1 /* 2 * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_FrameMap.hpp" 30 #include "c1/c1_Instruction.hpp" 31 #include "c1/c1_LIRAssembler.hpp" 32 #include "c1/c1_LIRGenerator.hpp" 33 #include "c1/c1_Runtime1.hpp" 34 #include "c1/c1_ValueStack.hpp" 35 #include "ci/ciArray.hpp" 36 #include "ci/ciObjArrayKlass.hpp" 37 #include "ci/ciTypeArrayKlass.hpp" 38 #include "ci/ciValueKlass.hpp" 39 #include "runtime/sharedRuntime.hpp" 40 #include "runtime/stubRoutines.hpp" 41 #include "vmreg_aarch64.inline.hpp" 42 43 #ifdef ASSERT 44 #define __ gen()->lir(__FILE__, __LINE__)-> 45 #else 46 #define __ gen()->lir()-> 47 #endif 48 49 // Item will be loaded into a byte register; Intel only 50 void LIRItem::load_byte_item() { 51 load_item(); 52 } 53 54 55 void LIRItem::load_nonconstant() { 56 LIR_Opr r = value()->operand(); 57 if (r->is_constant()) { 58 _result = r; 59 } else { 60 load_item(); 61 } 62 } 63 64 //-------------------------------------------------------------- 65 // LIRGenerator 66 //-------------------------------------------------------------- 67 68 69 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r0_oop_opr; } 70 LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::r3_opr; } 71 LIR_Opr LIRGenerator::divInOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 72 LIR_Opr LIRGenerator::divOutOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 73 LIR_Opr LIRGenerator::remOutOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 74 LIR_Opr LIRGenerator::shiftCountOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 75 LIR_Opr LIRGenerator::syncLockOpr() { return new_register(T_INT); } 76 LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::r0_opr; } 77 LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; } 78 79 80 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) { 81 LIR_Opr opr; 82 switch (type->tag()) { 83 case intTag: opr = FrameMap::r0_opr; break; 84 case objectTag: opr = FrameMap::r0_oop_opr; break; 85 case longTag: opr = FrameMap::long0_opr; break; 86 case floatTag: opr = FrameMap::fpu0_float_opr; break; 87 case doubleTag: opr = FrameMap::fpu0_double_opr; break; 88 89 case addressTag: 90 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; 91 } 92 93 assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch"); 94 return opr; 95 } 96 97 98 LIR_Opr LIRGenerator::rlock_byte(BasicType type) { 99 LIR_Opr reg = new_register(T_INT); 100 set_vreg_flag(reg, LIRGenerator::byte_reg); 101 return reg; 102 } 103 104 105 //--------- loading items into registers -------------------------------- 106 107 108 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const { 109 if (v->type()->as_IntConstant() != NULL) { 110 return v->type()->as_IntConstant()->value() == 0L; 111 } else if (v->type()->as_LongConstant() != NULL) { 112 return v->type()->as_LongConstant()->value() == 0L; 113 } else if (v->type()->as_ObjectConstant() != NULL) { 114 return v->type()->as_ObjectConstant()->value()->is_null_object(); 115 } else { 116 return false; 117 } 118 } 119 120 bool LIRGenerator::can_inline_as_constant(Value v) const { 121 // FIXME: Just a guess 122 if (v->type()->as_IntConstant() != NULL) { 123 return Assembler::operand_valid_for_add_sub_immediate(v->type()->as_IntConstant()->value()); 124 } else if (v->type()->as_LongConstant() != NULL) { 125 return v->type()->as_LongConstant()->value() == 0L; 126 } else if (v->type()->as_ObjectConstant() != NULL) { 127 return v->type()->as_ObjectConstant()->value()->is_null_object(); 128 } else { 129 return false; 130 } 131 } 132 133 134 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { return false; } 135 136 137 LIR_Opr LIRGenerator::safepoint_poll_register() { 138 return LIR_OprFact::illegalOpr; 139 } 140 141 142 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index, 143 int shift, int disp, BasicType type) { 144 assert(base->is_register(), "must be"); 145 intx large_disp = disp; 146 147 // accumulate fixed displacements 148 if (index->is_constant()) { 149 LIR_Const *constant = index->as_constant_ptr(); 150 if (constant->type() == T_INT) { 151 large_disp += index->as_jint() << shift; 152 } else { 153 assert(constant->type() == T_LONG, "should be"); 154 jlong c = index->as_jlong() << shift; 155 if ((jlong)((jint)c) == c) { 156 large_disp += c; 157 index = LIR_OprFact::illegalOpr; 158 } else { 159 LIR_Opr tmp = new_register(T_LONG); 160 __ move(index, tmp); 161 index = tmp; 162 // apply shift and displacement below 163 } 164 } 165 } 166 167 if (index->is_register()) { 168 // apply the shift and accumulate the displacement 169 if (shift > 0) { 170 LIR_Opr tmp = new_pointer_register(); 171 __ shift_left(index, shift, tmp); 172 index = tmp; 173 } 174 if (large_disp != 0) { 175 LIR_Opr tmp = new_pointer_register(); 176 if (Assembler::operand_valid_for_add_sub_immediate(large_disp)) { 177 __ add(tmp, tmp, LIR_OprFact::intptrConst(large_disp)); 178 index = tmp; 179 } else { 180 __ move(tmp, LIR_OprFact::intptrConst(large_disp)); 181 __ add(tmp, index, tmp); 182 index = tmp; 183 } 184 large_disp = 0; 185 } 186 } else if (large_disp != 0 && !Address::offset_ok_for_immed(large_disp, shift)) { 187 // index is illegal so replace it with the displacement loaded into a register 188 index = new_pointer_register(); 189 __ move(LIR_OprFact::intptrConst(large_disp), index); 190 large_disp = 0; 191 } 192 193 // at this point we either have base + index or base + displacement 194 if (large_disp == 0) { 195 return new LIR_Address(base, index, type); 196 } else { 197 assert(Address::offset_ok_for_immed(large_disp, 0), "must be"); 198 return new LIR_Address(base, large_disp, type); 199 } 200 } 201 202 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, 203 BasicType type) { 204 int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type); 205 int elem_size = type2aelembytes(type); 206 int shift = exact_log2(elem_size); 207 208 LIR_Address* addr; 209 if (index_opr->is_constant()) { 210 addr = new LIR_Address(array_opr, 211 offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type); 212 } else { 213 if (offset_in_bytes) { 214 LIR_Opr tmp = new_pointer_register(); 215 __ add(array_opr, LIR_OprFact::intConst(offset_in_bytes), tmp); 216 array_opr = tmp; 217 offset_in_bytes = 0; 218 } 219 addr = new LIR_Address(array_opr, 220 index_opr, 221 LIR_Address::scale(type), 222 offset_in_bytes, type); 223 } 224 return addr; 225 } 226 227 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) { 228 LIR_Opr r; 229 if (type == T_LONG) { 230 r = LIR_OprFact::longConst(x); 231 if (!Assembler::operand_valid_for_logical_immediate(false, x)) { 232 LIR_Opr tmp = new_register(type); 233 __ move(r, tmp); 234 return tmp; 235 } 236 } else if (type == T_INT) { 237 r = LIR_OprFact::intConst(x); 238 if (!Assembler::operand_valid_for_logical_immediate(true, x)) { 239 // This is all rather nasty. We don't know whether our constant 240 // is required for a logical or an arithmetic operation, wo we 241 // don't know what the range of valid values is!! 242 LIR_Opr tmp = new_register(type); 243 __ move(r, tmp); 244 return tmp; 245 } 246 } else { 247 ShouldNotReachHere(); 248 r = NULL; // unreachable 249 } 250 return r; 251 } 252 253 254 255 void LIRGenerator::increment_counter(address counter, BasicType type, int step) { 256 LIR_Opr pointer = new_pointer_register(); 257 __ move(LIR_OprFact::intptrConst(counter), pointer); 258 LIR_Address* addr = new LIR_Address(pointer, type); 259 increment_counter(addr, step); 260 } 261 262 263 void LIRGenerator::increment_counter(LIR_Address* addr, int step) { 264 LIR_Opr imm = NULL; 265 switch(addr->type()) { 266 case T_INT: 267 imm = LIR_OprFact::intConst(step); 268 break; 269 case T_LONG: 270 imm = LIR_OprFact::longConst(step); 271 break; 272 default: 273 ShouldNotReachHere(); 274 } 275 LIR_Opr reg = new_register(addr->type()); 276 __ load(addr, reg); 277 __ add(reg, imm, reg); 278 __ store(reg, addr); 279 } 280 281 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) { 282 LIR_Opr reg = new_register(T_INT); 283 __ load(generate_address(base, disp, T_INT), reg, info); 284 __ cmp(condition, reg, LIR_OprFact::intConst(c)); 285 } 286 287 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) { 288 LIR_Opr reg1 = new_register(T_INT); 289 __ load(generate_address(base, disp, type), reg1, info); 290 __ cmp(condition, reg, reg1); 291 } 292 293 294 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) { 295 296 if (is_power_of_2(c - 1)) { 297 __ shift_left(left, exact_log2(c - 1), tmp); 298 __ add(tmp, left, result); 299 return true; 300 } else if (is_power_of_2(c + 1)) { 301 __ shift_left(left, exact_log2(c + 1), tmp); 302 __ sub(tmp, left, result); 303 return true; 304 } else { 305 return false; 306 } 307 } 308 309 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) { 310 BasicType type = item->type(); 311 __ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type)); 312 } 313 314 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) { 315 LIR_Opr tmp1 = new_register(objectType); 316 LIR_Opr tmp2 = new_register(objectType); 317 LIR_Opr tmp3 = new_register(objectType); 318 __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci); 319 } 320 321 void LIRGenerator::flattened_array_store_check(LIR_Opr value, ciKlass* element_klass, CodeEmitInfo* store_check_info) { 322 LIR_Opr tmp1 = new_register(T_METADATA); 323 LIR_Opr tmp2 = new_register(T_METADATA); 324 325 __ metadata2reg(element_klass->constant_encoding(), tmp2); 326 __ flattened_store_check(value, element_klass, tmp1, tmp2, store_check_info); 327 } 328 329 330 //---------------------------------------------------------------------- 331 // visitor functions 332 //---------------------------------------------------------------------- 333 334 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) { 335 assert(x->is_pinned(),""); 336 LIRItem obj(x->obj(), this); 337 obj.load_item(); 338 339 set_no_result(x); 340 341 // "lock" stores the address of the monitor stack slot, so this is not an oop 342 LIR_Opr lock = new_register(T_INT); 343 // Need a scratch register for biased locking 344 LIR_Opr scratch = LIR_OprFact::illegalOpr; 345 if (UseBiasedLocking || x->maybe_valuetype()) { 346 scratch = new_register(T_INT); 347 } 348 349 CodeEmitInfo* info_for_exception = NULL; 350 if (x->needs_null_check()) { 351 info_for_exception = state_for(x); 352 } 353 354 CodeStub* throw_imse_stub = 355 x->maybe_valuetype() ? 356 new SimpleExceptionStub(Runtime1::throw_illegal_monitor_state_exception_id, LIR_OprFact::illegalOpr, state_for(x)) : 357 NULL; 358 359 // this CodeEmitInfo must not have the xhandlers because here the 360 // object is already locked (xhandlers expect object to be unlocked) 361 CodeEmitInfo* info = state_for(x, x->state(), true); 362 monitor_enter(obj.result(), lock, syncTempOpr(), scratch, 363 x->monitor_no(), info_for_exception, info, throw_imse_stub); 364 } 365 366 367 void LIRGenerator::do_MonitorExit(MonitorExit* x) { 368 assert(x->is_pinned(),""); 369 370 LIRItem obj(x->obj(), this); 371 obj.dont_load_item(); 372 373 LIR_Opr lock = new_register(T_INT); 374 LIR_Opr obj_temp = new_register(T_INT); 375 set_no_result(x); 376 monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no()); 377 } 378 379 380 void LIRGenerator::do_NegateOp(NegateOp* x) { 381 382 LIRItem from(x->x(), this); 383 from.load_item(); 384 LIR_Opr result = rlock_result(x); 385 __ negate (from.result(), result); 386 387 } 388 389 // for _fadd, _fmul, _fsub, _fdiv, _frem 390 // _dadd, _dmul, _dsub, _ddiv, _drem 391 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) { 392 393 if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) { 394 // float remainder is implemented as a direct call into the runtime 395 LIRItem right(x->x(), this); 396 LIRItem left(x->y(), this); 397 398 BasicTypeList signature(2); 399 if (x->op() == Bytecodes::_frem) { 400 signature.append(T_FLOAT); 401 signature.append(T_FLOAT); 402 } else { 403 signature.append(T_DOUBLE); 404 signature.append(T_DOUBLE); 405 } 406 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 407 408 const LIR_Opr result_reg = result_register_for(x->type()); 409 left.load_item_force(cc->at(1)); 410 right.load_item(); 411 412 __ move(right.result(), cc->at(0)); 413 414 address entry; 415 if (x->op() == Bytecodes::_frem) { 416 entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem); 417 } else { 418 entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem); 419 } 420 421 LIR_Opr result = rlock_result(x); 422 __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args()); 423 __ move(result_reg, result); 424 425 return; 426 } 427 428 LIRItem left(x->x(), this); 429 LIRItem right(x->y(), this); 430 LIRItem* left_arg = &left; 431 LIRItem* right_arg = &right; 432 433 // Always load right hand side. 434 right.load_item(); 435 436 if (!left.is_register()) 437 left.load_item(); 438 439 LIR_Opr reg = rlock(x); 440 LIR_Opr tmp = LIR_OprFact::illegalOpr; 441 if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) { 442 tmp = new_register(T_DOUBLE); 443 } 444 445 arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), NULL); 446 447 set_result(x, round_item(reg)); 448 } 449 450 // for _ladd, _lmul, _lsub, _ldiv, _lrem 451 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) { 452 453 // missing test if instr is commutative and if we should swap 454 LIRItem left(x->x(), this); 455 LIRItem right(x->y(), this); 456 457 if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) { 458 459 left.load_item(); 460 bool need_zero_check = true; 461 if (right.is_constant()) { 462 jlong c = right.get_jlong_constant(); 463 // no need to do div-by-zero check if the divisor is a non-zero constant 464 if (c != 0) need_zero_check = false; 465 // do not load right if the divisor is a power-of-2 constant 466 if (c > 0 && is_power_of_2_long(c)) { 467 right.dont_load_item(); 468 } else { 469 right.load_item(); 470 } 471 } else { 472 right.load_item(); 473 } 474 if (need_zero_check) { 475 CodeEmitInfo* info = state_for(x); 476 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0)); 477 __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info)); 478 } 479 480 rlock_result(x); 481 switch (x->op()) { 482 case Bytecodes::_lrem: 483 __ rem (left.result(), right.result(), x->operand()); 484 break; 485 case Bytecodes::_ldiv: 486 __ div (left.result(), right.result(), x->operand()); 487 break; 488 default: 489 ShouldNotReachHere(); 490 break; 491 } 492 493 494 } else { 495 assert (x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, 496 "expect lmul, ladd or lsub"); 497 // add, sub, mul 498 left.load_item(); 499 if (! right.is_register()) { 500 if (x->op() == Bytecodes::_lmul 501 || ! right.is_constant() 502 || ! Assembler::operand_valid_for_add_sub_immediate(right.get_jlong_constant())) { 503 right.load_item(); 504 } else { // add, sub 505 assert (x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expect ladd or lsub"); 506 // don't load constants to save register 507 right.load_nonconstant(); 508 } 509 } 510 rlock_result(x); 511 arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL); 512 } 513 } 514 515 // for: _iadd, _imul, _isub, _idiv, _irem 516 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) { 517 518 // Test if instr is commutative and if we should swap 519 LIRItem left(x->x(), this); 520 LIRItem right(x->y(), this); 521 LIRItem* left_arg = &left; 522 LIRItem* right_arg = &right; 523 if (x->is_commutative() && left.is_stack() && right.is_register()) { 524 // swap them if left is real stack (or cached) and right is real register(not cached) 525 left_arg = &right; 526 right_arg = &left; 527 } 528 529 left_arg->load_item(); 530 531 // do not need to load right, as we can handle stack and constants 532 if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) { 533 534 rlock_result(x); 535 bool need_zero_check = true; 536 if (right.is_constant()) { 537 jint c = right.get_jint_constant(); 538 // no need to do div-by-zero check if the divisor is a non-zero constant 539 if (c != 0) need_zero_check = false; 540 // do not load right if the divisor is a power-of-2 constant 541 if (c > 0 && is_power_of_2(c)) { 542 right_arg->dont_load_item(); 543 } else { 544 right_arg->load_item(); 545 } 546 } else { 547 right_arg->load_item(); 548 } 549 if (need_zero_check) { 550 CodeEmitInfo* info = state_for(x); 551 __ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0)); 552 __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info)); 553 } 554 555 LIR_Opr ill = LIR_OprFact::illegalOpr; 556 if (x->op() == Bytecodes::_irem) { 557 __ irem(left_arg->result(), right_arg->result(), x->operand(), ill, NULL); 558 } else if (x->op() == Bytecodes::_idiv) { 559 __ idiv(left_arg->result(), right_arg->result(), x->operand(), ill, NULL); 560 } 561 562 } else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) { 563 if (right.is_constant() 564 && Assembler::operand_valid_for_add_sub_immediate(right.get_jint_constant())) { 565 right.load_nonconstant(); 566 } else { 567 right.load_item(); 568 } 569 rlock_result(x); 570 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr); 571 } else { 572 assert (x->op() == Bytecodes::_imul, "expect imul"); 573 if (right.is_constant()) { 574 jint c = right.get_jint_constant(); 575 if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) { 576 right_arg->dont_load_item(); 577 } else { 578 // Cannot use constant op. 579 right_arg->load_item(); 580 } 581 } else { 582 right.load_item(); 583 } 584 rlock_result(x); 585 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT)); 586 } 587 } 588 589 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) { 590 // when an operand with use count 1 is the left operand, then it is 591 // likely that no move for 2-operand-LIR-form is necessary 592 if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) { 593 x->swap_operands(); 594 } 595 596 ValueTag tag = x->type()->tag(); 597 assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters"); 598 switch (tag) { 599 case floatTag: 600 case doubleTag: do_ArithmeticOp_FPU(x); return; 601 case longTag: do_ArithmeticOp_Long(x); return; 602 case intTag: do_ArithmeticOp_Int(x); return; 603 default: ShouldNotReachHere(); return; 604 } 605 } 606 607 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr 608 void LIRGenerator::do_ShiftOp(ShiftOp* x) { 609 610 LIRItem left(x->x(), this); 611 LIRItem right(x->y(), this); 612 613 left.load_item(); 614 615 rlock_result(x); 616 if (right.is_constant()) { 617 right.dont_load_item(); 618 619 switch (x->op()) { 620 case Bytecodes::_ishl: { 621 int c = right.get_jint_constant() & 0x1f; 622 __ shift_left(left.result(), c, x->operand()); 623 break; 624 } 625 case Bytecodes::_ishr: { 626 int c = right.get_jint_constant() & 0x1f; 627 __ shift_right(left.result(), c, x->operand()); 628 break; 629 } 630 case Bytecodes::_iushr: { 631 int c = right.get_jint_constant() & 0x1f; 632 __ unsigned_shift_right(left.result(), c, x->operand()); 633 break; 634 } 635 case Bytecodes::_lshl: { 636 int c = right.get_jint_constant() & 0x3f; 637 __ shift_left(left.result(), c, x->operand()); 638 break; 639 } 640 case Bytecodes::_lshr: { 641 int c = right.get_jint_constant() & 0x3f; 642 __ shift_right(left.result(), c, x->operand()); 643 break; 644 } 645 case Bytecodes::_lushr: { 646 int c = right.get_jint_constant() & 0x3f; 647 __ unsigned_shift_right(left.result(), c, x->operand()); 648 break; 649 } 650 default: 651 ShouldNotReachHere(); 652 } 653 } else { 654 right.load_item(); 655 LIR_Opr tmp = new_register(T_INT); 656 switch (x->op()) { 657 case Bytecodes::_ishl: { 658 __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp); 659 __ shift_left(left.result(), tmp, x->operand(), tmp); 660 break; 661 } 662 case Bytecodes::_ishr: { 663 __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp); 664 __ shift_right(left.result(), tmp, x->operand(), tmp); 665 break; 666 } 667 case Bytecodes::_iushr: { 668 __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp); 669 __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp); 670 break; 671 } 672 case Bytecodes::_lshl: { 673 __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp); 674 __ shift_left(left.result(), tmp, x->operand(), tmp); 675 break; 676 } 677 case Bytecodes::_lshr: { 678 __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp); 679 __ shift_right(left.result(), tmp, x->operand(), tmp); 680 break; 681 } 682 case Bytecodes::_lushr: { 683 __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp); 684 __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp); 685 break; 686 } 687 default: 688 ShouldNotReachHere(); 689 } 690 } 691 } 692 693 // _iand, _land, _ior, _lor, _ixor, _lxor 694 void LIRGenerator::do_LogicOp(LogicOp* x) { 695 696 LIRItem left(x->x(), this); 697 LIRItem right(x->y(), this); 698 699 left.load_item(); 700 701 rlock_result(x); 702 if (right.is_constant() 703 && ((right.type()->tag() == intTag 704 && Assembler::operand_valid_for_logical_immediate(true, right.get_jint_constant())) 705 || (right.type()->tag() == longTag 706 && Assembler::operand_valid_for_logical_immediate(false, right.get_jlong_constant())))) { 707 right.dont_load_item(); 708 } else { 709 right.load_item(); 710 } 711 switch (x->op()) { 712 case Bytecodes::_iand: 713 case Bytecodes::_land: 714 __ logical_and(left.result(), right.result(), x->operand()); break; 715 case Bytecodes::_ior: 716 case Bytecodes::_lor: 717 __ logical_or (left.result(), right.result(), x->operand()); break; 718 case Bytecodes::_ixor: 719 case Bytecodes::_lxor: 720 __ logical_xor(left.result(), right.result(), x->operand()); break; 721 default: Unimplemented(); 722 } 723 } 724 725 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg 726 void LIRGenerator::do_CompareOp(CompareOp* x) { 727 LIRItem left(x->x(), this); 728 LIRItem right(x->y(), this); 729 ValueTag tag = x->x()->type()->tag(); 730 if (tag == longTag) { 731 left.set_destroys_register(); 732 } 733 left.load_item(); 734 right.load_item(); 735 LIR_Opr reg = rlock_result(x); 736 737 if (x->x()->type()->is_float_kind()) { 738 Bytecodes::Code code = x->op(); 739 __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl)); 740 } else if (x->x()->type()->tag() == longTag) { 741 __ lcmp2int(left.result(), right.result(), reg); 742 } else { 743 Unimplemented(); 744 } 745 } 746 747 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) { 748 LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience 749 new_value.load_item(); 750 cmp_value.load_item(); 751 LIR_Opr result = new_register(T_INT); 752 if (type == T_OBJECT || type == T_ARRAY) { 753 __ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT), result); 754 } else if (type == T_INT) { 755 __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); 756 } else if (type == T_LONG) { 757 __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); 758 } else { 759 ShouldNotReachHere(); 760 Unimplemented(); 761 } 762 __ logical_xor(FrameMap::r8_opr, LIR_OprFact::intConst(1), result); 763 return result; 764 } 765 766 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) { 767 bool is_oop = type == T_OBJECT || type == T_ARRAY; 768 LIR_Opr result = new_register(type); 769 value.load_item(); 770 assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type"); 771 LIR_Opr tmp = new_register(T_INT); 772 __ xchg(addr, value.result(), result, tmp); 773 return result; 774 } 775 776 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) { 777 LIR_Opr result = new_register(type); 778 value.load_item(); 779 assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type"); 780 LIR_Opr tmp = new_register(T_INT); 781 __ xadd(addr, value.result(), result, tmp); 782 return result; 783 } 784 785 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) { 786 assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type"); 787 if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog || 788 x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos || 789 x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan || 790 x->id() == vmIntrinsics::_dlog10) { 791 do_LibmIntrinsic(x); 792 return; 793 } 794 switch (x->id()) { 795 case vmIntrinsics::_dabs: 796 case vmIntrinsics::_dsqrt: { 797 assert(x->number_of_arguments() == 1, "wrong type"); 798 LIRItem value(x->argument_at(0), this); 799 value.load_item(); 800 LIR_Opr dst = rlock_result(x); 801 802 switch (x->id()) { 803 case vmIntrinsics::_dsqrt: { 804 __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr); 805 break; 806 } 807 case vmIntrinsics::_dabs: { 808 __ abs(value.result(), dst, LIR_OprFact::illegalOpr); 809 break; 810 } 811 default: 812 ShouldNotReachHere(); 813 } 814 break; 815 } 816 default: 817 ShouldNotReachHere(); 818 } 819 } 820 821 void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) { 822 LIRItem value(x->argument_at(0), this); 823 value.set_destroys_register(); 824 825 LIR_Opr calc_result = rlock_result(x); 826 LIR_Opr result_reg = result_register_for(x->type()); 827 828 CallingConvention* cc = NULL; 829 830 if (x->id() == vmIntrinsics::_dpow) { 831 LIRItem value1(x->argument_at(1), this); 832 833 value1.set_destroys_register(); 834 835 BasicTypeList signature(2); 836 signature.append(T_DOUBLE); 837 signature.append(T_DOUBLE); 838 cc = frame_map()->c_calling_convention(&signature); 839 value.load_item_force(cc->at(0)); 840 value1.load_item_force(cc->at(1)); 841 } else { 842 BasicTypeList signature(1); 843 signature.append(T_DOUBLE); 844 cc = frame_map()->c_calling_convention(&signature); 845 value.load_item_force(cc->at(0)); 846 } 847 848 switch (x->id()) { 849 case vmIntrinsics::_dexp: 850 if (StubRoutines::dexp() != NULL) { 851 __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args()); 852 } else { 853 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args()); 854 } 855 break; 856 case vmIntrinsics::_dlog: 857 if (StubRoutines::dlog() != NULL) { 858 __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args()); 859 } else { 860 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args()); 861 } 862 break; 863 case vmIntrinsics::_dlog10: 864 if (StubRoutines::dlog10() != NULL) { 865 __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args()); 866 } else { 867 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args()); 868 } 869 break; 870 case vmIntrinsics::_dpow: 871 if (StubRoutines::dpow() != NULL) { 872 __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args()); 873 } else { 874 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args()); 875 } 876 break; 877 case vmIntrinsics::_dsin: 878 if (StubRoutines::dsin() != NULL) { 879 __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args()); 880 } else { 881 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args()); 882 } 883 break; 884 case vmIntrinsics::_dcos: 885 if (StubRoutines::dcos() != NULL) { 886 __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args()); 887 } else { 888 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args()); 889 } 890 break; 891 case vmIntrinsics::_dtan: 892 if (StubRoutines::dtan() != NULL) { 893 __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args()); 894 } else { 895 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args()); 896 } 897 break; 898 default: ShouldNotReachHere(); 899 } 900 __ move(result_reg, calc_result); 901 } 902 903 904 void LIRGenerator::do_ArrayCopy(Intrinsic* x) { 905 assert(x->number_of_arguments() == 5, "wrong type"); 906 907 // Make all state_for calls early since they can emit code 908 CodeEmitInfo* info = state_for(x, x->state()); 909 910 LIRItem src(x->argument_at(0), this); 911 LIRItem src_pos(x->argument_at(1), this); 912 LIRItem dst(x->argument_at(2), this); 913 LIRItem dst_pos(x->argument_at(3), this); 914 LIRItem length(x->argument_at(4), this); 915 916 // operands for arraycopy must use fixed registers, otherwise 917 // LinearScan will fail allocation (because arraycopy always needs a 918 // call) 919 920 // The java calling convention will give us enough registers 921 // so that on the stub side the args will be perfect already. 922 // On the other slow/special case side we call C and the arg 923 // positions are not similar enough to pick one as the best. 924 // Also because the java calling convention is a "shifted" version 925 // of the C convention we can process the java args trivially into C 926 // args without worry of overwriting during the xfer 927 928 src.load_item_force (FrameMap::as_oop_opr(j_rarg0)); 929 src_pos.load_item_force (FrameMap::as_opr(j_rarg1)); 930 dst.load_item_force (FrameMap::as_oop_opr(j_rarg2)); 931 dst_pos.load_item_force (FrameMap::as_opr(j_rarg3)); 932 length.load_item_force (FrameMap::as_opr(j_rarg4)); 933 934 LIR_Opr tmp = FrameMap::as_opr(j_rarg5); 935 936 set_no_result(x); 937 938 int flags; 939 ciArrayKlass* expected_type; 940 arraycopy_helper(x, &flags, &expected_type); 941 942 __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint 943 } 944 945 void LIRGenerator::do_update_CRC32(Intrinsic* x) { 946 assert(UseCRC32Intrinsics, "why are we here?"); 947 // Make all state_for calls early since they can emit code 948 LIR_Opr result = rlock_result(x); 949 int flags = 0; 950 switch (x->id()) { 951 case vmIntrinsics::_updateCRC32: { 952 LIRItem crc(x->argument_at(0), this); 953 LIRItem val(x->argument_at(1), this); 954 // val is destroyed by update_crc32 955 val.set_destroys_register(); 956 crc.load_item(); 957 val.load_item(); 958 __ update_crc32(crc.result(), val.result(), result); 959 break; 960 } 961 case vmIntrinsics::_updateBytesCRC32: 962 case vmIntrinsics::_updateByteBufferCRC32: { 963 bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32); 964 965 LIRItem crc(x->argument_at(0), this); 966 LIRItem buf(x->argument_at(1), this); 967 LIRItem off(x->argument_at(2), this); 968 LIRItem len(x->argument_at(3), this); 969 buf.load_item(); 970 off.load_nonconstant(); 971 972 LIR_Opr index = off.result(); 973 int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0; 974 if(off.result()->is_constant()) { 975 index = LIR_OprFact::illegalOpr; 976 offset += off.result()->as_jint(); 977 } 978 LIR_Opr base_op = buf.result(); 979 980 if (index->is_valid()) { 981 LIR_Opr tmp = new_register(T_LONG); 982 __ convert(Bytecodes::_i2l, index, tmp); 983 index = tmp; 984 } 985 986 if (is_updateBytes) { 987 base_op = access_resolve(ACCESS_READ, base_op); 988 } 989 990 if (offset) { 991 LIR_Opr tmp = new_pointer_register(); 992 __ add(base_op, LIR_OprFact::intConst(offset), tmp); 993 base_op = tmp; 994 offset = 0; 995 } 996 997 LIR_Address* a = new LIR_Address(base_op, 998 index, 999 offset, 1000 T_BYTE); 1001 BasicTypeList signature(3); 1002 signature.append(T_INT); 1003 signature.append(T_ADDRESS); 1004 signature.append(T_INT); 1005 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 1006 const LIR_Opr result_reg = result_register_for(x->type()); 1007 1008 LIR_Opr addr = new_pointer_register(); 1009 __ leal(LIR_OprFact::address(a), addr); 1010 1011 crc.load_item_force(cc->at(0)); 1012 __ move(addr, cc->at(1)); 1013 len.load_item_force(cc->at(2)); 1014 1015 __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args()); 1016 __ move(result_reg, result); 1017 1018 break; 1019 } 1020 default: { 1021 ShouldNotReachHere(); 1022 } 1023 } 1024 } 1025 1026 void LIRGenerator::do_update_CRC32C(Intrinsic* x) { 1027 assert(UseCRC32CIntrinsics, "why are we here?"); 1028 // Make all state_for calls early since they can emit code 1029 LIR_Opr result = rlock_result(x); 1030 int flags = 0; 1031 switch (x->id()) { 1032 case vmIntrinsics::_updateBytesCRC32C: 1033 case vmIntrinsics::_updateDirectByteBufferCRC32C: { 1034 bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C); 1035 int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0; 1036 1037 LIRItem crc(x->argument_at(0), this); 1038 LIRItem buf(x->argument_at(1), this); 1039 LIRItem off(x->argument_at(2), this); 1040 LIRItem end(x->argument_at(3), this); 1041 1042 buf.load_item(); 1043 off.load_nonconstant(); 1044 end.load_nonconstant(); 1045 1046 // len = end - off 1047 LIR_Opr len = end.result(); 1048 LIR_Opr tmpA = new_register(T_INT); 1049 LIR_Opr tmpB = new_register(T_INT); 1050 __ move(end.result(), tmpA); 1051 __ move(off.result(), tmpB); 1052 __ sub(tmpA, tmpB, tmpA); 1053 len = tmpA; 1054 1055 LIR_Opr index = off.result(); 1056 if(off.result()->is_constant()) { 1057 index = LIR_OprFact::illegalOpr; 1058 offset += off.result()->as_jint(); 1059 } 1060 LIR_Opr base_op = buf.result(); 1061 1062 if (index->is_valid()) { 1063 LIR_Opr tmp = new_register(T_LONG); 1064 __ convert(Bytecodes::_i2l, index, tmp); 1065 index = tmp; 1066 } 1067 1068 if (is_updateBytes) { 1069 base_op = access_resolve(ACCESS_READ, base_op); 1070 } 1071 1072 if (offset) { 1073 LIR_Opr tmp = new_pointer_register(); 1074 __ add(base_op, LIR_OprFact::intConst(offset), tmp); 1075 base_op = tmp; 1076 offset = 0; 1077 } 1078 1079 LIR_Address* a = new LIR_Address(base_op, 1080 index, 1081 offset, 1082 T_BYTE); 1083 BasicTypeList signature(3); 1084 signature.append(T_INT); 1085 signature.append(T_ADDRESS); 1086 signature.append(T_INT); 1087 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 1088 const LIR_Opr result_reg = result_register_for(x->type()); 1089 1090 LIR_Opr addr = new_pointer_register(); 1091 __ leal(LIR_OprFact::address(a), addr); 1092 1093 crc.load_item_force(cc->at(0)); 1094 __ move(addr, cc->at(1)); 1095 __ move(len, cc->at(2)); 1096 1097 __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args()); 1098 __ move(result_reg, result); 1099 1100 break; 1101 } 1102 default: { 1103 ShouldNotReachHere(); 1104 } 1105 } 1106 } 1107 1108 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) { 1109 assert(x->number_of_arguments() == 3, "wrong type"); 1110 assert(UseFMA, "Needs FMA instructions support."); 1111 LIRItem value(x->argument_at(0), this); 1112 LIRItem value1(x->argument_at(1), this); 1113 LIRItem value2(x->argument_at(2), this); 1114 1115 value.load_item(); 1116 value1.load_item(); 1117 value2.load_item(); 1118 1119 LIR_Opr calc_input = value.result(); 1120 LIR_Opr calc_input1 = value1.result(); 1121 LIR_Opr calc_input2 = value2.result(); 1122 LIR_Opr calc_result = rlock_result(x); 1123 1124 switch (x->id()) { 1125 case vmIntrinsics::_fmaD: __ fmad(calc_input, calc_input1, calc_input2, calc_result); break; 1126 case vmIntrinsics::_fmaF: __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break; 1127 default: ShouldNotReachHere(); 1128 } 1129 } 1130 1131 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) { 1132 fatal("vectorizedMismatch intrinsic is not implemented on this platform"); 1133 } 1134 1135 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f 1136 // _i2b, _i2c, _i2s 1137 void LIRGenerator::do_Convert(Convert* x) { 1138 LIRItem value(x->value(), this); 1139 value.load_item(); 1140 LIR_Opr input = value.result(); 1141 LIR_Opr result = rlock(x); 1142 1143 // arguments of lir_convert 1144 LIR_Opr conv_input = input; 1145 LIR_Opr conv_result = result; 1146 ConversionStub* stub = NULL; 1147 1148 __ convert(x->op(), conv_input, conv_result); 1149 1150 assert(result->is_virtual(), "result must be virtual register"); 1151 set_result(x, result); 1152 } 1153 1154 void LIRGenerator::do_NewInstance(NewInstance* x) { 1155 #ifndef PRODUCT 1156 if (PrintNotLoaded && !x->klass()->is_loaded()) { 1157 tty->print_cr(" ###class not loaded at new bci %d", x->printable_bci()); 1158 } 1159 #endif 1160 CodeEmitInfo* info = state_for(x, x->state()); 1161 LIR_Opr reg = result_register_for(x->type()); 1162 new_instance(reg, x->klass(), x->is_unresolved(), 1163 FrameMap::r2_oop_opr, 1164 FrameMap::r5_oop_opr, 1165 FrameMap::r4_oop_opr, 1166 LIR_OprFact::illegalOpr, 1167 FrameMap::r3_metadata_opr, info); 1168 LIR_Opr result = rlock_result(x); 1169 __ move(reg, result); 1170 } 1171 1172 void LIRGenerator::do_NewValueTypeInstance (NewValueTypeInstance* x) { 1173 // Mapping to do_NewInstance (same code) 1174 CodeEmitInfo* info = state_for(x, x->state()); 1175 x->set_to_object_type(); 1176 LIR_Opr reg = result_register_for(x->type()); 1177 new_instance(reg, x->klass(), x->is_unresolved(), 1178 FrameMap::r2_oop_opr, 1179 FrameMap::r5_oop_opr, 1180 FrameMap::r4_oop_opr, 1181 LIR_OprFact::illegalOpr, 1182 FrameMap::r3_metadata_opr, info); 1183 LIR_Opr result = rlock_result(x); 1184 __ move(reg, result); 1185 1186 } 1187 1188 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) { 1189 CodeEmitInfo* info = state_for(x, x->state()); 1190 1191 LIRItem length(x->length(), this); 1192 length.load_item_force(FrameMap::r19_opr); 1193 1194 LIR_Opr reg = result_register_for(x->type()); 1195 LIR_Opr tmp1 = FrameMap::r2_oop_opr; 1196 LIR_Opr tmp2 = FrameMap::r4_oop_opr; 1197 LIR_Opr tmp3 = FrameMap::r5_oop_opr; 1198 LIR_Opr tmp4 = reg; 1199 LIR_Opr klass_reg = FrameMap::r3_metadata_opr; 1200 LIR_Opr len = length.result(); 1201 BasicType elem_type = x->elt_type(); 1202 1203 __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg); 1204 1205 CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info); 1206 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path); 1207 1208 LIR_Opr result = rlock_result(x); 1209 __ move(reg, result); 1210 } 1211 1212 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) { 1213 LIRItem length(x->length(), this); 1214 // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction 1215 // and therefore provide the state before the parameters have been consumed 1216 CodeEmitInfo* patching_info = NULL; 1217 if (!x->klass()->is_loaded() || PatchALot) { 1218 patching_info = state_for(x, x->state_before()); 1219 } 1220 1221 CodeEmitInfo* info = state_for(x, x->state()); 1222 1223 LIR_Opr reg = result_register_for(x->type()); 1224 LIR_Opr tmp1 = FrameMap::r2_oop_opr; 1225 LIR_Opr tmp2 = FrameMap::r4_oop_opr; 1226 LIR_Opr tmp3 = FrameMap::r5_oop_opr; 1227 LIR_Opr tmp4 = reg; 1228 LIR_Opr klass_reg = FrameMap::r3_metadata_opr; 1229 1230 length.load_item_force(FrameMap::r19_opr); 1231 LIR_Opr len = length.result(); 1232 1233 // DMS CHECK: Should we allocate slow path after BAILOUT? 1234 CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info, false); 1235 1236 ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass()); 1237 if (obj == ciEnv::unloaded_ciobjarrayklass()) { 1238 BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error"); 1239 } 1240 klass2reg_with_patching(klass_reg, obj, patching_info); 1241 1242 if (obj->is_value_array_klass()) { 1243 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_VALUETYPE, klass_reg, slow_path); 1244 } else { 1245 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path); 1246 } 1247 1248 LIR_Opr result = rlock_result(x); 1249 __ move(reg, result); 1250 } 1251 1252 1253 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) { 1254 Values* dims = x->dims(); 1255 int i = dims->length(); 1256 LIRItemList* items = new LIRItemList(i, i, NULL); 1257 while (i-- > 0) { 1258 LIRItem* size = new LIRItem(dims->at(i), this); 1259 items->at_put(i, size); 1260 } 1261 1262 // Evaluate state_for early since it may emit code. 1263 CodeEmitInfo* patching_info = NULL; 1264 if (!x->klass()->is_loaded() || PatchALot) { 1265 patching_info = state_for(x, x->state_before()); 1266 1267 // Cannot re-use same xhandlers for multiple CodeEmitInfos, so 1268 // clone all handlers (NOTE: Usually this is handled transparently 1269 // by the CodeEmitInfo cloning logic in CodeStub constructors but 1270 // is done explicitly here because a stub isn't being used). 1271 x->set_exception_handlers(new XHandlers(x->exception_handlers())); 1272 } 1273 CodeEmitInfo* info = state_for(x, x->state()); 1274 1275 i = dims->length(); 1276 while (i-- > 0) { 1277 LIRItem* size = items->at(i); 1278 size->load_item(); 1279 1280 store_stack_parameter(size->result(), in_ByteSize(i*4)); 1281 } 1282 1283 LIR_Opr klass_reg = FrameMap::r0_metadata_opr; 1284 klass2reg_with_patching(klass_reg, x->klass(), patching_info); 1285 1286 LIR_Opr rank = FrameMap::r19_opr; 1287 __ move(LIR_OprFact::intConst(x->rank()), rank); 1288 LIR_Opr varargs = FrameMap::r2_opr; 1289 __ move(FrameMap::sp_opr, varargs); 1290 LIR_OprList* args = new LIR_OprList(3); 1291 args->append(klass_reg); 1292 args->append(rank); 1293 args->append(varargs); 1294 LIR_Opr reg = result_register_for(x->type()); 1295 __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id), 1296 LIR_OprFact::illegalOpr, 1297 reg, args, info); 1298 1299 LIR_Opr result = rlock_result(x); 1300 __ move(reg, result); 1301 } 1302 1303 void LIRGenerator::do_BlockBegin(BlockBegin* x) { 1304 // nothing to do for now 1305 } 1306 1307 void LIRGenerator::do_CheckCast(CheckCast* x) { 1308 LIRItem obj(x->obj(), this); 1309 1310 CodeEmitInfo* patching_info = NULL; 1311 if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) { 1312 // must do this before locking the destination register as an oop register, 1313 // and before the obj is loaded (the latter is for deoptimization) 1314 patching_info = state_for(x, x->state_before()); 1315 } 1316 obj.load_item(); 1317 1318 // info for exceptions 1319 CodeEmitInfo* info_for_exception = 1320 (x->needs_exception_state() ? state_for(x) : 1321 state_for(x, x->state_before(), true /*ignore_xhandler*/)); 1322 1323 CodeStub* stub; 1324 if (x->is_incompatible_class_change_check()) { 1325 assert(patching_info == NULL, "can't patch this"); 1326 stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception); 1327 } else if (x->is_invokespecial_receiver_check()) { 1328 assert(patching_info == NULL, "can't patch this"); 1329 stub = new DeoptimizeStub(info_for_exception, 1330 Deoptimization::Reason_class_check, 1331 Deoptimization::Action_none); 1332 } else { 1333 stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception); 1334 } 1335 LIR_Opr reg = rlock_result(x); 1336 LIR_Opr tmp3 = LIR_OprFact::illegalOpr; 1337 if (!x->klass()->is_loaded() || UseCompressedClassPointers) { 1338 tmp3 = new_register(objectType); 1339 } 1340 1341 1342 __ checkcast(reg, obj.result(), x->klass(), 1343 new_register(objectType), new_register(objectType), tmp3, 1344 x->direct_compare(), info_for_exception, patching_info, stub, 1345 x->profiled_method(), x->profiled_bci(), x->is_never_null()); 1346 1347 } 1348 1349 void LIRGenerator::do_InstanceOf(InstanceOf* x) { 1350 LIRItem obj(x->obj(), this); 1351 1352 // result and test object may not be in same register 1353 LIR_Opr reg = rlock_result(x); 1354 CodeEmitInfo* patching_info = NULL; 1355 if ((!x->klass()->is_loaded() || PatchALot)) { 1356 // must do this before locking the destination register as an oop register 1357 patching_info = state_for(x, x->state_before()); 1358 } 1359 obj.load_item(); 1360 LIR_Opr tmp3 = LIR_OprFact::illegalOpr; 1361 if (!x->klass()->is_loaded() || UseCompressedClassPointers) { 1362 tmp3 = new_register(objectType); 1363 } 1364 __ instanceof(reg, obj.result(), x->klass(), 1365 new_register(objectType), new_register(objectType), tmp3, 1366 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci()); 1367 } 1368 1369 void LIRGenerator::do_If(If* x) { 1370 assert(x->number_of_sux() == 2, "inconsistency"); 1371 ValueTag tag = x->x()->type()->tag(); 1372 bool is_safepoint = x->is_safepoint(); 1373 1374 If::Condition cond = x->cond(); 1375 1376 LIRItem xitem(x->x(), this); 1377 LIRItem yitem(x->y(), this); 1378 LIRItem* xin = &xitem; 1379 LIRItem* yin = &yitem; 1380 1381 if (tag == longTag) { 1382 // for longs, only conditions "eql", "neq", "lss", "geq" are valid; 1383 // mirror for other conditions 1384 if (cond == If::gtr || cond == If::leq) { 1385 cond = Instruction::mirror(cond); 1386 xin = &yitem; 1387 yin = &xitem; 1388 } 1389 xin->set_destroys_register(); 1390 } 1391 xin->load_item(); 1392 1393 if (tag == longTag) { 1394 if (yin->is_constant() 1395 && Assembler::operand_valid_for_add_sub_immediate(yin->get_jlong_constant())) { 1396 yin->dont_load_item(); 1397 } else { 1398 yin->load_item(); 1399 } 1400 } else if (tag == intTag) { 1401 if (yin->is_constant() 1402 && Assembler::operand_valid_for_add_sub_immediate(yin->get_jint_constant())) { 1403 yin->dont_load_item(); 1404 } else { 1405 yin->load_item(); 1406 } 1407 } else { 1408 yin->load_item(); 1409 } 1410 1411 set_no_result(x); 1412 1413 LIR_Opr left = xin->result(); 1414 LIR_Opr right = yin->result(); 1415 1416 // add safepoint before generating condition code so it can be recomputed 1417 if (x->is_safepoint()) { 1418 // increment backedge counter if needed 1419 increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()), 1420 x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci()); 1421 __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before())); 1422 } 1423 1424 __ cmp(lir_cond(cond), left, right); 1425 // Generate branch profiling. Profiling code doesn't kill flags. 1426 profile_branch(x, cond); 1427 move_to_phi(x->state()); 1428 if (x->x()->type()->is_float_kind()) { 1429 __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux()); 1430 } else { 1431 __ branch(lir_cond(cond), right->type(), x->tsux()); 1432 } 1433 assert(x->default_sux() == x->fsux(), "wrong destination above"); 1434 __ jump(x->default_sux()); 1435 } 1436 1437 LIR_Opr LIRGenerator::getThreadPointer() { 1438 return FrameMap::as_pointer_opr(rthread); 1439 } 1440 1441 void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); } 1442 1443 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address, 1444 CodeEmitInfo* info) { 1445 __ volatile_store_mem_reg(value, address, info); 1446 } 1447 1448 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result, 1449 CodeEmitInfo* info) { 1450 // 8179954: We need to make sure that the code generated for 1451 // volatile accesses forms a sequentially-consistent set of 1452 // operations when combined with STLR and LDAR. Without a leading 1453 // membar it's possible for a simple Dekker test to fail if loads 1454 // use LD;DMB but stores use STLR. This can happen if C2 compiles 1455 // the stores in one method and C1 compiles the loads in another. 1456 if (! UseBarriersForVolatile) { 1457 __ membar(); 1458 } 1459 1460 __ volatile_load_mem_reg(address, result, info); 1461 }