1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "memory/metadataFactory.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "oops/method.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "oops/symbol.hpp"
  39 #include "runtime/icache.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "utilities/events.hpp"
  43 
  44 
  45 // Every time a compiled IC is changed or its type is being accessed,
  46 // either the CompiledIC_lock must be set or we must be at a safe point.
  47 
  48 //-----------------------------------------------------------------------------
  49 // Low-level access to an inline cache. Private, since they might not be
  50 // MT-safe to use.
  51 
  52 void* CompiledIC::cached_value() const {
  53   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
  54   assert (!is_optimized(), "an optimized virtual call does not have a cached metadata");
  55 
  56   if (!is_in_transition_state()) {
  57     void* data = (void*)_value->data();
  58     // If we let the metadata value here be initialized to zero...
  59     assert(data != NULL || Universe::non_oop_word() == NULL,
  60            "no raw nulls in CompiledIC metadatas, because of patching races");
  61     return (data == (void*)Universe::non_oop_word()) ? NULL : data;
  62   } else {
  63     return InlineCacheBuffer::cached_value_for((CompiledIC *)this);
  64   }
  65 }
  66 
  67 
  68 void CompiledIC::internal_set_ic_destination(address entry_point, bool is_icstub, void* cache, bool is_icholder) {
  69   assert(entry_point != NULL, "must set legal entry point");
  70   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
  71   assert (!is_optimized() || cache == NULL, "an optimized virtual call does not have a cached metadata");
  72   assert (cache == NULL || cache != (Metadata*)badOopVal, "invalid metadata");
  73 
  74   assert(!is_icholder || is_icholder_entry(entry_point), "must be");
  75 
  76   // Don't use ic_destination for this test since that forwards
  77   // through ICBuffer instead of returning the actual current state of
  78   // the CompiledIC.
  79   if (is_icholder_entry(_ic_call->destination())) {
  80     // When patching for the ICStub case the cached value isn't
  81     // overwritten until the ICStub copied into the CompiledIC during
  82     // the next safepoint.  Make sure that the CompiledICHolder* is
  83     // marked for release at this point since it won't be identifiable
  84     // once the entry point is overwritten.
  85     InlineCacheBuffer::queue_for_release((CompiledICHolder*)_value->data());
  86   }
  87 
  88   if (TraceCompiledIC) {
  89     tty->print("  ");
  90     print_compiled_ic();
  91     tty->print(" changing destination to " INTPTR_FORMAT, entry_point);
  92     if (!is_optimized()) {
  93       tty->print(" changing cached %s to " INTPTR_FORMAT, is_icholder ? "icholder" : "metadata", (address)cache);
  94     }
  95     if (is_icstub) {
  96       tty->print(" (icstub)");
  97     }
  98     tty->cr();
  99   }
 100 
 101   {
 102   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
 103 #ifdef ASSERT
 104   CodeBlob* cb = CodeCache::find_blob_unsafe(_ic_call);
 105   assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
 106 #endif
 107   _ic_call->set_destination_mt_safe(entry_point);
 108 }
 109 
 110   if (is_optimized() || is_icstub) {
 111     // Optimized call sites don't have a cache value and ICStub call
 112     // sites only change the entry point.  Changing the value in that
 113     // case could lead to MT safety issues.
 114     assert(cache == NULL, "must be null");
 115     return;
 116   }
 117 
 118   if (cache == NULL)  cache = (void*)Universe::non_oop_word();
 119 
 120   _value->set_data((intptr_t)cache);
 121 }
 122 
 123 
 124 void CompiledIC::set_ic_destination(ICStub* stub) {
 125   internal_set_ic_destination(stub->code_begin(), true, NULL, false);
 126 }
 127 
 128 
 129 
 130 address CompiledIC::ic_destination() const {
 131  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 132  if (!is_in_transition_state()) {
 133    return _ic_call->destination();
 134  } else {
 135    return InlineCacheBuffer::ic_destination_for((CompiledIC *)this);
 136  }
 137 }
 138 
 139 
 140 bool CompiledIC::is_in_transition_state() const {
 141   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 142   return InlineCacheBuffer::contains(_ic_call->destination());
 143 }
 144 
 145 
 146 bool CompiledIC::is_icholder_call() const {
 147   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 148   return !_is_optimized && is_icholder_entry(ic_destination());
 149 }
 150 
 151 // Returns native address of 'call' instruction in inline-cache. Used by
 152 // the InlineCacheBuffer when it needs to find the stub.
 153 address CompiledIC::stub_address() const {
 154   assert(is_in_transition_state(), "should only be called when we are in a transition state");
 155   return _ic_call->destination();
 156 }
 157 
 158 
 159 //-----------------------------------------------------------------------------
 160 // High-level access to an inline cache. Guaranteed to be MT-safe.
 161 
 162 
 163 bool CompiledIC::set_to_megamorphic(CallInfo* call_info, Bytecodes::Code bytecode, TRAPS) {
 164   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 165   assert(!is_optimized(), "cannot set an optimized virtual call to megamorphic");
 166   assert(is_call_to_compiled() || is_call_to_interpreted(), "going directly to megamorphic?");
 167 
 168   address entry;
 169   if (call_info->call_kind() == CallInfo::itable_call) {
 170     assert(bytecode == Bytecodes::_invokeinterface, "");
 171     int itable_index = call_info->itable_index();
 172     entry = VtableStubs::find_itable_stub(itable_index);
 173     if (entry == false) {
 174       return false;
 175     }
 176 #ifdef ASSERT
 177     int index = call_info->resolved_method()->itable_index();
 178     assert(index == itable_index, "CallInfo pre-computes this");
 179 #endif //ASSERT
 180     InstanceKlass* k = call_info->resolved_method()->method_holder();
 181     assert(k->verify_itable_index(itable_index), "sanity check");
 182     InlineCacheBuffer::create_transition_stub(this, k, entry);
 183   } else {
 184     assert(call_info->call_kind() == CallInfo::vtable_call, "either itable or vtable");
 185     // Can be different than selected_method->vtable_index(), due to package-private etc.
 186     int vtable_index = call_info->vtable_index();
 187     assert(call_info->resolved_klass()->verify_vtable_index(vtable_index), "sanity check");
 188     entry = VtableStubs::find_vtable_stub(vtable_index);
 189     if (entry == NULL) {
 190       return false;
 191     }
 192     InlineCacheBuffer::create_transition_stub(this, NULL, entry);
 193   }
 194 
 195   if (TraceICs) {
 196     ResourceMark rm;
 197     tty->print_cr ("IC@" INTPTR_FORMAT ": to megamorphic %s entry: " INTPTR_FORMAT,
 198                    instruction_address(), call_info->selected_method()->print_value_string(), entry);
 199   }
 200 
 201   // We can't check this anymore. With lazy deopt we could have already
 202   // cleaned this IC entry before we even return. This is possible if
 203   // we ran out of space in the inline cache buffer trying to do the
 204   // set_next and we safepointed to free up space. This is a benign
 205   // race because the IC entry was complete when we safepointed so
 206   // cleaning it immediately is harmless.
 207   // assert(is_megamorphic(), "sanity check");
 208   return true;
 209 }
 210 
 211 
 212 // true if destination is megamorphic stub
 213 bool CompiledIC::is_megamorphic() const {
 214   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 215   assert(!is_optimized(), "an optimized call cannot be megamorphic");
 216 
 217   // Cannot rely on cached_value. It is either an interface or a method.
 218   return VtableStubs::is_entry_point(ic_destination());
 219 }
 220 
 221 bool CompiledIC::is_call_to_compiled() const {
 222   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 223 
 224   // Use unsafe, since an inline cache might point to a zombie method. However, the zombie
 225   // method is guaranteed to still exist, since we only remove methods after all inline caches
 226   // has been cleaned up
 227   CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
 228   bool is_monomorphic = (cb != NULL && cb->is_nmethod());
 229   // Check that the cached_value is a klass for non-optimized monomorphic calls
 230   // This assertion is invalid for compiler1: a call that does not look optimized (no static stub) can be used
 231   // for calling directly to vep without using the inline cache (i.e., cached_value == NULL)
 232 #ifdef ASSERT
 233   CodeBlob* caller = CodeCache::find_blob_unsafe(instruction_address());
 234   bool is_c1_method = caller->is_compiled_by_c1();
 235   assert( is_c1_method ||
 236          !is_monomorphic ||
 237          is_optimized() ||
 238          (cached_metadata() != NULL && cached_metadata()->is_klass()), "sanity check");
 239 #endif // ASSERT
 240   return is_monomorphic;
 241 }
 242 
 243 
 244 bool CompiledIC::is_call_to_interpreted() const {
 245   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 246   // Call to interpreter if destination is either calling to a stub (if it
 247   // is optimized), or calling to an I2C blob
 248   bool is_call_to_interpreted = false;
 249   if (!is_optimized()) {
 250     // must use unsafe because the destination can be a zombie (and we're cleaning)
 251     // and the print_compiled_ic code wants to know if site (in the non-zombie)
 252     // is to the interpreter.
 253     CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
 254     is_call_to_interpreted = (cb != NULL && cb->is_adapter_blob());
 255     assert(!is_call_to_interpreted || (is_icholder_call() && cached_icholder() != NULL), "sanity check");
 256   } else {
 257     // Check if we are calling into our own codeblob (i.e., to a stub)
 258     CodeBlob* cb = CodeCache::find_blob(_ic_call->instruction_address());
 259     address dest = ic_destination();
 260 #ifdef ASSERT
 261     {
 262       CodeBlob* db = CodeCache::find_blob_unsafe(dest);
 263       assert(!db->is_adapter_blob(), "must use stub!");
 264     }
 265 #endif /* ASSERT */
 266     is_call_to_interpreted = cb->contains(dest);
 267   }
 268   return is_call_to_interpreted;
 269 }
 270 
 271 
 272 void CompiledIC::set_to_clean() {
 273   assert(SafepointSynchronize::is_at_safepoint() || CompiledIC_lock->is_locked() , "MT-unsafe call");
 274   if (TraceInlineCacheClearing || TraceICs) {
 275     tty->print_cr("IC@" INTPTR_FORMAT ": set to clean", instruction_address());
 276     print();
 277   }
 278 
 279   address entry;
 280   if (is_optimized()) {
 281     entry = SharedRuntime::get_resolve_opt_virtual_call_stub();
 282   } else {
 283     entry = SharedRuntime::get_resolve_virtual_call_stub();
 284   }
 285 
 286   // A zombie transition will always be safe, since the metadata has already been set to NULL, so
 287   // we only need to patch the destination
 288   bool safe_transition = is_optimized() || SafepointSynchronize::is_at_safepoint();
 289 
 290   if (safe_transition) {
 291     // Kill any leftover stub we might have too
 292     if (is_in_transition_state()) {
 293       ICStub* old_stub = ICStub_from_destination_address(stub_address());
 294       old_stub->clear();
 295     }
 296     if (is_optimized()) {
 297     set_ic_destination(entry);
 298   } else {
 299       set_ic_destination_and_value(entry, (void*)NULL);
 300     }
 301   } else {
 302     // Unsafe transition - create stub.
 303     InlineCacheBuffer::create_transition_stub(this, NULL, entry);
 304   }
 305   // We can't check this anymore. With lazy deopt we could have already
 306   // cleaned this IC entry before we even return. This is possible if
 307   // we ran out of space in the inline cache buffer trying to do the
 308   // set_next and we safepointed to free up space. This is a benign
 309   // race because the IC entry was complete when we safepointed so
 310   // cleaning it immediately is harmless.
 311   // assert(is_clean(), "sanity check");
 312 }
 313 
 314 
 315 bool CompiledIC::is_clean() const {
 316   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 317   bool is_clean = false;
 318   address dest = ic_destination();
 319   is_clean = dest == SharedRuntime::get_resolve_opt_virtual_call_stub() ||
 320              dest == SharedRuntime::get_resolve_virtual_call_stub();
 321   assert(!is_clean || is_optimized() || cached_value() == NULL, "sanity check");
 322   return is_clean;
 323 }
 324 
 325 
 326 void CompiledIC::set_to_monomorphic(CompiledICInfo& info) {
 327   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
 328   // Updating a cache to the wrong entry can cause bugs that are very hard
 329   // to track down - if cache entry gets invalid - we just clean it. In
 330   // this way it is always the same code path that is responsible for
 331   // updating and resolving an inline cache
 332   //
 333   // The above is no longer true. SharedRuntime::fixup_callers_callsite will change optimized
 334   // callsites. In addition ic_miss code will update a site to monomorphic if it determines
 335   // that an monomorphic call to the interpreter can now be monomorphic to compiled code.
 336   //
 337   // In both of these cases the only thing being modifed is the jump/call target and these
 338   // transitions are mt_safe
 339 
 340   Thread *thread = Thread::current();
 341   if (info.to_interpreter()) {
 342     // Call to interpreter
 343     if (info.is_optimized() && is_optimized()) {
 344        assert(is_clean(), "unsafe IC path");
 345        MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
 346       // the call analysis (callee structure) specifies that the call is optimized
 347       // (either because of CHA or the static target is final)
 348       // At code generation time, this call has been emitted as static call
 349       // Call via stub
 350       assert(info.cached_metadata() != NULL && info.cached_metadata()->is_method(), "sanity check");
 351       CompiledStaticCall* csc = compiledStaticCall_at(instruction_address());
 352       methodHandle method (thread, (Method*)info.cached_metadata());
 353       csc->set_to_interpreted(method, info.entry());
 354       if (TraceICs) {
 355          ResourceMark rm(thread);
 356          tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter: %s",
 357            instruction_address(),
 358            method->print_value_string());
 359       }
 360     } else {
 361       // Call via method-klass-holder
 362       InlineCacheBuffer::create_transition_stub(this, info.claim_cached_icholder(), info.entry());
 363       if (TraceICs) {
 364          ResourceMark rm(thread);
 365          tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter via icholder ", instruction_address());
 366       }
 367     }
 368   } else {
 369     // Call to compiled code
 370     bool static_bound = info.is_optimized() || (info.cached_metadata() == NULL);
 371 #ifdef ASSERT
 372     CodeBlob* cb = CodeCache::find_blob_unsafe(info.entry());
 373     assert (cb->is_nmethod(), "must be compiled!");
 374 #endif /* ASSERT */
 375 
 376     // This is MT safe if we come from a clean-cache and go through a
 377     // non-verified entry point
 378     bool safe = SafepointSynchronize::is_at_safepoint() ||
 379                 (!is_in_transition_state() && (info.is_optimized() || static_bound || is_clean()));
 380 
 381     if (!safe) {
 382       InlineCacheBuffer::create_transition_stub(this, info.cached_metadata(), info.entry());
 383     } else {
 384       if (is_optimized()) {
 385       set_ic_destination(info.entry());
 386       } else {
 387         set_ic_destination_and_value(info.entry(), info.cached_metadata());
 388       }
 389     }
 390 
 391     if (TraceICs) {
 392       ResourceMark rm(thread);
 393       assert(info.cached_metadata() == NULL || info.cached_metadata()->is_klass(), "must be");
 394       tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to compiled (rcvr klass) %s: %s",
 395         instruction_address(),
 396         ((Klass*)info.cached_metadata())->print_value_string(),
 397         (safe) ? "" : "via stub");
 398     }
 399   }
 400   // We can't check this anymore. With lazy deopt we could have already
 401   // cleaned this IC entry before we even return. This is possible if
 402   // we ran out of space in the inline cache buffer trying to do the
 403   // set_next and we safepointed to free up space. This is a benign
 404   // race because the IC entry was complete when we safepointed so
 405   // cleaning it immediately is harmless.
 406   // assert(is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
 407 }
 408 
 409 
 410 // is_optimized: Compiler has generated an optimized call (i.e., no inline
 411 // cache) static_bound: The call can be static bound (i.e, no need to use
 412 // inline cache)
 413 void CompiledIC::compute_monomorphic_entry(methodHandle method,
 414                                            KlassHandle receiver_klass,
 415                                            bool is_optimized,
 416                                            bool static_bound,
 417                                            CompiledICInfo& info,
 418                                            TRAPS) {
 419   nmethod* method_code = method->code();
 420   address entry = NULL;
 421   if (method_code != NULL && method_code->is_in_use()) {
 422     // Call to compiled code
 423     if (static_bound || is_optimized) {
 424       entry      = method_code->verified_entry_point();
 425     } else {
 426       entry      = method_code->entry_point();
 427     }
 428   }
 429   if (entry != NULL) {
 430     // Call to compiled code
 431     info.set_compiled_entry(entry, (static_bound || is_optimized) ? NULL : receiver_klass(), is_optimized);
 432   } else {
 433     // Note: the following problem exists with Compiler1:
 434     //   - at compile time we may or may not know if the destination is final
 435     //   - if we know that the destination is final, we will emit an optimized
 436     //     virtual call (no inline cache), and need a Method* to make a call
 437     //     to the interpreter
 438     //   - if we do not know if the destination is final, we emit a standard
 439     //     virtual call, and use CompiledICHolder to call interpreted code
 440     //     (no static call stub has been generated)
 441     //     However in that case we will now notice it is static_bound
 442     //     and convert the call into what looks to be an optimized
 443     //     virtual call. This causes problems in verifying the IC because
 444     //     it look vanilla but is optimized. Code in is_call_to_interpreted
 445     //     is aware of this and weakens its asserts.
 446 
 447     // static_bound should imply is_optimized -- otherwise we have a
 448     // performance bug (statically-bindable method is called via
 449     // dynamically-dispatched call note: the reverse implication isn't
 450     // necessarily true -- the call may have been optimized based on compiler
 451     // analysis (static_bound is only based on "final" etc.)
 452 #ifdef COMPILER2
 453 #ifdef TIERED
 454 #if defined(ASSERT)
 455     // can't check the assert because we don't have the CompiledIC with which to
 456     // find the address if the call instruction.
 457     //
 458     // CodeBlob* cb = find_blob_unsafe(instruction_address());
 459     // assert(cb->is_compiled_by_c1() || !static_bound || is_optimized, "static_bound should imply is_optimized");
 460 #endif // ASSERT
 461 #else
 462     assert(!static_bound || is_optimized, "static_bound should imply is_optimized");
 463 #endif // TIERED
 464 #endif // COMPILER2
 465     if (is_optimized) {
 466       // Use stub entry
 467       info.set_interpreter_entry(method()->get_c2i_entry(), method());
 468     } else {
 469       // Use icholder entry
 470       CompiledICHolder* holder = new CompiledICHolder(method(), receiver_klass());
 471       info.set_icholder_entry(method()->get_c2i_unverified_entry(), holder);
 472     }
 473   }
 474   assert(info.is_optimized() == is_optimized, "must agree");
 475 }
 476 
 477 
 478 bool CompiledIC::is_icholder_entry(address entry) {
 479   CodeBlob* cb = CodeCache::find_blob_unsafe(entry);
 480   return (cb != NULL && cb->is_adapter_blob());
 481 }
 482 
 483 // ----------------------------------------------------------------------------
 484 
 485 void CompiledStaticCall::set_to_clean() {
 486   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
 487   // Reset call site
 488   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
 489 #ifdef ASSERT
 490   CodeBlob* cb = CodeCache::find_blob_unsafe(this);
 491   assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
 492 #endif
 493   set_destination_mt_safe(SharedRuntime::get_resolve_static_call_stub());
 494 
 495   // Do not reset stub here:  It is too expensive to call find_stub.
 496   // Instead, rely on caller (nmethod::clear_inline_caches) to clear
 497   // both the call and its stub.
 498 }
 499 
 500 
 501 bool CompiledStaticCall::is_clean() const {
 502   return destination() == SharedRuntime::get_resolve_static_call_stub();
 503 }
 504 
 505 bool CompiledStaticCall::is_call_to_compiled() const {
 506   return CodeCache::contains(destination());
 507 }
 508 
 509 
 510 bool CompiledStaticCall::is_call_to_interpreted() const {
 511   // It is a call to interpreted, if it calls to a stub. Hence, the destination
 512   // must be in the stub part of the nmethod that contains the call
 513   nmethod* nm = CodeCache::find_nmethod(instruction_address());
 514   return nm->stub_contains(destination());
 515 }
 516 
 517 void CompiledStaticCall::set(const StaticCallInfo& info) {
 518   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
 519   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
 520   // Updating a cache to the wrong entry can cause bugs that are very hard
 521   // to track down - if cache entry gets invalid - we just clean it. In
 522   // this way it is always the same code path that is responsible for
 523   // updating and resolving an inline cache
 524   assert(is_clean(), "do not update a call entry - use clean");
 525 
 526   if (info._to_interpreter) {
 527     // Call to interpreted code
 528     set_to_interpreted(info.callee(), info.entry());
 529   } else {
 530     if (TraceICs) {
 531       ResourceMark rm;
 532       tty->print_cr("CompiledStaticCall@" INTPTR_FORMAT ": set_to_compiled " INTPTR_FORMAT,
 533                     instruction_address(),
 534                     info.entry());
 535     }
 536     // Call to compiled code
 537     assert (CodeCache::contains(info.entry()), "wrong entry point");
 538     set_destination_mt_safe(info.entry());
 539   }
 540 }
 541 
 542 
 543 // Compute settings for a CompiledStaticCall. Since we might have to set
 544 // the stub when calling to the interpreter, we need to return arguments.
 545 void CompiledStaticCall::compute_entry(methodHandle m, StaticCallInfo& info) {
 546   nmethod* m_code = m->code();
 547   info._callee = m;
 548   if (m_code != NULL && m_code->is_in_use()) {
 549     info._to_interpreter = false;
 550     info._entry  = m_code->verified_entry_point();
 551   } else {
 552     // Callee is interpreted code.  In any case entering the interpreter
 553     // puts a converter-frame on the stack to save arguments.
 554     info._to_interpreter = true;
 555     info._entry      = m()->get_c2i_entry();
 556   }
 557 }
 558 
 559 address CompiledStaticCall::find_stub() {
 560   // Find reloc. information containing this call-site
 561   RelocIterator iter((nmethod*)NULL, instruction_address());
 562   while (iter.next()) {
 563     if (iter.addr() == instruction_address()) {
 564       switch(iter.type()) {
 565         case relocInfo::static_call_type:
 566           return iter.static_call_reloc()->static_stub();
 567         // We check here for opt_virtual_call_type, since we reuse the code
 568         // from the CompiledIC implementation
 569         case relocInfo::opt_virtual_call_type:
 570           return iter.opt_virtual_call_reloc()->static_stub();
 571         case relocInfo::poll_type:
 572         case relocInfo::poll_return_type: // A safepoint can't overlap a call.
 573         default:
 574           ShouldNotReachHere();
 575       }
 576     }
 577   }
 578   return NULL;
 579 }
 580 
 581 
 582 //-----------------------------------------------------------------------------
 583 // Non-product mode code
 584 #ifndef PRODUCT
 585 
 586 void CompiledIC::verify() {
 587   // make sure code pattern is actually a call imm32 instruction
 588   _ic_call->verify();
 589   if (os::is_MP()) {
 590     _ic_call->verify_alignment();
 591   }
 592   assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted()
 593           || is_optimized() || is_megamorphic(), "sanity check");
 594 }
 595 
 596 void CompiledIC::print() {
 597   print_compiled_ic();
 598   tty->cr();
 599 }
 600 
 601 void CompiledIC::print_compiled_ic() {
 602   tty->print("Inline cache at " INTPTR_FORMAT ", calling %s " INTPTR_FORMAT " cached_value " INTPTR_FORMAT,
 603              instruction_address(), is_call_to_interpreted() ? "interpreted " : "", ic_destination(), is_optimized() ? NULL : cached_value());
 604 }
 605 
 606 void CompiledStaticCall::print() {
 607   tty->print("static call at " INTPTR_FORMAT " -> ", instruction_address());
 608   if (is_clean()) {
 609     tty->print("clean");
 610   } else if (is_call_to_compiled()) {
 611     tty->print("compiled");
 612   } else if (is_call_to_interpreted()) {
 613     tty->print("interpreted");
 614   }
 615   tty->cr();
 616 }
 617 
 618 #endif // !PRODUCT