1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP
  27 
  28 #include "gc_implementation/g1/concurrentMark.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.hpp"
  30 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  32 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  33 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  34 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  35 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  36 #include "utilities/taskqueue.hpp"
  37 
  38 // Inline functions for G1CollectedHeap
  39 
  40 // Return the region with the given index. It assumes the index is valid.
  41 inline HeapRegion* G1CollectedHeap::region_at(uint index) const { return _hrs.at(index); }
  42 
  43 template <class T>
  44 inline HeapRegion*
  45 G1CollectedHeap::heap_region_containing_raw(const T addr) const {
  46   assert(addr != NULL, "invariant");
  47   assert(_g1_reserved.contains((const void*) addr),
  48       err_msg("Address "PTR_FORMAT" is outside of the heap ranging from ["PTR_FORMAT" to "PTR_FORMAT")",
  49           p2i((void*)addr), p2i(_g1_reserved.start()), p2i(_g1_reserved.end())));
  50   return _hrs.addr_to_region((HeapWord*) addr);
  51 }
  52 
  53 template <class T>
  54 inline HeapRegion*
  55 G1CollectedHeap::heap_region_containing(const T addr) const {
  56   HeapRegion* hr = heap_region_containing_raw(addr);
  57   if (hr->continuesHumongous()) {
  58     return hr->humongous_start_region();
  59   }
  60   return hr;
  61 }
  62 
  63 inline void G1CollectedHeap::old_set_remove(HeapRegion* hr) {
  64   _old_set.remove(hr);
  65 }
  66 
  67 inline bool G1CollectedHeap::obj_in_cs(oop obj) {
  68   HeapRegion* r = _hrs.addr_to_region((HeapWord*) obj);
  69   return r != NULL && r->in_collection_set();
  70 }
  71 
  72 inline HeapWord*
  73 G1CollectedHeap::attempt_allocation(size_t word_size,
  74                                     unsigned int* gc_count_before_ret,
  75                                     int* gclocker_retry_count_ret) {
  76   assert_heap_not_locked_and_not_at_safepoint();
  77   assert(!isHumongous(word_size), "attempt_allocation() should not "
  78          "be called for humongous allocation requests");
  79 
  80   HeapWord* result = _mutator_alloc_region.attempt_allocation(word_size,
  81                                                       false /* bot_updates */);
  82   if (result == NULL) {
  83     result = attempt_allocation_slow(word_size,
  84                                      gc_count_before_ret,
  85                                      gclocker_retry_count_ret);
  86   }
  87   assert_heap_not_locked();
  88   if (result != NULL) {
  89     dirty_young_block(result, word_size);
  90   }
  91   return result;
  92 }
  93 
  94 inline HeapWord* G1CollectedHeap::survivor_attempt_allocation(size_t
  95                                                               word_size) {
  96   assert(!isHumongous(word_size),
  97          "we should not be seeing humongous-size allocations in this path");
  98 
  99   HeapWord* result = _survivor_gc_alloc_region.attempt_allocation(word_size,
 100                                                       false /* bot_updates */);
 101   if (result == NULL) {
 102     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
 103     result = _survivor_gc_alloc_region.attempt_allocation_locked(word_size,
 104                                                       false /* bot_updates */);
 105   }
 106   if (result != NULL) {
 107     dirty_young_block(result, word_size);
 108   }
 109   return result;
 110 }
 111 
 112 inline HeapWord* G1CollectedHeap::old_attempt_allocation(size_t word_size) {
 113   assert(!isHumongous(word_size),
 114          "we should not be seeing humongous-size allocations in this path");
 115 
 116   HeapWord* result = _old_gc_alloc_region.attempt_allocation(word_size,
 117                                                        true /* bot_updates */);
 118   if (result == NULL) {
 119     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
 120     result = _old_gc_alloc_region.attempt_allocation_locked(word_size,
 121                                                        true /* bot_updates */);
 122   }
 123   return result;
 124 }
 125 
 126 // It dirties the cards that cover the block so that so that the post
 127 // write barrier never queues anything when updating objects on this
 128 // block. It is assumed (and in fact we assert) that the block
 129 // belongs to a young region.
 130 inline void
 131 G1CollectedHeap::dirty_young_block(HeapWord* start, size_t word_size) {
 132   assert_heap_not_locked();
 133 
 134   // Assign the containing region to containing_hr so that we don't
 135   // have to keep calling heap_region_containing_raw() in the
 136   // asserts below.
 137   DEBUG_ONLY(HeapRegion* containing_hr = heap_region_containing_raw(start);)
 138   assert(word_size > 0, "pre-condition");
 139   assert(containing_hr->is_in(start), "it should contain start");
 140   assert(containing_hr->is_young(), "it should be young");
 141   assert(!containing_hr->isHumongous(), "it should not be humongous");
 142 
 143   HeapWord* end = start + word_size;
 144   assert(containing_hr->is_in(end - 1), "it should also contain end - 1");
 145 
 146   MemRegion mr(start, end);
 147   g1_barrier_set()->g1_mark_as_young(mr);
 148 }
 149 
 150 inline RefToScanQueue* G1CollectedHeap::task_queue(int i) const {
 151   return _task_queues->queue(i);
 152 }
 153 
 154 inline bool G1CollectedHeap::isMarkedPrev(oop obj) const {
 155   return _cm->prevMarkBitMap()->isMarked((HeapWord *)obj);
 156 }
 157 
 158 inline bool G1CollectedHeap::isMarkedNext(oop obj) const {
 159   return _cm->nextMarkBitMap()->isMarked((HeapWord *)obj);
 160 }
 161 
 162 
 163 // This is a fast test on whether a reference points into the
 164 // collection set or not. Assume that the reference
 165 // points into the heap.
 166 inline bool G1CollectedHeap::in_cset_fast_test(oop obj) {
 167   bool ret = _in_cset_fast_test.get_by_address((HeapWord*)obj);
 168   // let's make sure the result is consistent with what the slower
 169   // test returns
 170   assert( ret || !obj_in_cs(obj), "sanity");
 171   assert(!ret ||  obj_in_cs(obj), "sanity");
 172   return ret;
 173 }
 174 
 175 #ifndef PRODUCT
 176 // Support for G1EvacuationFailureALot
 177 
 178 inline bool
 179 G1CollectedHeap::evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 180                                                      bool during_initial_mark,
 181                                                      bool during_marking) {
 182   bool res = false;
 183   if (during_marking) {
 184     res |= G1EvacuationFailureALotDuringConcMark;
 185   }
 186   if (during_initial_mark) {
 187     res |= G1EvacuationFailureALotDuringInitialMark;
 188   }
 189   if (gcs_are_young) {
 190     res |= G1EvacuationFailureALotDuringYoungGC;
 191   } else {
 192     // GCs are mixed
 193     res |= G1EvacuationFailureALotDuringMixedGC;
 194   }
 195   return res;
 196 }
 197 
 198 inline void
 199 G1CollectedHeap::set_evacuation_failure_alot_for_current_gc() {
 200   if (G1EvacuationFailureALot) {
 201     // Note we can't assert that _evacuation_failure_alot_for_current_gc
 202     // is clear here. It may have been set during a previous GC but that GC
 203     // did not copy enough objects (i.e. G1EvacuationFailureALotCount) to
 204     // trigger an evacuation failure and clear the flags and and counts.
 205 
 206     // Check if we have gone over the interval.
 207     const size_t gc_num = total_collections();
 208     const size_t elapsed_gcs = gc_num - _evacuation_failure_alot_gc_number;
 209 
 210     _evacuation_failure_alot_for_current_gc = (elapsed_gcs >= G1EvacuationFailureALotInterval);
 211 
 212     // Now check if G1EvacuationFailureALot is enabled for the current GC type.
 213     const bool gcs_are_young = g1_policy()->gcs_are_young();
 214     const bool during_im = g1_policy()->during_initial_mark_pause();
 215     const bool during_marking = mark_in_progress();
 216 
 217     _evacuation_failure_alot_for_current_gc &=
 218       evacuation_failure_alot_for_gc_type(gcs_are_young,
 219                                           during_im,
 220                                           during_marking);
 221   }
 222 }
 223 
 224 inline bool
 225 G1CollectedHeap::evacuation_should_fail() {
 226   if (!G1EvacuationFailureALot || !_evacuation_failure_alot_for_current_gc) {
 227     return false;
 228   }
 229   // G1EvacuationFailureALot is in effect for current GC
 230   // Access to _evacuation_failure_alot_count is not atomic;
 231   // the value does not have to be exact.
 232   if (++_evacuation_failure_alot_count < G1EvacuationFailureALotCount) {
 233     return false;
 234   }
 235   _evacuation_failure_alot_count = 0;
 236   return true;
 237 }
 238 
 239 inline void G1CollectedHeap::reset_evacuation_should_fail() {
 240   if (G1EvacuationFailureALot) {
 241     _evacuation_failure_alot_gc_number = total_collections();
 242     _evacuation_failure_alot_count = 0;
 243     _evacuation_failure_alot_for_current_gc = false;
 244   }
 245 }
 246 #endif  // #ifndef PRODUCT
 247 
 248 inline bool G1CollectedHeap::is_in_young(const oop obj) {
 249   if (obj == NULL) {
 250     return false;
 251   }
 252   return heap_region_containing(obj)->is_young();
 253 }
 254 
 255 // We don't need barriers for initializing stores to objects
 256 // in the young gen: for the SATB pre-barrier, there is no
 257 // pre-value that needs to be remembered; for the remembered-set
 258 // update logging post-barrier, we don't maintain remembered set
 259 // information for young gen objects.
 260 inline bool G1CollectedHeap::can_elide_initializing_store_barrier(oop new_obj) {
 261   return is_in_young(new_obj);
 262 }
 263 
 264 inline bool G1CollectedHeap::is_obj_dead(const oop obj) const {
 265   if (obj == NULL) {
 266     return false;
 267   }
 268   return is_obj_dead(obj, heap_region_containing(obj));
 269 }
 270 
 271 inline bool G1CollectedHeap::is_obj_ill(const oop obj) const {
 272   if (obj == NULL) {
 273     return false;
 274   }
 275   return is_obj_ill(obj, heap_region_containing(obj));
 276 }
 277 
 278 template <class T> inline void G1ParScanThreadState::immediate_rs_update(HeapRegion* from, T* p, int tid) {
 279   if (!from->is_survivor()) {
 280     _g1_rem->par_write_ref(from, p, tid);
 281   }
 282 }
 283 
 284 template <class T> void G1ParScanThreadState::update_rs(HeapRegion* from, T* p, int tid) {
 285   if (G1DeferredRSUpdate) {
 286     deferred_rs_update(from, p, tid);
 287   } else {
 288     immediate_rs_update(from, p, tid);
 289   }
 290 }
 291 
 292 
 293 inline void G1ParScanThreadState::do_oop_partial_array(oop* p) {
 294   assert(has_partial_array_mask(p), "invariant");
 295   oop from_obj = clear_partial_array_mask(p);
 296 
 297   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
 298   assert(from_obj->is_objArray(), "must be obj array");
 299   objArrayOop from_obj_array = objArrayOop(from_obj);
 300   // The from-space object contains the real length.
 301   int length                 = from_obj_array->length();
 302 
 303   assert(from_obj->is_forwarded(), "must be forwarded");
 304   oop to_obj                 = from_obj->forwardee();
 305   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
 306   objArrayOop to_obj_array   = objArrayOop(to_obj);
 307   // We keep track of the next start index in the length field of the
 308   // to-space object.
 309   int next_index             = to_obj_array->length();
 310   assert(0 <= next_index && next_index < length,
 311          err_msg("invariant, next index: %d, length: %d", next_index, length));
 312 
 313   int start                  = next_index;
 314   int end                    = length;
 315   int remainder              = end - start;
 316   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
 317   if (remainder > 2 * ParGCArrayScanChunk) {
 318     end = start + ParGCArrayScanChunk;
 319     to_obj_array->set_length(end);
 320     // Push the remainder before we process the range in case another
 321     // worker has run out of things to do and can steal it.
 322     oop* from_obj_p = set_partial_array_mask(from_obj);
 323     push_on_queue(from_obj_p);
 324   } else {
 325     assert(length == end, "sanity");
 326     // We'll process the final range for this object. Restore the length
 327     // so that the heap remains parsable in case of evacuation failure.
 328     to_obj_array->set_length(end);
 329   }
 330   _scanner.set_region(_g1h->heap_region_containing_raw(to_obj));
 331   // Process indexes [start,end). It will also process the header
 332   // along with the first chunk (i.e., the chunk with start == 0).
 333   // Note that at this point the length field of to_obj_array is not
 334   // correct given that we are using it to keep track of the next
 335   // start index. oop_iterate_range() (thankfully!) ignores the length
 336   // field and only relies on the start / end parameters.  It does
 337   // however return the size of the object which will be incorrect. So
 338   // we have to ignore it even if we wanted to use it.
 339   to_obj_array->oop_iterate_range(&_scanner, start, end);
 340 }
 341 
 342 template <class T> inline void G1ParScanThreadState::deal_with_reference(T* ref_to_scan) {
 343   if (!has_partial_array_mask(ref_to_scan)) {
 344     // Note: we can use "raw" versions of "region_containing" because
 345     // "obj_to_scan" is definitely in the heap, and is not in a
 346     // humongous region.
 347     HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
 348     do_oop_evac(ref_to_scan, r);
 349   } else {
 350     do_oop_partial_array((oop*)ref_to_scan);
 351   }
 352 }
 353 
 354 inline void G1ParScanThreadState::deal_with_reference(StarTask ref) {
 355   assert(verify_task(ref), "sanity");
 356   if (ref.is_narrow()) {
 357     deal_with_reference((narrowOop*)ref);
 358   } else {
 359     deal_with_reference((oop*)ref);
 360   }
 361 }
 362 
 363 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP