1  /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "gc/g1/concurrentMarkThread.inline.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1CollectorPolicy.hpp"
  30 #include "gc/g1/g1MMUTracker.hpp"
  31 #include "gc/g1/suspendibleThreadSet.hpp"
  32 #include "gc/g1/vm_operations_g1.hpp"
  33 #include "gc/shared/gcId.hpp"
  34 #include "gc/shared/gcTrace.hpp"
  35 #include "gc/shared/gcTraceTime.inline.hpp"
  36 #include "logging/log.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "runtime/vmThread.hpp"
  39 
  40 // ======= Concurrent Mark Thread ========
  41 
  42 // The CM thread is created when the G1 garbage collector is used
  43 
  44 SurrogateLockerThread*
  45      ConcurrentMarkThread::_slt = NULL;
  46 
  47 ConcurrentMarkThread::ConcurrentMarkThread(G1ConcurrentMark* cm) :
  48   ConcurrentGCThread(),
  49   _cm(cm),
  50   _state(Idle),
  51   _vtime_accum(0.0),
  52   _vtime_mark_accum(0.0) {
  53 
  54   set_name("G1 Main Marker");
  55   create_and_start();
  56 }
  57 
  58 class CMCheckpointRootsFinalClosure: public VoidClosure {
  59 
  60   G1ConcurrentMark* _cm;
  61 public:
  62 
  63   CMCheckpointRootsFinalClosure(G1ConcurrentMark* cm) :
  64     _cm(cm) {}
  65 
  66   void do_void(){
  67     _cm->checkpointRootsFinal(false); // !clear_all_soft_refs
  68   }
  69 };
  70 
  71 class CMCleanUp: public VoidClosure {
  72   G1ConcurrentMark* _cm;
  73 public:
  74 
  75   CMCleanUp(G1ConcurrentMark* cm) :
  76     _cm(cm) {}
  77 
  78   void do_void(){
  79     _cm->cleanup();
  80   }
  81 };
  82 
  83 // Marking pauses can be scheduled flexibly, so we might delay marking to meet MMU.
  84 void ConcurrentMarkThread::delay_to_keep_mmu(G1CollectorPolicy* g1_policy, bool remark) {
  85   if (g1_policy->adaptive_young_list_length()) {
  86     double now = os::elapsedTime();
  87     double prediction_ms = remark ? g1_policy->predict_remark_time_ms()
  88                                   : g1_policy->predict_cleanup_time_ms();
  89     G1MMUTracker *mmu_tracker = g1_policy->mmu_tracker();
  90     jlong sleep_time_ms = mmu_tracker->when_ms(now, prediction_ms);
  91     os::sleep(this, sleep_time_ms, false);
  92   }
  93 }
  94 
  95 class GCConcPhaseTimer : StackObj {
  96   G1ConcurrentMark* _cm;
  97 
  98  public:
  99   GCConcPhaseTimer(G1ConcurrentMark* cm, const char* title) : _cm(cm) {
 100     _cm->register_concurrent_phase_start(title);
 101   }
 102 
 103   ~GCConcPhaseTimer() {
 104     _cm->register_concurrent_phase_end();
 105   }
 106 };
 107 
 108 void ConcurrentMarkThread::run_service() {
 109   _vtime_start = os::elapsedVTime();
 110 
 111   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 112   G1CollectorPolicy* g1_policy = g1h->g1_policy();
 113 
 114   while (!should_terminate()) {
 115     // wait until started is set.
 116     sleepBeforeNextCycle();
 117     if (should_terminate()) {
 118       _cm->root_regions()->cancel_scan();
 119       break;
 120     }
 121 
 122     assert(GCId::current() != GCId::undefined(), "GC id should have been set up by the initial mark GC.");
 123     {
 124       ResourceMark rm;
 125       HandleMark   hm;
 126       double cycle_start = os::elapsedVTime();
 127 
 128       {
 129         GCConcPhaseTimer(_cm, "Concurrent Clearing of Claimed Marks");
 130         ClassLoaderDataGraph::clear_claimed_marks();
 131       }
 132 
 133       // We have to ensure that we finish scanning the root regions
 134       // before the next GC takes place. To ensure this we have to
 135       // make sure that we do not join the STS until the root regions
 136       // have been scanned. If we did then it's possible that a
 137       // subsequent GC could block us from joining the STS and proceed
 138       // without the root regions have been scanned which would be a
 139       // correctness issue.
 140 
 141       {
 142         GCConcPhaseTimer(_cm, "Concurrent Root Region Scanning");
 143         _cm->scanRootRegions();
 144       }
 145 
 146       // It would be nice to use the GCTraceConcTime class here but
 147       // the "end" logging is inside the loop and not at the end of
 148       // a scope. Mimicking the same log output as GCTraceConcTime instead.
 149       jlong mark_start = os::elapsed_counter();
 150       log_info(gc)("Concurrent Mark (%.3fs)", TimeHelper::counter_to_seconds(mark_start));
 151 
 152       int iter = 0;
 153       do {
 154         iter++;
 155         if (!cm()->has_aborted()) {
 156           GCConcPhaseTimer(_cm, "Concurrent Mark");
 157           _cm->markFromRoots();
 158         }
 159 
 160         double mark_end_time = os::elapsedVTime();
 161         jlong mark_end = os::elapsed_counter();
 162         _vtime_mark_accum += (mark_end_time - cycle_start);
 163         if (!cm()->has_aborted()) {
 164           delay_to_keep_mmu(g1_policy, true /* remark */);
 165           log_info(gc)("Concurrent Mark (%.3fs, %.3fs) %.3fms",
 166                        TimeHelper::counter_to_seconds(mark_start),
 167                        TimeHelper::counter_to_seconds(mark_end),
 168                        TimeHelper::counter_to_millis(mark_end - mark_start));
 169 
 170           CMCheckpointRootsFinalClosure final_cl(_cm);
 171           VM_CGC_Operation op(&final_cl, "Pause Remark", true /* needs_pll */);
 172           VMThread::execute(&op);
 173         }
 174         if (cm()->restart_for_overflow()) {
 175           log_debug(gc)("Restarting conc marking because of MS overflow in remark (restart #%d).", iter);
 176           log_info(gc)("Concurrent Mark restart for overflow");
 177         }
 178       } while (cm()->restart_for_overflow());
 179 
 180       double end_time = os::elapsedVTime();
 181       // Update the total virtual time before doing this, since it will try
 182       // to measure it to get the vtime for this marking.  We purposely
 183       // neglect the presumably-short "completeCleanup" phase here.
 184       _vtime_accum = (end_time - _vtime_start);
 185 
 186       if (!cm()->has_aborted()) {
 187         delay_to_keep_mmu(g1_policy, false /* cleanup */);
 188 
 189         CMCleanUp cl_cl(_cm);
 190         VM_CGC_Operation op(&cl_cl, "Pause Cleanup", false /* needs_pll */);
 191         VMThread::execute(&op);
 192       } else {
 193         // We don't want to update the marking status if a GC pause
 194         // is already underway.
 195         SuspendibleThreadSetJoiner sts_join;
 196         g1h->collector_state()->set_mark_in_progress(false);
 197       }
 198 
 199       // Check if cleanup set the free_regions_coming flag. If it
 200       // hasn't, we can just skip the next step.
 201       if (g1h->free_regions_coming()) {
 202         // The following will finish freeing up any regions that we
 203         // found to be empty during cleanup. We'll do this part
 204         // without joining the suspendible set. If an evacuation pause
 205         // takes place, then we would carry on freeing regions in
 206         // case they are needed by the pause. If a Full GC takes
 207         // place, it would wait for us to process the regions
 208         // reclaimed by cleanup.
 209 
 210         GCTraceConcTime(Info, gc) tt("Concurrent Cleanup");
 211         GCConcPhaseTimer(_cm, "Concurrent Cleanup");
 212 
 213         // Now do the concurrent cleanup operation.
 214         _cm->completeCleanup();
 215 
 216         // Notify anyone who's waiting that there are no more free
 217         // regions coming. We have to do this before we join the STS
 218         // (in fact, we should not attempt to join the STS in the
 219         // interval between finishing the cleanup pause and clearing
 220         // the free_regions_coming flag) otherwise we might deadlock:
 221         // a GC worker could be blocked waiting for the notification
 222         // whereas this thread will be blocked for the pause to finish
 223         // while it's trying to join the STS, which is conditional on
 224         // the GC workers finishing.
 225         g1h->reset_free_regions_coming();
 226       }
 227       guarantee(cm()->cleanup_list_is_empty(),
 228                 "at this point there should be no regions on the cleanup list");
 229 
 230       // There is a tricky race before recording that the concurrent
 231       // cleanup has completed and a potential Full GC starting around
 232       // the same time. We want to make sure that the Full GC calls
 233       // abort() on concurrent mark after
 234       // record_concurrent_mark_cleanup_completed(), since abort() is
 235       // the method that will reset the concurrent mark state. If we
 236       // end up calling record_concurrent_mark_cleanup_completed()
 237       // after abort() then we might incorrectly undo some of the work
 238       // abort() did. Checking the has_aborted() flag after joining
 239       // the STS allows the correct ordering of the two methods. There
 240       // are two scenarios:
 241       //
 242       // a) If we reach here before the Full GC, the fact that we have
 243       // joined the STS means that the Full GC cannot start until we
 244       // leave the STS, so record_concurrent_mark_cleanup_completed()
 245       // will complete before abort() is called.
 246       //
 247       // b) If we reach here during the Full GC, we'll be held up from
 248       // joining the STS until the Full GC is done, which means that
 249       // abort() will have completed and has_aborted() will return
 250       // true to prevent us from calling
 251       // record_concurrent_mark_cleanup_completed() (and, in fact, it's
 252       // not needed any more as the concurrent mark state has been
 253       // already reset).
 254       {
 255         SuspendibleThreadSetJoiner sts_join;
 256         if (!cm()->has_aborted()) {
 257           g1_policy->record_concurrent_mark_cleanup_completed();
 258         } else {
 259           log_info(gc)("Concurrent Mark abort");
 260         }
 261       }
 262 
 263       // We now want to allow clearing of the marking bitmap to be
 264       // suspended by a collection pause.
 265       // We may have aborted just before the remark. Do not bother clearing the
 266       // bitmap then, as it has been done during mark abort.
 267       if (!cm()->has_aborted()) {
 268         GCConcPhaseTimer(_cm, "Concurrent Bitmap Clearing");
 269         _cm->clearNextBitmap();
 270       } else {
 271         assert(!G1VerifyBitmaps || _cm->nextMarkBitmapIsClear(), "Next mark bitmap must be clear");
 272       }
 273     }
 274 
 275     // Update the number of full collections that have been
 276     // completed. This will also notify the FullGCCount_lock in case a
 277     // Java thread is waiting for a full GC to happen (e.g., it
 278     // called System.gc() with +ExplicitGCInvokesConcurrent).
 279     {
 280       SuspendibleThreadSetJoiner sts_join;
 281       g1h->increment_old_marking_cycles_completed(true /* concurrent */);
 282       g1h->register_concurrent_cycle_end();
 283     }
 284   }
 285 }
 286 
 287 void ConcurrentMarkThread::stop_service() {
 288   MutexLockerEx ml(CGC_lock, Mutex::_no_safepoint_check_flag);
 289   CGC_lock->notify_all();
 290 }
 291 
 292 void ConcurrentMarkThread::sleepBeforeNextCycle() {
 293   // We join here because we don't want to do the "shouldConcurrentMark()"
 294   // below while the world is otherwise stopped.
 295   assert(!in_progress(), "should have been cleared");
 296 
 297   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
 298   while (!started() && !should_terminate()) {
 299     CGC_lock->wait(Mutex::_no_safepoint_check_flag);
 300   }
 301 
 302   if (started()) {
 303     set_in_progress();
 304   }
 305 }
 306 
 307 // Note: As is the case with CMS - this method, although exported
 308 // by the ConcurrentMarkThread, which is a non-JavaThread, can only
 309 // be called by a JavaThread. Currently this is done at vm creation
 310 // time (post-vm-init) by the main/Primordial (Java)Thread.
 311 // XXX Consider changing this in the future to allow the CM thread
 312 // itself to create this thread?
 313 void ConcurrentMarkThread::makeSurrogateLockerThread(TRAPS) {
 314   assert(UseG1GC, "SLT thread needed only for concurrent GC");
 315   assert(THREAD->is_Java_thread(), "must be a Java thread");
 316   assert(_slt == NULL, "SLT already created");
 317   _slt = SurrogateLockerThread::make(THREAD);
 318 }