/* * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2014, Red Hat Inc. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_MacroAssembler.hpp" #include "c1/c1_Runtime1.hpp" #include "classfile/systemDictionary.hpp" #include "gc/shared/collectedHeap.hpp" #include "gc/shared/barrierSet.hpp" #include "gc/shared/barrierSetAssembler.hpp" #include "interpreter/interpreter.hpp" #include "oops/arrayOop.hpp" #include "oops/markWord.hpp" #include "runtime/basicLock.hpp" #include "runtime/biasedLocking.hpp" #include "runtime/os.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" void C1_MacroAssembler::float_cmp(bool is_float, int unordered_result, FloatRegister f0, FloatRegister f1, Register result) { Label done; if (is_float) { fcmps(f0, f1); } else { fcmpd(f0, f1); } if (unordered_result < 0) { // we want -1 for unordered or less than, 0 for equal and 1 for // greater than. cset(result, NE); // Not equal or unordered cneg(result, result, LT); // Less than or unordered } else { // we want -1 for less than, 0 for equal and 1 for unordered or // greater than. cset(result, NE); // Not equal or unordered cneg(result, result, LO); // Less than } } int C1_MacroAssembler::lock_object(Register hdr, Register obj, Register disp_hdr, Register scratch, Label& slow_case) { const int aligned_mask = BytesPerWord -1; const int hdr_offset = oopDesc::mark_offset_in_bytes(); assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different"); Label done; int null_check_offset = -1; verify_oop(obj); // save object being locked into the BasicObjectLock str(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes())); if (UseBiasedLocking) { assert(scratch != noreg, "should have scratch register at this point"); null_check_offset = biased_locking_enter(disp_hdr, obj, hdr, scratch, false, done, &slow_case); } else { null_check_offset = offset(); } // Load object header ldr(hdr, Address(obj, hdr_offset)); // and mark it as unlocked orr(hdr, hdr, markWord::unlocked_value); if (EnableValhalla && !UseBiasedLocking) { // Mask always_locked bit such that we go to the slow path if object is a value type andr(hdr, hdr, ~markWord::biased_lock_bit_in_place); } // save unlocked object header into the displaced header location on the stack str(hdr, Address(disp_hdr, 0)); // test if object header is still the same (i.e. unlocked), and if so, store the // displaced header address in the object header - if it is not the same, get the // object header instead lea(rscratch2, Address(obj, hdr_offset)); cmpxchgptr(hdr, disp_hdr, rscratch2, rscratch1, done, /*fallthough*/NULL); // if the object header was the same, we're done // if the object header was not the same, it is now in the hdr register // => test if it is a stack pointer into the same stack (recursive locking), i.e.: // // 1) (hdr & aligned_mask) == 0 // 2) sp <= hdr // 3) hdr <= sp + page_size // // these 3 tests can be done by evaluating the following expression: // // (hdr - sp) & (aligned_mask - page_size) // // assuming both the stack pointer and page_size have their least // significant 2 bits cleared and page_size is a power of 2 mov(rscratch1, sp); sub(hdr, hdr, rscratch1); ands(hdr, hdr, aligned_mask - os::vm_page_size()); // for recursive locking, the result is zero => save it in the displaced header // location (NULL in the displaced hdr location indicates recursive locking) str(hdr, Address(disp_hdr, 0)); // otherwise we don't care about the result and handle locking via runtime call cbnz(hdr, slow_case); // done bind(done); if (PrintBiasedLockingStatistics) { lea(rscratch2, ExternalAddress((address)BiasedLocking::fast_path_entry_count_addr())); addmw(Address(rscratch2, 0), 1, rscratch1); } return null_check_offset; } void C1_MacroAssembler::unlock_object(Register hdr, Register obj, Register disp_hdr, Label& slow_case) { const int aligned_mask = BytesPerWord -1; const int hdr_offset = oopDesc::mark_offset_in_bytes(); assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different"); Label done; if (UseBiasedLocking) { // load object ldr(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes())); biased_locking_exit(obj, hdr, done); } // load displaced header ldr(hdr, Address(disp_hdr, 0)); // if the loaded hdr is NULL we had recursive locking // if we had recursive locking, we are done cbz(hdr, done); if (!UseBiasedLocking) { // load object ldr(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes())); } verify_oop(obj); // test if object header is pointing to the displaced header, and if so, restore // the displaced header in the object - if the object header is not pointing to // the displaced header, get the object header instead // if the object header was not pointing to the displaced header, // we do unlocking via runtime call if (hdr_offset) { lea(rscratch1, Address(obj, hdr_offset)); cmpxchgptr(disp_hdr, hdr, rscratch1, rscratch2, done, &slow_case); } else { cmpxchgptr(disp_hdr, hdr, obj, rscratch2, done, &slow_case); } // done bind(done); } // Defines obj, preserves var_size_in_bytes void C1_MacroAssembler::try_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2, Label& slow_case) { if (UseTLAB) { tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); } else { eden_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case); } } void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register t1, Register t2) { assert_different_registers(obj, klass, len); if (UseBiasedLocking && !len->is_valid()) { assert_different_registers(obj, klass, len, t1, t2); ldr(t1, Address(klass, Klass::prototype_header_offset())); } else { // This assumes that all prototype bits fit in an int32_t mov(t1, (int32_t)(intptr_t)markWord::prototype().value()); } str(t1, Address(obj, oopDesc::mark_offset_in_bytes())); if (UseCompressedClassPointers) { // Take care not to kill klass encode_klass_not_null(t1, klass); strw(t1, Address(obj, oopDesc::klass_offset_in_bytes())); } else { str(klass, Address(obj, oopDesc::klass_offset_in_bytes())); } if (len->is_valid()) { strw(len, Address(obj, arrayOopDesc::length_offset_in_bytes())); } else if (UseCompressedClassPointers) { store_klass_gap(obj, zr); } } // preserves obj, destroys len_in_bytes void C1_MacroAssembler::initialize_body(Register obj, Register len_in_bytes, int hdr_size_in_bytes, Register t1) { assert(hdr_size_in_bytes >= 0, "header size must be positive or 0"); Label done; // len_in_bytes is positive and ptr sized subs(len_in_bytes, len_in_bytes, hdr_size_in_bytes); br(Assembler::EQ, done); // Preserve obj if (hdr_size_in_bytes) add(obj, obj, hdr_size_in_bytes); zero_memory(obj, len_in_bytes, t1); if (hdr_size_in_bytes) sub(obj, obj, hdr_size_in_bytes); bind(done); } void C1_MacroAssembler::allocate_object(Register obj, Register t1, Register t2, int header_size, int object_size, Register klass, Label& slow_case) { assert_different_registers(obj, t1, t2); // XXX really? assert(header_size >= 0 && object_size >= header_size, "illegal sizes"); try_allocate(obj, noreg, object_size * BytesPerWord, t1, t2, slow_case); initialize_object(obj, klass, noreg, object_size * HeapWordSize, t1, t2, UseTLAB); } void C1_MacroAssembler::initialize_object(Register obj, Register klass, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2, bool is_tlab_allocated) { assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "con_size_in_bytes is not multiple of alignment"); const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize; initialize_header(obj, klass, noreg, t1, t2); if (!(UseTLAB && ZeroTLAB && is_tlab_allocated)) { // clear rest of allocated space const Register index = t2; const int threshold = 16 * BytesPerWord; // approximate break even point for code size (see comments below) if (var_size_in_bytes != noreg) { mov(index, var_size_in_bytes); initialize_body(obj, index, hdr_size_in_bytes, t1); } else if (con_size_in_bytes <= threshold) { // use explicit null stores int i = hdr_size_in_bytes; if (i < con_size_in_bytes && (con_size_in_bytes % (2 * BytesPerWord))) { str(zr, Address(obj, i)); i += BytesPerWord; } for (; i < con_size_in_bytes; i += 2 * BytesPerWord) stp(zr, zr, Address(obj, i)); } else if (con_size_in_bytes > hdr_size_in_bytes) { block_comment("zero memory"); // use loop to null out the fields int words = (con_size_in_bytes - hdr_size_in_bytes) / BytesPerWord; mov(index, words / 8); const int unroll = 8; // Number of str(zr) instructions we'll unroll int remainder = words % unroll; lea(rscratch1, Address(obj, hdr_size_in_bytes + remainder * BytesPerWord)); Label entry_point, loop; b(entry_point); bind(loop); sub(index, index, 1); for (int i = -unroll; i < 0; i++) { if (-i == remainder) bind(entry_point); str(zr, Address(rscratch1, i * wordSize)); } if (remainder == 0) bind(entry_point); add(rscratch1, rscratch1, unroll * wordSize); cbnz(index, loop); } } membar(StoreStore); if (CURRENT_ENV->dtrace_alloc_probes()) { assert(obj == r0, "must be"); far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id))); } verify_oop(obj); } void C1_MacroAssembler::allocate_array(Register obj, Register len, Register t1, Register t2, int header_size, int f, Register klass, Label& slow_case) { assert_different_registers(obj, len, t1, t2, klass); // determine alignment mask assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work"); // check for negative or excessive length mov(rscratch1, (int32_t)max_array_allocation_length); cmp(len, rscratch1); br(Assembler::HS, slow_case); const Register arr_size = t2; // okay to be the same // align object end mov(arr_size, (int32_t)header_size * BytesPerWord + MinObjAlignmentInBytesMask); add(arr_size, arr_size, len, ext::uxtw, f); andr(arr_size, arr_size, ~MinObjAlignmentInBytesMask); try_allocate(obj, arr_size, 0, t1, t2, slow_case); initialize_header(obj, klass, len, t1, t2); // clear rest of allocated space const Register len_zero = len; initialize_body(obj, arr_size, header_size * BytesPerWord, len_zero); membar(StoreStore); if (CURRENT_ENV->dtrace_alloc_probes()) { assert(obj == r0, "must be"); far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id))); } verify_oop(obj); } void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache) { verify_oop(receiver); // explicit NULL check not needed since load from [klass_offset] causes a trap // check against inline cache assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()), "must add explicit null check"); cmp_klass(receiver, iCache, rscratch1); } void C1_MacroAssembler::build_frame(int framesize, int bang_size_in_bytes, bool needs_stack_repair, Label* verified_value_entry_label) { assert(bang_size_in_bytes >= framesize, "stack bang size incorrect"); // Make sure there is enough stack space for this method's activation. // Note that we do this before doing an enter(). generate_stack_overflow_check(bang_size_in_bytes); guarantee(needs_stack_repair == false, "Stack repair should not be true"); if (verified_value_entry_label != NULL) { bind(*verified_value_entry_label); } MacroAssembler::build_frame(framesize + 2 * wordSize); } void C1_MacroAssembler::remove_frame(int framesize, bool needs_stack_repair) { guarantee(needs_stack_repair == false, "Stack repair should not be true"); MacroAssembler::remove_frame(framesize + 2 * wordSize); } void C1_MacroAssembler::verified_value_entry() { if (C1Breakpoint || VerifyFPU || !UseStackBanging) { // Verified Entry first instruction should be 5 bytes long for correct // patching by patch_verified_entry(). // // C1Breakpoint and VerifyFPU have one byte first instruction. // Also first instruction will be one byte "push(rbp)" if stack banging // code is not generated (see build_frame() above). // For all these cases generate long instruction first. nop(); } nop(); // build frame // verify_FPU(0, "method_entry"); } int C1_MacroAssembler::scalarized_entry(const CompiledEntrySignature *ces, int frame_size_in_bytes, int bang_size_in_bytes, Label& verified_value_entry_label, bool is_value_ro_entry) { // This function required to support for ValueTypePassFieldsAsArgs if (C1Breakpoint || VerifyFPU || !UseStackBanging) { // Verified Entry first instruction should be 5 bytes long for correct // patching by patch_verified_entry(). // // C1Breakpoint and VerifyFPU have one byte first instruction. // Also first instruction will be one byte "push(rbp)" if stack banging // code is not generated (see build_frame() above). // For all these cases generate long instruction first. nop(); } nop(); // verify_FPU(0, "method_entry"); assert(ValueTypePassFieldsAsArgs, "sanity"); GrowableArray* sig = &ces->sig(); GrowableArray* sig_cc = is_value_ro_entry ? &ces->sig_cc_ro() : &ces->sig_cc(); VMRegPair* regs = ces->regs(); VMRegPair* regs_cc = is_value_ro_entry ? ces->regs_cc_ro() : ces->regs_cc(); int args_on_stack = ces->args_on_stack(); int args_on_stack_cc = is_value_ro_entry ? ces->args_on_stack_cc_ro() : ces->args_on_stack_cc(); assert(sig->length() <= sig_cc->length(), "Zero-sized value class not allowed!"); BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, sig_cc->length()); int args_passed = sig->length(); int args_passed_cc = SigEntry::fill_sig_bt(sig_cc, sig_bt); int extra_stack_offset = wordSize; // tos is return address. // Create a temp frame so we can call into runtime. It must be properly set up to accomodate GC. int sp_inc = (args_on_stack - args_on_stack_cc) * VMRegImpl::stack_slot_size; if (sp_inc > 0) { sp_inc = align_up(sp_inc, StackAlignmentInBytes); sub(sp, sp, sp_inc); } else { sp_inc = 0; } sub(sp, sp, frame_size_in_bytes); if (sp_inc > 0) { int real_frame_size = frame_size_in_bytes + + wordSize // pushed rbp + wordSize // returned address pushed by the stack extension code + sp_inc; // stack extension mov(rscratch1, real_frame_size); str(rscratch1, Address(sp, frame_size_in_bytes - wordSize)); } // FIXME -- call runtime only if we cannot in-line allocate all the incoming value args. mov(r1, (intptr_t) ces->method()); if (is_value_ro_entry) { far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::buffer_value_args_no_receiver_id))); } else { far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::buffer_value_args_id))); } int rt_call_offset = offset(); // Remove the temp frame add(sp, sp, frame_size_in_bytes); int n = shuffle_value_args(true, is_value_ro_entry, extra_stack_offset, sig_bt, sig_cc, args_passed_cc, args_on_stack_cc, regs_cc, // from args_passed, args_on_stack, regs); // to assert(sp_inc == n, "must be"); if (sp_inc != 0) { // Do the stack banging here, and skip over the stack repair code in the // verified_value_entry (which has a different real_frame_size). assert(sp_inc > 0, "stack should not shrink"); generate_stack_overflow_check(bang_size_in_bytes); decrement(sp, frame_size_in_bytes); } b(verified_value_entry_label); return rt_call_offset; } void C1_MacroAssembler::load_parameter(int offset_in_words, Register reg) { // rbp, + 0: link // + 1: return address // + 2: argument with offset 0 // + 3: argument with offset 1 // + 4: ... ldr(reg, Address(rfp, (offset_in_words + 2) * BytesPerWord)); } #ifndef PRODUCT void C1_MacroAssembler::verify_stack_oop(int stack_offset) { if (!VerifyOops) return; verify_oop_addr(Address(sp, stack_offset), "oop"); } void C1_MacroAssembler::verify_not_null_oop(Register r) { if (!VerifyOops) return; Label not_null; cbnz(r, not_null); stop("non-null oop required"); bind(not_null); verify_oop(r); } void C1_MacroAssembler::invalidate_registers(bool inv_r0, bool inv_r19, bool inv_r2, bool inv_r3, bool inv_r4, bool inv_r5) { #ifdef ASSERT static int nn; if (inv_r0) mov(r0, 0xDEAD); if (inv_r19) mov(r19, 0xDEAD); if (inv_r2) mov(r2, nn++); if (inv_r3) mov(r3, 0xDEAD); if (inv_r4) mov(r4, 0xDEAD); if (inv_r5) mov(r5, 0xDEAD); #endif } #endif // ifndef PRODUCT