cast_not_null(argument, false);
1151 
1152     Node* no_ctrl = NULL;
1153 
1154     // Get start addr of receiver
1155     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1156     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1157     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1158 
1159     // Get length of receiver
1160     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1161 
1162     // Get start addr of argument
1163     Node* argument_val    = load_String_value(no_ctrl, argument);
1164     Node* argument_offset = load_String_offset(no_ctrl, argument);
1165     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1166 
1167     // Get length of argument
1168     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1169 
1170     // Check for receiver count != argument count
1171     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1172     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1173     Node* if_ne = generate_slow_guard(bol, NULL);
1174     if (if_ne != NULL) {
1175       phi->init_req(4, intcon(0));
1176       region->init_req(4, if_ne);
1177     }
1178 
1179     // Check for count == 0 is done by assembler code for StrEquals.
1180 
1181     if (!stopped()) {
1182       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1183       phi->init_req(1, equals);
1184       region->init_req(1, control());
1185     }
1186   }
1187 
1188   // post merge
1189   set_control(_gvn.transform(region));
1190   record_for_igvn(region);
1191 
1192   set_result(_gvn.transform(phi));
1193   return true;
1194 }
1195 
1196 //------------------------------inline_array_equals----------------------------
1197 bool LibraryCallKit::inline_array_equals() {
1198   Node* arg1 = argument(0);
1199   Node* arg2 = argument(1);
1200   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1201   return true;
1202 }
1203 
1204 // Java version of String.indexOf(constant string)
1205 // class StringDecl {
1206 //   StringDecl(char[] ca) {
1207 //     offset = 0;
1208 //     count = ca.length;
1209 //     value = ca;
1210 //   }
1211 //   int offset;
1212 //   int count;
1213 //   char[] value;
1214 // }
1215 //
1216 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1217 //                             int targetOffset, int cache_i, int md2) {
1218 //   int cache = cache_i;
1219 //   int sourceOffset = string_object.offset;
1220 //   int sourceCount = string_object.count;
1221 //   int targetCount = target_object.length;
1222 //
1223 //   int targetCountLess1 = targetCount - 1;
1224 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1225 //
1226 //   char[] source = string_object.value;
1227 //   char[] target = target_object;
1228 //   int lastChar = target[targetCountLess1];
1229 //
1230 //  outer_loop:
1231 //   for (int i = sourceOffset; i < sourceEnd; ) {
1232 //     int src = source[i + targetCountLess1];
1233 //     if (src == lastChar) {
1234 //       // With random strings and a 4-character alphabet,
1235 //       // reverse matching at this point sets up 0.8% fewer
1236 //       // frames, but (paradoxically) makes 0.3% more probes.
1237 //       // Since those probes are nearer the lastChar probe,
1238 //       // there is may be a net D$ win with reverse matching.
1239 //       // But, reversing loop inhibits unroll of inner loop
1240 //       // for unknown reason.  So, does running outer loop from
1241 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1242 //       for (int j = 0; j < targetCountLess1; j++) {
1243 //         if (target[targetOffset + j] != source[i+j]) {
1244 //           if ((cache & (1 << source[i+j])) == 0) {
1245 //             if (md2 < j+1) {
1246 //               i += j+1;
1247 //               continue outer_loop;
1248 //             }
1249 //           }
1250 //           i += md2;
1251 //           continue outer_loop;
1252 //         }
1253 //       }
1254 //       return i - sourceOffset;
1255 //     }
1256 //     if ((cache & (1 << src)) == 0) {
1257 //       i += targetCountLess1;
1258 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1259 //     i++;
1260 //   }
1261 //   return -1;
1262 // }
1263 
1264 //------------------------------string_indexOf------------------------
1265 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1266                                      jint cache_i, jint md2_i) {
1267 
1268   Node* no_ctrl  = NULL;
1269   float likely   = PROB_LIKELY(0.9);
1270   float unlikely = PROB_UNLIKELY(0.9);
1271 
1272   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1273 
1274   Node* source        = load_String_value(no_ctrl, string_object);
1275   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1276   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1277 
1278   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1279   jint target_length = target_array->length();
1280   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1281   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1282 
1283   IdealKit kit(this, false, true);
1284 #define __ kit.
1285   Node* zero             = __ ConI(0);
1286   Node* one              = __ ConI(1);
1287   Node* cache            = __ ConI(cache_i);
1288   Node* md2              = __ ConI(md2_i);
1289   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1290   Node* targetCount      = __ ConI(target_length);
1291   Node* targetCountLess1 = __ ConI(target_length - 1);
1292   Node* targetOffset     = __ ConI(targetOffset_i);
1293   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1294 
1295   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1296   Node* outer_loop = __ make_label(2 /* goto */);
1297   Node* return_    = __ make_label(1);
1298 
1299   __ set(rtn,__ ConI(-1));
1300   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1301        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1302        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1303        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1304        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1305          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1306               Node* tpj = __ AddI(targetOffset, __ value(j));
1307               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1308               Node* ipj  = __ AddI(__ value(i), __ value(j));
1309               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1310               __ if_then(targ, BoolTest::ne, src2); {
1311                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1312                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1313                     __ increment(i, __ AddI(__ value(j), one));
1314                     __ goto_(outer_loop);
1315                   } __ end_if(); __ dead(j);
1316                 }__ end_if(); __ dead(j);
1317                 __ increment(i, md2);
1318                 __ goto_(outer_loop);
1319               }__ end_if();
1320               __ increment(j, one);
1321          }__ end_loop(); __ dead(j);
1322          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1323          __ goto_(return_);
1324        }__ end_if();
1325        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1326          __ increment(i, targetCountLess1);
1327        }__ end_if();
1328        __ increment(i, one);
1329        __ bind(outer_loop);
1330   }__ end_loop(); __ dead(i);
1331   __ bind(return_);
1332 
1333   // Final sync IdealKit and GraphKit.
1334   final_sync(kit);
1335   Node* result = __ value(rtn);
1336 #undef __
1337   C->set_has_loops(true);
1338   return result;
1339 }
1340 
1341 //------------------------------inline_string_indexOf------------------------
1342 bool LibraryCallKit::inline_string_indexOf() {
1343   Node* receiver = argument(0);
1344   Node* arg      = argument(1);
1345 
1346   Node* result;
1347   // Disable the use of pcmpestri until it can be guaranteed that
1348   // the load doesn't cross into the uncommited space.
1349   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1350       UseSSE42Intrinsics) {
1351     // Generate SSE4.2 version of indexOf
1352     // We currently only have match rules that use SSE4.2
1353 
1354     receiver = null_check(receiver);
1355     arg      = null_check(arg);
1356     if (stopped()) {
1357       return true;
1358     }
1359 
1360     ciInstanceKlass* str_klass = env()->String_klass();
1361     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1362 
1363     // Make the merge point
1364     RegionNode* result_rgn = new (C) RegionNode(4);
1365     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1366     Node* no_ctrl  = NULL;
1367 
1368     // Get start addr of source string
1369     Node* source = load_String_value(no_ctrl, receiver);
1370     Node* source_offset = load_String_offset(no_ctrl, receiver);
1371     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1372 
1373     // Get length of source string
1374     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1375 
1376     // Get start addr of substring
1377     Node* substr = load_String_value(no_ctrl, arg);
1378     Node* substr_offset = load_String_offset(no_ctrl, arg);
1379     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1380 
1381     // Get length of source string
1382     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1383 
1384     // Check for substr count > string count
1385     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1386     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1387     Node* if_gt = generate_slow_guard(bol, NULL);
1388     if (if_gt != NULL) {
1389       result_phi->init_req(2, intcon(-1));
1390       result_rgn->init_req(2, if_gt);
1391     }
1392 
1393     if (!stopped()) {
1394       // Check for substr count == 0
1395       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1396       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1397       Node* if_zero = generate_slow_guard(bol, NULL);
1398       if (if_zero != NULL) {
1399         result_phi->init_req(3, intcon(0));
1400         result_rgn->init_req(3, if_zero);
1401       }
1402     }
1403 
1404     if (!stopped()) {
1405       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1406       result_phi->init_req(1, result);
1407       result_rgn->init_req(1, control());
1408     }
1409     set_control(_gvn.transform(result_rgn));
1410     record_for_igvn(result_rgn);
1411     result = _gvn.transform(result_phi);
1412 
1413   } else { // Use LibraryCallKit::string_indexOf
1414     // don't intrinsify if argument isn't a constant string.
1415     if (!arg->is_Con()) {
1416      return false;
1417     }
1418     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1419     if (str_type == NULL) {
1420       return false;
1421     }
1422     ciInstanceKlass* klass = env()->String_klass();
1423     ciObject* str_const = str_type->const_oop();
1424     if (str_const == NULL || str_const->klass() != klass) {
1425       return false;
1426     }
1427     ciInstance* str = str_const->as_instance();
1428     assert(str != NULL, "must be instance");
1429 
1430     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1431     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1432 
1433     int o;
1434     int c;
1435     if (java_lang_String::has_offset_field()) {
1436       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1437       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1438     } else {
1439       o = 0;
1440       c = pat->length();
1441     }
1442 
1443     // constant strings have no offset and count == length which
1444     // simplifies the resulting code somewhat so lets optimize for that.
1445     if (o != 0 || c != pat->length()) {
1446      return false;
1447     }
1448 
1449     receiver = null_check(receiver, T_OBJECT);
1450     // NOTE: No null check on the argument is needed since it's a constant String oop.
1451     if (stopped()) {
1452       return true;
1453     }
1454 
1455     // The null string as a pattern always returns 0 (match at beginning of string)
1456     if (c == 0) {
1457       set_result(intcon(0));
1458       return true;
1459     }
1460 
1461     // Generate default indexOf
1462     jchar lastChar = pat->char_at(o + (c - 1));
1463     int cache = 0;
1464     int i;
1465     for (i = 0; i < c - 1; i++) {
1466       assert(i < pat->length(), "out of range");
1467       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1468     }
1469 
1470     int md2 = c;
1471     for (i = 0; i < c - 1; i++) {
1472       assert(i < pat->length(), "out of range");
1473       if (pat->char_at(o + i) == lastChar) {
1474         md2 = (c - 1) - i;
1475       }
1476     }
1477 
1478     result = string_indexOf(receiver, pat, o, cache, md2);
1479   }
1480   set_result(result);
1481   return true;
1482 }
1483 
1484 //--------------------------round_double_node--------------------------------
1485 // Round a double node if necessary.
1486 Node* LibraryCallKit::round_double_node(Node* n) {
1487   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1488     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1489   return n;
1490 }
1491 
1492 //------------------------------inline_math-----------------------------------
1493 // public static double Math.abs(double)
1494 // public static double Math.sqrt(double)
1495 // public static double Math.log(double)
1496 // public static double Math.log10(double)
1497 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1498   Node* arg = round_double_node(argument(0));
1499   Node* n;
1500   switch (id) {
1501   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1502   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1503   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1504   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1505   default:  fatal_unexpected_iid(id);  break;
1506   }
1507   set_result(_gvn.transform(n));
1508   return true;
1509 }
1510 
1511 //------------------------------inline_trig----------------------------------
1512 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1513 // argument reduction which will turn into a fast/slow diamond.
1514 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1515   Node* arg = round_double_node(argument(0));
1516   Node* n = NULL;
1517 
1518   switch (id) {
1519   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1520   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1521   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1522   default:  fatal_unexpected_iid(id);  break;
1523   }
1524   n = _gvn.transform(n);
1525 
1526   // Rounding required?  Check for argument reduction!
1527   if (Matcher::strict_fp_requires_explicit_rounding) {
1528     static const double     pi_4 =  0.7853981633974483;
1529     static const double neg_pi_4 = -0.7853981633974483;
1530     // pi/2 in 80-bit extended precision
1531     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1532     // -pi/2 in 80-bit extended precision
1533     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1534     // Cutoff value for using this argument reduction technique
1535     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1536     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1537 
1538     // Pseudocode for sin:
1539     // if (x <= Math.PI / 4.0) {
1540     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1541     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1542     // } else {
1543     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1544     // }
1545     // return StrictMath.sin(x);
1546 
1547     // Pseudocode for cos:
1548     // if (x <= Math.PI / 4.0) {
1549     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1550     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1551     // } else {
1552     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1553     // }
1554     // return StrictMath.cos(x);
1555 
1556     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1557     // requires a special machine instruction to load it.  Instead we'll try
1558     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1559     // probably do the math inside the SIN encoding.
1560 
1561     // Make the merge point
1562     RegionNode* r = new (C) RegionNode(3);
1563     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1564 
1565     // Flatten arg so we need only 1 test
1566     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1567     // Node for PI/4 constant
1568     Node *pi4 = makecon(TypeD::make(pi_4));
1569     // Check PI/4 : abs(arg)
1570     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1571     // Check: If PI/4 < abs(arg) then go slow
1572     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1573     // Branch either way
1574     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1575     set_control(opt_iff(r,iff));
1576 
1577     // Set fast path result
1578     phi->init_req(2, n);
1579 
1580     // Slow path - non-blocking leaf call
1581     Node* call = NULL;
1582     switch (id) {
1583     case vmIntrinsics::_dsin:
1584       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1585                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1586                                "Sin", NULL, arg, top());
1587       break;
1588     case vmIntrinsics::_dcos:
1589       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1590                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1591                                "Cos", NULL, arg, top());
1592       break;
1593     case vmIntrinsics::_dtan:
1594       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1595                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1596                                "Tan", NULL, arg, top());
1597       break;
1598     }
1599     assert(control()->in(0) == call, "");
1600     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1601     r->init_req(1, control());
1602     phi->init_req(1, slow_result);
1603 
1604     // Post-merge
1605     set_control(_gvn.transform(r));
1606     record_for_igvn(r);
1607     n = _gvn.transform(phi);
1608 
1609     C->set_has_split_ifs(true); // Has chance for split-if optimization
1610   }
1611   set_result(n);
1612   return true;
1613 }
1614 
1615 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1616   //-------------------
1617   //result=(result.isNaN())? funcAddr():result;
1618   // Check: If isNaN() by checking result!=result? then either trap
1619   // or go to runtime
1620   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1621   // Build the boolean node
1622   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1623 
1624   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1625     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1626       // The pow or exp intrinsic returned a NaN, which requires a call
1627       // to the runtime.  Recompile with the runtime call.
1628       uncommon_trap(Deoptimization::Reason_intrinsic,
1629                     Deoptimization::Action_make_not_entrant);
1630     }
1631     set_result(result);
1632   } else {
1633     // If this inlining ever returned NaN in the past, we compile a call
1634     // to the runtime to properly handle corner cases
1635 
1636     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1637     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1638     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1639 
1640     if (!if_slow->is_top()) {
1641       RegionNode* result_region = new (C) RegionNode(3);
1642       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1643 
1644       result_region->init_req(1, if_fast);
1645       result_val->init_req(1, result);
1646 
1647       set_control(if_slow);
1648 
1649       const TypePtr* no_memory_effects = NULL;
1650       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1651                                    no_memory_effects,
1652                                    x, top(), y, y ? top() : NULL);
1653       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1654 #ifdef ASSERT
1655       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1656       assert(value_top == top(), "second value must be top");
1657 #endif
1658 
1659       result_region->init_req(2, control());
1660       result_val->init_req(2, value);
1661       set_result(result_region, result_val);
1662     } else {
1663       set_result(result);
1664     }
1665   }
1666 }
1667 
1668 //------------------------------inline_exp-------------------------------------
1669 // Inline exp instructions, if possible.  The Intel hardware only misses
1670 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1671 bool LibraryCallKit::inline_exp() {
1672   Node* arg = round_double_node(argument(0));
1673   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1674 
1675   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1676 
1677   C->set_has_split_ifs(true); // Has chance for split-if optimization
1678   return true;
1679 }
1680 
1681 //------------------------------inline_pow-------------------------------------
1682 // Inline power instructions, if possible.
1683 bool LibraryCallKit::inline_pow() {
1684   // Pseudocode for pow
1685   // if (x <= 0.0) {
1686   //   long longy = (long)y;
1687   //   if ((double)longy == y) { // if y is long
1688   //     if (y + 1 == y) longy = 0; // huge number: even
1689   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1690   //   } else {
1691   //     result = NaN;
1692   //   }
1693   // } else {
1694   //   result = DPow(x,y);
1695   // }
1696   // if (result != result)?  {
1697   //   result = uncommon_trap() or runtime_call();
1698   // }
1699   // return result;
1700 
1701   Node* x = round_double_node(argument(0));
1702   Node* y = round_double_node(argument(2));
1703 
1704   Node* result = NULL;
1705 
1706   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1707     // Short form: skip the fancy tests and just check for NaN result.
1708     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1709   } else {
1710     // If this inlining ever returned NaN in the past, include all
1711     // checks + call to the runtime.
1712 
1713     // Set the merge point for If node with condition of (x <= 0.0)
1714     // There are four possible paths to region node and phi node
1715     RegionNode *r = new (C) RegionNode(4);
1716     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1717 
1718     // Build the first if node: if (x <= 0.0)
1719     // Node for 0 constant
1720     Node *zeronode = makecon(TypeD::ZERO);
1721     // Check x:0
1722     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1723     // Check: If (x<=0) then go complex path
1724     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1725     // Branch either way
1726     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1727     // Fast path taken; set region slot 3
1728     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1729     r->init_req(3,fast_taken); // Capture fast-control
1730 
1731     // Fast path not-taken, i.e. slow path
1732     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1733 
1734     // Set fast path result
1735     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1736     phi->init_req(3, fast_result);
1737 
1738     // Complex path
1739     // Build the second if node (if y is long)
1740     // Node for (long)y
1741     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1742     // Node for (double)((long) y)
1743     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1744     // Check (double)((long) y) : y
1745     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1746     // Check if (y isn't long) then go to slow path
1747 
1748     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1749     // Branch either way
1750     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1751     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1752 
1753     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1754 
1755     // Calculate DPow(abs(x), y)*(1 & (long)y)
1756     // Node for constant 1
1757     Node *conone = longcon(1);
1758     // 1& (long)y
1759     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1760 
1761     // A huge number is always even. Detect a huge number by checking
1762     // if y + 1 == y and set integer to be tested for parity to 0.
1763     // Required for corner case:
1764     // (long)9.223372036854776E18 = max_jlong
1765     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1766     // max_jlong is odd but 9.223372036854776E18 is even
1767     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1768     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1769     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1770     Node* correctedsign = NULL;
1771     if (ConditionalMoveLimit != 0) {
1772       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1773     } else {
1774       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1775       RegionNode *r = new (C) RegionNode(3);
1776       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1777       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1778       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1779       phi->init_req(1, signnode);
1780       phi->init_req(2, longcon(0));
1781       correctedsign = _gvn.transform(phi);
1782       ylong_path = _gvn.transform(r);
1783       record_for_igvn(r);
1784     }
1785 
1786     // zero node
1787     Node *conzero = longcon(0);
1788     // Check (1&(long)y)==0?
1789     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1790     // Check if (1&(long)y)!=0?, if so the result is negative
1791     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1792     // abs(x)
1793     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1794     // abs(x)^y
1795     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1796     // -abs(x)^y
1797     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1798     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1799     Node *signresult = NULL;
1800     if (ConditionalMoveLimit != 0) {
1801       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1802     } else {
1803       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1804       RegionNode *r = new (C) RegionNode(3);
1805       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1806       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1807       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1808       phi->init_req(1, absxpowy);
1809       phi->init_req(2, negabsxpowy);
1810       signresult = _gvn.transform(phi);
1811       ylong_path = _gvn.transform(r);
1812       record_for_igvn(r);
1813     }
1814     // Set complex path fast result
1815     r->init_req(2, ylong_path);
1816     phi->init_req(2, signresult);
1817 
1818     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1819     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1820     r->init_req(1,slow_path);
1821     phi->init_req(1,slow_result);
1822 
1823     // Post merge
1824     set_control(_gvn.transform(r));
1825     record_for_igvn(r);
1826     result = _gvn.transform(phi);
1827   }
1828 
1829   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1830 
1831   C->set_has_split_ifs(true); // Has chance for split-if optimization
1832   return true;
1833 }
1834 
1835 //------------------------------runtime_math-----------------------------
1836 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1837   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1838          "must be (DD)D or (D)D type");
1839 
1840   // Inputs
1841   Node* a = round_double_node(argument(0));
1842   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1843 
1844   const TypePtr* no_memory_effects = NULL;
1845   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1846                                  no_memory_effects,
1847                                  a, top(), b, b ? top() : NULL);
1848   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1849 #ifdef ASSERT
1850   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1851   assert(value_top == top(), "second value must be top");
1852 #endif
1853 
1854   set_result(value);
1855   return true;
1856 }
1857 
1858 //------------------------------inline_math_native-----------------------------
1859 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1860 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1861   switch (id) {
1862     // These intrinsics are not properly supported on all hardware
1863   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1864     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1865   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1866     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1867   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1868     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1869 
1870   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1871     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1872   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1873     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1874 
1875     // These intrinsics are supported on all hardware
1876   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
1877   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1878 
1879   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1880     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1881   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1882     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1883 #undef FN_PTR
1884 
1885    // These intrinsics are not yet correctly implemented
1886   case vmIntrinsics::_datan2:
1887     return false;
1888 
1889   default:
1890     fatal_unexpected_iid(id);
1891     return false;
1892   }
1893 }
1894 
1895 static bool is_simple_name(Node* n) {
1896   return (n->req() == 1         // constant
1897           || (n->is_Type() && n->as_Type()->type()->singleton())
1898           || n->is_Proj()       // parameter or return value
1899           || n->is_Phi()        // local of some sort
1900           );
1901 }
1902 
1903 //----------------------------inline_min_max-----------------------------------
1904 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1905   set_result(generate_min_max(id, argument(0), argument(1)));
1906   return true;
1907 }
1908 
1909 Node*
1910 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1911   // These are the candidate return value:
1912   Node* xvalue = x0;
1913   Node* yvalue = y0;
1914 
1915   if (xvalue == yvalue) {
1916     return xvalue;
1917   }
1918 
1919   bool want_max = (id == vmIntrinsics::_max);
1920 
1921   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1922   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1923   if (txvalue == NULL || tyvalue == NULL)  return top();
1924   // This is not really necessary, but it is consistent with a
1925   // hypothetical MaxINode::Value method:
1926   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1927 
1928   // %%% This folding logic should (ideally) be in a different place.
1929   // Some should be inside IfNode, and there to be a more reliable
1930   // transformation of ?: style patterns into cmoves.  We also want
1931   // more powerful optimizations around cmove and min/max.
1932 
1933   // Try to find a dominating comparison of these guys.
1934   // It can simplify the index computation for Arrays.copyOf
1935   // and similar uses of System.arraycopy.
1936   // First, compute the normalized version of CmpI(x, y).
1937   int   cmp_op = Op_CmpI;
1938   Node* xkey = xvalue;
1939   Node* ykey = yvalue;
1940   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
1941   if (ideal_cmpxy->is_Cmp()) {
1942     // E.g., if we have CmpI(length - offset, count),
1943     // it might idealize to CmpI(length, count + offset)
1944     cmp_op = ideal_cmpxy->Opcode();
1945     xkey = ideal_cmpxy->in(1);
1946     ykey = ideal_cmpxy->in(2);
1947   }
1948 
1949   // Start by locating any relevant comparisons.
1950   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1951   Node* cmpxy = NULL;
1952   Node* cmpyx = NULL;
1953   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1954     Node* cmp = start_from->fast_out(k);
1955     if (cmp->outcnt() > 0 &&            // must have prior uses
1956         cmp->in(0) == NULL &&           // must be context-independent
1957         cmp->Opcode() == cmp_op) {      // right kind of compare
1958       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1959       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1960     }
1961   }
1962 
1963   const int NCMPS = 2;
1964   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1965   int cmpn;
1966   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1967     if (cmps[cmpn] != NULL)  break;     // find a result
1968   }
1969   if (cmpn < NCMPS) {
1970     // Look for a dominating test that tells us the min and max.
1971     int depth = 0;                // Limit search depth for speed
1972     Node* dom = control();
1973     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1974       if (++depth >= 100)  break;
1975       Node* ifproj = dom;
1976       if (!ifproj->is_Proj())  continue;
1977       Node* iff = ifproj->in(0);
1978       if (!iff->is_If())  continue;
1979       Node* bol = iff->in(1);
1980       if (!bol->is_Bool())  continue;
1981       Node* cmp = bol->in(1);
1982       if (cmp == NULL)  continue;
1983       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1984         if (cmps[cmpn] == cmp)  break;
1985       if (cmpn == NCMPS)  continue;
1986       BoolTest::mask btest = bol->as_Bool()->_test._test;
1987       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1988       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1989       // At this point, we know that 'x btest y' is true.
1990       switch (btest) {
1991       case BoolTest::eq:
1992         // They are proven equal, so we can collapse the min/max.
1993         // Either value is the answer.  Choose the simpler.
1994         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1995           return yvalue;
1996         return xvalue;
1997       case BoolTest::lt:          // x < y
1998       case BoolTest::le:          // x <= y
1999         return (want_max ? yvalue : xvalue);
2000       case BoolTest::gt:          // x > y
2001       case BoolTest::ge:          // x >= y
2002         return (want_max ? xvalue : yvalue);
2003       }
2004     }
2005   }
2006 
2007   // We failed to find a dominating test.
2008   // Let's pick a test that might GVN with prior tests.
2009   Node*          best_bol   = NULL;
2010   BoolTest::mask best_btest = BoolTest::illegal;
2011   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2012     Node* cmp = cmps[cmpn];
2013     if (cmp == NULL)  continue;
2014     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2015       Node* bol = cmp->fast_out(j);
2016       if (!bol->is_Bool())  continue;
2017       BoolTest::mask btest = bol->as_Bool()->_test._test;
2018       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2019       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2020       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2021         best_bol   = bol->as_Bool();
2022         best_btest = btest;
2023       }
2024     }
2025   }
2026 
2027   Node* answer_if_true  = NULL;
2028   Node* answer_if_false = NULL;
2029   switch (best_btest) {
2030   default:
2031     if (cmpxy == NULL)
2032       cmpxy = ideal_cmpxy;
2033     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2034     // and fall through:
2035   case BoolTest::lt:          // x < y
2036   case BoolTest::le:          // x <= y
2037     answer_if_true  = (want_max ? yvalue : xvalue);
2038     answer_if_false = (want_max ? xvalue : yvalue);
2039     break;
2040   case BoolTest::gt:          // x > y
2041   case BoolTest::ge:          // x >= y
2042     answer_if_true  = (want_max ? xvalue : yvalue);
2043     answer_if_false = (want_max ? yvalue : xvalue);
2044     break;
2045   }
2046 
2047   jint hi, lo;
2048   if (want_max) {
2049     // We can sharpen the minimum.
2050     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2051     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2052   } else {
2053     // We can sharpen the maximum.
2054     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2055     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2056   }
2057 
2058   // Use a flow-free graph structure, to avoid creating excess control edges
2059   // which could hinder other optimizations.
2060   // Since Math.min/max is often used with arraycopy, we want
2061   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2062   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2063                                answer_if_false, answer_if_true,
2064                                TypeInt::make(lo, hi, widen));
2065 
2066   return _gvn.transform(cmov);
2067 
2068   /*
2069   // This is not as desirable as it may seem, since Min and Max
2070   // nodes do not have a full set of optimizations.
2071   // And they would interfere, anyway, with 'if' optimizations
2072   // and with CMoveI canonical forms.
2073   switch (id) {
2074   case vmIntrinsics::_min:
2075     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2076   case vmIntrinsics::_max:
2077     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2078   default:
2079     ShouldNotReachHere();
2080   }
2081   */
2082 }
2083 
2084 inline int
2085 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2086   const TypePtr* base_type = TypePtr::NULL_PTR;
2087   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2088   if (base_type == NULL) {
2089     // Unknown type.
2090     return Type::AnyPtr;
2091   } else if (base_type == TypePtr::NULL_PTR) {
2092     // Since this is a NULL+long form, we have to switch to a rawptr.
2093     base   = _gvn.transform(new (C) CastX2PNode(offset));
2094     offset = MakeConX(0);
2095     return Type::RawPtr;
2096   } else if (base_type->base() == Type::RawPtr) {
2097     return Type::RawPtr;
2098   } else if (base_type->isa_oopptr()) {
2099     // Base is never null => always a heap address.
2100     if (base_type->ptr() == TypePtr::NotNull) {
2101       return Type::OopPtr;
2102     }
2103     // Offset is small => always a heap address.
2104     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2105     if (offset_type != NULL &&
2106         base_type->offset() == 0 &&     // (should always be?)
2107         offset_type->_lo >= 0 &&
2108         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2109       return Type::OopPtr;
2110     }
2111     // Otherwise, it might either be oop+off or NULL+addr.
2112     return Type::AnyPtr;
2113   } else {
2114     // No information:
2115     return Type::AnyPtr;
2116   }
2117 }
2118 
2119 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2120   int kind = classify_unsafe_addr(base, offset);
2121   if (kind == Type::RawPtr) {
2122     return basic_plus_adr(top(), base, offset);
2123   } else {
2124     return basic_plus_adr(base, offset);
2125   }
2126 }
2127 
2128 //--------------------------inline_number_methods-----------------------------
2129 // inline int     Integer.numberOfLeadingZeros(int)
2130 // inline int        Long.numberOfLeadingZeros(long)
2131 //
2132 // inline int     Integer.numberOfTrailingZeros(int)
2133 // inline int        Long.numberOfTrailingZeros(long)
2134 //
2135 // inline int     Integer.bitCount(int)
2136 // inline int        Long.bitCount(long)
2137 //
2138 // inline char  Character.reverseBytes(char)
2139 // inline short     Short.reverseBytes(short)
2140 // inline int     Integer.reverseBytes(int)
2141 // inline long       Long.reverseBytes(long)
2142 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2143   Node* arg = argument(0);
2144   Node* n;
2145   switch (id) {
2146   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2147   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2148   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2149   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2150   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2151   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2152   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2153   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2154   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2155   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2156   default:  fatal_unexpected_iid(id);  break;
2157   }
2158   set_result(_gvn.transform(n));
2159   return true;
2160 }
2161 
2162 //----------------------------inline_unsafe_access----------------------------
2163 
2164 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2165 
2166 // Helper that guards and inserts a pre-barrier.
2167 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2168                                         Node* pre_val, bool need_mem_bar) {
2169   // We could be accessing the referent field of a reference object. If so, when G1
2170   // is enabled, we need to log the value in the referent field in an SATB buffer.
2171   // This routine performs some compile time filters and generates suitable
2172   // runtime filters that guard the pre-barrier code.
2173   // Also add memory barrier for non volatile load from the referent field
2174   // to prevent commoning of loads across safepoint.
2175   if (!UseG1GC && !need_mem_bar)
2176     return;
2177 
2178   // Some compile time checks.
2179 
2180   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2181   const TypeX* otype = offset->find_intptr_t_type();
2182   if (otype != NULL && otype->is_con() &&
2183       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2184     // Constant offset but not the reference_offset so just return
2185     return;
2186   }
2187 
2188   // We only need to generate the runtime guards for instances.
2189   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2190   if (btype != NULL) {
2191     if (btype->isa_aryptr()) {
2192       // Array type so nothing to do
2193       return;
2194     }
2195 
2196     const TypeInstPtr* itype = btype->isa_instptr();
2197     if (itype != NULL) {
2198       // Can the klass of base_oop be statically determined to be
2199       // _not_ a sub-class of Reference and _not_ Object?
2200       ciKlass* klass = itype->klass();
2201       if ( klass->is_loaded() &&
2202           !klass->is_subtype_of(env()->Reference_klass()) &&
2203           !env()->Object_klass()->is_subtype_of(klass)) {
2204         return;
2205       }
2206     }
2207   }
2208 
2209   // The compile time filters did not reject base_oop/offset so
2210   // we need to generate the following runtime filters
2211   //
2212   // if (offset == java_lang_ref_Reference::_reference_offset) {
2213   //   if (instance_of(base, java.lang.ref.Reference)) {
2214   //     pre_barrier(_, pre_val, ...);
2215   //   }
2216   // }
2217 
2218   float likely   = PROB_LIKELY(  0.999);
2219   float unlikely = PROB_UNLIKELY(0.999);
2220 
2221   IdealKit ideal(this);
2222 #define __ ideal.
2223 
2224   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2225 
2226   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2227       // Update graphKit memory and control from IdealKit.
2228       sync_kit(ideal);
2229 
2230       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2231       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2232 
2233       // Update IdealKit memory and control from graphKit.
2234       __ sync_kit(this);
2235 
2236       Node* one = __ ConI(1);
2237       // is_instof == 0 if base_oop == NULL
2238       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2239 
2240         // Update graphKit from IdeakKit.
2241         sync_kit(ideal);
2242 
2243         // Use the pre-barrier to record the value in the referent field
2244         pre_barrier(false /* do_load */,
2245                     __ ctrl(),
2246                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2247                     pre_val /* pre_val */,
2248                     T_OBJECT);
2249         if (need_mem_bar) {
2250           // Add memory barrier to prevent commoning reads from this field
2251           // across safepoint since GC can change its value.
2252           insert_mem_bar(Op_MemBarCPUOrder);
2253         }
2254         // Update IdealKit from graphKit.
2255         __ sync_kit(this);
2256 
2257       } __ end_if(); // _ref_type != ref_none
2258   } __ end_if(); // offset == referent_offset
2259 
2260   // Final sync IdealKit and GraphKit.
2261   final_sync(ideal);
2262 #undef __
2263 }
2264 
2265 
2266 // Interpret Unsafe.fieldOffset cookies correctly:
2267 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2268 
2269 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2270   // Attempt to infer a sharper value type from the offset and base type.
2271   ciKlass* sharpened_klass = NULL;
2272 
2273   // See if it is an instance field, with an object type.
2274   if (alias_type->field() != NULL) {
2275     assert(!is_native_ptr, "native pointer op cannot use a java address");
2276     if (alias_type->field()->type()->is_klass()) {
2277       sharpened_klass = alias_type->field()->type()->as_klass();
2278     }
2279   }
2280 
2281   // See if it is a narrow oop array.
2282   if (adr_type->isa_aryptr()) {
2283     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2284       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2285       if (elem_type != NULL) {
2286         sharpened_klass = elem_type->klass();
2287       }
2288     }
2289   }
2290 
2291   // The sharpened class might be unloaded if there is no class loader
2292   // contraint in place.
2293   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2294     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2295 
2296 #ifndef PRODUCT
2297     if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2298       tty->print("  from base type: ");  adr_type->dump();
2299       tty->print("  sharpened value: ");  tjp->dump();
2300     }
2301 #endif
2302     // Sharpen the value type.
2303     return tjp;
2304   }
2305   return NULL;
2306 }
2307 
2308 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2309   if (callee()->is_static())  return false;  // caller must have the capability!
2310 
2311 #ifndef PRODUCT
2312   {
2313     ResourceMark rm;
2314     // Check the signatures.
2315     ciSignature* sig = callee()->signature();
2316 #ifdef ASSERT
2317     if (!is_store) {
2318       // Object getObject(Object base, int/long offset), etc.
2319       BasicType rtype = sig->return_type()->basic_type();
2320       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2321           rtype = T_ADDRESS;  // it is really a C void*
2322       assert(rtype == type, "getter must return the expected value");
2323       if (!is_native_ptr) {
2324         assert(sig->count() == 2, "oop getter has 2 arguments");
2325         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2326         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2327       } else {
2328         assert(sig->count() == 1, "native getter has 1 argument");
2329         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2330       }
2331     } else {
2332       // void putObject(Object base, int/long offset, Object x), etc.
2333       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2334       if (!is_native_ptr) {
2335         assert(sig->count() == 3, "oop putter has 3 arguments");
2336         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2337         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2338       } else {
2339         assert(sig->count() == 2, "native putter has 2 arguments");
2340         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2341       }
2342       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2343       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2344         vtype = T_ADDRESS;  // it is really a C void*
2345       assert(vtype == type, "putter must accept the expected value");
2346     }
2347 #endif // ASSERT
2348  }
2349 #endif //PRODUCT
2350 
2351   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2352 
2353   Node* receiver = argument(0);  // type: oop
2354 
2355   // Build address expression.  See the code in inline_unsafe_prefetch.
2356   Node* adr;
2357   Node* heap_base_oop = top();
2358   Node* offset = top();
2359   Node* val;
2360 
2361   if (!is_native_ptr) {
2362     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2363     Node* base = argument(1);  // type: oop
2364     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2365     offset = argument(2);  // type: long
2366     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2367     // to be plain byte offsets, which are also the same as those accepted
2368     // by oopDesc::field_base.
2369     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2370            "fieldOffset must be byte-scaled");
2371     // 32-bit machines ignore the high half!
2372     offset = ConvL2X(offset);
2373     adr = make_unsafe_address(base, offset);
2374     heap_base_oop = base;
2375     val = is_store ? argument(4) : NULL;
2376   } else {
2377     Node* ptr = argument(1);  // type: long
2378     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2379     adr = make_unsafe_address(NULL, ptr);
2380     val = is_store ? argument(3) : NULL;
2381   }
2382 
2383   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2384 
2385   // First guess at the value type.
2386   const Type *value_type = Type::get_const_basic_type(type);
2387 
2388   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2389   // there was not enough information to nail it down.
2390   Compile::AliasType* alias_type = C->alias_type(adr_type);
2391   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2392 
2393   // We will need memory barriers unless we can determine a unique
2394   // alias category for this reference.  (Note:  If for some reason
2395   // the barriers get omitted and the unsafe reference begins to "pollute"
2396   // the alias analysis of the rest of the graph, either Compile::can_alias
2397   // or Compile::must_alias will throw a diagnostic assert.)
2398   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2399 
2400   // If we are reading the value of the referent field of a Reference
2401   // object (either by using Unsafe directly or through reflection)
2402   // then, if G1 is enabled, we need to record the referent in an
2403   // SATB log buffer using the pre-barrier mechanism.
2404   // Also we need to add memory barrier to prevent commoning reads
2405   // from this field across safepoint since GC can change its value.
2406   bool need_read_barrier = !is_native_ptr && !is_store &&
2407                            offset != top() && heap_base_oop != top();
2408 
2409   if (!is_store && type == T_OBJECT) {
2410     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2411     if (tjp != NULL) {
2412       value_type = tjp;
2413     }
2414   }
2415 
2416   receiver = null_check(receiver);
2417   if (stopped()) {
2418     return true;
2419   }
2420   // Heap pointers get a null-check from the interpreter,
2421   // as a courtesy.  However, this is not guaranteed by Unsafe,
2422   // and it is not possible to fully distinguish unintended nulls
2423   // from intended ones in this API.
2424 
2425   if (is_volatile) {
2426     // We need to emit leading and trailing CPU membars (see below) in
2427     // addition to memory membars when is_volatile. This is a little
2428     // too strong, but avoids the need to insert per-alias-type
2429     // volatile membars (for stores; compare Parse::do_put_xxx), which
2430     // we cannot do effectively here because we probably only have a
2431     // rough approximation of type.
2432     need_mem_bar = true;
2433     // For Stores, place a memory ordering barrier now.
2434     if (is_store)
2435       insert_mem_bar(Op_MemBarRelease);
2436   }
2437 
2438   // Memory barrier to prevent normal and 'unsafe' accesses from
2439   // bypassing each other.  Happens after null checks, so the
2440   // exception paths do not take memory state from the memory barrier,
2441   // so there's no problems making a strong assert about mixing users
2442   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2443   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2444   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2445 
2446   if (!is_store) {
2447     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2448     // load value
2449     switch (type) {
2450     case T_BOOLEAN:
2451     case T_CHAR:
2452     case T_BYTE:
2453     case T_SHORT:
2454     case T_INT:
2455     case T_LONG:
2456     case T_FLOAT:
2457     case T_DOUBLE:
2458       break;
2459     case T_OBJECT:
2460       if (need_read_barrier) {
2461         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2462       }
2463       break;
2464     case T_ADDRESS:
2465       // Cast to an int type.
2466       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2467       p = ConvX2L(p);
2468       break;
2469     default:
2470       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2471       break;
2472     }
2473     // The load node has the control of the preceding MemBarCPUOrder.  All
2474     // following nodes will have the control of the MemBarCPUOrder inserted at
2475     // the end of this method.  So, pushing the load onto the stack at a later
2476     // point is fine.
2477     set_result(p);
2478   } else {
2479     // place effect of store into memory
2480     switch (type) {
2481     case T_DOUBLE:
2482       val = dstore_rounding(val);
2483       break;
2484     case T_ADDRESS:
2485       // Repackage the long as a pointer.
2486       val = ConvL2X(val);
2487       val = _gvn.transform(new (C) CastX2PNode(val));
2488       break;
2489     }
2490 
2491     if (type != T_OBJECT ) {
2492       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2493     } else {
2494       // Possibly an oop being stored to Java heap or native memory
2495       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2496         // oop to Java heap.
2497         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2498       } else {
2499         // We can't tell at compile time if we are storing in the Java heap or outside
2500         // of it. So we need to emit code to conditionally do the proper type of
2501         // store.
2502 
2503         IdealKit ideal(this);
2504 #define __ ideal.
2505         // QQQ who knows what probability is here??
2506         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2507           // Sync IdealKit and graphKit.
2508           sync_kit(ideal);
2509           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2510           // Update IdealKit memory.
2511           __ sync_kit(this);
2512         } __ else_(); {
2513           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2514         } __ end_if();
2515         // Final sync IdealKit and GraphKit.
2516         final_sync(ideal);
2517 #undef __
2518       }
2519     }
2520   }
2521 
2522   if (is_volatile) {
2523     if (!is_store)
2524       insert_mem_bar(Op_MemBarAcquire);
2525     else
2526       insert_mem_bar(Op_MemBarVolatile);
2527   }
2528 
2529   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2530 
2531   return true;
2532 }
2533 
2534 //----------------------------inline_unsafe_prefetch----------------------------
2535 
2536 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2537 #ifndef PRODUCT
2538   {
2539     ResourceMark rm;
2540     // Check the signatures.
2541     ciSignature* sig = callee()->signature();
2542 #ifdef ASSERT
2543     // Object getObject(Object base, int/long offset), etc.
2544     BasicType rtype = sig->return_type()->basic_type();
2545     if (!is_native_ptr) {
2546       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2547       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2548       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2549     } else {
2550       assert(sig->count() == 1, "native prefetch has 1 argument");
2551       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2552     }
2553 #endif // ASSERT
2554   }
2555 #endif // !PRODUCT
2556 
2557   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2558 
2559   const int idx = is_static ? 0 : 1;
2560   if (!is_static) {
2561     null_check_receiver();
2562     if (stopped()) {
2563       return true;
2564     }
2565   }
2566 
2567   // Build address expression.  See the code in inline_unsafe_access.
2568   Node *adr;
2569   if (!is_native_ptr) {
2570     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2571     Node* base   = argument(idx + 0);  // type: oop
2572     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2573     Node* offset = argument(idx + 1);  // type: long
2574     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2575     // to be plain byte offsets, which are also the same as those accepted
2576     // by oopDesc::field_base.
2577     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2578            "fieldOffset must be byte-scaled");
2579     // 32-bit machines ignore the high half!
2580     offset = ConvL2X(offset);
2581     adr = make_unsafe_address(base, offset);
2582   } else {
2583     Node* ptr = argument(idx + 0);  // type: long
2584     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2585     adr = make_unsafe_address(NULL, ptr);
2586   }
2587 
2588   // Generate the read or write prefetch
2589   Node *prefetch;
2590   if (is_store) {
2591     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2592   } else {
2593     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2594   }
2595   prefetch->init_req(0, control());
2596   set_i_o(_gvn.transform(prefetch));
2597 
2598   return true;
2599 }
2600 
2601 //----------------------------inline_unsafe_load_store----------------------------
2602 // This method serves a couple of different customers (depending on LoadStoreKind):
2603 //
2604 // LS_cmpxchg:
2605 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2606 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2607 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2608 //
2609 // LS_xadd:
2610 //   public int  getAndAddInt( Object o, long offset, int  delta)
2611 //   public long getAndAddLong(Object o, long offset, long delta)
2612 //
2613 // LS_xchg:
2614 //   int    getAndSet(Object o, long offset, int    newValue)
2615 //   long   getAndSet(Object o, long offset, long   newValue)
2616 //   Object getAndSet(Object o, long offset, Object newValue)
2617 //
2618 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2619   // This basic scheme here is the same as inline_unsafe_access, but
2620   // differs in enough details that combining them would make the code
2621   // overly confusing.  (This is a true fact! I originally combined
2622   // them, but even I was confused by it!) As much code/comments as
2623   // possible are retained from inline_unsafe_access though to make
2624   // the correspondences clearer. - dl
2625 
2626   if (callee()->is_static())  return false;  // caller must have the capability!
2627 
2628 #ifndef PRODUCT
2629   BasicType rtype;
2630   {
2631     ResourceMark rm;
2632     // Check the signatures.
2633     ciSignature* sig = callee()->signature();
2634     rtype = sig->return_type()->basic_type();
2635     if (kind == LS_xadd || kind == LS_xchg) {
2636       // Check the signatures.
2637 #ifdef ASSERT
2638       assert(rtype == type, "get and set must return the expected type");
2639       assert(sig->count() == 3, "get and set has 3 arguments");
2640       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2641       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2642       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2643 #endif // ASSERT
2644     } else if (kind == LS_cmpxchg) {
2645       // Check the signatures.
2646 #ifdef ASSERT
2647       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2648       assert(sig->count() == 4, "CAS has 4 arguments");
2649       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2650       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2651 #endif // ASSERT
2652     } else {
2653       ShouldNotReachHere();
2654     }
2655   }
2656 #endif //PRODUCT
2657 
2658   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2659 
2660   // Get arguments:
2661   Node* receiver = NULL;
2662   Node* base     = NULL;
2663   Node* offset   = NULL;
2664   Node* oldval   = NULL;
2665   Node* newval   = NULL;
2666   if (kind == LS_cmpxchg) {
2667     const bool two_slot_type = type2size[type] == 2;
2668     receiver = argument(0);  // type: oop
2669     base     = argument(1);  // type: oop
2670     offset   = argument(2);  // type: long
2671     oldval   = argument(4);  // type: oop, int, or long
2672     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2673   } else if (kind == LS_xadd || kind == LS_xchg){
2674     receiver = argument(0);  // type: oop
2675     base     = argument(1);  // type: oop
2676     offset   = argument(2);  // type: long
2677     oldval   = NULL;
2678     newval   = argument(4);  // type: oop, int, or long
2679   }
2680 
2681   // Null check receiver.
2682   receiver = null_check(receiver);
2683   if (stopped()) {
2684     return true;
2685   }
2686 
2687   // Build field offset expression.
2688   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2689   // to be plain byte offsets, which are also the same as those accepted
2690   // by oopDesc::field_base.
2691   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2692   // 32-bit machines ignore the high half of long offsets
2693   offset = ConvL2X(offset);
2694   Node* adr = make_unsafe_address(base, offset);
2695   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2696 
2697   // For CAS, unlike inline_unsafe_access, there seems no point in
2698   // trying to refine types. Just use the coarse types here.
2699   const Type *value_type = Type::get_const_basic_type(type);
2700   Compile::AliasType* alias_type = C->alias_type(adr_type);
2701   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2702 
2703   if (kind == LS_xchg && type == T_OBJECT) {
2704     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2705     if (tjp != NULL) {
2706       value_type = tjp;
2707     }
2708   }
2709 
2710   int alias_idx = C->get_alias_index(adr_type);
2711 
2712   // Memory-model-wise, a LoadStore acts like a little synchronized
2713   // block, so needs barriers on each side.  These don't translate
2714   // into actual barriers on most machines, but we still need rest of
2715   // compiler to respect ordering.
2716 
2717   insert_mem_bar(Op_MemBarRelease);
2718   insert_mem_bar(Op_MemBarCPUOrder);
2719 
2720   // 4984716: MemBars must be inserted before this
2721   //          memory node in order to avoid a false
2722   //          dependency which will confuse the scheduler.
2723   Node *mem = memory(alias_idx);
2724 
2725   // For now, we handle only those cases that actually exist: ints,
2726   // longs, and Object. Adding others should be straightforward.
2727   Node* load_store;
2728   switch(type) {
2729   case T_INT:
2730     if (kind == LS_xadd) {
2731       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2732     } else if (kind == LS_xchg) {
2733       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2734     } else if (kind == LS_cmpxchg) {
2735       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2736     } else {
2737       ShouldNotReachHere();
2738     }
2739     break;
2740   case T_LONG:
2741     if (kind == LS_xadd) {
2742       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2743     } else if (kind == LS_xchg) {
2744       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2745     } else if (kind == LS_cmpxchg) {
2746       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2747     } else {
2748       ShouldNotReachHere();
2749     }
2750     break;
2751   case T_OBJECT:
2752     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2753     // could be delayed during Parse (for example, in adjust_map_after_if()).
2754     // Execute transformation here to avoid barrier generation in such case.
2755     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2756       newval = _gvn.makecon(TypePtr::NULL_PTR);
2757 
2758     // Reference stores need a store barrier.
2759     if (kind == LS_xchg) {
2760       // If pre-barrier must execute before the oop store, old value will require do_load here.
2761       if (!can_move_pre_barrier()) {
2762         pre_barrier(true /* do_load*/,
2763                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2764                     NULL /* pre_val*/,
2765                     T_OBJECT);
2766       } // Else move pre_barrier to use load_store value, see below.
2767     } else if (kind == LS_cmpxchg) {
2768       // Same as for newval above:
2769       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2770         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2771       }
2772       // The only known value which might get overwritten is oldval.
2773       pre_barrier(false /* do_load */,
2774                   control(), NULL, NULL, max_juint, NULL, NULL,
2775                   oldval /* pre_val */,
2776                   T_OBJECT);
2777     } else {
2778       ShouldNotReachHere();
2779     }
2780 
2781 #ifdef _LP64
2782     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2783       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2784       if (kind == LS_xchg) {
2785         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2786                                                               newval_enc, adr_type, value_type->make_narrowoop()));
2787       } else {
2788         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2789         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2790         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2791                                                                    newval_enc, oldval_enc));
2792       }
2793     } else
2794 #endif
2795     {
2796       if (kind == LS_xchg) {
2797         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2798       } else {
2799         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2800         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2801       }
2802     }
2803     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2804     break;
2805   default:
2806     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2807     break;
2808   }
2809 
2810   // SCMemProjNodes represent the memory state of a LoadStore. Their
2811   // main role is to prevent LoadStore nodes from being optimized away
2812   // when their results aren't used.
2813   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
2814   set_memory(proj, alias_idx);
2815 
2816   if (type == T_OBJECT && kind == LS_xchg) {
2817 #ifdef _LP64
2818     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2819       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
2820     }
2821 #endif
2822     if (can_move_pre_barrier()) {
2823       // Don't need to load pre_val. The old value is returned by load_store.
2824       // The pre_barrier can execute after the xchg as long as no safepoint
2825       // gets inserted between them.
2826       pre_barrier(false /* do_load */,
2827                   control(), NULL, NULL, max_juint, NULL, NULL,
2828                   load_store /* pre_val */,
2829                   T_OBJECT);
2830     }
2831   }
2832 
2833   // Add the trailing membar surrounding the access
2834   insert_mem_bar(Op_MemBarCPUOrder);
2835   insert_mem_bar(Op_MemBarAcquire);
2836 
2837   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2838   set_result(load_store);
2839   return true;
2840 }
2841 
2842 //----------------------------inline_unsafe_ordered_store----------------------
2843 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2844 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2845 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2846 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2847   // This is another variant of inline_unsafe_access, differing in
2848   // that it always issues store-store ("release") barrier and ensures
2849   // store-atomicity (which only matters for "long").
2850 
2851   if (callee()->is_static())  return false;  // caller must have the capability!
2852 
2853 #ifndef PRODUCT
2854   {
2855     ResourceMark rm;
2856     // Check the signatures.
2857     ciSignature* sig = callee()->signature();
2858 #ifdef ASSERT
2859     BasicType rtype = sig->return_type()->basic_type();
2860     assert(rtype == T_VOID, "must return void");
2861     assert(sig->count() == 3, "has 3 arguments");
2862     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2863     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2864 #endif // ASSERT
2865   }
2866 #endif //PRODUCT
2867 
2868   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2869 
2870   // Get arguments:
2871   Node* receiver = argument(0);  // type: oop
2872   Node* base     = argument(1);  // type: oop
2873   Node* offset   = argument(2);  // type: long
2874   Node* val      = argument(4);  // type: oop, int, or long
2875 
2876   // Null check receiver.
2877   receiver = null_check(receiver);
2878   if (stopped()) {
2879     return true;
2880   }
2881 
2882   // Build field offset expression.
2883   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2884   // 32-bit machines ignore the high half of long offsets
2885   offset = ConvL2X(offset);
2886   Node* adr = make_unsafe_address(base, offset);
2887   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2888   const Type *value_type = Type::get_const_basic_type(type);
2889   Compile::AliasType* alias_type = C->alias_type(adr_type);
2890 
2891   insert_mem_bar(Op_MemBarRelease);
2892   insert_mem_bar(Op_MemBarCPUOrder);
2893   // Ensure that the store is atomic for longs:
2894   const bool require_atomic_access = true;
2895   Node* store;
2896   if (type == T_OBJECT) // reference stores need a store barrier.
2897     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2898   else {
2899     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2900   }
2901   insert_mem_bar(Op_MemBarCPUOrder);
2902   return true;
2903 }
2904 
2905 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2906   // Regardless of form, don't allow previous ld/st to move down,
2907   // then issue acquire, release, or volatile mem_bar.
2908   insert_mem_bar(Op_MemBarCPUOrder);
2909   switch(id) {
2910     case vmIntrinsics::_loadFence:
2911       insert_mem_bar(Op_MemBarAcquire);
2912       return true;
2913     case vmIntrinsics::_storeFence:
2914       insert_mem_bar(Op_MemBarRelease);
2915       return true;
2916     case vmIntrinsics::_fullFence:
2917       insert_mem_bar(Op_MemBarVolatile);
2918       return true;
2919     default:
2920       fatal_unexpected_iid(id);
2921       return false;
2922   }
2923 }
2924 
2925 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2926   if (!kls->is_Con()) {
2927     return true;
2928   }
2929   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
2930   if (klsptr == NULL) {
2931     return true;
2932   }
2933   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
2934   // don't need a guard for a klass that is already initialized
2935   return !ik->is_initialized();
2936 }
2937 
2938 //----------------------------inline_unsafe_allocate---------------------------
2939 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
2940 bool LibraryCallKit::inline_unsafe_allocate() {
2941   if (callee()->is_static())  return false;  // caller must have the capability!
2942 
2943   null_check_receiver();  // null-check, then ignore
2944   Node* cls = null_check(argument(1));
2945   if (stopped())  return true;
2946 
2947   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2948   kls = null_check(kls);
2949   if (stopped())  return true;  // argument was like int.class
2950 
2951   Node* test = NULL;
2952   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2953     // Note:  The argument might still be an illegal value like
2954     // Serializable.class or Object[].class.   The runtime will handle it.
2955     // But we must make an explicit check for initialization.
2956     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2957     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2958     // can generate code to load it as unsigned byte.
2959     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
2960     Node* bits = intcon(InstanceKlass::fully_initialized);
2961     test = _gvn.transform(new (C) SubINode(inst, bits));
2962     // The 'test' is non-zero if we need to take a slow path.
2963   }
2964 
2965   Node* obj = new_instance(kls, test);
2966   set_result(obj);
2967   return true;
2968 }
2969 
2970 #ifdef TRACE_HAVE_INTRINSICS
2971 /*
2972  * oop -> myklass
2973  * myklass->trace_id |= USED
2974  * return myklass->trace_id & ~0x3
2975  */
2976 bool LibraryCallKit::inline_native_classID() {
2977   null_check_receiver();  // null-check, then ignore
2978   Node* cls = null_check(argument(1), T_OBJECT);
2979   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2980   kls = null_check(kls, T_OBJECT);
2981   ByteSize offset = TRACE_ID_OFFSET;
2982   Node* insp = basic_plus_adr(kls, in_bytes(offset));
2983   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
2984   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
2985   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
2986   Node* clsused = longcon(0x01l); // set the class bit
2987   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
2988 
2989   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2990   store_to_memory(control(), insp, orl, T_LONG, adr_type);
2991   set_result(andl);
2992   return true;
2993 }
2994 
2995 bool LibraryCallKit::inline_native_threadID() {
2996   Node* tls_ptr = NULL;
2997   Node* cur_thr = generate_current_thread(tls_ptr);
2998   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2999   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
3000   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3001 
3002   Node* threadid = NULL;
3003   size_t thread_id_size = OSThread::thread_id_size();
3004   if (thread_id_size == (size_t) BytesPerLong) {
3005     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
3006   } else if (thread_id_size == (size_t) BytesPerInt) {
3007     threadid = make_load(control(), p, TypeInt::INT, T_INT);
3008   } else {
3009     ShouldNotReachHere();
3010   }
3011   set_result(threadid);
3012   return true;
3013 }
3014 #endif
3015 
3016 //------------------------inline_native_time_funcs--------------
3017 // inline code for System.currentTimeMillis() and System.nanoTime()
3018 // these have the same type and signature
3019 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3020   const TypeFunc* tf = OptoRuntime::void_long_Type();
3021   const TypePtr* no_memory_effects = NULL;
3022   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3023   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3024 #ifdef ASSERT
3025   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3026   assert(value_top == top(), "second value must be top");
3027 #endif
3028   set_result(value);
3029   return true;
3030 }
3031 
3032 //------------------------inline_native_currentThread------------------
3033 bool LibraryCallKit::inline_native_currentThread() {
3034   Node* junk = NULL;
3035   set_result(generate_current_thread(junk));
3036   return true;
3037 }
3038 
3039 //------------------------inline_native_isInterrupted------------------
3040 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3041 bool LibraryCallKit::inline_native_isInterrupted() {
3042   // Add a fast path to t.isInterrupted(clear_int):
3043   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
3044   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3045   // So, in the common case that the interrupt bit is false,
3046   // we avoid making a call into the VM.  Even if the interrupt bit
3047   // is true, if the clear_int argument is false, we avoid the VM call.
3048   // However, if the receiver is not currentThread, we must call the VM,
3049   // because there must be some locking done around the operation.
3050 
3051   // We only go to the fast case code if we pass two guards.
3052   // Paths which do not pass are accumulated in the slow_region.
3053 
3054   enum {
3055     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3056     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3057     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3058     PATH_LIMIT
3059   };
3060 
3061   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3062   // out of the function.
3063   insert_mem_bar(Op_MemBarCPUOrder);
3064 
3065   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3066   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3067 
3068   RegionNode* slow_region = new (C) RegionNode(1);
3069   record_for_igvn(slow_region);
3070 
3071   // (a) Receiving thread must be the current thread.
3072   Node* rec_thr = argument(0);
3073   Node* tls_ptr = NULL;
3074   Node* cur_thr = generate_current_thread(tls_ptr);
3075   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3076   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3077 
3078   generate_slow_guard(bol_thr, slow_region);
3079 
3080   // (b) Interrupt bit on TLS must be false.
3081   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3082   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
3083   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3084 
3085   // Set the control input on the field _interrupted read to prevent it floating up.
3086   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
3087   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3088   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3089 
3090   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3091 
3092   // First fast path:  if (!TLS._interrupted) return false;
3093   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3094   result_rgn->init_req(no_int_result_path, false_bit);
3095   result_val->init_req(no_int_result_path, intcon(0));
3096 
3097   // drop through to next case
3098   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3099 
3100   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3101   Node* clr_arg = argument(1);
3102   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3103   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3104   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3105 
3106   // Second fast path:  ... else if (!clear_int) return true;
3107   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3108   result_rgn->init_req(no_clear_result_path, false_arg);
3109   result_val->init_req(no_clear_result_path, intcon(1));
3110 
3111   // drop through to next case
3112   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3113 
3114   // (d) Otherwise, go to the slow path.
3115   slow_region->add_req(control());
3116   set_control( _gvn.transform(slow_region));
3117 
3118   if (stopped()) {
3119     // There is no slow path.
3120     result_rgn->init_req(slow_result_path, top());
3121     result_val->init_req(slow_result_path, top());
3122   } else {
3123     // non-virtual because it is a private non-static
3124     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3125 
3126     Node* slow_val = set_results_for_java_call(slow_call);
3127     // this->control() comes from set_results_for_java_call
3128 
3129     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3130     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3131 
3132     // These two phis are pre-filled with copies of of the fast IO and Memory
3133     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3134     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3135 
3136     result_rgn->init_req(slow_result_path, control());
3137     result_io ->init_req(slow_result_path, i_o());
3138     result_mem->init_req(slow_result_path, reset_memory());
3139     result_val->init_req(slow_result_path, slow_val);
3140 
3141     set_all_memory(_gvn.transform(result_mem));
3142     set_i_o(       _gvn.transform(result_io));
3143   }
3144 
3145   C->set_has_split_ifs(true); // Has chance for split-if optimization
3146   set_result(result_rgn, result_val);
3147   return true;
3148 }
3149 
3150 //---------------------------load_mirror_from_klass----------------------------
3151 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3152 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3153   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3154   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
3155 }
3156 
3157 //-----------------------load_klass_from_mirror_common-------------------------
3158 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3159 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3160 // and branch to the given path on the region.
3161 // If never_see_null, take an uncommon trap on null, so we can optimistically
3162 // compile for the non-null case.
3163 // If the region is NULL, force never_see_null = true.
3164 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3165                                                     bool never_see_null,
3166                                                     RegionNode* region,
3167                                                     int null_path,
3168                                                     int offset) {
3169   if (region == NULL)  never_see_null = true;
3170   Node* p = basic_plus_adr(mirror, offset);
3171   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3172   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3173   Node* null_ctl = top();
3174   kls = null_check_oop(kls, &null_ctl, never_see_null);
3175   if (region != NULL) {
3176     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3177     region->init_req(null_path, null_ctl);
3178   } else {
3179     assert(null_ctl == top(), "no loose ends");
3180   }
3181   return kls;
3182 }
3183 
3184 //--------------------(inline_native_Class_query helpers)---------------------
3185 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3186 // Fall through if (mods & mask) == bits, take the guard otherwise.
3187 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3188   // Branch around if the given klass has the given modifier bit set.
3189   // Like generate_guard, adds a new path onto the region.
3190   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3191   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
3192   Node* mask = intcon(modifier_mask);
3193   Node* bits = intcon(modifier_bits);
3194   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3195   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3196   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3197   return generate_fair_guard(bol, region);
3198 }
3199 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3200   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3201 }
3202 
3203 //-------------------------inline_native_Class_query-------------------
3204 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3205   const Type* return_type = TypeInt::BOOL;
3206   Node* prim_return_value = top();  // what happens if it's a primitive class?
3207   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3208   bool expect_prim = false;     // most of these guys expect to work on refs
3209 
3210   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3211 
3212   Node* mirror = argument(0);
3213   Node* obj    = top();
3214 
3215   switch (id) {
3216   case vmIntrinsics::_isInstance:
3217     // nothing is an instance of a primitive type
3218     prim_return_value = intcon(0);
3219     obj = argument(1);
3220     break;
3221   case vmIntrinsics::_getModifiers:
3222     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3223     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3224     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3225     break;
3226   case vmIntrinsics::_isInterface:
3227     prim_return_value = intcon(0);
3228     break;
3229   case vmIntrinsics::_isArray:
3230     prim_return_value = intcon(0);
3231     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3232     break;
3233   case vmIntrinsics::_isPrimitive:
3234     prim_return_value = intcon(1);
3235     expect_prim = true;  // obviously
3236     break;
3237   case vmIntrinsics::_getSuperclass:
3238     prim_return_value = null();
3239     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3240     break;
3241   case vmIntrinsics::_getComponentType:
3242     prim_return_value = null();
3243     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3244     break;
3245   case vmIntrinsics::_getClassAccessFlags:
3246     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3247     return_type = TypeInt::INT;  // not bool!  6297094
3248     break;
3249   default:
3250     fatal_unexpected_iid(id);
3251     break;
3252   }
3253 
3254   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3255   if (mirror_con == NULL)  return false;  // cannot happen?
3256 
3257 #ifndef PRODUCT
3258   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
3259     ciType* k = mirror_con->java_mirror_type();
3260     if (k) {
3261       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3262       k->print_name();
3263       tty->cr();
3264     }
3265   }
3266 #endif
3267 
3268   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3269   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3270   record_for_igvn(region);
3271   PhiNode* phi = new (C) PhiNode(region, return_type);
3272 
3273   // The mirror will never be null of Reflection.getClassAccessFlags, however
3274   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3275   // if it is. See bug 4774291.
3276 
3277   // For Reflection.getClassAccessFlags(), the null check occurs in
3278   // the wrong place; see inline_unsafe_access(), above, for a similar
3279   // situation.
3280   mirror = null_check(mirror);
3281   // If mirror or obj is dead, only null-path is taken.
3282   if (stopped())  return true;
3283 
3284   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3285 
3286   // Now load the mirror's klass metaobject, and null-check it.
3287   // Side-effects region with the control path if the klass is null.
3288   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3289   // If kls is null, we have a primitive mirror.
3290   phi->init_req(_prim_path, prim_return_value);
3291   if (stopped()) { set_result(region, phi); return true; }
3292 
3293   Node* p;  // handy temp
3294   Node* null_ctl;
3295 
3296   // Now that we have the non-null klass, we can perform the real query.
3297   // For constant classes, the query will constant-fold in LoadNode::Value.
3298   Node* query_value = top();
3299   switch (id) {
3300   case vmIntrinsics::_isInstance:
3301     // nothing is an instance of a primitive type
3302     query_value = gen_instanceof(obj, kls);
3303     break;
3304 
3305   case vmIntrinsics::_getModifiers:
3306     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3307     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3308     break;
3309 
3310   case vmIntrinsics::_isInterface:
3311     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3312     if (generate_interface_guard(kls, region) != NULL)
3313       // A guard was added.  If the guard is taken, it was an interface.
3314       phi->add_req(intcon(1));
3315     // If we fall through, it's a plain class.
3316     query_value = intcon(0);
3317     break;
3318 
3319   case vmIntrinsics::_isArray:
3320     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3321     if (generate_array_guard(kls, region) != NULL)
3322       // A guard was added.  If the guard is taken, it was an array.
3323       phi->add_req(intcon(1));
3324     // If we fall through, it's a plain class.
3325     query_value = intcon(0);
3326     break;
3327 
3328   case vmIntrinsics::_isPrimitive:
3329     query_value = intcon(0); // "normal" path produces false
3330     break;
3331 
3332   case vmIntrinsics::_getSuperclass:
3333     // The rules here are somewhat unfortunate, but we can still do better
3334     // with random logic than with a JNI call.
3335     // Interfaces store null or Object as _super, but must report null.
3336     // Arrays store an intermediate super as _super, but must report Object.
3337     // Other types can report the actual _super.
3338     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3339     if (generate_interface_guard(kls, region) != NULL)
3340       // A guard was added.  If the guard is taken, it was an interface.
3341       phi->add_req(null());
3342     if (generate_array_guard(kls, region) != NULL)
3343       // A guard was added.  If the guard is taken, it was an array.
3344       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3345     // If we fall through, it's a plain class.  Get its _super.
3346     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3347     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3348     null_ctl = top();
3349     kls = null_check_oop(kls, &null_ctl);
3350     if (null_ctl != top()) {
3351       // If the guard is taken, Object.superClass is null (both klass and mirror).
3352       region->add_req(null_ctl);
3353       phi   ->add_req(null());
3354     }
3355     if (!stopped()) {
3356       query_value = load_mirror_from_klass(kls);
3357     }
3358     break;
3359 
3360   case vmIntrinsics::_getComponentType:
3361     if (generate_array_guard(kls, region) != NULL) {
3362       // Be sure to pin the oop load to the guard edge just created:
3363       Node* is_array_ctrl = region->in(region->req()-1);
3364       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3365       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3366       phi->add_req(cmo);
3367     }
3368     query_value = null();  // non-array case is null
3369     break;
3370 
3371   case vmIntrinsics::_getClassAccessFlags:
3372     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3373     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3374     break;
3375 
3376   default:
3377     fatal_unexpected_iid(id);
3378     break;
3379   }
3380 
3381   // Fall-through is the normal case of a query to a real class.
3382   phi->init_req(1, query_value);
3383   region->init_req(1, control());
3384 
3385   C->set_has_split_ifs(true); // Has chance for split-if optimization
3386   set_result(region, phi);
3387   return true;
3388 }
3389 
3390 //--------------------------inline_native_subtype_check------------------------
3391 // This intrinsic takes the JNI calls out of the heart of
3392 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3393 bool LibraryCallKit::inline_native_subtype_check() {
3394   // Pull both arguments off the stack.
3395   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3396   args[0] = argument(0);
3397   args[1] = argument(1);
3398   Node* klasses[2];             // corresponding Klasses: superk, subk
3399   klasses[0] = klasses[1] = top();
3400 
3401   enum {
3402     // A full decision tree on {superc is prim, subc is prim}:
3403     _prim_0_path = 1,           // {P,N} => false
3404                                 // {P,P} & superc!=subc => false
3405     _prim_same_path,            // {P,P} & superc==subc => true
3406     _prim_1_path,               // {N,P} => false
3407     _ref_subtype_path,          // {N,N} & subtype check wins => true
3408     _both_ref_path,             // {N,N} & subtype check loses => false
3409     PATH_LIMIT
3410   };
3411 
3412   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3413   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3414   record_for_igvn(region);
3415 
3416   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3417   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3418   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3419 
3420   // First null-check both mirrors and load each mirror's klass metaobject.
3421   int which_arg;
3422   for (which_arg = 0; which_arg <= 1; which_arg++) {
3423     Node* arg = args[which_arg];
3424     arg = null_check(arg);
3425     if (stopped())  break;
3426     args[which_arg] = arg;
3427 
3428     Node* p = basic_plus_adr(arg, class_klass_offset);
3429     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3430     klasses[which_arg] = _gvn.transform(kls);
3431   }
3432 
3433   // Having loaded both klasses, test each for null.
3434   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3435   for (which_arg = 0; which_arg <= 1; which_arg++) {
3436     Node* kls = klasses[which_arg];
3437     Node* null_ctl = top();
3438     kls = null_check_oop(kls, &null_ctl, never_see_null);
3439     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3440     region->init_req(prim_path, null_ctl);
3441     if (stopped())  break;
3442     klasses[which_arg] = kls;
3443   }
3444 
3445   if (!stopped()) {
3446     // now we have two reference types, in klasses[0..1]
3447     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3448     Node* superk = klasses[0];  // the receiver
3449     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3450     // now we have a successful reference subtype check
3451     region->set_req(_ref_subtype_path, control());
3452   }
3453 
3454   // If both operands are primitive (both klasses null), then
3455   // we must return true when they are identical primitives.
3456   // It is convenient to test this after the first null klass check.
3457   set_control(region->in(_prim_0_path)); // go back to first null check
3458   if (!stopped()) {
3459     // Since superc is primitive, make a guard for the superc==subc case.
3460     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3461     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3462     generate_guard(bol_eq, region, PROB_FAIR);
3463     if (region->req() == PATH_LIMIT+1) {
3464       // A guard was added.  If the added guard is taken, superc==subc.
3465       region->swap_edges(PATH_LIMIT, _prim_same_path);
3466       region->del_req(PATH_LIMIT);
3467     }
3468     region->set_req(_prim_0_path, control()); // Not equal after all.
3469   }
3470 
3471   // these are the only paths that produce 'true':
3472   phi->set_req(_prim_same_path,   intcon(1));
3473   phi->set_req(_ref_subtype_path, intcon(1));
3474 
3475   // pull together the cases:
3476   assert(region->req() == PATH_LIMIT, "sane region");
3477   for (uint i = 1; i < region->req(); i++) {
3478     Node* ctl = region->in(i);
3479     if (ctl == NULL || ctl == top()) {
3480       region->set_req(i, top());
3481       phi   ->set_req(i, top());
3482     } else if (phi->in(i) == NULL) {
3483       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3484     }
3485   }
3486 
3487   set_control(_gvn.transform(region));
3488   set_result(_gvn.transform(phi));
3489   return true;
3490 }
3491 
3492 //---------------------generate_array_guard_common------------------------
3493 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3494                                                   bool obj_array, bool not_array) {
3495   // If obj_array/non_array==false/false:
3496   // Branch around if the given klass is in fact an array (either obj or prim).
3497   // If obj_array/non_array==false/true:
3498   // Branch around if the given klass is not an array klass of any kind.
3499   // If obj_array/non_array==true/true:
3500   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3501   // If obj_array/non_array==true/false:
3502   // Branch around if the kls is an oop array (Object[] or subtype)
3503   //
3504   // Like generate_guard, adds a new path onto the region.
3505   jint  layout_con = 0;
3506   Node* layout_val = get_layout_helper(kls, layout_con);
3507   if (layout_val == NULL) {
3508     bool query = (obj_array
3509                   ? Klass::layout_helper_is_objArray(layout_con)
3510                   : Klass::layout_helper_is_array(layout_con));
3511     if (query == not_array) {
3512       return NULL;                       // never a branch
3513     } else {                             // always a branch
3514       Node* always_branch = control();
3515       if (region != NULL)
3516         region->add_req(always_branch);
3517       set_control(top());
3518       return always_branch;
3519     }
3520   }
3521   // Now test the correct condition.
3522   jint  nval = (obj_array
3523                 ? ((jint)Klass::_lh_array_tag_type_value
3524                    <<    Klass::_lh_array_tag_shift)
3525                 : Klass::_lh_neutral_value);
3526   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3527   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3528   // invert the test if we are looking for a non-array
3529   if (not_array)  btest = BoolTest(btest).negate();
3530   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3531   return generate_fair_guard(bol, region);
3532 }
3533 
3534 
3535 //-----------------------inline_native_newArray--------------------------
3536 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3537 bool LibraryCallKit::inline_native_newArray() {
3538   Node* mirror    = argument(0);
3539   Node* count_val = argument(1);
3540 
3541   mirror = null_check(mirror);
3542   // If mirror or obj is dead, only null-path is taken.
3543   if (stopped())  return true;
3544 
3545   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3546   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3547   PhiNode*    result_val = new(C) PhiNode(result_reg,
3548                                           TypeInstPtr::NOTNULL);
3549   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3550   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3551                                           TypePtr::BOTTOM);
3552 
3553   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3554   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3555                                                   result_reg, _slow_path);
3556   Node* normal_ctl   = control();
3557   Node* no_array_ctl = result_reg->in(_slow_path);
3558 
3559   // Generate code for the slow case.  We make a call to newArray().
3560   set_control(no_array_ctl);
3561   if (!stopped()) {
3562     // Either the input type is void.class, or else the
3563     // array klass has not yet been cached.  Either the
3564     // ensuing call will throw an exception, or else it
3565     // will cache the array klass for next time.
3566     PreserveJVMState pjvms(this);
3567     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3568     Node* slow_result = set_results_for_java_call(slow_call);
3569     // this->control() comes from set_results_for_java_call
3570     result_reg->set_req(_slow_path, control());
3571     result_val->set_req(_slow_path, slow_result);
3572     result_io ->set_req(_slow_path, i_o());
3573     result_mem->set_req(_slow_path, reset_memory());
3574   }
3575 
3576   set_control(normal_ctl);
3577   if (!stopped()) {
3578     // Normal case:  The array type has been cached in the java.lang.Class.
3579     // The following call works fine even if the array type is polymorphic.
3580     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3581     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3582     result_reg->init_req(_normal_path, control());
3583     result_val->init_req(_normal_path, obj);
3584     result_io ->init_req(_normal_path, i_o());
3585     result_mem->init_req(_normal_path, reset_memory());
3586   }
3587 
3588   // Return the combined state.
3589   set_i_o(        _gvn.transform(result_io)  );
3590   set_all_memory( _gvn.transform(result_mem));
3591 
3592   C->set_has_split_ifs(true); // Has chance for split-if optimization
3593   set_result(result_reg, result_val);
3594   return true;
3595 }
3596 
3597 //----------------------inline_native_getLength--------------------------
3598 // public static native int java.lang.reflect.Array.getLength(Object array);
3599 bool LibraryCallKit::inline_native_getLength() {
3600   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3601 
3602   Node* array = null_check(argument(0));
3603   // If array is dead, only null-path is taken.
3604   if (stopped())  return true;
3605 
3606   // Deoptimize if it is a non-array.
3607   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3608 
3609   if (non_array != NULL) {
3610     PreserveJVMState pjvms(this);
3611     set_control(non_array);
3612     uncommon_trap(Deoptimization::Reason_intrinsic,
3613                   Deoptimization::Action_maybe_recompile);
3614   }
3615 
3616   // If control is dead, only non-array-path is taken.
3617   if (stopped())  return true;
3618 
3619   // The works fine even if the array type is polymorphic.
3620   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3621   Node* result = load_array_length(array);
3622 
3623   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3624   set_result(result);
3625   return true;
3626 }
3627 
3628 //------------------------inline_array_copyOf----------------------------
3629 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3630 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3631 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3632   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3633 
3634   // Get the arguments.
3635   Node* original          = argument(0);
3636   Node* start             = is_copyOfRange? argument(1): intcon(0);
3637   Node* end               = is_copyOfRange? argument(2): argument(1);
3638   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3639 
3640   Node* newcopy;
3641 
3642   // Set the original stack and the reexecute bit for the interpreter to reexecute
3643   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3644   { PreserveReexecuteState preexecs(this);
3645     jvms()->set_should_reexecute(true);
3646 
3647     array_type_mirror = null_check(array_type_mirror);
3648     original          = null_check(original);
3649 
3650     // Check if a null path was taken unconditionally.
3651     if (stopped())  return true;
3652 
3653     Node* orig_length = load_array_length(original);
3654 
3655     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3656     klass_node = null_check(klass_node);
3657 
3658     RegionNode* bailout = new (C) RegionNode(1);
3659     record_for_igvn(bailout);
3660 
3661     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3662     // Bail out if that is so.
3663     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3664     if (not_objArray != NULL) {
3665       // Improve the klass node's type from the new optimistic assumption:
3666       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3667       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3668       Node* cast = new (C) CastPPNode(klass_node, akls);
3669       cast->init_req(0, control());
3670       klass_node = _gvn.transform(cast);
3671     }
3672 
3673     // Bail out if either start or end is negative.
3674     generate_negative_guard(start, bailout, &start);
3675     generate_negative_guard(end,   bailout, &end);
3676 
3677     Node* length = end;
3678     if (_gvn.type(start) != TypeInt::ZERO) {
3679       length = _gvn.transform(new (C) SubINode(end, start));
3680     }
3681 
3682     // Bail out if length is negative.
3683     // Without this the new_array would throw
3684     // NegativeArraySizeException but IllegalArgumentException is what
3685     // should be thrown
3686     generate_negative_guard(length, bailout, &length);
3687 
3688     if (bailout->req() > 1) {
3689       PreserveJVMState pjvms(this);
3690       set_control(_gvn.transform(bailout));
3691       uncommon_trap(Deoptimization::Reason_intrinsic,
3692                     Deoptimization::Action_maybe_recompile);
3693     }
3694 
3695     if (!stopped()) {
3696       // How many elements will we copy from the original?
3697       // The answer is MinI(orig_length - start, length).
3698       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3699       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3700 
3701       newcopy = new_array(klass_node, length, 0);  // no argments to push
3702 
3703       // Generate a direct call to the right arraycopy function(s).
3704       // We know the copy is disjoint but we might not know if the
3705       // oop stores need checking.
3706       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3707       // This will fail a store-check if x contains any non-nulls.
3708       bool disjoint_bases = true;
3709       // if start > orig_length then the length of the copy may be
3710       // negative.
3711       bool length_never_negative = !is_copyOfRange;
3712       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3713                          original, start, newcopy, intcon(0), moved,
3714                          disjoint_bases, length_never_negative);
3715     }
3716   } // original reexecute is set back here
3717 
3718   C->set_has_split_ifs(true); // Has chance for split-if optimization
3719   if (!stopped()) {
3720     set_result(newcopy);
3721   }
3722   return true;
3723 }
3724 
3725 
3726 //----------------------generate_virtual_guard---------------------------
3727 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3728 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3729                                              RegionNode* slow_region) {
3730   ciMethod* method = callee();
3731   int vtable_index = method->vtable_index();
3732   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3733          err_msg_res("bad index %d", vtable_index));
3734   // Get the Method* out of the appropriate vtable entry.
3735   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3736                      vtable_index*vtableEntry::size()) * wordSize +
3737                      vtableEntry::method_offset_in_bytes();
3738   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3739   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
3740 
3741   // Compare the target method with the expected method (e.g., Object.hashCode).
3742   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3743 
3744   Node* native_call = makecon(native_call_addr);
3745   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
3746   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
3747 
3748   return generate_slow_guard(test_native, slow_region);
3749 }
3750 
3751 //-----------------------generate_method_call----------------------------
3752 // Use generate_method_call to make a slow-call to the real
3753 // method if the fast path fails.  An alternative would be to
3754 // use a stub like OptoRuntime::slow_arraycopy_Java.
3755 // This only works for expanding the current library call,
3756 // not another intrinsic.  (E.g., don't use this for making an
3757 // arraycopy call inside of the copyOf intrinsic.)
3758 CallJavaNode*
3759 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3760   // When compiling the intrinsic method itself, do not use this technique.
3761   guarantee(callee() != C->method(), "cannot make slow-call to self");
3762 
3763   ciMethod* method = callee();
3764   // ensure the JVMS we have will be correct for this call
3765   guarantee(method_id == method->intrinsic_id(), "must match");
3766 
3767   const TypeFunc* tf = TypeFunc::make(method);
3768   CallJavaNode* slow_call;
3769   if (is_static) {
3770     assert(!is_virtual, "");
3771     slow_call = new(C) CallStaticJavaNode(C, tf,
3772                            SharedRuntime::get_resolve_static_call_stub(),
3773                            method, bci());
3774   } else if (is_virtual) {
3775     null_check_receiver();
3776     int vtable_index = Method::invalid_vtable_index;
3777     if (UseInlineCaches) {
3778       // Suppress the vtable call
3779     } else {
3780       // hashCode and clone are not a miranda methods,
3781       // so the vtable index is fixed.
3782       // No need to use the linkResolver to get it.
3783        vtable_index = method->vtable_index();
3784        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3785               err_msg_res("bad index %d", vtable_index));
3786     }
3787     slow_call = new(C) CallDynamicJavaNode(tf,
3788                           SharedRuntime::get_resolve_virtual_call_stub(),
3789                           method, vtable_index, bci());
3790   } else {  // neither virtual nor static:  opt_virtual
3791     null_check_receiver();
3792     slow_call = new(C) CallStaticJavaNode(C, tf,
3793                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3794                                 method, bci());
3795     slow_call->set_optimized_virtual(true);
3796   }
3797   set_arguments_for_java_call(slow_call);
3798   set_edges_for_java_call(slow_call);
3799   return slow_call;
3800 }
3801 
3802 
3803 //------------------------------inline_native_hashcode--------------------
3804 // Build special case code for calls to hashCode on an object.
3805 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3806   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3807   assert(!(is_virtual && is_static), "either virtual, special, or static");
3808 
3809   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3810 
3811   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3812   PhiNode*    result_val = new(C) PhiNode(result_reg,
3813                                           TypeInt::INT);
3814   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3815   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3816                                           TypePtr::BOTTOM);
3817   Node* obj = NULL;
3818   if (!is_static) {
3819     // Check for hashing null object
3820     obj = null_check_receiver();
3821     if (stopped())  return true;        // unconditionally null
3822     result_reg->init_req(_null_path, top());
3823     result_val->init_req(_null_path, top());
3824   } else {
3825     // Do a null check, and return zero if null.
3826     // System.identityHashCode(null) == 0
3827     obj = argument(0);
3828     Node* null_ctl = top();
3829     obj = null_check_oop(obj, &null_ctl);
3830     result_reg->init_req(_null_path, null_ctl);
3831     result_val->init_req(_null_path, _gvn.intcon(0));
3832   }
3833 
3834   // Unconditionally null?  Then return right away.
3835   if (stopped()) {
3836     set_control( result_reg->in(_null_path));
3837     if (!stopped())
3838       set_result(result_val->in(_null_path));
3839     return true;
3840   }
3841 
3842   // After null check, get the object's klass.
3843   Node* obj_klass = load_object_klass(obj);
3844 
3845   // This call may be virtual (invokevirtual) or bound (invokespecial).
3846   // For each case we generate slightly different code.
3847 
3848   // We only go to the fast case code if we pass a number of guards.  The
3849   // paths which do not pass are accumulated in the slow_region.
3850   RegionNode* slow_region = new (C) RegionNode(1);
3851   record_for_igvn(slow_region);
3852 
3853   // If this is a virtual call, we generate a funny guard.  We pull out
3854   // the vtable entry corresponding to hashCode() from the target object.
3855   // If the target method which we are calling happens to be the native
3856   // Object hashCode() method, we pass the guard.  We do not need this
3857   // guard for non-virtual calls -- the caller is known to be the native
3858   // Object hashCode().
3859   if (is_virtual) {
3860     generate_virtual_guard(obj_klass, slow_region);
3861   }
3862 
3863   // Get the header out of the object, use LoadMarkNode when available
3864   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3865   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
3866 
3867   // Test the header to see if it is unlocked.
3868   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3869   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
3870   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3871   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
3872   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
3873 
3874   generate_slow_guard(test_unlocked, slow_region);
3875 
3876   // Get the hash value and check to see that it has been properly assigned.
3877   // We depend on hash_mask being at most 32 bits and avoid the use of
3878   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3879   // vm: see markOop.hpp.
3880   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3881   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3882   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
3883   // This hack lets the hash bits live anywhere in the mark object now, as long
3884   // as the shift drops the relevant bits into the low 32 bits.  Note that
3885   // Java spec says that HashCode is an int so there's no point in capturing
3886   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3887   hshifted_header      = ConvX2I(hshifted_header);
3888   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
3889 
3890   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3891   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
3892   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
3893 
3894   generate_slow_guard(test_assigned, slow_region);
3895 
3896   Node* init_mem = reset_memory();
3897   // fill in the rest of the null path:
3898   result_io ->init_req(_null_path, i_o());
3899   result_mem->init_req(_null_path, init_mem);
3900 
3901   result_val->init_req(_fast_path, hash_val);
3902   result_reg->init_req(_fast_path, control());
3903   result_io ->init_req(_fast_path, i_o());
3904   result_mem->init_req(_fast_path, init_mem);
3905 
3906   // Generate code for the slow case.  We make a call to hashCode().
3907   set_control(_gvn.transform(slow_region));
3908   if (!stopped()) {
3909     // No need for PreserveJVMState, because we're using up the present state.
3910     set_all_memory(init_mem);
3911     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
3912     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3913     Node* slow_result = set_results_for_java_call(slow_call);
3914     // this->control() comes from set_results_for_java_call
3915     result_reg->init_req(_slow_path, control());
3916     result_val->init_req(_slow_path, slow_result);
3917     result_io  ->set_req(_slow_path, i_o());
3918     result_mem ->set_req(_slow_path, reset_memory());
3919   }
3920 
3921   // Return the combined state.
3922   set_i_o(        _gvn.transform(result_io)  );
3923   set_all_memory( _gvn.transform(result_mem));
3924 
3925   set_result(result_reg, result_val);
3926   return true;
3927 }
3928 
3929 //---------------------------inline_native_getClass----------------------------
3930 // public final native Class<?> java.lang.Object.getClass();
3931 //
3932 // Build special case code for calls to getClass on an object.
3933 bool LibraryCallKit::inline_native_getClass() {
3934   Node* obj = null_check_receiver();
3935   if (stopped())  return true;
3936   set_result(load_mirror_from_klass(load_object_klass(obj)));
3937   return true;
3938 }
3939 
3940 //-----------------inline_native_Reflection_getCallerClass---------------------
3941 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
3942 //
3943 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3944 //
3945 // NOTE: This code must perform the same logic as JVM_GetCallerClass
3946 // in that it must skip particular security frames and checks for
3947 // caller sensitive methods.
3948 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3949 #ifndef PRODUCT
3950   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3951     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3952   }
3953 #endif
3954 
3955   if (!jvms()->has_method()) {
3956 #ifndef PRODUCT
3957     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3958       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3959     }
3960 #endif
3961     return false;
3962   }
3963 
3964   // Walk back up the JVM state to find the caller at the required
3965   // depth.
3966   JVMState* caller_jvms = jvms();
3967 
3968   // Cf. JVM_GetCallerClass
3969   // NOTE: Start the loop at depth 1 because the current JVM state does
3970   // not include the Reflection.getCallerClass() frame.
3971   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
3972     ciMethod* m = caller_jvms->method();
3973     switch (n) {
3974     case 0:
3975       fatal("current JVM state does not include the Reflection.getCallerClass frame");
3976       break;
3977     case 1:
3978       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
3979       if (!m->caller_sensitive()) {
3980 #ifndef PRODUCT
3981         if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3982           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
3983         }
3984 #endif
3985         return false;  // bail-out; let JVM_GetCallerClass do the work
3986       }
3987       break;
3988     default:
3989       if (!m->is_ignored_by_security_stack_walk()) {
3990         // We have reached the desired frame; return the holder class.
3991         // Acquire method holder as java.lang.Class and push as constant.
3992         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
3993         ciInstance* caller_mirror = caller_klass->java_mirror();
3994         set_result(makecon(TypeInstPtr::make(caller_mirror)));
3995 
3996 #ifndef PRODUCT
3997         if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3998           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
3999           tty->print_cr("  JVM state at this point:");
4000           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4001             ciMethod* m = jvms()->of_depth(i)->method();
4002             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4003           }
4004         }
4005 #endif
4006         return true;
4007       }
4008       break;
4009     }
4010   }
4011 
4012 #ifndef PRODUCT
4013   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
4014     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4015     tty->print_cr("  JVM state at this point:");
4016     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4017       ciMethod* m = jvms()->of_depth(i)->method();
4018       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4019     }
4020   }
4021 #endif
4022 
4023   return false;  // bail-out; let JVM_GetCallerClass do the work
4024 }
4025 
4026 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4027   Node* arg = argument(0);
4028   Node* result;
4029 
4030   switch (id) {
4031   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4032   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4033   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4034   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4035 
4036   case vmIntrinsics::_doubleToLongBits: {
4037     // two paths (plus control) merge in a wood
4038     RegionNode *r = new (C) RegionNode(3);
4039     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4040 
4041     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4042     // Build the boolean node
4043     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4044 
4045     // Branch either way.
4046     // NaN case is less traveled, which makes all the difference.
4047     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4048     Node *opt_isnan = _gvn.transform(ifisnan);
4049     assert( opt_isnan->is_If(), "Expect an IfNode");
4050     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4051     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4052 
4053     set_control(iftrue);
4054 
4055     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4056     Node *slow_result = longcon(nan_bits); // return NaN
4057     phi->init_req(1, _gvn.transform( slow_result ));
4058     r->init_req(1, iftrue);
4059 
4060     // Else fall through
4061     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4062     set_control(iffalse);
4063 
4064     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4065     r->init_req(2, iffalse);
4066 
4067     // Post merge
4068     set_control(_gvn.transform(r));
4069     record_for_igvn(r);
4070 
4071     C->set_has_split_ifs(true); // Has chance for split-if optimization
4072     result = phi;
4073     assert(result->bottom_type()->isa_long(), "must be");
4074     break;
4075   }
4076 
4077   case vmIntrinsics::_floatToIntBits: {
4078     // two paths (plus control) merge in a wood
4079     RegionNode *r = new (C) RegionNode(3);
4080     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4081 
4082     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4083     // Build the boolean node
4084     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4085 
4086     // Branch either way.
4087     // NaN case is less traveled, which makes all the difference.
4088     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4089     Node *opt_isnan = _gvn.transform(ifisnan);
4090     assert( opt_isnan->is_If(), "Expect an IfNode");
4091     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4092     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4093 
4094     set_control(iftrue);
4095 
4096     static const jint nan_bits = 0x7fc00000;
4097     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4098     phi->init_req(1, _gvn.transform( slow_result ));
4099     r->init_req(1, iftrue);
4100 
4101     // Else fall through
4102     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4103     set_control(iffalse);
4104 
4105     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4106     r->init_req(2, iffalse);
4107 
4108     // Post merge
4109     set_control(_gvn.transform(r));
4110     record_for_igvn(r);
4111 
4112     C->set_has_split_ifs(true); // Has chance for split-if optimization
4113     result = phi;
4114     assert(result->bottom_type()->isa_int(), "must be");
4115     break;
4116   }
4117 
4118   default:
4119     fatal_unexpected_iid(id);
4120     break;
4121   }
4122   set_result(_gvn.transform(result));
4123   return true;
4124 }
4125 
4126 #ifdef _LP64
4127 #define XTOP ,top() /*additional argument*/
4128 #else  //_LP64
4129 #define XTOP        /*no additional argument*/
4130 #endif //_LP64
4131 
4132 //----------------------inline_unsafe_copyMemory-------------------------
4133 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4134 bool LibraryCallKit::inline_unsafe_copyMemory() {
4135   if (callee()->is_static())  return false;  // caller must have the capability!
4136   null_check_receiver();  // null-check receiver
4137   if (stopped())  return true;
4138 
4139   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4140 
4141   Node* src_ptr =         argument(1);   // type: oop
4142   Node* src_off = ConvL2X(argument(2));  // type: long
4143   Node* dst_ptr =         argument(4);   // type: oop
4144   Node* dst_off = ConvL2X(argument(5));  // type: long
4145   Node* size    = ConvL2X(argument(7));  // type: long
4146 
4147   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4148          "fieldOffset must be byte-scaled");
4149 
4150   Node* src = make_unsafe_address(src_ptr, src_off);
4151   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4152 
4153   // Conservatively insert a memory barrier on all memory slices.
4154   // Do not let writes of the copy source or destination float below the copy.
4155   insert_mem_bar(Op_MemBarCPUOrder);
4156 
4157   // Call it.  Note that the length argument is not scaled.
4158   make_runtime_call(RC_LEAF|RC_NO_FP,
4159                     OptoRuntime::fast_arraycopy_Type(),
4160                     StubRoutines::unsafe_arraycopy(),
4161                     "unsafe_arraycopy",
4162                     TypeRawPtr::BOTTOM,
4163                     src, dst, size XTOP);
4164 
4165   // Do not let reads of the copy destination float above the copy.
4166   insert_mem_bar(Op_MemBarCPUOrder);
4167 
4168   return true;
4169 }
4170 
4171 //------------------------clone_coping-----------------------------------
4172 // Helper function for inline_native_clone.
4173 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4174   assert(obj_size != NULL, "");
4175   Node* raw_obj = alloc_obj->in(1);
4176   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4177 
4178   AllocateNode* alloc = NULL;
4179   if (ReduceBulkZeroing) {
4180     // We will be completely responsible for initializing this object -
4181     // mark Initialize node as complete.
4182     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4183     // The object was just allocated - there should be no any stores!
4184     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4185     // Mark as complete_with_arraycopy so that on AllocateNode
4186     // expansion, we know this AllocateNode is initialized by an array
4187     // copy and a StoreStore barrier exists after the array copy.
4188     alloc->initialization()->set_complete_with_arraycopy();
4189   }
4190 
4191   // Copy the fastest available way.
4192   // TODO: generate fields copies for small objects instead.
4193   Node* src  = obj;
4194   Node* dest = alloc_obj;
4195   Node* size = _gvn.transform(obj_size);
4196 
4197   // Exclude the header but include array length to copy by 8 bytes words.
4198   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4199   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4200                             instanceOopDesc::base_offset_in_bytes();
4201   // base_off:
4202   // 8  - 32-bit VM
4203   // 12 - 64-bit VM, compressed klass
4204   // 16 - 64-bit VM, normal klass
4205   if (base_off % BytesPerLong != 0) {
4206     assert(UseCompressedKlassPointers, "");
4207     if (is_array) {
4208       // Exclude length to copy by 8 bytes words.
4209       base_off += sizeof(int);
4210     } else {
4211       // Include klass to copy by 8 bytes words.
4212       base_off = instanceOopDesc::klass_offset_in_bytes();
4213     }
4214     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4215   }
4216   src  = basic_plus_adr(src,  base_off);
4217   dest = basic_plus_adr(dest, base_off);
4218 
4219   // Compute the length also, if needed:
4220   Node* countx = size;
4221   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4222   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4223 
4224   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4225   bool disjoint_bases = true;
4226   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4227                                src, NULL, dest, NULL, countx,
4228                                /*dest_uninitialized*/true);
4229 
4230   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4231   if (card_mark) {
4232     assert(!is_array, "");
4233     // Put in store barrier for any and all oops we are sticking
4234     // into this object.  (We could avoid this if we could prove
4235     // that the object type contains no oop fields at all.)
4236     Node* no_particular_value = NULL;
4237     Node* no_particular_field = NULL;
4238     int raw_adr_idx = Compile::AliasIdxRaw;
4239     post_barrier(control(),
4240                  memory(raw_adr_type),
4241                  alloc_obj,
4242                  no_particular_field,
4243                  raw_adr_idx,
4244                  no_particular_value,
4245                  T_OBJECT,
4246                  false);
4247   }
4248 
4249   // Do not let reads from the cloned object float above the arraycopy.
4250   if (alloc != NULL) {
4251     // Do not let stores that initialize this object be reordered with
4252     // a subsequent store that would make this object accessible by
4253     // other threads.
4254     // Record what AllocateNode this StoreStore protects so that
4255     // escape analysis can go from the MemBarStoreStoreNode to the
4256     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4257     // based on the escape status of the AllocateNode.
4258     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4259   } else {
4260     insert_mem_bar(Op_MemBarCPUOrder);
4261   }
4262 }
4263 
4264 //------------------------inline_native_clone----------------------------
4265 // protected native Object java.lang.Object.clone();
4266 //
4267 // Here are the simple edge cases:
4268 //  null receiver => normal trap
4269 //  virtual and clone was overridden => slow path to out-of-line clone
4270 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4271 //
4272 // The general case has two steps, allocation and copying.
4273 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4274 //
4275 // Copying also has two cases, oop arrays and everything else.
4276 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4277 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4278 //
4279 // These steps fold up nicely if and when the cloned object's klass
4280 // can be sharply typed as an object array, a type array, or an instance.
4281 //
4282 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4283   PhiNode* result_val;
4284 
4285   // Set the reexecute bit for the interpreter to reexecute
4286   // the bytecode that invokes Object.clone if deoptimization happens.
4287   { PreserveReexecuteState preexecs(this);
4288     jvms()->set_should_reexecute(true);
4289 
4290     Node* obj = null_check_receiver();
4291     if (stopped())  return true;
4292 
4293     Node* obj_klass = load_object_klass(obj);
4294     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4295     const TypeOopPtr*   toop   = ((tklass != NULL)
4296                                 ? tklass->as_instance_type()
4297                                 : TypeInstPtr::NOTNULL);
4298 
4299     // Conservatively insert a memory barrier on all memory slices.
4300     // Do not let writes into the original float below the clone.
4301     insert_mem_bar(Op_MemBarCPUOrder);
4302 
4303     // paths into result_reg:
4304     enum {
4305       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4306       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4307       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4308       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4309       PATH_LIMIT
4310     };
4311     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4312     result_val             = new(C) PhiNode(result_reg,
4313                                             TypeInstPtr::NOTNULL);
4314     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4315     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4316                                             TypePtr::BOTTOM);
4317     record_for_igvn(result_reg);
4318 
4319     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4320     int raw_adr_idx = Compile::AliasIdxRaw;
4321 
4322     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4323     if (array_ctl != NULL) {
4324       // It's an array.
4325       PreserveJVMState pjvms(this);
4326       set_control(array_ctl);
4327       Node* obj_length = load_array_length(obj);
4328       Node* obj_size  = NULL;
4329       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4330 
4331       if (!use_ReduceInitialCardMarks()) {
4332         // If it is an oop array, it requires very special treatment,
4333         // because card marking is required on each card of the array.
4334         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4335         if (is_obja != NULL) {
4336           PreserveJVMState pjvms2(this);
4337           set_control(is_obja);
4338           // Generate a direct call to the right arraycopy function(s).
4339           bool disjoint_bases = true;
4340           bool length_never_negative = true;
4341           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4342                              obj, intcon(0), alloc_obj, intcon(0),
4343                              obj_length,
4344                              disjoint_bases, length_never_negative);
4345           result_reg->init_req(_objArray_path, control());
4346           result_val->init_req(_objArray_path, alloc_obj);
4347           result_i_o ->set_req(_objArray_path, i_o());
4348           result_mem ->set_req(_objArray_path, reset_memory());
4349         }
4350       }
4351       // Otherwise, there are no card marks to worry about.
4352       // (We can dispense with card marks if we know the allocation
4353       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4354       //  causes the non-eden paths to take compensating steps to
4355       //  simulate a fresh allocation, so that no further
4356       //  card marks are required in compiled code to initialize
4357       //  the object.)
4358 
4359       if (!stopped()) {
4360         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4361 
4362         // Present the results of the copy.
4363         result_reg->init_req(_array_path, control());
4364         result_val->init_req(_array_path, alloc_obj);
4365         result_i_o ->set_req(_array_path, i_o());
4366         result_mem ->set_req(_array_path, reset_memory());
4367       }
4368     }
4369 
4370     // We only go to the instance fast case code if we pass a number of guards.
4371     // The paths which do not pass are accumulated in the slow_region.
4372     RegionNode* slow_region = new (C) RegionNode(1);
4373     record_for_igvn(slow_region);
4374     if (!stopped()) {
4375       // It's an instance (we did array above).  Make the slow-path tests.
4376       // If this is a virtual call, we generate a funny guard.  We grab
4377       // the vtable entry corresponding to clone() from the target object.
4378       // If the target method which we are calling happens to be the
4379       // Object clone() method, we pass the guard.  We do not need this
4380       // guard for non-virtual calls; the caller is known to be the native
4381       // Object clone().
4382       if (is_virtual) {
4383         generate_virtual_guard(obj_klass, slow_region);
4384       }
4385 
4386       // The object must be cloneable and must not have a finalizer.
4387       // Both of these conditions may be checked in a single test.
4388       // We could optimize the cloneable test further, but we don't care.
4389       generate_access_flags_guard(obj_klass,
4390                                   // Test both conditions:
4391                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4392                                   // Must be cloneable but not finalizer:
4393                                   JVM_ACC_IS_CLONEABLE,
4394                                   slow_region);
4395     }
4396 
4397     if (!stopped()) {
4398       // It's an instance, and it passed the slow-path tests.
4399       PreserveJVMState pjvms(this);
4400       Node* obj_size  = NULL;
4401       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4402 
4403       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4404 
4405       // Present the results of the slow call.
4406       result_reg->init_req(_instance_path, control());
4407       result_val->init_req(_instance_path, alloc_obj);
4408       result_i_o ->set_req(_instance_path, i_o());
4409       result_mem ->set_req(_instance_path, reset_memory());
4410     }
4411 
4412     // Generate code for the slow case.  We make a call to clone().
4413     set_control(_gvn.transform(slow_region));
4414     if (!stopped()) {
4415       PreserveJVMState pjvms(this);
4416       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4417       Node* slow_result = set_results_for_java_call(slow_call);
4418       // this->control() comes from set_results_for_java_call
4419       result_reg->init_req(_slow_path, control());
4420       result_val->init_req(_slow_path, slow_result);
4421       result_i_o ->set_req(_slow_path, i_o());
4422       result_mem ->set_req(_slow_path, reset_memory());
4423     }
4424 
4425     // Return the combined state.
4426     set_control(    _gvn.transform(result_reg));
4427     set_i_o(        _gvn.transform(result_i_o));
4428     set_all_memory( _gvn.transform(result_mem));
4429   } // original reexecute is set back here
4430 
4431   set_result(_gvn.transform(result_val));
4432   return true;
4433 }
4434 
4435 //------------------------------basictype2arraycopy----------------------------
4436 address LibraryCallKit::basictype2arraycopy(BasicType t,
4437                                             Node* src_offset,
4438                                             Node* dest_offset,
4439                                             bool disjoint_bases,
4440                                             const char* &name,
4441                                             bool dest_uninitialized) {
4442   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4443   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4444 
4445   bool aligned = false;
4446   bool disjoint = disjoint_bases;
4447 
4448   // if the offsets are the same, we can treat the memory regions as
4449   // disjoint, because either the memory regions are in different arrays,
4450   // or they are identical (which we can treat as disjoint.)  We can also
4451   // treat a copy with a destination index  less that the source index
4452   // as disjoint since a low->high copy will work correctly in this case.
4453   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4454       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4455     // both indices are constants
4456     int s_offs = src_offset_inttype->get_con();
4457     int d_offs = dest_offset_inttype->get_con();
4458     int element_size = type2aelembytes(t);
4459     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4460               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4461     if (s_offs >= d_offs)  disjoint = true;
4462   } else if (src_offset == dest_offset && src_offset != NULL) {
4463     // This can occur if the offsets are identical non-constants.
4464     disjoint = true;
4465   }
4466 
4467   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4468 }
4469 
4470 
4471 //------------------------------inline_arraycopy-----------------------
4472 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4473 //                                                      Object dest, int destPos,
4474 //                                                      int length);
4475 bool LibraryCallKit::inline_arraycopy() {
4476   // Get the arguments.
4477   Node* src         = argument(0);  // type: oop
4478   Node* src_offset  = argument(1);  // type: int
4479   Node* dest        = argument(2);  // type: oop
4480   Node* dest_offset = argument(3);  // type: int
4481   Node* length      = argument(4);  // type: int
4482 
4483   // Compile time checks.  If any of these checks cannot be verified at compile time,
4484   // we do not make a fast path for this call.  Instead, we let the call remain as it
4485   // is.  The checks we choose to mandate at compile time are:
4486   //
4487   // (1) src and dest are arrays.
4488   const Type* src_type  = src->Value(&_gvn);
4489   const Type* dest_type = dest->Value(&_gvn);
4490   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4491   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4492   if (top_src  == NULL || top_src->klass()  == NULL ||
4493       top_dest == NULL || top_dest->klass() == NULL) {
4494     // Conservatively insert a memory barrier on all memory slices.
4495     // Do not let writes into the source float below the arraycopy.
4496     insert_mem_bar(Op_MemBarCPUOrder);
4497 
4498     // Call StubRoutines::generic_arraycopy stub.
4499     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4500                        src, src_offset, dest, dest_offset, length);
4501 
4502     // Do not let reads from the destination float above the arraycopy.
4503     // Since we cannot type the arrays, we don't know which slices
4504     // might be affected.  We could restrict this barrier only to those
4505     // memory slices which pertain to array elements--but don't bother.
4506     if (!InsertMemBarAfterArraycopy)
4507       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4508       insert_mem_bar(Op_MemBarCPUOrder);
4509     return true;
4510   }
4511 
4512   // (2) src and dest arrays must have elements of the same BasicType
4513   // Figure out the size and type of the elements we will be copying.
4514   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4515   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4516   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4517   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4518 
4519   if (src_elem != dest_elem || dest_elem == T_VOID) {
4520     // The component types are not the same or are not recognized.  Punt.
4521     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4522     generate_slow_arraycopy(TypePtr::BOTTOM,
4523                             src, src_offset, dest, dest_offset, length,
4524                             /*dest_uninitialized*/false);
4525     return true;
4526   }
4527 
4528   //---------------------------------------------------------------------------
4529   // We will make a fast path for this call to arraycopy.
4530 
4531   // We have the following tests left to perform:
4532   //
4533   // (3) src and dest must not be null.
4534   // (4) src_offset must not be negative.
4535   // (5) dest_offset must not be negative.
4536   // (6) length must not be negative.
4537   // (7) src_offset + length must not exceed length of src.
4538   // (8) dest_offset + length must not exceed length of dest.
4539   // (9) each element of an oop array must be assignable
4540 
4541   RegionNode* slow_region = new (C) RegionNode(1);
4542   record_for_igvn(slow_region);
4543 
4544   // (3) operands must not be null
4545   // We currently perform our null checks with the null_check routine.
4546   // This means that the null exceptions will be reported in the caller
4547   // rather than (correctly) reported inside of the native arraycopy call.
4548   // This should be corrected, given time.  We do our null check with the
4549   // stack pointer restored.
4550   src  = null_check(src,  T_ARRAY);
4551   dest = null_check(dest, T_ARRAY);
4552 
4553   // (4) src_offset must not be negative.
4554   generate_negative_guard(src_offset, slow_region);
4555 
4556   // (5) dest_offset must not be negative.
4557   generate_negative_guard(dest_offset, slow_region);
4558 
4559   // (6) length must not be negative (moved to generate_arraycopy()).
4560   // generate_negative_guard(length, slow_region);
4561 
4562   // (7) src_offset + length must not exceed length of src.
4563   generate_limit_guard(src_offset, length,
4564                        load_array_length(src),
4565                        slow_region);
4566 
4567   // (8) dest_offset + length must not exceed length of dest.
4568   generate_limit_guard(dest_offset, length,
4569                        load_array_length(dest),
4570                        slow_region);
4571 
4572   // (9) each element of an oop array must be assignable
4573   // The generate_arraycopy subroutine checks this.
4574 
4575   // This is where the memory effects are placed:
4576   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4577   generate_arraycopy(adr_type, dest_elem,
4578                      src, src_offset, dest, dest_offset, length,
4579                      false, false, slow_region);
4580 
4581   return true;
4582 }
4583 
4584 //-----------------------------generate_arraycopy----------------------
4585 // Generate an optimized call to arraycopy.
4586 // Caller must guard against non-arrays.
4587 // Caller must determine a common array basic-type for both arrays.
4588 // Caller must validate offsets against array bounds.
4589 // The slow_region has already collected guard failure paths
4590 // (such as out of bounds length or non-conformable array types).
4591 // The generated code has this shape, in general:
4592 //
4593 //     if (length == 0)  return   // via zero_path
4594 //     slowval = -1
4595 //     if (types unknown) {
4596 //       slowval = call generic copy loop
4597 //       if (slowval == 0)  return  // via checked_path
4598 //     } else if (indexes in bounds) {
4599 //       if ((is object array) && !(array type check)) {
4600 //         slowval = call checked copy loop
4601 //         if (slowval == 0)  return  // via checked_path
4602 //       } else {
4603 //         call bulk copy loop
4604 //         return  // via fast_path
4605 //       }
4606 //     }
4607 //     // adjust params for remaining work:
4608 //     if (slowval != -1) {
4609 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4610 //     }
4611 //   slow_region:
4612 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4613 //     return  // via slow_call_path
4614 //
4615 // This routine is used from several intrinsics:  System.arraycopy,
4616 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4617 //
4618 void
4619 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4620                                    BasicType basic_elem_type,
4621                                    Node* src,  Node* src_offset,
4622                                    Node* dest, Node* dest_offset,
4623                                    Node* copy_length,
4624                                    bool disjoint_bases,
4625                                    bool length_never_negative,
4626                                    RegionNode* slow_region) {
4627 
4628   if (slow_region == NULL) {
4629     slow_region = new(C) RegionNode(1);
4630     record_for_igvn(slow_region);
4631   }
4632 
4633   Node* original_dest      = dest;
4634   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4635   bool  dest_uninitialized = false;
4636 
4637   // See if this is the initialization of a newly-allocated array.
4638   // If so, we will take responsibility here for initializing it to zero.
4639   // (Note:  Because tightly_coupled_allocation performs checks on the
4640   // out-edges of the dest, we need to avoid making derived pointers
4641   // from it until we have checked its uses.)
4642   if (ReduceBulkZeroing
4643       && !ZeroTLAB              // pointless if already zeroed
4644       && basic_elem_type != T_CONFLICT // avoid corner case
4645       && !src->eqv_uncast(dest)
4646       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4647           != NULL)
4648       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4649       && alloc->maybe_set_complete(&_gvn)) {
4650     // "You break it, you buy it."
4651     InitializeNode* init = alloc->initialization();
4652     assert(init->is_complete(), "we just did this");
4653     init->set_complete_with_arraycopy();
4654     assert(dest->is_CheckCastPP(), "sanity");
4655     assert(dest->in(0)->in(0) == init, "dest pinned");
4656     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4657     // From this point on, every exit path is responsible for
4658     // initializing any non-copied parts of the object to zero.
4659     // Also, if this flag is set we make sure that arraycopy interacts properly
4660     // with G1, eliding pre-barriers. See CR 6627983.
4661     dest_uninitialized = true;
4662   } else {
4663     // No zeroing elimination here.
4664     alloc             = NULL;
4665     //original_dest   = dest;
4666     //dest_uninitialized = false;
4667   }
4668 
4669   // Results are placed here:
4670   enum { fast_path        = 1,  // normal void-returning assembly stub
4671          checked_path     = 2,  // special assembly stub with cleanup
4672          slow_call_path   = 3,  // something went wrong; call the VM
4673          zero_path        = 4,  // bypass when length of copy is zero
4674          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4675          PATH_LIMIT       = 6
4676   };
4677   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4678   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4679   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4680   record_for_igvn(result_region);
4681   _gvn.set_type_bottom(result_i_o);
4682   _gvn.set_type_bottom(result_memory);
4683   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4684 
4685   // The slow_control path:
4686   Node* slow_control;
4687   Node* slow_i_o = i_o();
4688   Node* slow_mem = memory(adr_type);
4689   debug_only(slow_control = (Node*) badAddress);
4690 
4691   // Checked control path:
4692   Node* checked_control = top();
4693   Node* checked_mem     = NULL;
4694   Node* checked_i_o     = NULL;
4695   Node* checked_value   = NULL;
4696 
4697   if (basic_elem_type == T_CONFLICT) {
4698     assert(!dest_uninitialized, "");
4699     Node* cv = generate_generic_arraycopy(adr_type,
4700                                           src, src_offset, dest, dest_offset,
4701                                           copy_length, dest_uninitialized);
4702     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4703     checked_control = control();
4704     checked_i_o     = i_o();
4705     checked_mem     = memory(adr_type);
4706     checked_value   = cv;
4707     set_control(top());         // no fast path
4708   }
4709 
4710   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4711   if (not_pos != NULL) {
4712     PreserveJVMState pjvms(this);
4713     set_control(not_pos);
4714 
4715     // (6) length must not be negative.
4716     if (!length_never_negative) {
4717       generate_negative_guard(copy_length, slow_region);
4718     }
4719 
4720     // copy_length is 0.
4721     if (!stopped() && dest_uninitialized) {
4722       Node* dest_length = alloc->in(AllocateNode::ALength);
4723       if (copy_length->eqv_uncast(dest_length)
4724           || _gvn.find_int_con(dest_length, 1) <= 0) {
4725         // There is no zeroing to do. No need for a secondary raw memory barrier.
4726       } else {
4727         // Clear the whole thing since there are no source elements to copy.
4728         generate_clear_array(adr_type, dest, basic_elem_type,
4729                              intcon(0), NULL,
4730                              alloc->in(AllocateNode::AllocSize));
4731         // Use a secondary InitializeNode as raw memory barrier.
4732         // Currently it is needed only on this path since other
4733         // paths have stub or runtime calls as raw memory barriers.
4734         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4735                                                        Compile::AliasIdxRaw,
4736                                                        top())->as_Initialize();
4737         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4738       }
4739     }
4740 
4741     // Present the results of the fast call.
4742     result_region->init_req(zero_path, control());
4743     result_i_o   ->init_req(zero_path, i_o());
4744     result_memory->init_req(zero_path, memory(adr_type));
4745   }
4746 
4747   if (!stopped() && dest_uninitialized) {
4748     // We have to initialize the *uncopied* part of the array to zero.
4749     // The copy destination is the slice dest[off..off+len].  The other slices
4750     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4751     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4752     Node* dest_length = alloc->in(AllocateNode::ALength);
4753     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
4754                                                           copy_length));
4755 
4756     // If there is a head section that needs zeroing, do it now.
4757     if (find_int_con(dest_offset, -1) != 0) {
4758       generate_clear_array(adr_type, dest, basic_elem_type,
4759                            intcon(0), dest_offset,
4760                            NULL);
4761     }
4762 
4763     // Next, perform a dynamic check on the tail length.
4764     // It is often zero, and we can win big if we prove this.
4765     // There are two wins:  Avoid generating the ClearArray
4766     // with its attendant messy index arithmetic, and upgrade
4767     // the copy to a more hardware-friendly word size of 64 bits.
4768     Node* tail_ctl = NULL;
4769     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
4770       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
4771       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
4772       tail_ctl = generate_slow_guard(bol_lt, NULL);
4773       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4774     }
4775 
4776     // At this point, let's assume there is no tail.
4777     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4778       // There is no tail.  Try an upgrade to a 64-bit copy.
4779       bool didit = false;
4780       { PreserveJVMState pjvms(this);
4781         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4782                                          src, src_offset, dest, dest_offset,
4783                                          dest_size, dest_uninitialized);
4784         if (didit) {
4785           // Present the results of the block-copying fast call.
4786           result_region->init_req(bcopy_path, control());
4787           result_i_o   ->init_req(bcopy_path, i_o());
4788           result_memory->init_req(bcopy_path, memory(adr_type));
4789         }
4790       }
4791       if (didit)
4792         set_control(top());     // no regular fast path
4793     }
4794 
4795     // Clear the tail, if any.
4796     if (tail_ctl != NULL) {
4797       Node* notail_ctl = stopped() ? NULL : control();
4798       set_control(tail_ctl);
4799       if (notail_ctl == NULL) {
4800         generate_clear_array(adr_type, dest, basic_elem_type,
4801                              dest_tail, NULL,
4802                              dest_size);
4803       } else {
4804         // Make a local merge.
4805         Node* done_ctl = new(C) RegionNode(3);
4806         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
4807         done_ctl->init_req(1, notail_ctl);
4808         done_mem->init_req(1, memory(adr_type));
4809         generate_clear_array(adr_type, dest, basic_elem_type,
4810                              dest_tail, NULL,
4811                              dest_size);
4812         done_ctl->init_req(2, control());
4813         done_mem->init_req(2, memory(adr_type));
4814         set_control( _gvn.transform(done_ctl));
4815         set_memory(  _gvn.transform(done_mem), adr_type );
4816       }
4817     }
4818   }
4819 
4820   BasicType copy_type = basic_elem_type;
4821   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4822   if (!stopped() && copy_type == T_OBJECT) {
4823     // If src and dest have compatible element types, we can copy bits.
4824     // Types S[] and D[] are compatible if D is a supertype of S.
4825     //
4826     // If they are not, we will use checked_oop_disjoint_arraycopy,
4827     // which performs a fast optimistic per-oop check, and backs off
4828     // further to JVM_ArrayCopy on the first per-oop check that fails.
4829     // (Actually, we don't move raw bits only; the GC requires card marks.)
4830 
4831     // Get the Klass* for both src and dest
4832     Node* src_klass  = load_object_klass(src);
4833     Node* dest_klass = load_object_klass(dest);
4834 
4835     // Generate the subtype check.
4836     // This might fold up statically, or then again it might not.
4837     //
4838     // Non-static example:  Copying List<String>.elements to a new String[].
4839     // The backing store for a List<String> is always an Object[],
4840     // but its elements are always type String, if the generic types
4841     // are correct at the source level.
4842     //
4843     // Test S[] against D[], not S against D, because (probably)
4844     // the secondary supertype cache is less busy for S[] than S.
4845     // This usually only matters when D is an interface.
4846     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4847     // Plug failing path into checked_oop_disjoint_arraycopy
4848     if (not_subtype_ctrl != top()) {
4849       PreserveJVMState pjvms(this);
4850       set_control(not_subtype_ctrl);
4851       // (At this point we can assume disjoint_bases, since types differ.)
4852       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
4853       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4854       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4855       Node* dest_elem_klass = _gvn.transform(n1);
4856       Node* cv = generate_checkcast_arraycopy(adr_type,
4857                                               dest_elem_klass,
4858                                               src, src_offset, dest, dest_offset,
4859                                               ConvI2X(copy_length), dest_uninitialized);
4860       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4861       checked_control = control();
4862       checked_i_o     = i_o();
4863       checked_mem     = memory(adr_type);
4864       checked_value   = cv;
4865     }
4866     // At this point we know we do not need type checks on oop stores.
4867 
4868     // Let's see if we need card marks:
4869     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4870       // If we do not need card marks, copy using the jint or jlong stub.
4871       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4872       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4873              "sizes agree");
4874     }
4875   }
4876 
4877   if (!stopped()) {
4878     // Generate the fast path, if possible.
4879     PreserveJVMState pjvms(this);
4880     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4881                                  src, src_offset, dest, dest_offset,
4882                                  ConvI2X(copy_length), dest_uninitialized);
4883 
4884     // Present the results of the fast call.
4885     result_region->init_req(fast_path, control());
4886     result_i_o   ->init_req(fast_path, i_o());
4887     result_memory->init_req(fast_path, memory(adr_type));
4888   }
4889 
4890   // Here are all the slow paths up to this point, in one bundle:
4891   slow_control = top();
4892   if (slow_region != NULL)
4893     slow_control = _gvn.transform(slow_region);
4894   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
4895 
4896   set_control(checked_control);
4897   if (!stopped()) {
4898     // Clean up after the checked call.
4899     // The returned value is either 0 or -1^K,
4900     // where K = number of partially transferred array elements.
4901     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
4902     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
4903     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4904 
4905     // If it is 0, we are done, so transfer to the end.
4906     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
4907     result_region->init_req(checked_path, checks_done);
4908     result_i_o   ->init_req(checked_path, checked_i_o);
4909     result_memory->init_req(checked_path, checked_mem);
4910 
4911     // If it is not zero, merge into the slow call.
4912     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
4913     RegionNode* slow_reg2 = new(C) RegionNode(3);
4914     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
4915     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4916     record_for_igvn(slow_reg2);
4917     slow_reg2  ->init_req(1, slow_control);
4918     slow_i_o2  ->init_req(1, slow_i_o);
4919     slow_mem2  ->init_req(1, slow_mem);
4920     slow_reg2  ->init_req(2, control());
4921     slow_i_o2  ->init_req(2, checked_i_o);
4922     slow_mem2  ->init_req(2, checked_mem);
4923 
4924     slow_control = _gvn.transform(slow_reg2);
4925     slow_i_o     = _gvn.transform(slow_i_o2);
4926     slow_mem     = _gvn.transform(slow_mem2);
4927 
4928     if (alloc != NULL) {
4929       // We'll restart from the very beginning, after zeroing the whole thing.
4930       // This can cause double writes, but that's OK since dest is brand new.
4931       // So we ignore the low 31 bits of the value returned from the stub.
4932     } else {
4933       // We must continue the copy exactly where it failed, or else
4934       // another thread might see the wrong number of writes to dest.
4935       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
4936       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
4937       slow_offset->init_req(1, intcon(0));
4938       slow_offset->init_req(2, checked_offset);
4939       slow_offset  = _gvn.transform(slow_offset);
4940 
4941       // Adjust the arguments by the conditionally incoming offset.
4942       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
4943       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
4944       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
4945 
4946       // Tweak the node variables to adjust the code produced below:
4947       src_offset  = src_off_plus;
4948       dest_offset = dest_off_plus;
4949       copy_length = length_minus;
4950     }
4951   }
4952 
4953   set_control(slow_control);
4954   if (!stopped()) {
4955     // Generate the slow path, if needed.
4956     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4957 
4958     set_memory(slow_mem, adr_type);
4959     set_i_o(slow_i_o);
4960 
4961     if (dest_uninitialized) {
4962       generate_clear_array(adr_type, dest, basic_elem_type,
4963                            intcon(0), NULL,
4964                            alloc->in(AllocateNode::AllocSize));
4965     }
4966 
4967     generate_slow_arraycopy(adr_type,
4968                             src, src_offset, dest, dest_offset,
4969                             copy_length, /*dest_uninitialized*/false);
4970 
4971     result_region->init_req(slow_call_path, control());
4972     result_i_o   ->init_req(slow_call_path, i_o());
4973     result_memory->init_req(slow_call_path, memory(adr_type));
4974   }
4975 
4976   // Remove unused edges.
4977   for (uint i = 1; i < result_region->req(); i++) {
4978     if (result_region->in(i) == NULL)
4979       result_region->init_req(i, top());
4980   }
4981 
4982   // Finished; return the combined state.
4983   set_control( _gvn.transform(result_region));
4984   set_i_o(     _gvn.transform(result_i_o)    );
4985   set_memory(  _gvn.transform(result_memory), adr_type );
4986 
4987   // The memory edges above are precise in order to model effects around
4988   // array copies accurately to allow value numbering of field loads around
4989   // arraycopy.  Such field loads, both before and after, are common in Java
4990   // collections and similar classes involving header/array data structures.
4991   //
4992   // But with low number of register or when some registers are used or killed
4993   // by arraycopy calls it causes registers spilling on stack. See 6544710.
4994   // The next memory barrier is added to avoid it. If the arraycopy can be
4995   // optimized away (which it can, sometimes) then we can manually remove
4996   // the membar also.
4997   //
4998   // Do not let reads from the cloned object float above the arraycopy.
4999   if (alloc != NULL) {
5000     // Do not let stores that initialize this object be reordered with
5001     // a subsequent store that would make this object accessible by
5002     // other threads.
5003     // Record what AllocateNode this StoreStore protects so that
5004     // escape analysis can go from the MemBarStoreStoreNode to the
5005     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5006     // based on the escape status of the AllocateNode.
5007     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5008   } else if (InsertMemBarAfterArraycopy)
5009     insert_mem_bar(Op_MemBarCPUOrder);
5010 }
5011 
5012 
5013 // Helper function which determines if an arraycopy immediately follows
5014 // an allocation, with no intervening tests or other escapes for the object.
5015 AllocateArrayNode*
5016 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5017                                            RegionNode* slow_region) {
5018   if (stopped())             return NULL;  // no fast path
5019   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5020 
5021   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5022   if (alloc == NULL)  return NULL;
5023 
5024   Node* rawmem = memory(Compile::AliasIdxRaw);
5025   // Is the allocation's memory state untouched?
5026   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5027     // Bail out if there have been raw-memory effects since the allocation.
5028     // (Example:  There might have been a call or safepoint.)
5029     return NULL;
5030   }
5031   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5032   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5033     return NULL;
5034   }
5035 
5036   // There must be no unexpected observers of this allocation.
5037   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5038     Node* obs = ptr->fast_out(i);
5039     if (obs != this->map()) {
5040       return NULL;
5041     }
5042   }
5043 
5044   // This arraycopy must unconditionally follow the allocation of the ptr.
5045   Node* alloc_ctl = ptr->in(0);
5046   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5047 
5048   Node* ctl = control();
5049   while (ctl != alloc_ctl) {
5050     // There may be guards which feed into the slow_region.
5051     // Any other control flow means that we might not get a chance
5052     // to finish initializing the allocated object.
5053     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5054       IfNode* iff = ctl->in(0)->as_If();
5055       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5056       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5057       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5058         ctl = iff->in(0);       // This test feeds the known slow_region.
5059         continue;
5060       }
5061       // One more try:  Various low-level checks bottom out in
5062       // uncommon traps.  If the debug-info of the trap omits
5063       // any reference to the allocation, as we've already
5064       // observed, then there can be no objection to the trap.
5065       bool found_trap = false;
5066       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5067         Node* obs = not_ctl->fast_out(j);
5068         if (obs->in(0) == not_ctl && obs->is_Call() &&
5069             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5070           found_trap = true; break;
5071         }
5072       }
5073       if (found_trap) {
5074         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5075         continue;
5076       }
5077     }
5078     return NULL;
5079   }
5080 
5081   // If we get this far, we have an allocation which immediately
5082   // precedes the arraycopy, and we can take over zeroing the new object.
5083   // The arraycopy will finish the initialization, and provide
5084   // a new control state to which we will anchor the destination pointer.
5085 
5086   return alloc;
5087 }
5088 
5089 // Helper for initialization of arrays, creating a ClearArray.
5090 // It writes zero bits in [start..end), within the body of an array object.
5091 // The memory effects are all chained onto the 'adr_type' alias category.
5092 //
5093 // Since the object is otherwise uninitialized, we are free
5094 // to put a little "slop" around the edges of the cleared area,
5095 // as long as it does not go back into the array's header,
5096 // or beyond the array end within the heap.
5097 //
5098 // The lower edge can be rounded down to the nearest jint and the
5099 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5100 //
5101 // Arguments:
5102 //   adr_type           memory slice where writes are generated
5103 //   dest               oop of the destination array
5104 //   basic_elem_type    element type of the destination
5105 //   slice_idx          array index of first element to store
5106 //   slice_len          number of elements to store (or NULL)
5107 //   dest_size          total size in bytes of the array object
5108 //
5109 // Exactly one of slice_len or dest_size must be non-NULL.
5110 // If dest_size is non-NULL, zeroing extends to the end of the object.
5111 // If slice_len is non-NULL, the slice_idx value must be a constant.
5112 void
5113 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5114                                      Node* dest,
5115                                      BasicType basic_elem_type,
5116                                      Node* slice_idx,
5117                                      Node* slice_len,
5118                                      Node* dest_size) {
5119   // one or the other but not both of slice_len and dest_size:
5120   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5121   if (slice_len == NULL)  slice_len = top();
5122   if (dest_size == NULL)  dest_size = top();
5123 
5124   // operate on this memory slice:
5125   Node* mem = memory(adr_type); // memory slice to operate on
5126 
5127   // scaling and rounding of indexes:
5128   int scale = exact_log2(type2aelembytes(basic_elem_type));
5129   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5130   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5131   int bump_bit  = (-1 << scale) & BytesPerInt;
5132 
5133   // determine constant starts and ends
5134   const intptr_t BIG_NEG = -128;
5135   assert(BIG_NEG + 2*abase < 0, "neg enough");
5136   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5137   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5138   if (slice_len_con == 0) {
5139     return;                     // nothing to do here
5140   }
5141   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5142   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5143   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5144     assert(end_con < 0, "not two cons");
5145     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5146                        BytesPerLong);
5147   }
5148 
5149   if (start_con >= 0 && end_con >= 0) {
5150     // Constant start and end.  Simple.
5151     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5152                                        start_con, end_con, &_gvn);
5153   } else if (start_con >= 0 && dest_size != top()) {
5154     // Constant start, pre-rounded end after the tail of the array.
5155     Node* end = dest_size;
5156     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5157                                        start_con, end, &_gvn);
5158   } else if (start_con >= 0 && slice_len != top()) {
5159     // Constant start, non-constant end.  End needs rounding up.
5160     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5161     intptr_t end_base  = abase + (slice_idx_con << scale);
5162     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5163     Node*    end       = ConvI2X(slice_len);
5164     if (scale != 0)
5165       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5166     end_base += end_round;
5167     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5168     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5169     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5170                                        start_con, end, &_gvn);
5171   } else if (start_con < 0 && dest_size != top()) {
5172     // Non-constant start, pre-rounded end after the tail of the array.
5173     // This is almost certainly a "round-to-end" operation.
5174     Node* start = slice_idx;
5175     start = ConvI2X(start);
5176     if (scale != 0)
5177       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5178     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5179     if ((bump_bit | clear_low) != 0) {
5180       int to_clear = (bump_bit | clear_low);
5181       // Align up mod 8, then store a jint zero unconditionally
5182       // just before the mod-8 boundary.
5183       if (((abase + bump_bit) & ~to_clear) - bump_bit
5184           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5185         bump_bit = 0;
5186         assert((abase & to_clear) == 0, "array base must be long-aligned");
5187       } else {
5188         // Bump 'start' up to (or past) the next jint boundary:
5189         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5190         assert((abase & clear_low) == 0, "array base must be int-aligned");
5191       }
5192       // Round bumped 'start' down to jlong boundary in body of array.
5193       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5194       if (bump_bit != 0) {
5195         // Store a zero to the immediately preceding jint:
5196         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5197         Node* p1 = basic_plus_adr(dest, x1);
5198         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5199         mem = _gvn.transform(mem);
5200       }
5201     }
5202     Node* end = dest_size; // pre-rounded
5203     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5204                                        start, end, &_gvn);
5205   } else {
5206     // Non-constant start, unrounded non-constant end.
5207     // (Nobody zeroes a random midsection of an array using this routine.)
5208     ShouldNotReachHere();       // fix caller
5209   }
5210 
5211   // Done.
5212   set_memory(mem, adr_type);
5213 }
5214 
5215 
5216 bool
5217 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5218                                          BasicType basic_elem_type,
5219                                          AllocateNode* alloc,
5220                                          Node* src,  Node* src_offset,
5221                                          Node* dest, Node* dest_offset,
5222                                          Node* dest_size, bool dest_uninitialized) {
5223   // See if there is an advantage from block transfer.
5224   int scale = exact_log2(type2aelembytes(basic_elem_type));
5225   if (scale >= LogBytesPerLong)
5226     return false;               // it is already a block transfer
5227 
5228   // Look at the alignment of the starting offsets.
5229   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5230 
5231   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5232   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5233   if (src_off_con < 0 || dest_off_con < 0)
5234     // At present, we can only understand constants.
5235     return false;
5236 
5237   intptr_t src_off  = abase + (src_off_con  << scale);
5238   intptr_t dest_off = abase + (dest_off_con << scale);
5239 
5240   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5241     // Non-aligned; too bad.
5242     // One more chance:  Pick off an initial 32-bit word.
5243     // This is a common case, since abase can be odd mod 8.
5244     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5245         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5246       Node* sptr = basic_plus_adr(src,  src_off);
5247       Node* dptr = basic_plus_adr(dest, dest_off);
5248       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5249       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5250       src_off += BytesPerInt;
5251       dest_off += BytesPerInt;
5252     } else {
5253       return false;
5254     }
5255   }
5256   assert(src_off % BytesPerLong == 0, "");
5257   assert(dest_off % BytesPerLong == 0, "");
5258 
5259   // Do this copy by giant steps.
5260   Node* sptr  = basic_plus_adr(src,  src_off);
5261   Node* dptr  = basic_plus_adr(dest, dest_off);
5262   Node* countx = dest_size;
5263   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5264   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5265 
5266   bool disjoint_bases = true;   // since alloc != NULL
5267   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5268                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5269 
5270   return true;
5271 }
5272 
5273 
5274 // Helper function; generates code for the slow case.
5275 // We make a call to a runtime method which emulates the native method,
5276 // but without the native wrapper overhead.
5277 void
5278 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5279                                         Node* src,  Node* src_offset,
5280                                         Node* dest, Node* dest_offset,
5281                                         Node* copy_length, bool dest_uninitialized) {
5282   assert(!dest_uninitialized, "Invariant");
5283   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5284                                  OptoRuntime::slow_arraycopy_Type(),
5285                                  OptoRuntime::slow_arraycopy_Java(),
5286                                  "slow_arraycopy", adr_type,
5287                                  src, src_offset, dest, dest_offset,
5288                                  copy_length);
5289 
5290   // Handle exceptions thrown by this fellow:
5291   make_slow_call_ex(call, env()->Throwable_klass(), false);
5292 }
5293 
5294 // Helper function; generates code for cases requiring runtime checks.
5295 Node*
5296 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5297                                              Node* dest_elem_klass,
5298                                              Node* src,  Node* src_offset,
5299                                              Node* dest, Node* dest_offset,
5300                                              Node* copy_length, bool dest_uninitialized) {
5301   if (stopped())  return NULL;
5302 
5303   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5304   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5305     return NULL;
5306   }
5307 
5308   // Pick out the parameters required to perform a store-check
5309   // for the target array.  This is an optimistic check.  It will
5310   // look in each non-null element's class, at the desired klass's
5311   // super_check_offset, for the desired klass.
5312   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5313   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5314   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5315   Node* check_offset = ConvI2X(_gvn.transform(n3));
5316   Node* check_value  = dest_elem_klass;
5317 
5318   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5319   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5320 
5321   // (We know the arrays are never conjoint, because their types differ.)
5322   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5323                                  OptoRuntime::checkcast_arraycopy_Type(),
5324                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5325                                  // five arguments, of which two are
5326                                  // intptr_t (jlong in LP64)
5327                                  src_start, dest_start,
5328                                  copy_length XTOP,
5329                                  check_offset XTOP,
5330                                  check_value);
5331 
5332   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5333 }
5334 
5335 
5336 // Helper function; generates code for cases requiring runtime checks.
5337 Node*
5338 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5339                                            Node* src,  Node* src_offset,
5340                                            Node* dest, Node* dest_offset,
5341                                            Node* copy_length, bool dest_uninitialized) {
5342   assert(!dest_uninitialized, "Invariant");
5343   if (stopped())  return NULL;
5344   address copyfunc_addr = StubRoutines::generic_arraycopy();
5345   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5346     return NULL;
5347   }
5348 
5349   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5350                     OptoRuntime::generic_arraycopy_Type(),
5351                     copyfunc_addr, "generic_arraycopy", adr_type,
5352                     src, src_offset, dest, dest_offset, copy_length);
5353 
5354   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5355 }
5356 
5357 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5358 void
5359 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5360                                              BasicType basic_elem_type,
5361                                              bool disjoint_bases,
5362                                              Node* src,  Node* src_offset,
5363                                              Node* dest, Node* dest_offset,
5364                                              Node* copy_length, bool dest_uninitialized) {
5365   if (stopped())  return;               // nothing to do
5366 
5367   Node* src_start  = src;
5368   Node* dest_start = dest;
5369   if (src_offset != NULL || dest_offset != NULL) {
5370     assert(src_offset != NULL && dest_offset != NULL, "");
5371     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5372     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5373   }
5374 
5375   // Figure out which arraycopy runtime method to call.
5376   const char* copyfunc_name = "arraycopy";
5377   address     copyfunc_addr =
5378       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5379                           disjoint_bases, copyfunc_name, dest_uninitialized);
5380 
5381   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5382   make_runtime_call(RC_LEAF|RC_NO_FP,
5383                     OptoRuntime::fast_arraycopy_Type(),
5384                     copyfunc_addr, copyfunc_name, adr_type,
5385                     src_start, dest_start, copy_length XTOP);
5386 }
5387 
5388 //-------------inline_encodeISOArray-----------------------------------
5389 // encode char[] to byte[] in ISO_8859_1
5390 bool LibraryCallKit::inline_encodeISOArray() {
5391   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5392   // no receiver since it is static method
5393   Node *src         = argument(0);
5394   Node *src_offset  = argument(1);
5395   Node *dst         = argument(2);
5396   Node *dst_offset  = argument(3);
5397   Node *length      = argument(4);
5398 
5399   const Type* src_type = src->Value(&_gvn);
5400   const Type* dst_type = dst->Value(&_gvn);
5401   const TypeAryPtr* top_src = src_type->isa_aryptr();
5402   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5403   if (top_src  == NULL || top_src->klass()  == NULL ||
5404       top_dest == NULL || top_dest->klass() == NULL) {
5405     // failed array check
5406     return false;
5407   }
5408 
5409   // Figure out the size and type of the elements we will be copying.
5410   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5411   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5412   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5413     return false;
5414   }
5415   Node* src_start = array_element_address(src, src_offset, src_elem);
5416   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5417   // 'src_start' points to src array + scaled offset
5418   // 'dst_start' points to dst array + scaled offset
5419 
5420   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5421   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5422   enc = _gvn.transform(enc);
5423   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5424   set_memory(res_mem, mtype);
5425   set_result(enc);
5426   return true;
5427 }
5428 
5429 /**
5430  * Calculate CRC32 for byte.
5431  * int java.util.zip.CRC32.update(int crc, int b)
5432  */
5433 bool LibraryCallKit::inline_updateCRC32() {
5434   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5435   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5436   // no receiver since it is static method
5437   Node* crc  = argument(0); // type: int
5438   Node* b    = argument(1); // type: int
5439 
5440   /*
5441    *    int c = ~ crc;
5442    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5443    *    b = b ^ (c >>> 8);
5444    *    crc = ~b;
5445    */
5446 
5447   Node* M1 = intcon(-1);
5448   crc = _gvn.transform(new (C) XorINode(crc, M1));
5449   Node* result = _gvn.transform(new (C) XorINode(crc, b));
5450   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
5451 
5452   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5453   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
5454   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5455   result = make_load(control(), adr, TypeInt::INT, T_INT);
5456 
5457   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
5458   result = _gvn.transform(new (C) XorINode(crc, result));
5459   result = _gvn.transform(new (C) XorINode(result, M1));
5460   set_result(result);
5461   return true;
5462 }
5463 
5464 /**
5465  * Calculate CRC32 for byte[] array.
5466  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5467  */
5468 bool LibraryCallKit::inline_updateBytesCRC32() {
5469   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5470   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5471   // no receiver since it is static method
5472   Node* crc     = argument(0); // type: int
5473   Node* src     = argument(1); // type: oop
5474   Node* offset  = argument(2); // type: int
5475   Node* length  = argument(3); // type: int
5476 
5477   const Type* src_type = src->Value(&_gvn);
5478   const TypeAryPtr* top_src = src_type->isa_aryptr();
5479   if (top_src  == NULL || top_src->klass()  == NULL) {
5480     // failed array check
5481     return false;
5482   }
5483 
5484   // Figure out the size and type of the elements we will be copying.
5485   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5486   if (src_elem != T_BYTE) {
5487     return false;
5488   }
5489 
5490   // 'src_start' points to src array + scaled offset
5491   Node* src_start = array_element_address(src, offset, src_elem);
5492 
5493   // We assume that range check is done by caller.
5494   // TODO: generate range check (offset+length < src.length) in debug VM.
5495 
5496   // Call the stub.
5497   address stubAddr = StubRoutines::updateBytesCRC32();
5498   const char *stubName = "updateBytesCRC32";
5499 
5500   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5501                                  stubAddr, stubName, TypePtr::BOTTOM,
5502                                  crc, src_start, length);
5503   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5504   set_result(result);
5505   return true;
5506 }
5507 
5508 /**
5509  * Calculate CRC32 for ByteBuffer.
5510  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5511  */
5512 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5513   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5514   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5515   // no receiver since it is static method
5516   Node* crc     = argument(0); // type: int
5517   Node* src     = argument(1); // type: long
5518   Node* offset  = argument(3); // type: int
5519   Node* length  = argument(4); // type: int
5520 
5521   src = ConvL2X(src);  // adjust Java long to machine word
5522   Node* base = _gvn.transform(new (C) CastX2PNode(src));
5523   offset = ConvI2X(offset);
5524 
5525   // 'src_start' points to src array + scaled offset
5526   Node* src_start = basic_plus_adr(top(), base, offset);
5527 
5528   // Call the stub.
5529   address stubAddr = StubRoutines::updateBytesCRC32();
5530   const char *stubName = "updateBytesCRC32";
5531 
5532   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5533                                  stubAddr, stubName, TypePtr::BOTTOM,
5534                                  crc, src_start, length);
5535   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5536   set_result(result);
5537   return true;
5538 }
5539 
5540 //----------------------------inline_reference_get----------------------------
5541 // public T java.lang.ref.Reference.get();
5542 bool LibraryCallKit::inline_reference_get() {
5543   const int referent_offset = java_lang_ref_Reference::referent_offset;
5544   guarantee(referent_offset > 0, "should have already been set");
5545 
5546   // Get the argument:
5547   Node* reference_obj = null_check_receiver();
5548   if (stopped()) return true;
5549 
5550   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5551 
5552   ciInstanceKlass* klass = env()->Object_klass();
5553   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5554 
5555   Node* no_ctrl = NULL;
5556   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
5557 
5558   // Use the pre-barrier to record the value in the referent field
5559   pre_barrier(false /* do_load */,
5560               control(),
5561               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5562               result /* pre_val */,
5563               T_OBJECT);
5564 
5565   // Add memory barrier to prevent commoning reads from this field
5566   // across safepoint since GC can change its value.
5567   insert_mem_bar(Op_MemBarCPUOrder);
5568 
5569   set_result(result);
5570   return true;
5571 }
5572 
5573 
5574 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5575                                               bool is_exact=true, bool is_static=false) {
5576 
5577   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5578   assert(tinst != NULL, "obj is null");
5579   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5580   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5581 
5582   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5583                                                                           ciSymbol::make(fieldTypeString),
5584                                                                           is_static);
5585   if (field == NULL) return (Node *) NULL;
5586   assert (field != NULL, "undefined field");
5587 
5588   // Next code  copied from Parse::do_get_xxx():
5589 
5590   // Compute address and memory type.
5591   int offset  = field->offset_in_bytes();
5592   bool is_vol = field->is_volatile();
5593   ciType* field_klass = field->type();
5594   assert(field_klass->is_loaded(), "should be loaded");
5595   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5596   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5597   BasicType bt = field->layout_type();
5598 
5599   // Build the resultant type of the load
5600   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5601 
5602   // Build the load.
5603   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
5604   return loadedField;
5605 }
5606 
5607 
5608 //------------------------------inline_aescrypt_Block-----------------------
5609 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5610   address stubAddr;
5611   const char *stubName;
5612   assert(UseAES, "need AES instruction support");
5613 
5614   switch(id) {
5615   case vmIntrinsics::_aescrypt_encryptBlock:
5616     stubAddr = StubRoutines::aescrypt_encryptBlock();
5617     stubName = "aescrypt_encryptBlock";
5618     break;
5619   case vmIntrinsics::_aescrypt_decryptBlock:
5620     stubAddr = StubRoutines::aescrypt_decryptBlock();
5621     stubName = "aescrypt_decryptBlock";
5622     break;
5623   }
5624   if (stubAddr == NULL) return false;
5625 
5626   Node* aescrypt_object = argument(0);
5627   Node* src             = argument(1);
5628   Node* src_offset      = argument(2);
5629   Node* dest            = argument(3);
5630   Node* dest_offset     = argument(4);
5631 
5632   // (1) src and dest are arrays.
5633   const Type* src_type = src->Value(&_gvn);
5634   const Type* dest_type = dest->Value(&_gvn);
5635   const TypeAryPtr* top_src = src_type->isa_aryptr();
5636   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5637   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5638 
5639   // for the quick and dirty code we will skip all the checks.
5640   // we are just trying to get the call to be generated.
5641   Node* src_start  = src;
5642   Node* dest_start = dest;
5643   if (src_offset != NULL || dest_offset != NULL) {
5644     assert(src_offset != NULL && dest_offset != NULL, "");
5645     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5646     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5647   }
5648 
5649   // now need to get the start of its expanded key array
5650   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5651   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5652   if (k_start == NULL) return false;
5653 
5654   // Call the stub.
5655   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5656                     stubAddr, stubName, TypePtr::BOTTOM,
5657                     src_start, dest_start, k_start);
5658 
5659   return true;
5660 }
5661 
5662 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5663 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5664   address stubAddr;
5665   const char *stubName;
5666 
5667   assert(UseAES, "need AES instruction support");
5668 
5669   switch(id) {
5670   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5671     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5672     stubName = "cipherBlockChaining_encryptAESCrypt";
5673     break;
5674   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5675     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5676     stubName = "cipherBlockChaining_decryptAESCrypt";
5677     break;
5678   }
5679   if (stubAddr == NULL) return false;
5680 
5681   Node* cipherBlockChaining_object = argument(0);
5682   Node* src                        = argument(1);
5683   Node* src_offset                 = argument(2);
5684   Node* len                        = argument(3);
5685   Node* dest                       = argument(4);
5686   Node* dest_offset                = argument(5);
5687 
5688   // (1) src and dest are arrays.
5689   const Type* src_type = src->Value(&_gvn);
5690   const Type* dest_type = dest->Value(&_gvn);
5691   const TypeAryPtr* top_src = src_type->isa_aryptr();
5692   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5693   assert (top_src  != NULL && top_src->klass()  != NULL
5694           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5695 
5696   // checks are the responsibility of the caller
5697   Node* src_start  = src;
5698   Node* dest_start = dest;
5699   if (src_offset != NULL || dest_offset != NULL) {
5700     assert(src_offset != NULL && dest_offset != NULL, "");
5701     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5702     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5703   }
5704 
5705   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5706   // (because of the predicated logic executed earlier).
5707   // so we cast it here safely.
5708   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5709 
5710   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5711   if (embeddedCipherObj == NULL) return false;
5712 
5713   // cast it to what we know it will be at runtime
5714   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5715   assert(tinst != NULL, "CBC obj is null");
5716   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5717   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5718   if (!klass_AESCrypt->is_loaded()) return false;
5719 
5720   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5721   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5722   const TypeOopPtr* xtype = aklass->as_instance_type();
5723   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
5724   aescrypt_object = _gvn.transform(aescrypt_object);
5725 
5726   // we need to get the start of the aescrypt_object's expanded key array
5727   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5728   if (k_start == NULL) return false;
5729 
5730   // similarly, get the start address of the r vector
5731   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5732   if (objRvec == NULL) return false;
5733   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5734 
5735   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5736   make_runtime_call(RC_LEAF|RC_NO_FP,
5737                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5738                     stubAddr, stubName, TypePtr::BOTTOM,
5739                     src_start, dest_start, k_start, r_start, len);
5740 
5741   // return is void so no result needs to be pushed
5742 
5743   return true;
5744 }
5745 
5746 //------------------------------get_key_start_from_aescrypt_object-----------------------
5747 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5748   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5749   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5750   if (objAESCryptKey == NULL) return (Node *) NULL;
5751 
5752   // now have the array, need to get the start address of the K array
5753   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5754   return k_start;
5755 }
5756 
5757 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5758 // Return node representing slow path of predicate check.
5759 // the pseudo code we want to emulate with this predicate is:
5760 // for encryption:
5761 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5762 // for decryption:
5763 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5764 //    note cipher==plain is more conservative than the original java code but that's OK
5765 //
5766 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5767   // First, check receiver for NULL since it is virtual method.
5768   Node* objCBC = argument(0);
5769   objCBC = null_check(objCBC);
5770 
5771   if (stopped()) return NULL; // Always NULL
5772 
5773   // Load embeddedCipher field of CipherBlockChaining object.
5774   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5775 
5776   // get AESCrypt klass for instanceOf check
5777   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5778   // will have same classloader as CipherBlockChaining object
5779   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5780   assert(tinst != NULL, "CBCobj is null");
5781   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5782 
5783   // we want to do an instanceof comparison against the AESCrypt class
5784   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5785   if (!klass_AESCrypt->is_loaded()) {
5786     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5787     Node* ctrl = control();
5788     set_control(top()); // no regular fast path
5789     return ctrl;
5790   }
5791   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5792 
5793   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5794   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
5795   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
5796 
5797   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5798 
5799   // for encryption, we are done
5800   if (!decrypting)
5801     return instof_false;  // even if it is NULL
5802 
5803   // for decryption, we need to add a further check to avoid
5804   // taking the intrinsic path when cipher and plain are the same
5805   // see the original java code for why.
5806   RegionNode* region = new(C) RegionNode(3);
5807   region->init_req(1, instof_false);
5808   Node* src = argument(1);
5809   Node* dest = argument(4);
5810   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
5811   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
5812   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5813   region->init_req(2, src_dest_conjoint);
5814 
5815   record_for_igvn(region);
5816   return _gvn.transform(region);
5817 }