< prev index next >

src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Print this page


   1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *


 142   void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length);
 143 
 144 public:
 145   G1YoungGenSizer();
 146   // Calculate the maximum length of the young gen given the number of regions
 147   // depending on the sizing algorithm.
 148   uint max_young_length(uint number_of_heap_regions);
 149 
 150   void heap_size_changed(uint new_number_of_heap_regions);
 151   uint min_desired_young_length() {
 152     return _min_desired_young_length;
 153   }
 154   uint max_desired_young_length() {
 155     return _max_desired_young_length;
 156   }
 157   bool adaptive_young_list_length() {
 158     return _adaptive_size;
 159   }
 160 };
 161 

































































































 162 class G1CollectorPolicy: public CollectorPolicy {
 163 private:
 164   // either equal to the number of parallel threads, if ParallelGCThreads
 165   // has been set, or 1 otherwise
 166   int _parallel_gc_threads;
 167 
 168   // The number of GC threads currently active.
 169   uintx _no_of_gc_threads;
 170 
 171   enum SomePrivateConstants {
 172     NumPrevPausesForHeuristics = 10
 173   };
 174 
 175   G1MMUTracker* _mmu_tracker;
 176 
 177   void initialize_alignments();
 178   void initialize_flags();
 179 
 180   CollectionSetChooser* _collectionSetChooser;
 181 
 182   double _full_collection_start_sec;
 183   uint   _cur_collection_pause_used_regions_at_start;
 184 
 185   // These exclude marking times.
 186   TruncatedSeq* _recent_gc_times_ms;
 187 
 188   TruncatedSeq* _concurrent_mark_remark_times_ms;
 189   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 190 
 191   TraceYoungGenTimeData _trace_young_gen_time_data;
 192   TraceOldGenTimeData   _trace_old_gen_time_data;
 193 
 194   double _stop_world_start;
 195 
 196   // indicates whether we are in young or mixed GC mode
 197   bool _gcs_are_young;
 198 
 199   uint _young_list_target_length;
 200   uint _young_list_fixed_length;
 201 
 202   // The max number of regions we can extend the eden by while the GC
 203   // locker is active. This should be >= _young_list_target_length;
 204   uint _young_list_max_length;
 205 
 206   bool _last_gc_was_young;
 207 
 208   bool _during_marking;
 209   bool _in_marking_window;
 210   bool _in_marking_window_im;
 211 
 212   SurvRateGroup* _short_lived_surv_rate_group;
 213   SurvRateGroup* _survivor_surv_rate_group;
 214   // add here any more surv rate groups
 215 
 216   double _gc_overhead_perc;
 217 
 218   double _reserve_factor;
 219   uint   _reserve_regions;
 220 
 221   bool during_marking() {
 222     return _during_marking;
 223   }
 224 
 225   enum PredictionConstants {
 226     TruncatedSeqLength = 10
 227   };
 228 
 229   TruncatedSeq* _alloc_rate_ms_seq;
 230   double        _prev_collection_pause_end_ms;
 231 
 232   TruncatedSeq* _rs_length_diff_seq;
 233   TruncatedSeq* _cost_per_card_ms_seq;
 234   TruncatedSeq* _young_cards_per_entry_ratio_seq;
 235   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
 236   TruncatedSeq* _cost_per_entry_ms_seq;
 237   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
 238   TruncatedSeq* _cost_per_byte_ms_seq;
 239   TruncatedSeq* _constant_other_time_ms_seq;
 240   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 241   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 242 
 243   TruncatedSeq* _pending_cards_seq;
 244   TruncatedSeq* _rs_lengths_seq;


 346 
 347   double predict_mixed_cards_per_entry_ratio() {
 348     if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
 349       return predict_young_cards_per_entry_ratio();
 350     } else {
 351       return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
 352     }
 353   }
 354 
 355   size_t predict_young_card_num(size_t rs_length) {
 356     return (size_t) ((double) rs_length *
 357                      predict_young_cards_per_entry_ratio());
 358   }
 359 
 360   size_t predict_non_young_card_num(size_t rs_length) {
 361     return (size_t) ((double) rs_length *
 362                      predict_mixed_cards_per_entry_ratio());
 363   }
 364 
 365   double predict_rs_scan_time_ms(size_t card_num) {
 366     if (gcs_are_young()) {
 367       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 368     } else {
 369       return predict_mixed_rs_scan_time_ms(card_num);
 370     }
 371   }
 372 
 373   double predict_mixed_rs_scan_time_ms(size_t card_num) {
 374     if (_mixed_cost_per_entry_ms_seq->num() < 3) {
 375       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 376     } else {
 377       return (double) (card_num *
 378                        get_new_prediction(_mixed_cost_per_entry_ms_seq));
 379     }
 380   }
 381 
 382   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
 383     if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
 384       return (1.1 * (double) bytes_to_copy) *
 385               get_new_prediction(_cost_per_byte_ms_seq);
 386     } else {
 387       return (double) bytes_to_copy *
 388              get_new_prediction(_cost_per_byte_ms_during_cm_seq);
 389     }
 390   }
 391 
 392   double predict_object_copy_time_ms(size_t bytes_to_copy) {
 393     if (_in_marking_window && !_in_marking_window_im) {
 394       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
 395     } else {
 396       return (double) bytes_to_copy *
 397               get_new_prediction(_cost_per_byte_ms_seq);
 398     }
 399   }
 400 
 401   double predict_constant_other_time_ms() {
 402     return get_new_prediction(_constant_other_time_ms_seq);
 403   }
 404 
 405   double predict_young_other_time_ms(size_t young_num) {
 406     return (double) young_num *
 407            get_new_prediction(_young_other_cost_per_region_ms_seq);
 408   }
 409 
 410   double predict_non_young_other_time_ms(size_t non_young_num) {
 411     return (double) non_young_num *
 412            get_new_prediction(_non_young_other_cost_per_region_ms_seq);
 413   }
 414 
 415   double predict_base_elapsed_time_ms(size_t pending_cards);
 416   double predict_base_elapsed_time_ms(size_t pending_cards,
 417                                       size_t scanned_cards);
 418   size_t predict_bytes_to_copy(HeapRegion* hr);
 419   double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc);
 420 
 421   void set_recorded_rs_lengths(size_t rs_lengths);
 422 
 423   uint cset_region_length()       { return young_cset_region_length() +
 424                                            old_cset_region_length(); }
 425   uint young_cset_region_length() { return eden_cset_region_length() +
 426                                            survivor_cset_region_length(); }
 427 
 428   double predict_survivor_regions_evac_time();
 429 
 430   void cset_regions_freed() {
 431     bool propagate = _last_gc_was_young && !_in_marking_window;
 432     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
 433     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
 434     // also call it on any more surv rate groups
 435   }
 436 
 437   G1MMUTracker* mmu_tracker() {
 438     return _mmu_tracker;
 439   }
 440 
 441   double max_pause_time_ms() {
 442     return _mmu_tracker->max_gc_time() * 1000.0;
 443   }
 444 
 445   double predict_remark_time_ms() {
 446     return get_new_prediction(_concurrent_mark_remark_times_ms);
 447   }
 448 
 449   double predict_cleanup_time_ms() {
 450     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
 451   }


 535   // the CSet. This is updated by the thread that adds a new region to
 536   // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
 537   // MT-safety assumptions.
 538   double _inc_cset_predicted_elapsed_time_ms;
 539 
 540   // See the comment for _inc_cset_recorded_rs_lengths_diffs.
 541   double _inc_cset_predicted_elapsed_time_ms_diffs;
 542 
 543   // Stash a pointer to the g1 heap.
 544   G1CollectedHeap* _g1;
 545 
 546   G1GCPhaseTimes* _phase_times;
 547 
 548   // The ratio of gc time to elapsed time, computed over recent pauses.
 549   double _recent_avg_pause_time_ratio;
 550 
 551   double recent_avg_pause_time_ratio() {
 552     return _recent_avg_pause_time_ratio;
 553   }
 554 
 555   // At the end of a pause we check the heap occupancy and we decide
 556   // whether we will start a marking cycle during the next pause. If
 557   // we decide that we want to do that, we will set this parameter to
 558   // true. So, this parameter will stay true between the end of a
 559   // pause and the beginning of a subsequent pause (not necessarily
 560   // the next one, see the comments on the next field) when we decide
 561   // that we will indeed start a marking cycle and do the initial-mark
 562   // work.
 563   volatile bool _initiate_conc_mark_if_possible;
 564 
 565   // If initiate_conc_mark_if_possible() is set at the beginning of a
 566   // pause, it is a suggestion that the pause should start a marking
 567   // cycle by doing the initial-mark work. However, it is possible
 568   // that the concurrent marking thread is still finishing up the
 569   // previous marking cycle (e.g., clearing the next marking
 570   // bitmap). If that is the case we cannot start a new cycle and
 571   // we'll have to wait for the concurrent marking thread to finish
 572   // what it is doing. In this case we will postpone the marking cycle
 573   // initiation decision for the next pause. When we eventually decide
 574   // to start a cycle, we will set _during_initial_mark_pause which
 575   // will stay true until the end of the initial-mark pause and it's
 576   // the condition that indicates that a pause is doing the
 577   // initial-mark work.
 578   volatile bool _during_initial_mark_pause;
 579 
 580   bool _last_young_gc;
 581 
 582   // This set of variables tracks the collector efficiency, in order to
 583   // determine whether we should initiate a new marking.
 584   double _cur_mark_stop_world_time_ms;
 585   double _mark_remark_start_sec;
 586   double _mark_cleanup_start_sec;
 587 
 588   // Update the young list target length either by setting it to the
 589   // desired fixed value or by calculating it using G1's pause
 590   // prediction model. If no rs_lengths parameter is passed, predict
 591   // the RS lengths using the prediction model, otherwise use the
 592   // given rs_lengths as the prediction.
 593   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
 594 
 595   // Calculate and return the minimum desired young list target
 596   // length. This is the minimum desired young list length according
 597   // to the user's inputs.
 598   uint calculate_young_list_desired_min_length(uint base_min_length);
 599 
 600   // Calculate and return the maximum desired young list target
 601   // length. This is the maximum desired young list length according


 630   uint calc_min_old_cset_length();
 631 
 632   // Calculate the maximum number of old regions we'll add to the CSet
 633   // during a mixed GC.
 634   uint calc_max_old_cset_length();
 635 
 636   // Returns the given amount of uncollected reclaimable space
 637   // as a percentage of the current heap capacity.
 638   double reclaimable_bytes_perc(size_t reclaimable_bytes);
 639 
 640 public:
 641 
 642   G1CollectorPolicy();
 643 
 644   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 645 
 646   virtual CollectorPolicy::Name kind() {
 647     return CollectorPolicy::G1CollectorPolicyKind;
 648   }
 649 


 650   G1GCPhaseTimes* phase_times() const { return _phase_times; }
 651 
 652   // Check the current value of the young list RSet lengths and
 653   // compare it against the last prediction. If the current value is
 654   // higher, recalculate the young list target length prediction.
 655   void revise_young_list_target_length_if_necessary();
 656 
 657   // This should be called after the heap is resized.
 658   void record_new_heap_size(uint new_number_of_regions);
 659 
 660   void init();
 661 
 662   // Create jstat counters for the policy.
 663   virtual void initialize_gc_policy_counters();
 664 
 665   virtual HeapWord* mem_allocate_work(size_t size,
 666                                       bool is_tlab,
 667                                       bool* gc_overhead_limit_was_exceeded);
 668 
 669   // This method controls how a collector handles one or more


 767   // Update information about hr in the aggregated information for
 768   // the incrementally built collection set.
 769   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
 770 
 771 private:
 772   // Update the incremental cset information when adding a region
 773   // (should not be called directly).
 774   void add_region_to_incremental_cset_common(HeapRegion* hr);
 775 
 776 public:
 777   // Add hr to the LHS of the incremental collection set.
 778   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
 779 
 780   // Add hr to the RHS of the incremental collection set.
 781   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
 782 
 783 #ifndef PRODUCT
 784   void print_collection_set(HeapRegion* list_head, outputStream* st);
 785 #endif // !PRODUCT
 786 
 787   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
 788   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
 789   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
 790 
 791   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
 792   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
 793   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
 794 
 795   // This sets the initiate_conc_mark_if_possible() flag to start a
 796   // new cycle, as long as we are not already in one. It's best if it
 797   // is called during a safepoint when the test whether a cycle is in
 798   // progress or not is stable.
 799   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
 800 
 801   // This is called at the very beginning of an evacuation pause (it
 802   // has to be the first thing that the pause does). If
 803   // initiate_conc_mark_if_possible() is true, and the concurrent
 804   // marking thread has completed its work during the previous cycle,
 805   // it will set during_initial_mark_pause() to so that the pause does
 806   // the initial-mark work and start a marking cycle.
 807   void decide_on_conc_mark_initiation();
 808 
 809   // If an expansion would be appropriate, because recent GC overhead had
 810   // exceeded the desired limit, return an amount to expand by.
 811   virtual size_t expansion_amount();
 812 
 813   // Print tracing information.
 814   void print_tracing_info() const;


 816   // Print stats on young survival ratio
 817   void print_yg_surv_rate_info() const;
 818 
 819   void finished_recalculating_age_indexes(bool is_survivors) {
 820     if (is_survivors) {
 821       _survivor_surv_rate_group->finished_recalculating_age_indexes();
 822     } else {
 823       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
 824     }
 825     // do that for any other surv rate groups
 826   }
 827 
 828   size_t young_list_target_length() const { return _young_list_target_length; }
 829 
 830   bool is_young_list_full();
 831 
 832   bool can_expand_young_list();
 833 
 834   uint young_list_max_length() {
 835     return _young_list_max_length;
 836   }
 837 
 838   bool gcs_are_young() {
 839     return _gcs_are_young;
 840   }
 841   void set_gcs_are_young(bool gcs_are_young) {
 842     _gcs_are_young = gcs_are_young;
 843   }
 844 
 845   bool adaptive_young_list_length() {
 846     return _young_gen_sizer->adaptive_young_list_length();
 847   }
 848 
 849 private:
 850   //
 851   // Survivor regions policy.
 852   //
 853 
 854   // Current tenuring threshold, set to 0 if the collector reaches the
 855   // maximum amount of survivors regions.
 856   uint _tenuring_threshold;
 857 
 858   // The limit on the number of regions allocated for survivors.
 859   uint _max_survivor_regions;
 860 
 861   // For reporting purposes.
 862   // The value of _heap_bytes_before_gc is also used to calculate


   1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *


 142   void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length);
 143 
 144 public:
 145   G1YoungGenSizer();
 146   // Calculate the maximum length of the young gen given the number of regions
 147   // depending on the sizing algorithm.
 148   uint max_young_length(uint number_of_heap_regions);
 149 
 150   void heap_size_changed(uint new_number_of_heap_regions);
 151   uint min_desired_young_length() {
 152     return _min_desired_young_length;
 153   }
 154   uint max_desired_young_length() {
 155     return _max_desired_young_length;
 156   }
 157   bool adaptive_young_list_length() {
 158     return _adaptive_size;
 159   }
 160 };
 161 
 162 class G1CollectorState VALUE_OBJ_CLASS_SPEC {
 163   // Various boolean state variables that indicate
 164   // the phase of the G1 collection.
 165   bool _in_young_gc_mode;
 166   // indicates whether we are in full young or partially young GC mode
 167   bool _gcs_are_young;
 168   bool _last_gc_was_young;
 169   bool _last_young_gc;
 170   
 171   // If initiate_conc_mark_if_possible() is set at the beginning of a
 172   // pause, it is a suggestion that the pause should start a marking
 173   // cycle by doing the initial-mark work. However, it is possible
 174   // that the concurrent marking thread is still finishing up the
 175   // previous marking cycle (e.g., clearing the next marking
 176   // bitmap). If that is the case we cannot start a new cycle and
 177   // we'll have to wait for the concurrent marking thread to finish
 178   // what it is doing. In this case we will postpone the marking cycle
 179   // initiation decision for the next pause. When we eventually decide
 180   // to start a cycle, we will set _during_initial_mark_pause which
 181   // will stay true until the end of the initial-mark pause and it's
 182   // the condition that indicates that a pause is doing the
 183   // initial-mark work.
 184   volatile bool _during_initial_mark_pause;
 185  
 186   // At the end of a pause we check the heap occupancy and we decide
 187   // whether we will start a marking cycle during the next pause. If
 188   // we decide that we want to do that, we will set this parameter to
 189   // true. So, this parameter will stay true between the end of a
 190   // pause and the beginning of a subsequent pause (not necessarily
 191   // the next one, see the comments on the next field) when we decide
 192   // that we will indeed start a marking cycle and do the initial-mark
 193   // work.
 194   volatile bool _initiate_conc_mark_if_possible;
 195  
 196   // NOTE: if some of these are synonyms for others,
 197   // the redundant fields should be eliminated. XXX
 198   bool _during_marking;
 199   bool _mark_in_progress;
 200   bool _in_marking_window;
 201   bool _in_marking_window_im;
 202  
 203   public:
 204     G1CollectorState() :
 205       _in_young_gc_mode(false),
 206       _gcs_are_young(true),
 207       _last_gc_was_young(false),
 208       _last_young_gc(false),
 209 
 210       _during_initial_mark_pause(false),
 211       _initiate_conc_mark_if_possible(false),
 212 
 213       _during_marking(false),
 214       _mark_in_progress(false),
 215       _in_marking_window(false),
 216       _in_marking_window_im(false) {}
 217   
 218  
 219   // Setters
 220   void set_in_young_gc_mode(bool v) { _in_young_gc_mode = v; }
 221   void set_gcs_are_young(bool v) { _gcs_are_young = v; }
 222   void set_last_gc_was_young(bool v) { _last_gc_was_young = v; }
 223   void set_last_young_gc(bool v) { _last_young_gc = v; }
 224   void set_during_initial_mark_pause(bool v) { _during_initial_mark_pause = v; }
 225   void set_initiate_conc_mark_if_possible(bool v) { _initiate_conc_mark_if_possible = v; }
 226   void set_during_marking(bool v) { _during_marking = v; }
 227   void set_mark_in_progress(bool v) { _mark_in_progress = v; }
 228   void set_in_marking_window(bool v) { _in_marking_window = v; }
 229   void set_in_marking_window_im(bool v) { _in_marking_window_im = v; }
 230  
 231   // Puns
 232   ////////
 233   void set_marking_complete() { set_mark_in_progress(false); }
 234   void set_marking_started() { set_mark_in_progress(true); }
 235  
 236   // Getters
 237   bool in_young_gc_mode() { return _in_young_gc_mode; }
 238   bool gcs_are_young() { return _gcs_are_young; }
 239   bool last_gc_was_young() { return _last_gc_was_young; }
 240   bool last_young_gc() { return _last_young_gc; }
 241   bool during_initial_mark_pause() { return _during_initial_mark_pause; }
 242   bool initiate_conc_mark_if_possible() { return _initiate_conc_mark_if_possible; }
 243   bool during_marking() { return _during_marking; }
 244   bool mark_in_progress() { return _mark_in_progress; }
 245   bool in_marking_window() { return _in_marking_window; }
 246   bool in_marking_window_im() { return _in_marking_window_im; }
 247  
 248  
 249   // Composite booleans (clients worry about flickering)
 250   bool during_concurrent_mark() {
 251     return (_in_marking_window && !_in_marking_window_im);
 252   }
 253  
 254   bool should_propagate() { // XXX should have a more suitable state name or abstraction for this
 255     return (_last_young_gc && !_in_marking_window);
 256   }
 257 };
 258 
 259 class G1CollectorPolicy: public CollectorPolicy {
 260 private:
 261   // either equal to the number of parallel threads, if ParallelGCThreads
 262   // has been set, or 1 otherwise
 263   int _parallel_gc_threads;
 264 
 265   // The number of GC threads currently active.
 266   uintx _no_of_gc_threads;
 267 
 268   enum SomePrivateConstants {
 269     NumPrevPausesForHeuristics = 10
 270   };
 271 
 272   G1MMUTracker* _mmu_tracker;
 273 
 274   void initialize_alignments();
 275   void initialize_flags();
 276 
 277   CollectionSetChooser* _collectionSetChooser;
 278 
 279   double _full_collection_start_sec;
 280   uint   _cur_collection_pause_used_regions_at_start;
 281 
 282   // These exclude marking times.
 283   TruncatedSeq* _recent_gc_times_ms;
 284 
 285   TruncatedSeq* _concurrent_mark_remark_times_ms;
 286   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 287 
 288   TraceYoungGenTimeData _trace_young_gen_time_data;
 289   TraceOldGenTimeData   _trace_old_gen_time_data;
 290 
 291   double _stop_world_start;
 292 
 293   // indicates whether we are in young or mixed GC mode
 294   G1CollectorState _collector_state;
 295 
 296   uint _young_list_target_length;
 297   uint _young_list_fixed_length;
 298 
 299   // The max number of regions we can extend the eden by while the GC
 300   // locker is active. This should be >= _young_list_target_length;
 301   uint _young_list_max_length;
 302 






 303   SurvRateGroup* _short_lived_surv_rate_group;
 304   SurvRateGroup* _survivor_surv_rate_group;
 305   // add here any more surv rate groups
 306 
 307   double _gc_overhead_perc;
 308 
 309   double _reserve_factor;
 310   uint   _reserve_regions;
 311 




 312   enum PredictionConstants {
 313     TruncatedSeqLength = 10
 314   };
 315 
 316   TruncatedSeq* _alloc_rate_ms_seq;
 317   double        _prev_collection_pause_end_ms;
 318 
 319   TruncatedSeq* _rs_length_diff_seq;
 320   TruncatedSeq* _cost_per_card_ms_seq;
 321   TruncatedSeq* _young_cards_per_entry_ratio_seq;
 322   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
 323   TruncatedSeq* _cost_per_entry_ms_seq;
 324   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
 325   TruncatedSeq* _cost_per_byte_ms_seq;
 326   TruncatedSeq* _constant_other_time_ms_seq;
 327   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 328   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 329 
 330   TruncatedSeq* _pending_cards_seq;
 331   TruncatedSeq* _rs_lengths_seq;


 433 
 434   double predict_mixed_cards_per_entry_ratio() {
 435     if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
 436       return predict_young_cards_per_entry_ratio();
 437     } else {
 438       return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
 439     }
 440   }
 441 
 442   size_t predict_young_card_num(size_t rs_length) {
 443     return (size_t) ((double) rs_length *
 444                      predict_young_cards_per_entry_ratio());
 445   }
 446 
 447   size_t predict_non_young_card_num(size_t rs_length) {
 448     return (size_t) ((double) rs_length *
 449                      predict_mixed_cards_per_entry_ratio());
 450   }
 451 
 452   double predict_rs_scan_time_ms(size_t card_num) {
 453     if (collector_state()->gcs_are_young()) {
 454       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 455     } else {
 456       return predict_mixed_rs_scan_time_ms(card_num);
 457     }
 458   }
 459 
 460   double predict_mixed_rs_scan_time_ms(size_t card_num) {
 461     if (_mixed_cost_per_entry_ms_seq->num() < 3) {
 462       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 463     } else {
 464       return (double) (card_num *
 465                        get_new_prediction(_mixed_cost_per_entry_ms_seq));
 466     }
 467   }
 468 
 469   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
 470     if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
 471       return (1.1 * (double) bytes_to_copy) *
 472               get_new_prediction(_cost_per_byte_ms_seq);
 473     } else {
 474       return (double) bytes_to_copy *
 475              get_new_prediction(_cost_per_byte_ms_during_cm_seq);
 476     }
 477   }
 478 
 479   double predict_object_copy_time_ms(size_t bytes_to_copy) {
 480     if (collector_state()->during_concurrent_mark()) {
 481       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
 482     } else {
 483       return (double) bytes_to_copy *
 484               get_new_prediction(_cost_per_byte_ms_seq);
 485     }
 486   }
 487 
 488   double predict_constant_other_time_ms() {
 489     return get_new_prediction(_constant_other_time_ms_seq);
 490   }
 491 
 492   double predict_young_other_time_ms(size_t young_num) {
 493     return (double) young_num *
 494            get_new_prediction(_young_other_cost_per_region_ms_seq);
 495   }
 496 
 497   double predict_non_young_other_time_ms(size_t non_young_num) {
 498     return (double) non_young_num *
 499            get_new_prediction(_non_young_other_cost_per_region_ms_seq);
 500   }
 501 
 502   double predict_base_elapsed_time_ms(size_t pending_cards);
 503   double predict_base_elapsed_time_ms(size_t pending_cards,
 504                                       size_t scanned_cards);
 505   size_t predict_bytes_to_copy(HeapRegion* hr);
 506   double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc);
 507 
 508   void set_recorded_rs_lengths(size_t rs_lengths);
 509 
 510   uint cset_region_length()       { return young_cset_region_length() +
 511                                            old_cset_region_length(); }
 512   uint young_cset_region_length() { return eden_cset_region_length() +
 513                                            survivor_cset_region_length(); }
 514 
 515   double predict_survivor_regions_evac_time();
 516 
 517   void cset_regions_freed() {
 518     bool propagate = collector_state()->should_propagate();
 519     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
 520     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
 521     // also call it on any more surv rate groups
 522   }
 523 
 524   G1MMUTracker* mmu_tracker() {
 525     return _mmu_tracker;
 526   }
 527 
 528   double max_pause_time_ms() {
 529     return _mmu_tracker->max_gc_time() * 1000.0;
 530   }
 531 
 532   double predict_remark_time_ms() {
 533     return get_new_prediction(_concurrent_mark_remark_times_ms);
 534   }
 535 
 536   double predict_cleanup_time_ms() {
 537     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
 538   }


 622   // the CSet. This is updated by the thread that adds a new region to
 623   // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
 624   // MT-safety assumptions.
 625   double _inc_cset_predicted_elapsed_time_ms;
 626 
 627   // See the comment for _inc_cset_recorded_rs_lengths_diffs.
 628   double _inc_cset_predicted_elapsed_time_ms_diffs;
 629 
 630   // Stash a pointer to the g1 heap.
 631   G1CollectedHeap* _g1;
 632 
 633   G1GCPhaseTimes* _phase_times;
 634 
 635   // The ratio of gc time to elapsed time, computed over recent pauses.
 636   double _recent_avg_pause_time_ratio;
 637 
 638   double recent_avg_pause_time_ratio() {
 639     return _recent_avg_pause_time_ratio;
 640   }
 641 



























 642   // This set of variables tracks the collector efficiency, in order to
 643   // determine whether we should initiate a new marking.
 644   double _cur_mark_stop_world_time_ms;
 645   double _mark_remark_start_sec;
 646   double _mark_cleanup_start_sec;
 647 
 648   // Update the young list target length either by setting it to the
 649   // desired fixed value or by calculating it using G1's pause
 650   // prediction model. If no rs_lengths parameter is passed, predict
 651   // the RS lengths using the prediction model, otherwise use the
 652   // given rs_lengths as the prediction.
 653   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
 654 
 655   // Calculate and return the minimum desired young list target
 656   // length. This is the minimum desired young list length according
 657   // to the user's inputs.
 658   uint calculate_young_list_desired_min_length(uint base_min_length);
 659 
 660   // Calculate and return the maximum desired young list target
 661   // length. This is the maximum desired young list length according


 690   uint calc_min_old_cset_length();
 691 
 692   // Calculate the maximum number of old regions we'll add to the CSet
 693   // during a mixed GC.
 694   uint calc_max_old_cset_length();
 695 
 696   // Returns the given amount of uncollected reclaimable space
 697   // as a percentage of the current heap capacity.
 698   double reclaimable_bytes_perc(size_t reclaimable_bytes);
 699 
 700 public:
 701 
 702   G1CollectorPolicy();
 703 
 704   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 705 
 706   virtual CollectorPolicy::Name kind() {
 707     return CollectorPolicy::G1CollectorPolicyKind;
 708   }
 709 
 710   G1CollectorState* collector_state() { return &_collector_state; }
 711   
 712   G1GCPhaseTimes* phase_times() const { return _phase_times; }
 713 
 714   // Check the current value of the young list RSet lengths and
 715   // compare it against the last prediction. If the current value is
 716   // higher, recalculate the young list target length prediction.
 717   void revise_young_list_target_length_if_necessary();
 718 
 719   // This should be called after the heap is resized.
 720   void record_new_heap_size(uint new_number_of_regions);
 721 
 722   void init();
 723 
 724   // Create jstat counters for the policy.
 725   virtual void initialize_gc_policy_counters();
 726 
 727   virtual HeapWord* mem_allocate_work(size_t size,
 728                                       bool is_tlab,
 729                                       bool* gc_overhead_limit_was_exceeded);
 730 
 731   // This method controls how a collector handles one or more


 829   // Update information about hr in the aggregated information for
 830   // the incrementally built collection set.
 831   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
 832 
 833 private:
 834   // Update the incremental cset information when adding a region
 835   // (should not be called directly).
 836   void add_region_to_incremental_cset_common(HeapRegion* hr);
 837 
 838 public:
 839   // Add hr to the LHS of the incremental collection set.
 840   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
 841 
 842   // Add hr to the RHS of the incremental collection set.
 843   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
 844 
 845 #ifndef PRODUCT
 846   void print_collection_set(HeapRegion* list_head, outputStream* st);
 847 #endif // !PRODUCT
 848 








 849   // This sets the initiate_conc_mark_if_possible() flag to start a
 850   // new cycle, as long as we are not already in one. It's best if it
 851   // is called during a safepoint when the test whether a cycle is in
 852   // progress or not is stable.
 853   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
 854 
 855   // This is called at the very beginning of an evacuation pause (it
 856   // has to be the first thing that the pause does). If
 857   // initiate_conc_mark_if_possible() is true, and the concurrent
 858   // marking thread has completed its work during the previous cycle,
 859   // it will set during_initial_mark_pause() to so that the pause does
 860   // the initial-mark work and start a marking cycle.
 861   void decide_on_conc_mark_initiation();
 862 
 863   // If an expansion would be appropriate, because recent GC overhead had
 864   // exceeded the desired limit, return an amount to expand by.
 865   virtual size_t expansion_amount();
 866 
 867   // Print tracing information.
 868   void print_tracing_info() const;


 870   // Print stats on young survival ratio
 871   void print_yg_surv_rate_info() const;
 872 
 873   void finished_recalculating_age_indexes(bool is_survivors) {
 874     if (is_survivors) {
 875       _survivor_surv_rate_group->finished_recalculating_age_indexes();
 876     } else {
 877       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
 878     }
 879     // do that for any other surv rate groups
 880   }
 881 
 882   size_t young_list_target_length() const { return _young_list_target_length; }
 883 
 884   bool is_young_list_full();
 885 
 886   bool can_expand_young_list();
 887 
 888   uint young_list_max_length() {
 889     return _young_list_max_length;







 890   }
 891 
 892   bool adaptive_young_list_length() {
 893     return _young_gen_sizer->adaptive_young_list_length();
 894   }
 895 
 896 private:
 897   //
 898   // Survivor regions policy.
 899   //
 900 
 901   // Current tenuring threshold, set to 0 if the collector reaches the
 902   // maximum amount of survivors regions.
 903   uint _tenuring_threshold;
 904 
 905   // The limit on the number of regions allocated for survivors.
 906   uint _max_survivor_regions;
 907 
 908   // For reporting purposes.
 909   // The value of _heap_bytes_before_gc is also used to calculate


< prev index next >