1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
  30 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  31 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
  32 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
  33 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
  34 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  35 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
  36 #include "gc_implementation/shared/gcHeapSummary.hpp"
  37 #include "gc_implementation/shared/gcTimer.hpp"
  38 #include "gc_implementation/shared/gcTrace.hpp"
  39 #include "gc_implementation/shared/gcTraceTime.hpp"
  40 #include "gc_implementation/shared/isGCActiveMark.hpp"
  41 #include "gc_implementation/shared/markSweep.hpp"
  42 #include "gc_implementation/shared/spaceDecorator.hpp"
  43 #include "gc_interface/gcCause.hpp"
  44 #include "memory/gcLocker.inline.hpp"
  45 #include "memory/referencePolicy.hpp"
  46 #include "memory/referenceProcessor.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/fprofiler.hpp"
  50 #include "runtime/safepoint.hpp"
  51 #include "runtime/vmThread.hpp"
  52 #include "services/management.hpp"
  53 #include "services/memoryService.hpp"
  54 #include "utilities/events.hpp"
  55 #include "utilities/stack.inline.hpp"
  56 
  57 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  58 
  59 elapsedTimer        PSMarkSweep::_accumulated_time;
  60 jlong               PSMarkSweep::_time_of_last_gc   = 0;
  61 CollectorCounters*  PSMarkSweep::_counters = NULL;
  62 
  63 void PSMarkSweep::initialize() {
  64   MemRegion mr = Universe::heap()->reserved_region();
  65   _ref_processor = new ReferenceProcessor(mr);     // a vanilla ref proc
  66   _counters = new CollectorCounters("PSMarkSweep", 1);
  67 }
  68 
  69 // This method contains all heap specific policy for invoking mark sweep.
  70 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
  71 // the heap. It will do nothing further. If we need to bail out for policy
  72 // reasons, scavenge before full gc, or any other specialized behavior, it
  73 // needs to be added here.
  74 //
  75 // Note that this method should only be called from the vm_thread while
  76 // at a safepoint!
  77 //
  78 // Note that the all_soft_refs_clear flag in the collector policy
  79 // may be true because this method can be called without intervening
  80 // activity.  For example when the heap space is tight and full measure
  81 // are being taken to free space.
  82 
  83 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
  84   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  85   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
  86   assert(!Universe::heap()->is_gc_active(), "not reentrant");
  87 
  88   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  89   GCCause::Cause gc_cause = heap->gc_cause();
  90   PSAdaptiveSizePolicy* policy = heap->size_policy();
  91   IsGCActiveMark mark;
  92 
  93   if (ScavengeBeforeFullGC) {
  94     PSScavenge::invoke_no_policy();
  95   }
  96 
  97   const bool clear_all_soft_refs =
  98     heap->collector_policy()->should_clear_all_soft_refs();
  99 
 100   uint count = maximum_heap_compaction ? 1 : MarkSweepAlwaysCompactCount;
 101   UIntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
 102   PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
 103 }
 104 
 105 // This method contains no policy. You should probably
 106 // be calling invoke() instead.
 107 bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
 108   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
 109   assert(ref_processor() != NULL, "Sanity");
 110 
 111   if (GC_locker::check_active_before_gc()) {
 112     return false;
 113   }
 114 
 115   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 116   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 117   GCCause::Cause gc_cause = heap->gc_cause();
 118 
 119   _gc_timer->register_gc_start();
 120   _gc_tracer->report_gc_start(gc_cause, _gc_timer->gc_start());
 121 
 122   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 123 
 124   // The scope of casr should end after code that can change
 125   // CollectorPolicy::_should_clear_all_soft_refs.
 126   ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
 127 
 128   PSYoungGen* young_gen = heap->young_gen();
 129   PSOldGen* old_gen = heap->old_gen();
 130 
 131   // Increment the invocation count
 132   heap->increment_total_collections(true /* full */);
 133 
 134   // Save information needed to minimize mangling
 135   heap->record_gen_tops_before_GC();
 136 
 137   // We need to track unique mark sweep invocations as well.
 138   _total_invocations++;
 139 
 140   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
 141 
 142   heap->print_heap_before_gc();
 143   heap->trace_heap_before_gc(_gc_tracer);
 144 
 145   // Fill in TLABs
 146   heap->accumulate_statistics_all_tlabs();
 147   heap->ensure_parsability(true);  // retire TLABs
 148 
 149   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 150     HandleMark hm;  // Discard invalid handles created during verification
 151     Universe::verify(" VerifyBeforeGC:");
 152   }
 153 
 154   // Verify object start arrays
 155   if (VerifyObjectStartArray &&
 156       VerifyBeforeGC) {
 157     old_gen->verify_object_start_array();
 158   }
 159 
 160   heap->pre_full_gc_dump(_gc_timer);
 161 
 162   // Filled in below to track the state of the young gen after the collection.
 163   bool eden_empty;
 164   bool survivors_empty;
 165   bool young_gen_empty;
 166 
 167   {
 168     HandleMark hm;
 169 
 170     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 171     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 172     GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
 173     TraceCollectorStats tcs(counters());
 174     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
 175 
 176     if (TraceGen1Time) accumulated_time()->start();
 177 
 178     // Let the size policy know we're starting
 179     size_policy->major_collection_begin();
 180 
 181     CodeCache::gc_prologue();
 182     Threads::gc_prologue();
 183     BiasedLocking::preserve_marks();
 184 
 185     // Capture heap size before collection for printing.
 186     size_t prev_used = heap->used();
 187 
 188     // Capture metadata size before collection for sizing.
 189     size_t metadata_prev_used = MetaspaceAux::used_bytes();
 190 
 191     // For PrintGCDetails
 192     size_t old_gen_prev_used = old_gen->used_in_bytes();
 193     size_t young_gen_prev_used = young_gen->used_in_bytes();
 194 
 195     allocate_stacks();
 196 
 197     COMPILER2_PRESENT(DerivedPointerTable::clear());
 198 
 199     ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 200     ref_processor()->setup_policy(clear_all_softrefs);
 201 
 202     mark_sweep_phase1(clear_all_softrefs);
 203 
 204     mark_sweep_phase2();
 205 
 206     // Don't add any more derived pointers during phase3
 207     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
 208     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
 209 
 210     mark_sweep_phase3();
 211 
 212     mark_sweep_phase4();
 213 
 214     restore_marks();
 215 
 216     deallocate_stacks();
 217 
 218     if (ZapUnusedHeapArea) {
 219       // Do a complete mangle (top to end) because the usage for
 220       // scratch does not maintain a top pointer.
 221       young_gen->to_space()->mangle_unused_area_complete();
 222     }
 223 
 224     eden_empty = young_gen->eden_space()->is_empty();
 225     if (!eden_empty) {
 226       eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
 227     }
 228 
 229     // Update heap occupancy information which is used as
 230     // input to soft ref clearing policy at the next gc.
 231     Universe::update_heap_info_at_gc();
 232 
 233     survivors_empty = young_gen->from_space()->is_empty() &&
 234                       young_gen->to_space()->is_empty();
 235     young_gen_empty = eden_empty && survivors_empty;
 236 
 237     BarrierSet* bs = heap->barrier_set();
 238     if (bs->is_a(BarrierSet::ModRef)) {
 239       ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
 240       MemRegion old_mr = heap->old_gen()->reserved();
 241       if (young_gen_empty) {
 242         modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
 243       } else {
 244         modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
 245       }
 246     }
 247 
 248     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 249     ClassLoaderDataGraph::purge();
 250     MetaspaceAux::verify_metrics();
 251 
 252     BiasedLocking::restore_marks();
 253     Threads::gc_epilogue();
 254     CodeCache::gc_epilogue();
 255     JvmtiExport::gc_epilogue();
 256 
 257     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 258 
 259     ref_processor()->enqueue_discovered_references(NULL);
 260 
 261     // Update time of last GC
 262     reset_millis_since_last_gc();
 263 
 264     // Let the size policy know we're done
 265     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
 266 
 267     if (UseAdaptiveSizePolicy) {
 268 
 269       if (PrintAdaptiveSizePolicy) {
 270         gclog_or_tty->print("AdaptiveSizeStart: ");
 271         gclog_or_tty->stamp();
 272         gclog_or_tty->print_cr(" collection: %d ",
 273                        heap->total_collections());
 274         if (Verbose) {
 275           gclog_or_tty->print("old_gen_capacity: " SIZE_FORMAT
 276             " young_gen_capacity: " SIZE_FORMAT,
 277             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
 278         }
 279       }
 280 
 281       // Don't check if the size_policy is ready here.  Let
 282       // the size_policy check that internally.
 283       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
 284           ((gc_cause != GCCause::_java_lang_system_gc) ||
 285             UseAdaptiveSizePolicyWithSystemGC)) {
 286         // Swap the survivor spaces if from_space is empty. The
 287         // resize_young_gen() called below is normally used after
 288         // a successful young GC and swapping of survivor spaces;
 289         // otherwise, it will fail to resize the young gen with
 290         // the current implementation.
 291         if (young_gen->from_space()->is_empty()) {
 292           young_gen->from_space()->clear(SpaceDecorator::Mangle);
 293           young_gen->swap_spaces();
 294         }
 295 
 296         // Calculate optimal free space amounts
 297         assert(young_gen->max_size() >
 298           young_gen->from_space()->capacity_in_bytes() +
 299           young_gen->to_space()->capacity_in_bytes(),
 300           "Sizes of space in young gen are out-of-bounds");
 301 
 302         size_t young_live = young_gen->used_in_bytes();
 303         size_t eden_live = young_gen->eden_space()->used_in_bytes();
 304         size_t old_live = old_gen->used_in_bytes();
 305         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
 306         size_t max_old_gen_size = old_gen->max_gen_size();
 307         size_t max_eden_size = young_gen->max_size() -
 308           young_gen->from_space()->capacity_in_bytes() -
 309           young_gen->to_space()->capacity_in_bytes();
 310 
 311         // Used for diagnostics
 312         size_policy->clear_generation_free_space_flags();
 313 
 314         size_policy->compute_generations_free_space(young_live,
 315                                                     eden_live,
 316                                                     old_live,
 317                                                     cur_eden,
 318                                                     max_old_gen_size,
 319                                                     max_eden_size,
 320                                                     true /* full gc*/);
 321 
 322         size_policy->check_gc_overhead_limit(young_live,
 323                                              eden_live,
 324                                              max_old_gen_size,
 325                                              max_eden_size,
 326                                              true /* full gc*/,
 327                                              gc_cause,
 328                                              heap->collector_policy());
 329 
 330         size_policy->decay_supplemental_growth(true /* full gc*/);
 331 
 332         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
 333 
 334         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
 335                                size_policy->calculated_survivor_size_in_bytes());
 336       }
 337       if (PrintAdaptiveSizePolicy) {
 338         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
 339                        heap->total_collections());
 340       }
 341     }
 342 
 343     if (UsePerfData) {
 344       heap->gc_policy_counters()->update_counters();
 345       heap->gc_policy_counters()->update_old_capacity(
 346         old_gen->capacity_in_bytes());
 347       heap->gc_policy_counters()->update_young_capacity(
 348         young_gen->capacity_in_bytes());
 349     }
 350 
 351     heap->resize_all_tlabs();
 352 
 353     // We collected the heap, recalculate the metaspace capacity
 354     MetaspaceGC::compute_new_size();
 355 
 356     if (TraceGen1Time) accumulated_time()->stop();
 357 
 358     if (PrintGC) {
 359       if (PrintGCDetails) {
 360         // Don't print a GC timestamp here.  This is after the GC so
 361         // would be confusing.
 362         young_gen->print_used_change(young_gen_prev_used);
 363         old_gen->print_used_change(old_gen_prev_used);
 364       }
 365       heap->print_heap_change(prev_used);
 366       if (PrintGCDetails) {
 367         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 368       }
 369     }
 370 
 371     // Track memory usage and detect low memory
 372     MemoryService::track_memory_usage();
 373     heap->update_counters();
 374   }
 375 
 376   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
 377     HandleMark hm;  // Discard invalid handles created during verification
 378     Universe::verify(" VerifyAfterGC:");
 379   }
 380 
 381   // Re-verify object start arrays
 382   if (VerifyObjectStartArray &&
 383       VerifyAfterGC) {
 384     old_gen->verify_object_start_array();
 385   }
 386 
 387   if (ZapUnusedHeapArea) {
 388     old_gen->object_space()->check_mangled_unused_area_complete();
 389   }
 390 
 391   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
 392 
 393   heap->print_heap_after_gc();
 394   heap->trace_heap_after_gc(_gc_tracer);
 395 
 396   heap->post_full_gc_dump(_gc_timer);
 397 
 398 #ifdef TRACESPINNING
 399   ParallelTaskTerminator::print_termination_counts();
 400 #endif
 401 
 402   _gc_timer->register_gc_end();
 403 
 404   _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 405 
 406   return true;
 407 }
 408 
 409 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
 410                                              PSYoungGen* young_gen,
 411                                              PSOldGen* old_gen) {
 412   MutableSpace* const eden_space = young_gen->eden_space();
 413   assert(!eden_space->is_empty(), "eden must be non-empty");
 414   assert(young_gen->virtual_space()->alignment() ==
 415          old_gen->virtual_space()->alignment(), "alignments do not match");
 416 
 417   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
 418     return false;
 419   }
 420 
 421   // Both generations must be completely committed.
 422   if (young_gen->virtual_space()->uncommitted_size() != 0) {
 423     return false;
 424   }
 425   if (old_gen->virtual_space()->uncommitted_size() != 0) {
 426     return false;
 427   }
 428 
 429   // Figure out how much to take from eden.  Include the average amount promoted
 430   // in the total; otherwise the next young gen GC will simply bail out to a
 431   // full GC.
 432   const size_t alignment = old_gen->virtual_space()->alignment();
 433   const size_t eden_used = eden_space->used_in_bytes();
 434   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
 435   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
 436   const size_t eden_capacity = eden_space->capacity_in_bytes();
 437 
 438   if (absorb_size >= eden_capacity) {
 439     return false; // Must leave some space in eden.
 440   }
 441 
 442   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
 443   if (new_young_size < young_gen->min_gen_size()) {
 444     return false; // Respect young gen minimum size.
 445   }
 446 
 447   if (TraceAdaptiveGCBoundary && Verbose) {
 448     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
 449                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
 450                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
 451                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
 452                         absorb_size / K,
 453                         eden_capacity / K, (eden_capacity - absorb_size) / K,
 454                         young_gen->from_space()->used_in_bytes() / K,
 455                         young_gen->to_space()->used_in_bytes() / K,
 456                         young_gen->capacity_in_bytes() / K, new_young_size / K);
 457   }
 458 
 459   // Fill the unused part of the old gen.
 460   MutableSpace* const old_space = old_gen->object_space();
 461   HeapWord* const unused_start = old_space->top();
 462   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
 463 
 464   if (unused_words > 0) {
 465     if (unused_words < CollectedHeap::min_fill_size()) {
 466       return false;  // If the old gen cannot be filled, must give up.
 467     }
 468     CollectedHeap::fill_with_objects(unused_start, unused_words);
 469   }
 470 
 471   // Take the live data from eden and set both top and end in the old gen to
 472   // eden top.  (Need to set end because reset_after_change() mangles the region
 473   // from end to virtual_space->high() in debug builds).
 474   HeapWord* const new_top = eden_space->top();
 475   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
 476                                         absorb_size);
 477   young_gen->reset_after_change();
 478   old_space->set_top(new_top);
 479   old_space->set_end(new_top);
 480   old_gen->reset_after_change();
 481 
 482   // Update the object start array for the filler object and the data from eden.
 483   ObjectStartArray* const start_array = old_gen->start_array();
 484   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
 485     start_array->allocate_block(p);
 486   }
 487 
 488   // Could update the promoted average here, but it is not typically updated at
 489   // full GCs and the value to use is unclear.  Something like
 490   //
 491   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
 492 
 493   size_policy->set_bytes_absorbed_from_eden(absorb_size);
 494   return true;
 495 }
 496 
 497 void PSMarkSweep::allocate_stacks() {
 498   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 499   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 500 
 501   PSYoungGen* young_gen = heap->young_gen();
 502 
 503   MutableSpace* to_space = young_gen->to_space();
 504   _preserved_marks = (PreservedMark*)to_space->top();
 505   _preserved_count = 0;
 506 
 507   // We want to calculate the size in bytes first.
 508   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
 509   // Now divide by the size of a PreservedMark
 510   _preserved_count_max /= sizeof(PreservedMark);
 511 }
 512 
 513 
 514 void PSMarkSweep::deallocate_stacks() {
 515   _preserved_mark_stack.clear(true);
 516   _preserved_oop_stack.clear(true);
 517   _marking_stack.clear();
 518   _objarray_stack.clear(true);
 519 }
 520 
 521 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
 522   // Recursively traverse all live objects and mark them
 523   GCTraceTime tm("phase 1", PrintGCDetails && Verbose, true, _gc_timer);
 524   trace(" 1");
 525 
 526   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 527   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 528 
 529   // Need to clear claim bits before the tracing starts.
 530   ClassLoaderDataGraph::clear_claimed_marks();
 531 
 532   // General strong roots.
 533   {
 534     ParallelScavengeHeap::ParStrongRootsScope psrs;
 535     Universe::oops_do(mark_and_push_closure());
 536     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
 537     CLDToOopClosure mark_and_push_from_cld(mark_and_push_closure());
 538     CodeBlobToOopClosure each_active_code_blob(mark_and_push_closure(), /*do_marking=*/ true);
 539     Threads::oops_do(mark_and_push_closure(), &mark_and_push_from_cld, &each_active_code_blob);
 540     ObjectSynchronizer::oops_do(mark_and_push_closure());
 541     FlatProfiler::oops_do(mark_and_push_closure());
 542     Management::oops_do(mark_and_push_closure());
 543     JvmtiExport::oops_do(mark_and_push_closure());
 544     SystemDictionary::always_strong_oops_do(mark_and_push_closure());
 545     ClassLoaderDataGraph::always_strong_oops_do(mark_and_push_closure(), follow_klass_closure(), true);
 546     // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
 547     //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
 548   }
 549 
 550   // Flush marking stack.
 551   follow_stack();
 552 
 553   // Process reference objects found during marking
 554   {
 555     ref_processor()->setup_policy(clear_all_softrefs);
 556     const ReferenceProcessorStats& stats =
 557       ref_processor()->process_discovered_references(
 558         is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL, _gc_timer);
 559     gc_tracer()->report_gc_reference_stats(stats);
 560   }
 561 
 562   // This is the point where the entire marking should have completed.
 563   assert(_marking_stack.is_empty(), "Marking should have completed");
 564 
 565   // Unload classes and purge the SystemDictionary.
 566   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
 567 
 568   // Unload nmethods.
 569   CodeCache::do_unloading(is_alive_closure(), purged_class);
 570 
 571   // Prune dead klasses from subklass/sibling/implementor lists.
 572   Klass::clean_weak_klass_links(is_alive_closure());
 573 
 574   // Delete entries for dead interned strings.
 575   StringTable::unlink(is_alive_closure());
 576 
 577   // Clean up unreferenced symbols in symbol table.
 578   SymbolTable::unlink();
 579   _gc_tracer->report_object_count_after_gc(is_alive_closure());
 580 }
 581 
 582 
 583 void PSMarkSweep::mark_sweep_phase2() {
 584   GCTraceTime tm("phase 2", PrintGCDetails && Verbose, true, _gc_timer);
 585   trace("2");
 586 
 587   // Now all live objects are marked, compute the new object addresses.
 588 
 589   // It is not required that we traverse spaces in the same order in
 590   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
 591   // tracking expects us to do so. See comment under phase4.
 592 
 593   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 594   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 595 
 596   PSOldGen* old_gen = heap->old_gen();
 597 
 598   // Begin compacting into the old gen
 599   PSMarkSweepDecorator::set_destination_decorator_tenured();
 600 
 601   // This will also compact the young gen spaces.
 602   old_gen->precompact();
 603 }
 604 
 605 // This should be moved to the shared markSweep code!
 606 class PSAlwaysTrueClosure: public BoolObjectClosure {
 607 public:
 608   bool do_object_b(oop p) { return true; }
 609 };
 610 static PSAlwaysTrueClosure always_true;
 611 
 612 void PSMarkSweep::mark_sweep_phase3() {
 613   // Adjust the pointers to reflect the new locations
 614   GCTraceTime tm("phase 3", PrintGCDetails && Verbose, true, _gc_timer);
 615   trace("3");
 616 
 617   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 618   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 619 
 620   PSYoungGen* young_gen = heap->young_gen();
 621   PSOldGen* old_gen = heap->old_gen();
 622 
 623   // Need to clear claim bits before the tracing starts.
 624   ClassLoaderDataGraph::clear_claimed_marks();
 625 
 626   // General strong roots.
 627   Universe::oops_do(adjust_pointer_closure());
 628   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
 629   CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
 630   Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
 631   ObjectSynchronizer::oops_do(adjust_pointer_closure());
 632   FlatProfiler::oops_do(adjust_pointer_closure());
 633   Management::oops_do(adjust_pointer_closure());
 634   JvmtiExport::oops_do(adjust_pointer_closure());
 635   // SO_AllClasses
 636   SystemDictionary::oops_do(adjust_pointer_closure());
 637   ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true);
 638 
 639   // Now adjust pointers in remaining weak roots.  (All of which should
 640   // have been cleared if they pointed to non-surviving objects.)
 641   // Global (weak) JNI handles
 642   JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
 643 
 644   CodeCache::oops_do(adjust_pointer_closure());
 645   StringTable::oops_do(adjust_pointer_closure());
 646   ref_processor()->weak_oops_do(adjust_pointer_closure());
 647   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
 648 
 649   adjust_marks();
 650 
 651   young_gen->adjust_pointers();
 652   old_gen->adjust_pointers();
 653 }
 654 
 655 void PSMarkSweep::mark_sweep_phase4() {
 656   EventMark m("4 compact heap");
 657   GCTraceTime tm("phase 4", PrintGCDetails && Verbose, true, _gc_timer);
 658   trace("4");
 659 
 660   // All pointers are now adjusted, move objects accordingly
 661 
 662   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 663   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 664 
 665   PSYoungGen* young_gen = heap->young_gen();
 666   PSOldGen* old_gen = heap->old_gen();
 667 
 668   old_gen->compact();
 669   young_gen->compact();
 670 }
 671 
 672 jlong PSMarkSweep::millis_since_last_gc() {
 673   // We need a monotonically non-decreasing time in ms but
 674   // os::javaTimeMillis() does not guarantee monotonicity.
 675   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 676   jlong ret_val = now - _time_of_last_gc;
 677   // XXX See note in genCollectedHeap::millis_since_last_gc().
 678   if (ret_val < 0) {
 679     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
 680     return 0;
 681   }
 682   return ret_val;
 683 }
 684 
 685 void PSMarkSweep::reset_millis_since_last_gc() {
 686   // We need a monotonically non-decreasing time in ms but
 687   // os::javaTimeMillis() does not guarantee monotonicity.
 688   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 689 }