1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentMark.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  33 #include "gc_implementation/g1/g1Log.hpp"
  34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  35 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 
  41 // Different defaults for different number of GC threads
  42 // They were chosen by running GCOld and SPECjbb on debris with different
  43 //   numbers of GC threads and choosing them based on the results
  44 
  45 // all the same
  46 static double rs_length_diff_defaults[] = {
  47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  48 };
  49 
  50 static double cost_per_card_ms_defaults[] = {
  51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  52 };
  53 
  54 // all the same
  55 static double young_cards_per_entry_ratio_defaults[] = {
  56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  57 };
  58 
  59 static double cost_per_entry_ms_defaults[] = {
  60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  61 };
  62 
  63 static double cost_per_byte_ms_defaults[] = {
  64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  65 };
  66 
  67 // these should be pretty consistent
  68 static double constant_other_time_ms_defaults[] = {
  69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  70 };
  71 
  72 
  73 static double young_other_cost_per_region_ms_defaults[] = {
  74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  75 };
  76 
  77 static double non_young_other_cost_per_region_ms_defaults[] = {
  78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  79 };
  80 
  81 G1CollectorPolicy::G1CollectorPolicy() :
  82   _parallel_gc_threads(ParallelGCThreads),
  83 
  84   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  85   _stop_world_start(0.0),
  86 
  87   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  88   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  89 
  90   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  91   _prev_collection_pause_end_ms(0.0),
  92   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  93   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  94   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _non_young_other_cost_per_region_ms_seq(
 103                                          new TruncatedSeq(TruncatedSeqLength)),
 104 
 105   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 106   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 107 
 108   _pause_time_target_ms((double) MaxGCPauseMillis),
 109 
 110   _gcs_are_young(true),
 111 
 112   _during_marking(false),
 113   _in_marking_window(false),
 114   _in_marking_window_im(false),
 115 
 116   _recent_prev_end_times_for_all_gcs_sec(
 117                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 118 
 119   _recent_avg_pause_time_ratio(0.0),
 120 
 121   _initiate_conc_mark_if_possible(false),
 122   _during_initial_mark_pause(false),
 123   _last_young_gc(false),
 124   _last_gc_was_young(false),
 125 
 126   _eden_used_bytes_before_gc(0),
 127   _survivor_used_bytes_before_gc(0),
 128   _heap_used_bytes_before_gc(0),
 129   _metaspace_used_bytes_before_gc(0),
 130   _eden_capacity_bytes_before_gc(0),
 131   _heap_capacity_bytes_before_gc(0),
 132 
 133   _eden_cset_region_length(0),
 134   _survivor_cset_region_length(0),
 135   _old_cset_region_length(0),
 136 
 137   _sigma(G1ConfidencePercent / 100.0),
 138 
 139   _collection_set(NULL),
 140   _collection_set_bytes_used_before(0),
 141 
 142   // Incremental CSet attributes
 143   _inc_cset_build_state(Inactive),
 144   _inc_cset_head(NULL),
 145   _inc_cset_tail(NULL),
 146   _inc_cset_bytes_used_before(0),
 147   _inc_cset_max_finger(NULL),
 148   _inc_cset_recorded_rs_lengths(0),
 149   _inc_cset_recorded_rs_lengths_diffs(0),
 150   _inc_cset_predicted_elapsed_time_ms(0.0),
 151   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 152 
 153   // add here any more surv rate groups
 154   _recorded_survivor_regions(0),
 155   _recorded_survivor_head(NULL),
 156   _recorded_survivor_tail(NULL),
 157   _survivors_age_table(true),
 158 
 159   _gc_overhead_perc(0.0) {
 160 
 161   // SurvRateGroups below must be initialized after '_sigma' because they
 162   // indirectly access '_sigma' through this object passed to their constructor.
 163   _short_lived_surv_rate_group =
 164     new SurvRateGroup(this, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 165   _survivor_surv_rate_group =
 166     new SurvRateGroup(this, "Survivor", G1YoungSurvRateNumRegionsSummary);
 167 
 168   // Set up the region size and associated fields. Given that the
 169   // policy is created before the heap, we have to set this up here,
 170   // so it's done as soon as possible.
 171 
 172   // It would have been natural to pass initial_heap_byte_size() and
 173   // max_heap_byte_size() to setup_heap_region_size() but those have
 174   // not been set up at this point since they should be aligned with
 175   // the region size. So, there is a circular dependency here. We base
 176   // the region size on the heap size, but the heap size should be
 177   // aligned with the region size. To get around this we use the
 178   // unaligned values for the heap.
 179   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 180   HeapRegionRemSet::setup_remset_size();
 181 
 182   G1ErgoVerbose::initialize();
 183   if (PrintAdaptiveSizePolicy) {
 184     // Currently, we only use a single switch for all the heuristics.
 185     G1ErgoVerbose::set_enabled(true);
 186     // Given that we don't currently have a verboseness level
 187     // parameter, we'll hardcode this to high. This can be easily
 188     // changed in the future.
 189     G1ErgoVerbose::set_level(ErgoHigh);
 190   } else {
 191     G1ErgoVerbose::set_enabled(false);
 192   }
 193 
 194   // Verify PLAB sizes
 195   const size_t region_size = HeapRegion::GrainWords;
 196   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 197     char buffer[128];
 198     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
 199                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 200     vm_exit_during_initialization(buffer);
 201   }
 202 
 203   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 204   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 205 
 206   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 207 
 208   int index = MIN2(_parallel_gc_threads - 1, 7);
 209 
 210   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 211   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 212   _young_cards_per_entry_ratio_seq->add(
 213                                   young_cards_per_entry_ratio_defaults[index]);
 214   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 215   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 216   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 217   _young_other_cost_per_region_ms_seq->add(
 218                                young_other_cost_per_region_ms_defaults[index]);
 219   _non_young_other_cost_per_region_ms_seq->add(
 220                            non_young_other_cost_per_region_ms_defaults[index]);
 221 
 222   // Below, we might need to calculate the pause time target based on
 223   // the pause interval. When we do so we are going to give G1 maximum
 224   // flexibility and allow it to do pauses when it needs to. So, we'll
 225   // arrange that the pause interval to be pause time target + 1 to
 226   // ensure that a) the pause time target is maximized with respect to
 227   // the pause interval and b) we maintain the invariant that pause
 228   // time target < pause interval. If the user does not want this
 229   // maximum flexibility, they will have to set the pause interval
 230   // explicitly.
 231 
 232   // First make sure that, if either parameter is set, its value is
 233   // reasonable.
 234   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 235     if (MaxGCPauseMillis < 1) {
 236       vm_exit_during_initialization("MaxGCPauseMillis should be "
 237                                     "greater than 0");
 238     }
 239   }
 240   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 241     if (GCPauseIntervalMillis < 1) {
 242       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 243                                     "greater than 0");
 244     }
 245   }
 246 
 247   // Then, if the pause time target parameter was not set, set it to
 248   // the default value.
 249   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 250     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 251       // The default pause time target in G1 is 200ms
 252       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 253     } else {
 254       // We do not allow the pause interval to be set without the
 255       // pause time target
 256       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 257                                     "without setting MaxGCPauseMillis");
 258     }
 259   }
 260 
 261   // Then, if the interval parameter was not set, set it according to
 262   // the pause time target (this will also deal with the case when the
 263   // pause time target is the default value).
 264   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 265     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 266   }
 267 
 268   // Finally, make sure that the two parameters are consistent.
 269   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 270     char buffer[256];
 271     jio_snprintf(buffer, 256,
 272                  "MaxGCPauseMillis (%u) should be less than "
 273                  "GCPauseIntervalMillis (%u)",
 274                  MaxGCPauseMillis, GCPauseIntervalMillis);
 275     vm_exit_during_initialization(buffer);
 276   }
 277 
 278   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 279   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 280   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 281 
 282   // start conservatively (around 50ms is about right)
 283   _concurrent_mark_remark_times_ms->add(0.05);
 284   _concurrent_mark_cleanup_times_ms->add(0.20);
 285   _tenuring_threshold = MaxTenuringThreshold;
 286   // _max_survivor_regions will be calculated by
 287   // update_young_list_target_length() during initialization.
 288   _max_survivor_regions = 0;
 289 
 290   assert(GCTimeRatio > 0,
 291          "we should have set it to a default value set_g1_gc_flags() "
 292          "if a user set it to 0");
 293   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 294 
 295   uintx reserve_perc = G1ReservePercent;
 296   // Put an artificial ceiling on this so that it's not set to a silly value.
 297   if (reserve_perc > 50) {
 298     reserve_perc = 50;
 299     warning("G1ReservePercent is set to a value that is too large, "
 300             "it's been updated to " UINTX_FORMAT, reserve_perc);
 301   }
 302   _reserve_factor = (double) reserve_perc / 100.0;
 303   // This will be set when the heap is expanded
 304   // for the first time during initialization.
 305   _reserve_regions = 0;
 306 
 307   _collectionSetChooser = new CollectionSetChooser();
 308 }
 309 
 310 void G1CollectorPolicy::initialize_alignments() {
 311   _space_alignment = HeapRegion::GrainBytes;
 312   size_t card_table_alignment = GenRemSet::max_alignment_constraint();
 313   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 314   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 315 }
 316 
 317 void G1CollectorPolicy::initialize_flags() {
 318   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 319     FLAG_SET_ERGO(size_t, G1HeapRegionSize, HeapRegion::GrainBytes);
 320   }
 321 
 322   if (SurvivorRatio < 1) {
 323     vm_exit_during_initialization("Invalid survivor ratio specified");
 324   }
 325   CollectorPolicy::initialize_flags();
 326   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 327 }
 328 
 329 void G1CollectorPolicy::post_heap_initialize() {
 330   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 331   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 332   if (max_young_size != MaxNewSize) {
 333     FLAG_SET_ERGO(size_t, MaxNewSize, max_young_size);
 334   }
 335 }
 336 
 337 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
 338         _min_desired_young_length(0), _max_desired_young_length(0) {
 339   if (FLAG_IS_CMDLINE(NewRatio)) {
 340     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 341       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 342     } else {
 343       _sizer_kind = SizerNewRatio;
 344       _adaptive_size = false;
 345       return;
 346     }
 347   }
 348 
 349   if (NewSize > MaxNewSize) {
 350     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 351       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 352               "A new max generation size of " SIZE_FORMAT "k will be used.",
 353               NewSize/K, MaxNewSize/K, NewSize/K);
 354     }
 355     MaxNewSize = NewSize;
 356   }
 357 
 358   if (FLAG_IS_CMDLINE(NewSize)) {
 359     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 360                                      1U);
 361     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 362       _max_desired_young_length =
 363                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 364                                   1U);
 365       _sizer_kind = SizerMaxAndNewSize;
 366       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 367     } else {
 368       _sizer_kind = SizerNewSizeOnly;
 369     }
 370   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 371     _max_desired_young_length =
 372                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 373                                   1U);
 374     _sizer_kind = SizerMaxNewSizeOnly;
 375   }
 376 }
 377 
 378 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 379   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 380   return MAX2(1U, default_value);
 381 }
 382 
 383 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 384   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 385   return MAX2(1U, default_value);
 386 }
 387 
 388 void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
 389   assert(number_of_heap_regions > 0, "Heap must be initialized");
 390 
 391   switch (_sizer_kind) {
 392     case SizerDefaults:
 393       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 394       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 395       break;
 396     case SizerNewSizeOnly:
 397       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 398       *max_young_length = MAX2(*min_young_length, *max_young_length);
 399       break;
 400     case SizerMaxNewSizeOnly:
 401       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 402       *min_young_length = MIN2(*min_young_length, *max_young_length);
 403       break;
 404     case SizerMaxAndNewSize:
 405       // Do nothing. Values set on the command line, don't update them at runtime.
 406       break;
 407     case SizerNewRatio:
 408       *min_young_length = number_of_heap_regions / (NewRatio + 1);
 409       *max_young_length = *min_young_length;
 410       break;
 411     default:
 412       ShouldNotReachHere();
 413   }
 414 
 415   assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
 416 }
 417 
 418 uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
 419   // We need to pass the desired values because recalculation may not update these
 420   // values in some cases.
 421   uint temp = _min_desired_young_length;
 422   uint result = _max_desired_young_length;
 423   recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
 424   return result;
 425 }
 426 
 427 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 428   recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
 429           &_max_desired_young_length);
 430 }
 431 
 432 void G1CollectorPolicy::init() {
 433   // Set aside an initial future to_space.
 434   _g1 = G1CollectedHeap::heap();
 435 
 436   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 437 
 438   initialize_gc_policy_counters();
 439 
 440   if (adaptive_young_list_length()) {
 441     _young_list_fixed_length = 0;
 442   } else {
 443     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 444   }
 445   _free_regions_at_end_of_collection = _g1->num_free_regions();
 446   update_young_list_target_length();
 447 
 448   // We may immediately start allocating regions and placing them on the
 449   // collection set list. Initialize the per-collection set info
 450   start_incremental_cset_building();
 451 }
 452 
 453 // Create the jstat counters for the policy.
 454 void G1CollectorPolicy::initialize_gc_policy_counters() {
 455   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 456 }
 457 
 458 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 459                                          double base_time_ms,
 460                                          uint base_free_regions,
 461                                          double target_pause_time_ms) {
 462   if (young_length >= base_free_regions) {
 463     // end condition 1: not enough space for the young regions
 464     return false;
 465   }
 466 
 467   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 468   size_t bytes_to_copy =
 469                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 470   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 471   double young_other_time_ms = predict_young_other_time_ms(young_length);
 472   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 473   if (pause_time_ms > target_pause_time_ms) {
 474     // end condition 2: prediction is over the target pause time
 475     return false;
 476   }
 477 
 478   size_t free_bytes =
 479                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
 480   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
 481     // end condition 3: out-of-space (conservatively!)
 482     return false;
 483   }
 484 
 485   // success!
 486   return true;
 487 }
 488 
 489 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 490   // re-calculate the necessary reserve
 491   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 492   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 493   // smaller than 1.0) we'll get 1.
 494   _reserve_regions = (uint) ceil(reserve_regions_d);
 495 
 496   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 497 }
 498 
 499 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 500                                                        uint base_min_length) {
 501   uint desired_min_length = 0;
 502   if (adaptive_young_list_length()) {
 503     if (_alloc_rate_ms_seq->num() > 3) {
 504       double now_sec = os::elapsedTime();
 505       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 506       double alloc_rate_ms = predict_alloc_rate_ms();
 507       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 508     } else {
 509       // otherwise we don't have enough info to make the prediction
 510     }
 511   }
 512   desired_min_length += base_min_length;
 513   // make sure we don't go below any user-defined minimum bound
 514   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 515 }
 516 
 517 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
 518   // Here, we might want to also take into account any additional
 519   // constraints (i.e., user-defined minimum bound). Currently, we
 520   // effectively don't set this bound.
 521   return _young_gen_sizer->max_desired_young_length();
 522 }
 523 
 524 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 525   if (rs_lengths == (size_t) -1) {
 526     // if it's set to the default value (-1), we should predict it;
 527     // otherwise, use the given value.
 528     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 529   }
 530 
 531   // Calculate the absolute and desired min bounds.
 532 
 533   // This is how many young regions we already have (currently: the survivors).
 534   uint base_min_length = recorded_survivor_regions();
 535   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 536   // This is the absolute minimum young length. Ensure that we
 537   // will at least have one eden region available for allocation.
 538   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
 539   // If we shrank the young list target it should not shrink below the current size.
 540   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 541   // Calculate the absolute and desired max bounds.
 542 
 543   // We will try our best not to "eat" into the reserve.
 544   uint absolute_max_length = 0;
 545   if (_free_regions_at_end_of_collection > _reserve_regions) {
 546     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 547   }
 548   uint desired_max_length = calculate_young_list_desired_max_length();
 549   if (desired_max_length > absolute_max_length) {
 550     desired_max_length = absolute_max_length;
 551   }
 552 
 553   uint young_list_target_length = 0;
 554   if (adaptive_young_list_length()) {
 555     if (gcs_are_young()) {
 556       young_list_target_length =
 557                         calculate_young_list_target_length(rs_lengths,
 558                                                            base_min_length,
 559                                                            desired_min_length,
 560                                                            desired_max_length);
 561       _rs_lengths_prediction = rs_lengths;
 562     } else {
 563       // Don't calculate anything and let the code below bound it to
 564       // the desired_min_length, i.e., do the next GC as soon as
 565       // possible to maximize how many old regions we can add to it.
 566     }
 567   } else {
 568     // The user asked for a fixed young gen so we'll fix the young gen
 569     // whether the next GC is young or mixed.
 570     young_list_target_length = _young_list_fixed_length;
 571   }
 572 
 573   // Make sure we don't go over the desired max length, nor under the
 574   // desired min length. In case they clash, desired_min_length wins
 575   // which is why that test is second.
 576   if (young_list_target_length > desired_max_length) {
 577     young_list_target_length = desired_max_length;
 578   }
 579   if (young_list_target_length < desired_min_length) {
 580     young_list_target_length = desired_min_length;
 581   }
 582 
 583   assert(young_list_target_length > recorded_survivor_regions(),
 584          "we should be able to allocate at least one eden region");
 585   assert(young_list_target_length >= absolute_min_length, "post-condition");
 586   _young_list_target_length = young_list_target_length;
 587 
 588   update_max_gc_locker_expansion();
 589 }
 590 
 591 uint
 592 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 593                                                      uint base_min_length,
 594                                                      uint desired_min_length,
 595                                                      uint desired_max_length) {
 596   assert(adaptive_young_list_length(), "pre-condition");
 597   assert(gcs_are_young(), "only call this for young GCs");
 598 
 599   // In case some edge-condition makes the desired max length too small...
 600   if (desired_max_length <= desired_min_length) {
 601     return desired_min_length;
 602   }
 603 
 604   // We'll adjust min_young_length and max_young_length not to include
 605   // the already allocated young regions (i.e., so they reflect the
 606   // min and max eden regions we'll allocate). The base_min_length
 607   // will be reflected in the predictions by the
 608   // survivor_regions_evac_time prediction.
 609   assert(desired_min_length > base_min_length, "invariant");
 610   uint min_young_length = desired_min_length - base_min_length;
 611   assert(desired_max_length > base_min_length, "invariant");
 612   uint max_young_length = desired_max_length - base_min_length;
 613 
 614   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 615   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 616   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 617   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 618   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 619   double base_time_ms =
 620     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 621     survivor_regions_evac_time;
 622   uint available_free_regions = _free_regions_at_end_of_collection;
 623   uint base_free_regions = 0;
 624   if (available_free_regions > _reserve_regions) {
 625     base_free_regions = available_free_regions - _reserve_regions;
 626   }
 627 
 628   // Here, we will make sure that the shortest young length that
 629   // makes sense fits within the target pause time.
 630 
 631   if (predict_will_fit(min_young_length, base_time_ms,
 632                        base_free_regions, target_pause_time_ms)) {
 633     // The shortest young length will fit into the target pause time;
 634     // we'll now check whether the absolute maximum number of young
 635     // regions will fit in the target pause time. If not, we'll do
 636     // a binary search between min_young_length and max_young_length.
 637     if (predict_will_fit(max_young_length, base_time_ms,
 638                          base_free_regions, target_pause_time_ms)) {
 639       // The maximum young length will fit into the target pause time.
 640       // We are done so set min young length to the maximum length (as
 641       // the result is assumed to be returned in min_young_length).
 642       min_young_length = max_young_length;
 643     } else {
 644       // The maximum possible number of young regions will not fit within
 645       // the target pause time so we'll search for the optimal
 646       // length. The loop invariants are:
 647       //
 648       // min_young_length < max_young_length
 649       // min_young_length is known to fit into the target pause time
 650       // max_young_length is known not to fit into the target pause time
 651       //
 652       // Going into the loop we know the above hold as we've just
 653       // checked them. Every time around the loop we check whether
 654       // the middle value between min_young_length and
 655       // max_young_length fits into the target pause time. If it
 656       // does, it becomes the new min. If it doesn't, it becomes
 657       // the new max. This way we maintain the loop invariants.
 658 
 659       assert(min_young_length < max_young_length, "invariant");
 660       uint diff = (max_young_length - min_young_length) / 2;
 661       while (diff > 0) {
 662         uint young_length = min_young_length + diff;
 663         if (predict_will_fit(young_length, base_time_ms,
 664                              base_free_regions, target_pause_time_ms)) {
 665           min_young_length = young_length;
 666         } else {
 667           max_young_length = young_length;
 668         }
 669         assert(min_young_length <  max_young_length, "invariant");
 670         diff = (max_young_length - min_young_length) / 2;
 671       }
 672       // The results is min_young_length which, according to the
 673       // loop invariants, should fit within the target pause time.
 674 
 675       // These are the post-conditions of the binary search above:
 676       assert(min_young_length < max_young_length,
 677              "otherwise we should have discovered that max_young_length "
 678              "fits into the pause target and not done the binary search");
 679       assert(predict_will_fit(min_young_length, base_time_ms,
 680                               base_free_regions, target_pause_time_ms),
 681              "min_young_length, the result of the binary search, should "
 682              "fit into the pause target");
 683       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 684                                base_free_regions, target_pause_time_ms),
 685              "min_young_length, the result of the binary search, should be "
 686              "optimal, so no larger length should fit into the pause target");
 687     }
 688   } else {
 689     // Even the minimum length doesn't fit into the pause time
 690     // target, return it as the result nevertheless.
 691   }
 692   return base_min_length + min_young_length;
 693 }
 694 
 695 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 696   double survivor_regions_evac_time = 0.0;
 697   for (HeapRegion * r = _recorded_survivor_head;
 698        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 699        r = r->get_next_young_region()) {
 700     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
 701   }
 702   return survivor_regions_evac_time;
 703 }
 704 
 705 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 706   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 707 
 708   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 709   if (rs_lengths > _rs_lengths_prediction) {
 710     // add 10% to avoid having to recalculate often
 711     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 712     update_young_list_target_length(rs_lengths_prediction);
 713   }
 714 }
 715 
 716 
 717 
 718 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 719                                                bool is_tlab,
 720                                                bool* gc_overhead_limit_was_exceeded) {
 721   guarantee(false, "Not using this policy feature yet.");
 722   return NULL;
 723 }
 724 
 725 // This method controls how a collector handles one or more
 726 // of its generations being fully allocated.
 727 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 728                                                        bool is_tlab) {
 729   guarantee(false, "Not using this policy feature yet.");
 730   return NULL;
 731 }
 732 
 733 
 734 #ifndef PRODUCT
 735 bool G1CollectorPolicy::verify_young_ages() {
 736   HeapRegion* head = _g1->young_list()->first_region();
 737   return
 738     verify_young_ages(head, _short_lived_surv_rate_group);
 739   // also call verify_young_ages on any additional surv rate groups
 740 }
 741 
 742 bool
 743 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 744                                      SurvRateGroup *surv_rate_group) {
 745   guarantee( surv_rate_group != NULL, "pre-condition" );
 746 
 747   const char* name = surv_rate_group->name();
 748   bool ret = true;
 749   int prev_age = -1;
 750 
 751   for (HeapRegion* curr = head;
 752        curr != NULL;
 753        curr = curr->get_next_young_region()) {
 754     SurvRateGroup* group = curr->surv_rate_group();
 755     if (group == NULL && !curr->is_survivor()) {
 756       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 757       ret = false;
 758     }
 759 
 760     if (surv_rate_group == group) {
 761       int age = curr->age_in_surv_rate_group();
 762 
 763       if (age < 0) {
 764         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 765         ret = false;
 766       }
 767 
 768       if (age <= prev_age) {
 769         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 770                                "(%d, %d)", name, age, prev_age);
 771         ret = false;
 772       }
 773       prev_age = age;
 774     }
 775   }
 776 
 777   return ret;
 778 }
 779 #endif // PRODUCT
 780 
 781 void G1CollectorPolicy::record_full_collection_start() {
 782   _full_collection_start_sec = os::elapsedTime();
 783   record_heap_size_info_at_start(true /* full */);
 784   // Release the future to-space so that it is available for compaction into.
 785   _g1->set_full_collection();
 786 }
 787 
 788 void G1CollectorPolicy::record_full_collection_end() {
 789   // Consider this like a collection pause for the purposes of allocation
 790   // since last pause.
 791   double end_sec = os::elapsedTime();
 792   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 793   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 794 
 795   _trace_old_gen_time_data.record_full_collection(full_gc_time_ms);
 796 
 797   update_recent_gc_times(end_sec, full_gc_time_ms);
 798 
 799   _g1->clear_full_collection();
 800 
 801   // "Nuke" the heuristics that control the young/mixed GC
 802   // transitions and make sure we start with young GCs after the Full GC.
 803   set_gcs_are_young(true);
 804   _last_young_gc = false;
 805   clear_initiate_conc_mark_if_possible();
 806   clear_during_initial_mark_pause();
 807   _in_marking_window = false;
 808   _in_marking_window_im = false;
 809 
 810   _short_lived_surv_rate_group->start_adding_regions();
 811   // also call this on any additional surv rate groups
 812 
 813   record_survivor_regions(0, NULL, NULL);
 814 
 815   _free_regions_at_end_of_collection = _g1->num_free_regions();
 816   // Reset survivors SurvRateGroup.
 817   _survivor_surv_rate_group->reset();
 818   update_young_list_target_length();
 819   _collectionSetChooser->clear();
 820 }
 821 
 822 void G1CollectorPolicy::record_stop_world_start() {
 823   _stop_world_start = os::elapsedTime();
 824 }
 825 
 826 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 827   // We only need to do this here as the policy will only be applied
 828   // to the GC we're about to start. so, no point is calculating this
 829   // every time we calculate / recalculate the target young length.
 830   update_survivors_policy();
 831 
 832   assert(_g1->used() == _g1->recalculate_used(),
 833          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 834                  _g1->used(), _g1->recalculate_used()));
 835 
 836   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 837   _trace_young_gen_time_data.record_start_collection(s_w_t_ms);
 838   _stop_world_start = 0.0;
 839 
 840   record_heap_size_info_at_start(false /* full */);
 841 
 842   phase_times()->record_cur_collection_start_sec(start_time_sec);
 843   _pending_cards = _g1->pending_card_num();
 844 
 845   _collection_set_bytes_used_before = 0;
 846   _bytes_copied_during_gc = 0;
 847 
 848   _last_gc_was_young = false;
 849 
 850   // do that for any other surv rate groups
 851   _short_lived_surv_rate_group->stop_adding_regions();
 852   _survivors_age_table.clear();
 853 
 854   assert( verify_young_ages(), "region age verification" );
 855 }
 856 
 857 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 858                                                    mark_init_elapsed_time_ms) {
 859   _during_marking = true;
 860   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 861   clear_during_initial_mark_pause();
 862   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 863 }
 864 
 865 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 866   _mark_remark_start_sec = os::elapsedTime();
 867   _during_marking = false;
 868 }
 869 
 870 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 871   double end_time_sec = os::elapsedTime();
 872   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 873   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 874   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 875   _prev_collection_pause_end_ms += elapsed_time_ms;
 876 
 877   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 878 }
 879 
 880 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 881   _mark_cleanup_start_sec = os::elapsedTime();
 882 }
 883 
 884 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 885   _last_young_gc = true;
 886   _in_marking_window = false;
 887 }
 888 
 889 void G1CollectorPolicy::record_concurrent_pause() {
 890   if (_stop_world_start > 0.0) {
 891     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 892     _trace_young_gen_time_data.record_yield_time(yield_ms);
 893   }
 894 }
 895 
 896 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 897   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
 898     return false;
 899   }
 900 
 901   size_t marking_initiating_used_threshold =
 902     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 903   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 904   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 905 
 906   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 907     if (gcs_are_young() && !_last_young_gc) {
 908       ergo_verbose5(ErgoConcCycles,
 909         "request concurrent cycle initiation",
 910         ergo_format_reason("occupancy higher than threshold")
 911         ergo_format_byte("occupancy")
 912         ergo_format_byte("allocation request")
 913         ergo_format_byte_perc("threshold")
 914         ergo_format_str("source"),
 915         cur_used_bytes,
 916         alloc_byte_size,
 917         marking_initiating_used_threshold,
 918         (double) InitiatingHeapOccupancyPercent,
 919         source);
 920       return true;
 921     } else {
 922       ergo_verbose5(ErgoConcCycles,
 923         "do not request concurrent cycle initiation",
 924         ergo_format_reason("still doing mixed collections")
 925         ergo_format_byte("occupancy")
 926         ergo_format_byte("allocation request")
 927         ergo_format_byte_perc("threshold")
 928         ergo_format_str("source"),
 929         cur_used_bytes,
 930         alloc_byte_size,
 931         marking_initiating_used_threshold,
 932         (double) InitiatingHeapOccupancyPercent,
 933         source);
 934     }
 935   }
 936 
 937   return false;
 938 }
 939 
 940 // Anything below that is considered to be zero
 941 #define MIN_TIMER_GRANULARITY 0.0000001
 942 
 943 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
 944   double end_time_sec = os::elapsedTime();
 945   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
 946          "otherwise, the subtraction below does not make sense");
 947   size_t rs_size =
 948             _cur_collection_pause_used_regions_at_start - cset_region_length();
 949   size_t cur_used_bytes = _g1->used();
 950   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 951   bool last_pause_included_initial_mark = false;
 952   bool update_stats = !_g1->evacuation_failed();
 953 
 954 #ifndef PRODUCT
 955   if (G1YoungSurvRateVerbose) {
 956     gclog_or_tty->cr();
 957     _short_lived_surv_rate_group->print();
 958     // do that for any other surv rate groups too
 959   }
 960 #endif // PRODUCT
 961 
 962   last_pause_included_initial_mark = during_initial_mark_pause();
 963   if (last_pause_included_initial_mark) {
 964     record_concurrent_mark_init_end(0.0);
 965   } else if (need_to_start_conc_mark("end of GC")) {
 966     // Note: this might have already been set, if during the last
 967     // pause we decided to start a cycle but at the beginning of
 968     // this pause we decided to postpone it. That's OK.
 969     set_initiate_conc_mark_if_possible();
 970   }
 971 
 972   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
 973                           end_time_sec, false);
 974 
 975   evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
 976   evacuation_info.set_bytes_copied(_bytes_copied_during_gc);
 977 
 978   if (update_stats) {
 979     _trace_young_gen_time_data.record_end_collection(pause_time_ms, phase_times());
 980     // this is where we update the allocation rate of the application
 981     double app_time_ms =
 982       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 983     if (app_time_ms < MIN_TIMER_GRANULARITY) {
 984       // This usually happens due to the timer not having the required
 985       // granularity. Some Linuxes are the usual culprits.
 986       // We'll just set it to something (arbitrarily) small.
 987       app_time_ms = 1.0;
 988     }
 989     // We maintain the invariant that all objects allocated by mutator
 990     // threads will be allocated out of eden regions. So, we can use
 991     // the eden region number allocated since the previous GC to
 992     // calculate the application's allocate rate. The only exception
 993     // to that is humongous objects that are allocated separately. But
 994     // given that humongous object allocations do not really affect
 995     // either the pause's duration nor when the next pause will take
 996     // place we can safely ignore them here.
 997     uint regions_allocated = eden_cset_region_length();
 998     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 999     _alloc_rate_ms_seq->add(alloc_rate_ms);
1000 
1001     double interval_ms =
1002       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1003     update_recent_gc_times(end_time_sec, pause_time_ms);
1004     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1005     if (recent_avg_pause_time_ratio() < 0.0 ||
1006         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1007 #ifndef PRODUCT
1008       // Dump info to allow post-facto debugging
1009       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
1010       gclog_or_tty->print_cr("-------------------------------------------");
1011       gclog_or_tty->print_cr("Recent GC Times (ms):");
1012       _recent_gc_times_ms->dump();
1013       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
1014       _recent_prev_end_times_for_all_gcs_sec->dump();
1015       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
1016                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1017       // In debug mode, terminate the JVM if the user wants to debug at this point.
1018       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
1019 #endif  // !PRODUCT
1020       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1021       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1022       if (_recent_avg_pause_time_ratio < 0.0) {
1023         _recent_avg_pause_time_ratio = 0.0;
1024       } else {
1025         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1026         _recent_avg_pause_time_ratio = 1.0;
1027       }
1028     }
1029   }
1030 
1031   bool new_in_marking_window = _in_marking_window;
1032   bool new_in_marking_window_im = false;
1033   if (last_pause_included_initial_mark) {
1034     new_in_marking_window = true;
1035     new_in_marking_window_im = true;
1036   }
1037 
1038   if (_last_young_gc) {
1039     // This is supposed to to be the "last young GC" before we start
1040     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1041 
1042     if (!last_pause_included_initial_mark) {
1043       if (next_gc_should_be_mixed("start mixed GCs",
1044                                   "do not start mixed GCs")) {
1045         set_gcs_are_young(false);
1046       }
1047     } else {
1048       ergo_verbose0(ErgoMixedGCs,
1049                     "do not start mixed GCs",
1050                     ergo_format_reason("concurrent cycle is about to start"));
1051     }
1052     _last_young_gc = false;
1053   }
1054 
1055   if (!_last_gc_was_young) {
1056     // This is a mixed GC. Here we decide whether to continue doing
1057     // mixed GCs or not.
1058 
1059     if (!next_gc_should_be_mixed("continue mixed GCs",
1060                                  "do not continue mixed GCs")) {
1061       set_gcs_are_young(true);
1062     }
1063   }
1064 
1065   _short_lived_surv_rate_group->start_adding_regions();
1066   // Do that for any other surv rate groups
1067 
1068   if (update_stats) {
1069     double cost_per_card_ms = 0.0;
1070     if (_pending_cards > 0) {
1071       cost_per_card_ms = phase_times()->average_time_ms(G1GCPhaseTimes::UpdateRS) / (double) _pending_cards;
1072       _cost_per_card_ms_seq->add(cost_per_card_ms);
1073     }
1074 
1075     size_t cards_scanned = _g1->cards_scanned();
1076 
1077     double cost_per_entry_ms = 0.0;
1078     if (cards_scanned > 10) {
1079       cost_per_entry_ms = phase_times()->average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
1080       if (_last_gc_was_young) {
1081         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1082       } else {
1083         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1084       }
1085     }
1086 
1087     if (_max_rs_lengths > 0) {
1088       double cards_per_entry_ratio =
1089         (double) cards_scanned / (double) _max_rs_lengths;
1090       if (_last_gc_was_young) {
1091         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1092       } else {
1093         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1094       }
1095     }
1096 
1097     // This is defensive. For a while _max_rs_lengths could get
1098     // smaller than _recorded_rs_lengths which was causing
1099     // rs_length_diff to get very large and mess up the RSet length
1100     // predictions. The reason was unsafe concurrent updates to the
1101     // _inc_cset_recorded_rs_lengths field which the code below guards
1102     // against (see CR 7118202). This bug has now been fixed (see CR
1103     // 7119027). However, I'm still worried that
1104     // _inc_cset_recorded_rs_lengths might still end up somewhat
1105     // inaccurate. The concurrent refinement thread calculates an
1106     // RSet's length concurrently with other CR threads updating it
1107     // which might cause it to calculate the length incorrectly (if,
1108     // say, it's in mid-coarsening). So I'll leave in the defensive
1109     // conditional below just in case.
1110     size_t rs_length_diff = 0;
1111     if (_max_rs_lengths > _recorded_rs_lengths) {
1112       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1113     }
1114     _rs_length_diff_seq->add((double) rs_length_diff);
1115 
1116     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1117     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1118     double cost_per_byte_ms = 0.0;
1119 
1120     if (copied_bytes > 0) {
1121       cost_per_byte_ms = phase_times()->average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
1122       if (_in_marking_window) {
1123         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1124       } else {
1125         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1126       }
1127     }
1128 
1129     double all_other_time_ms = pause_time_ms -
1130       (phase_times()->average_time_ms(G1GCPhaseTimes::UpdateRS) + phase_times()->average_time_ms(G1GCPhaseTimes::ScanRS) +
1131           phase_times()->average_time_ms(G1GCPhaseTimes::ObjCopy) + phase_times()->average_time_ms(G1GCPhaseTimes::Termination));
1132 
1133     double young_other_time_ms = 0.0;
1134     if (young_cset_region_length() > 0) {
1135       young_other_time_ms =
1136         phase_times()->young_cset_choice_time_ms() +
1137         phase_times()->young_free_cset_time_ms();
1138       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1139                                           (double) young_cset_region_length());
1140     }
1141     double non_young_other_time_ms = 0.0;
1142     if (old_cset_region_length() > 0) {
1143       non_young_other_time_ms =
1144         phase_times()->non_young_cset_choice_time_ms() +
1145         phase_times()->non_young_free_cset_time_ms();
1146 
1147       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1148                                             (double) old_cset_region_length());
1149     }
1150 
1151     double constant_other_time_ms = all_other_time_ms -
1152       (young_other_time_ms + non_young_other_time_ms);
1153     _constant_other_time_ms_seq->add(constant_other_time_ms);
1154 
1155     double survival_ratio = 0.0;
1156     if (_collection_set_bytes_used_before > 0) {
1157       survival_ratio = (double) _bytes_copied_during_gc /
1158                                    (double) _collection_set_bytes_used_before;
1159     }
1160 
1161     _pending_cards_seq->add((double) _pending_cards);
1162     _rs_lengths_seq->add((double) _max_rs_lengths);
1163   }
1164 
1165   _in_marking_window = new_in_marking_window;
1166   _in_marking_window_im = new_in_marking_window_im;
1167   _free_regions_at_end_of_collection = _g1->num_free_regions();
1168   update_young_list_target_length();
1169 
1170   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1171   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1172   adjust_concurrent_refinement(phase_times()->average_time_ms(G1GCPhaseTimes::UpdateRS),
1173                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS), update_rs_time_goal_ms);
1174 
1175   _collectionSetChooser->verify();
1176 }
1177 
1178 #define EXT_SIZE_FORMAT "%.1f%s"
1179 #define EXT_SIZE_PARAMS(bytes)                                  \
1180   byte_size_in_proper_unit((double)(bytes)),                    \
1181   proper_unit_for_byte_size((bytes))
1182 
1183 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1184   YoungList* young_list = _g1->young_list();
1185   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1186   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1187   _heap_capacity_bytes_before_gc = _g1->capacity();
1188   _heap_used_bytes_before_gc = _g1->used();
1189   _cur_collection_pause_used_regions_at_start = _g1->num_used_regions();
1190 
1191   _eden_capacity_bytes_before_gc =
1192          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1193 
1194   if (full) {
1195     _metaspace_used_bytes_before_gc = MetaspaceAux::used_bytes();
1196   }
1197 }
1198 
1199 void G1CollectorPolicy::print_heap_transition(size_t bytes_before) {
1200   size_t bytes_after = _g1->used();
1201   size_t capacity = _g1->capacity();
1202 
1203   gclog_or_tty->print(" " SIZE_FORMAT "%s->" SIZE_FORMAT "%s(" SIZE_FORMAT "%s)",
1204       byte_size_in_proper_unit(bytes_before),
1205       proper_unit_for_byte_size(bytes_before),
1206       byte_size_in_proper_unit(bytes_after),
1207       proper_unit_for_byte_size(bytes_after),
1208       byte_size_in_proper_unit(capacity),
1209       proper_unit_for_byte_size(capacity));
1210 }
1211 
1212 void G1CollectorPolicy::print_heap_transition() {
1213   print_heap_transition(_heap_used_bytes_before_gc);
1214 }
1215 
1216 void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
1217   YoungList* young_list = _g1->young_list();
1218 
1219   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1220   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1221   size_t heap_used_bytes_after_gc = _g1->used();
1222 
1223   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1224   size_t eden_capacity_bytes_after_gc =
1225     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1226 
1227   gclog_or_tty->print(
1228     "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
1229     "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1230     "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1231     EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1232     EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
1233     EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
1234     EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
1235     EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
1236     EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
1237     EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
1238     EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
1239     EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
1240     EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
1241     EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
1242 
1243   if (full) {
1244     MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1245   }
1246 
1247   gclog_or_tty->cr();
1248 }
1249 
1250 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1251                                                      double update_rs_processed_buffers,
1252                                                      double goal_ms) {
1253   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1254   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1255 
1256   if (G1UseAdaptiveConcRefinement) {
1257     const int k_gy = 3, k_gr = 6;
1258     const double inc_k = 1.1, dec_k = 0.9;
1259 
1260     int g = cg1r->green_zone();
1261     if (update_rs_time > goal_ms) {
1262       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1263     } else {
1264       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1265         g = (int)MAX2(g * inc_k, g + 1.0);
1266       }
1267     }
1268     // Change the refinement threads params
1269     cg1r->set_green_zone(g);
1270     cg1r->set_yellow_zone(g * k_gy);
1271     cg1r->set_red_zone(g * k_gr);
1272     cg1r->reinitialize_threads();
1273 
1274     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1275     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1276                                     cg1r->yellow_zone());
1277     // Change the barrier params
1278     dcqs.set_process_completed_threshold(processing_threshold);
1279     dcqs.set_max_completed_queue(cg1r->red_zone());
1280   }
1281 
1282   int curr_queue_size = dcqs.completed_buffers_num();
1283   if (curr_queue_size >= cg1r->yellow_zone()) {
1284     dcqs.set_completed_queue_padding(curr_queue_size);
1285   } else {
1286     dcqs.set_completed_queue_padding(0);
1287   }
1288   dcqs.notify_if_necessary();
1289 }
1290 
1291 double
1292 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1293                                                 size_t scanned_cards) {
1294   return
1295     predict_rs_update_time_ms(pending_cards) +
1296     predict_rs_scan_time_ms(scanned_cards) +
1297     predict_constant_other_time_ms();
1298 }
1299 
1300 double
1301 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1302   size_t rs_length = predict_rs_length_diff();
1303   size_t card_num;
1304   if (gcs_are_young()) {
1305     card_num = predict_young_card_num(rs_length);
1306   } else {
1307     card_num = predict_non_young_card_num(rs_length);
1308   }
1309   return predict_base_elapsed_time_ms(pending_cards, card_num);
1310 }
1311 
1312 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1313   size_t bytes_to_copy;
1314   if (hr->is_marked())
1315     bytes_to_copy = hr->max_live_bytes();
1316   else {
1317     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1318     int age = hr->age_in_surv_rate_group();
1319     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1320     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1321   }
1322   return bytes_to_copy;
1323 }
1324 
1325 double
1326 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1327                                                   bool for_young_gc) {
1328   size_t rs_length = hr->rem_set()->occupied();
1329   size_t card_num;
1330 
1331   // Predicting the number of cards is based on which type of GC
1332   // we're predicting for.
1333   if (for_young_gc) {
1334     card_num = predict_young_card_num(rs_length);
1335   } else {
1336     card_num = predict_non_young_card_num(rs_length);
1337   }
1338   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1339 
1340   double region_elapsed_time_ms =
1341     predict_rs_scan_time_ms(card_num) +
1342     predict_object_copy_time_ms(bytes_to_copy);
1343 
1344   // The prediction of the "other" time for this region is based
1345   // upon the region type and NOT the GC type.
1346   if (hr->is_young()) {
1347     region_elapsed_time_ms += predict_young_other_time_ms(1);
1348   } else {
1349     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1350   }
1351   return region_elapsed_time_ms;
1352 }
1353 
1354 void
1355 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1356                                             uint survivor_cset_region_length) {
1357   _eden_cset_region_length     = eden_cset_region_length;
1358   _survivor_cset_region_length = survivor_cset_region_length;
1359   _old_cset_region_length      = 0;
1360 }
1361 
1362 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1363   _recorded_rs_lengths = rs_lengths;
1364 }
1365 
1366 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1367                                                double elapsed_ms) {
1368   _recent_gc_times_ms->add(elapsed_ms);
1369   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1370   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1371 }
1372 
1373 size_t G1CollectorPolicy::expansion_amount() {
1374   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1375   double threshold = _gc_overhead_perc;
1376   if (recent_gc_overhead > threshold) {
1377     // We will double the existing space, or take
1378     // G1ExpandByPercentOfAvailable % of the available expansion
1379     // space, whichever is smaller, bounded below by a minimum
1380     // expansion (unless that's all that's left.)
1381     const size_t min_expand_bytes = 1*M;
1382     size_t reserved_bytes = _g1->max_capacity();
1383     size_t committed_bytes = _g1->capacity();
1384     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1385     size_t expand_bytes;
1386     size_t expand_bytes_via_pct =
1387       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1388     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1389     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1390     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1391 
1392     ergo_verbose5(ErgoHeapSizing,
1393                   "attempt heap expansion",
1394                   ergo_format_reason("recent GC overhead higher than "
1395                                      "threshold after GC")
1396                   ergo_format_perc("recent GC overhead")
1397                   ergo_format_perc("threshold")
1398                   ergo_format_byte("uncommitted")
1399                   ergo_format_byte_perc("calculated expansion amount"),
1400                   recent_gc_overhead, threshold,
1401                   uncommitted_bytes,
1402                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1403 
1404     return expand_bytes;
1405   } else {
1406     return 0;
1407   }
1408 }
1409 
1410 void G1CollectorPolicy::print_tracing_info() const {
1411   _trace_young_gen_time_data.print();
1412   _trace_old_gen_time_data.print();
1413 }
1414 
1415 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1416 #ifndef PRODUCT
1417   _short_lived_surv_rate_group->print_surv_rate_summary();
1418   // add this call for any other surv rate groups
1419 #endif // PRODUCT
1420 }
1421 
1422 bool G1CollectorPolicy::is_young_list_full() {
1423   uint young_list_length = _g1->young_list()->length();
1424   uint young_list_target_length = _young_list_target_length;
1425   return young_list_length >= young_list_target_length;
1426 }
1427 
1428 bool G1CollectorPolicy::can_expand_young_list() {
1429   uint young_list_length = _g1->young_list()->length();
1430   uint young_list_max_length = _young_list_max_length;
1431   return young_list_length < young_list_max_length;
1432 }
1433 
1434 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1435   uint expansion_region_num = 0;
1436   if (GCLockerEdenExpansionPercent > 0) {
1437     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1438     double expansion_region_num_d = perc * (double) _young_list_target_length;
1439     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1440     // less than 1.0) we'll get 1.
1441     expansion_region_num = (uint) ceil(expansion_region_num_d);
1442   } else {
1443     assert(expansion_region_num == 0, "sanity");
1444   }
1445   _young_list_max_length = _young_list_target_length + expansion_region_num;
1446   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1447 }
1448 
1449 // Calculates survivor space parameters.
1450 void G1CollectorPolicy::update_survivors_policy() {
1451   double max_survivor_regions_d =
1452                  (double) _young_list_target_length / (double) SurvivorRatio;
1453   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1454   // smaller than 1.0) we'll get 1.
1455   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1456 
1457   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1458         HeapRegion::GrainWords * _max_survivor_regions, counters());
1459 }
1460 
1461 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1462                                                      GCCause::Cause gc_cause) {
1463   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1464   if (!during_cycle) {
1465     ergo_verbose1(ErgoConcCycles,
1466                   "request concurrent cycle initiation",
1467                   ergo_format_reason("requested by GC cause")
1468                   ergo_format_str("GC cause"),
1469                   GCCause::to_string(gc_cause));
1470     set_initiate_conc_mark_if_possible();
1471     return true;
1472   } else {
1473     ergo_verbose1(ErgoConcCycles,
1474                   "do not request concurrent cycle initiation",
1475                   ergo_format_reason("concurrent cycle already in progress")
1476                   ergo_format_str("GC cause"),
1477                   GCCause::to_string(gc_cause));
1478     return false;
1479   }
1480 }
1481 
1482 void
1483 G1CollectorPolicy::decide_on_conc_mark_initiation() {
1484   // We are about to decide on whether this pause will be an
1485   // initial-mark pause.
1486 
1487   // First, during_initial_mark_pause() should not be already set. We
1488   // will set it here if we have to. However, it should be cleared by
1489   // the end of the pause (it's only set for the duration of an
1490   // initial-mark pause).
1491   assert(!during_initial_mark_pause(), "pre-condition");
1492 
1493   if (initiate_conc_mark_if_possible()) {
1494     // We had noticed on a previous pause that the heap occupancy has
1495     // gone over the initiating threshold and we should start a
1496     // concurrent marking cycle. So we might initiate one.
1497 
1498     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1499     if (!during_cycle) {
1500       // The concurrent marking thread is not "during a cycle", i.e.,
1501       // it has completed the last one. So we can go ahead and
1502       // initiate a new cycle.
1503 
1504       set_during_initial_mark_pause();
1505       // We do not allow mixed GCs during marking.
1506       if (!gcs_are_young()) {
1507         set_gcs_are_young(true);
1508         ergo_verbose0(ErgoMixedGCs,
1509                       "end mixed GCs",
1510                       ergo_format_reason("concurrent cycle is about to start"));
1511       }
1512 
1513       // And we can now clear initiate_conc_mark_if_possible() as
1514       // we've already acted on it.
1515       clear_initiate_conc_mark_if_possible();
1516 
1517       ergo_verbose0(ErgoConcCycles,
1518                   "initiate concurrent cycle",
1519                   ergo_format_reason("concurrent cycle initiation requested"));
1520     } else {
1521       // The concurrent marking thread is still finishing up the
1522       // previous cycle. If we start one right now the two cycles
1523       // overlap. In particular, the concurrent marking thread might
1524       // be in the process of clearing the next marking bitmap (which
1525       // we will use for the next cycle if we start one). Starting a
1526       // cycle now will be bad given that parts of the marking
1527       // information might get cleared by the marking thread. And we
1528       // cannot wait for the marking thread to finish the cycle as it
1529       // periodically yields while clearing the next marking bitmap
1530       // and, if it's in a yield point, it's waiting for us to
1531       // finish. So, at this point we will not start a cycle and we'll
1532       // let the concurrent marking thread complete the last one.
1533       ergo_verbose0(ErgoConcCycles,
1534                     "do not initiate concurrent cycle",
1535                     ergo_format_reason("concurrent cycle already in progress"));
1536     }
1537   }
1538 }
1539 
1540 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1541   G1CollectedHeap* _g1h;
1542   CSetChooserParUpdater _cset_updater;
1543 
1544 public:
1545   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1546                            uint chunk_size) :
1547     _g1h(G1CollectedHeap::heap()),
1548     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1549 
1550   bool doHeapRegion(HeapRegion* r) {
1551     // Do we have any marking information for this region?
1552     if (r->is_marked()) {
1553       // We will skip any region that's currently used as an old GC
1554       // alloc region (we should not consider those for collection
1555       // before we fill them up).
1556       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1557         _cset_updater.add_region(r);
1558       }
1559     }
1560     return false;
1561   }
1562 };
1563 
1564 class ParKnownGarbageTask: public AbstractGangTask {
1565   CollectionSetChooser* _hrSorted;
1566   uint _chunk_size;
1567   G1CollectedHeap* _g1;
1568   HeapRegionClaimer _hrclaimer;
1569 
1570 public:
1571   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1572       AbstractGangTask("ParKnownGarbageTask"),
1573       _hrSorted(hrSorted), _chunk_size(chunk_size),
1574       _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1575 
1576   void work(uint worker_id) {
1577     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1578     _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1579   }
1580 };
1581 
1582 uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) {
1583   assert(n_workers > 0, "Active gc workers should be greater than 0");
1584   const uint overpartition_factor = 4;
1585   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1586   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1587 }
1588 
1589 void
1590 G1CollectorPolicy::record_concurrent_mark_cleanup_end(uint n_workers) {
1591   _collectionSetChooser->clear();
1592 
1593   uint n_regions = _g1->num_regions();
1594   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1595   _collectionSetChooser->prepare_for_par_region_addition(n_regions, chunk_size);
1596   ParKnownGarbageTask par_known_garbage_task(_collectionSetChooser, chunk_size, n_workers);
1597   _g1->workers()->run_task(&par_known_garbage_task);
1598 
1599   _collectionSetChooser->sort_regions();
1600 
1601   double end_sec = os::elapsedTime();
1602   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1603   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1604   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1605   _prev_collection_pause_end_ms += elapsed_time_ms;
1606   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1607 }
1608 
1609 // Add the heap region at the head of the non-incremental collection set
1610 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1611   assert(_inc_cset_build_state == Active, "Precondition");
1612   assert(hr->is_old(), "the region should be old");
1613 
1614   assert(!hr->in_collection_set(), "should not already be in the CSet");
1615   _g1->register_old_region_with_cset(hr);
1616   hr->set_next_in_collection_set(_collection_set);
1617   _collection_set = hr;
1618   _collection_set_bytes_used_before += hr->used();
1619   size_t rs_length = hr->rem_set()->occupied();
1620   _recorded_rs_lengths += rs_length;
1621   _old_cset_region_length += 1;
1622 }
1623 
1624 // Initialize the per-collection-set information
1625 void G1CollectorPolicy::start_incremental_cset_building() {
1626   assert(_inc_cset_build_state == Inactive, "Precondition");
1627 
1628   _inc_cset_head = NULL;
1629   _inc_cset_tail = NULL;
1630   _inc_cset_bytes_used_before = 0;
1631 
1632   _inc_cset_max_finger = 0;
1633   _inc_cset_recorded_rs_lengths = 0;
1634   _inc_cset_recorded_rs_lengths_diffs = 0;
1635   _inc_cset_predicted_elapsed_time_ms = 0.0;
1636   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1637   _inc_cset_build_state = Active;
1638 }
1639 
1640 void G1CollectorPolicy::finalize_incremental_cset_building() {
1641   assert(_inc_cset_build_state == Active, "Precondition");
1642   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1643 
1644   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1645   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1646   // that adds a new region to the CSet. Further updates by the
1647   // concurrent refinement thread that samples the young RSet lengths
1648   // are accumulated in the *_diffs fields. Here we add the diffs to
1649   // the "main" fields.
1650 
1651   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1652     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1653   } else {
1654     // This is defensive. The diff should in theory be always positive
1655     // as RSets can only grow between GCs. However, given that we
1656     // sample their size concurrently with other threads updating them
1657     // it's possible that we might get the wrong size back, which
1658     // could make the calculations somewhat inaccurate.
1659     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1660     if (_inc_cset_recorded_rs_lengths >= diffs) {
1661       _inc_cset_recorded_rs_lengths -= diffs;
1662     } else {
1663       _inc_cset_recorded_rs_lengths = 0;
1664     }
1665   }
1666   _inc_cset_predicted_elapsed_time_ms +=
1667                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1668 
1669   _inc_cset_recorded_rs_lengths_diffs = 0;
1670   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1671 }
1672 
1673 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1674   // This routine is used when:
1675   // * adding survivor regions to the incremental cset at the end of an
1676   //   evacuation pause,
1677   // * adding the current allocation region to the incremental cset
1678   //   when it is retired, and
1679   // * updating existing policy information for a region in the
1680   //   incremental cset via young list RSet sampling.
1681   // Therefore this routine may be called at a safepoint by the
1682   // VM thread, or in-between safepoints by mutator threads (when
1683   // retiring the current allocation region) or a concurrent
1684   // refine thread (RSet sampling).
1685 
1686   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1687   size_t used_bytes = hr->used();
1688   _inc_cset_recorded_rs_lengths += rs_length;
1689   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1690   _inc_cset_bytes_used_before += used_bytes;
1691 
1692   // Cache the values we have added to the aggregated information
1693   // in the heap region in case we have to remove this region from
1694   // the incremental collection set, or it is updated by the
1695   // rset sampling code
1696   hr->set_recorded_rs_length(rs_length);
1697   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1698 }
1699 
1700 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1701                                                      size_t new_rs_length) {
1702   // Update the CSet information that is dependent on the new RS length
1703   assert(hr->is_young(), "Precondition");
1704   assert(!SafepointSynchronize::is_at_safepoint(),
1705                                                "should not be at a safepoint");
1706 
1707   // We could have updated _inc_cset_recorded_rs_lengths and
1708   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1709   // that atomically, as this code is executed by a concurrent
1710   // refinement thread, potentially concurrently with a mutator thread
1711   // allocating a new region and also updating the same fields. To
1712   // avoid the atomic operations we accumulate these updates on two
1713   // separate fields (*_diffs) and we'll just add them to the "main"
1714   // fields at the start of a GC.
1715 
1716   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1717   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1718   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1719 
1720   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1721   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1722   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1723   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1724 
1725   hr->set_recorded_rs_length(new_rs_length);
1726   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1727 }
1728 
1729 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1730   assert(hr->is_young(), "invariant");
1731   assert(hr->young_index_in_cset() > -1, "should have already been set");
1732   assert(_inc_cset_build_state == Active, "Precondition");
1733 
1734   // We need to clear and set the cached recorded/cached collection set
1735   // information in the heap region here (before the region gets added
1736   // to the collection set). An individual heap region's cached values
1737   // are calculated, aggregated with the policy collection set info,
1738   // and cached in the heap region here (initially) and (subsequently)
1739   // by the Young List sampling code.
1740 
1741   size_t rs_length = hr->rem_set()->occupied();
1742   add_to_incremental_cset_info(hr, rs_length);
1743 
1744   HeapWord* hr_end = hr->end();
1745   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1746 
1747   assert(!hr->in_collection_set(), "invariant");
1748   _g1->register_young_region_with_cset(hr);
1749   assert(hr->next_in_collection_set() == NULL, "invariant");
1750 }
1751 
1752 // Add the region at the RHS of the incremental cset
1753 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1754   // We should only ever be appending survivors at the end of a pause
1755   assert(hr->is_survivor(), "Logic");
1756 
1757   // Do the 'common' stuff
1758   add_region_to_incremental_cset_common(hr);
1759 
1760   // Now add the region at the right hand side
1761   if (_inc_cset_tail == NULL) {
1762     assert(_inc_cset_head == NULL, "invariant");
1763     _inc_cset_head = hr;
1764   } else {
1765     _inc_cset_tail->set_next_in_collection_set(hr);
1766   }
1767   _inc_cset_tail = hr;
1768 }
1769 
1770 // Add the region to the LHS of the incremental cset
1771 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1772   // Survivors should be added to the RHS at the end of a pause
1773   assert(hr->is_eden(), "Logic");
1774 
1775   // Do the 'common' stuff
1776   add_region_to_incremental_cset_common(hr);
1777 
1778   // Add the region at the left hand side
1779   hr->set_next_in_collection_set(_inc_cset_head);
1780   if (_inc_cset_head == NULL) {
1781     assert(_inc_cset_tail == NULL, "Invariant");
1782     _inc_cset_tail = hr;
1783   }
1784   _inc_cset_head = hr;
1785 }
1786 
1787 #ifndef PRODUCT
1788 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1789   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1790 
1791   st->print_cr("\nCollection_set:");
1792   HeapRegion* csr = list_head;
1793   while (csr != NULL) {
1794     HeapRegion* next = csr->next_in_collection_set();
1795     assert(csr->in_collection_set(), "bad CS");
1796     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
1797                  HR_FORMAT_PARAMS(csr),
1798                  p2i(csr->prev_top_at_mark_start()), p2i(csr->next_top_at_mark_start()),
1799                  csr->age_in_surv_rate_group_cond());
1800     csr = next;
1801   }
1802 }
1803 #endif // !PRODUCT
1804 
1805 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
1806   // Returns the given amount of reclaimable bytes (that represents
1807   // the amount of reclaimable space still to be collected) as a
1808   // percentage of the current heap capacity.
1809   size_t capacity_bytes = _g1->capacity();
1810   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1811 }
1812 
1813 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1814                                                 const char* false_action_str) {
1815   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1816   if (cset_chooser->is_empty()) {
1817     ergo_verbose0(ErgoMixedGCs,
1818                   false_action_str,
1819                   ergo_format_reason("candidate old regions not available"));
1820     return false;
1821   }
1822 
1823   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1824   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1825   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1826   double threshold = (double) G1HeapWastePercent;
1827   if (reclaimable_perc <= threshold) {
1828     ergo_verbose4(ErgoMixedGCs,
1829               false_action_str,
1830               ergo_format_reason("reclaimable percentage not over threshold")
1831               ergo_format_region("candidate old regions")
1832               ergo_format_byte_perc("reclaimable")
1833               ergo_format_perc("threshold"),
1834               cset_chooser->remaining_regions(),
1835               reclaimable_bytes,
1836               reclaimable_perc, threshold);
1837     return false;
1838   }
1839 
1840   ergo_verbose4(ErgoMixedGCs,
1841                 true_action_str,
1842                 ergo_format_reason("candidate old regions available")
1843                 ergo_format_region("candidate old regions")
1844                 ergo_format_byte_perc("reclaimable")
1845                 ergo_format_perc("threshold"),
1846                 cset_chooser->remaining_regions(),
1847                 reclaimable_bytes,
1848                 reclaimable_perc, threshold);
1849   return true;
1850 }
1851 
1852 uint G1CollectorPolicy::calc_min_old_cset_length() {
1853   // The min old CSet region bound is based on the maximum desired
1854   // number of mixed GCs after a cycle. I.e., even if some old regions
1855   // look expensive, we should add them to the CSet anyway to make
1856   // sure we go through the available old regions in no more than the
1857   // maximum desired number of mixed GCs.
1858   //
1859   // The calculation is based on the number of marked regions we added
1860   // to the CSet chooser in the first place, not how many remain, so
1861   // that the result is the same during all mixed GCs that follow a cycle.
1862 
1863   const size_t region_num = (size_t) _collectionSetChooser->length();
1864   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1865   size_t result = region_num / gc_num;
1866   // emulate ceiling
1867   if (result * gc_num < region_num) {
1868     result += 1;
1869   }
1870   return (uint) result;
1871 }
1872 
1873 uint G1CollectorPolicy::calc_max_old_cset_length() {
1874   // The max old CSet region bound is based on the threshold expressed
1875   // as a percentage of the heap size. I.e., it should bound the
1876   // number of old regions added to the CSet irrespective of how many
1877   // of them are available.
1878 
1879   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1880   const size_t region_num = g1h->num_regions();
1881   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1882   size_t result = region_num * perc / 100;
1883   // emulate ceiling
1884   if (100 * result < region_num * perc) {
1885     result += 1;
1886   }
1887   return (uint) result;
1888 }
1889 
1890 
1891 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
1892   double young_start_time_sec = os::elapsedTime();
1893 
1894   YoungList* young_list = _g1->young_list();
1895   finalize_incremental_cset_building();
1896 
1897   guarantee(target_pause_time_ms > 0.0,
1898             err_msg("target_pause_time_ms = %1.6lf should be positive",
1899                     target_pause_time_ms));
1900   guarantee(_collection_set == NULL, "Precondition");
1901 
1902   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1903   double predicted_pause_time_ms = base_time_ms;
1904   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1905 
1906   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1907                 "start choosing CSet",
1908                 ergo_format_size("_pending_cards")
1909                 ergo_format_ms("predicted base time")
1910                 ergo_format_ms("remaining time")
1911                 ergo_format_ms("target pause time"),
1912                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1913 
1914   _last_gc_was_young = gcs_are_young() ? true : false;
1915 
1916   if (_last_gc_was_young) {
1917     _trace_young_gen_time_data.increment_young_collection_count();
1918   } else {
1919     _trace_young_gen_time_data.increment_mixed_collection_count();
1920   }
1921 
1922   // The young list is laid with the survivor regions from the previous
1923   // pause are appended to the RHS of the young list, i.e.
1924   //   [Newly Young Regions ++ Survivors from last pause].
1925 
1926   uint survivor_region_length = young_list->survivor_length();
1927   uint eden_region_length = young_list->eden_length();
1928   init_cset_region_lengths(eden_region_length, survivor_region_length);
1929 
1930   HeapRegion* hr = young_list->first_survivor_region();
1931   while (hr != NULL) {
1932     assert(hr->is_survivor(), "badly formed young list");
1933     // There is a convention that all the young regions in the CSet
1934     // are tagged as "eden", so we do this for the survivors here. We
1935     // use the special set_eden_pre_gc() as it doesn't check that the
1936     // region is free (which is not the case here).
1937     hr->set_eden_pre_gc();
1938     hr = hr->get_next_young_region();
1939   }
1940 
1941   // Clear the fields that point to the survivor list - they are all young now.
1942   young_list->clear_survivors();
1943 
1944   _collection_set = _inc_cset_head;
1945   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1946   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1947   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1948 
1949   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
1950                 "add young regions to CSet",
1951                 ergo_format_region("eden")
1952                 ergo_format_region("survivors")
1953                 ergo_format_ms("predicted young region time"),
1954                 eden_region_length, survivor_region_length,
1955                 _inc_cset_predicted_elapsed_time_ms);
1956 
1957   // The number of recorded young regions is the incremental
1958   // collection set's current size
1959   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1960 
1961   double young_end_time_sec = os::elapsedTime();
1962   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1963 
1964   // Set the start of the non-young choice time.
1965   double non_young_start_time_sec = young_end_time_sec;
1966 
1967   if (!gcs_are_young()) {
1968     CollectionSetChooser* cset_chooser = _collectionSetChooser;
1969     cset_chooser->verify();
1970     const uint min_old_cset_length = calc_min_old_cset_length();
1971     const uint max_old_cset_length = calc_max_old_cset_length();
1972 
1973     uint expensive_region_num = 0;
1974     bool check_time_remaining = adaptive_young_list_length();
1975 
1976     HeapRegion* hr = cset_chooser->peek();
1977     while (hr != NULL) {
1978       if (old_cset_region_length() >= max_old_cset_length) {
1979         // Added maximum number of old regions to the CSet.
1980         ergo_verbose2(ErgoCSetConstruction,
1981                       "finish adding old regions to CSet",
1982                       ergo_format_reason("old CSet region num reached max")
1983                       ergo_format_region("old")
1984                       ergo_format_region("max"),
1985                       old_cset_region_length(), max_old_cset_length);
1986         break;
1987       }
1988 
1989 
1990       // Stop adding regions if the remaining reclaimable space is
1991       // not above G1HeapWastePercent.
1992       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1993       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1994       double threshold = (double) G1HeapWastePercent;
1995       if (reclaimable_perc <= threshold) {
1996         // We've added enough old regions that the amount of uncollected
1997         // reclaimable space is at or below the waste threshold. Stop
1998         // adding old regions to the CSet.
1999         ergo_verbose5(ErgoCSetConstruction,
2000                       "finish adding old regions to CSet",
2001                       ergo_format_reason("reclaimable percentage not over threshold")
2002                       ergo_format_region("old")
2003                       ergo_format_region("max")
2004                       ergo_format_byte_perc("reclaimable")
2005                       ergo_format_perc("threshold"),
2006                       old_cset_region_length(),
2007                       max_old_cset_length,
2008                       reclaimable_bytes,
2009                       reclaimable_perc, threshold);
2010         break;
2011       }
2012 
2013       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2014       if (check_time_remaining) {
2015         if (predicted_time_ms > time_remaining_ms) {
2016           // Too expensive for the current CSet.
2017 
2018           if (old_cset_region_length() >= min_old_cset_length) {
2019             // We have added the minimum number of old regions to the CSet,
2020             // we are done with this CSet.
2021             ergo_verbose4(ErgoCSetConstruction,
2022                           "finish adding old regions to CSet",
2023                           ergo_format_reason("predicted time is too high")
2024                           ergo_format_ms("predicted time")
2025                           ergo_format_ms("remaining time")
2026                           ergo_format_region("old")
2027                           ergo_format_region("min"),
2028                           predicted_time_ms, time_remaining_ms,
2029                           old_cset_region_length(), min_old_cset_length);
2030             break;
2031           }
2032 
2033           // We'll add it anyway given that we haven't reached the
2034           // minimum number of old regions.
2035           expensive_region_num += 1;
2036         }
2037       } else {
2038         if (old_cset_region_length() >= min_old_cset_length) {
2039           // In the non-auto-tuning case, we'll finish adding regions
2040           // to the CSet if we reach the minimum.
2041           ergo_verbose2(ErgoCSetConstruction,
2042                         "finish adding old regions to CSet",
2043                         ergo_format_reason("old CSet region num reached min")
2044                         ergo_format_region("old")
2045                         ergo_format_region("min"),
2046                         old_cset_region_length(), min_old_cset_length);
2047           break;
2048         }
2049       }
2050 
2051       // We will add this region to the CSet.
2052       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2053       predicted_pause_time_ms += predicted_time_ms;
2054       cset_chooser->remove_and_move_to_next(hr);
2055       _g1->old_set_remove(hr);
2056       add_old_region_to_cset(hr);
2057 
2058       hr = cset_chooser->peek();
2059     }
2060     if (hr == NULL) {
2061       ergo_verbose0(ErgoCSetConstruction,
2062                     "finish adding old regions to CSet",
2063                     ergo_format_reason("candidate old regions not available"));
2064     }
2065 
2066     if (expensive_region_num > 0) {
2067       // We print the information once here at the end, predicated on
2068       // whether we added any apparently expensive regions or not, to
2069       // avoid generating output per region.
2070       ergo_verbose4(ErgoCSetConstruction,
2071                     "added expensive regions to CSet",
2072                     ergo_format_reason("old CSet region num not reached min")
2073                     ergo_format_region("old")
2074                     ergo_format_region("expensive")
2075                     ergo_format_region("min")
2076                     ergo_format_ms("remaining time"),
2077                     old_cset_region_length(),
2078                     expensive_region_num,
2079                     min_old_cset_length,
2080                     time_remaining_ms);
2081     }
2082 
2083     cset_chooser->verify();
2084   }
2085 
2086   stop_incremental_cset_building();
2087 
2088   ergo_verbose5(ErgoCSetConstruction,
2089                 "finish choosing CSet",
2090                 ergo_format_region("eden")
2091                 ergo_format_region("survivors")
2092                 ergo_format_region("old")
2093                 ergo_format_ms("predicted pause time")
2094                 ergo_format_ms("target pause time"),
2095                 eden_region_length, survivor_region_length,
2096                 old_cset_region_length(),
2097                 predicted_pause_time_ms, target_pause_time_ms);
2098 
2099   double non_young_end_time_sec = os::elapsedTime();
2100   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2101   evacuation_info.set_collectionset_regions(cset_region_length());
2102 }
2103 
2104 void TraceYoungGenTimeData::record_start_collection(double time_to_stop_the_world_ms) {
2105   if(TraceYoungGenTime) {
2106     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2107   }
2108 }
2109 
2110 void TraceYoungGenTimeData::record_yield_time(double yield_time_ms) {
2111   if(TraceYoungGenTime) {
2112     _all_yield_times_ms.add(yield_time_ms);
2113   }
2114 }
2115 
2116 void TraceYoungGenTimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2117   if(TraceYoungGenTime) {
2118     _total.add(pause_time_ms);
2119     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2120     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2121     _parallel.add(phase_times->cur_collection_par_time_ms());
2122     _ext_root_scan.add(phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan));
2123     _satb_filtering.add(phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering));
2124     _update_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS));
2125     _scan_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::ScanRS));
2126     _obj_copy.add(phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy));
2127     _termination.add(phase_times->average_time_ms(G1GCPhaseTimes::Termination));
2128 
2129     double parallel_known_time = phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan) +
2130       phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering) +
2131       phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS) +
2132       phase_times->average_time_ms(G1GCPhaseTimes::ScanRS) +
2133       phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy) +
2134       phase_times->average_time_ms(G1GCPhaseTimes::Termination);
2135 
2136     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2137     _parallel_other.add(parallel_other_time);
2138     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2139   }
2140 }
2141 
2142 void TraceYoungGenTimeData::increment_young_collection_count() {
2143   if(TraceYoungGenTime) {
2144     ++_young_pause_num;
2145   }
2146 }
2147 
2148 void TraceYoungGenTimeData::increment_mixed_collection_count() {
2149   if(TraceYoungGenTime) {
2150     ++_mixed_pause_num;
2151   }
2152 }
2153 
2154 void TraceYoungGenTimeData::print_summary(const char* str,
2155                                           const NumberSeq* seq) const {
2156   double sum = seq->sum();
2157   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2158                 str, sum / 1000.0, seq->avg());
2159 }
2160 
2161 void TraceYoungGenTimeData::print_summary_sd(const char* str,
2162                                              const NumberSeq* seq) const {
2163   print_summary(str, seq);
2164   gclog_or_tty->print_cr("%45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2165                 "(num", seq->num(), seq->sd(), seq->maximum());
2166 }
2167 
2168 void TraceYoungGenTimeData::print() const {
2169   if (!TraceYoungGenTime) {
2170     return;
2171   }
2172 
2173   gclog_or_tty->print_cr("ALL PAUSES");
2174   print_summary_sd("   Total", &_total);
2175   gclog_or_tty->cr();
2176   gclog_or_tty->cr();
2177   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2178   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2179   gclog_or_tty->cr();
2180 
2181   gclog_or_tty->print_cr("EVACUATION PAUSES");
2182 
2183   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2184     gclog_or_tty->print_cr("none");
2185   } else {
2186     print_summary_sd("   Evacuation Pauses", &_total);
2187     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2188     print_summary("      Parallel Time", &_parallel);
2189     print_summary("         Ext Root Scanning", &_ext_root_scan);
2190     print_summary("         SATB Filtering", &_satb_filtering);
2191     print_summary("         Update RS", &_update_rs);
2192     print_summary("         Scan RS", &_scan_rs);
2193     print_summary("         Object Copy", &_obj_copy);
2194     print_summary("         Termination", &_termination);
2195     print_summary("         Parallel Other", &_parallel_other);
2196     print_summary("      Clear CT", &_clear_ct);
2197     print_summary("      Other", &_other);
2198   }
2199   gclog_or_tty->cr();
2200 
2201   gclog_or_tty->print_cr("MISC");
2202   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2203   print_summary_sd("   Yields", &_all_yield_times_ms);
2204 }
2205 
2206 void TraceOldGenTimeData::record_full_collection(double full_gc_time_ms) {
2207   if (TraceOldGenTime) {
2208     _all_full_gc_times.add(full_gc_time_ms);
2209   }
2210 }
2211 
2212 void TraceOldGenTimeData::print() const {
2213   if (!TraceOldGenTime) {
2214     return;
2215   }
2216 
2217   if (_all_full_gc_times.num() > 0) {
2218     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2219       _all_full_gc_times.num(),
2220       _all_full_gc_times.sum() / 1000.0);
2221     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2222     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2223       _all_full_gc_times.sd(),
2224       _all_full_gc_times.maximum());
2225   }
2226 }