1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "compiler/disassembler.hpp"
  28 #include "memory/gcLocker.hpp"
  29 #include "oops/methodData.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "runtime/icache.hpp"
  32 #include "utilities/copy.hpp"
  33 #include "utilities/xmlstream.hpp"
  34 
  35 // The structure of a CodeSection:
  36 //
  37 //    _start ->           +----------------+
  38 //                        | machine code...|
  39 //    _end ->             |----------------|
  40 //                        |                |
  41 //                        |    (empty)     |
  42 //                        |                |
  43 //                        |                |
  44 //                        +----------------+
  45 //    _limit ->           |                |
  46 //
  47 //    _locs_start ->      +----------------+
  48 //                        |reloc records...|
  49 //                        |----------------|
  50 //    _locs_end ->        |                |
  51 //                        |                |
  52 //                        |    (empty)     |
  53 //                        |                |
  54 //                        |                |
  55 //                        +----------------+
  56 //    _locs_limit ->      |                |
  57 // The _end (resp. _limit) pointer refers to the first
  58 // unused (resp. unallocated) byte.
  59 
  60 // The structure of the CodeBuffer while code is being accumulated:
  61 //
  62 //    _total_start ->    \
  63 //    _insts._start ->              +----------------+
  64 //                                  |                |
  65 //                                  |     Code       |
  66 //                                  |                |
  67 //    _stubs._start ->              |----------------|
  68 //                                  |                |
  69 //                                  |    Stubs       | (also handlers for deopt/exception)
  70 //                                  |                |
  71 //    _consts._start ->             |----------------|
  72 //                                  |                |
  73 //                                  |   Constants    |
  74 //                                  |                |
  75 //                                  +----------------+
  76 //    + _total_size ->              |                |
  77 //
  78 // When the code and relocations are copied to the code cache,
  79 // the empty parts of each section are removed, and everything
  80 // is copied into contiguous locations.
  81 
  82 typedef CodeBuffer::csize_t csize_t;  // file-local definition
  83 
  84 // External buffer, in a predefined CodeBlob.
  85 // Important: The code_start must be taken exactly, and not realigned.
  86 CodeBuffer::CodeBuffer(CodeBlob* blob) {
  87   initialize_misc("static buffer");
  88   initialize(blob->content_begin(), blob->content_size());
  89   verify_section_allocation();
  90 }
  91 
  92 void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
  93   // Compute maximal alignment.
  94   int align = _insts.alignment();
  95   // Always allow for empty slop around each section.
  96   int slop = (int) CodeSection::end_slop();
  97 
  98   assert(blob() == NULL, "only once");
  99   set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
 100   if (blob() == NULL) {
 101     // The assembler constructor will throw a fatal on an empty CodeBuffer.
 102     return;  // caller must test this
 103   }
 104 
 105   // Set up various pointers into the blob.
 106   initialize(_total_start, _total_size);
 107 
 108   assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
 109 
 110   pd_initialize();
 111 
 112   if (locs_size != 0) {
 113     _insts.initialize_locs(locs_size / sizeof(relocInfo));
 114   }
 115 
 116   verify_section_allocation();
 117 }
 118 
 119 
 120 CodeBuffer::~CodeBuffer() {
 121   verify_section_allocation();
 122 
 123   // If we allocate our code buffer from the CodeCache
 124   // via a BufferBlob, and it's not permanent, then
 125   // free the BufferBlob.
 126   // The rest of the memory will be freed when the ResourceObj
 127   // is released.
 128   for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
 129     // Previous incarnations of this buffer are held live, so that internal
 130     // addresses constructed before expansions will not be confused.
 131     cb->free_blob();
 132   }
 133 
 134   // free any overflow storage
 135   delete _overflow_arena;
 136 
 137 #ifdef ASSERT
 138   // Save allocation type to execute assert in ~ResourceObj()
 139   // which is called after this destructor.
 140   assert(_default_oop_recorder.allocated_on_stack(), "should be embedded object");
 141   ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type();
 142   Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
 143   ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at);
 144 #endif
 145 }
 146 
 147 void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
 148   assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
 149   DEBUG_ONLY(_default_oop_recorder.freeze());  // force unused OR to be frozen
 150   _oop_recorder = r;
 151 }
 152 
 153 void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
 154   assert(cs != &_insts, "insts is the memory provider, not the consumer");
 155   csize_t slop = CodeSection::end_slop();  // margin between sections
 156   int align = cs->alignment();
 157   assert(is_power_of_2(align), "sanity");
 158   address start  = _insts._start;
 159   address limit  = _insts._limit;
 160   address middle = limit - size;
 161   middle -= (intptr_t)middle & (align-1);  // align the division point downward
 162   guarantee(middle - slop > start, "need enough space to divide up");
 163   _insts._limit = middle - slop;  // subtract desired space, plus slop
 164   cs->initialize(middle, limit - middle);
 165   assert(cs->start() == middle, "sanity");
 166   assert(cs->limit() == limit,  "sanity");
 167   // give it some relocations to start with, if the main section has them
 168   if (_insts.has_locs())  cs->initialize_locs(1);
 169 }
 170 
 171 void CodeBuffer::freeze_section(CodeSection* cs) {
 172   CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
 173   csize_t frozen_size = cs->size();
 174   if (next_cs != NULL) {
 175     frozen_size = next_cs->align_at_start(frozen_size);
 176   }
 177   address old_limit = cs->limit();
 178   address new_limit = cs->start() + frozen_size;
 179   relocInfo* old_locs_limit = cs->locs_limit();
 180   relocInfo* new_locs_limit = cs->locs_end();
 181   // Patch the limits.
 182   cs->_limit = new_limit;
 183   cs->_locs_limit = new_locs_limit;
 184   cs->_frozen = true;
 185   if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
 186     // Give remaining buffer space to the following section.
 187     next_cs->initialize(new_limit, old_limit - new_limit);
 188     next_cs->initialize_shared_locs(new_locs_limit,
 189                                     old_locs_limit - new_locs_limit);
 190   }
 191 }
 192 
 193 void CodeBuffer::set_blob(BufferBlob* blob) {
 194   _blob = blob;
 195   if (blob != NULL) {
 196     address start = blob->content_begin();
 197     address end   = blob->content_end();
 198     // Round up the starting address.
 199     int align = _insts.alignment();
 200     start += (-(intptr_t)start) & (align-1);
 201     _total_start = start;
 202     _total_size  = end - start;
 203   } else {
 204 #ifdef ASSERT
 205     // Clean out dangling pointers.
 206     _total_start    = badAddress;
 207     _consts._start  = _consts._end  = badAddress;
 208     _insts._start   = _insts._end   = badAddress;
 209     _stubs._start   = _stubs._end   = badAddress;
 210 #endif //ASSERT
 211   }
 212 }
 213 
 214 void CodeBuffer::free_blob() {
 215   if (_blob != NULL) {
 216     BufferBlob::free(_blob);
 217     set_blob(NULL);
 218   }
 219 }
 220 
 221 const char* CodeBuffer::code_section_name(int n) {
 222 #ifdef PRODUCT
 223   return NULL;
 224 #else //PRODUCT
 225   switch (n) {
 226   case SECT_CONSTS:            return "consts";
 227   case SECT_INSTS:             return "insts";
 228   case SECT_STUBS:             return "stubs";
 229   default:                     return NULL;
 230   }
 231 #endif //PRODUCT
 232 }
 233 
 234 int CodeBuffer::section_index_of(address addr) const {
 235   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 236     const CodeSection* cs = code_section(n);
 237     if (cs->allocates(addr))  return n;
 238   }
 239   return SECT_NONE;
 240 }
 241 
 242 int CodeBuffer::locator(address addr) const {
 243   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 244     const CodeSection* cs = code_section(n);
 245     if (cs->allocates(addr)) {
 246       return locator(addr - cs->start(), n);
 247     }
 248   }
 249   return -1;
 250 }
 251 
 252 address CodeBuffer::locator_address(int locator) const {
 253   if (locator < 0)  return NULL;
 254   address start = code_section(locator_sect(locator))->start();
 255   return start + locator_pos(locator);
 256 }
 257 
 258 bool CodeBuffer::is_backward_branch(Label& L) {
 259   return L.is_bound() && insts_end() <= locator_address(L.loc());
 260 }
 261 
 262 address CodeBuffer::decode_begin() {
 263   address begin = _insts.start();
 264   if (_decode_begin != NULL && _decode_begin > begin)
 265     begin = _decode_begin;
 266   return begin;
 267 }
 268 
 269 
 270 GrowableArray<int>* CodeBuffer::create_patch_overflow() {
 271   if (_overflow_arena == NULL) {
 272     _overflow_arena = new (mtCode) Arena(mtCode);
 273   }
 274   return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
 275 }
 276 
 277 
 278 // Helper function for managing labels and their target addresses.
 279 // Returns a sensible address, and if it is not the label's final
 280 // address, notes the dependency (at 'branch_pc') on the label.
 281 address CodeSection::target(Label& L, address branch_pc) {
 282   if (L.is_bound()) {
 283     int loc = L.loc();
 284     if (index() == CodeBuffer::locator_sect(loc)) {
 285       return start() + CodeBuffer::locator_pos(loc);
 286     } else {
 287       return outer()->locator_address(loc);
 288     }
 289   } else {
 290     assert(allocates2(branch_pc), "sanity");
 291     address base = start();
 292     int patch_loc = CodeBuffer::locator(branch_pc - base, index());
 293     L.add_patch_at(outer(), patch_loc);
 294 
 295     // Need to return a pc, doesn't matter what it is since it will be
 296     // replaced during resolution later.
 297     // Don't return NULL or badAddress, since branches shouldn't overflow.
 298     // Don't return base either because that could overflow displacements
 299     // for shorter branches.  It will get checked when bound.
 300     return branch_pc;
 301   }
 302 }
 303 
 304 void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
 305   Relocation* reloc = spec.reloc();
 306   relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
 307   if (rtype == relocInfo::none)  return;
 308 
 309   // The assertion below has been adjusted, to also work for
 310   // relocation for fixup.  Sometimes we want to put relocation
 311   // information for the next instruction, since it will be patched
 312   // with a call.
 313   assert(start() <= at && at <= end()+1,
 314          "cannot relocate data outside code boundaries");
 315 
 316   if (!has_locs()) {
 317     // no space for relocation information provided => code cannot be
 318     // relocated.  Make sure that relocate is only called with rtypes
 319     // that can be ignored for this kind of code.
 320     assert(rtype == relocInfo::none              ||
 321            rtype == relocInfo::runtime_call_type ||
 322            rtype == relocInfo::internal_word_type||
 323            rtype == relocInfo::section_word_type ||
 324            rtype == relocInfo::external_word_type,
 325            "code needs relocation information");
 326     // leave behind an indication that we attempted a relocation
 327     DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
 328     return;
 329   }
 330 
 331   // Advance the point, noting the offset we'll have to record.
 332   csize_t offset = at - locs_point();
 333   set_locs_point(at);
 334 
 335   // Test for a couple of overflow conditions; maybe expand the buffer.
 336   relocInfo* end = locs_end();
 337   relocInfo* req = end + relocInfo::length_limit;
 338   // Check for (potential) overflow
 339   if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
 340     req += (uint)offset / (uint)relocInfo::offset_limit();
 341     if (req >= locs_limit()) {
 342       // Allocate or reallocate.
 343       expand_locs(locs_count() + (req - end));
 344       // reload pointer
 345       end = locs_end();
 346     }
 347   }
 348 
 349   // If the offset is giant, emit filler relocs, of type 'none', but
 350   // each carrying the largest possible offset, to advance the locs_point.
 351   while (offset >= relocInfo::offset_limit()) {
 352     assert(end < locs_limit(), "adjust previous paragraph of code");
 353     *end++ = filler_relocInfo();
 354     offset -= filler_relocInfo().addr_offset();
 355   }
 356 
 357   // If it's a simple reloc with no data, we'll just write (rtype | offset).
 358   (*end) = relocInfo(rtype, offset, format);
 359 
 360   // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
 361   end->initialize(this, reloc);
 362 }
 363 
 364 void CodeSection::initialize_locs(int locs_capacity) {
 365   assert(_locs_start == NULL, "only one locs init step, please");
 366   // Apply a priori lower limits to relocation size:
 367   csize_t min_locs = MAX2(size() / 16, (csize_t)4);
 368   if (locs_capacity < min_locs)  locs_capacity = min_locs;
 369   relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
 370   _locs_start    = locs_start;
 371   _locs_end      = locs_start;
 372   _locs_limit    = locs_start + locs_capacity;
 373   _locs_own      = true;
 374 }
 375 
 376 void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
 377   assert(_locs_start == NULL, "do this before locs are allocated");
 378   // Internal invariant:  locs buf must be fully aligned.
 379   // See copy_relocations_to() below.
 380   while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
 381     ++buf; --length;
 382   }
 383   if (length > 0) {
 384     _locs_start = buf;
 385     _locs_end   = buf;
 386     _locs_limit = buf + length;
 387     _locs_own   = false;
 388   }
 389 }
 390 
 391 void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
 392   int lcount = source_cs->locs_count();
 393   if (lcount != 0) {
 394     initialize_shared_locs(source_cs->locs_start(), lcount);
 395     _locs_end = _locs_limit = _locs_start + lcount;
 396     assert(is_allocated(), "must have copied code already");
 397     set_locs_point(start() + source_cs->locs_point_off());
 398   }
 399   assert(this->locs_count() == source_cs->locs_count(), "sanity");
 400 }
 401 
 402 void CodeSection::expand_locs(int new_capacity) {
 403   if (_locs_start == NULL) {
 404     initialize_locs(new_capacity);
 405     return;
 406   } else {
 407     int old_count    = locs_count();
 408     int old_capacity = locs_capacity();
 409     if (new_capacity < old_capacity * 2)
 410       new_capacity = old_capacity * 2;
 411     relocInfo* locs_start;
 412     if (_locs_own) {
 413       locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
 414     } else {
 415       locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
 416       Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
 417       _locs_own = true;
 418     }
 419     _locs_start    = locs_start;
 420     _locs_end      = locs_start + old_count;
 421     _locs_limit    = locs_start + new_capacity;
 422   }
 423 }
 424 
 425 
 426 /// Support for emitting the code to its final location.
 427 /// The pattern is the same for all functions.
 428 /// We iterate over all the sections, padding each to alignment.
 429 
 430 csize_t CodeBuffer::total_content_size() const {
 431   csize_t size_so_far = 0;
 432   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 433     const CodeSection* cs = code_section(n);
 434     if (cs->is_empty())  continue;  // skip trivial section
 435     size_so_far = cs->align_at_start(size_so_far);
 436     size_so_far += cs->size();
 437   }
 438   return size_so_far;
 439 }
 440 
 441 void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
 442   address buf = dest->_total_start;
 443   csize_t buf_offset = 0;
 444   assert(dest->_total_size >= total_content_size(), "must be big enough");
 445 
 446   {
 447     // not sure why this is here, but why not...
 448     int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
 449     assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
 450   }
 451 
 452   const CodeSection* prev_cs      = NULL;
 453   CodeSection*       prev_dest_cs = NULL;
 454 
 455   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 456     // figure compact layout of each section
 457     const CodeSection* cs = code_section(n);
 458     csize_t csize = cs->size();
 459 
 460     CodeSection* dest_cs = dest->code_section(n);
 461     if (!cs->is_empty()) {
 462       // Compute initial padding; assign it to the previous non-empty guy.
 463       // Cf. figure_expanded_capacities.
 464       csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
 465       if (padding != 0) {
 466         buf_offset += padding;
 467         assert(prev_dest_cs != NULL, "sanity");
 468         prev_dest_cs->_limit += padding;
 469       }
 470       #ifdef ASSERT
 471       if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) {
 472         // Make sure the ends still match up.
 473         // This is important because a branch in a frozen section
 474         // might target code in a following section, via a Label,
 475         // and without a relocation record.  See Label::patch_instructions.
 476         address dest_start = buf+buf_offset;
 477         csize_t start2start = cs->start() - prev_cs->start();
 478         csize_t dest_start2start = dest_start - prev_dest_cs->start();
 479         assert(start2start == dest_start2start, "cannot stretch frozen sect");
 480       }
 481       #endif //ASSERT
 482       prev_dest_cs = dest_cs;
 483       prev_cs      = cs;
 484     }
 485 
 486     debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
 487     dest_cs->initialize(buf+buf_offset, csize);
 488     dest_cs->set_end(buf+buf_offset+csize);
 489     assert(dest_cs->is_allocated(), "must always be allocated");
 490     assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
 491 
 492     buf_offset += csize;
 493   }
 494 
 495   // Done calculating sections; did it come out to the right end?
 496   assert(buf_offset == total_content_size(), "sanity");
 497   dest->verify_section_allocation();
 498 }
 499 
 500 // Append an oop reference that keeps the class alive.
 501 static void append_oop_references(GrowableArray<oop>* oops, Klass* k) {
 502   oop cl = k->klass_holder();
 503   if (cl != NULL && !oops->contains(cl)) {
 504     oops->append(cl);
 505   }
 506 }
 507 
 508 void CodeBuffer::finalize_oop_references(methodHandle mh) {
 509   No_Safepoint_Verifier nsv;
 510 
 511   GrowableArray<oop> oops;
 512 
 513   // Make sure that immediate metadata records something in the OopRecorder
 514   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 515     // pull code out of each section
 516     CodeSection* cs = code_section(n);
 517     if (cs->is_empty())  continue;  // skip trivial section
 518     RelocIterator iter(cs);
 519     while (iter.next()) {
 520       if (iter.type() == relocInfo::metadata_type) {
 521         metadata_Relocation* md = iter.metadata_reloc();
 522         if (md->metadata_is_immediate()) {
 523           Metadata* m = md->metadata_value();
 524           if (oop_recorder()->is_real(m)) {
 525             if (m->is_methodData()) {
 526               m = ((MethodData*)m)->method();
 527             }
 528             if (m->is_method()) {
 529               m = ((Method*)m)->method_holder();
 530             }
 531             if (m->is_klass()) {
 532               append_oop_references(&oops, (Klass*)m);
 533             } else {
 534               // XXX This will currently occur for MDO which don't
 535               // have a backpointer.  This has to be fixed later.
 536               m->print();
 537               ShouldNotReachHere();
 538             }
 539           }
 540         }
 541       }
 542     }
 543   }
 544 
 545   if (!oop_recorder()->is_unused()) {
 546     for (int i = 0; i < oop_recorder()->metadata_count(); i++) {
 547       Metadata* m = oop_recorder()->metadata_at(i);
 548       if (oop_recorder()->is_real(m)) {
 549         if (m->is_methodData()) {
 550           m = ((MethodData*)m)->method();
 551         }
 552         if (m->is_method()) {
 553           m = ((Method*)m)->method_holder();
 554         }
 555         if (m->is_klass()) {
 556           append_oop_references(&oops, (Klass*)m);
 557         } else {
 558           m->print();
 559           ShouldNotReachHere();
 560         }
 561       }
 562     }
 563 
 564   }
 565 
 566   // Add the class loader of Method* for the nmethod itself
 567   append_oop_references(&oops, mh->method_holder());
 568 
 569   // Add any oops that we've found
 570   Thread* thread = Thread::current();
 571   for (int i = 0; i < oops.length(); i++) {
 572     oop_recorder()->find_index((jobject)thread->handle_area()->allocate_handle(oops.at(i)));
 573   }
 574 }
 575 
 576 
 577 
 578 csize_t CodeBuffer::total_offset_of(CodeSection* cs) const {
 579   csize_t size_so_far = 0;
 580   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 581     const CodeSection* cur_cs = code_section(n);
 582     if (!cur_cs->is_empty()) {
 583       size_so_far = cur_cs->align_at_start(size_so_far);
 584     }
 585     if (cur_cs->index() == cs->index()) {
 586       return size_so_far;
 587     }
 588     size_so_far += cur_cs->size();
 589   }
 590   ShouldNotReachHere();
 591   return -1;
 592 }
 593 
 594 csize_t CodeBuffer::total_relocation_size() const {
 595   csize_t lsize = copy_relocations_to(NULL);  // dry run only
 596   csize_t csize = total_content_size();
 597   csize_t total = RelocIterator::locs_and_index_size(csize, lsize);
 598   return (csize_t) align_size_up(total, HeapWordSize);
 599 }
 600 
 601 csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
 602   address buf = NULL;
 603   csize_t buf_offset = 0;
 604   csize_t buf_limit = 0;
 605   if (dest != NULL) {
 606     buf = (address)dest->relocation_begin();
 607     buf_limit = (address)dest->relocation_end() - buf;
 608     assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
 609     assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
 610   }
 611   // if dest == NULL, this is just the sizing pass
 612 
 613   csize_t code_end_so_far = 0;
 614   csize_t code_point_so_far = 0;
 615   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
 616     // pull relocs out of each section
 617     const CodeSection* cs = code_section(n);
 618     assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
 619     if (cs->is_empty())  continue;  // skip trivial section
 620     relocInfo* lstart = cs->locs_start();
 621     relocInfo* lend   = cs->locs_end();
 622     csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
 623     csize_t    csize  = cs->size();
 624     code_end_so_far = cs->align_at_start(code_end_so_far);
 625 
 626     if (lsize > 0) {
 627       // Figure out how to advance the combined relocation point
 628       // first to the beginning of this section.
 629       // We'll insert one or more filler relocs to span that gap.
 630       // (Don't bother to improve this by editing the first reloc's offset.)
 631       csize_t new_code_point = code_end_so_far;
 632       for (csize_t jump;
 633            code_point_so_far < new_code_point;
 634            code_point_so_far += jump) {
 635         jump = new_code_point - code_point_so_far;
 636         relocInfo filler = filler_relocInfo();
 637         if (jump >= filler.addr_offset()) {
 638           jump = filler.addr_offset();
 639         } else {  // else shrink the filler to fit
 640           filler = relocInfo(relocInfo::none, jump);
 641         }
 642         if (buf != NULL) {
 643           assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
 644           *(relocInfo*)(buf+buf_offset) = filler;
 645         }
 646         buf_offset += sizeof(filler);
 647       }
 648 
 649       // Update code point and end to skip past this section:
 650       csize_t last_code_point = code_end_so_far + cs->locs_point_off();
 651       assert(code_point_so_far <= last_code_point, "sanity");
 652       code_point_so_far = last_code_point; // advance past this guy's relocs
 653     }
 654     code_end_so_far += csize;  // advance past this guy's instructions too
 655 
 656     // Done with filler; emit the real relocations:
 657     if (buf != NULL && lsize != 0) {
 658       assert(buf_offset + lsize <= buf_limit, "target in bounds");
 659       assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
 660       if (buf_offset % HeapWordSize == 0) {
 661         // Use wordwise copies if possible:
 662         Copy::disjoint_words((HeapWord*)lstart,
 663                              (HeapWord*)(buf+buf_offset),
 664                              (lsize + HeapWordSize-1) / HeapWordSize);
 665       } else {
 666         Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize);
 667       }
 668     }
 669     buf_offset += lsize;
 670   }
 671 
 672   // Align end of relocation info in target.
 673   while (buf_offset % HeapWordSize != 0) {
 674     if (buf != NULL) {
 675       relocInfo padding = relocInfo(relocInfo::none, 0);
 676       assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
 677       *(relocInfo*)(buf+buf_offset) = padding;
 678     }
 679     buf_offset += sizeof(relocInfo);
 680   }
 681 
 682   assert(code_end_so_far == total_content_size(), "sanity");
 683 
 684   // Account for index:
 685   if (buf != NULL) {
 686     RelocIterator::create_index(dest->relocation_begin(),
 687                                 buf_offset / sizeof(relocInfo),
 688                                 dest->relocation_end());
 689   }
 690 
 691   return buf_offset;
 692 }
 693 
 694 void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
 695 #ifndef PRODUCT
 696   if (PrintNMethods && (WizardMode || Verbose)) {
 697     tty->print("done with CodeBuffer:");
 698     ((CodeBuffer*)this)->print();
 699   }
 700 #endif //PRODUCT
 701 
 702   CodeBuffer dest(dest_blob);
 703   assert(dest_blob->content_size() >= total_content_size(), "good sizing");
 704   this->compute_final_layout(&dest);
 705   relocate_code_to(&dest);
 706 
 707   // transfer strings and comments from buffer to blob
 708   dest_blob->set_strings(_strings);
 709 
 710   // Done moving code bytes; were they the right size?
 711   assert(round_to(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity");
 712 
 713   // Flush generated code
 714   ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size());
 715 }
 716 
 717 // Move all my code into another code buffer.  Consult applicable
 718 // relocs to repair embedded addresses.  The layout in the destination
 719 // CodeBuffer is different to the source CodeBuffer: the destination
 720 // CodeBuffer gets the final layout (consts, insts, stubs in order of
 721 // ascending address).
 722 void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
 723   address dest_end = dest->_total_start + dest->_total_size;
 724   address dest_filled = NULL;
 725   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 726     // pull code out of each section
 727     const CodeSection* cs = code_section(n);
 728     if (cs->is_empty())  continue;  // skip trivial section
 729     CodeSection* dest_cs = dest->code_section(n);
 730     assert(cs->size() == dest_cs->size(), "sanity");
 731     csize_t usize = dest_cs->size();
 732     csize_t wsize = align_size_up(usize, HeapWordSize);
 733     assert(dest_cs->start() + wsize <= dest_end, "no overflow");
 734     // Copy the code as aligned machine words.
 735     // This may also include an uninitialized partial word at the end.
 736     Copy::disjoint_words((HeapWord*)cs->start(),
 737                          (HeapWord*)dest_cs->start(),
 738                          wsize / HeapWordSize);
 739 
 740     if (dest->blob() == NULL) {
 741       // Destination is a final resting place, not just another buffer.
 742       // Normalize uninitialized bytes in the final padding.
 743       Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
 744                           Assembler::code_fill_byte());
 745     }
 746     // Keep track of the highest filled address
 747     dest_filled = MAX2(dest_filled, dest_cs->end() + dest_cs->remaining());
 748 
 749     assert(cs->locs_start() != (relocInfo*)badAddress,
 750            "this section carries no reloc storage, but reloc was attempted");
 751 
 752     // Make the new code copy use the old copy's relocations:
 753     dest_cs->initialize_locs_from(cs);
 754   }
 755 
 756   // Do relocation after all sections are copied.
 757   // This is necessary if the code uses constants in stubs, which are
 758   // relocated when the corresponding instruction in the code (e.g., a
 759   // call) is relocated. Stubs are placed behind the main code
 760   // section, so that section has to be copied before relocating.
 761   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
 762     // pull code out of each section
 763     const CodeSection* cs = code_section(n);
 764     if (cs->is_empty()) continue;  // skip trivial section
 765     CodeSection* dest_cs = dest->code_section(n);
 766     { // Repair the pc relative information in the code after the move
 767       RelocIterator iter(dest_cs);
 768       while (iter.next()) {
 769         iter.reloc()->fix_relocation_after_move(this, dest);
 770       }
 771     }
 772   }
 773 
 774   if (dest->blob() == NULL && dest_filled != NULL) {
 775     // Destination is a final resting place, not just another buffer.
 776     // Normalize uninitialized bytes in the final padding.
 777     Copy::fill_to_bytes(dest_filled, dest_end - dest_filled,
 778                         Assembler::code_fill_byte());
 779 
 780   }
 781 }
 782 
 783 csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
 784                                                csize_t amount,
 785                                                csize_t* new_capacity) {
 786   csize_t new_total_cap = 0;
 787 
 788   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 789     const CodeSection* sect = code_section(n);
 790 
 791     if (!sect->is_empty()) {
 792       // Compute initial padding; assign it to the previous section,
 793       // even if it's empty (e.g. consts section can be empty).
 794       // Cf. compute_final_layout
 795       csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
 796       if (padding != 0) {
 797         new_total_cap += padding;
 798         assert(n - 1 >= SECT_FIRST, "sanity");
 799         new_capacity[n - 1] += padding;
 800       }
 801     }
 802 
 803     csize_t exp = sect->size();  // 100% increase
 804     if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
 805     if (sect == which_cs) {
 806       if (exp < amount)  exp = amount;
 807       if (StressCodeBuffers)  exp = amount;  // expand only slightly
 808     } else if (n == SECT_INSTS) {
 809       // scale down inst increases to a more modest 25%
 810       exp = 4*K + ((exp - 4*K) >> 2);
 811       if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
 812     } else if (sect->is_empty()) {
 813       // do not grow an empty secondary section
 814       exp = 0;
 815     }
 816     // Allow for inter-section slop:
 817     exp += CodeSection::end_slop();
 818     csize_t new_cap = sect->size() + exp;
 819     if (new_cap < sect->capacity()) {
 820       // No need to expand after all.
 821       new_cap = sect->capacity();
 822     }
 823     new_capacity[n] = new_cap;
 824     new_total_cap += new_cap;
 825   }
 826 
 827   return new_total_cap;
 828 }
 829 
 830 void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
 831 #ifndef PRODUCT
 832   if (PrintNMethods && (WizardMode || Verbose)) {
 833     tty->print("expanding CodeBuffer:");
 834     this->print();
 835   }
 836 
 837   if (StressCodeBuffers && blob() != NULL) {
 838     static int expand_count = 0;
 839     if (expand_count >= 0)  expand_count += 1;
 840     if (expand_count > 100 && is_power_of_2(expand_count)) {
 841       tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
 842       // simulate an occasional allocation failure:
 843       free_blob();
 844     }
 845   }
 846 #endif //PRODUCT
 847 
 848   // Resizing must be allowed
 849   {
 850     if (blob() == NULL)  return;  // caller must check for blob == NULL
 851     for (int n = 0; n < (int)SECT_LIMIT; n++) {
 852       guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
 853     }
 854   }
 855 
 856   // Figure new capacity for each section.
 857   csize_t new_capacity[SECT_LIMIT];
 858   csize_t new_total_cap
 859     = figure_expanded_capacities(which_cs, amount, new_capacity);
 860 
 861   // Create a new (temporary) code buffer to hold all the new data
 862   CodeBuffer cb(name(), new_total_cap, 0);
 863   if (cb.blob() == NULL) {
 864     // Failed to allocate in code cache.
 865     free_blob();
 866     return;
 867   }
 868 
 869   // Create an old code buffer to remember which addresses used to go where.
 870   // This will be useful when we do final assembly into the code cache,
 871   // because we will need to know how to warp any internal address that
 872   // has been created at any time in this CodeBuffer's past.
 873   CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
 874   bxp->take_over_code_from(this);  // remember the old undersized blob
 875   DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
 876   bxp->_before_expand = this->_before_expand;
 877   this->_before_expand = bxp;
 878 
 879   // Give each section its required (expanded) capacity.
 880   for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) {
 881     CodeSection* cb_sect   = cb.code_section(n);
 882     CodeSection* this_sect = code_section(n);
 883     if (new_capacity[n] == 0)  continue;  // already nulled out
 884     if (n != SECT_INSTS) {
 885       cb.initialize_section_size(cb_sect, new_capacity[n]);
 886     }
 887     assert(cb_sect->capacity() >= new_capacity[n], "big enough");
 888     address cb_start = cb_sect->start();
 889     cb_sect->set_end(cb_start + this_sect->size());
 890     if (this_sect->mark() == NULL) {
 891       cb_sect->clear_mark();
 892     } else {
 893       cb_sect->set_mark(cb_start + this_sect->mark_off());
 894     }
 895   }
 896 
 897   // Move all the code and relocations to the new blob:
 898   relocate_code_to(&cb);
 899 
 900   // Copy the temporary code buffer into the current code buffer.
 901   // Basically, do {*this = cb}, except for some control information.
 902   this->take_over_code_from(&cb);
 903   cb.set_blob(NULL);
 904 
 905   // Zap the old code buffer contents, to avoid mistakenly using them.
 906   debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
 907                                  badCodeHeapFreeVal));
 908 
 909   _decode_begin = NULL;  // sanity
 910 
 911   // Make certain that the new sections are all snugly inside the new blob.
 912   verify_section_allocation();
 913 
 914 #ifndef PRODUCT
 915   if (PrintNMethods && (WizardMode || Verbose)) {
 916     tty->print("expanded CodeBuffer:");
 917     this->print();
 918   }
 919 #endif //PRODUCT
 920 }
 921 
 922 void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
 923   // Must already have disposed of the old blob somehow.
 924   assert(blob() == NULL, "must be empty");
 925 #ifdef ASSERT
 926 
 927 #endif
 928   // Take the new blob away from cb.
 929   set_blob(cb->blob());
 930   // Take over all the section pointers.
 931   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 932     CodeSection* cb_sect   = cb->code_section(n);
 933     CodeSection* this_sect = code_section(n);
 934     this_sect->take_over_code_from(cb_sect);
 935   }
 936   _overflow_arena = cb->_overflow_arena;
 937   // Make sure the old cb won't try to use it or free it.
 938   DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
 939 }
 940 
 941 void CodeBuffer::verify_section_allocation() {
 942   address tstart = _total_start;
 943   if (tstart == badAddress)  return;  // smashed by set_blob(NULL)
 944   address tend   = tstart + _total_size;
 945   if (_blob != NULL) {
 946 
 947     guarantee(tstart >= _blob->content_begin(), "sanity");
 948     guarantee(tend   <= _blob->content_end(),   "sanity");
 949   }
 950   // Verify disjointness.
 951   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 952     CodeSection* sect = code_section(n);
 953     if (!sect->is_allocated() || sect->is_empty())  continue;
 954     guarantee((intptr_t)sect->start() % sect->alignment() == 0
 955            || sect->is_empty() || _blob == NULL,
 956            "start is aligned");
 957     for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) {
 958       CodeSection* other = code_section(m);
 959       if (!other->is_allocated() || other == sect)  continue;
 960       guarantee(!other->contains(sect->start()    ), "sanity");
 961       // limit is an exclusive address and can be the start of another
 962       // section.
 963       guarantee(!other->contains(sect->limit() - 1), "sanity");
 964     }
 965     guarantee(sect->end() <= tend, "sanity");
 966     guarantee(sect->end() <= sect->limit(), "sanity");
 967   }
 968 }
 969 
 970 void CodeBuffer::log_section_sizes(const char* name) {
 971   if (xtty != NULL) {
 972     ttyLocker ttyl;
 973     // log info about buffer usage
 974     xtty->print_cr("<blob name='%s' size='%d'>", name, _total_size);
 975     for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
 976       CodeSection* sect = code_section(n);
 977       if (!sect->is_allocated() || sect->is_empty())  continue;
 978       xtty->print_cr("<sect index='%d' size='" SIZE_FORMAT "' free='" SIZE_FORMAT "'/>",
 979                      n, sect->limit() - sect->start(), sect->limit() - sect->end());
 980     }
 981     xtty->print_cr("</blob>");
 982   }
 983 }
 984 
 985 #ifndef PRODUCT
 986 
 987 void CodeSection::dump() {
 988   address ptr = start();
 989   for (csize_t step; ptr < end(); ptr += step) {
 990     step = end() - ptr;
 991     if (step > jintSize * 4)  step = jintSize * 4;
 992     tty->print(INTPTR_FORMAT ": ", p2i(ptr));
 993     while (step > 0) {
 994       tty->print(" " PTR32_FORMAT, *(jint*)ptr);
 995       ptr += jintSize;
 996     }
 997     tty->cr();
 998   }
 999 }
1000 
1001 
1002 void CodeSection::decode() {
1003   Disassembler::decode(start(), end());
1004 }
1005 
1006 
1007 void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
1008   _strings.add_comment(offset, comment);
1009 }
1010 
1011 const char* CodeBuffer::code_string(const char* str) {
1012   return _strings.add_string(str);
1013 }
1014 
1015 class CodeString: public CHeapObj<mtCode> {
1016  private:
1017   friend class CodeStrings;
1018   const char * _string;
1019   CodeString*  _next;
1020   intptr_t     _offset;
1021 
1022   ~CodeString() {
1023     assert(_next == NULL, "wrong interface for freeing list");
1024     os::free((void*)_string, mtCode);
1025   }
1026 
1027   bool is_comment() const { return _offset >= 0; }
1028 
1029  public:
1030   CodeString(const char * string, intptr_t offset = -1)
1031     : _next(NULL), _offset(offset) {
1032     _string = os::strdup(string, mtCode);
1033   }
1034 
1035   const char * string() const { return _string; }
1036   intptr_t     offset() const { assert(_offset >= 0, "offset for non comment?"); return _offset;  }
1037   CodeString* next()    const { return _next; }
1038 
1039   void set_next(CodeString* next) { _next = next; }
1040 
1041   CodeString* first_comment() {
1042     if (is_comment()) {
1043       return this;
1044     } else {
1045       return next_comment();
1046     }
1047   }
1048   CodeString* next_comment() const {
1049     CodeString* s = _next;
1050     while (s != NULL && !s->is_comment()) {
1051       s = s->_next;
1052     }
1053     return s;
1054   }
1055 };
1056 
1057 CodeString* CodeStrings::find(intptr_t offset) const {
1058   CodeString* a = _strings->first_comment();
1059   while (a != NULL && a->offset() != offset) {
1060     a = a->next_comment();
1061   }
1062   return a;
1063 }
1064 
1065 // Convenience for add_comment.
1066 CodeString* CodeStrings::find_last(intptr_t offset) const {
1067   CodeString* a = find(offset);
1068   if (a != NULL) {
1069     CodeString* c = NULL;
1070     while (((c = a->next_comment()) != NULL) && (c->offset() == offset)) {
1071       a = c;
1072     }
1073   }
1074   return a;
1075 }
1076 
1077 void CodeStrings::add_comment(intptr_t offset, const char * comment) {
1078   CodeString* c      = new CodeString(comment, offset);
1079   CodeString* inspos = (_strings == NULL) ? NULL : find_last(offset);
1080 
1081   if (inspos) {
1082     // insert after already existing comments with same offset
1083     c->set_next(inspos->next());
1084     inspos->set_next(c);
1085   } else {
1086     // no comments with such offset, yet. Insert before anything else.
1087     c->set_next(_strings);
1088     _strings = c;
1089   }
1090 }
1091 
1092 void CodeStrings::assign(CodeStrings& other) {
1093   _strings = other._strings;
1094 }
1095 
1096 void CodeStrings::print_block_comment(outputStream* stream, intptr_t offset) const {
1097   if (_strings != NULL) {
1098     CodeString* c = find(offset);
1099     while (c && c->offset() == offset) {
1100       stream->bol();
1101       stream->print("  ;; ");
1102       stream->print_cr("%s", c->string());
1103       c = c->next_comment();
1104     }
1105   }
1106 }
1107 
1108 
1109 void CodeStrings::free() {
1110   CodeString* n = _strings;
1111   while (n) {
1112     // unlink the node from the list saving a pointer to the next
1113     CodeString* p = n->next();
1114     n->set_next(NULL);
1115     delete n;
1116     n = p;
1117   }
1118   _strings = NULL;
1119 }
1120 
1121 const char* CodeStrings::add_string(const char * string) {
1122   CodeString* s = new CodeString(string);
1123   s->set_next(_strings);
1124   _strings = s;
1125   assert(s->string() != NULL, "should have a string");
1126   return s->string();
1127 }
1128 
1129 void CodeBuffer::decode() {
1130   ttyLocker ttyl;
1131   Disassembler::decode(decode_begin(), insts_end());
1132   _decode_begin = insts_end();
1133 }
1134 
1135 
1136 void CodeBuffer::skip_decode() {
1137   _decode_begin = insts_end();
1138 }
1139 
1140 
1141 void CodeBuffer::decode_all() {
1142   ttyLocker ttyl;
1143   for (int n = 0; n < (int)SECT_LIMIT; n++) {
1144     // dump contents of each section
1145     CodeSection* cs = code_section(n);
1146     tty->print_cr("! %s:", code_section_name(n));
1147     if (cs != consts())
1148       cs->decode();
1149     else
1150       cs->dump();
1151   }
1152 }
1153 
1154 
1155 void CodeSection::print(const char* name) {
1156   csize_t locs_size = locs_end() - locs_start();
1157   tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
1158                 name, p2i(start()), p2i(end()), p2i(limit()), size(), capacity(),
1159                 is_frozen()? " [frozen]": "");
1160   tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
1161                 name, p2i(locs_start()), p2i(locs_end()), p2i(locs_limit()), locs_size, locs_capacity(), locs_point_off());
1162   if (PrintRelocations) {
1163     RelocIterator iter(this);
1164     iter.print();
1165   }
1166 }
1167 
1168 void CodeBuffer::print() {
1169   if (this == NULL) {
1170     tty->print_cr("NULL CodeBuffer pointer");
1171     return;
1172   }
1173 
1174   tty->print_cr("CodeBuffer:");
1175   for (int n = 0; n < (int)SECT_LIMIT; n++) {
1176     // print each section
1177     CodeSection* cs = code_section(n);
1178     cs->print(code_section_name(n));
1179   }
1180 }
1181 
1182 #endif // PRODUCT