1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/metadataOnStackMark.hpp"
  32 #include "classfile/stringTable.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  36 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  37 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  38 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  39 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  42 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  43 #include "gc_implementation/g1/g1EvacFailure.hpp"
  44 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  45 #include "gc_implementation/g1/g1Log.hpp"
  46 #include "gc_implementation/g1/g1MarkSweep.hpp"
  47 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  48 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  50 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  51 #include "gc_implementation/g1/g1StringDedup.hpp"
  52 #include "gc_implementation/g1/g1YCTypes.hpp"
  53 #include "gc_implementation/g1/heapRegion.inline.hpp"
  54 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  55 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  56 #include "gc_implementation/g1/vm_operations_g1.hpp"
  57 #include "gc_implementation/shared/gcHeapSummary.hpp"
  58 #include "gc_implementation/shared/gcTimer.hpp"
  59 #include "gc_implementation/shared/gcTrace.hpp"
  60 #include "gc_implementation/shared/gcTraceTime.hpp"
  61 #include "gc_implementation/shared/isGCActiveMark.hpp"
  62 #include "memory/allocation.hpp"
  63 #include "memory/gcLocker.inline.hpp"
  64 #include "memory/generationSpec.hpp"
  65 #include "memory/iterator.hpp"
  66 #include "memory/referenceProcessor.hpp"
  67 #include "oops/oop.inline.hpp"
  68 #include "oops/oop.pcgc.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/orderAccess.inline.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "utilities/globalDefinitions.hpp"
  73 
  74 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  75 
  76 // turn it on so that the contents of the young list (scan-only /
  77 // to-be-collected) are printed at "strategic" points before / during
  78 // / after the collection --- this is useful for debugging
  79 #define YOUNG_LIST_VERBOSE 0
  80 // CURRENT STATUS
  81 // This file is under construction.  Search for "FIXME".
  82 
  83 // INVARIANTS/NOTES
  84 //
  85 // All allocation activity covered by the G1CollectedHeap interface is
  86 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  87 // and allocate_new_tlab, which are the "entry" points to the
  88 // allocation code from the rest of the JVM.  (Note that this does not
  89 // apply to TLAB allocation, which is not part of this interface: it
  90 // is done by clients of this interface.)
  91 
  92 // Notes on implementation of parallelism in different tasks.
  93 //
  94 // G1ParVerifyTask uses heap_region_par_iterate() for parallelism.
  95 // The number of GC workers is passed to heap_region_par_iterate().
  96 // It does use run_task() which sets _n_workers in the task.
  97 // G1ParTask executes g1_process_roots() ->
  98 // SharedHeap::process_roots() which calls eventually to
  99 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
 100 // SequentialSubTasksDone.  SharedHeap::process_roots() also
 101 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
 102 //
 103 
 104 // Local to this file.
 105 
 106 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 107   bool _concurrent;
 108 public:
 109   RefineCardTableEntryClosure() : _concurrent(true) { }
 110 
 111   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 112     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 113     // This path is executed by the concurrent refine or mutator threads,
 114     // concurrently, and so we do not care if card_ptr contains references
 115     // that point into the collection set.
 116     assert(!oops_into_cset, "should be");
 117 
 118     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 119       // Caller will actually yield.
 120       return false;
 121     }
 122     // Otherwise, we finished successfully; return true.
 123     return true;
 124   }
 125 
 126   void set_concurrent(bool b) { _concurrent = b; }
 127 };
 128 
 129 
 130 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 131  private:
 132   size_t _num_processed;
 133 
 134  public:
 135   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 136 
 137   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 138     *card_ptr = CardTableModRefBS::dirty_card_val();
 139     _num_processed++;
 140     return true;
 141   }
 142 
 143   size_t num_processed() const { return _num_processed; }
 144 };
 145 
 146 YoungList::YoungList(G1CollectedHeap* g1h) :
 147     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 148     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 149   guarantee(check_list_empty(false), "just making sure...");
 150 }
 151 
 152 void YoungList::push_region(HeapRegion *hr) {
 153   assert(!hr->is_young(), "should not already be young");
 154   assert(hr->get_next_young_region() == NULL, "cause it should!");
 155 
 156   hr->set_next_young_region(_head);
 157   _head = hr;
 158 
 159   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 160   ++_length;
 161 }
 162 
 163 void YoungList::add_survivor_region(HeapRegion* hr) {
 164   assert(hr->is_survivor(), "should be flagged as survivor region");
 165   assert(hr->get_next_young_region() == NULL, "cause it should!");
 166 
 167   hr->set_next_young_region(_survivor_head);
 168   if (_survivor_head == NULL) {
 169     _survivor_tail = hr;
 170   }
 171   _survivor_head = hr;
 172   ++_survivor_length;
 173 }
 174 
 175 void YoungList::empty_list(HeapRegion* list) {
 176   while (list != NULL) {
 177     HeapRegion* next = list->get_next_young_region();
 178     list->set_next_young_region(NULL);
 179     list->uninstall_surv_rate_group();
 180     // This is called before a Full GC and all the non-empty /
 181     // non-humongous regions at the end of the Full GC will end up as
 182     // old anyway.
 183     list->set_old();
 184     list = next;
 185   }
 186 }
 187 
 188 void YoungList::empty_list() {
 189   assert(check_list_well_formed(), "young list should be well formed");
 190 
 191   empty_list(_head);
 192   _head = NULL;
 193   _length = 0;
 194 
 195   empty_list(_survivor_head);
 196   _survivor_head = NULL;
 197   _survivor_tail = NULL;
 198   _survivor_length = 0;
 199 
 200   _last_sampled_rs_lengths = 0;
 201 
 202   assert(check_list_empty(false), "just making sure...");
 203 }
 204 
 205 bool YoungList::check_list_well_formed() {
 206   bool ret = true;
 207 
 208   uint length = 0;
 209   HeapRegion* curr = _head;
 210   HeapRegion* last = NULL;
 211   while (curr != NULL) {
 212     if (!curr->is_young()) {
 213       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 214                              "incorrectly tagged (y: %d, surv: %d)",
 215                              curr->bottom(), curr->end(),
 216                              curr->is_young(), curr->is_survivor());
 217       ret = false;
 218     }
 219     ++length;
 220     last = curr;
 221     curr = curr->get_next_young_region();
 222   }
 223   ret = ret && (length == _length);
 224 
 225   if (!ret) {
 226     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 227     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 228                            length, _length);
 229   }
 230 
 231   return ret;
 232 }
 233 
 234 bool YoungList::check_list_empty(bool check_sample) {
 235   bool ret = true;
 236 
 237   if (_length != 0) {
 238     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 239                   _length);
 240     ret = false;
 241   }
 242   if (check_sample && _last_sampled_rs_lengths != 0) {
 243     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 244     ret = false;
 245   }
 246   if (_head != NULL) {
 247     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 248     ret = false;
 249   }
 250   if (!ret) {
 251     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 252   }
 253 
 254   return ret;
 255 }
 256 
 257 void
 258 YoungList::rs_length_sampling_init() {
 259   _sampled_rs_lengths = 0;
 260   _curr               = _head;
 261 }
 262 
 263 bool
 264 YoungList::rs_length_sampling_more() {
 265   return _curr != NULL;
 266 }
 267 
 268 void
 269 YoungList::rs_length_sampling_next() {
 270   assert( _curr != NULL, "invariant" );
 271   size_t rs_length = _curr->rem_set()->occupied();
 272 
 273   _sampled_rs_lengths += rs_length;
 274 
 275   // The current region may not yet have been added to the
 276   // incremental collection set (it gets added when it is
 277   // retired as the current allocation region).
 278   if (_curr->in_collection_set()) {
 279     // Update the collection set policy information for this region
 280     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 281   }
 282 
 283   _curr = _curr->get_next_young_region();
 284   if (_curr == NULL) {
 285     _last_sampled_rs_lengths = _sampled_rs_lengths;
 286     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 287   }
 288 }
 289 
 290 void
 291 YoungList::reset_auxilary_lists() {
 292   guarantee( is_empty(), "young list should be empty" );
 293   assert(check_list_well_formed(), "young list should be well formed");
 294 
 295   // Add survivor regions to SurvRateGroup.
 296   _g1h->g1_policy()->note_start_adding_survivor_regions();
 297   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 298 
 299   int young_index_in_cset = 0;
 300   for (HeapRegion* curr = _survivor_head;
 301        curr != NULL;
 302        curr = curr->get_next_young_region()) {
 303     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 304 
 305     // The region is a non-empty survivor so let's add it to
 306     // the incremental collection set for the next evacuation
 307     // pause.
 308     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 309     young_index_in_cset += 1;
 310   }
 311   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 312   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 313 
 314   _head   = _survivor_head;
 315   _length = _survivor_length;
 316   if (_survivor_head != NULL) {
 317     assert(_survivor_tail != NULL, "cause it shouldn't be");
 318     assert(_survivor_length > 0, "invariant");
 319     _survivor_tail->set_next_young_region(NULL);
 320   }
 321 
 322   // Don't clear the survivor list handles until the start of
 323   // the next evacuation pause - we need it in order to re-tag
 324   // the survivor regions from this evacuation pause as 'young'
 325   // at the start of the next.
 326 
 327   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 328 
 329   assert(check_list_well_formed(), "young list should be well formed");
 330 }
 331 
 332 void YoungList::print() {
 333   HeapRegion* lists[] = {_head,   _survivor_head};
 334   const char* names[] = {"YOUNG", "SURVIVOR"};
 335 
 336   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 337     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 338     HeapRegion *curr = lists[list];
 339     if (curr == NULL)
 340       gclog_or_tty->print_cr("  empty");
 341     while (curr != NULL) {
 342       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 343                              HR_FORMAT_PARAMS(curr),
 344                              curr->prev_top_at_mark_start(),
 345                              curr->next_top_at_mark_start(),
 346                              curr->age_in_surv_rate_group_cond());
 347       curr = curr->get_next_young_region();
 348     }
 349   }
 350 
 351   gclog_or_tty->cr();
 352 }
 353 
 354 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 355   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 356 }
 357 
 358 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 359   // The from card cache is not the memory that is actually committed. So we cannot
 360   // take advantage of the zero_filled parameter.
 361   reset_from_card_cache(start_idx, num_regions);
 362 }
 363 
 364 ////////////////////// G1CollectedHeap methods ////////////////////////////////
 365 
 366 // Records the fact that a marking phase is no longer in progress.
 367 void G1CollectedHeap::set_marking_complete() {
 368   g1_policy()->collector_state()->set_marking_complete();
 369 }
 370 
 371 // Records the fact that a marking phase has commenced.
 372 void G1CollectedHeap::set_marking_started() {
 373   g1_policy()->collector_state()->set_marking_started();
 374 }
 375 
 376 // Returns whether a marking phase is currently in progress.
 377 bool G1CollectedHeap::mark_in_progress() {
 378   return g1_policy()->collector_state()->mark_in_progress();
 379 }
 380 
 381 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 382 {
 383   // Claim the right to put the region on the dirty cards region list
 384   // by installing a self pointer.
 385   HeapRegion* next = hr->get_next_dirty_cards_region();
 386   if (next == NULL) {
 387     HeapRegion* res = (HeapRegion*)
 388       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 389                           NULL);
 390     if (res == NULL) {
 391       HeapRegion* head;
 392       do {
 393         // Put the region to the dirty cards region list.
 394         head = _dirty_cards_region_list;
 395         next = (HeapRegion*)
 396           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 397         if (next == head) {
 398           assert(hr->get_next_dirty_cards_region() == hr,
 399                  "hr->get_next_dirty_cards_region() != hr");
 400           if (next == NULL) {
 401             // The last region in the list points to itself.
 402             hr->set_next_dirty_cards_region(hr);
 403           } else {
 404             hr->set_next_dirty_cards_region(next);
 405           }
 406         }
 407       } while (next != head);
 408     }
 409   }
 410 }
 411 
 412 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 413 {
 414   HeapRegion* head;
 415   HeapRegion* hr;
 416   do {
 417     head = _dirty_cards_region_list;
 418     if (head == NULL) {
 419       return NULL;
 420     }
 421     HeapRegion* new_head = head->get_next_dirty_cards_region();
 422     if (head == new_head) {
 423       // The last region.
 424       new_head = NULL;
 425     }
 426     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 427                                           head);
 428   } while (hr != head);
 429   assert(hr != NULL, "invariant");
 430   hr->set_next_dirty_cards_region(NULL);
 431   return hr;
 432 }
 433 
 434 #ifdef ASSERT
 435 // A region is added to the collection set as it is retired
 436 // so an address p can point to a region which will be in the
 437 // collection set but has not yet been retired.  This method
 438 // therefore is only accurate during a GC pause after all
 439 // regions have been retired.  It is used for debugging
 440 // to check if an nmethod has references to objects that can
 441 // be move during a partial collection.  Though it can be
 442 // inaccurate, it is sufficient for G1 because the conservative
 443 // implementation of is_scavengable() for G1 will indicate that
 444 // all nmethods must be scanned during a partial collection.
 445 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 446   if (p == NULL) {
 447     return false;
 448   }
 449   return heap_region_containing(p)->in_collection_set();
 450 }
 451 #endif
 452 
 453 // Returns true if the reference points to an object that
 454 // can move in an incremental collection.
 455 bool G1CollectedHeap::is_scavengable(const void* p) {
 456   HeapRegion* hr = heap_region_containing(p);
 457   return !hr->is_humongous();
 458 }
 459 
 460 // Private class members.
 461 
 462 G1CollectedHeap* G1CollectedHeap::_g1h;
 463 
 464 // Private methods.
 465 
 466 HeapRegion*
 467 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 468   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 469   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 470     if (!_secondary_free_list.is_empty()) {
 471       if (G1ConcRegionFreeingVerbose) {
 472         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 473                                "secondary_free_list has %u entries",
 474                                _secondary_free_list.length());
 475       }
 476       // It looks as if there are free regions available on the
 477       // secondary_free_list. Let's move them to the free_list and try
 478       // again to allocate from it.
 479       append_secondary_free_list();
 480 
 481       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 482              "empty we should have moved at least one entry to the free_list");
 483       HeapRegion* res = _hrm.allocate_free_region(is_old);
 484       if (G1ConcRegionFreeingVerbose) {
 485         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 486                                "allocated "HR_FORMAT" from secondary_free_list",
 487                                HR_FORMAT_PARAMS(res));
 488       }
 489       return res;
 490     }
 491 
 492     // Wait here until we get notified either when (a) there are no
 493     // more free regions coming or (b) some regions have been moved on
 494     // the secondary_free_list.
 495     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 496   }
 497 
 498   if (G1ConcRegionFreeingVerbose) {
 499     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 500                            "could not allocate from secondary_free_list");
 501   }
 502   return NULL;
 503 }
 504 
 505 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 506   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 507          "the only time we use this to allocate a humongous region is "
 508          "when we are allocating a single humongous region");
 509 
 510   HeapRegion* res;
 511   if (G1StressConcRegionFreeing) {
 512     if (!_secondary_free_list.is_empty()) {
 513       if (G1ConcRegionFreeingVerbose) {
 514         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 515                                "forced to look at the secondary_free_list");
 516       }
 517       res = new_region_try_secondary_free_list(is_old);
 518       if (res != NULL) {
 519         return res;
 520       }
 521     }
 522   }
 523 
 524   res = _hrm.allocate_free_region(is_old);
 525 
 526   if (res == NULL) {
 527     if (G1ConcRegionFreeingVerbose) {
 528       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 529                              "res == NULL, trying the secondary_free_list");
 530     }
 531     res = new_region_try_secondary_free_list(is_old);
 532   }
 533   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 534     // Currently, only attempts to allocate GC alloc regions set
 535     // do_expand to true. So, we should only reach here during a
 536     // safepoint. If this assumption changes we might have to
 537     // reconsider the use of _expand_heap_after_alloc_failure.
 538     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 539 
 540     ergo_verbose1(ErgoHeapSizing,
 541                   "attempt heap expansion",
 542                   ergo_format_reason("region allocation request failed")
 543                   ergo_format_byte("allocation request"),
 544                   word_size * HeapWordSize);
 545     if (expand(word_size * HeapWordSize)) {
 546       // Given that expand() succeeded in expanding the heap, and we
 547       // always expand the heap by an amount aligned to the heap
 548       // region size, the free list should in theory not be empty.
 549       // In either case allocate_free_region() will check for NULL.
 550       res = _hrm.allocate_free_region(is_old);
 551     } else {
 552       _expand_heap_after_alloc_failure = false;
 553     }
 554   }
 555   return res;
 556 }
 557 
 558 HeapWord*
 559 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 560                                                            uint num_regions,
 561                                                            size_t word_size,
 562                                                            AllocationContext_t context) {
 563   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 564   assert(is_humongous(word_size), "word_size should be humongous");
 565   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 566 
 567   // Index of last region in the series + 1.
 568   uint last = first + num_regions;
 569 
 570   // We need to initialize the region(s) we just discovered. This is
 571   // a bit tricky given that it can happen concurrently with
 572   // refinement threads refining cards on these regions and
 573   // potentially wanting to refine the BOT as they are scanning
 574   // those cards (this can happen shortly after a cleanup; see CR
 575   // 6991377). So we have to set up the region(s) carefully and in
 576   // a specific order.
 577 
 578   // The word size sum of all the regions we will allocate.
 579   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 580   assert(word_size <= word_size_sum, "sanity");
 581 
 582   // This will be the "starts humongous" region.
 583   HeapRegion* first_hr = region_at(first);
 584   // The header of the new object will be placed at the bottom of
 585   // the first region.
 586   HeapWord* new_obj = first_hr->bottom();
 587   // This will be the new end of the first region in the series that
 588   // should also match the end of the last region in the series.
 589   HeapWord* new_end = new_obj + word_size_sum;
 590   // This will be the new top of the first region that will reflect
 591   // this allocation.
 592   HeapWord* new_top = new_obj + word_size;
 593 
 594   // First, we need to zero the header of the space that we will be
 595   // allocating. When we update top further down, some refinement
 596   // threads might try to scan the region. By zeroing the header we
 597   // ensure that any thread that will try to scan the region will
 598   // come across the zero klass word and bail out.
 599   //
 600   // NOTE: It would not have been correct to have used
 601   // CollectedHeap::fill_with_object() and make the space look like
 602   // an int array. The thread that is doing the allocation will
 603   // later update the object header to a potentially different array
 604   // type and, for a very short period of time, the klass and length
 605   // fields will be inconsistent. This could cause a refinement
 606   // thread to calculate the object size incorrectly.
 607   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 608 
 609   // We will set up the first region as "starts humongous". This
 610   // will also update the BOT covering all the regions to reflect
 611   // that there is a single object that starts at the bottom of the
 612   // first region.
 613   first_hr->set_starts_humongous(new_top, new_end);
 614   first_hr->set_allocation_context(context);
 615   // Then, if there are any, we will set up the "continues
 616   // humongous" regions.
 617   HeapRegion* hr = NULL;
 618   for (uint i = first + 1; i < last; ++i) {
 619     hr = region_at(i);
 620     hr->set_continues_humongous(first_hr);
 621     hr->set_allocation_context(context);
 622   }
 623   // If we have "continues humongous" regions (hr != NULL), then the
 624   // end of the last one should match new_end.
 625   assert(hr == NULL || hr->end() == new_end, "sanity");
 626 
 627   // Up to this point no concurrent thread would have been able to
 628   // do any scanning on any region in this series. All the top
 629   // fields still point to bottom, so the intersection between
 630   // [bottom,top] and [card_start,card_end] will be empty. Before we
 631   // update the top fields, we'll do a storestore to make sure that
 632   // no thread sees the update to top before the zeroing of the
 633   // object header and the BOT initialization.
 634   OrderAccess::storestore();
 635 
 636   // Now that the BOT and the object header have been initialized,
 637   // we can update top of the "starts humongous" region.
 638   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 639          "new_top should be in this region");
 640   first_hr->set_top(new_top);
 641   if (_hr_printer.is_active()) {
 642     HeapWord* bottom = first_hr->bottom();
 643     HeapWord* end = first_hr->orig_end();
 644     if ((first + 1) == last) {
 645       // the series has a single humongous region
 646       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 647     } else {
 648       // the series has more than one humongous regions
 649       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 650     }
 651   }
 652 
 653   // Now, we will update the top fields of the "continues humongous"
 654   // regions. The reason we need to do this is that, otherwise,
 655   // these regions would look empty and this will confuse parts of
 656   // G1. For example, the code that looks for a consecutive number
 657   // of empty regions will consider them empty and try to
 658   // re-allocate them. We can extend is_empty() to also include
 659   // !is_continues_humongous(), but it is easier to just update the top
 660   // fields here. The way we set top for all regions (i.e., top ==
 661   // end for all regions but the last one, top == new_top for the
 662   // last one) is actually used when we will free up the humongous
 663   // region in free_humongous_region().
 664   hr = NULL;
 665   for (uint i = first + 1; i < last; ++i) {
 666     hr = region_at(i);
 667     if ((i + 1) == last) {
 668       // last continues humongous region
 669       assert(hr->bottom() < new_top && new_top <= hr->end(),
 670              "new_top should fall on this region");
 671       hr->set_top(new_top);
 672       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 673     } else {
 674       // not last one
 675       assert(new_top > hr->end(), "new_top should be above this region");
 676       hr->set_top(hr->end());
 677       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 678     }
 679   }
 680   // If we have continues humongous regions (hr != NULL), then the
 681   // end of the last one should match new_end and its top should
 682   // match new_top.
 683   assert(hr == NULL ||
 684          (hr->end() == new_end && hr->top() == new_top), "sanity");
 685   check_bitmaps("Humongous Region Allocation", first_hr);
 686 
 687   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 688   _allocator->increase_used(first_hr->used());
 689   _humongous_set.add(first_hr);
 690 
 691   return new_obj;
 692 }
 693 
 694 // If could fit into free regions w/o expansion, try.
 695 // Otherwise, if can expand, do so.
 696 // Otherwise, if using ex regions might help, try with ex given back.
 697 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 698   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 699 
 700   verify_region_sets_optional();
 701 
 702   uint first = G1_NO_HRM_INDEX;
 703   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 704 
 705   if (obj_regions == 1) {
 706     // Only one region to allocate, try to use a fast path by directly allocating
 707     // from the free lists. Do not try to expand here, we will potentially do that
 708     // later.
 709     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 710     if (hr != NULL) {
 711       first = hr->hrm_index();
 712     }
 713   } else {
 714     // We can't allocate humongous regions spanning more than one region while
 715     // cleanupComplete() is running, since some of the regions we find to be
 716     // empty might not yet be added to the free list. It is not straightforward
 717     // to know in which list they are on so that we can remove them. We only
 718     // need to do this if we need to allocate more than one region to satisfy the
 719     // current humongous allocation request. If we are only allocating one region
 720     // we use the one-region region allocation code (see above), that already
 721     // potentially waits for regions from the secondary free list.
 722     wait_while_free_regions_coming();
 723     append_secondary_free_list_if_not_empty_with_lock();
 724 
 725     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 726     // are lucky enough to find some.
 727     first = _hrm.find_contiguous_only_empty(obj_regions);
 728     if (first != G1_NO_HRM_INDEX) {
 729       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 730     }
 731   }
 732 
 733   if (first == G1_NO_HRM_INDEX) {
 734     // Policy: We could not find enough regions for the humongous object in the
 735     // free list. Look through the heap to find a mix of free and uncommitted regions.
 736     // If so, try expansion.
 737     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 738     if (first != G1_NO_HRM_INDEX) {
 739       // We found something. Make sure these regions are committed, i.e. expand
 740       // the heap. Alternatively we could do a defragmentation GC.
 741       ergo_verbose1(ErgoHeapSizing,
 742                     "attempt heap expansion",
 743                     ergo_format_reason("humongous allocation request failed")
 744                     ergo_format_byte("allocation request"),
 745                     word_size * HeapWordSize);
 746 
 747       _hrm.expand_at(first, obj_regions);
 748       g1_policy()->record_new_heap_size(num_regions());
 749 
 750 #ifdef ASSERT
 751       for (uint i = first; i < first + obj_regions; ++i) {
 752         HeapRegion* hr = region_at(i);
 753         assert(hr->is_free(), "sanity");
 754         assert(hr->is_empty(), "sanity");
 755         assert(is_on_master_free_list(hr), "sanity");
 756       }
 757 #endif
 758       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 759     } else {
 760       // Policy: Potentially trigger a defragmentation GC.
 761     }
 762   }
 763 
 764   HeapWord* result = NULL;
 765   if (first != G1_NO_HRM_INDEX) {
 766     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 767                                                        word_size, context);
 768     assert(result != NULL, "it should always return a valid result");
 769 
 770     // A successful humongous object allocation changes the used space
 771     // information of the old generation so we need to recalculate the
 772     // sizes and update the jstat counters here.
 773     g1mm()->update_sizes();
 774   }
 775 
 776   verify_region_sets_optional();
 777 
 778   return result;
 779 }
 780 
 781 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 782   assert_heap_not_locked_and_not_at_safepoint();
 783   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 784 
 785   unsigned int dummy_gc_count_before;
 786   int dummy_gclocker_retry_count = 0;
 787   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 788 }
 789 
 790 HeapWord*
 791 G1CollectedHeap::mem_allocate(size_t word_size,
 792                               bool*  gc_overhead_limit_was_exceeded) {
 793   assert_heap_not_locked_and_not_at_safepoint();
 794 
 795   // Loop until the allocation is satisfied, or unsatisfied after GC.
 796   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 797     unsigned int gc_count_before;
 798 
 799     HeapWord* result = NULL;
 800     if (!is_humongous(word_size)) {
 801       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 802     } else {
 803       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 804     }
 805     if (result != NULL) {
 806       return result;
 807     }
 808 
 809     // Create the garbage collection operation...
 810     VM_G1CollectForAllocation op(gc_count_before, word_size);
 811     op.set_allocation_context(AllocationContext::current());
 812 
 813     // ...and get the VM thread to execute it.
 814     VMThread::execute(&op);
 815 
 816     if (op.prologue_succeeded() && op.pause_succeeded()) {
 817       // If the operation was successful we'll return the result even
 818       // if it is NULL. If the allocation attempt failed immediately
 819       // after a Full GC, it's unlikely we'll be able to allocate now.
 820       HeapWord* result = op.result();
 821       if (result != NULL && !is_humongous(word_size)) {
 822         // Allocations that take place on VM operations do not do any
 823         // card dirtying and we have to do it here. We only have to do
 824         // this for non-humongous allocations, though.
 825         dirty_young_block(result, word_size);
 826       }
 827       return result;
 828     } else {
 829       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 830         return NULL;
 831       }
 832       assert(op.result() == NULL,
 833              "the result should be NULL if the VM op did not succeed");
 834     }
 835 
 836     // Give a warning if we seem to be looping forever.
 837     if ((QueuedAllocationWarningCount > 0) &&
 838         (try_count % QueuedAllocationWarningCount == 0)) {
 839       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 840     }
 841   }
 842 
 843   ShouldNotReachHere();
 844   return NULL;
 845 }
 846 
 847 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 848                                                    AllocationContext_t context,
 849                                                    unsigned int *gc_count_before_ret,
 850                                                    int* gclocker_retry_count_ret) {
 851   // Make sure you read the note in attempt_allocation_humongous().
 852 
 853   assert_heap_not_locked_and_not_at_safepoint();
 854   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 855          "be called for humongous allocation requests");
 856 
 857   // We should only get here after the first-level allocation attempt
 858   // (attempt_allocation()) failed to allocate.
 859 
 860   // We will loop until a) we manage to successfully perform the
 861   // allocation or b) we successfully schedule a collection which
 862   // fails to perform the allocation. b) is the only case when we'll
 863   // return NULL.
 864   HeapWord* result = NULL;
 865   for (int try_count = 1; /* we'll return */; try_count += 1) {
 866     bool should_try_gc;
 867     unsigned int gc_count_before;
 868 
 869     {
 870       MutexLockerEx x(Heap_lock);
 871       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 872                                                                                     false /* bot_updates */);
 873       if (result != NULL) {
 874         return result;
 875       }
 876 
 877       // If we reach here, attempt_allocation_locked() above failed to
 878       // allocate a new region. So the mutator alloc region should be NULL.
 879       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 880 
 881       if (GC_locker::is_active_and_needs_gc()) {
 882         if (g1_policy()->can_expand_young_list()) {
 883           // No need for an ergo verbose message here,
 884           // can_expand_young_list() does this when it returns true.
 885           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 886                                                                                        false /* bot_updates */);
 887           if (result != NULL) {
 888             return result;
 889           }
 890         }
 891         should_try_gc = false;
 892       } else {
 893         // The GCLocker may not be active but the GCLocker initiated
 894         // GC may not yet have been performed (GCLocker::needs_gc()
 895         // returns true). In this case we do not try this GC and
 896         // wait until the GCLocker initiated GC is performed, and
 897         // then retry the allocation.
 898         if (GC_locker::needs_gc()) {
 899           should_try_gc = false;
 900         } else {
 901           // Read the GC count while still holding the Heap_lock.
 902           gc_count_before = total_collections();
 903           should_try_gc = true;
 904         }
 905       }
 906     }
 907 
 908     if (should_try_gc) {
 909       bool succeeded;
 910       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 911           GCCause::_g1_inc_collection_pause);
 912       if (result != NULL) {
 913         assert(succeeded, "only way to get back a non-NULL result");
 914         return result;
 915       }
 916 
 917       if (succeeded) {
 918         // If we get here we successfully scheduled a collection which
 919         // failed to allocate. No point in trying to allocate
 920         // further. We'll just return NULL.
 921         MutexLockerEx x(Heap_lock);
 922         *gc_count_before_ret = total_collections();
 923         return NULL;
 924       }
 925     } else {
 926       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 927         MutexLockerEx x(Heap_lock);
 928         *gc_count_before_ret = total_collections();
 929         return NULL;
 930       }
 931       // The GCLocker is either active or the GCLocker initiated
 932       // GC has not yet been performed. Stall until it is and
 933       // then retry the allocation.
 934       GC_locker::stall_until_clear();
 935       (*gclocker_retry_count_ret) += 1;
 936     }
 937 
 938     // We can reach here if we were unsuccessful in scheduling a
 939     // collection (because another thread beat us to it) or if we were
 940     // stalled due to the GC locker. In either can we should retry the
 941     // allocation attempt in case another thread successfully
 942     // performed a collection and reclaimed enough space. We do the
 943     // first attempt (without holding the Heap_lock) here and the
 944     // follow-on attempt will be at the start of the next loop
 945     // iteration (after taking the Heap_lock).
 946     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 947                                                                            false /* bot_updates */);
 948     if (result != NULL) {
 949       return result;
 950     }
 951 
 952     // Give a warning if we seem to be looping forever.
 953     if ((QueuedAllocationWarningCount > 0) &&
 954         (try_count % QueuedAllocationWarningCount == 0)) {
 955       warning("G1CollectedHeap::attempt_allocation_slow() "
 956               "retries %d times", try_count);
 957     }
 958   }
 959 
 960   ShouldNotReachHere();
 961   return NULL;
 962 }
 963 
 964 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 965                                                         unsigned int * gc_count_before_ret,
 966                                                         int* gclocker_retry_count_ret) {
 967   // The structure of this method has a lot of similarities to
 968   // attempt_allocation_slow(). The reason these two were not merged
 969   // into a single one is that such a method would require several "if
 970   // allocation is not humongous do this, otherwise do that"
 971   // conditional paths which would obscure its flow. In fact, an early
 972   // version of this code did use a unified method which was harder to
 973   // follow and, as a result, it had subtle bugs that were hard to
 974   // track down. So keeping these two methods separate allows each to
 975   // be more readable. It will be good to keep these two in sync as
 976   // much as possible.
 977 
 978   assert_heap_not_locked_and_not_at_safepoint();
 979   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 980          "should only be called for humongous allocations");
 981 
 982   // Humongous objects can exhaust the heap quickly, so we should check if we
 983   // need to start a marking cycle at each humongous object allocation. We do
 984   // the check before we do the actual allocation. The reason for doing it
 985   // before the allocation is that we avoid having to keep track of the newly
 986   // allocated memory while we do a GC.
 987   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 988                                            word_size)) {
 989     collect(GCCause::_g1_humongous_allocation);
 990   }
 991 
 992   // We will loop until a) we manage to successfully perform the
 993   // allocation or b) we successfully schedule a collection which
 994   // fails to perform the allocation. b) is the only case when we'll
 995   // return NULL.
 996   HeapWord* result = NULL;
 997   for (int try_count = 1; /* we'll return */; try_count += 1) {
 998     bool should_try_gc;
 999     unsigned int gc_count_before;
1000 
1001     {
1002       MutexLockerEx x(Heap_lock);
1003 
1004       // Given that humongous objects are not allocated in young
1005       // regions, we'll first try to do the allocation without doing a
1006       // collection hoping that there's enough space in the heap.
1007       result = humongous_obj_allocate(word_size, AllocationContext::current());
1008       if (result != NULL) {
1009         return result;
1010       }
1011 
1012       if (GC_locker::is_active_and_needs_gc()) {
1013         should_try_gc = false;
1014       } else {
1015          // The GCLocker may not be active but the GCLocker initiated
1016         // GC may not yet have been performed (GCLocker::needs_gc()
1017         // returns true). In this case we do not try this GC and
1018         // wait until the GCLocker initiated GC is performed, and
1019         // then retry the allocation.
1020         if (GC_locker::needs_gc()) {
1021           should_try_gc = false;
1022         } else {
1023           // Read the GC count while still holding the Heap_lock.
1024           gc_count_before = total_collections();
1025           should_try_gc = true;
1026         }
1027       }
1028     }
1029 
1030     if (should_try_gc) {
1031       // If we failed to allocate the humongous object, we should try to
1032       // do a collection pause (if we're allowed) in case it reclaims
1033       // enough space for the allocation to succeed after the pause.
1034 
1035       bool succeeded;
1036       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1037           GCCause::_g1_humongous_allocation);
1038       if (result != NULL) {
1039         assert(succeeded, "only way to get back a non-NULL result");
1040         return result;
1041       }
1042 
1043       if (succeeded) {
1044         // If we get here we successfully scheduled a collection which
1045         // failed to allocate. No point in trying to allocate
1046         // further. We'll just return NULL.
1047         MutexLockerEx x(Heap_lock);
1048         *gc_count_before_ret = total_collections();
1049         return NULL;
1050       }
1051     } else {
1052       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1053         MutexLockerEx x(Heap_lock);
1054         *gc_count_before_ret = total_collections();
1055         return NULL;
1056       }
1057       // The GCLocker is either active or the GCLocker initiated
1058       // GC has not yet been performed. Stall until it is and
1059       // then retry the allocation.
1060       GC_locker::stall_until_clear();
1061       (*gclocker_retry_count_ret) += 1;
1062     }
1063 
1064     // We can reach here if we were unsuccessful in scheduling a
1065     // collection (because another thread beat us to it) or if we were
1066     // stalled due to the GC locker. In either can we should retry the
1067     // allocation attempt in case another thread successfully
1068     // performed a collection and reclaimed enough space.  Give a
1069     // warning if we seem to be looping forever.
1070 
1071     if ((QueuedAllocationWarningCount > 0) &&
1072         (try_count % QueuedAllocationWarningCount == 0)) {
1073       warning("G1CollectedHeap::attempt_allocation_humongous() "
1074               "retries %d times", try_count);
1075     }
1076   }
1077 
1078   ShouldNotReachHere();
1079   return NULL;
1080 }
1081 
1082 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1083                                                            AllocationContext_t context,
1084                                                            bool expect_null_mutator_alloc_region) {
1085   assert_at_safepoint(true /* should_be_vm_thread */);
1086   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1087                                              !expect_null_mutator_alloc_region,
1088          "the current alloc region was unexpectedly found to be non-NULL");
1089 
1090   if (!is_humongous(word_size)) {
1091     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1092                                                       false /* bot_updates */);
1093   } else {
1094     HeapWord* result = humongous_obj_allocate(word_size, context);
1095     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1096       g1_policy()->collector_state()->set_initiate_conc_mark_if_possible(true);
1097     }
1098     return result;
1099   }
1100 
1101   ShouldNotReachHere();
1102 }
1103 
1104 class PostMCRemSetClearClosure: public HeapRegionClosure {
1105   G1CollectedHeap* _g1h;
1106   ModRefBarrierSet* _mr_bs;
1107 public:
1108   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1109     _g1h(g1h), _mr_bs(mr_bs) {}
1110 
1111   bool doHeapRegion(HeapRegion* r) {
1112     HeapRegionRemSet* hrrs = r->rem_set();
1113 
1114     if (r->is_continues_humongous()) {
1115       // We'll assert that the strong code root list and RSet is empty
1116       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1117       assert(hrrs->occupied() == 0, "RSet should be empty");
1118       return false;
1119     }
1120 
1121     _g1h->reset_gc_time_stamps(r);
1122     hrrs->clear();
1123     // You might think here that we could clear just the cards
1124     // corresponding to the used region.  But no: if we leave a dirty card
1125     // in a region we might allocate into, then it would prevent that card
1126     // from being enqueued, and cause it to be missed.
1127     // Re: the performance cost: we shouldn't be doing full GC anyway!
1128     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1129 
1130     return false;
1131   }
1132 };
1133 
1134 void G1CollectedHeap::clear_rsets_post_compaction() {
1135   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1136   heap_region_iterate(&rs_clear);
1137 }
1138 
1139 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1140   G1CollectedHeap*   _g1h;
1141   UpdateRSOopClosure _cl;
1142   int                _worker_i;
1143 public:
1144   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1145     _cl(g1->g1_rem_set(), worker_i),
1146     _worker_i(worker_i),
1147     _g1h(g1)
1148   { }
1149 
1150   bool doHeapRegion(HeapRegion* r) {
1151     if (!r->is_continues_humongous()) {
1152       _cl.set_from(r);
1153       r->oop_iterate(&_cl);
1154     }
1155     return false;
1156   }
1157 };
1158 
1159 class ParRebuildRSTask: public AbstractGangTask {
1160   G1CollectedHeap* _g1;
1161   HeapRegionClaimer _hrclaimer;
1162 
1163 public:
1164   ParRebuildRSTask(G1CollectedHeap* g1) :
1165       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1166 
1167   void work(uint worker_id) {
1168     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1169     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1170   }
1171 };
1172 
1173 class PostCompactionPrinterClosure: public HeapRegionClosure {
1174 private:
1175   G1HRPrinter* _hr_printer;
1176 public:
1177   bool doHeapRegion(HeapRegion* hr) {
1178     assert(!hr->is_young(), "not expecting to find young regions");
1179     if (hr->is_free()) {
1180       // We only generate output for non-empty regions.
1181     } else if (hr->is_starts_humongous()) {
1182       if (hr->region_num() == 1) {
1183         // single humongous region
1184         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1185       } else {
1186         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1187       }
1188     } else if (hr->is_continues_humongous()) {
1189       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1190     } else if (hr->is_old()) {
1191       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1192     } else {
1193       ShouldNotReachHere();
1194     }
1195     return false;
1196   }
1197 
1198   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1199     : _hr_printer(hr_printer) { }
1200 };
1201 
1202 void G1CollectedHeap::print_hrm_post_compaction() {
1203   PostCompactionPrinterClosure cl(hr_printer());
1204   heap_region_iterate(&cl);
1205 }
1206 
1207 bool G1CollectedHeap::do_collection(bool explicit_gc,
1208                                     bool clear_all_soft_refs,
1209                                     size_t word_size) {
1210   assert_at_safepoint(true /* should_be_vm_thread */);
1211 
1212   if (GC_locker::check_active_before_gc()) {
1213     return false;
1214   }
1215 
1216   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1217   gc_timer->register_gc_start();
1218 
1219   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1220   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1221 
1222   SvcGCMarker sgcm(SvcGCMarker::FULL);
1223   ResourceMark rm;
1224 
1225   print_heap_before_gc();
1226   trace_heap_before_gc(gc_tracer);
1227 
1228   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1229 
1230   verify_region_sets_optional();
1231 
1232   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1233                            collector_policy()->should_clear_all_soft_refs();
1234 
1235   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1236 
1237   {
1238     IsGCActiveMark x;
1239 
1240     // Timing
1241     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1242     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1243 
1244     {
1245       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1246       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1247       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1248 
1249       g1_policy()->record_full_collection_start();
1250 
1251       // Note: When we have a more flexible GC logging framework that
1252       // allows us to add optional attributes to a GC log record we
1253       // could consider timing and reporting how long we wait in the
1254       // following two methods.
1255       wait_while_free_regions_coming();
1256       // If we start the compaction before the CM threads finish
1257       // scanning the root regions we might trip them over as we'll
1258       // be moving objects / updating references. So let's wait until
1259       // they are done. By telling them to abort, they should complete
1260       // early.
1261       _cm->root_regions()->abort();
1262       _cm->root_regions()->wait_until_scan_finished();
1263       append_secondary_free_list_if_not_empty_with_lock();
1264 
1265       gc_prologue(true);
1266       increment_total_collections(true /* full gc */);
1267       increment_old_marking_cycles_started();
1268 
1269       assert(used() == recalculate_used(), "Should be equal");
1270 
1271       verify_before_gc();
1272 
1273       check_bitmaps("Full GC Start");
1274       pre_full_gc_dump(gc_timer);
1275 
1276       COMPILER2_PRESENT(DerivedPointerTable::clear());
1277 
1278       // Disable discovery and empty the discovered lists
1279       // for the CM ref processor.
1280       ref_processor_cm()->disable_discovery();
1281       ref_processor_cm()->abandon_partial_discovery();
1282       ref_processor_cm()->verify_no_references_recorded();
1283 
1284       // Abandon current iterations of concurrent marking and concurrent
1285       // refinement, if any are in progress. We have to do this before
1286       // wait_until_scan_finished() below.
1287       concurrent_mark()->abort();
1288 
1289       // Make sure we'll choose a new allocation region afterwards.
1290       _allocator->release_mutator_alloc_region();
1291       _allocator->abandon_gc_alloc_regions();
1292       g1_rem_set()->cleanupHRRS();
1293 
1294       // We should call this after we retire any currently active alloc
1295       // regions so that all the ALLOC / RETIRE events are generated
1296       // before the start GC event.
1297       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1298 
1299       // We may have added regions to the current incremental collection
1300       // set between the last GC or pause and now. We need to clear the
1301       // incremental collection set and then start rebuilding it afresh
1302       // after this full GC.
1303       abandon_collection_set(g1_policy()->inc_cset_head());
1304       g1_policy()->clear_incremental_cset();
1305       g1_policy()->stop_incremental_cset_building();
1306 
1307       tear_down_region_sets(false /* free_list_only */);
1308       g1_policy()->collector_state()->set_gcs_are_young(true);
1309 
1310       // See the comments in g1CollectedHeap.hpp and
1311       // G1CollectedHeap::ref_processing_init() about
1312       // how reference processing currently works in G1.
1313 
1314       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1315       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1316 
1317       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1318       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1319 
1320       ref_processor_stw()->enable_discovery();
1321       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1322 
1323       // Do collection work
1324       {
1325         HandleMark hm;  // Discard invalid handles created during gc
1326         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1327       }
1328 
1329       assert(num_free_regions() == 0, "we should not have added any free regions");
1330       rebuild_region_sets(false /* free_list_only */);
1331 
1332       // Enqueue any discovered reference objects that have
1333       // not been removed from the discovered lists.
1334       ref_processor_stw()->enqueue_discovered_references();
1335 
1336       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1337 
1338       MemoryService::track_memory_usage();
1339 
1340       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1341       ref_processor_stw()->verify_no_references_recorded();
1342 
1343       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1344       ClassLoaderDataGraph::purge();
1345       MetaspaceAux::verify_metrics();
1346 
1347       // Note: since we've just done a full GC, concurrent
1348       // marking is no longer active. Therefore we need not
1349       // re-enable reference discovery for the CM ref processor.
1350       // That will be done at the start of the next marking cycle.
1351       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1352       ref_processor_cm()->verify_no_references_recorded();
1353 
1354       reset_gc_time_stamp();
1355       // Since everything potentially moved, we will clear all remembered
1356       // sets, and clear all cards.  Later we will rebuild remembered
1357       // sets. We will also reset the GC time stamps of the regions.
1358       clear_rsets_post_compaction();
1359       check_gc_time_stamps();
1360 
1361       // Resize the heap if necessary.
1362       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1363 
1364       if (_hr_printer.is_active()) {
1365         // We should do this after we potentially resize the heap so
1366         // that all the COMMIT / UNCOMMIT events are generated before
1367         // the end GC event.
1368 
1369         print_hrm_post_compaction();
1370         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1371       }
1372 
1373       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1374       if (hot_card_cache->use_cache()) {
1375         hot_card_cache->reset_card_counts();
1376         hot_card_cache->reset_hot_cache();
1377       }
1378 
1379       // Rebuild remembered sets of all regions.
1380       uint n_workers =
1381         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1382                                                 workers()->active_workers(),
1383                                                 Threads::number_of_non_daemon_threads());
1384       assert(UseDynamicNumberOfGCThreads ||
1385              n_workers == workers()->total_workers(),
1386              "If not dynamic should be using all the  workers");
1387       workers()->set_active_workers(n_workers);
1388       // Set parallel threads in the heap (_n_par_threads) only
1389       // before a parallel phase and always reset it to 0 after
1390       // the phase so that the number of parallel threads does
1391       // no get carried forward to a serial phase where there
1392       // may be code that is "possibly_parallel".
1393       set_par_threads(n_workers);
1394 
1395       ParRebuildRSTask rebuild_rs_task(this);
1396       assert(UseDynamicNumberOfGCThreads ||
1397              workers()->active_workers() == workers()->total_workers(),
1398              "Unless dynamic should use total workers");
1399       // Use the most recent number of  active workers
1400       assert(workers()->active_workers() > 0,
1401              "Active workers not properly set");
1402       set_par_threads(workers()->active_workers());
1403       workers()->run_task(&rebuild_rs_task);
1404       set_par_threads(0);
1405 
1406       // Rebuild the strong code root lists for each region
1407       rebuild_strong_code_roots();
1408 
1409       if (true) { // FIXME
1410         MetaspaceGC::compute_new_size();
1411       }
1412 
1413 #ifdef TRACESPINNING
1414       ParallelTaskTerminator::print_termination_counts();
1415 #endif
1416 
1417       // Discard all rset updates
1418       JavaThread::dirty_card_queue_set().abandon_logs();
1419       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1420 
1421       _young_list->reset_sampled_info();
1422       // At this point there should be no regions in the
1423       // entire heap tagged as young.
1424       assert(check_young_list_empty(true /* check_heap */),
1425              "young list should be empty at this point");
1426 
1427       // Update the number of full collections that have been completed.
1428       increment_old_marking_cycles_completed(false /* concurrent */);
1429 
1430       _hrm.verify_optional();
1431       verify_region_sets_optional();
1432 
1433       verify_after_gc();
1434 
1435       // Clear the previous marking bitmap, if needed for bitmap verification.
1436       // Note we cannot do this when we clear the next marking bitmap in
1437       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1438       // objects marked during a full GC against the previous bitmap.
1439       // But we need to clear it before calling check_bitmaps below since
1440       // the full GC has compacted objects and updated TAMS but not updated
1441       // the prev bitmap.
1442       if (G1VerifyBitmaps) {
1443         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1444       }
1445       check_bitmaps("Full GC End");
1446 
1447       // Start a new incremental collection set for the next pause
1448       assert(g1_policy()->collection_set() == NULL, "must be");
1449       g1_policy()->start_incremental_cset_building();
1450 
1451       clear_cset_fast_test();
1452 
1453       _allocator->init_mutator_alloc_region();
1454 
1455       g1_policy()->record_full_collection_end();
1456 
1457       if (G1Log::fine()) {
1458         g1_policy()->print_heap_transition();
1459       }
1460 
1461       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1462       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1463       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1464       // before any GC notifications are raised.
1465       g1mm()->update_sizes();
1466 
1467       gc_epilogue(true);
1468     }
1469 
1470     if (G1Log::finer()) {
1471       g1_policy()->print_detailed_heap_transition(true /* full */);
1472     }
1473 
1474     print_heap_after_gc();
1475     trace_heap_after_gc(gc_tracer);
1476 
1477     post_full_gc_dump(gc_timer);
1478 
1479     gc_timer->register_gc_end();
1480     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1481   }
1482 
1483   return true;
1484 }
1485 
1486 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1487   // do_collection() will return whether it succeeded in performing
1488   // the GC. Currently, there is no facility on the
1489   // do_full_collection() API to notify the caller than the collection
1490   // did not succeed (e.g., because it was locked out by the GC
1491   // locker). So, right now, we'll ignore the return value.
1492   bool dummy = do_collection(true,                /* explicit_gc */
1493                              clear_all_soft_refs,
1494                              0                    /* word_size */);
1495 }
1496 
1497 // This code is mostly copied from TenuredGeneration.
1498 void
1499 G1CollectedHeap::
1500 resize_if_necessary_after_full_collection(size_t word_size) {
1501   // Include the current allocation, if any, and bytes that will be
1502   // pre-allocated to support collections, as "used".
1503   const size_t used_after_gc = used();
1504   const size_t capacity_after_gc = capacity();
1505   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1506 
1507   // This is enforced in arguments.cpp.
1508   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1509          "otherwise the code below doesn't make sense");
1510 
1511   // We don't have floating point command-line arguments
1512   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1513   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1514   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1515   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1516 
1517   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1518   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1519 
1520   // We have to be careful here as these two calculations can overflow
1521   // 32-bit size_t's.
1522   double used_after_gc_d = (double) used_after_gc;
1523   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1524   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1525 
1526   // Let's make sure that they are both under the max heap size, which
1527   // by default will make them fit into a size_t.
1528   double desired_capacity_upper_bound = (double) max_heap_size;
1529   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1530                                     desired_capacity_upper_bound);
1531   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1532                                     desired_capacity_upper_bound);
1533 
1534   // We can now safely turn them into size_t's.
1535   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1536   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1537 
1538   // This assert only makes sense here, before we adjust them
1539   // with respect to the min and max heap size.
1540   assert(minimum_desired_capacity <= maximum_desired_capacity,
1541          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1542                  "maximum_desired_capacity = "SIZE_FORMAT,
1543                  minimum_desired_capacity, maximum_desired_capacity));
1544 
1545   // Should not be greater than the heap max size. No need to adjust
1546   // it with respect to the heap min size as it's a lower bound (i.e.,
1547   // we'll try to make the capacity larger than it, not smaller).
1548   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1549   // Should not be less than the heap min size. No need to adjust it
1550   // with respect to the heap max size as it's an upper bound (i.e.,
1551   // we'll try to make the capacity smaller than it, not greater).
1552   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1553 
1554   if (capacity_after_gc < minimum_desired_capacity) {
1555     // Don't expand unless it's significant
1556     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1557     ergo_verbose4(ErgoHeapSizing,
1558                   "attempt heap expansion",
1559                   ergo_format_reason("capacity lower than "
1560                                      "min desired capacity after Full GC")
1561                   ergo_format_byte("capacity")
1562                   ergo_format_byte("occupancy")
1563                   ergo_format_byte_perc("min desired capacity"),
1564                   capacity_after_gc, used_after_gc,
1565                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1566     expand(expand_bytes);
1567 
1568     // No expansion, now see if we want to shrink
1569   } else if (capacity_after_gc > maximum_desired_capacity) {
1570     // Capacity too large, compute shrinking size
1571     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1572     ergo_verbose4(ErgoHeapSizing,
1573                   "attempt heap shrinking",
1574                   ergo_format_reason("capacity higher than "
1575                                      "max desired capacity after Full GC")
1576                   ergo_format_byte("capacity")
1577                   ergo_format_byte("occupancy")
1578                   ergo_format_byte_perc("max desired capacity"),
1579                   capacity_after_gc, used_after_gc,
1580                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1581     shrink(shrink_bytes);
1582   }
1583 }
1584 
1585 
1586 HeapWord*
1587 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1588                                            AllocationContext_t context,
1589                                            bool* succeeded) {
1590   assert_at_safepoint(true /* should_be_vm_thread */);
1591 
1592   *succeeded = true;
1593   // Let's attempt the allocation first.
1594   HeapWord* result =
1595     attempt_allocation_at_safepoint(word_size,
1596                                     context,
1597                                     false /* expect_null_mutator_alloc_region */);
1598   if (result != NULL) {
1599     assert(*succeeded, "sanity");
1600     return result;
1601   }
1602 
1603   // In a G1 heap, we're supposed to keep allocation from failing by
1604   // incremental pauses.  Therefore, at least for now, we'll favor
1605   // expansion over collection.  (This might change in the future if we can
1606   // do something smarter than full collection to satisfy a failed alloc.)
1607   result = expand_and_allocate(word_size, context);
1608   if (result != NULL) {
1609     assert(*succeeded, "sanity");
1610     return result;
1611   }
1612 
1613   // Expansion didn't work, we'll try to do a Full GC.
1614   bool gc_succeeded = do_collection(false, /* explicit_gc */
1615                                     false, /* clear_all_soft_refs */
1616                                     word_size);
1617   if (!gc_succeeded) {
1618     *succeeded = false;
1619     return NULL;
1620   }
1621 
1622   // Retry the allocation
1623   result = attempt_allocation_at_safepoint(word_size,
1624                                            context,
1625                                            true /* expect_null_mutator_alloc_region */);
1626   if (result != NULL) {
1627     assert(*succeeded, "sanity");
1628     return result;
1629   }
1630 
1631   // Then, try a Full GC that will collect all soft references.
1632   gc_succeeded = do_collection(false, /* explicit_gc */
1633                                true,  /* clear_all_soft_refs */
1634                                word_size);
1635   if (!gc_succeeded) {
1636     *succeeded = false;
1637     return NULL;
1638   }
1639 
1640   // Retry the allocation once more
1641   result = attempt_allocation_at_safepoint(word_size,
1642                                            context,
1643                                            true /* expect_null_mutator_alloc_region */);
1644   if (result != NULL) {
1645     assert(*succeeded, "sanity");
1646     return result;
1647   }
1648 
1649   assert(!collector_policy()->should_clear_all_soft_refs(),
1650          "Flag should have been handled and cleared prior to this point");
1651 
1652   // What else?  We might try synchronous finalization later.  If the total
1653   // space available is large enough for the allocation, then a more
1654   // complete compaction phase than we've tried so far might be
1655   // appropriate.
1656   assert(*succeeded, "sanity");
1657   return NULL;
1658 }
1659 
1660 // Attempting to expand the heap sufficiently
1661 // to support an allocation of the given "word_size".  If
1662 // successful, perform the allocation and return the address of the
1663 // allocated block, or else "NULL".
1664 
1665 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1666   assert_at_safepoint(true /* should_be_vm_thread */);
1667 
1668   verify_region_sets_optional();
1669 
1670   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1671   ergo_verbose1(ErgoHeapSizing,
1672                 "attempt heap expansion",
1673                 ergo_format_reason("allocation request failed")
1674                 ergo_format_byte("allocation request"),
1675                 word_size * HeapWordSize);
1676   if (expand(expand_bytes)) {
1677     _hrm.verify_optional();
1678     verify_region_sets_optional();
1679     return attempt_allocation_at_safepoint(word_size,
1680                                            context,
1681                                            false /* expect_null_mutator_alloc_region */);
1682   }
1683   return NULL;
1684 }
1685 
1686 bool G1CollectedHeap::expand(size_t expand_bytes) {
1687   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1688   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1689                                        HeapRegion::GrainBytes);
1690   ergo_verbose2(ErgoHeapSizing,
1691                 "expand the heap",
1692                 ergo_format_byte("requested expansion amount")
1693                 ergo_format_byte("attempted expansion amount"),
1694                 expand_bytes, aligned_expand_bytes);
1695 
1696   if (is_maximal_no_gc()) {
1697     ergo_verbose0(ErgoHeapSizing,
1698                       "did not expand the heap",
1699                       ergo_format_reason("heap already fully expanded"));
1700     return false;
1701   }
1702 
1703   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1704   assert(regions_to_expand > 0, "Must expand by at least one region");
1705 
1706   uint expanded_by = _hrm.expand_by(regions_to_expand);
1707 
1708   if (expanded_by > 0) {
1709     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1710     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1711     g1_policy()->record_new_heap_size(num_regions());
1712   } else {
1713     ergo_verbose0(ErgoHeapSizing,
1714                   "did not expand the heap",
1715                   ergo_format_reason("heap expansion operation failed"));
1716     // The expansion of the virtual storage space was unsuccessful.
1717     // Let's see if it was because we ran out of swap.
1718     if (G1ExitOnExpansionFailure &&
1719         _hrm.available() >= regions_to_expand) {
1720       // We had head room...
1721       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1722     }
1723   }
1724   return regions_to_expand > 0;
1725 }
1726 
1727 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1728   size_t aligned_shrink_bytes =
1729     ReservedSpace::page_align_size_down(shrink_bytes);
1730   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1731                                          HeapRegion::GrainBytes);
1732   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1733 
1734   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1735   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1736 
1737   ergo_verbose3(ErgoHeapSizing,
1738                 "shrink the heap",
1739                 ergo_format_byte("requested shrinking amount")
1740                 ergo_format_byte("aligned shrinking amount")
1741                 ergo_format_byte("attempted shrinking amount"),
1742                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1743   if (num_regions_removed > 0) {
1744     g1_policy()->record_new_heap_size(num_regions());
1745   } else {
1746     ergo_verbose0(ErgoHeapSizing,
1747                   "did not shrink the heap",
1748                   ergo_format_reason("heap shrinking operation failed"));
1749   }
1750 }
1751 
1752 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1753   verify_region_sets_optional();
1754 
1755   // We should only reach here at the end of a Full GC which means we
1756   // should not not be holding to any GC alloc regions. The method
1757   // below will make sure of that and do any remaining clean up.
1758   _allocator->abandon_gc_alloc_regions();
1759 
1760   // Instead of tearing down / rebuilding the free lists here, we
1761   // could instead use the remove_all_pending() method on free_list to
1762   // remove only the ones that we need to remove.
1763   tear_down_region_sets(true /* free_list_only */);
1764   shrink_helper(shrink_bytes);
1765   rebuild_region_sets(true /* free_list_only */);
1766 
1767   _hrm.verify_optional();
1768   verify_region_sets_optional();
1769 }
1770 
1771 // Public methods.
1772 
1773 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1774 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1775 #endif // _MSC_VER
1776 
1777 
1778 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1779   SharedHeap(policy_),
1780   _g1_policy(policy_),
1781   _dirty_card_queue_set(false),
1782   _into_cset_dirty_card_queue_set(false),
1783   _is_alive_closure_cm(this),
1784   _is_alive_closure_stw(this),
1785   _ref_processor_cm(NULL),
1786   _ref_processor_stw(NULL),
1787   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1788   _bot_shared(NULL),
1789   _evac_failure_scan_stack(NULL),
1790   _cg1r(NULL),
1791   _g1mm(NULL),
1792   _refine_cte_cl(NULL),
1793   _full_collection(false),
1794   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1795   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1796   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1797   _humongous_is_live(),
1798   _has_humongous_reclaim_candidates(false),
1799   _free_regions_coming(false),
1800   _young_list(new YoungList(this)),
1801   _gc_time_stamp(0),
1802   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1803   _old_plab_stats(OldPLABSize, PLABWeight),
1804   _expand_heap_after_alloc_failure(true),
1805   _surviving_young_words(NULL),
1806   _old_marking_cycles_started(0),
1807   _old_marking_cycles_completed(0),
1808   _concurrent_cycle_started(false),
1809   _heap_summary_sent(false),
1810   _in_cset_fast_test(),
1811   _dirty_cards_region_list(NULL),
1812   _worker_cset_start_region(NULL),
1813   _worker_cset_start_region_time_stamp(NULL),
1814   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1815   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1816   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1817   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1818 
1819   _g1h = this;
1820   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1821     vm_exit_during_initialization("Failed necessary allocation.");
1822   }
1823 
1824   _allocator = G1Allocator::create_allocator(_g1h);
1825   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1826 
1827   int n_queues = MAX2((int)ParallelGCThreads, 1);
1828   _task_queues = new RefToScanQueueSet(n_queues);
1829 
1830   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1831   assert(n_rem_sets > 0, "Invariant.");
1832 
1833   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1834   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1835   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1836 
1837   for (int i = 0; i < n_queues; i++) {
1838     RefToScanQueue* q = new RefToScanQueue();
1839     q->initialize();
1840     _task_queues->register_queue(i, q);
1841     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1842   }
1843   clear_cset_start_regions();
1844 
1845   // Initialize the G1EvacuationFailureALot counters and flags.
1846   NOT_PRODUCT(reset_evacuation_should_fail();)
1847 
1848   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1849 }
1850 
1851 jint G1CollectedHeap::initialize() {
1852   CollectedHeap::pre_initialize();
1853   os::enable_vtime();
1854 
1855   G1Log::init();
1856 
1857   // Necessary to satisfy locking discipline assertions.
1858 
1859   MutexLocker x(Heap_lock);
1860 
1861   // We have to initialize the printer before committing the heap, as
1862   // it will be used then.
1863   _hr_printer.set_active(G1PrintHeapRegions);
1864 
1865   // While there are no constraints in the GC code that HeapWordSize
1866   // be any particular value, there are multiple other areas in the
1867   // system which believe this to be true (e.g. oop->object_size in some
1868   // cases incorrectly returns the size in wordSize units rather than
1869   // HeapWordSize).
1870   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1871 
1872   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1873   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1874   size_t heap_alignment = collector_policy()->heap_alignment();
1875 
1876   // Ensure that the sizes are properly aligned.
1877   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1878   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1879   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1880 
1881   _refine_cte_cl = new RefineCardTableEntryClosure();
1882 
1883   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1884 
1885   // Reserve the maximum.
1886 
1887   // When compressed oops are enabled, the preferred heap base
1888   // is calculated by subtracting the requested size from the
1889   // 32Gb boundary and using the result as the base address for
1890   // heap reservation. If the requested size is not aligned to
1891   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1892   // into the ReservedHeapSpace constructor) then the actual
1893   // base of the reserved heap may end up differing from the
1894   // address that was requested (i.e. the preferred heap base).
1895   // If this happens then we could end up using a non-optimal
1896   // compressed oops mode.
1897 
1898   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1899                                                  heap_alignment);
1900 
1901   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1902 
1903   // Create the barrier set for the entire reserved region.
1904   G1SATBCardTableLoggingModRefBS* bs
1905     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1906   bs->initialize();
1907   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1908   set_barrier_set(bs);
1909 
1910   // Also create a G1 rem set.
1911   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1912 
1913   // Carve out the G1 part of the heap.
1914 
1915   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1916   G1RegionToSpaceMapper* heap_storage =
1917     G1RegionToSpaceMapper::create_mapper(g1_rs,
1918                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1919                                          HeapRegion::GrainBytes,
1920                                          1,
1921                                          mtJavaHeap);
1922   heap_storage->set_mapping_changed_listener(&_listener);
1923 
1924   // Reserve space for the block offset table. We do not support automatic uncommit
1925   // for the card table at this time. BOT only.
1926   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1927   G1RegionToSpaceMapper* bot_storage =
1928     G1RegionToSpaceMapper::create_mapper(bot_rs,
1929                                          os::vm_page_size(),
1930                                          HeapRegion::GrainBytes,
1931                                          G1BlockOffsetSharedArray::N_bytes,
1932                                          mtGC);
1933 
1934   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1935   G1RegionToSpaceMapper* cardtable_storage =
1936     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
1937                                          os::vm_page_size(),
1938                                          HeapRegion::GrainBytes,
1939                                          G1BlockOffsetSharedArray::N_bytes,
1940                                          mtGC);
1941 
1942   // Reserve space for the card counts table.
1943   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1944   G1RegionToSpaceMapper* card_counts_storage =
1945     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
1946                                          os::vm_page_size(),
1947                                          HeapRegion::GrainBytes,
1948                                          G1BlockOffsetSharedArray::N_bytes,
1949                                          mtGC);
1950 
1951   // Reserve space for prev and next bitmap.
1952   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1953 
1954   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1955   G1RegionToSpaceMapper* prev_bitmap_storage =
1956     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
1957                                          os::vm_page_size(),
1958                                          HeapRegion::GrainBytes,
1959                                          CMBitMap::mark_distance(),
1960                                          mtGC);
1961 
1962   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1963   G1RegionToSpaceMapper* next_bitmap_storage =
1964     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
1965                                          os::vm_page_size(),
1966                                          HeapRegion::GrainBytes,
1967                                          CMBitMap::mark_distance(),
1968                                          mtGC);
1969 
1970   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1971   g1_barrier_set()->initialize(cardtable_storage);
1972    // Do later initialization work for concurrent refinement.
1973   _cg1r->init(card_counts_storage);
1974 
1975   // 6843694 - ensure that the maximum region index can fit
1976   // in the remembered set structures.
1977   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1978   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1979 
1980   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1981   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1982   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1983             "too many cards per region");
1984 
1985   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1986 
1987   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1988 
1989   _g1h = this;
1990 
1991   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1992   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1993 
1994   // Create the ConcurrentMark data structure and thread.
1995   // (Must do this late, so that "max_regions" is defined.)
1996   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1997   if (_cm == NULL || !_cm->completed_initialization()) {
1998     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1999     return JNI_ENOMEM;
2000   }
2001   _cmThread = _cm->cmThread();
2002 
2003   // Initialize the from_card cache structure of HeapRegionRemSet.
2004   HeapRegionRemSet::init_heap(max_regions());
2005 
2006   // Now expand into the initial heap size.
2007   if (!expand(init_byte_size)) {
2008     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2009     return JNI_ENOMEM;
2010   }
2011 
2012   // Perform any initialization actions delegated to the policy.
2013   g1_policy()->init();
2014 
2015   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2016                                                SATB_Q_FL_lock,
2017                                                G1SATBProcessCompletedThreshold,
2018                                                Shared_SATB_Q_lock);
2019 
2020   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2021                                                 DirtyCardQ_CBL_mon,
2022                                                 DirtyCardQ_FL_lock,
2023                                                 concurrent_g1_refine()->yellow_zone(),
2024                                                 concurrent_g1_refine()->red_zone(),
2025                                                 Shared_DirtyCardQ_lock);
2026 
2027   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2028                                     DirtyCardQ_CBL_mon,
2029                                     DirtyCardQ_FL_lock,
2030                                     -1, // never trigger processing
2031                                     -1, // no limit on length
2032                                     Shared_DirtyCardQ_lock,
2033                                     &JavaThread::dirty_card_queue_set());
2034 
2035   // Initialize the card queue set used to hold cards containing
2036   // references into the collection set.
2037   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2038                                              DirtyCardQ_CBL_mon,
2039                                              DirtyCardQ_FL_lock,
2040                                              -1, // never trigger processing
2041                                              -1, // no limit on length
2042                                              Shared_DirtyCardQ_lock,
2043                                              &JavaThread::dirty_card_queue_set());
2044 
2045   // In case we're keeping closure specialization stats, initialize those
2046   // counts and that mechanism.
2047   SpecializationStats::clear();
2048 
2049   // Here we allocate the dummy HeapRegion that is required by the
2050   // G1AllocRegion class.
2051   HeapRegion* dummy_region = _hrm.get_dummy_region();
2052 
2053   // We'll re-use the same region whether the alloc region will
2054   // require BOT updates or not and, if it doesn't, then a non-young
2055   // region will complain that it cannot support allocations without
2056   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2057   dummy_region->set_eden();
2058   // Make sure it's full.
2059   dummy_region->set_top(dummy_region->end());
2060   G1AllocRegion::setup(this, dummy_region);
2061 
2062   _allocator->init_mutator_alloc_region();
2063 
2064   // Do create of the monitoring and management support so that
2065   // values in the heap have been properly initialized.
2066   _g1mm = new G1MonitoringSupport(this);
2067 
2068   G1StringDedup::initialize();
2069 
2070   return JNI_OK;
2071 }
2072 
2073 void G1CollectedHeap::stop() {
2074   // Stop all concurrent threads. We do this to make sure these threads
2075   // do not continue to execute and access resources (e.g. gclog_or_tty)
2076   // that are destroyed during shutdown.
2077   _cg1r->stop();
2078   _cmThread->stop();
2079   if (G1StringDedup::is_enabled()) {
2080     G1StringDedup::stop();
2081   }
2082 }
2083 
2084 void G1CollectedHeap::clear_humongous_is_live_table() {
2085   guarantee(G1EagerReclaimHumongousObjects, "Should only be called if true");
2086   _humongous_is_live.clear();
2087 }
2088 
2089 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2090   return HeapRegion::max_region_size();
2091 }
2092 
2093 void G1CollectedHeap::ref_processing_init() {
2094   // Reference processing in G1 currently works as follows:
2095   //
2096   // * There are two reference processor instances. One is
2097   //   used to record and process discovered references
2098   //   during concurrent marking; the other is used to
2099   //   record and process references during STW pauses
2100   //   (both full and incremental).
2101   // * Both ref processors need to 'span' the entire heap as
2102   //   the regions in the collection set may be dotted around.
2103   //
2104   // * For the concurrent marking ref processor:
2105   //   * Reference discovery is enabled at initial marking.
2106   //   * Reference discovery is disabled and the discovered
2107   //     references processed etc during remarking.
2108   //   * Reference discovery is MT (see below).
2109   //   * Reference discovery requires a barrier (see below).
2110   //   * Reference processing may or may not be MT
2111   //     (depending on the value of ParallelRefProcEnabled
2112   //     and ParallelGCThreads).
2113   //   * A full GC disables reference discovery by the CM
2114   //     ref processor and abandons any entries on it's
2115   //     discovered lists.
2116   //
2117   // * For the STW processor:
2118   //   * Non MT discovery is enabled at the start of a full GC.
2119   //   * Processing and enqueueing during a full GC is non-MT.
2120   //   * During a full GC, references are processed after marking.
2121   //
2122   //   * Discovery (may or may not be MT) is enabled at the start
2123   //     of an incremental evacuation pause.
2124   //   * References are processed near the end of a STW evacuation pause.
2125   //   * For both types of GC:
2126   //     * Discovery is atomic - i.e. not concurrent.
2127   //     * Reference discovery will not need a barrier.
2128 
2129   SharedHeap::ref_processing_init();
2130   MemRegion mr = reserved_region();
2131 
2132   // Concurrent Mark ref processor
2133   _ref_processor_cm =
2134     new ReferenceProcessor(mr,    // span
2135                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2136                                 // mt processing
2137                            (int) ParallelGCThreads,
2138                                 // degree of mt processing
2139                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2140                                 // mt discovery
2141                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2142                                 // degree of mt discovery
2143                            false,
2144                                 // Reference discovery is not atomic
2145                            &_is_alive_closure_cm);
2146                                 // is alive closure
2147                                 // (for efficiency/performance)
2148 
2149   // STW ref processor
2150   _ref_processor_stw =
2151     new ReferenceProcessor(mr,    // span
2152                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2153                                 // mt processing
2154                            MAX2((int)ParallelGCThreads, 1),
2155                                 // degree of mt processing
2156                            (ParallelGCThreads > 1),
2157                                 // mt discovery
2158                            MAX2((int)ParallelGCThreads, 1),
2159                                 // degree of mt discovery
2160                            true,
2161                                 // Reference discovery is atomic
2162                            &_is_alive_closure_stw);
2163                                 // is alive closure
2164                                 // (for efficiency/performance)
2165 }
2166 
2167 size_t G1CollectedHeap::capacity() const {
2168   return _hrm.length() * HeapRegion::GrainBytes;
2169 }
2170 
2171 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2172   assert(!hr->is_continues_humongous(), "pre-condition");
2173   hr->reset_gc_time_stamp();
2174   if (hr->is_starts_humongous()) {
2175     uint first_index = hr->hrm_index() + 1;
2176     uint last_index = hr->last_hc_index();
2177     for (uint i = first_index; i < last_index; i += 1) {
2178       HeapRegion* chr = region_at(i);
2179       assert(chr->is_continues_humongous(), "sanity");
2180       chr->reset_gc_time_stamp();
2181     }
2182   }
2183 }
2184 
2185 #ifndef PRODUCT
2186 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2187 private:
2188   unsigned _gc_time_stamp;
2189   bool _failures;
2190 
2191 public:
2192   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2193     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2194 
2195   virtual bool doHeapRegion(HeapRegion* hr) {
2196     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2197     if (_gc_time_stamp != region_gc_time_stamp) {
2198       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2199                              "expected %d", HR_FORMAT_PARAMS(hr),
2200                              region_gc_time_stamp, _gc_time_stamp);
2201       _failures = true;
2202     }
2203     return false;
2204   }
2205 
2206   bool failures() { return _failures; }
2207 };
2208 
2209 void G1CollectedHeap::check_gc_time_stamps() {
2210   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2211   heap_region_iterate(&cl);
2212   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2213 }
2214 #endif // PRODUCT
2215 
2216 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2217                                                  DirtyCardQueue* into_cset_dcq,
2218                                                  bool concurrent,
2219                                                  uint worker_i) {
2220   // Clean cards in the hot card cache
2221   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2222   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2223 
2224   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2225   int n_completed_buffers = 0;
2226   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2227     n_completed_buffers++;
2228   }
2229   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2230   dcqs.clear_n_completed_buffers();
2231   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2232 }
2233 
2234 
2235 // Computes the sum of the storage used by the various regions.
2236 size_t G1CollectedHeap::used() const {
2237   return _allocator->used();
2238 }
2239 
2240 size_t G1CollectedHeap::used_unlocked() const {
2241   return _allocator->used_unlocked();
2242 }
2243 
2244 class SumUsedClosure: public HeapRegionClosure {
2245   size_t _used;
2246 public:
2247   SumUsedClosure() : _used(0) {}
2248   bool doHeapRegion(HeapRegion* r) {
2249     if (!r->is_continues_humongous()) {
2250       _used += r->used();
2251     }
2252     return false;
2253   }
2254   size_t result() { return _used; }
2255 };
2256 
2257 size_t G1CollectedHeap::recalculate_used() const {
2258   double recalculate_used_start = os::elapsedTime();
2259 
2260   SumUsedClosure blk;
2261   heap_region_iterate(&blk);
2262 
2263   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2264   return blk.result();
2265 }
2266 
2267 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2268   switch (cause) {
2269     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2270     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2271     case GCCause::_g1_humongous_allocation: return true;
2272     case GCCause::_update_allocation_context_stats_inc: return true;
2273     case GCCause::_wb_conc_mark:            return true;
2274     default:                                return false;
2275   }
2276 }
2277 
2278 #ifndef PRODUCT
2279 void G1CollectedHeap::allocate_dummy_regions() {
2280   // Let's fill up most of the region
2281   size_t word_size = HeapRegion::GrainWords - 1024;
2282   // And as a result the region we'll allocate will be humongous.
2283   guarantee(is_humongous(word_size), "sanity");
2284 
2285   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2286     // Let's use the existing mechanism for the allocation
2287     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2288                                                  AllocationContext::system());
2289     if (dummy_obj != NULL) {
2290       MemRegion mr(dummy_obj, word_size);
2291       CollectedHeap::fill_with_object(mr);
2292     } else {
2293       // If we can't allocate once, we probably cannot allocate
2294       // again. Let's get out of the loop.
2295       break;
2296     }
2297   }
2298 }
2299 #endif // !PRODUCT
2300 
2301 void G1CollectedHeap::increment_old_marking_cycles_started() {
2302   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2303     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2304     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2305     _old_marking_cycles_started, _old_marking_cycles_completed));
2306 
2307   _old_marking_cycles_started++;
2308 }
2309 
2310 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2311   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2312 
2313   // We assume that if concurrent == true, then the caller is a
2314   // concurrent thread that was joined the Suspendible Thread
2315   // Set. If there's ever a cheap way to check this, we should add an
2316   // assert here.
2317 
2318   // Given that this method is called at the end of a Full GC or of a
2319   // concurrent cycle, and those can be nested (i.e., a Full GC can
2320   // interrupt a concurrent cycle), the number of full collections
2321   // completed should be either one (in the case where there was no
2322   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2323   // behind the number of full collections started.
2324 
2325   // This is the case for the inner caller, i.e. a Full GC.
2326   assert(concurrent ||
2327          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2328          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2329          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2330                  "is inconsistent with _old_marking_cycles_completed = %u",
2331                  _old_marking_cycles_started, _old_marking_cycles_completed));
2332 
2333   // This is the case for the outer caller, i.e. the concurrent cycle.
2334   assert(!concurrent ||
2335          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2336          err_msg("for outer caller (concurrent cycle): "
2337                  "_old_marking_cycles_started = %u "
2338                  "is inconsistent with _old_marking_cycles_completed = %u",
2339                  _old_marking_cycles_started, _old_marking_cycles_completed));
2340 
2341   _old_marking_cycles_completed += 1;
2342 
2343   // We need to clear the "in_progress" flag in the CM thread before
2344   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2345   // is set) so that if a waiter requests another System.gc() it doesn't
2346   // incorrectly see that a marking cycle is still in progress.
2347   if (concurrent) {
2348     _cmThread->clear_in_progress();
2349   }
2350 
2351   // This notify_all() will ensure that a thread that called
2352   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2353   // and it's waiting for a full GC to finish will be woken up. It is
2354   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2355   FullGCCount_lock->notify_all();
2356 }
2357 
2358 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2359   _concurrent_cycle_started = true;
2360   _gc_timer_cm->register_gc_start(start_time);
2361 
2362   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2363   trace_heap_before_gc(_gc_tracer_cm);
2364 }
2365 
2366 void G1CollectedHeap::register_concurrent_cycle_end() {
2367   if (_concurrent_cycle_started) {
2368     if (_cm->has_aborted()) {
2369       _gc_tracer_cm->report_concurrent_mode_failure();
2370     }
2371 
2372     _gc_timer_cm->register_gc_end();
2373     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2374 
2375     // Clear state variables to prepare for the next concurrent cycle.
2376     _concurrent_cycle_started = false;
2377     _heap_summary_sent = false;
2378   }
2379 }
2380 
2381 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2382   if (_concurrent_cycle_started) {
2383     // This function can be called when:
2384     //  the cleanup pause is run
2385     //  the concurrent cycle is aborted before the cleanup pause.
2386     //  the concurrent cycle is aborted after the cleanup pause,
2387     //   but before the concurrent cycle end has been registered.
2388     // Make sure that we only send the heap information once.
2389     if (!_heap_summary_sent) {
2390       trace_heap_after_gc(_gc_tracer_cm);
2391       _heap_summary_sent = true;
2392     }
2393   }
2394 }
2395 
2396 G1YCType G1CollectedHeap::yc_type() {
2397   bool is_young = g1_policy()->collector_state()->gcs_are_young();
2398   bool is_initial_mark = g1_policy()->collector_state()->during_initial_mark_pause();
2399   bool is_during_mark = mark_in_progress();
2400 
2401   if (is_initial_mark) {
2402     return InitialMark;
2403   } else if (is_during_mark) {
2404     return DuringMark;
2405   } else if (is_young) {
2406     return Normal;
2407   } else {
2408     return Mixed;
2409   }
2410 }
2411 
2412 void G1CollectedHeap::collect(GCCause::Cause cause) {
2413   assert_heap_not_locked();
2414 
2415   unsigned int gc_count_before;
2416   unsigned int old_marking_count_before;
2417   unsigned int full_gc_count_before;
2418   bool retry_gc;
2419 
2420   do {
2421     retry_gc = false;
2422 
2423     {
2424       MutexLocker ml(Heap_lock);
2425 
2426       // Read the GC count while holding the Heap_lock
2427       gc_count_before = total_collections();
2428       full_gc_count_before = total_full_collections();
2429       old_marking_count_before = _old_marking_cycles_started;
2430     }
2431 
2432     if (should_do_concurrent_full_gc(cause)) {
2433       // Schedule an initial-mark evacuation pause that will start a
2434       // concurrent cycle. We're setting word_size to 0 which means that
2435       // we are not requesting a post-GC allocation.
2436       VM_G1IncCollectionPause op(gc_count_before,
2437                                  0,     /* word_size */
2438                                  true,  /* should_initiate_conc_mark */
2439                                  g1_policy()->max_pause_time_ms(),
2440                                  cause);
2441       op.set_allocation_context(AllocationContext::current());
2442 
2443       VMThread::execute(&op);
2444       if (!op.pause_succeeded()) {
2445         if (old_marking_count_before == _old_marking_cycles_started) {
2446           retry_gc = op.should_retry_gc();
2447         } else {
2448           // A Full GC happened while we were trying to schedule the
2449           // initial-mark GC. No point in starting a new cycle given
2450           // that the whole heap was collected anyway.
2451         }
2452 
2453         if (retry_gc) {
2454           if (GC_locker::is_active_and_needs_gc()) {
2455             GC_locker::stall_until_clear();
2456           }
2457         }
2458       }
2459     } else {
2460       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2461           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2462 
2463         // Schedule a standard evacuation pause. We're setting word_size
2464         // to 0 which means that we are not requesting a post-GC allocation.
2465         VM_G1IncCollectionPause op(gc_count_before,
2466                                    0,     /* word_size */
2467                                    false, /* should_initiate_conc_mark */
2468                                    g1_policy()->max_pause_time_ms(),
2469                                    cause);
2470         VMThread::execute(&op);
2471       } else {
2472         // Schedule a Full GC.
2473         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2474         VMThread::execute(&op);
2475       }
2476     }
2477   } while (retry_gc);
2478 }
2479 
2480 bool G1CollectedHeap::is_in(const void* p) const {
2481   if (_hrm.reserved().contains(p)) {
2482     // Given that we know that p is in the reserved space,
2483     // heap_region_containing_raw() should successfully
2484     // return the containing region.
2485     HeapRegion* hr = heap_region_containing_raw(p);
2486     return hr->is_in(p);
2487   } else {
2488     return false;
2489   }
2490 }
2491 
2492 #ifdef ASSERT
2493 bool G1CollectedHeap::is_in_exact(const void* p) const {
2494   bool contains = reserved_region().contains(p);
2495   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2496   if (contains && available) {
2497     return true;
2498   } else {
2499     return false;
2500   }
2501 }
2502 #endif
2503 
2504 // Iteration functions.
2505 
2506 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2507 
2508 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2509   ExtendedOopClosure* _cl;
2510 public:
2511   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2512   bool doHeapRegion(HeapRegion* r) {
2513     if (!r->is_continues_humongous()) {
2514       r->oop_iterate(_cl);
2515     }
2516     return false;
2517   }
2518 };
2519 
2520 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2521   IterateOopClosureRegionClosure blk(cl);
2522   heap_region_iterate(&blk);
2523 }
2524 
2525 // Iterates an ObjectClosure over all objects within a HeapRegion.
2526 
2527 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2528   ObjectClosure* _cl;
2529 public:
2530   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2531   bool doHeapRegion(HeapRegion* r) {
2532     if (!r->is_continues_humongous()) {
2533       r->object_iterate(_cl);
2534     }
2535     return false;
2536   }
2537 };
2538 
2539 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2540   IterateObjectClosureRegionClosure blk(cl);
2541   heap_region_iterate(&blk);
2542 }
2543 
2544 // Calls a SpaceClosure on a HeapRegion.
2545 
2546 class SpaceClosureRegionClosure: public HeapRegionClosure {
2547   SpaceClosure* _cl;
2548 public:
2549   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2550   bool doHeapRegion(HeapRegion* r) {
2551     _cl->do_space(r);
2552     return false;
2553   }
2554 };
2555 
2556 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2557   SpaceClosureRegionClosure blk(cl);
2558   heap_region_iterate(&blk);
2559 }
2560 
2561 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2562   _hrm.iterate(cl);
2563 }
2564 
2565 void
2566 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2567                                          uint worker_id,
2568                                          HeapRegionClaimer *hrclaimer,
2569                                          bool concurrent) const {
2570   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2571 }
2572 
2573 // Clear the cached CSet starting regions and (more importantly)
2574 // the time stamps. Called when we reset the GC time stamp.
2575 void G1CollectedHeap::clear_cset_start_regions() {
2576   assert(_worker_cset_start_region != NULL, "sanity");
2577   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2578 
2579   int n_queues = MAX2((int)ParallelGCThreads, 1);
2580   for (int i = 0; i < n_queues; i++) {
2581     _worker_cset_start_region[i] = NULL;
2582     _worker_cset_start_region_time_stamp[i] = 0;
2583   }
2584 }
2585 
2586 // Given the id of a worker, obtain or calculate a suitable
2587 // starting region for iterating over the current collection set.
2588 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2589   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2590 
2591   HeapRegion* result = NULL;
2592   unsigned gc_time_stamp = get_gc_time_stamp();
2593 
2594   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2595     // Cached starting region for current worker was set
2596     // during the current pause - so it's valid.
2597     // Note: the cached starting heap region may be NULL
2598     // (when the collection set is empty).
2599     result = _worker_cset_start_region[worker_i];
2600     assert(result == NULL || result->in_collection_set(), "sanity");
2601     return result;
2602   }
2603 
2604   // The cached entry was not valid so let's calculate
2605   // a suitable starting heap region for this worker.
2606 
2607   // We want the parallel threads to start their collection
2608   // set iteration at different collection set regions to
2609   // avoid contention.
2610   // If we have:
2611   //          n collection set regions
2612   //          p threads
2613   // Then thread t will start at region floor ((t * n) / p)
2614 
2615   result = g1_policy()->collection_set();
2616   uint cs_size = g1_policy()->cset_region_length();
2617   uint active_workers = workers()->active_workers();
2618   assert(UseDynamicNumberOfGCThreads ||
2619            active_workers == workers()->total_workers(),
2620            "Unless dynamic should use total workers");
2621 
2622   uint end_ind   = (cs_size * worker_i) / active_workers;
2623   uint start_ind = 0;
2624 
2625   if (worker_i > 0 &&
2626       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2627     // Previous workers starting region is valid
2628     // so let's iterate from there
2629     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2630     result = _worker_cset_start_region[worker_i - 1];
2631   }
2632 
2633   for (uint i = start_ind; i < end_ind; i++) {
2634     result = result->next_in_collection_set();
2635   }
2636 
2637   // Note: the calculated starting heap region may be NULL
2638   // (when the collection set is empty).
2639   assert(result == NULL || result->in_collection_set(), "sanity");
2640   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2641          "should be updated only once per pause");
2642   _worker_cset_start_region[worker_i] = result;
2643   OrderAccess::storestore();
2644   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2645   return result;
2646 }
2647 
2648 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2649   HeapRegion* r = g1_policy()->collection_set();
2650   while (r != NULL) {
2651     HeapRegion* next = r->next_in_collection_set();
2652     if (cl->doHeapRegion(r)) {
2653       cl->incomplete();
2654       return;
2655     }
2656     r = next;
2657   }
2658 }
2659 
2660 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2661                                                   HeapRegionClosure *cl) {
2662   if (r == NULL) {
2663     // The CSet is empty so there's nothing to do.
2664     return;
2665   }
2666 
2667   assert(r->in_collection_set(),
2668          "Start region must be a member of the collection set.");
2669   HeapRegion* cur = r;
2670   while (cur != NULL) {
2671     HeapRegion* next = cur->next_in_collection_set();
2672     if (cl->doHeapRegion(cur) && false) {
2673       cl->incomplete();
2674       return;
2675     }
2676     cur = next;
2677   }
2678   cur = g1_policy()->collection_set();
2679   while (cur != r) {
2680     HeapRegion* next = cur->next_in_collection_set();
2681     if (cl->doHeapRegion(cur) && false) {
2682       cl->incomplete();
2683       return;
2684     }
2685     cur = next;
2686   }
2687 }
2688 
2689 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2690   HeapRegion* result = _hrm.next_region_in_heap(from);
2691   while (result != NULL && result->is_humongous()) {
2692     result = _hrm.next_region_in_heap(result);
2693   }
2694   return result;
2695 }
2696 
2697 Space* G1CollectedHeap::space_containing(const void* addr) const {
2698   return heap_region_containing(addr);
2699 }
2700 
2701 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2702   Space* sp = space_containing(addr);
2703   return sp->block_start(addr);
2704 }
2705 
2706 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2707   Space* sp = space_containing(addr);
2708   return sp->block_size(addr);
2709 }
2710 
2711 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2712   Space* sp = space_containing(addr);
2713   return sp->block_is_obj(addr);
2714 }
2715 
2716 bool G1CollectedHeap::supports_tlab_allocation() const {
2717   return true;
2718 }
2719 
2720 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2721   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2722 }
2723 
2724 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2725   return young_list()->eden_used_bytes();
2726 }
2727 
2728 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2729 // must be smaller than the humongous object limit.
2730 size_t G1CollectedHeap::max_tlab_size() const {
2731   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2732 }
2733 
2734 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2735   // Return the remaining space in the cur alloc region, but not less than
2736   // the min TLAB size.
2737 
2738   // Also, this value can be at most the humongous object threshold,
2739   // since we can't allow tlabs to grow big enough to accommodate
2740   // humongous objects.
2741 
2742   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2743   size_t max_tlab = max_tlab_size() * wordSize;
2744   if (hr == NULL) {
2745     return max_tlab;
2746   } else {
2747     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2748   }
2749 }
2750 
2751 size_t G1CollectedHeap::max_capacity() const {
2752   return _hrm.reserved().byte_size();
2753 }
2754 
2755 jlong G1CollectedHeap::millis_since_last_gc() {
2756   // assert(false, "NYI");
2757   return 0;
2758 }
2759 
2760 void G1CollectedHeap::prepare_for_verify() {
2761   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2762     ensure_parsability(false);
2763   }
2764   g1_rem_set()->prepare_for_verify();
2765 }
2766 
2767 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2768                                               VerifyOption vo) {
2769   switch (vo) {
2770   case VerifyOption_G1UsePrevMarking:
2771     return hr->obj_allocated_since_prev_marking(obj);
2772   case VerifyOption_G1UseNextMarking:
2773     return hr->obj_allocated_since_next_marking(obj);
2774   case VerifyOption_G1UseMarkWord:
2775     return false;
2776   default:
2777     ShouldNotReachHere();
2778   }
2779   return false; // keep some compilers happy
2780 }
2781 
2782 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2783   switch (vo) {
2784   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2785   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2786   case VerifyOption_G1UseMarkWord:    return NULL;
2787   default:                            ShouldNotReachHere();
2788   }
2789   return NULL; // keep some compilers happy
2790 }
2791 
2792 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2793   switch (vo) {
2794   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2795   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2796   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2797   default:                            ShouldNotReachHere();
2798   }
2799   return false; // keep some compilers happy
2800 }
2801 
2802 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2803   switch (vo) {
2804   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2805   case VerifyOption_G1UseNextMarking: return "NTAMS";
2806   case VerifyOption_G1UseMarkWord:    return "NONE";
2807   default:                            ShouldNotReachHere();
2808   }
2809   return NULL; // keep some compilers happy
2810 }
2811 
2812 class VerifyRootsClosure: public OopClosure {
2813 private:
2814   G1CollectedHeap* _g1h;
2815   VerifyOption     _vo;
2816   bool             _failures;
2817 public:
2818   // _vo == UsePrevMarking -> use "prev" marking information,
2819   // _vo == UseNextMarking -> use "next" marking information,
2820   // _vo == UseMarkWord    -> use mark word from object header.
2821   VerifyRootsClosure(VerifyOption vo) :
2822     _g1h(G1CollectedHeap::heap()),
2823     _vo(vo),
2824     _failures(false) { }
2825 
2826   bool failures() { return _failures; }
2827 
2828   template <class T> void do_oop_nv(T* p) {
2829     T heap_oop = oopDesc::load_heap_oop(p);
2830     if (!oopDesc::is_null(heap_oop)) {
2831       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2832       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2833         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2834                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2835         if (_vo == VerifyOption_G1UseMarkWord) {
2836           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2837         }
2838         obj->print_on(gclog_or_tty);
2839         _failures = true;
2840       }
2841     }
2842   }
2843 
2844   void do_oop(oop* p)       { do_oop_nv(p); }
2845   void do_oop(narrowOop* p) { do_oop_nv(p); }
2846 };
2847 
2848 class G1VerifyCodeRootOopClosure: public OopClosure {
2849   G1CollectedHeap* _g1h;
2850   OopClosure* _root_cl;
2851   nmethod* _nm;
2852   VerifyOption _vo;
2853   bool _failures;
2854 
2855   template <class T> void do_oop_work(T* p) {
2856     // First verify that this root is live
2857     _root_cl->do_oop(p);
2858 
2859     if (!G1VerifyHeapRegionCodeRoots) {
2860       // We're not verifying the code roots attached to heap region.
2861       return;
2862     }
2863 
2864     // Don't check the code roots during marking verification in a full GC
2865     if (_vo == VerifyOption_G1UseMarkWord) {
2866       return;
2867     }
2868 
2869     // Now verify that the current nmethod (which contains p) is
2870     // in the code root list of the heap region containing the
2871     // object referenced by p.
2872 
2873     T heap_oop = oopDesc::load_heap_oop(p);
2874     if (!oopDesc::is_null(heap_oop)) {
2875       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2876 
2877       // Now fetch the region containing the object
2878       HeapRegion* hr = _g1h->heap_region_containing(obj);
2879       HeapRegionRemSet* hrrs = hr->rem_set();
2880       // Verify that the strong code root list for this region
2881       // contains the nmethod
2882       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2883         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2884                               "from nmethod "PTR_FORMAT" not in strong "
2885                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2886                               p, _nm, hr->bottom(), hr->end());
2887         _failures = true;
2888       }
2889     }
2890   }
2891 
2892 public:
2893   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2894     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2895 
2896   void do_oop(oop* p) { do_oop_work(p); }
2897   void do_oop(narrowOop* p) { do_oop_work(p); }
2898 
2899   void set_nmethod(nmethod* nm) { _nm = nm; }
2900   bool failures() { return _failures; }
2901 };
2902 
2903 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2904   G1VerifyCodeRootOopClosure* _oop_cl;
2905 
2906 public:
2907   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2908     _oop_cl(oop_cl) {}
2909 
2910   void do_code_blob(CodeBlob* cb) {
2911     nmethod* nm = cb->as_nmethod_or_null();
2912     if (nm != NULL) {
2913       _oop_cl->set_nmethod(nm);
2914       nm->oops_do(_oop_cl);
2915     }
2916   }
2917 };
2918 
2919 class YoungRefCounterClosure : public OopClosure {
2920   G1CollectedHeap* _g1h;
2921   int              _count;
2922  public:
2923   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2924   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2925   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2926 
2927   int count() { return _count; }
2928   void reset_count() { _count = 0; };
2929 };
2930 
2931 class VerifyKlassClosure: public KlassClosure {
2932   YoungRefCounterClosure _young_ref_counter_closure;
2933   OopClosure *_oop_closure;
2934  public:
2935   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2936   void do_klass(Klass* k) {
2937     k->oops_do(_oop_closure);
2938 
2939     _young_ref_counter_closure.reset_count();
2940     k->oops_do(&_young_ref_counter_closure);
2941     if (_young_ref_counter_closure.count() > 0) {
2942       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
2943     }
2944   }
2945 };
2946 
2947 class VerifyLivenessOopClosure: public OopClosure {
2948   G1CollectedHeap* _g1h;
2949   VerifyOption _vo;
2950 public:
2951   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2952     _g1h(g1h), _vo(vo)
2953   { }
2954   void do_oop(narrowOop *p) { do_oop_work(p); }
2955   void do_oop(      oop *p) { do_oop_work(p); }
2956 
2957   template <class T> void do_oop_work(T *p) {
2958     oop obj = oopDesc::load_decode_heap_oop(p);
2959     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2960               "Dead object referenced by a not dead object");
2961   }
2962 };
2963 
2964 class VerifyObjsInRegionClosure: public ObjectClosure {
2965 private:
2966   G1CollectedHeap* _g1h;
2967   size_t _live_bytes;
2968   HeapRegion *_hr;
2969   VerifyOption _vo;
2970 public:
2971   // _vo == UsePrevMarking -> use "prev" marking information,
2972   // _vo == UseNextMarking -> use "next" marking information,
2973   // _vo == UseMarkWord    -> use mark word from object header.
2974   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2975     : _live_bytes(0), _hr(hr), _vo(vo) {
2976     _g1h = G1CollectedHeap::heap();
2977   }
2978   void do_object(oop o) {
2979     VerifyLivenessOopClosure isLive(_g1h, _vo);
2980     assert(o != NULL, "Huh?");
2981     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2982       // If the object is alive according to the mark word,
2983       // then verify that the marking information agrees.
2984       // Note we can't verify the contra-positive of the
2985       // above: if the object is dead (according to the mark
2986       // word), it may not be marked, or may have been marked
2987       // but has since became dead, or may have been allocated
2988       // since the last marking.
2989       if (_vo == VerifyOption_G1UseMarkWord) {
2990         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2991       }
2992 
2993       o->oop_iterate_no_header(&isLive);
2994       if (!_hr->obj_allocated_since_prev_marking(o)) {
2995         size_t obj_size = o->size();    // Make sure we don't overflow
2996         _live_bytes += (obj_size * HeapWordSize);
2997       }
2998     }
2999   }
3000   size_t live_bytes() { return _live_bytes; }
3001 };
3002 
3003 class PrintObjsInRegionClosure : public ObjectClosure {
3004   HeapRegion *_hr;
3005   G1CollectedHeap *_g1;
3006 public:
3007   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3008     _g1 = G1CollectedHeap::heap();
3009   };
3010 
3011   void do_object(oop o) {
3012     if (o != NULL) {
3013       HeapWord *start = (HeapWord *) o;
3014       size_t word_sz = o->size();
3015       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3016                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3017                           (void*) o, word_sz,
3018                           _g1->isMarkedPrev(o),
3019                           _g1->isMarkedNext(o),
3020                           _hr->obj_allocated_since_prev_marking(o));
3021       HeapWord *end = start + word_sz;
3022       HeapWord *cur;
3023       int *val;
3024       for (cur = start; cur < end; cur++) {
3025         val = (int *) cur;
3026         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
3027       }
3028     }
3029   }
3030 };
3031 
3032 class VerifyRegionClosure: public HeapRegionClosure {
3033 private:
3034   bool             _par;
3035   VerifyOption     _vo;
3036   bool             _failures;
3037 public:
3038   // _vo == UsePrevMarking -> use "prev" marking information,
3039   // _vo == UseNextMarking -> use "next" marking information,
3040   // _vo == UseMarkWord    -> use mark word from object header.
3041   VerifyRegionClosure(bool par, VerifyOption vo)
3042     : _par(par),
3043       _vo(vo),
3044       _failures(false) {}
3045 
3046   bool failures() {
3047     return _failures;
3048   }
3049 
3050   bool doHeapRegion(HeapRegion* r) {
3051     if (!r->is_continues_humongous()) {
3052       bool failures = false;
3053       r->verify(_vo, &failures);
3054       if (failures) {
3055         _failures = true;
3056       } else {
3057         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3058         r->object_iterate(&not_dead_yet_cl);
3059         if (_vo != VerifyOption_G1UseNextMarking) {
3060           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3061             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3062                                    "max_live_bytes "SIZE_FORMAT" "
3063                                    "< calculated "SIZE_FORMAT,
3064                                    r->bottom(), r->end(),
3065                                    r->max_live_bytes(),
3066                                  not_dead_yet_cl.live_bytes());
3067             _failures = true;
3068           }
3069         } else {
3070           // When vo == UseNextMarking we cannot currently do a sanity
3071           // check on the live bytes as the calculation has not been
3072           // finalized yet.
3073         }
3074       }
3075     }
3076     return false; // stop the region iteration if we hit a failure
3077   }
3078 };
3079 
3080 // This is the task used for parallel verification of the heap regions
3081 
3082 class G1ParVerifyTask: public AbstractGangTask {
3083 private:
3084   G1CollectedHeap*  _g1h;
3085   VerifyOption      _vo;
3086   bool              _failures;
3087   HeapRegionClaimer _hrclaimer;
3088 
3089 public:
3090   // _vo == UsePrevMarking -> use "prev" marking information,
3091   // _vo == UseNextMarking -> use "next" marking information,
3092   // _vo == UseMarkWord    -> use mark word from object header.
3093   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3094       AbstractGangTask("Parallel verify task"),
3095       _g1h(g1h),
3096       _vo(vo),
3097       _failures(false),
3098       _hrclaimer(g1h->workers()->active_workers()) {}
3099 
3100   bool failures() {
3101     return _failures;
3102   }
3103 
3104   void work(uint worker_id) {
3105     HandleMark hm;
3106     VerifyRegionClosure blk(true, _vo);
3107     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3108     if (blk.failures()) {
3109       _failures = true;
3110     }
3111   }
3112 };
3113 
3114 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3115   if (SafepointSynchronize::is_at_safepoint()) {
3116     assert(Thread::current()->is_VM_thread(),
3117            "Expected to be executed serially by the VM thread at this point");
3118 
3119     if (!silent) { gclog_or_tty->print("Roots "); }
3120     VerifyRootsClosure rootsCl(vo);
3121     VerifyKlassClosure klassCl(this, &rootsCl);
3122     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3123 
3124     // We apply the relevant closures to all the oops in the
3125     // system dictionary, class loader data graph, the string table
3126     // and the nmethods in the code cache.
3127     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3128     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3129 
3130     process_all_roots(true,            // activate StrongRootsScope
3131                       SO_AllCodeCache, // roots scanning options
3132                       &rootsCl,
3133                       &cldCl,
3134                       &blobsCl);
3135 
3136     bool failures = rootsCl.failures() || codeRootsCl.failures();
3137 
3138     if (vo != VerifyOption_G1UseMarkWord) {
3139       // If we're verifying during a full GC then the region sets
3140       // will have been torn down at the start of the GC. Therefore
3141       // verifying the region sets will fail. So we only verify
3142       // the region sets when not in a full GC.
3143       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3144       verify_region_sets();
3145     }
3146 
3147     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3148     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3149 
3150       G1ParVerifyTask task(this, vo);
3151       assert(UseDynamicNumberOfGCThreads ||
3152         workers()->active_workers() == workers()->total_workers(),
3153         "If not dynamic should be using all the workers");
3154       int n_workers = workers()->active_workers();
3155       set_par_threads(n_workers);
3156       workers()->run_task(&task);
3157       set_par_threads(0);
3158       if (task.failures()) {
3159         failures = true;
3160       }
3161 
3162     } else {
3163       VerifyRegionClosure blk(false, vo);
3164       heap_region_iterate(&blk);
3165       if (blk.failures()) {
3166         failures = true;
3167       }
3168     }
3169 
3170     if (G1StringDedup::is_enabled()) {
3171       if (!silent) gclog_or_tty->print("StrDedup ");
3172       G1StringDedup::verify();
3173     }
3174 
3175     if (failures) {
3176       gclog_or_tty->print_cr("Heap:");
3177       // It helps to have the per-region information in the output to
3178       // help us track down what went wrong. This is why we call
3179       // print_extended_on() instead of print_on().
3180       print_extended_on(gclog_or_tty);
3181       gclog_or_tty->cr();
3182 #ifndef PRODUCT
3183       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3184         concurrent_mark()->print_reachable("at-verification-failure",
3185                                            vo, false /* all */);
3186       }
3187 #endif
3188       gclog_or_tty->flush();
3189     }
3190     guarantee(!failures, "there should not have been any failures");
3191   } else {
3192     if (!silent) {
3193       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3194       if (G1StringDedup::is_enabled()) {
3195         gclog_or_tty->print(", StrDedup");
3196       }
3197       gclog_or_tty->print(") ");
3198     }
3199   }
3200 }
3201 
3202 void G1CollectedHeap::verify(bool silent) {
3203   verify(silent, VerifyOption_G1UsePrevMarking);
3204 }
3205 
3206 double G1CollectedHeap::verify(bool guard, const char* msg) {
3207   double verify_time_ms = 0.0;
3208 
3209   if (guard && total_collections() >= VerifyGCStartAt) {
3210     double verify_start = os::elapsedTime();
3211     HandleMark hm;  // Discard invalid handles created during verification
3212     prepare_for_verify();
3213     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3214     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3215   }
3216 
3217   return verify_time_ms;
3218 }
3219 
3220 void G1CollectedHeap::verify_before_gc() {
3221   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3222   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3223 }
3224 
3225 void G1CollectedHeap::verify_after_gc() {
3226   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3227   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3228 }
3229 
3230 class PrintRegionClosure: public HeapRegionClosure {
3231   outputStream* _st;
3232 public:
3233   PrintRegionClosure(outputStream* st) : _st(st) {}
3234   bool doHeapRegion(HeapRegion* r) {
3235     r->print_on(_st);
3236     return false;
3237   }
3238 };
3239 
3240 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3241                                        const HeapRegion* hr,
3242                                        const VerifyOption vo) const {
3243   switch (vo) {
3244   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3245   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3246   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3247   default:                            ShouldNotReachHere();
3248   }
3249   return false; // keep some compilers happy
3250 }
3251 
3252 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3253                                        const VerifyOption vo) const {
3254   switch (vo) {
3255   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3256   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3257   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3258   default:                            ShouldNotReachHere();
3259   }
3260   return false; // keep some compilers happy
3261 }
3262 
3263 void G1CollectedHeap::print_on(outputStream* st) const {
3264   st->print(" %-20s", "garbage-first heap");
3265   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3266             capacity()/K, used_unlocked()/K);
3267   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3268             _hrm.reserved().start(),
3269             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3270             _hrm.reserved().end());
3271   st->cr();
3272   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3273   uint young_regions = _young_list->length();
3274   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3275             (size_t) young_regions * HeapRegion::GrainBytes / K);
3276   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3277   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3278             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3279   st->cr();
3280   MetaspaceAux::print_on(st);
3281 }
3282 
3283 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3284   print_on(st);
3285 
3286   // Print the per-region information.
3287   st->cr();
3288   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3289                "HS=humongous(starts), HC=humongous(continues), "
3290                "CS=collection set, F=free, TS=gc time stamp, "
3291                "PTAMS=previous top-at-mark-start, "
3292                "NTAMS=next top-at-mark-start)");
3293   PrintRegionClosure blk(st);
3294   heap_region_iterate(&blk);
3295 }
3296 
3297 void G1CollectedHeap::print_on_error(outputStream* st) const {
3298   this->CollectedHeap::print_on_error(st);
3299 
3300   if (_cm != NULL) {
3301     st->cr();
3302     _cm->print_on_error(st);
3303   }
3304 }
3305 
3306 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3307   workers()->print_worker_threads_on(st);
3308   _cmThread->print_on(st);
3309   st->cr();
3310   _cm->print_worker_threads_on(st);
3311   _cg1r->print_worker_threads_on(st);
3312   if (G1StringDedup::is_enabled()) {
3313     G1StringDedup::print_worker_threads_on(st);
3314   }
3315 }
3316 
3317 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3318   workers()->threads_do(tc);
3319   tc->do_thread(_cmThread);
3320   _cg1r->threads_do(tc);
3321   if (G1StringDedup::is_enabled()) {
3322     G1StringDedup::threads_do(tc);
3323   }
3324 }
3325 
3326 void G1CollectedHeap::print_tracing_info() const {
3327   // We'll overload this to mean "trace GC pause statistics."
3328   if (TraceYoungGenTime || TraceOldGenTime) {
3329     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3330     // to that.
3331     g1_policy()->print_tracing_info();
3332   }
3333   if (G1SummarizeRSetStats) {
3334     g1_rem_set()->print_summary_info();
3335   }
3336   if (G1SummarizeConcMark) {
3337     concurrent_mark()->print_summary_info();
3338   }
3339   g1_policy()->print_yg_surv_rate_info();
3340   SpecializationStats::print();
3341 }
3342 
3343 #ifndef PRODUCT
3344 // Helpful for debugging RSet issues.
3345 
3346 class PrintRSetsClosure : public HeapRegionClosure {
3347 private:
3348   const char* _msg;
3349   size_t _occupied_sum;
3350 
3351 public:
3352   bool doHeapRegion(HeapRegion* r) {
3353     HeapRegionRemSet* hrrs = r->rem_set();
3354     size_t occupied = hrrs->occupied();
3355     _occupied_sum += occupied;
3356 
3357     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3358                            HR_FORMAT_PARAMS(r));
3359     if (occupied == 0) {
3360       gclog_or_tty->print_cr("  RSet is empty");
3361     } else {
3362       hrrs->print();
3363     }
3364     gclog_or_tty->print_cr("----------");
3365     return false;
3366   }
3367 
3368   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3369     gclog_or_tty->cr();
3370     gclog_or_tty->print_cr("========================================");
3371     gclog_or_tty->print_cr("%s", msg);
3372     gclog_or_tty->cr();
3373   }
3374 
3375   ~PrintRSetsClosure() {
3376     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3377     gclog_or_tty->print_cr("========================================");
3378     gclog_or_tty->cr();
3379   }
3380 };
3381 
3382 void G1CollectedHeap::print_cset_rsets() {
3383   PrintRSetsClosure cl("Printing CSet RSets");
3384   collection_set_iterate(&cl);
3385 }
3386 
3387 void G1CollectedHeap::print_all_rsets() {
3388   PrintRSetsClosure cl("Printing All RSets");;
3389   heap_region_iterate(&cl);
3390 }
3391 #endif // PRODUCT
3392 
3393 G1CollectedHeap* G1CollectedHeap::heap() {
3394   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3395          "not a garbage-first heap");
3396   return _g1h;
3397 }
3398 
3399 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3400   // always_do_update_barrier = false;
3401   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3402   // Fill TLAB's and such
3403   accumulate_statistics_all_tlabs();
3404   ensure_parsability(true);
3405 
3406   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3407       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3408     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3409   }
3410 }
3411 
3412 void G1CollectedHeap::gc_epilogue(bool full) {
3413 
3414   if (G1SummarizeRSetStats &&
3415       (G1SummarizeRSetStatsPeriod > 0) &&
3416       // we are at the end of the GC. Total collections has already been increased.
3417       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3418     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3419   }
3420 
3421   // FIXME: what is this about?
3422   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3423   // is set.
3424   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3425                         "derived pointer present"));
3426   // always_do_update_barrier = true;
3427 
3428   resize_all_tlabs();
3429   allocation_context_stats().update(full);
3430 
3431   // We have just completed a GC. Update the soft reference
3432   // policy with the new heap occupancy
3433   Universe::update_heap_info_at_gc();
3434 }
3435 
3436 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3437                                                unsigned int gc_count_before,
3438                                                bool* succeeded,
3439                                                GCCause::Cause gc_cause) {
3440   assert_heap_not_locked_and_not_at_safepoint();
3441   g1_policy()->record_stop_world_start();
3442   VM_G1IncCollectionPause op(gc_count_before,
3443                              word_size,
3444                              false, /* should_initiate_conc_mark */
3445                              g1_policy()->max_pause_time_ms(),
3446                              gc_cause);
3447 
3448   op.set_allocation_context(AllocationContext::current());
3449   VMThread::execute(&op);
3450 
3451   HeapWord* result = op.result();
3452   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3453   assert(result == NULL || ret_succeeded,
3454          "the result should be NULL if the VM did not succeed");
3455   *succeeded = ret_succeeded;
3456 
3457   assert_heap_not_locked();
3458   return result;
3459 }
3460 
3461 void
3462 G1CollectedHeap::doConcurrentMark() {
3463   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3464   if (!_cmThread->in_progress()) {
3465     _cmThread->set_started();
3466     CGC_lock->notify();
3467   }
3468 }
3469 
3470 size_t G1CollectedHeap::pending_card_num() {
3471   size_t extra_cards = 0;
3472   JavaThread *curr = Threads::first();
3473   while (curr != NULL) {
3474     DirtyCardQueue& dcq = curr->dirty_card_queue();
3475     extra_cards += dcq.size();
3476     curr = curr->next();
3477   }
3478   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3479   size_t buffer_size = dcqs.buffer_size();
3480   size_t buffer_num = dcqs.completed_buffers_num();
3481 
3482   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3483   // in bytes - not the number of 'entries'. We need to convert
3484   // into a number of cards.
3485   return (buffer_size * buffer_num + extra_cards) / oopSize;
3486 }
3487 
3488 size_t G1CollectedHeap::cards_scanned() {
3489   return g1_rem_set()->cardsScanned();
3490 }
3491 
3492 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
3493   HeapRegion* region = region_at(index);
3494   assert(region->is_starts_humongous(), "Must start a humongous object");
3495   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
3496 }
3497 
3498 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3499  private:
3500   size_t _total_humongous;
3501   size_t _candidate_humongous;
3502 
3503   DirtyCardQueue _dcq;
3504 
3505   bool humongous_region_is_candidate(uint index) {
3506     HeapRegion* region = G1CollectedHeap::heap()->region_at(index);
3507     assert(region->is_starts_humongous(), "Must start a humongous object");
3508     HeapRegionRemSet* const rset = region->rem_set();
3509     bool const allow_stale_refs = G1EagerReclaimHumongousObjectsWithStaleRefs;
3510     return !oop(region->bottom())->is_objArray() &&
3511            ((allow_stale_refs && rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)) ||
3512             (!allow_stale_refs && rset->is_empty()));
3513   }
3514 
3515  public:
3516   RegisterHumongousWithInCSetFastTestClosure()
3517   : _total_humongous(0),
3518     _candidate_humongous(0),
3519     _dcq(&JavaThread::dirty_card_queue_set()) {
3520   }
3521 
3522   virtual bool doHeapRegion(HeapRegion* r) {
3523     if (!r->is_starts_humongous()) {
3524       return false;
3525     }
3526     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3527 
3528     uint region_idx = r->hrm_index();
3529     bool is_candidate = humongous_region_is_candidate(region_idx);
3530     // Is_candidate already filters out humongous object with large remembered sets.
3531     // If we have a humongous object with a few remembered sets, we simply flush these
3532     // remembered set entries into the DCQS. That will result in automatic
3533     // re-evaluation of their remembered set entries during the following evacuation
3534     // phase.
3535     if (is_candidate) {
3536       if (!r->rem_set()->is_empty()) {
3537         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3538                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3539         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3540         HeapRegionRemSetIterator hrrs(r->rem_set());
3541         size_t card_index;
3542         while (hrrs.has_next(card_index)) {
3543           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3544           if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3545             *card_ptr = CardTableModRefBS::dirty_card_val();
3546             _dcq.enqueue(card_ptr);
3547           }
3548         }
3549         r->rem_set()->clear_locked();
3550       }
3551       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3552       g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
3553       _candidate_humongous++;
3554     }
3555     _total_humongous++;
3556 
3557     return false;
3558   }
3559 
3560   size_t total_humongous() const { return _total_humongous; }
3561   size_t candidate_humongous() const { return _candidate_humongous; }
3562 
3563   void flush_rem_set_entries() { _dcq.flush(); }
3564 };
3565 
3566 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
3567   if (!G1EagerReclaimHumongousObjects) {
3568     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3569     return;
3570   }
3571   double time = os::elapsed_counter();
3572 
3573   RegisterHumongousWithInCSetFastTestClosure cl;
3574   heap_region_iterate(&cl);
3575 
3576   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3577   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3578                                                                   cl.total_humongous(),
3579                                                                   cl.candidate_humongous());
3580   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3581 
3582   if (_has_humongous_reclaim_candidates || G1TraceEagerReclaimHumongousObjects) {
3583     clear_humongous_is_live_table();
3584   }
3585 
3586   // Finally flush all remembered set entries to re-check into the global DCQS.
3587   cl.flush_rem_set_entries();
3588 }
3589 
3590 void
3591 G1CollectedHeap::setup_surviving_young_words() {
3592   assert(_surviving_young_words == NULL, "pre-condition");
3593   uint array_length = g1_policy()->young_cset_region_length();
3594   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3595   if (_surviving_young_words == NULL) {
3596     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3597                           "Not enough space for young surv words summary.");
3598   }
3599   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3600 #ifdef ASSERT
3601   for (uint i = 0;  i < array_length; ++i) {
3602     assert( _surviving_young_words[i] == 0, "memset above" );
3603   }
3604 #endif // !ASSERT
3605 }
3606 
3607 void
3608 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3609   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3610   uint array_length = g1_policy()->young_cset_region_length();
3611   for (uint i = 0; i < array_length; ++i) {
3612     _surviving_young_words[i] += surv_young_words[i];
3613   }
3614 }
3615 
3616 void
3617 G1CollectedHeap::cleanup_surviving_young_words() {
3618   guarantee( _surviving_young_words != NULL, "pre-condition" );
3619   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3620   _surviving_young_words = NULL;
3621 }
3622 
3623 #ifdef ASSERT
3624 class VerifyCSetClosure: public HeapRegionClosure {
3625 public:
3626   bool doHeapRegion(HeapRegion* hr) {
3627     // Here we check that the CSet region's RSet is ready for parallel
3628     // iteration. The fields that we'll verify are only manipulated
3629     // when the region is part of a CSet and is collected. Afterwards,
3630     // we reset these fields when we clear the region's RSet (when the
3631     // region is freed) so they are ready when the region is
3632     // re-allocated. The only exception to this is if there's an
3633     // evacuation failure and instead of freeing the region we leave
3634     // it in the heap. In that case, we reset these fields during
3635     // evacuation failure handling.
3636     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3637 
3638     // Here's a good place to add any other checks we'd like to
3639     // perform on CSet regions.
3640     return false;
3641   }
3642 };
3643 #endif // ASSERT
3644 
3645 #if TASKQUEUE_STATS
3646 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3647   st->print_raw_cr("GC Task Stats");
3648   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3649   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3650 }
3651 
3652 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3653   print_taskqueue_stats_hdr(st);
3654 
3655   TaskQueueStats totals;
3656   const int n = workers()->total_workers();
3657   for (int i = 0; i < n; ++i) {
3658     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3659     totals += task_queue(i)->stats;
3660   }
3661   st->print_raw("tot "); totals.print(st); st->cr();
3662 
3663   DEBUG_ONLY(totals.verify());
3664 }
3665 
3666 void G1CollectedHeap::reset_taskqueue_stats() {
3667   const int n = workers()->total_workers();
3668   for (int i = 0; i < n; ++i) {
3669     task_queue(i)->stats.reset();
3670   }
3671 }
3672 #endif // TASKQUEUE_STATS
3673 
3674 void G1CollectedHeap::log_gc_header() {
3675   if (!G1Log::fine()) {
3676     return;
3677   }
3678 
3679   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3680 
3681   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3682     .append(g1_policy()->collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3683     .append(g1_policy()->collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3684 
3685   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3686 }
3687 
3688 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3689   if (!G1Log::fine()) {
3690     return;
3691   }
3692 
3693   if (G1Log::finer()) {
3694     if (evacuation_failed()) {
3695       gclog_or_tty->print(" (to-space exhausted)");
3696     }
3697     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3698     g1_policy()->phase_times()->note_gc_end();
3699     g1_policy()->phase_times()->print(pause_time_sec);
3700     g1_policy()->print_detailed_heap_transition();
3701   } else {
3702     if (evacuation_failed()) {
3703       gclog_or_tty->print("--");
3704     }
3705     g1_policy()->print_heap_transition();
3706     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3707   }
3708   gclog_or_tty->flush();
3709 }
3710 
3711 bool
3712 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3713   assert_at_safepoint(true /* should_be_vm_thread */);
3714   guarantee(!is_gc_active(), "collection is not reentrant");
3715 
3716   if (GC_locker::check_active_before_gc()) {
3717     return false;
3718   }
3719 
3720   _gc_timer_stw->register_gc_start();
3721 
3722   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3723 
3724   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3725   ResourceMark rm;
3726 
3727   print_heap_before_gc();
3728   trace_heap_before_gc(_gc_tracer_stw);
3729 
3730   verify_region_sets_optional();
3731   verify_dirty_young_regions();
3732 
3733   // This call will decide whether this pause is an initial-mark
3734   // pause. If it is, during_initial_mark_pause() will return true
3735   // for the duration of this pause.
3736   g1_policy()->decide_on_conc_mark_initiation();
3737 
3738   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3739   assert(!g1_policy()->collector_state()->during_initial_mark_pause() ||
3740           g1_policy()->collector_state()->gcs_are_young(), "sanity");
3741 
3742   // We also do not allow mixed GCs during marking.
3743   assert(!mark_in_progress() || g1_policy()->collector_state()->gcs_are_young(), "sanity");
3744 
3745   // Record whether this pause is an initial mark. When the current
3746   // thread has completed its logging output and it's safe to signal
3747   // the CM thread, the flag's value in the policy has been reset.
3748   bool should_start_conc_mark = g1_policy()->collector_state()->during_initial_mark_pause();
3749 
3750   // Inner scope for scope based logging, timers, and stats collection
3751   {
3752     EvacuationInfo evacuation_info;
3753 
3754     if (g1_policy()->collector_state()->during_initial_mark_pause()) {
3755       // We are about to start a marking cycle, so we increment the
3756       // full collection counter.
3757       increment_old_marking_cycles_started();
3758       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3759     }
3760 
3761     _gc_tracer_stw->report_yc_type(yc_type());
3762 
3763     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3764 
3765     int active_workers = workers()->active_workers();
3766     double pause_start_sec = os::elapsedTime();
3767     g1_policy()->phase_times()->note_gc_start(active_workers);
3768     log_gc_header();
3769 
3770     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3771     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3772 
3773     // If the secondary_free_list is not empty, append it to the
3774     // free_list. No need to wait for the cleanup operation to finish;
3775     // the region allocation code will check the secondary_free_list
3776     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3777     // set, skip this step so that the region allocation code has to
3778     // get entries from the secondary_free_list.
3779     if (!G1StressConcRegionFreeing) {
3780       append_secondary_free_list_if_not_empty_with_lock();
3781     }
3782 
3783     assert(check_young_list_well_formed(), "young list should be well formed");
3784 
3785     // Don't dynamically change the number of GC threads this early.  A value of
3786     // 0 is used to indicate serial work.  When parallel work is done,
3787     // it will be set.
3788 
3789     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3790       IsGCActiveMark x;
3791 
3792       gc_prologue(false);
3793       increment_total_collections(false /* full gc */);
3794       increment_gc_time_stamp();
3795 
3796       verify_before_gc();
3797 
3798       check_bitmaps("GC Start");
3799 
3800       COMPILER2_PRESENT(DerivedPointerTable::clear());
3801 
3802       // Please see comment in g1CollectedHeap.hpp and
3803       // G1CollectedHeap::ref_processing_init() to see how
3804       // reference processing currently works in G1.
3805 
3806       // Enable discovery in the STW reference processor
3807       ref_processor_stw()->enable_discovery();
3808 
3809       {
3810         // We want to temporarily turn off discovery by the
3811         // CM ref processor, if necessary, and turn it back on
3812         // on again later if we do. Using a scoped
3813         // NoRefDiscovery object will do this.
3814         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3815 
3816         // Forget the current alloc region (we might even choose it to be part
3817         // of the collection set!).
3818         _allocator->release_mutator_alloc_region();
3819 
3820         // We should call this after we retire the mutator alloc
3821         // region(s) so that all the ALLOC / RETIRE events are generated
3822         // before the start GC event.
3823         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3824 
3825         // This timing is only used by the ergonomics to handle our pause target.
3826         // It is unclear why this should not include the full pause. We will
3827         // investigate this in CR 7178365.
3828         //
3829         // Preserving the old comment here if that helps the investigation:
3830         //
3831         // The elapsed time induced by the start time below deliberately elides
3832         // the possible verification above.
3833         double sample_start_time_sec = os::elapsedTime();
3834 
3835 #if YOUNG_LIST_VERBOSE
3836         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3837         _young_list->print();
3838         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3839 #endif // YOUNG_LIST_VERBOSE
3840 
3841         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3842 
3843         double scan_wait_start = os::elapsedTime();
3844         // We have to wait until the CM threads finish scanning the
3845         // root regions as it's the only way to ensure that all the
3846         // objects on them have been correctly scanned before we start
3847         // moving them during the GC.
3848         bool waited = _cm->root_regions()->wait_until_scan_finished();
3849         double wait_time_ms = 0.0;
3850         if (waited) {
3851           double scan_wait_end = os::elapsedTime();
3852           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3853         }
3854         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3855 
3856 #if YOUNG_LIST_VERBOSE
3857         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3858         _young_list->print();
3859 #endif // YOUNG_LIST_VERBOSE
3860 
3861         if (g1_policy()->collector_state()->during_initial_mark_pause()) {
3862           concurrent_mark()->checkpointRootsInitialPre();
3863         }
3864 
3865 #if YOUNG_LIST_VERBOSE
3866         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3867         _young_list->print();
3868         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3869 #endif // YOUNG_LIST_VERBOSE
3870 
3871         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3872 
3873         register_humongous_regions_with_in_cset_fast_test();
3874 
3875         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3876 
3877         _cm->note_start_of_gc();
3878         // We should not verify the per-thread SATB buffers given that
3879         // we have not filtered them yet (we'll do so during the
3880         // GC). We also call this after finalize_cset() to
3881         // ensure that the CSet has been finalized.
3882         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3883                                  true  /* verify_enqueued_buffers */,
3884                                  false /* verify_thread_buffers */,
3885                                  true  /* verify_fingers */);
3886 
3887         if (_hr_printer.is_active()) {
3888           HeapRegion* hr = g1_policy()->collection_set();
3889           while (hr != NULL) {
3890             _hr_printer.cset(hr);
3891             hr = hr->next_in_collection_set();
3892           }
3893         }
3894 
3895 #ifdef ASSERT
3896         VerifyCSetClosure cl;
3897         collection_set_iterate(&cl);
3898 #endif // ASSERT
3899 
3900         setup_surviving_young_words();
3901 
3902         // Initialize the GC alloc regions.
3903         _allocator->init_gc_alloc_regions(evacuation_info);
3904 
3905         // Actually do the work...
3906         evacuate_collection_set(evacuation_info);
3907 
3908         // We do this to mainly verify the per-thread SATB buffers
3909         // (which have been filtered by now) since we didn't verify
3910         // them earlier. No point in re-checking the stacks / enqueued
3911         // buffers given that the CSet has not changed since last time
3912         // we checked.
3913         _cm->verify_no_cset_oops(false /* verify_stacks */,
3914                                  false /* verify_enqueued_buffers */,
3915                                  true  /* verify_thread_buffers */,
3916                                  true  /* verify_fingers */);
3917 
3918         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3919 
3920         eagerly_reclaim_humongous_regions();
3921 
3922         g1_policy()->clear_collection_set();
3923 
3924         cleanup_surviving_young_words();
3925 
3926         // Start a new incremental collection set for the next pause.
3927         g1_policy()->start_incremental_cset_building();
3928 
3929         clear_cset_fast_test();
3930 
3931         _young_list->reset_sampled_info();
3932 
3933         // Don't check the whole heap at this point as the
3934         // GC alloc regions from this pause have been tagged
3935         // as survivors and moved on to the survivor list.
3936         // Survivor regions will fail the !is_young() check.
3937         assert(check_young_list_empty(false /* check_heap */),
3938           "young list should be empty");
3939 
3940 #if YOUNG_LIST_VERBOSE
3941         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3942         _young_list->print();
3943 #endif // YOUNG_LIST_VERBOSE
3944 
3945         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3946                                              _young_list->first_survivor_region(),
3947                                              _young_list->last_survivor_region());
3948 
3949         _young_list->reset_auxilary_lists();
3950 
3951         if (evacuation_failed()) {
3952           _allocator->set_used(recalculate_used());
3953           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3954           for (uint i = 0; i < n_queues; i++) {
3955             if (_evacuation_failed_info_array[i].has_failed()) {
3956               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3957             }
3958           }
3959         } else {
3960           // The "used" of the the collection set have already been subtracted
3961           // when they were freed.  Add in the bytes evacuated.
3962           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3963         }
3964 
3965         if (g1_policy()->collector_state()->during_initial_mark_pause()) {
3966           // We have to do this before we notify the CM threads that
3967           // they can start working to make sure that all the
3968           // appropriate initialization is done on the CM object.
3969           concurrent_mark()->checkpointRootsInitialPost();
3970           set_marking_started();
3971           // Note that we don't actually trigger the CM thread at
3972           // this point. We do that later when we're sure that
3973           // the current thread has completed its logging output.
3974         }
3975 
3976         allocate_dummy_regions();
3977 
3978 #if YOUNG_LIST_VERBOSE
3979         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3980         _young_list->print();
3981         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3982 #endif // YOUNG_LIST_VERBOSE
3983 
3984         _allocator->init_mutator_alloc_region();
3985 
3986         {
3987           size_t expand_bytes = g1_policy()->expansion_amount();
3988           if (expand_bytes > 0) {
3989             size_t bytes_before = capacity();
3990             // No need for an ergo verbose message here,
3991             // expansion_amount() does this when it returns a value > 0.
3992             if (!expand(expand_bytes)) {
3993               // We failed to expand the heap. Cannot do anything about it.
3994             }
3995           }
3996         }
3997 
3998         // We redo the verification but now wrt to the new CSet which
3999         // has just got initialized after the previous CSet was freed.
4000         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4001                                  true  /* verify_enqueued_buffers */,
4002                                  true  /* verify_thread_buffers */,
4003                                  true  /* verify_fingers */);
4004         _cm->note_end_of_gc();
4005 
4006         // This timing is only used by the ergonomics to handle our pause target.
4007         // It is unclear why this should not include the full pause. We will
4008         // investigate this in CR 7178365.
4009         double sample_end_time_sec = os::elapsedTime();
4010         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4011         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4012 
4013         MemoryService::track_memory_usage();
4014 
4015         // In prepare_for_verify() below we'll need to scan the deferred
4016         // update buffers to bring the RSets up-to-date if
4017         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4018         // the update buffers we'll probably need to scan cards on the
4019         // regions we just allocated to (i.e., the GC alloc
4020         // regions). However, during the last GC we called
4021         // set_saved_mark() on all the GC alloc regions, so card
4022         // scanning might skip the [saved_mark_word()...top()] area of
4023         // those regions (i.e., the area we allocated objects into
4024         // during the last GC). But it shouldn't. Given that
4025         // saved_mark_word() is conditional on whether the GC time stamp
4026         // on the region is current or not, by incrementing the GC time
4027         // stamp here we invalidate all the GC time stamps on all the
4028         // regions and saved_mark_word() will simply return top() for
4029         // all the regions. This is a nicer way of ensuring this rather
4030         // than iterating over the regions and fixing them. In fact, the
4031         // GC time stamp increment here also ensures that
4032         // saved_mark_word() will return top() between pauses, i.e.,
4033         // during concurrent refinement. So we don't need the
4034         // is_gc_active() check to decided which top to use when
4035         // scanning cards (see CR 7039627).
4036         increment_gc_time_stamp();
4037 
4038         verify_after_gc();
4039         check_bitmaps("GC End");
4040 
4041         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4042         ref_processor_stw()->verify_no_references_recorded();
4043 
4044         // CM reference discovery will be re-enabled if necessary.
4045       }
4046 
4047       // We should do this after we potentially expand the heap so
4048       // that all the COMMIT events are generated before the end GC
4049       // event, and after we retire the GC alloc regions so that all
4050       // RETIRE events are generated before the end GC event.
4051       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4052 
4053 #ifdef TRACESPINNING
4054       ParallelTaskTerminator::print_termination_counts();
4055 #endif
4056 
4057       gc_epilogue(false);
4058     }
4059 
4060     // Print the remainder of the GC log output.
4061     log_gc_footer(os::elapsedTime() - pause_start_sec);
4062 
4063     // It is not yet to safe to tell the concurrent mark to
4064     // start as we have some optional output below. We don't want the
4065     // output from the concurrent mark thread interfering with this
4066     // logging output either.
4067 
4068     _hrm.verify_optional();
4069     verify_region_sets_optional();
4070 
4071     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4072     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4073 
4074     print_heap_after_gc();
4075     trace_heap_after_gc(_gc_tracer_stw);
4076 
4077     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4078     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4079     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4080     // before any GC notifications are raised.
4081     g1mm()->update_sizes();
4082 
4083     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4084     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4085     _gc_timer_stw->register_gc_end();
4086     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4087   }
4088   // It should now be safe to tell the concurrent mark thread to start
4089   // without its logging output interfering with the logging output
4090   // that came from the pause.
4091 
4092   if (should_start_conc_mark) {
4093     // CAUTION: after the doConcurrentMark() call below,
4094     // the concurrent marking thread(s) could be running
4095     // concurrently with us. Make sure that anything after
4096     // this point does not assume that we are the only GC thread
4097     // running. Note: of course, the actual marking work will
4098     // not start until the safepoint itself is released in
4099     // SuspendibleThreadSet::desynchronize().
4100     doConcurrentMark();
4101   }
4102 
4103   return true;
4104 }
4105 
4106 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4107   _drain_in_progress = false;
4108   set_evac_failure_closure(cl);
4109   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4110 }
4111 
4112 void G1CollectedHeap::finalize_for_evac_failure() {
4113   assert(_evac_failure_scan_stack != NULL &&
4114          _evac_failure_scan_stack->length() == 0,
4115          "Postcondition");
4116   assert(!_drain_in_progress, "Postcondition");
4117   delete _evac_failure_scan_stack;
4118   _evac_failure_scan_stack = NULL;
4119 }
4120 
4121 void G1CollectedHeap::remove_self_forwarding_pointers() {
4122   double remove_self_forwards_start = os::elapsedTime();
4123 
4124   set_par_threads();
4125   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4126   workers()->run_task(&rsfp_task);
4127   set_par_threads(0);
4128 
4129   // Now restore saved marks, if any.
4130   assert(_objs_with_preserved_marks.size() ==
4131             _preserved_marks_of_objs.size(), "Both or none.");
4132   while (!_objs_with_preserved_marks.is_empty()) {
4133     oop obj = _objs_with_preserved_marks.pop();
4134     markOop m = _preserved_marks_of_objs.pop();
4135     obj->set_mark(m);
4136   }
4137   _objs_with_preserved_marks.clear(true);
4138   _preserved_marks_of_objs.clear(true);
4139 
4140   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4141 }
4142 
4143 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4144   _evac_failure_scan_stack->push(obj);
4145 }
4146 
4147 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4148   assert(_evac_failure_scan_stack != NULL, "precondition");
4149 
4150   while (_evac_failure_scan_stack->length() > 0) {
4151      oop obj = _evac_failure_scan_stack->pop();
4152      _evac_failure_closure->set_region(heap_region_containing(obj));
4153      obj->oop_iterate_backwards(_evac_failure_closure);
4154   }
4155 }
4156 
4157 oop
4158 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4159                                                oop old) {
4160   assert(obj_in_cs(old),
4161          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4162                  (HeapWord*) old));
4163   markOop m = old->mark();
4164   oop forward_ptr = old->forward_to_atomic(old);
4165   if (forward_ptr == NULL) {
4166     // Forward-to-self succeeded.
4167     assert(_par_scan_state != NULL, "par scan state");
4168     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4169     uint queue_num = _par_scan_state->queue_num();
4170 
4171     _evacuation_failed = true;
4172     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4173     if (_evac_failure_closure != cl) {
4174       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4175       assert(!_drain_in_progress,
4176              "Should only be true while someone holds the lock.");
4177       // Set the global evac-failure closure to the current thread's.
4178       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4179       set_evac_failure_closure(cl);
4180       // Now do the common part.
4181       handle_evacuation_failure_common(old, m);
4182       // Reset to NULL.
4183       set_evac_failure_closure(NULL);
4184     } else {
4185       // The lock is already held, and this is recursive.
4186       assert(_drain_in_progress, "This should only be the recursive case.");
4187       handle_evacuation_failure_common(old, m);
4188     }
4189     return old;
4190   } else {
4191     // Forward-to-self failed. Either someone else managed to allocate
4192     // space for this object (old != forward_ptr) or they beat us in
4193     // self-forwarding it (old == forward_ptr).
4194     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4195            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4196                    "should not be in the CSet",
4197                    (HeapWord*) old, (HeapWord*) forward_ptr));
4198     return forward_ptr;
4199   }
4200 }
4201 
4202 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4203   preserve_mark_if_necessary(old, m);
4204 
4205   HeapRegion* r = heap_region_containing(old);
4206   if (!r->evacuation_failed()) {
4207     r->set_evacuation_failed(true);
4208     _hr_printer.evac_failure(r);
4209   }
4210 
4211   push_on_evac_failure_scan_stack(old);
4212 
4213   if (!_drain_in_progress) {
4214     // prevent recursion in copy_to_survivor_space()
4215     _drain_in_progress = true;
4216     drain_evac_failure_scan_stack();
4217     _drain_in_progress = false;
4218   }
4219 }
4220 
4221 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4222   assert(evacuation_failed(), "Oversaving!");
4223   // We want to call the "for_promotion_failure" version only in the
4224   // case of a promotion failure.
4225   if (m->must_be_preserved_for_promotion_failure(obj)) {
4226     _objs_with_preserved_marks.push(obj);
4227     _preserved_marks_of_objs.push(m);
4228   }
4229 }
4230 
4231 void G1ParCopyHelper::mark_object(oop obj) {
4232   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4233 
4234   // We know that the object is not moving so it's safe to read its size.
4235   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4236 }
4237 
4238 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4239   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4240   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4241   assert(from_obj != to_obj, "should not be self-forwarded");
4242 
4243   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4244   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4245 
4246   // The object might be in the process of being copied by another
4247   // worker so we cannot trust that its to-space image is
4248   // well-formed. So we have to read its size from its from-space
4249   // image which we know should not be changing.
4250   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4251 }
4252 
4253 template <class T>
4254 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4255   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4256     _scanned_klass->record_modified_oops();
4257   }
4258 }
4259 
4260 template <G1Barrier barrier, G1Mark do_mark_object>
4261 template <class T>
4262 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4263   T heap_oop = oopDesc::load_heap_oop(p);
4264 
4265   if (oopDesc::is_null(heap_oop)) {
4266     return;
4267   }
4268 
4269   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4270 
4271   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4272 
4273   const InCSetState state = _g1->in_cset_state(obj);
4274   if (state.is_in_cset()) {
4275     oop forwardee;
4276     markOop m = obj->mark();
4277     if (m->is_marked()) {
4278       forwardee = (oop) m->decode_pointer();
4279     } else {
4280       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4281     }
4282     assert(forwardee != NULL, "forwardee should not be NULL");
4283     oopDesc::encode_store_heap_oop(p, forwardee);
4284     if (do_mark_object != G1MarkNone && forwardee != obj) {
4285       // If the object is self-forwarded we don't need to explicitly
4286       // mark it, the evacuation failure protocol will do so.
4287       mark_forwarded_object(obj, forwardee);
4288     }
4289 
4290     if (barrier == G1BarrierKlass) {
4291       do_klass_barrier(p, forwardee);
4292     }
4293   } else {
4294     if (state.is_humongous()) {
4295       _g1->set_humongous_is_live(obj);
4296     }
4297     // The object is not in collection set. If we're a root scanning
4298     // closure during an initial mark pause then attempt to mark the object.
4299     if (do_mark_object == G1MarkFromRoot) {
4300       mark_object(obj);
4301     }
4302   }
4303 
4304   if (barrier == G1BarrierEvac) {
4305     _par_scan_state->update_rs(_from, p, _worker_id);
4306   }
4307 }
4308 
4309 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4310 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4311 
4312 class G1ParEvacuateFollowersClosure : public VoidClosure {
4313 protected:
4314   G1CollectedHeap*              _g1h;
4315   G1ParScanThreadState*         _par_scan_state;
4316   RefToScanQueueSet*            _queues;
4317   ParallelTaskTerminator*       _terminator;
4318 
4319   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4320   RefToScanQueueSet*      queues()         { return _queues; }
4321   ParallelTaskTerminator* terminator()     { return _terminator; }
4322 
4323 public:
4324   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4325                                 G1ParScanThreadState* par_scan_state,
4326                                 RefToScanQueueSet* queues,
4327                                 ParallelTaskTerminator* terminator)
4328     : _g1h(g1h), _par_scan_state(par_scan_state),
4329       _queues(queues), _terminator(terminator) {}
4330 
4331   void do_void();
4332 
4333 private:
4334   inline bool offer_termination();
4335 };
4336 
4337 bool G1ParEvacuateFollowersClosure::offer_termination() {
4338   G1ParScanThreadState* const pss = par_scan_state();
4339   pss->start_term_time();
4340   const bool res = terminator()->offer_termination();
4341   pss->end_term_time();
4342   return res;
4343 }
4344 
4345 void G1ParEvacuateFollowersClosure::do_void() {
4346   G1ParScanThreadState* const pss = par_scan_state();
4347   pss->trim_queue();
4348   do {
4349     pss->steal_and_trim_queue(queues());
4350   } while (!offer_termination());
4351 }
4352 
4353 class G1KlassScanClosure : public KlassClosure {
4354  G1ParCopyHelper* _closure;
4355  bool             _process_only_dirty;
4356  int              _count;
4357  public:
4358   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4359       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4360   void do_klass(Klass* klass) {
4361     // If the klass has not been dirtied we know that there's
4362     // no references into  the young gen and we can skip it.
4363    if (!_process_only_dirty || klass->has_modified_oops()) {
4364       // Clean the klass since we're going to scavenge all the metadata.
4365       klass->clear_modified_oops();
4366 
4367       // Tell the closure that this klass is the Klass to scavenge
4368       // and is the one to dirty if oops are left pointing into the young gen.
4369       _closure->set_scanned_klass(klass);
4370 
4371       klass->oops_do(_closure);
4372 
4373       _closure->set_scanned_klass(NULL);
4374     }
4375     _count++;
4376   }
4377 };
4378 
4379 class G1CodeBlobClosure : public CodeBlobClosure {
4380   class HeapRegionGatheringOopClosure : public OopClosure {
4381     G1CollectedHeap* _g1h;
4382     OopClosure* _work;
4383     nmethod* _nm;
4384 
4385     template <typename T>
4386     void do_oop_work(T* p) {
4387       _work->do_oop(p);
4388       T oop_or_narrowoop = oopDesc::load_heap_oop(p);
4389       if (!oopDesc::is_null(oop_or_narrowoop)) {
4390         oop o = oopDesc::decode_heap_oop_not_null(oop_or_narrowoop);
4391         HeapRegion* hr = _g1h->heap_region_containing_raw(o);
4392         assert(!_g1h->obj_in_cs(o) || hr->rem_set()->strong_code_roots_list_contains(_nm), "if o still in CS then evacuation failed and nm must already be in the remset");
4393         hr->add_strong_code_root(_nm);
4394       }
4395     }
4396 
4397   public:
4398     HeapRegionGatheringOopClosure(OopClosure* oc) : _g1h(G1CollectedHeap::heap()), _work(oc), _nm(NULL) {}
4399 
4400     void do_oop(oop* o) {
4401       do_oop_work(o);
4402     }
4403 
4404     void do_oop(narrowOop* o) {
4405       do_oop_work(o);
4406     }
4407 
4408     void set_nm(nmethod* nm) {
4409       _nm = nm;
4410     }
4411   };
4412 
4413   HeapRegionGatheringOopClosure _oc;
4414 public:
4415   G1CodeBlobClosure(OopClosure* oc) : _oc(oc) {}
4416 
4417   void do_code_blob(CodeBlob* cb) {
4418     nmethod* nm = cb->as_nmethod_or_null();
4419     if (nm != NULL) {
4420       if (!nm->test_set_oops_do_mark()) {
4421         _oc.set_nm(nm);
4422         nm->oops_do(&_oc);
4423         nm->fix_oop_relocations();
4424       }
4425     }
4426   }
4427 };
4428 
4429 class G1ParTask : public AbstractGangTask {
4430 protected:
4431   G1CollectedHeap*       _g1h;
4432   RefToScanQueueSet      *_queues;
4433   ParallelTaskTerminator _terminator;
4434   uint _n_workers;
4435 
4436   Mutex _stats_lock;
4437   Mutex* stats_lock() { return &_stats_lock; }
4438 
4439 public:
4440   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
4441     : AbstractGangTask("G1 collection"),
4442       _g1h(g1h),
4443       _queues(task_queues),
4444       _terminator(0, _queues),
4445       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4446   {}
4447 
4448   RefToScanQueueSet* queues() { return _queues; }
4449 
4450   RefToScanQueue *work_queue(int i) {
4451     return queues()->queue(i);
4452   }
4453 
4454   ParallelTaskTerminator* terminator() { return &_terminator; }
4455 
4456   virtual void set_for_termination(int active_workers) {
4457     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4458     // in the young space (_par_seq_tasks) in the G1 heap
4459     // for SequentialSubTasksDone.
4460     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4461     // both of which need setting by set_n_termination().
4462     _g1h->SharedHeap::set_n_termination(active_workers);
4463     _g1h->set_n_termination(active_workers);
4464     terminator()->reset_for_reuse(active_workers);
4465     _n_workers = active_workers;
4466   }
4467 
4468   // Helps out with CLD processing.
4469   //
4470   // During InitialMark we need to:
4471   // 1) Scavenge all CLDs for the young GC.
4472   // 2) Mark all objects directly reachable from strong CLDs.
4473   template <G1Mark do_mark_object>
4474   class G1CLDClosure : public CLDClosure {
4475     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4476     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4477     G1KlassScanClosure                                _klass_in_cld_closure;
4478     bool                                              _claim;
4479 
4480    public:
4481     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4482                  bool only_young, bool claim)
4483         : _oop_closure(oop_closure),
4484           _oop_in_klass_closure(oop_closure->g1(),
4485                                 oop_closure->pss(),
4486                                 oop_closure->rp()),
4487           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4488           _claim(claim) {
4489 
4490     }
4491 
4492     void do_cld(ClassLoaderData* cld) {
4493       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4494     }
4495   };
4496 
4497   void work(uint worker_id) {
4498     if (worker_id >= _n_workers) return;  // no work needed this round
4499 
4500     double start_time_ms = os::elapsedTime() * 1000.0;
4501     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4502 
4503     {
4504       ResourceMark rm;
4505       HandleMark   hm;
4506 
4507       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4508 
4509       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4510       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4511 
4512       pss.set_evac_failure_closure(&evac_failure_cl);
4513 
4514       bool only_young = _g1h->g1_policy()->collector_state()->gcs_are_young();
4515 
4516       // Non-IM young GC.
4517       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4518       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4519                                                                                only_young, // Only process dirty klasses.
4520                                                                                false);     // No need to claim CLDs.
4521       // IM young GC.
4522       //    Strong roots closures.
4523       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4524       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4525                                                                                false, // Process all klasses.
4526                                                                                true); // Need to claim CLDs.
4527       //    Weak roots closures.
4528       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4529       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4530                                                                                     false, // Process all klasses.
4531                                                                                     true); // Need to claim CLDs.
4532 
4533       G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
4534       G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
4535       // IM Weak code roots are handled later.
4536 
4537       OopClosure* strong_root_cl;
4538       OopClosure* weak_root_cl;
4539       CLDClosure* strong_cld_cl;
4540       CLDClosure* weak_cld_cl;
4541       CodeBlobClosure* strong_code_cl;
4542 
4543       if (_g1h->g1_policy()->collector_state()->during_initial_mark_pause()) {
4544         // We also need to mark copied objects.
4545         strong_root_cl = &scan_mark_root_cl;
4546         strong_cld_cl  = &scan_mark_cld_cl;
4547         strong_code_cl = &scan_mark_code_cl;
4548         if (ClassUnloadingWithConcurrentMark) {
4549           weak_root_cl = &scan_mark_weak_root_cl;
4550           weak_cld_cl  = &scan_mark_weak_cld_cl;
4551         } else {
4552           weak_root_cl = &scan_mark_root_cl;
4553           weak_cld_cl  = &scan_mark_cld_cl;
4554         }
4555       } else {
4556         strong_root_cl = &scan_only_root_cl;
4557         weak_root_cl   = &scan_only_root_cl;
4558         strong_cld_cl  = &scan_only_cld_cl;
4559         weak_cld_cl    = &scan_only_cld_cl;
4560         strong_code_cl = &scan_only_code_cl;
4561       }
4562 
4563 
4564       G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
4565 
4566       pss.start_strong_roots();
4567       _g1h->g1_process_roots(strong_root_cl,
4568                              weak_root_cl,
4569                              &push_heap_rs_cl,
4570                              strong_cld_cl,
4571                              weak_cld_cl,
4572                              strong_code_cl,
4573                              worker_id);
4574 
4575       pss.end_strong_roots();
4576 
4577       {
4578         double start = os::elapsedTime();
4579         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4580         evac.do_void();
4581         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4582         double term_ms = pss.term_time()*1000.0;
4583         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4584         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4585       }
4586       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4587       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4588 
4589       if (PrintTerminationStats) {
4590         MutexLocker x(stats_lock());
4591         pss.print_termination_stats(worker_id);
4592       }
4593 
4594       assert(pss.queue_is_empty(), "should be empty");
4595 
4596       // Close the inner scope so that the ResourceMark and HandleMark
4597       // destructors are executed here and are included as part of the
4598       // "GC Worker Time".
4599     }
4600 
4601     double end_time_ms = os::elapsedTime() * 1000.0;
4602     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4603   }
4604 };
4605 
4606 // *** Common G1 Evacuation Stuff
4607 
4608 // This method is run in a GC worker.
4609 
4610 void
4611 G1CollectedHeap::
4612 g1_process_roots(OopClosure* scan_non_heap_roots,
4613                  OopClosure* scan_non_heap_weak_roots,
4614                  G1ParPushHeapRSClosure* scan_rs,
4615                  CLDClosure* scan_strong_clds,
4616                  CLDClosure* scan_weak_clds,
4617                  CodeBlobClosure* scan_strong_code,
4618                  uint worker_i) {
4619 
4620   // First scan the shared roots.
4621   double ext_roots_start = os::elapsedTime();
4622   double closure_app_time_sec = 0.0;
4623 
4624   bool during_im = _g1h->g1_policy()->collector_state()->during_initial_mark_pause();
4625   bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
4626 
4627   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4628   BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
4629 
4630   process_roots(false, // no scoping; this is parallel code
4631                 SharedHeap::SO_None,
4632                 &buf_scan_non_heap_roots,
4633                 &buf_scan_non_heap_weak_roots,
4634                 scan_strong_clds,
4635                 // Unloading Initial Marks handle the weak CLDs separately.
4636                 (trace_metadata ? NULL : scan_weak_clds),
4637                 scan_strong_code);
4638 
4639   // Now the CM ref_processor roots.
4640   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4641     // We need to treat the discovered reference lists of the
4642     // concurrent mark ref processor as roots and keep entries
4643     // (which are added by the marking threads) on them live
4644     // until they can be processed at the end of marking.
4645     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4646   }
4647 
4648   if (trace_metadata) {
4649     // Barrier to make sure all workers passed
4650     // the strong CLD and strong nmethods phases.
4651     active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());
4652 
4653     // Now take the complement of the strong CLDs.
4654     ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
4655   }
4656 
4657   // Finish up any enqueued closure apps (attributed as object copy time).
4658   buf_scan_non_heap_roots.done();
4659   buf_scan_non_heap_weak_roots.done();
4660 
4661   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
4662       + buf_scan_non_heap_weak_roots.closure_app_seconds();
4663 
4664   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4665 
4666   double ext_root_time_ms =
4667     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4668 
4669   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4670 
4671   // During conc marking we have to filter the per-thread SATB buffers
4672   // to make sure we remove any oops into the CSet (which will show up
4673   // as implicitly live).
4674   double satb_filtering_ms = 0.0;
4675   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
4676     if (mark_in_progress()) {
4677       double satb_filter_start = os::elapsedTime();
4678 
4679       JavaThread::satb_mark_queue_set().filter_thread_buffers();
4680 
4681       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
4682     }
4683   }
4684   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4685 
4686   // Now scan the complement of the collection set.
4687   G1CodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots);
4688 
4689   g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
4690 
4691   _process_strong_tasks->all_tasks_completed();
4692 }
4693 
4694 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4695 private:
4696   BoolObjectClosure* _is_alive;
4697   int _initial_string_table_size;
4698   int _initial_symbol_table_size;
4699 
4700   bool  _process_strings;
4701   int _strings_processed;
4702   int _strings_removed;
4703 
4704   bool  _process_symbols;
4705   int _symbols_processed;
4706   int _symbols_removed;
4707 
4708 public:
4709   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4710     AbstractGangTask("String/Symbol Unlinking"),
4711     _is_alive(is_alive),
4712     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4713     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4714 
4715     _initial_string_table_size = StringTable::the_table()->table_size();
4716     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4717     if (process_strings) {
4718       StringTable::clear_parallel_claimed_index();
4719     }
4720     if (process_symbols) {
4721       SymbolTable::clear_parallel_claimed_index();
4722     }
4723   }
4724 
4725   ~G1StringSymbolTableUnlinkTask() {
4726     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4727               err_msg("claim value %d after unlink less than initial string table size %d",
4728                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4729     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4730               err_msg("claim value %d after unlink less than initial symbol table size %d",
4731                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4732 
4733     if (G1TraceStringSymbolTableScrubbing) {
4734       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4735                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4736                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4737                              strings_processed(), strings_removed(),
4738                              symbols_processed(), symbols_removed());
4739     }
4740   }
4741 
4742   void work(uint worker_id) {
4743     int strings_processed = 0;
4744     int strings_removed = 0;
4745     int symbols_processed = 0;
4746     int symbols_removed = 0;
4747     if (_process_strings) {
4748       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4749       Atomic::add(strings_processed, &_strings_processed);
4750       Atomic::add(strings_removed, &_strings_removed);
4751     }
4752     if (_process_symbols) {
4753       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4754       Atomic::add(symbols_processed, &_symbols_processed);
4755       Atomic::add(symbols_removed, &_symbols_removed);
4756     }
4757   }
4758 
4759   size_t strings_processed() const { return (size_t)_strings_processed; }
4760   size_t strings_removed()   const { return (size_t)_strings_removed; }
4761 
4762   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4763   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4764 };
4765 
4766 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4767 private:
4768   static Monitor* _lock;
4769 
4770   BoolObjectClosure* const _is_alive;
4771   const bool               _unloading_occurred;
4772   const uint               _num_workers;
4773 
4774   // Variables used to claim nmethods.
4775   nmethod* _first_nmethod;
4776   volatile nmethod* _claimed_nmethod;
4777 
4778   // The list of nmethods that need to be processed by the second pass.
4779   volatile nmethod* _postponed_list;
4780   volatile uint     _num_entered_barrier;
4781 
4782  public:
4783   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4784       _is_alive(is_alive),
4785       _unloading_occurred(unloading_occurred),
4786       _num_workers(num_workers),
4787       _first_nmethod(NULL),
4788       _claimed_nmethod(NULL),
4789       _postponed_list(NULL),
4790       _num_entered_barrier(0)
4791   {
4792     nmethod::increase_unloading_clock();
4793     // Get first alive nmethod
4794     NMethodIterator iter = NMethodIterator();
4795     if(iter.next_alive()) {
4796       _first_nmethod = iter.method();
4797     }
4798     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4799   }
4800 
4801   ~G1CodeCacheUnloadingTask() {
4802     CodeCache::verify_clean_inline_caches();
4803 
4804     CodeCache::set_needs_cache_clean(false);
4805     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4806 
4807     CodeCache::verify_icholder_relocations();
4808   }
4809 
4810  private:
4811   void add_to_postponed_list(nmethod* nm) {
4812       nmethod* old;
4813       do {
4814         old = (nmethod*)_postponed_list;
4815         nm->set_unloading_next(old);
4816       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4817   }
4818 
4819   void clean_nmethod(nmethod* nm) {
4820     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4821 
4822     if (postponed) {
4823       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4824       add_to_postponed_list(nm);
4825     }
4826 
4827     // Mark that this thread has been cleaned/unloaded.
4828     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4829     nm->set_unloading_clock(nmethod::global_unloading_clock());
4830   }
4831 
4832   void clean_nmethod_postponed(nmethod* nm) {
4833     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4834   }
4835 
4836   static const int MaxClaimNmethods = 16;
4837 
4838   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4839     nmethod* first;
4840     NMethodIterator last;
4841 
4842     do {
4843       *num_claimed_nmethods = 0;
4844 
4845       first = (nmethod*)_claimed_nmethod;
4846       last = NMethodIterator(first);
4847 
4848       if (first != NULL) {
4849 
4850         for (int i = 0; i < MaxClaimNmethods; i++) {
4851           if (!last.next_alive()) {
4852             break;
4853           }
4854           claimed_nmethods[i] = last.method();
4855           (*num_claimed_nmethods)++;
4856         }
4857       }
4858 
4859     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4860   }
4861 
4862   nmethod* claim_postponed_nmethod() {
4863     nmethod* claim;
4864     nmethod* next;
4865 
4866     do {
4867       claim = (nmethod*)_postponed_list;
4868       if (claim == NULL) {
4869         return NULL;
4870       }
4871 
4872       next = claim->unloading_next();
4873 
4874     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4875 
4876     return claim;
4877   }
4878 
4879  public:
4880   // Mark that we're done with the first pass of nmethod cleaning.
4881   void barrier_mark(uint worker_id) {
4882     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4883     _num_entered_barrier++;
4884     if (_num_entered_barrier == _num_workers) {
4885       ml.notify_all();
4886     }
4887   }
4888 
4889   // See if we have to wait for the other workers to
4890   // finish their first-pass nmethod cleaning work.
4891   void barrier_wait(uint worker_id) {
4892     if (_num_entered_barrier < _num_workers) {
4893       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4894       while (_num_entered_barrier < _num_workers) {
4895           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4896       }
4897     }
4898   }
4899 
4900   // Cleaning and unloading of nmethods. Some work has to be postponed
4901   // to the second pass, when we know which nmethods survive.
4902   void work_first_pass(uint worker_id) {
4903     // The first nmethods is claimed by the first worker.
4904     if (worker_id == 0 && _first_nmethod != NULL) {
4905       clean_nmethod(_first_nmethod);
4906       _first_nmethod = NULL;
4907     }
4908 
4909     int num_claimed_nmethods;
4910     nmethod* claimed_nmethods[MaxClaimNmethods];
4911 
4912     while (true) {
4913       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4914 
4915       if (num_claimed_nmethods == 0) {
4916         break;
4917       }
4918 
4919       for (int i = 0; i < num_claimed_nmethods; i++) {
4920         clean_nmethod(claimed_nmethods[i]);
4921       }
4922     }
4923 
4924     // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark.
4925     // Need to retire the buffers now that this thread has stopped cleaning nmethods.
4926     MetadataOnStackMark::retire_buffer_for_thread(Thread::current());
4927   }
4928 
4929   void work_second_pass(uint worker_id) {
4930     nmethod* nm;
4931     // Take care of postponed nmethods.
4932     while ((nm = claim_postponed_nmethod()) != NULL) {
4933       clean_nmethod_postponed(nm);
4934     }
4935   }
4936 };
4937 
4938 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4939 
4940 class G1KlassCleaningTask : public StackObj {
4941   BoolObjectClosure*                      _is_alive;
4942   volatile jint                           _clean_klass_tree_claimed;
4943   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4944 
4945  public:
4946   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4947       _is_alive(is_alive),
4948       _clean_klass_tree_claimed(0),
4949       _klass_iterator() {
4950   }
4951 
4952  private:
4953   bool claim_clean_klass_tree_task() {
4954     if (_clean_klass_tree_claimed) {
4955       return false;
4956     }
4957 
4958     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4959   }
4960 
4961   InstanceKlass* claim_next_klass() {
4962     Klass* klass;
4963     do {
4964       klass =_klass_iterator.next_klass();
4965     } while (klass != NULL && !klass->oop_is_instance());
4966 
4967     return (InstanceKlass*)klass;
4968   }
4969 
4970 public:
4971 
4972   void clean_klass(InstanceKlass* ik) {
4973     ik->clean_implementors_list(_is_alive);
4974     ik->clean_method_data(_is_alive);
4975 
4976     // G1 specific cleanup work that has
4977     // been moved here to be done in parallel.
4978     ik->clean_dependent_nmethods();
4979     if (JvmtiExport::has_redefined_a_class()) {
4980       InstanceKlass::purge_previous_versions(ik);
4981     }
4982   }
4983 
4984   void work() {
4985     ResourceMark rm;
4986 
4987     // One worker will clean the subklass/sibling klass tree.
4988     if (claim_clean_klass_tree_task()) {
4989       Klass::clean_subklass_tree(_is_alive);
4990     }
4991 
4992     // All workers will help cleaning the classes,
4993     InstanceKlass* klass;
4994     while ((klass = claim_next_klass()) != NULL) {
4995       clean_klass(klass);
4996     }
4997   }
4998 };
4999 
5000 // To minimize the remark pause times, the tasks below are done in parallel.
5001 class G1ParallelCleaningTask : public AbstractGangTask {
5002 private:
5003   G1StringSymbolTableUnlinkTask _string_symbol_task;
5004   G1CodeCacheUnloadingTask      _code_cache_task;
5005   G1KlassCleaningTask           _klass_cleaning_task;
5006 
5007 public:
5008   // The constructor is run in the VMThread.
5009   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
5010       AbstractGangTask("Parallel Cleaning"),
5011       _string_symbol_task(is_alive, process_strings, process_symbols),
5012       _code_cache_task(num_workers, is_alive, unloading_occurred),
5013       _klass_cleaning_task(is_alive) {
5014   }
5015 
5016   void pre_work_verification() {
5017     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5018   }
5019 
5020   void post_work_verification() {
5021     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5022   }
5023 
5024   // The parallel work done by all worker threads.
5025   void work(uint worker_id) {
5026     pre_work_verification();
5027 
5028     // Do first pass of code cache cleaning.
5029     _code_cache_task.work_first_pass(worker_id);
5030 
5031     // Let the threads mark that the first pass is done.
5032     _code_cache_task.barrier_mark(worker_id);
5033 
5034     // Clean the Strings and Symbols.
5035     _string_symbol_task.work(worker_id);
5036 
5037     // Wait for all workers to finish the first code cache cleaning pass.
5038     _code_cache_task.barrier_wait(worker_id);
5039 
5040     // Do the second code cache cleaning work, which realize on
5041     // the liveness information gathered during the first pass.
5042     _code_cache_task.work_second_pass(worker_id);
5043 
5044     // Clean all klasses that were not unloaded.
5045     _klass_cleaning_task.work();
5046 
5047     post_work_verification();
5048   }
5049 };
5050 
5051 
5052 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5053                                         bool process_strings,
5054                                         bool process_symbols,
5055                                         bool class_unloading_occurred) {
5056   uint n_workers = workers()->active_workers();
5057 
5058   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5059                                         n_workers, class_unloading_occurred);
5060   set_par_threads(n_workers);
5061   workers()->run_task(&g1_unlink_task);
5062   set_par_threads(0);
5063 }
5064 
5065 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5066                                                      bool process_strings, bool process_symbols) {
5067   {
5068     uint n_workers = _g1h->workers()->active_workers();
5069     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5070     set_par_threads(n_workers);
5071     workers()->run_task(&g1_unlink_task);
5072     set_par_threads(0);
5073   }
5074 
5075   if (G1StringDedup::is_enabled()) {
5076     G1StringDedup::unlink(is_alive);
5077   }
5078 }
5079 
5080 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5081  private:
5082   DirtyCardQueueSet* _queue;
5083  public:
5084   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5085 
5086   virtual void work(uint worker_id) {
5087     double start_time = os::elapsedTime();
5088 
5089     RedirtyLoggedCardTableEntryClosure cl;
5090     _queue->par_apply_closure_to_all_completed_buffers(&cl);
5091 
5092     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
5093     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
5094     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
5095   }
5096 };
5097 
5098 void G1CollectedHeap::redirty_logged_cards() {
5099   double redirty_logged_cards_start = os::elapsedTime();
5100 
5101   uint n_workers = _g1h->workers()->active_workers();
5102 
5103   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5104   dirty_card_queue_set().reset_for_par_iteration();
5105   set_par_threads(n_workers);
5106   workers()->run_task(&redirty_task);
5107   set_par_threads(0);
5108 
5109   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5110   dcq.merge_bufferlists(&dirty_card_queue_set());
5111   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5112 
5113   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5114 }
5115 
5116 // Weak Reference Processing support
5117 
5118 // An always "is_alive" closure that is used to preserve referents.
5119 // If the object is non-null then it's alive.  Used in the preservation
5120 // of referent objects that are pointed to by reference objects
5121 // discovered by the CM ref processor.
5122 class G1AlwaysAliveClosure: public BoolObjectClosure {
5123   G1CollectedHeap* _g1;
5124 public:
5125   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5126   bool do_object_b(oop p) {
5127     if (p != NULL) {
5128       return true;
5129     }
5130     return false;
5131   }
5132 };
5133 
5134 bool G1STWIsAliveClosure::do_object_b(oop p) {
5135   // An object is reachable if it is outside the collection set,
5136   // or is inside and copied.
5137   return !_g1->obj_in_cs(p) || p->is_forwarded();
5138 }
5139 
5140 // Non Copying Keep Alive closure
5141 class G1KeepAliveClosure: public OopClosure {
5142   G1CollectedHeap* _g1;
5143 public:
5144   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5145   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5146   void do_oop(oop* p) {
5147     oop obj = *p;
5148     assert(obj != NULL, "the caller should have filtered out NULL values");
5149 
5150     const InCSetState cset_state = _g1->in_cset_state(obj);
5151     if (!cset_state.is_in_cset_or_humongous()) {
5152       return;
5153     }
5154     if (cset_state.is_in_cset()) {
5155       assert( obj->is_forwarded(), "invariant" );
5156       *p = obj->forwardee();
5157     } else {
5158       assert(!obj->is_forwarded(), "invariant" );
5159       assert(cset_state.is_humongous(),
5160              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5161       _g1->set_humongous_is_live(obj);
5162     }
5163   }
5164 };
5165 
5166 // Copying Keep Alive closure - can be called from both
5167 // serial and parallel code as long as different worker
5168 // threads utilize different G1ParScanThreadState instances
5169 // and different queues.
5170 
5171 class G1CopyingKeepAliveClosure: public OopClosure {
5172   G1CollectedHeap*         _g1h;
5173   OopClosure*              _copy_non_heap_obj_cl;
5174   G1ParScanThreadState*    _par_scan_state;
5175 
5176 public:
5177   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5178                             OopClosure* non_heap_obj_cl,
5179                             G1ParScanThreadState* pss):
5180     _g1h(g1h),
5181     _copy_non_heap_obj_cl(non_heap_obj_cl),
5182     _par_scan_state(pss)
5183   {}
5184 
5185   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5186   virtual void do_oop(      oop* p) { do_oop_work(p); }
5187 
5188   template <class T> void do_oop_work(T* p) {
5189     oop obj = oopDesc::load_decode_heap_oop(p);
5190 
5191     if (_g1h->is_in_cset_or_humongous(obj)) {
5192       // If the referent object has been forwarded (either copied
5193       // to a new location or to itself in the event of an
5194       // evacuation failure) then we need to update the reference
5195       // field and, if both reference and referent are in the G1
5196       // heap, update the RSet for the referent.
5197       //
5198       // If the referent has not been forwarded then we have to keep
5199       // it alive by policy. Therefore we have copy the referent.
5200       //
5201       // If the reference field is in the G1 heap then we can push
5202       // on the PSS queue. When the queue is drained (after each
5203       // phase of reference processing) the object and it's followers
5204       // will be copied, the reference field set to point to the
5205       // new location, and the RSet updated. Otherwise we need to
5206       // use the the non-heap or metadata closures directly to copy
5207       // the referent object and update the pointer, while avoiding
5208       // updating the RSet.
5209 
5210       if (_g1h->is_in_g1_reserved(p)) {
5211         _par_scan_state->push_on_queue(p);
5212       } else {
5213         assert(!Metaspace::contains((const void*)p),
5214                err_msg("Unexpectedly found a pointer from metadata: "
5215                               PTR_FORMAT, p));
5216         _copy_non_heap_obj_cl->do_oop(p);
5217       }
5218     }
5219   }
5220 };
5221 
5222 // Serial drain queue closure. Called as the 'complete_gc'
5223 // closure for each discovered list in some of the
5224 // reference processing phases.
5225 
5226 class G1STWDrainQueueClosure: public VoidClosure {
5227 protected:
5228   G1CollectedHeap* _g1h;
5229   G1ParScanThreadState* _par_scan_state;
5230 
5231   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5232 
5233 public:
5234   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5235     _g1h(g1h),
5236     _par_scan_state(pss)
5237   { }
5238 
5239   void do_void() {
5240     G1ParScanThreadState* const pss = par_scan_state();
5241     pss->trim_queue();
5242   }
5243 };
5244 
5245 // Parallel Reference Processing closures
5246 
5247 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5248 // processing during G1 evacuation pauses.
5249 
5250 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5251 private:
5252   G1CollectedHeap*   _g1h;
5253   RefToScanQueueSet* _queues;
5254   FlexibleWorkGang*  _workers;
5255   int                _active_workers;
5256 
5257 public:
5258   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5259                         FlexibleWorkGang* workers,
5260                         RefToScanQueueSet *task_queues,
5261                         int n_workers) :
5262     _g1h(g1h),
5263     _queues(task_queues),
5264     _workers(workers),
5265     _active_workers(n_workers)
5266   {
5267     assert(n_workers > 0, "shouldn't call this otherwise");
5268   }
5269 
5270   // Executes the given task using concurrent marking worker threads.
5271   virtual void execute(ProcessTask& task);
5272   virtual void execute(EnqueueTask& task);
5273 };
5274 
5275 // Gang task for possibly parallel reference processing
5276 
5277 class G1STWRefProcTaskProxy: public AbstractGangTask {
5278   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5279   ProcessTask&     _proc_task;
5280   G1CollectedHeap* _g1h;
5281   RefToScanQueueSet *_task_queues;
5282   ParallelTaskTerminator* _terminator;
5283 
5284 public:
5285   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5286                      G1CollectedHeap* g1h,
5287                      RefToScanQueueSet *task_queues,
5288                      ParallelTaskTerminator* terminator) :
5289     AbstractGangTask("Process reference objects in parallel"),
5290     _proc_task(proc_task),
5291     _g1h(g1h),
5292     _task_queues(task_queues),
5293     _terminator(terminator)
5294   {}
5295 
5296   virtual void work(uint worker_id) {
5297     // The reference processing task executed by a single worker.
5298     ResourceMark rm;
5299     HandleMark   hm;
5300 
5301     G1STWIsAliveClosure is_alive(_g1h);
5302 
5303     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5304     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5305 
5306     pss.set_evac_failure_closure(&evac_failure_cl);
5307 
5308     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5309 
5310     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5311 
5312     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5313 
5314     if (_g1h->g1_policy()->collector_state()->during_initial_mark_pause()) {
5315       // We also need to mark copied objects.
5316       copy_non_heap_cl = &copy_mark_non_heap_cl;
5317     }
5318 
5319     // Keep alive closure.
5320     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5321 
5322     // Complete GC closure
5323     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5324 
5325     // Call the reference processing task's work routine.
5326     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5327 
5328     // Note we cannot assert that the refs array is empty here as not all
5329     // of the processing tasks (specifically phase2 - pp2_work) execute
5330     // the complete_gc closure (which ordinarily would drain the queue) so
5331     // the queue may not be empty.
5332   }
5333 };
5334 
5335 // Driver routine for parallel reference processing.
5336 // Creates an instance of the ref processing gang
5337 // task and has the worker threads execute it.
5338 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5339   assert(_workers != NULL, "Need parallel worker threads.");
5340 
5341   ParallelTaskTerminator terminator(_active_workers, _queues);
5342   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5343 
5344   _g1h->set_par_threads(_active_workers);
5345   _workers->run_task(&proc_task_proxy);
5346   _g1h->set_par_threads(0);
5347 }
5348 
5349 // Gang task for parallel reference enqueueing.
5350 
5351 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5352   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5353   EnqueueTask& _enq_task;
5354 
5355 public:
5356   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5357     AbstractGangTask("Enqueue reference objects in parallel"),
5358     _enq_task(enq_task)
5359   { }
5360 
5361   virtual void work(uint worker_id) {
5362     _enq_task.work(worker_id);
5363   }
5364 };
5365 
5366 // Driver routine for parallel reference enqueueing.
5367 // Creates an instance of the ref enqueueing gang
5368 // task and has the worker threads execute it.
5369 
5370 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5371   assert(_workers != NULL, "Need parallel worker threads.");
5372 
5373   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5374 
5375   _g1h->set_par_threads(_active_workers);
5376   _workers->run_task(&enq_task_proxy);
5377   _g1h->set_par_threads(0);
5378 }
5379 
5380 // End of weak reference support closures
5381 
5382 // Abstract task used to preserve (i.e. copy) any referent objects
5383 // that are in the collection set and are pointed to by reference
5384 // objects discovered by the CM ref processor.
5385 
5386 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5387 protected:
5388   G1CollectedHeap* _g1h;
5389   RefToScanQueueSet      *_queues;
5390   ParallelTaskTerminator _terminator;
5391   uint _n_workers;
5392 
5393 public:
5394   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5395     AbstractGangTask("ParPreserveCMReferents"),
5396     _g1h(g1h),
5397     _queues(task_queues),
5398     _terminator(workers, _queues),
5399     _n_workers(workers)
5400   { }
5401 
5402   void work(uint worker_id) {
5403     ResourceMark rm;
5404     HandleMark   hm;
5405 
5406     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5407     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5408 
5409     pss.set_evac_failure_closure(&evac_failure_cl);
5410 
5411     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5412 
5413     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5414 
5415     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5416 
5417     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5418 
5419     if (_g1h->g1_policy()->collector_state()->during_initial_mark_pause()) {
5420       // We also need to mark copied objects.
5421       copy_non_heap_cl = &copy_mark_non_heap_cl;
5422     }
5423 
5424     // Is alive closure
5425     G1AlwaysAliveClosure always_alive(_g1h);
5426 
5427     // Copying keep alive closure. Applied to referent objects that need
5428     // to be copied.
5429     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5430 
5431     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5432 
5433     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5434     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5435 
5436     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5437     // So this must be true - but assert just in case someone decides to
5438     // change the worker ids.
5439     assert(0 <= worker_id && worker_id < limit, "sanity");
5440     assert(!rp->discovery_is_atomic(), "check this code");
5441 
5442     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5443     for (uint idx = worker_id; idx < limit; idx += stride) {
5444       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5445 
5446       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5447       while (iter.has_next()) {
5448         // Since discovery is not atomic for the CM ref processor, we
5449         // can see some null referent objects.
5450         iter.load_ptrs(DEBUG_ONLY(true));
5451         oop ref = iter.obj();
5452 
5453         // This will filter nulls.
5454         if (iter.is_referent_alive()) {
5455           iter.make_referent_alive();
5456         }
5457         iter.move_to_next();
5458       }
5459     }
5460 
5461     // Drain the queue - which may cause stealing
5462     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5463     drain_queue.do_void();
5464     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5465     assert(pss.queue_is_empty(), "should be");
5466   }
5467 };
5468 
5469 // Weak Reference processing during an evacuation pause (part 1).
5470 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5471   double ref_proc_start = os::elapsedTime();
5472 
5473   ReferenceProcessor* rp = _ref_processor_stw;
5474   assert(rp->discovery_enabled(), "should have been enabled");
5475 
5476   // Any reference objects, in the collection set, that were 'discovered'
5477   // by the CM ref processor should have already been copied (either by
5478   // applying the external root copy closure to the discovered lists, or
5479   // by following an RSet entry).
5480   //
5481   // But some of the referents, that are in the collection set, that these
5482   // reference objects point to may not have been copied: the STW ref
5483   // processor would have seen that the reference object had already
5484   // been 'discovered' and would have skipped discovering the reference,
5485   // but would not have treated the reference object as a regular oop.
5486   // As a result the copy closure would not have been applied to the
5487   // referent object.
5488   //
5489   // We need to explicitly copy these referent objects - the references
5490   // will be processed at the end of remarking.
5491   //
5492   // We also need to do this copying before we process the reference
5493   // objects discovered by the STW ref processor in case one of these
5494   // referents points to another object which is also referenced by an
5495   // object discovered by the STW ref processor.
5496 
5497   assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5498 
5499   set_par_threads(no_of_gc_workers);
5500   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5501                                                  no_of_gc_workers,
5502                                                  _task_queues);
5503 
5504   workers()->run_task(&keep_cm_referents);
5505 
5506   set_par_threads(0);
5507 
5508   // Closure to test whether a referent is alive.
5509   G1STWIsAliveClosure is_alive(this);
5510 
5511   // Even when parallel reference processing is enabled, the processing
5512   // of JNI refs is serial and performed serially by the current thread
5513   // rather than by a worker. The following PSS will be used for processing
5514   // JNI refs.
5515 
5516   // Use only a single queue for this PSS.
5517   G1ParScanThreadState            pss(this, 0, NULL);
5518 
5519   // We do not embed a reference processor in the copying/scanning
5520   // closures while we're actually processing the discovered
5521   // reference objects.
5522   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5523 
5524   pss.set_evac_failure_closure(&evac_failure_cl);
5525 
5526   assert(pss.queue_is_empty(), "pre-condition");
5527 
5528   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5529 
5530   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5531 
5532   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5533 
5534   if (_g1h->g1_policy()->collector_state()->during_initial_mark_pause()) {
5535     // We also need to mark copied objects.
5536     copy_non_heap_cl = &copy_mark_non_heap_cl;
5537   }
5538 
5539   // Keep alive closure.
5540   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5541 
5542   // Serial Complete GC closure
5543   G1STWDrainQueueClosure drain_queue(this, &pss);
5544 
5545   // Setup the soft refs policy...
5546   rp->setup_policy(false);
5547 
5548   ReferenceProcessorStats stats;
5549   if (!rp->processing_is_mt()) {
5550     // Serial reference processing...
5551     stats = rp->process_discovered_references(&is_alive,
5552                                               &keep_alive,
5553                                               &drain_queue,
5554                                               NULL,
5555                                               _gc_timer_stw,
5556                                               _gc_tracer_stw->gc_id());
5557   } else {
5558     // Parallel reference processing
5559     assert(rp->num_q() == no_of_gc_workers, "sanity");
5560     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5561 
5562     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5563     stats = rp->process_discovered_references(&is_alive,
5564                                               &keep_alive,
5565                                               &drain_queue,
5566                                               &par_task_executor,
5567                                               _gc_timer_stw,
5568                                               _gc_tracer_stw->gc_id());
5569   }
5570 
5571   _gc_tracer_stw->report_gc_reference_stats(stats);
5572 
5573   // We have completed copying any necessary live referent objects.
5574   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5575 
5576   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5577   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5578 }
5579 
5580 // Weak Reference processing during an evacuation pause (part 2).
5581 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5582   double ref_enq_start = os::elapsedTime();
5583 
5584   ReferenceProcessor* rp = _ref_processor_stw;
5585   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5586 
5587   // Now enqueue any remaining on the discovered lists on to
5588   // the pending list.
5589   if (!rp->processing_is_mt()) {
5590     // Serial reference processing...
5591     rp->enqueue_discovered_references();
5592   } else {
5593     // Parallel reference enqueueing
5594 
5595     assert(no_of_gc_workers == workers()->active_workers(),
5596            "Need to reset active workers");
5597     assert(rp->num_q() == no_of_gc_workers, "sanity");
5598     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5599 
5600     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5601     rp->enqueue_discovered_references(&par_task_executor);
5602   }
5603 
5604   rp->verify_no_references_recorded();
5605   assert(!rp->discovery_enabled(), "should have been disabled");
5606 
5607   // FIXME
5608   // CM's reference processing also cleans up the string and symbol tables.
5609   // Should we do that here also? We could, but it is a serial operation
5610   // and could significantly increase the pause time.
5611 
5612   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5613   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5614 }
5615 
5616 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5617   _expand_heap_after_alloc_failure = true;
5618   _evacuation_failed = false;
5619 
5620   // Should G1EvacuationFailureALot be in effect for this GC?
5621   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5622 
5623   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5624 
5625   // Disable the hot card cache.
5626   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5627   hot_card_cache->reset_hot_cache_claimed_index();
5628   hot_card_cache->set_use_cache(false);
5629 
5630   uint n_workers;
5631   n_workers =
5632     AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5633                                    workers()->active_workers(),
5634                                    Threads::number_of_non_daemon_threads());
5635   assert(UseDynamicNumberOfGCThreads ||
5636          n_workers == workers()->total_workers(),
5637          "If not dynamic should be using all the  workers");
5638   workers()->set_active_workers(n_workers);
5639   set_par_threads(n_workers);
5640 
5641   G1ParTask g1_par_task(this, _task_queues);
5642 
5643   init_for_evac_failure(NULL);
5644 
5645   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5646   double start_par_time_sec = os::elapsedTime();
5647   double end_par_time_sec;
5648 
5649   {
5650     StrongRootsScope srs(this);
5651     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5652     if (g1_policy()->collector_state()->during_initial_mark_pause()) {
5653       ClassLoaderDataGraph::clear_claimed_marks();
5654     }
5655 
5656      // The individual threads will set their evac-failure closures.
5657      if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5658      // These tasks use ShareHeap::_process_strong_tasks
5659      assert(UseDynamicNumberOfGCThreads ||
5660             workers()->active_workers() == workers()->total_workers(),
5661             "If not dynamic should be using all the  workers");
5662     workers()->run_task(&g1_par_task);
5663     end_par_time_sec = os::elapsedTime();
5664 
5665     // Closing the inner scope will execute the destructor
5666     // for the StrongRootsScope object. We record the current
5667     // elapsed time before closing the scope so that time
5668     // taken for the SRS destructor is NOT included in the
5669     // reported parallel time.
5670   }
5671 
5672   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5673   g1_policy()->phase_times()->record_par_time(par_time_ms);
5674 
5675   double code_root_fixup_time_ms =
5676         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5677   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5678 
5679   set_par_threads(0);
5680 
5681   // Process any discovered reference objects - we have
5682   // to do this _before_ we retire the GC alloc regions
5683   // as we may have to copy some 'reachable' referent
5684   // objects (and their reachable sub-graphs) that were
5685   // not copied during the pause.
5686   process_discovered_references(n_workers);
5687 
5688   if (G1StringDedup::is_enabled()) {
5689     G1STWIsAliveClosure is_alive(this);
5690     G1KeepAliveClosure keep_alive(this);
5691     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
5692   }
5693 
5694   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5695   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5696 
5697   // Reset and re-enable the hot card cache.
5698   // Note the counts for the cards in the regions in the
5699   // collection set are reset when the collection set is freed.
5700   hot_card_cache->reset_hot_cache();
5701   hot_card_cache->set_use_cache(true);
5702 
5703   purge_code_root_memory();
5704 
5705   finalize_for_evac_failure();
5706 
5707   if (evacuation_failed()) {
5708     remove_self_forwarding_pointers();
5709 
5710     // Reset the G1EvacuationFailureALot counters and flags
5711     // Note: the values are reset only when an actual
5712     // evacuation failure occurs.
5713     NOT_PRODUCT(reset_evacuation_should_fail();)
5714   }
5715 
5716   // Enqueue any remaining references remaining on the STW
5717   // reference processor's discovered lists. We need to do
5718   // this after the card table is cleaned (and verified) as
5719   // the act of enqueueing entries on to the pending list
5720   // will log these updates (and dirty their associated
5721   // cards). We need these updates logged to update any
5722   // RSets.
5723   enqueue_discovered_references(n_workers);
5724 
5725   redirty_logged_cards();
5726   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5727 }
5728 
5729 void G1CollectedHeap::free_region(HeapRegion* hr,
5730                                   FreeRegionList* free_list,
5731                                   bool par,
5732                                   bool locked) {
5733   assert(!hr->is_free(), "the region should not be free");
5734   assert(!hr->is_empty(), "the region should not be empty");
5735   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5736   assert(free_list != NULL, "pre-condition");
5737 
5738   if (G1VerifyBitmaps) {
5739     MemRegion mr(hr->bottom(), hr->end());
5740     concurrent_mark()->clearRangePrevBitmap(mr);
5741   }
5742 
5743   // Clear the card counts for this region.
5744   // Note: we only need to do this if the region is not young
5745   // (since we don't refine cards in young regions).
5746   if (!hr->is_young()) {
5747     _cg1r->hot_card_cache()->reset_card_counts(hr);
5748   }
5749   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5750   free_list->add_ordered(hr);
5751 }
5752 
5753 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5754                                      FreeRegionList* free_list,
5755                                      bool par) {
5756   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5757   assert(free_list != NULL, "pre-condition");
5758 
5759   size_t hr_capacity = hr->capacity();
5760   // We need to read this before we make the region non-humongous,
5761   // otherwise the information will be gone.
5762   uint last_index = hr->last_hc_index();
5763   hr->clear_humongous();
5764   free_region(hr, free_list, par);
5765 
5766   uint i = hr->hrm_index() + 1;
5767   while (i < last_index) {
5768     HeapRegion* curr_hr = region_at(i);
5769     assert(curr_hr->is_continues_humongous(), "invariant");
5770     curr_hr->clear_humongous();
5771     free_region(curr_hr, free_list, par);
5772     i += 1;
5773   }
5774 }
5775 
5776 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5777                                        const HeapRegionSetCount& humongous_regions_removed) {
5778   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5779     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5780     _old_set.bulk_remove(old_regions_removed);
5781     _humongous_set.bulk_remove(humongous_regions_removed);
5782   }
5783 
5784 }
5785 
5786 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5787   assert(list != NULL, "list can't be null");
5788   if (!list->is_empty()) {
5789     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5790     _hrm.insert_list_into_free_list(list);
5791   }
5792 }
5793 
5794 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5795   _allocator->decrease_used(bytes);
5796 }
5797 
5798 class G1ParCleanupCTTask : public AbstractGangTask {
5799   G1SATBCardTableModRefBS* _ct_bs;
5800   G1CollectedHeap* _g1h;
5801   HeapRegion* volatile _su_head;
5802 public:
5803   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5804                      G1CollectedHeap* g1h) :
5805     AbstractGangTask("G1 Par Cleanup CT Task"),
5806     _ct_bs(ct_bs), _g1h(g1h) { }
5807 
5808   void work(uint worker_id) {
5809     HeapRegion* r;
5810     while (r = _g1h->pop_dirty_cards_region()) {
5811       clear_cards(r);
5812     }
5813   }
5814 
5815   void clear_cards(HeapRegion* r) {
5816     // Cards of the survivors should have already been dirtied.
5817     if (!r->is_survivor()) {
5818       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5819     }
5820   }
5821 };
5822 
5823 #ifndef PRODUCT
5824 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5825   G1CollectedHeap* _g1h;
5826   G1SATBCardTableModRefBS* _ct_bs;
5827 public:
5828   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5829     : _g1h(g1h), _ct_bs(ct_bs) { }
5830   virtual bool doHeapRegion(HeapRegion* r) {
5831     if (r->is_survivor()) {
5832       _g1h->verify_dirty_region(r);
5833     } else {
5834       _g1h->verify_not_dirty_region(r);
5835     }
5836     return false;
5837   }
5838 };
5839 
5840 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5841   // All of the region should be clean.
5842   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5843   MemRegion mr(hr->bottom(), hr->end());
5844   ct_bs->verify_not_dirty_region(mr);
5845 }
5846 
5847 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5848   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5849   // dirty allocated blocks as they allocate them. The thread that
5850   // retires each region and replaces it with a new one will do a
5851   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5852   // not dirty that area (one less thing to have to do while holding
5853   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5854   // is dirty.
5855   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5856   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5857   if (hr->is_young()) {
5858     ct_bs->verify_g1_young_region(mr);
5859   } else {
5860     ct_bs->verify_dirty_region(mr);
5861   }
5862 }
5863 
5864 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5865   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5866   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5867     verify_dirty_region(hr);
5868   }
5869 }
5870 
5871 void G1CollectedHeap::verify_dirty_young_regions() {
5872   verify_dirty_young_list(_young_list->first_region());
5873 }
5874 
5875 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5876                                                HeapWord* tams, HeapWord* end) {
5877   guarantee(tams <= end,
5878             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5879   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5880   if (result < end) {
5881     gclog_or_tty->cr();
5882     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5883                            bitmap_name, result);
5884     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5885                            bitmap_name, tams, end);
5886     return false;
5887   }
5888   return true;
5889 }
5890 
5891 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5892   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5893   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5894 
5895   HeapWord* bottom = hr->bottom();
5896   HeapWord* ptams  = hr->prev_top_at_mark_start();
5897   HeapWord* ntams  = hr->next_top_at_mark_start();
5898   HeapWord* end    = hr->end();
5899 
5900   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5901 
5902   bool res_n = true;
5903   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5904   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5905   // if we happen to be in that state.
5906   if (mark_in_progress() || !_cmThread->in_progress()) {
5907     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5908   }
5909   if (!res_p || !res_n) {
5910     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5911                            HR_FORMAT_PARAMS(hr));
5912     gclog_or_tty->print_cr("#### Caller: %s", caller);
5913     return false;
5914   }
5915   return true;
5916 }
5917 
5918 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5919   if (!G1VerifyBitmaps) return;
5920 
5921   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5922 }
5923 
5924 class G1VerifyBitmapClosure : public HeapRegionClosure {
5925 private:
5926   const char* _caller;
5927   G1CollectedHeap* _g1h;
5928   bool _failures;
5929 
5930 public:
5931   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5932     _caller(caller), _g1h(g1h), _failures(false) { }
5933 
5934   bool failures() { return _failures; }
5935 
5936   virtual bool doHeapRegion(HeapRegion* hr) {
5937     if (hr->is_continues_humongous()) return false;
5938 
5939     bool result = _g1h->verify_bitmaps(_caller, hr);
5940     if (!result) {
5941       _failures = true;
5942     }
5943     return false;
5944   }
5945 };
5946 
5947 void G1CollectedHeap::check_bitmaps(const char* caller) {
5948   if (!G1VerifyBitmaps) return;
5949 
5950   G1VerifyBitmapClosure cl(caller, this);
5951   heap_region_iterate(&cl);
5952   guarantee(!cl.failures(), "bitmap verification");
5953 }
5954 
5955 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5956  private:
5957   bool _failures;
5958  public:
5959   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5960 
5961   virtual bool doHeapRegion(HeapRegion* hr) {
5962     uint i = hr->hrm_index();
5963     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5964     if (hr->is_humongous()) {
5965       if (hr->in_collection_set()) {
5966         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5967         _failures = true;
5968         return true;
5969       }
5970       if (cset_state.is_in_cset()) {
5971         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5972         _failures = true;
5973         return true;
5974       }
5975       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5976         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5977         _failures = true;
5978         return true;
5979       }
5980     } else {
5981       if (cset_state.is_humongous()) {
5982         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5983         _failures = true;
5984         return true;
5985       }
5986       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5987         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5988                                hr->in_collection_set(), cset_state.value(), i);
5989         _failures = true;
5990         return true;
5991       }
5992       if (cset_state.is_in_cset()) {
5993         if (hr->is_young() != (cset_state.is_young())) {
5994           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5995                                  hr->is_young(), cset_state.value(), i);
5996           _failures = true;
5997           return true;
5998         }
5999         if (hr->is_old() != (cset_state.is_old())) {
6000           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
6001                                  hr->is_old(), cset_state.value(), i);
6002           _failures = true;
6003           return true;
6004         }
6005       }
6006     }
6007     return false;
6008   }
6009 
6010   bool failures() const { return _failures; }
6011 };
6012 
6013 bool G1CollectedHeap::check_cset_fast_test() {
6014   G1CheckCSetFastTableClosure cl;
6015   _hrm.iterate(&cl);
6016   return !cl.failures();
6017 }
6018 #endif // PRODUCT
6019 
6020 void G1CollectedHeap::cleanUpCardTable() {
6021   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6022   double start = os::elapsedTime();
6023 
6024   {
6025     // Iterate over the dirty cards region list.
6026     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6027 
6028     set_par_threads();
6029     workers()->run_task(&cleanup_task);
6030     set_par_threads(0);
6031 #ifndef PRODUCT
6032     if (G1VerifyCTCleanup || VerifyAfterGC) {
6033       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6034       heap_region_iterate(&cleanup_verifier);
6035     }
6036 #endif
6037   }
6038 
6039   double elapsed = os::elapsedTime() - start;
6040   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6041 }
6042 
6043 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6044   size_t pre_used = 0;
6045   FreeRegionList local_free_list("Local List for CSet Freeing");
6046 
6047   double young_time_ms     = 0.0;
6048   double non_young_time_ms = 0.0;
6049 
6050   // Since the collection set is a superset of the the young list,
6051   // all we need to do to clear the young list is clear its
6052   // head and length, and unlink any young regions in the code below
6053   _young_list->clear();
6054 
6055   G1CollectorPolicy* policy = g1_policy();
6056 
6057   double start_sec = os::elapsedTime();
6058   bool non_young = true;
6059 
6060   HeapRegion* cur = cs_head;
6061   int age_bound = -1;
6062   size_t rs_lengths = 0;
6063 
6064   while (cur != NULL) {
6065     assert(!is_on_master_free_list(cur), "sanity");
6066     if (non_young) {
6067       if (cur->is_young()) {
6068         double end_sec = os::elapsedTime();
6069         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6070         non_young_time_ms += elapsed_ms;
6071 
6072         start_sec = os::elapsedTime();
6073         non_young = false;
6074       }
6075     } else {
6076       if (!cur->is_young()) {
6077         double end_sec = os::elapsedTime();
6078         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6079         young_time_ms += elapsed_ms;
6080 
6081         start_sec = os::elapsedTime();
6082         non_young = true;
6083       }
6084     }
6085 
6086     rs_lengths += cur->rem_set()->occupied_locked();
6087 
6088     HeapRegion* next = cur->next_in_collection_set();
6089     assert(cur->in_collection_set(), "bad CS");
6090     cur->set_next_in_collection_set(NULL);
6091     cur->set_in_collection_set(false);
6092 
6093     if (cur->is_young()) {
6094       int index = cur->young_index_in_cset();
6095       assert(index != -1, "invariant");
6096       assert((uint) index < policy->young_cset_region_length(), "invariant");
6097       size_t words_survived = _surviving_young_words[index];
6098       cur->record_surv_words_in_group(words_survived);
6099 
6100       // At this point the we have 'popped' cur from the collection set
6101       // (linked via next_in_collection_set()) but it is still in the
6102       // young list (linked via next_young_region()). Clear the
6103       // _next_young_region field.
6104       cur->set_next_young_region(NULL);
6105     } else {
6106       int index = cur->young_index_in_cset();
6107       assert(index == -1, "invariant");
6108     }
6109 
6110     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6111             (!cur->is_young() && cur->young_index_in_cset() == -1),
6112             "invariant" );
6113 
6114     if (!cur->evacuation_failed()) {
6115       MemRegion used_mr = cur->used_region();
6116 
6117       // And the region is empty.
6118       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6119       pre_used += cur->used();
6120       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6121     } else {
6122       cur->uninstall_surv_rate_group();
6123       if (cur->is_young()) {
6124         cur->set_young_index_in_cset(-1);
6125       }
6126       cur->set_evacuation_failed(false);
6127       // The region is now considered to be old.
6128       cur->set_old();
6129       _old_set.add(cur);
6130       evacuation_info.increment_collectionset_used_after(cur->used());
6131     }
6132     cur = next;
6133   }
6134 
6135   evacuation_info.set_regions_freed(local_free_list.length());
6136   policy->record_max_rs_lengths(rs_lengths);
6137   policy->cset_regions_freed();
6138 
6139   double end_sec = os::elapsedTime();
6140   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6141 
6142   if (non_young) {
6143     non_young_time_ms += elapsed_ms;
6144   } else {
6145     young_time_ms += elapsed_ms;
6146   }
6147 
6148   prepend_to_freelist(&local_free_list);
6149   decrement_summary_bytes(pre_used);
6150   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6151   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6152 }
6153 
6154 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6155  private:
6156   FreeRegionList* _free_region_list;
6157   HeapRegionSet* _proxy_set;
6158   HeapRegionSetCount _humongous_regions_removed;
6159   size_t _freed_bytes;
6160  public:
6161 
6162   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6163     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6164   }
6165 
6166   virtual bool doHeapRegion(HeapRegion* r) {
6167     if (!r->is_starts_humongous()) {
6168       return false;
6169     }
6170 
6171     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6172 
6173     oop obj = (oop)r->bottom();
6174     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6175 
6176     // The following checks whether the humongous object is live are sufficient.
6177     // The main additional check (in addition to having a reference from the roots
6178     // or the young gen) is whether the humongous object has a remembered set entry.
6179     //
6180     // A humongous object cannot be live if there is no remembered set for it
6181     // because:
6182     // - there can be no references from within humongous starts regions referencing
6183     // the object because we never allocate other objects into them.
6184     // (I.e. there are no intra-region references that may be missed by the
6185     // remembered set)
6186     // - as soon there is a remembered set entry to the humongous starts region
6187     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6188     // until the end of a concurrent mark.
6189     //
6190     // It is not required to check whether the object has been found dead by marking
6191     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6192     // all objects allocated during that time are considered live.
6193     // SATB marking is even more conservative than the remembered set.
6194     // So if at this point in the collection there is no remembered set entry,
6195     // nobody has a reference to it.
6196     // At the start of collection we flush all refinement logs, and remembered sets
6197     // are completely up-to-date wrt to references to the humongous object.
6198     //
6199     // Other implementation considerations:
6200     // - never consider object arrays at this time because they would pose
6201     // considerable effort for cleaning up the the remembered sets. This is
6202     // required because stale remembered sets might reference locations that
6203     // are currently allocated into.
6204     uint region_idx = r->hrm_index();
6205     if (g1h->humongous_is_live(region_idx) ||
6206         g1h->humongous_region_is_always_live(region_idx)) {
6207 
6208       if (G1TraceEagerReclaimHumongousObjects) {
6209         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6210                                region_idx,
6211                                obj->size()*HeapWordSize,
6212                                r->bottom(),
6213                                r->region_num(),
6214                                r->rem_set()->occupied(),
6215                                r->rem_set()->strong_code_roots_list_length(),
6216                                next_bitmap->isMarked(r->bottom()),
6217                                g1h->humongous_is_live(region_idx),
6218                                obj->is_objArray()
6219                               );
6220       }
6221 
6222       return false;
6223     }
6224 
6225     guarantee(!obj->is_objArray(),
6226               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
6227                       r->bottom()));
6228 
6229     if (G1TraceEagerReclaimHumongousObjects) {
6230       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6231                              region_idx,
6232                              obj->size()*HeapWordSize,
6233                              r->bottom(),
6234                              r->region_num(),
6235                              r->rem_set()->occupied(),
6236                              r->rem_set()->strong_code_roots_list_length(),
6237                              next_bitmap->isMarked(r->bottom()),
6238                              g1h->humongous_is_live(region_idx),
6239                              obj->is_objArray()
6240                             );
6241     }
6242     // Need to clear mark bit of the humongous object if already set.
6243     if (next_bitmap->isMarked(r->bottom())) {
6244       next_bitmap->clear(r->bottom());
6245     }
6246     _freed_bytes += r->used();
6247     r->set_containing_set(NULL);
6248     _humongous_regions_removed.increment(1u, r->capacity());
6249     g1h->free_humongous_region(r, _free_region_list, false);
6250 
6251     return false;
6252   }
6253 
6254   HeapRegionSetCount& humongous_free_count() {
6255     return _humongous_regions_removed;
6256   }
6257 
6258   size_t bytes_freed() const {
6259     return _freed_bytes;
6260   }
6261 
6262   size_t humongous_reclaimed() const {
6263     return _humongous_regions_removed.length();
6264   }
6265 };
6266 
6267 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6268   assert_at_safepoint(true);
6269 
6270   if (!G1EagerReclaimHumongousObjects ||
6271       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6272     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6273     return;
6274   }
6275 
6276   double start_time = os::elapsedTime();
6277 
6278   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6279 
6280   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6281   heap_region_iterate(&cl);
6282 
6283   HeapRegionSetCount empty_set;
6284   remove_from_old_sets(empty_set, cl.humongous_free_count());
6285 
6286   G1HRPrinter* hr_printer = _g1h->hr_printer();
6287   if (hr_printer->is_active()) {
6288     FreeRegionListIterator iter(&local_cleanup_list);
6289     while (iter.more_available()) {
6290       HeapRegion* hr = iter.get_next();
6291       hr_printer->cleanup(hr);
6292     }
6293   }
6294 
6295   prepend_to_freelist(&local_cleanup_list);
6296   decrement_summary_bytes(cl.bytes_freed());
6297 
6298   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6299                                                                     cl.humongous_reclaimed());
6300 }
6301 
6302 // This routine is similar to the above but does not record
6303 // any policy statistics or update free lists; we are abandoning
6304 // the current incremental collection set in preparation of a
6305 // full collection. After the full GC we will start to build up
6306 // the incremental collection set again.
6307 // This is only called when we're doing a full collection
6308 // and is immediately followed by the tearing down of the young list.
6309 
6310 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6311   HeapRegion* cur = cs_head;
6312 
6313   while (cur != NULL) {
6314     HeapRegion* next = cur->next_in_collection_set();
6315     assert(cur->in_collection_set(), "bad CS");
6316     cur->set_next_in_collection_set(NULL);
6317     cur->set_in_collection_set(false);
6318     cur->set_young_index_in_cset(-1);
6319     cur = next;
6320   }
6321 }
6322 
6323 void G1CollectedHeap::set_free_regions_coming() {
6324   if (G1ConcRegionFreeingVerbose) {
6325     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6326                            "setting free regions coming");
6327   }
6328 
6329   assert(!free_regions_coming(), "pre-condition");
6330   _free_regions_coming = true;
6331 }
6332 
6333 void G1CollectedHeap::reset_free_regions_coming() {
6334   assert(free_regions_coming(), "pre-condition");
6335 
6336   {
6337     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6338     _free_regions_coming = false;
6339     SecondaryFreeList_lock->notify_all();
6340   }
6341 
6342   if (G1ConcRegionFreeingVerbose) {
6343     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6344                            "reset free regions coming");
6345   }
6346 }
6347 
6348 void G1CollectedHeap::wait_while_free_regions_coming() {
6349   // Most of the time we won't have to wait, so let's do a quick test
6350   // first before we take the lock.
6351   if (!free_regions_coming()) {
6352     return;
6353   }
6354 
6355   if (G1ConcRegionFreeingVerbose) {
6356     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6357                            "waiting for free regions");
6358   }
6359 
6360   {
6361     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6362     while (free_regions_coming()) {
6363       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6364     }
6365   }
6366 
6367   if (G1ConcRegionFreeingVerbose) {
6368     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6369                            "done waiting for free regions");
6370   }
6371 }
6372 
6373 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6374   assert(heap_lock_held_for_gc(),
6375               "the heap lock should already be held by or for this thread");
6376   _young_list->push_region(hr);
6377 }
6378 
6379 class NoYoungRegionsClosure: public HeapRegionClosure {
6380 private:
6381   bool _success;
6382 public:
6383   NoYoungRegionsClosure() : _success(true) { }
6384   bool doHeapRegion(HeapRegion* r) {
6385     if (r->is_young()) {
6386       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6387                              r->bottom(), r->end());
6388       _success = false;
6389     }
6390     return false;
6391   }
6392   bool success() { return _success; }
6393 };
6394 
6395 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6396   bool ret = _young_list->check_list_empty(check_sample);
6397 
6398   if (check_heap) {
6399     NoYoungRegionsClosure closure;
6400     heap_region_iterate(&closure);
6401     ret = ret && closure.success();
6402   }
6403 
6404   return ret;
6405 }
6406 
6407 class TearDownRegionSetsClosure : public HeapRegionClosure {
6408 private:
6409   HeapRegionSet *_old_set;
6410 
6411 public:
6412   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6413 
6414   bool doHeapRegion(HeapRegion* r) {
6415     if (r->is_old()) {
6416       _old_set->remove(r);
6417     } else {
6418       // We ignore free regions, we'll empty the free list afterwards.
6419       // We ignore young regions, we'll empty the young list afterwards.
6420       // We ignore humongous regions, we're not tearing down the
6421       // humongous regions set.
6422       assert(r->is_free() || r->is_young() || r->is_humongous(),
6423              "it cannot be another type");
6424     }
6425     return false;
6426   }
6427 
6428   ~TearDownRegionSetsClosure() {
6429     assert(_old_set->is_empty(), "post-condition");
6430   }
6431 };
6432 
6433 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6434   assert_at_safepoint(true /* should_be_vm_thread */);
6435 
6436   if (!free_list_only) {
6437     TearDownRegionSetsClosure cl(&_old_set);
6438     heap_region_iterate(&cl);
6439 
6440     // Note that emptying the _young_list is postponed and instead done as
6441     // the first step when rebuilding the regions sets again. The reason for
6442     // this is that during a full GC string deduplication needs to know if
6443     // a collected region was young or old when the full GC was initiated.
6444   }
6445   _hrm.remove_all_free_regions();
6446 }
6447 
6448 class RebuildRegionSetsClosure : public HeapRegionClosure {
6449 private:
6450   bool            _free_list_only;
6451   HeapRegionSet*   _old_set;
6452   HeapRegionManager*   _hrm;
6453   size_t          _total_used;
6454 
6455 public:
6456   RebuildRegionSetsClosure(bool free_list_only,
6457                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6458     _free_list_only(free_list_only),
6459     _old_set(old_set), _hrm(hrm), _total_used(0) {
6460     assert(_hrm->num_free_regions() == 0, "pre-condition");
6461     if (!free_list_only) {
6462       assert(_old_set->is_empty(), "pre-condition");
6463     }
6464   }
6465 
6466   bool doHeapRegion(HeapRegion* r) {
6467     if (r->is_continues_humongous()) {
6468       return false;
6469     }
6470 
6471     if (r->is_empty()) {
6472       // Add free regions to the free list
6473       r->set_free();
6474       r->set_allocation_context(AllocationContext::system());
6475       _hrm->insert_into_free_list(r);
6476     } else if (!_free_list_only) {
6477       assert(!r->is_young(), "we should not come across young regions");
6478 
6479       if (r->is_humongous()) {
6480         // We ignore humongous regions, we left the humongous set unchanged
6481       } else {
6482         // Objects that were compacted would have ended up on regions
6483         // that were previously old or free.
6484         assert(r->is_free() || r->is_old(), "invariant");
6485         // We now consider them old, so register as such.
6486         r->set_old();
6487         _old_set->add(r);
6488       }
6489       _total_used += r->used();
6490     }
6491 
6492     return false;
6493   }
6494 
6495   size_t total_used() {
6496     return _total_used;
6497   }
6498 };
6499 
6500 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6501   assert_at_safepoint(true /* should_be_vm_thread */);
6502 
6503   if (!free_list_only) {
6504     _young_list->empty_list();
6505   }
6506 
6507   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6508   heap_region_iterate(&cl);
6509 
6510   if (!free_list_only) {
6511     _allocator->set_used(cl.total_used());
6512   }
6513   assert(_allocator->used_unlocked() == recalculate_used(),
6514          err_msg("inconsistent _allocator->used_unlocked(), "
6515                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6516                  _allocator->used_unlocked(), recalculate_used()));
6517 }
6518 
6519 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6520   _refine_cte_cl->set_concurrent(concurrent);
6521 }
6522 
6523 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6524   HeapRegion* hr = heap_region_containing(p);
6525   return hr->is_in(p);
6526 }
6527 
6528 // Methods for the mutator alloc region
6529 
6530 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6531                                                       bool force) {
6532   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6533   assert(!force || g1_policy()->can_expand_young_list(),
6534          "if force is true we should be able to expand the young list");
6535   bool young_list_full = g1_policy()->is_young_list_full();
6536   if (force || !young_list_full) {
6537     HeapRegion* new_alloc_region = new_region(word_size,
6538                                               false /* is_old */,
6539                                               false /* do_expand */);
6540     if (new_alloc_region != NULL) {
6541       set_region_short_lived_locked(new_alloc_region);
6542       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6543       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6544       return new_alloc_region;
6545     }
6546   }
6547   return NULL;
6548 }
6549 
6550 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6551                                                   size_t allocated_bytes) {
6552   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6553   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6554 
6555   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6556   _allocator->increase_used(allocated_bytes);
6557   _hr_printer.retire(alloc_region);
6558   // We update the eden sizes here, when the region is retired,
6559   // instead of when it's allocated, since this is the point that its
6560   // used space has been recored in _summary_bytes_used.
6561   g1mm()->update_eden_size();
6562 }
6563 
6564 void G1CollectedHeap::set_par_threads() {
6565   // Don't change the number of workers.  Use the value previously set
6566   // in the workgroup.
6567   uint n_workers = workers()->active_workers();
6568   assert(UseDynamicNumberOfGCThreads ||
6569            n_workers == workers()->total_workers(),
6570       "Otherwise should be using the total number of workers");
6571   if (n_workers == 0) {
6572     assert(false, "Should have been set in prior evacuation pause.");
6573     n_workers = ParallelGCThreads;
6574     workers()->set_active_workers(n_workers);
6575   }
6576   set_par_threads(n_workers);
6577 }
6578 
6579 // Methods for the GC alloc regions
6580 
6581 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6582                                                  uint count,
6583                                                  InCSetState dest) {
6584   assert(FreeList_lock->owned_by_self(), "pre-condition");
6585 
6586   if (count < g1_policy()->max_regions(dest)) {
6587     const bool is_survivor = (dest.is_young());
6588     HeapRegion* new_alloc_region = new_region(word_size,
6589                                               !is_survivor,
6590                                               true /* do_expand */);
6591     if (new_alloc_region != NULL) {
6592       // We really only need to do this for old regions given that we
6593       // should never scan survivors. But it doesn't hurt to do it
6594       // for survivors too.
6595       new_alloc_region->record_timestamp();
6596       if (is_survivor) {
6597         new_alloc_region->set_survivor();
6598         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6599         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6600       } else {
6601         new_alloc_region->set_old();
6602         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6603         check_bitmaps("Old Region Allocation", new_alloc_region);
6604       }
6605       bool during_im = g1_policy()->collector_state()->during_initial_mark_pause();
6606       new_alloc_region->note_start_of_copying(during_im);
6607       return new_alloc_region;
6608     }
6609   }
6610   return NULL;
6611 }
6612 
6613 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6614                                              size_t allocated_bytes,
6615                                              InCSetState dest) {
6616   bool during_im = g1_policy()->collector_state()->during_initial_mark_pause();
6617   alloc_region->note_end_of_copying(during_im);
6618   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6619   if (dest.is_young()) {
6620     young_list()->add_survivor_region(alloc_region);
6621   } else {
6622     _old_set.add(alloc_region);
6623   }
6624   _hr_printer.retire(alloc_region);
6625 }
6626 
6627 // Heap region set verification
6628 
6629 class VerifyRegionListsClosure : public HeapRegionClosure {
6630 private:
6631   HeapRegionSet*   _old_set;
6632   HeapRegionSet*   _humongous_set;
6633   HeapRegionManager*   _hrm;
6634 
6635 public:
6636   HeapRegionSetCount _old_count;
6637   HeapRegionSetCount _humongous_count;
6638   HeapRegionSetCount _free_count;
6639 
6640   VerifyRegionListsClosure(HeapRegionSet* old_set,
6641                            HeapRegionSet* humongous_set,
6642                            HeapRegionManager* hrm) :
6643     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6644     _old_count(), _humongous_count(), _free_count(){ }
6645 
6646   bool doHeapRegion(HeapRegion* hr) {
6647     if (hr->is_continues_humongous()) {
6648       return false;
6649     }
6650 
6651     if (hr->is_young()) {
6652       // TODO
6653     } else if (hr->is_starts_humongous()) {
6654       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6655       _humongous_count.increment(1u, hr->capacity());
6656     } else if (hr->is_empty()) {
6657       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6658       _free_count.increment(1u, hr->capacity());
6659     } else if (hr->is_old()) {
6660       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6661       _old_count.increment(1u, hr->capacity());
6662     } else {
6663       ShouldNotReachHere();
6664     }
6665     return false;
6666   }
6667 
6668   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6669     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6670     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6671         old_set->total_capacity_bytes(), _old_count.capacity()));
6672 
6673     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6674     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6675         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6676 
6677     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6678     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6679         free_list->total_capacity_bytes(), _free_count.capacity()));
6680   }
6681 };
6682 
6683 void G1CollectedHeap::verify_region_sets() {
6684   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6685 
6686   // First, check the explicit lists.
6687   _hrm.verify();
6688   {
6689     // Given that a concurrent operation might be adding regions to
6690     // the secondary free list we have to take the lock before
6691     // verifying it.
6692     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6693     _secondary_free_list.verify_list();
6694   }
6695 
6696   // If a concurrent region freeing operation is in progress it will
6697   // be difficult to correctly attributed any free regions we come
6698   // across to the correct free list given that they might belong to
6699   // one of several (free_list, secondary_free_list, any local lists,
6700   // etc.). So, if that's the case we will skip the rest of the
6701   // verification operation. Alternatively, waiting for the concurrent
6702   // operation to complete will have a non-trivial effect on the GC's
6703   // operation (no concurrent operation will last longer than the
6704   // interval between two calls to verification) and it might hide
6705   // any issues that we would like to catch during testing.
6706   if (free_regions_coming()) {
6707     return;
6708   }
6709 
6710   // Make sure we append the secondary_free_list on the free_list so
6711   // that all free regions we will come across can be safely
6712   // attributed to the free_list.
6713   append_secondary_free_list_if_not_empty_with_lock();
6714 
6715   // Finally, make sure that the region accounting in the lists is
6716   // consistent with what we see in the heap.
6717 
6718   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6719   heap_region_iterate(&cl);
6720   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6721 }
6722 
6723 // Optimized nmethod scanning
6724 
6725 class RegisterNMethodOopClosure: public OopClosure {
6726   G1CollectedHeap* _g1h;
6727   nmethod* _nm;
6728 
6729   template <class T> void do_oop_work(T* p) {
6730     T heap_oop = oopDesc::load_heap_oop(p);
6731     if (!oopDesc::is_null(heap_oop)) {
6732       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6733       HeapRegion* hr = _g1h->heap_region_containing(obj);
6734       assert(!hr->is_continues_humongous(),
6735              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6736                      " starting at "HR_FORMAT,
6737                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6738 
6739       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6740       hr->add_strong_code_root_locked(_nm);
6741     }
6742   }
6743 
6744 public:
6745   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6746     _g1h(g1h), _nm(nm) {}
6747 
6748   void do_oop(oop* p)       { do_oop_work(p); }
6749   void do_oop(narrowOop* p) { do_oop_work(p); }
6750 };
6751 
6752 class UnregisterNMethodOopClosure: public OopClosure {
6753   G1CollectedHeap* _g1h;
6754   nmethod* _nm;
6755 
6756   template <class T> void do_oop_work(T* p) {
6757     T heap_oop = oopDesc::load_heap_oop(p);
6758     if (!oopDesc::is_null(heap_oop)) {
6759       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6760       HeapRegion* hr = _g1h->heap_region_containing(obj);
6761       assert(!hr->is_continues_humongous(),
6762              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6763                      " starting at "HR_FORMAT,
6764                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6765 
6766       hr->remove_strong_code_root(_nm);
6767     }
6768   }
6769 
6770 public:
6771   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6772     _g1h(g1h), _nm(nm) {}
6773 
6774   void do_oop(oop* p)       { do_oop_work(p); }
6775   void do_oop(narrowOop* p) { do_oop_work(p); }
6776 };
6777 
6778 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6779   CollectedHeap::register_nmethod(nm);
6780 
6781   guarantee(nm != NULL, "sanity");
6782   RegisterNMethodOopClosure reg_cl(this, nm);
6783   nm->oops_do(&reg_cl);
6784 }
6785 
6786 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6787   CollectedHeap::unregister_nmethod(nm);
6788 
6789   guarantee(nm != NULL, "sanity");
6790   UnregisterNMethodOopClosure reg_cl(this, nm);
6791   nm->oops_do(&reg_cl, true);
6792 }
6793 
6794 void G1CollectedHeap::purge_code_root_memory() {
6795   double purge_start = os::elapsedTime();
6796   G1CodeRootSet::purge();
6797   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6798   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6799 }
6800 
6801 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6802   G1CollectedHeap* _g1h;
6803 
6804 public:
6805   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6806     _g1h(g1h) {}
6807 
6808   void do_code_blob(CodeBlob* cb) {
6809     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6810     if (nm == NULL) {
6811       return;
6812     }
6813 
6814     if (ScavengeRootsInCode) {
6815       _g1h->register_nmethod(nm);
6816     }
6817   }
6818 };
6819 
6820 void G1CollectedHeap::rebuild_strong_code_roots() {
6821   RebuildStrongCodeRootClosure blob_cl(this);
6822   CodeCache::blobs_do(&blob_cl);
6823 }