1 /* 2 * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2019, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "gc/shared/barrierSetAssembler.hpp" 29 #include "interpreter/bytecodeHistogram.hpp" 30 #include "interpreter/interpreter.hpp" 31 #include "interpreter/interpreterRuntime.hpp" 32 #include "interpreter/interp_masm.hpp" 33 #include "interpreter/templateInterpreterGenerator.hpp" 34 #include "interpreter/templateTable.hpp" 35 #include "interpreter/bytecodeTracer.hpp" 36 #include "memory/resourceArea.hpp" 37 #include "oops/arrayOop.hpp" 38 #include "oops/methodData.hpp" 39 #include "oops/method.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "oops/valueKlass.hpp" 42 #include "prims/jvmtiExport.hpp" 43 #include "prims/jvmtiThreadState.hpp" 44 #include "runtime/arguments.hpp" 45 #include "runtime/deoptimization.hpp" 46 #include "runtime/frame.inline.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "runtime/stubRoutines.hpp" 49 #include "runtime/synchronizer.hpp" 50 #include "runtime/timer.hpp" 51 #include "runtime/vframeArray.hpp" 52 #include "utilities/debug.hpp" 53 #include <sys/types.h> 54 55 #ifndef PRODUCT 56 #include "oops/method.hpp" 57 #endif // !PRODUCT 58 59 #ifdef BUILTIN_SIM 60 #include "../../../../../../simulator/simulator.hpp" 61 #endif 62 63 // Size of interpreter code. Increase if too small. Interpreter will 64 // fail with a guarantee ("not enough space for interpreter generation"); 65 // if too small. 66 // Run with +PrintInterpreter to get the VM to print out the size. 67 // Max size with JVMTI 68 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024; 69 70 #define __ _masm-> 71 72 //----------------------------------------------------------------------------- 73 74 extern "C" void entry(CodeBuffer*); 75 76 //----------------------------------------------------------------------------- 77 78 address TemplateInterpreterGenerator::generate_slow_signature_handler() { 79 address entry = __ pc(); 80 81 __ andr(esp, esp, -16); 82 __ mov(c_rarg3, esp); 83 // rmethod 84 // rlocals 85 // c_rarg3: first stack arg - wordSize 86 87 // adjust sp 88 __ sub(sp, c_rarg3, 18 * wordSize); 89 __ str(lr, Address(__ pre(sp, -2 * wordSize))); 90 __ call_VM(noreg, 91 CAST_FROM_FN_PTR(address, 92 InterpreterRuntime::slow_signature_handler), 93 rmethod, rlocals, c_rarg3); 94 95 // r0: result handler 96 97 // Stack layout: 98 // rsp: return address <- sp 99 // 1 garbage 100 // 8 integer args (if static first is unused) 101 // 1 float/double identifiers 102 // 8 double args 103 // stack args <- esp 104 // garbage 105 // expression stack bottom 106 // bcp (NULL) 107 // ... 108 109 // Restore LR 110 __ ldr(lr, Address(__ post(sp, 2 * wordSize))); 111 112 // Do FP first so we can use c_rarg3 as temp 113 __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers 114 115 for (int i = 0; i < Argument::n_float_register_parameters_c; i++) { 116 const FloatRegister r = as_FloatRegister(i); 117 118 Label d, done; 119 120 __ tbnz(c_rarg3, i, d); 121 __ ldrs(r, Address(sp, (10 + i) * wordSize)); 122 __ b(done); 123 __ bind(d); 124 __ ldrd(r, Address(sp, (10 + i) * wordSize)); 125 __ bind(done); 126 } 127 128 // c_rarg0 contains the result from the call of 129 // InterpreterRuntime::slow_signature_handler so we don't touch it 130 // here. It will be loaded with the JNIEnv* later. 131 __ ldr(c_rarg1, Address(sp, 1 * wordSize)); 132 for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) { 133 Register rm = as_Register(i), rn = as_Register(i+1); 134 __ ldp(rm, rn, Address(sp, i * wordSize)); 135 } 136 137 __ add(sp, sp, 18 * wordSize); 138 __ ret(lr); 139 140 return entry; 141 } 142 143 144 // 145 // Various method entries 146 // 147 148 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { 149 // rmethod: Method* 150 // r13: sender sp 151 // esp: args 152 153 if (!InlineIntrinsics) return NULL; // Generate a vanilla entry 154 155 // These don't need a safepoint check because they aren't virtually 156 // callable. We won't enter these intrinsics from compiled code. 157 // If in the future we added an intrinsic which was virtually callable 158 // we'd have to worry about how to safepoint so that this code is used. 159 160 // mathematical functions inlined by compiler 161 // (interpreter must provide identical implementation 162 // in order to avoid monotonicity bugs when switching 163 // from interpreter to compiler in the middle of some 164 // computation) 165 // 166 // stack: 167 // [ arg ] <-- esp 168 // [ arg ] 169 // retaddr in lr 170 171 address entry_point = NULL; 172 Register continuation = lr; 173 switch (kind) { 174 case Interpreter::java_lang_math_abs: 175 entry_point = __ pc(); 176 __ ldrd(v0, Address(esp)); 177 __ fabsd(v0, v0); 178 __ mov(sp, r13); // Restore caller's SP 179 break; 180 case Interpreter::java_lang_math_sqrt: 181 entry_point = __ pc(); 182 __ ldrd(v0, Address(esp)); 183 __ fsqrtd(v0, v0); 184 __ mov(sp, r13); 185 break; 186 case Interpreter::java_lang_math_sin : 187 case Interpreter::java_lang_math_cos : 188 case Interpreter::java_lang_math_tan : 189 case Interpreter::java_lang_math_log : 190 case Interpreter::java_lang_math_log10 : 191 case Interpreter::java_lang_math_exp : 192 entry_point = __ pc(); 193 __ ldrd(v0, Address(esp)); 194 __ mov(sp, r13); 195 __ mov(r19, lr); 196 continuation = r19; // The first callee-saved register 197 generate_transcendental_entry(kind, 1); 198 break; 199 case Interpreter::java_lang_math_pow : 200 entry_point = __ pc(); 201 __ mov(r19, lr); 202 continuation = r19; 203 __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize)); 204 __ ldrd(v1, Address(esp)); 205 __ mov(sp, r13); 206 generate_transcendental_entry(kind, 2); 207 break; 208 case Interpreter::java_lang_math_fmaD : 209 if (UseFMA) { 210 entry_point = __ pc(); 211 __ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize)); 212 __ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize)); 213 __ ldrd(v2, Address(esp)); 214 __ fmaddd(v0, v0, v1, v2); 215 __ mov(sp, r13); // Restore caller's SP 216 } 217 break; 218 case Interpreter::java_lang_math_fmaF : 219 if (UseFMA) { 220 entry_point = __ pc(); 221 __ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize)); 222 __ ldrs(v1, Address(esp, Interpreter::stackElementSize)); 223 __ ldrs(v2, Address(esp)); 224 __ fmadds(v0, v0, v1, v2); 225 __ mov(sp, r13); // Restore caller's SP 226 } 227 break; 228 default: 229 ; 230 } 231 if (entry_point) { 232 __ br(continuation); 233 } 234 235 return entry_point; 236 } 237 238 // double trigonometrics and transcendentals 239 // static jdouble dsin(jdouble x); 240 // static jdouble dcos(jdouble x); 241 // static jdouble dtan(jdouble x); 242 // static jdouble dlog(jdouble x); 243 // static jdouble dlog10(jdouble x); 244 // static jdouble dexp(jdouble x); 245 // static jdouble dpow(jdouble x, jdouble y); 246 247 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) { 248 address fn; 249 switch (kind) { 250 case Interpreter::java_lang_math_sin : 251 if (StubRoutines::dsin() == NULL) { 252 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); 253 } else { 254 fn = CAST_FROM_FN_PTR(address, StubRoutines::dsin()); 255 } 256 break; 257 case Interpreter::java_lang_math_cos : 258 if (StubRoutines::dcos() == NULL) { 259 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); 260 } else { 261 fn = CAST_FROM_FN_PTR(address, StubRoutines::dcos()); 262 } 263 break; 264 case Interpreter::java_lang_math_tan : 265 if (StubRoutines::dtan() == NULL) { 266 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); 267 } else { 268 fn = CAST_FROM_FN_PTR(address, StubRoutines::dtan()); 269 } 270 break; 271 case Interpreter::java_lang_math_log : 272 if (StubRoutines::dlog() == NULL) { 273 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); 274 } else { 275 fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog()); 276 } 277 break; 278 case Interpreter::java_lang_math_log10 : 279 if (StubRoutines::dlog10() == NULL) { 280 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); 281 } else { 282 fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog10()); 283 } 284 break; 285 case Interpreter::java_lang_math_exp : 286 if (StubRoutines::dexp() == NULL) { 287 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); 288 } else { 289 fn = CAST_FROM_FN_PTR(address, StubRoutines::dexp()); 290 } 291 break; 292 case Interpreter::java_lang_math_pow : 293 fpargs = 2; 294 if (StubRoutines::dpow() == NULL) { 295 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 296 } else { 297 fn = CAST_FROM_FN_PTR(address, StubRoutines::dpow()); 298 } 299 break; 300 default: 301 ShouldNotReachHere(); 302 fn = NULL; // unreachable 303 } 304 const int gpargs = 0, rtype = 3; 305 __ mov(rscratch1, fn); 306 __ blrt(rscratch1, gpargs, fpargs, rtype); 307 } 308 309 // Abstract method entry 310 // Attempt to execute abstract method. Throw exception 311 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 312 // rmethod: Method* 313 // r13: sender SP 314 315 address entry_point = __ pc(); 316 317 // abstract method entry 318 319 // pop return address, reset last_sp to NULL 320 __ empty_expression_stack(); 321 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 322 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 323 324 // throw exception 325 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 326 InterpreterRuntime::throw_AbstractMethodErrorWithMethod), 327 rmethod); 328 // the call_VM checks for exception, so we should never return here. 329 __ should_not_reach_here(); 330 331 return entry_point; 332 } 333 334 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 335 address entry = __ pc(); 336 337 #ifdef ASSERT 338 { 339 Label L; 340 __ ldr(rscratch1, Address(rfp, 341 frame::interpreter_frame_monitor_block_top_offset * 342 wordSize)); 343 __ mov(rscratch2, sp); 344 __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack 345 // grows negative) 346 __ br(Assembler::HS, L); // check if frame is complete 347 __ stop ("interpreter frame not set up"); 348 __ bind(L); 349 } 350 #endif // ASSERT 351 // Restore bcp under the assumption that the current frame is still 352 // interpreted 353 __ restore_bcp(); 354 355 // expression stack must be empty before entering the VM if an 356 // exception happened 357 __ empty_expression_stack(); 358 // throw exception 359 __ call_VM(noreg, 360 CAST_FROM_FN_PTR(address, 361 InterpreterRuntime::throw_StackOverflowError)); 362 return entry; 363 } 364 365 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() { 366 address entry = __ pc(); 367 // expression stack must be empty before entering the VM if an 368 // exception happened 369 __ empty_expression_stack(); 370 // setup parameters 371 372 // ??? convention: expect aberrant index in register r1 373 __ movw(c_rarg2, r1); 374 // ??? convention: expect array in register r3 375 __ mov(c_rarg1, r3); 376 __ call_VM(noreg, 377 CAST_FROM_FN_PTR(address, 378 InterpreterRuntime:: 379 throw_ArrayIndexOutOfBoundsException), 380 c_rarg1, c_rarg2); 381 return entry; 382 } 383 384 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 385 address entry = __ pc(); 386 387 // object is at TOS 388 __ pop(c_rarg1); 389 390 // expression stack must be empty before entering the VM if an 391 // exception happened 392 __ empty_expression_stack(); 393 394 __ call_VM(noreg, 395 CAST_FROM_FN_PTR(address, 396 InterpreterRuntime:: 397 throw_ClassCastException), 398 c_rarg1); 399 return entry; 400 } 401 402 address TemplateInterpreterGenerator::generate_exception_handler_common( 403 const char* name, const char* message, bool pass_oop) { 404 assert(!pass_oop || message == NULL, "either oop or message but not both"); 405 address entry = __ pc(); 406 if (pass_oop) { 407 // object is at TOS 408 __ pop(c_rarg2); 409 } 410 // expression stack must be empty before entering the VM if an 411 // exception happened 412 __ empty_expression_stack(); 413 // setup parameters 414 __ lea(c_rarg1, Address((address)name)); 415 if (pass_oop) { 416 __ call_VM(r0, CAST_FROM_FN_PTR(address, 417 InterpreterRuntime:: 418 create_klass_exception), 419 c_rarg1, c_rarg2); 420 } else { 421 // kind of lame ExternalAddress can't take NULL because 422 // external_word_Relocation will assert. 423 if (message != NULL) { 424 __ lea(c_rarg2, Address((address)message)); 425 } else { 426 __ mov(c_rarg2, NULL_WORD); 427 } 428 __ call_VM(r0, 429 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), 430 c_rarg1, c_rarg2); 431 } 432 // throw exception 433 __ b(address(Interpreter::throw_exception_entry())); 434 return entry; 435 } 436 437 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { 438 address entry = __ pc(); 439 440 // Restore stack bottom in case i2c adjusted stack 441 __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 442 // and NULL it as marker that esp is now tos until next java call 443 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 444 445 if (state == atos && ValueTypeReturnedAsFields) { 446 // A value type might be returned. If fields are in registers we 447 // need to allocate a value type instance and initialize it with 448 // the value of the fields. 449 Label skip, slow_case; 450 451 // We only need a new buffered value if a new one is not returned 452 453 __ tbz(r0, 0, skip); 454 455 // Try to allocate a new buffered value (from the heap) 456 if (UseTLAB) { 457 458 // klass is in r0 459 __ andr(rscratch1, r0, -2); 460 461 // get obj size 462 __ ldrw(rscratch1, Address(rscratch1 /*klass*/, Klass::layout_helper_offset())); 463 __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 464 465 // check whether we have space in TLAB, 466 // rscratch1 contains pointer to just allocated obj 467 __ lea(rscratch1, Address(rscratch1, rscratch2)); 468 __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 469 470 __ cmp(rscratch1, rscratch2); 471 __ br(Assembler::GT, slow_case); 472 473 // OK we have room in TLAB, 474 // Set new TLAB top 475 __ str(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 476 477 // Set new class always locked 478 __ mov(rscratch2, (uint64_t) markOopDesc::always_locked_prototype()); 479 __ str(rscratch2, Address(rscratch1, oopDesc::mark_offset_in_bytes())); 480 481 __ store_klass_gap(rscratch1, zr); // zero klass gap for compressed oops 482 __ andr(rscratch2, r0, -2); 483 __ store_klass(rscratch1, rscratch2); // klass 484 485 // We have our new buffered value, initialize its fields with a 486 // value class specific handler 487 __ ldr(rscratch2, Address(rscratch1, InstanceKlass::adr_valueklass_fixed_block_offset())); 488 __ ldr(rscratch2, Address(rscratch2, ValueKlass::pack_handler_offset())); 489 490 491 // Mov new class to r0 and call pack_handler 492 __ mov(r0, rscratch1); 493 __ blrt(rscratch2, 1, 0, 0); 494 __ b(skip); 495 } 496 497 __ bind(slow_case); 498 499 // We failed to allocate a new value, fall back to a runtime 500 // call. Some oop field may be live in some registers but we can't 501 // tell. That runtime call will take care of preserving them 502 // across a GC if there's one. 503 __ super_call_VM_leaf(StubRoutines::store_value_type_fields_to_buf()); 504 __ bind(skip); 505 } 506 507 __ restore_bcp(); 508 __ restore_locals(); 509 __ restore_constant_pool_cache(); 510 __ get_method(rmethod); 511 512 if (state == atos) { 513 Register obj = r0; 514 Register mdp = r1; 515 Register tmp = r2; 516 __ ldr(mdp, Address(rmethod, Method::method_data_offset())); 517 __ profile_return_type(mdp, obj, tmp); 518 } 519 520 // Pop N words from the stack 521 __ get_cache_and_index_at_bcp(r1, r2, 1, index_size); 522 __ ldr(r1, Address(r1, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset())); 523 __ andr(r1, r1, ConstantPoolCacheEntry::parameter_size_mask); 524 525 __ add(esp, esp, r1, Assembler::LSL, 3); 526 527 // Restore machine SP 528 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); 529 __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); 530 __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2); 531 __ ldr(rscratch2, 532 Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize)); 533 __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3); 534 __ andr(sp, rscratch1, -16); 535 536 #ifndef PRODUCT 537 // tell the simulator that the method has been reentered 538 if (NotifySimulator) { 539 __ notify(Assembler::method_reentry); 540 } 541 #endif 542 543 __ check_and_handle_popframe(rthread); 544 __ check_and_handle_earlyret(rthread); 545 546 __ get_dispatch(); 547 __ dispatch_next(state, step); 548 549 return entry; 550 } 551 552 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, 553 int step, 554 address continuation) { 555 address entry = __ pc(); 556 __ restore_bcp(); 557 __ restore_locals(); 558 __ restore_constant_pool_cache(); 559 __ get_method(rmethod); 560 __ get_dispatch(); 561 562 // Calculate stack limit 563 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); 564 __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); 565 __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2); 566 __ ldr(rscratch2, 567 Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize)); 568 __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3); 569 __ andr(sp, rscratch1, -16); 570 571 // Restore expression stack pointer 572 __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 573 // NULL last_sp until next java call 574 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 575 576 #if INCLUDE_JVMCI 577 // Check if we need to take lock at entry of synchronized method. This can 578 // only occur on method entry so emit it only for vtos with step 0. 579 if ((EnableJVMCI || UseAOT) && state == vtos && step == 0) { 580 Label L; 581 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 582 __ cbz(rscratch1, L); 583 // Clear flag. 584 __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset())); 585 // Take lock. 586 lock_method(); 587 __ bind(L); 588 } else { 589 #ifdef ASSERT 590 if (EnableJVMCI) { 591 Label L; 592 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 593 __ cbz(rscratch1, L); 594 __ stop("unexpected pending monitor in deopt entry"); 595 __ bind(L); 596 } 597 #endif 598 } 599 #endif 600 // handle exceptions 601 { 602 Label L; 603 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 604 __ cbz(rscratch1, L); 605 __ call_VM(noreg, 606 CAST_FROM_FN_PTR(address, 607 InterpreterRuntime::throw_pending_exception)); 608 __ should_not_reach_here(); 609 __ bind(L); 610 } 611 612 if (continuation == NULL) { 613 __ dispatch_next(state, step); 614 } else { 615 __ jump_to_entry(continuation); 616 } 617 return entry; 618 } 619 620 address TemplateInterpreterGenerator::generate_result_handler_for( 621 BasicType type) { 622 address entry = __ pc(); 623 switch (type) { 624 case T_BOOLEAN: __ c2bool(r0); break; 625 case T_CHAR : __ uxth(r0, r0); break; 626 case T_BYTE : __ sxtb(r0, r0); break; 627 case T_SHORT : __ sxth(r0, r0); break; 628 case T_INT : __ uxtw(r0, r0); break; // FIXME: We almost certainly don't need this 629 case T_LONG : /* nothing to do */ break; 630 case T_VOID : /* nothing to do */ break; 631 case T_FLOAT : /* nothing to do */ break; 632 case T_DOUBLE : /* nothing to do */ break; 633 case T_VALUETYPE: // fall through (value types are handled with oops) 634 case T_OBJECT : 635 // retrieve result from frame 636 __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); 637 // and verify it 638 __ verify_oop(r0); 639 break; 640 default : ShouldNotReachHere(); 641 } 642 __ ret(lr); // return from result handler 643 return entry; 644 } 645 646 address TemplateInterpreterGenerator::generate_safept_entry_for( 647 TosState state, 648 address runtime_entry) { 649 address entry = __ pc(); 650 __ push(state); 651 __ call_VM(noreg, runtime_entry); 652 __ membar(Assembler::AnyAny); 653 __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos)); 654 return entry; 655 } 656 657 // Helpers for commoning out cases in the various type of method entries. 658 // 659 660 661 // increment invocation count & check for overflow 662 // 663 // Note: checking for negative value instead of overflow 664 // so we have a 'sticky' overflow test 665 // 666 // rmethod: method 667 // 668 void TemplateInterpreterGenerator::generate_counter_incr( 669 Label* overflow, 670 Label* profile_method, 671 Label* profile_method_continue) { 672 Label done; 673 // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not. 674 if (TieredCompilation) { 675 int increment = InvocationCounter::count_increment; 676 Label no_mdo; 677 if (ProfileInterpreter) { 678 // Are we profiling? 679 __ ldr(r0, Address(rmethod, Method::method_data_offset())); 680 __ cbz(r0, no_mdo); 681 // Increment counter in the MDO 682 const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) + 683 in_bytes(InvocationCounter::counter_offset())); 684 const Address mask(r0, in_bytes(MethodData::invoke_mask_offset())); 685 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow); 686 __ b(done); 687 } 688 __ bind(no_mdo); 689 // Increment counter in MethodCounters 690 const Address invocation_counter(rscratch2, 691 MethodCounters::invocation_counter_offset() + 692 InvocationCounter::counter_offset()); 693 __ get_method_counters(rmethod, rscratch2, done); 694 const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset())); 695 __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow); 696 __ bind(done); 697 } else { // not TieredCompilation 698 const Address backedge_counter(rscratch2, 699 MethodCounters::backedge_counter_offset() + 700 InvocationCounter::counter_offset()); 701 const Address invocation_counter(rscratch2, 702 MethodCounters::invocation_counter_offset() + 703 InvocationCounter::counter_offset()); 704 705 __ get_method_counters(rmethod, rscratch2, done); 706 707 if (ProfileInterpreter) { // %%% Merge this into MethodData* 708 __ ldrw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset())); 709 __ addw(r1, r1, 1); 710 __ strw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset())); 711 } 712 // Update standard invocation counters 713 __ ldrw(r1, invocation_counter); 714 __ ldrw(r0, backedge_counter); 715 716 __ addw(r1, r1, InvocationCounter::count_increment); 717 __ andw(r0, r0, InvocationCounter::count_mask_value); 718 719 __ strw(r1, invocation_counter); 720 __ addw(r0, r0, r1); // add both counters 721 722 // profile_method is non-null only for interpreted method so 723 // profile_method != NULL == !native_call 724 725 if (ProfileInterpreter && profile_method != NULL) { 726 // Test to see if we should create a method data oop 727 __ ldr(rscratch2, Address(rmethod, Method::method_counters_offset())); 728 __ ldrw(rscratch2, Address(rscratch2, in_bytes(MethodCounters::interpreter_profile_limit_offset()))); 729 __ cmpw(r0, rscratch2); 730 __ br(Assembler::LT, *profile_method_continue); 731 732 // if no method data exists, go to profile_method 733 __ test_method_data_pointer(rscratch2, *profile_method); 734 } 735 736 { 737 __ ldr(rscratch2, Address(rmethod, Method::method_counters_offset())); 738 __ ldrw(rscratch2, Address(rscratch2, in_bytes(MethodCounters::interpreter_invocation_limit_offset()))); 739 __ cmpw(r0, rscratch2); 740 __ br(Assembler::HS, *overflow); 741 } 742 __ bind(done); 743 } 744 } 745 746 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { 747 748 // Asm interpreter on entry 749 // On return (i.e. jump to entry_point) [ back to invocation of interpreter ] 750 // Everything as it was on entry 751 752 // InterpreterRuntime::frequency_counter_overflow takes two 753 // arguments, the first (thread) is passed by call_VM, the second 754 // indicates if the counter overflow occurs at a backwards branch 755 // (NULL bcp). We pass zero for it. The call returns the address 756 // of the verified entry point for the method or NULL if the 757 // compilation did not complete (either went background or bailed 758 // out). 759 __ mov(c_rarg1, 0); 760 __ call_VM(noreg, 761 CAST_FROM_FN_PTR(address, 762 InterpreterRuntime::frequency_counter_overflow), 763 c_rarg1); 764 765 __ b(do_continue); 766 } 767 768 // See if we've got enough room on the stack for locals plus overhead 769 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError 770 // without going through the signal handler, i.e., reserved and yellow zones 771 // will not be made usable. The shadow zone must suffice to handle the 772 // overflow. 773 // The expression stack grows down incrementally, so the normal guard 774 // page mechanism will work for that. 775 // 776 // NOTE: Since the additional locals are also always pushed (wasn't 777 // obvious in generate_method_entry) so the guard should work for them 778 // too. 779 // 780 // Args: 781 // r3: number of additional locals this frame needs (what we must check) 782 // rmethod: Method* 783 // 784 // Kills: 785 // r0 786 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) { 787 788 // monitor entry size: see picture of stack set 789 // (generate_method_entry) and frame_amd64.hpp 790 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 791 792 // total overhead size: entry_size + (saved rbp through expr stack 793 // bottom). be sure to change this if you add/subtract anything 794 // to/from the overhead area 795 const int overhead_size = 796 -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size; 797 798 const int page_size = os::vm_page_size(); 799 800 Label after_frame_check; 801 802 // see if the frame is greater than one page in size. If so, 803 // then we need to verify there is enough stack space remaining 804 // for the additional locals. 805 // 806 // Note that we use SUBS rather than CMP here because the immediate 807 // field of this instruction may overflow. SUBS can cope with this 808 // because it is a macro that will expand to some number of MOV 809 // instructions and a register operation. 810 __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize); 811 __ br(Assembler::LS, after_frame_check); 812 813 // compute rsp as if this were going to be the last frame on 814 // the stack before the red zone 815 816 // locals + overhead, in bytes 817 __ mov(r0, overhead_size); 818 __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize); // 2 slots per parameter. 819 820 const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset()); 821 __ ldr(rscratch1, stack_limit); 822 823 #ifdef ASSERT 824 Label limit_okay; 825 // Verify that thread stack limit is non-zero. 826 __ cbnz(rscratch1, limit_okay); 827 __ stop("stack overflow limit is zero"); 828 __ bind(limit_okay); 829 #endif 830 831 // Add stack limit to locals. 832 __ add(r0, r0, rscratch1); 833 834 // Check against the current stack bottom. 835 __ cmp(sp, r0); 836 __ br(Assembler::HI, after_frame_check); 837 838 // Remove the incoming args, peeling the machine SP back to where it 839 // was in the caller. This is not strictly necessary, but unless we 840 // do so the stack frame may have a garbage FP; this ensures a 841 // correct call stack that we can always unwind. The ANDR should be 842 // unnecessary because the sender SP in r13 is always aligned, but 843 // it doesn't hurt. 844 __ andr(sp, r13, -16); 845 846 // Note: the restored frame is not necessarily interpreted. 847 // Use the shared runtime version of the StackOverflowError. 848 assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated"); 849 __ far_jump(RuntimeAddress(StubRoutines::throw_StackOverflowError_entry())); 850 851 // all done with frame size check 852 __ bind(after_frame_check); 853 } 854 855 // Allocate monitor and lock method (asm interpreter) 856 // 857 // Args: 858 // rmethod: Method* 859 // rlocals: locals 860 // 861 // Kills: 862 // r0 863 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs) 864 // rscratch1, rscratch2 (scratch regs) 865 void TemplateInterpreterGenerator::lock_method() { 866 // synchronize method 867 const Address access_flags(rmethod, Method::access_flags_offset()); 868 const Address monitor_block_top( 869 rfp, 870 frame::interpreter_frame_monitor_block_top_offset * wordSize); 871 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 872 873 #ifdef ASSERT 874 { 875 Label L; 876 __ ldrw(r0, access_flags); 877 __ tst(r0, JVM_ACC_SYNCHRONIZED); 878 __ br(Assembler::NE, L); 879 __ stop("method doesn't need synchronization"); 880 __ bind(L); 881 } 882 #endif // ASSERT 883 884 // get synchronization object 885 { 886 Label done; 887 __ ldrw(r0, access_flags); 888 __ tst(r0, JVM_ACC_STATIC); 889 // get receiver (assume this is frequent case) 890 __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0))); 891 __ br(Assembler::EQ, done); 892 __ load_mirror(r0, rmethod); 893 894 #ifdef ASSERT 895 { 896 Label L; 897 __ cbnz(r0, L); 898 __ stop("synchronization object is NULL"); 899 __ bind(L); 900 } 901 #endif // ASSERT 902 903 __ bind(done); 904 __ resolve(IS_NOT_NULL, r0); 905 } 906 907 // add space for monitor & lock 908 __ sub(sp, sp, entry_size); // add space for a monitor entry 909 __ sub(esp, esp, entry_size); 910 __ mov(rscratch1, esp); 911 __ str(rscratch1, monitor_block_top); // set new monitor block top 912 // store object 913 __ str(r0, Address(esp, BasicObjectLock::obj_offset_in_bytes())); 914 __ mov(c_rarg1, esp); // object address 915 __ lock_object(c_rarg1); 916 } 917 918 // Generate a fixed interpreter frame. This is identical setup for 919 // interpreted methods and for native methods hence the shared code. 920 // 921 // Args: 922 // lr: return address 923 // rmethod: Method* 924 // rlocals: pointer to locals 925 // rcpool: cp cache 926 // stack_pointer: previous sp 927 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 928 // initialize fixed part of activation frame 929 if (native_call) { 930 __ sub(esp, sp, 14 * wordSize); 931 __ mov(rbcp, zr); 932 __ stp(esp, zr, Address(__ pre(sp, -14 * wordSize))); 933 // add 2 zero-initialized slots for native calls 934 __ stp(zr, zr, Address(sp, 12 * wordSize)); 935 } else { 936 __ sub(esp, sp, 12 * wordSize); 937 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); // get ConstMethod 938 __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase 939 __ stp(esp, rbcp, Address(__ pre(sp, -12 * wordSize))); 940 } 941 942 if (ProfileInterpreter) { 943 Label method_data_continue; 944 __ ldr(rscratch1, Address(rmethod, Method::method_data_offset())); 945 __ cbz(rscratch1, method_data_continue); 946 __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset()))); 947 __ bind(method_data_continue); 948 __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize)); // save Method* and mdp (method data pointer) 949 } else { 950 __ stp(zr, rmethod, Address(sp, 6 * wordSize)); // save Method* (no mdp) 951 } 952 953 // Get mirror and store it in the frame as GC root for this Method* 954 __ load_mirror(rscratch1, rmethod); 955 __ stp(rscratch1, zr, Address(sp, 4 * wordSize)); 956 957 __ ldr(rcpool, Address(rmethod, Method::const_offset())); 958 __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset())); 959 __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset_in_bytes())); 960 __ stp(rlocals, rcpool, Address(sp, 2 * wordSize)); 961 962 __ stp(rfp, lr, Address(sp, 10 * wordSize)); 963 __ lea(rfp, Address(sp, 10 * wordSize)); 964 965 // set sender sp 966 // leave last_sp as null 967 __ stp(zr, r13, Address(sp, 8 * wordSize)); 968 969 // Move SP out of the way 970 if (! native_call) { 971 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); 972 __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); 973 __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2); 974 __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3); 975 __ andr(sp, rscratch1, -16); 976 } 977 } 978 979 // End of helpers 980 981 // Various method entries 982 //------------------------------------------------------------------------------------------------------------------------ 983 // 984 // 985 986 // Method entry for java.lang.ref.Reference.get. 987 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 988 // Code: _aload_0, _getfield, _areturn 989 // parameter size = 1 990 // 991 // The code that gets generated by this routine is split into 2 parts: 992 // 1. The "intrinsified" code for G1 (or any SATB based GC), 993 // 2. The slow path - which is an expansion of the regular method entry. 994 // 995 // Notes:- 996 // * In the G1 code we do not check whether we need to block for 997 // a safepoint. If G1 is enabled then we must execute the specialized 998 // code for Reference.get (except when the Reference object is null) 999 // so that we can log the value in the referent field with an SATB 1000 // update buffer. 1001 // If the code for the getfield template is modified so that the 1002 // G1 pre-barrier code is executed when the current method is 1003 // Reference.get() then going through the normal method entry 1004 // will be fine. 1005 // * The G1 code can, however, check the receiver object (the instance 1006 // of java.lang.Reference) and jump to the slow path if null. If the 1007 // Reference object is null then we obviously cannot fetch the referent 1008 // and so we don't need to call the G1 pre-barrier. Thus we can use the 1009 // regular method entry code to generate the NPE. 1010 // 1011 // This code is based on generate_accessor_entry. 1012 // 1013 // rmethod: Method* 1014 // r13: senderSP must preserve for slow path, set SP to it on fast path 1015 1016 // LR is live. It must be saved around calls. 1017 1018 address entry = __ pc(); 1019 1020 const int referent_offset = java_lang_ref_Reference::referent_offset; 1021 guarantee(referent_offset > 0, "referent offset not initialized"); 1022 1023 Label slow_path; 1024 const Register local_0 = c_rarg0; 1025 // Check if local 0 != NULL 1026 // If the receiver is null then it is OK to jump to the slow path. 1027 __ ldr(local_0, Address(esp, 0)); 1028 __ cbz(local_0, slow_path); 1029 1030 __ mov(r19, r13); // Move senderSP to a callee-saved register 1031 1032 // Load the value of the referent field. 1033 const Address field_address(local_0, referent_offset); 1034 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1035 bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ rscratch2, /*tmp2*/ rscratch1); 1036 1037 // areturn 1038 __ andr(sp, r19, -16); // done with stack 1039 __ ret(lr); 1040 1041 // generate a vanilla interpreter entry as the slow path 1042 __ bind(slow_path); 1043 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals)); 1044 return entry; 1045 1046 } 1047 1048 /** 1049 * Method entry for static native methods: 1050 * int java.util.zip.CRC32.update(int crc, int b) 1051 */ 1052 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { 1053 if (UseCRC32Intrinsics) { 1054 address entry = __ pc(); 1055 1056 // rmethod: Method* 1057 // r13: senderSP must preserved for slow path 1058 // esp: args 1059 1060 Label slow_path; 1061 // If we need a safepoint check, generate full interpreter entry. 1062 __ safepoint_poll(slow_path); 1063 1064 // We don't generate local frame and don't align stack because 1065 // we call stub code and there is no safepoint on this path. 1066 1067 // Load parameters 1068 const Register crc = c_rarg0; // crc 1069 const Register val = c_rarg1; // source java byte value 1070 const Register tbl = c_rarg2; // scratch 1071 1072 // Arguments are reversed on java expression stack 1073 __ ldrw(val, Address(esp, 0)); // byte value 1074 __ ldrw(crc, Address(esp, wordSize)); // Initial CRC 1075 1076 unsigned long offset; 1077 __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset); 1078 __ add(tbl, tbl, offset); 1079 1080 __ mvnw(crc, crc); // ~crc 1081 __ update_byte_crc32(crc, val, tbl); 1082 __ mvnw(crc, crc); // ~crc 1083 1084 // result in c_rarg0 1085 1086 __ andr(sp, r13, -16); 1087 __ ret(lr); 1088 1089 // generate a vanilla native entry as the slow path 1090 __ bind(slow_path); 1091 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native)); 1092 return entry; 1093 } 1094 return NULL; 1095 } 1096 1097 /** 1098 * Method entry for static native methods: 1099 * int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len) 1100 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 1101 */ 1102 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1103 if (UseCRC32Intrinsics) { 1104 address entry = __ pc(); 1105 1106 // rmethod,: Method* 1107 // r13: senderSP must preserved for slow path 1108 1109 Label slow_path; 1110 // If we need a safepoint check, generate full interpreter entry. 1111 __ safepoint_poll(slow_path); 1112 1113 // We don't generate local frame and don't align stack because 1114 // we call stub code and there is no safepoint on this path. 1115 1116 // Load parameters 1117 const Register crc = c_rarg0; // crc 1118 const Register buf = c_rarg1; // source java byte array address 1119 const Register len = c_rarg2; // length 1120 const Register off = len; // offset (never overlaps with 'len') 1121 1122 // Arguments are reversed on java expression stack 1123 // Calculate address of start element 1124 if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { 1125 __ ldr(buf, Address(esp, 2*wordSize)); // long buf 1126 __ ldrw(off, Address(esp, wordSize)); // offset 1127 __ add(buf, buf, off); // + offset 1128 __ ldrw(crc, Address(esp, 4*wordSize)); // Initial CRC 1129 } else { 1130 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array 1131 __ resolve(IS_NOT_NULL | ACCESS_READ, buf); 1132 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size 1133 __ ldrw(off, Address(esp, wordSize)); // offset 1134 __ add(buf, buf, off); // + offset 1135 __ ldrw(crc, Address(esp, 3*wordSize)); // Initial CRC 1136 } 1137 // Can now load 'len' since we're finished with 'off' 1138 __ ldrw(len, Address(esp, 0x0)); // Length 1139 1140 __ andr(sp, r13, -16); // Restore the caller's SP 1141 1142 // We are frameless so we can just jump to the stub. 1143 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32())); 1144 1145 // generate a vanilla native entry as the slow path 1146 __ bind(slow_path); 1147 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native)); 1148 return entry; 1149 } 1150 return NULL; 1151 } 1152 1153 /** 1154 * Method entry for intrinsic-candidate (non-native) methods: 1155 * int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end) 1156 * int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 1157 * Unlike CRC32, CRC32C does not have any methods marked as native 1158 * CRC32C also uses an "end" variable instead of the length variable CRC32 uses 1159 */ 1160 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1161 if (UseCRC32CIntrinsics) { 1162 address entry = __ pc(); 1163 1164 // Prepare jump to stub using parameters from the stack 1165 const Register crc = c_rarg0; // initial crc 1166 const Register buf = c_rarg1; // source java byte array address 1167 const Register len = c_rarg2; // len argument to the kernel 1168 1169 const Register end = len; // index of last element to process 1170 const Register off = crc; // offset 1171 1172 __ ldrw(end, Address(esp)); // int end 1173 __ ldrw(off, Address(esp, wordSize)); // int offset 1174 __ sub(len, end, off); 1175 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] buf | long buf 1176 if (kind == Interpreter::java_util_zip_CRC32C_updateBytes) { 1177 __ resolve(IS_NOT_NULL | ACCESS_READ, buf); 1178 } 1179 __ add(buf, buf, off); // + offset 1180 if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { 1181 __ ldrw(crc, Address(esp, 4*wordSize)); // long crc 1182 } else { 1183 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size 1184 __ ldrw(crc, Address(esp, 3*wordSize)); // long crc 1185 } 1186 1187 __ andr(sp, r13, -16); // Restore the caller's SP 1188 1189 // Jump to the stub. 1190 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C())); 1191 1192 return entry; 1193 } 1194 return NULL; 1195 } 1196 1197 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) { 1198 // Bang each page in the shadow zone. We can't assume it's been done for 1199 // an interpreter frame with greater than a page of locals, so each page 1200 // needs to be checked. Only true for non-native. 1201 if (UseStackBanging) { 1202 const int n_shadow_pages = JavaThread::stack_shadow_zone_size() / os::vm_page_size(); 1203 const int start_page = native_call ? n_shadow_pages : 1; 1204 const int page_size = os::vm_page_size(); 1205 for (int pages = start_page; pages <= n_shadow_pages ; pages++) { 1206 __ sub(rscratch2, sp, pages*page_size); 1207 __ str(zr, Address(rscratch2)); 1208 } 1209 } 1210 } 1211 1212 1213 // Interpreter stub for calling a native method. (asm interpreter) 1214 // This sets up a somewhat different looking stack for calling the 1215 // native method than the typical interpreter frame setup. 1216 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { 1217 // determine code generation flags 1218 bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods; 1219 1220 // r1: Method* 1221 // rscratch1: sender sp 1222 1223 address entry_point = __ pc(); 1224 1225 const Address constMethod (rmethod, Method::const_offset()); 1226 const Address access_flags (rmethod, Method::access_flags_offset()); 1227 const Address size_of_parameters(r2, ConstMethod:: 1228 size_of_parameters_offset()); 1229 1230 // get parameter size (always needed) 1231 __ ldr(r2, constMethod); 1232 __ load_unsigned_short(r2, size_of_parameters); 1233 1234 // Native calls don't need the stack size check since they have no 1235 // expression stack and the arguments are already on the stack and 1236 // we only add a handful of words to the stack. 1237 1238 // rmethod: Method* 1239 // r2: size of parameters 1240 // rscratch1: sender sp 1241 1242 // for natives the size of locals is zero 1243 1244 // compute beginning of parameters (rlocals) 1245 __ add(rlocals, esp, r2, ext::uxtx, 3); 1246 __ add(rlocals, rlocals, -wordSize); 1247 1248 // Pull SP back to minimum size: this avoids holes in the stack 1249 __ andr(sp, esp, -16); 1250 1251 // initialize fixed part of activation frame 1252 generate_fixed_frame(true); 1253 #ifndef PRODUCT 1254 // tell the simulator that a method has been entered 1255 if (NotifySimulator) { 1256 __ notify(Assembler::method_entry); 1257 } 1258 #endif 1259 1260 // make sure method is native & not abstract 1261 #ifdef ASSERT 1262 __ ldrw(r0, access_flags); 1263 { 1264 Label L; 1265 __ tst(r0, JVM_ACC_NATIVE); 1266 __ br(Assembler::NE, L); 1267 __ stop("tried to execute non-native method as native"); 1268 __ bind(L); 1269 } 1270 { 1271 Label L; 1272 __ tst(r0, JVM_ACC_ABSTRACT); 1273 __ br(Assembler::EQ, L); 1274 __ stop("tried to execute abstract method in interpreter"); 1275 __ bind(L); 1276 } 1277 #endif 1278 1279 // Since at this point in the method invocation the exception 1280 // handler would try to exit the monitor of synchronized methods 1281 // which hasn't been entered yet, we set the thread local variable 1282 // _do_not_unlock_if_synchronized to true. The remove_activation 1283 // will check this flag. 1284 1285 const Address do_not_unlock_if_synchronized(rthread, 1286 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1287 __ mov(rscratch2, true); 1288 __ strb(rscratch2, do_not_unlock_if_synchronized); 1289 1290 // increment invocation count & check for overflow 1291 Label invocation_counter_overflow; 1292 if (inc_counter) { 1293 generate_counter_incr(&invocation_counter_overflow, NULL, NULL); 1294 } 1295 1296 Label continue_after_compile; 1297 __ bind(continue_after_compile); 1298 1299 bang_stack_shadow_pages(true); 1300 1301 // reset the _do_not_unlock_if_synchronized flag 1302 __ strb(zr, do_not_unlock_if_synchronized); 1303 1304 // check for synchronized methods 1305 // Must happen AFTER invocation_counter check and stack overflow check, 1306 // so method is not locked if overflows. 1307 if (synchronized) { 1308 lock_method(); 1309 } else { 1310 // no synchronization necessary 1311 #ifdef ASSERT 1312 { 1313 Label L; 1314 __ ldrw(r0, access_flags); 1315 __ tst(r0, JVM_ACC_SYNCHRONIZED); 1316 __ br(Assembler::EQ, L); 1317 __ stop("method needs synchronization"); 1318 __ bind(L); 1319 } 1320 #endif 1321 } 1322 1323 // start execution 1324 #ifdef ASSERT 1325 { 1326 Label L; 1327 const Address monitor_block_top(rfp, 1328 frame::interpreter_frame_monitor_block_top_offset * wordSize); 1329 __ ldr(rscratch1, monitor_block_top); 1330 __ cmp(esp, rscratch1); 1331 __ br(Assembler::EQ, L); 1332 __ stop("broken stack frame setup in interpreter"); 1333 __ bind(L); 1334 } 1335 #endif 1336 1337 // jvmti support 1338 __ notify_method_entry(); 1339 1340 // work registers 1341 const Register t = r17; 1342 const Register result_handler = r19; 1343 1344 // allocate space for parameters 1345 __ ldr(t, Address(rmethod, Method::const_offset())); 1346 __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset())); 1347 1348 __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize); 1349 __ andr(sp, rscratch1, -16); 1350 __ mov(esp, rscratch1); 1351 1352 // get signature handler 1353 { 1354 Label L; 1355 __ ldr(t, Address(rmethod, Method::signature_handler_offset())); 1356 __ cbnz(t, L); 1357 __ call_VM(noreg, 1358 CAST_FROM_FN_PTR(address, 1359 InterpreterRuntime::prepare_native_call), 1360 rmethod); 1361 __ ldr(t, Address(rmethod, Method::signature_handler_offset())); 1362 __ bind(L); 1363 } 1364 1365 // call signature handler 1366 assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals, 1367 "adjust this code"); 1368 assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp, 1369 "adjust this code"); 1370 assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1, 1371 "adjust this code"); 1372 1373 // The generated handlers do not touch rmethod (the method). 1374 // However, large signatures cannot be cached and are generated 1375 // each time here. The slow-path generator can do a GC on return, 1376 // so we must reload it after the call. 1377 __ blr(t); 1378 __ get_method(rmethod); // slow path can do a GC, reload rmethod 1379 1380 1381 // result handler is in r0 1382 // set result handler 1383 __ mov(result_handler, r0); 1384 // pass mirror handle if static call 1385 { 1386 Label L; 1387 __ ldrw(t, Address(rmethod, Method::access_flags_offset())); 1388 __ tbz(t, exact_log2(JVM_ACC_STATIC), L); 1389 // get mirror 1390 __ load_mirror(t, rmethod); 1391 // copy mirror into activation frame 1392 __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize)); 1393 // pass handle to mirror 1394 __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize); 1395 __ bind(L); 1396 } 1397 1398 // get native function entry point in r10 1399 { 1400 Label L; 1401 __ ldr(r10, Address(rmethod, Method::native_function_offset())); 1402 address unsatisfied = (SharedRuntime::native_method_throw_unsatisfied_link_error_entry()); 1403 __ mov(rscratch2, unsatisfied); 1404 __ ldr(rscratch2, rscratch2); 1405 __ cmp(r10, rscratch2); 1406 __ br(Assembler::NE, L); 1407 __ call_VM(noreg, 1408 CAST_FROM_FN_PTR(address, 1409 InterpreterRuntime::prepare_native_call), 1410 rmethod); 1411 __ get_method(rmethod); 1412 __ ldr(r10, Address(rmethod, Method::native_function_offset())); 1413 __ bind(L); 1414 } 1415 1416 // pass JNIEnv 1417 __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset())); 1418 1419 // Set the last Java PC in the frame anchor to be the return address from 1420 // the call to the native method: this will allow the debugger to 1421 // generate an accurate stack trace. 1422 Label native_return; 1423 __ set_last_Java_frame(esp, rfp, native_return, rscratch1); 1424 1425 // change thread state 1426 #ifdef ASSERT 1427 { 1428 Label L; 1429 __ ldrw(t, Address(rthread, JavaThread::thread_state_offset())); 1430 __ cmp(t, (u1)_thread_in_Java); 1431 __ br(Assembler::EQ, L); 1432 __ stop("Wrong thread state in native stub"); 1433 __ bind(L); 1434 } 1435 #endif 1436 1437 // Change state to native 1438 __ mov(rscratch1, _thread_in_native); 1439 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1440 __ stlrw(rscratch1, rscratch2); 1441 1442 // Call the native method. 1443 __ blrt(r10, rscratch1); 1444 __ bind(native_return); 1445 __ maybe_isb(); 1446 __ get_method(rmethod); 1447 // result potentially in r0 or v0 1448 1449 // make room for the pushes we're about to do 1450 __ sub(rscratch1, esp, 4 * wordSize); 1451 __ andr(sp, rscratch1, -16); 1452 1453 // NOTE: The order of these pushes is known to frame::interpreter_frame_result 1454 // in order to extract the result of a method call. If the order of these 1455 // pushes change or anything else is added to the stack then the code in 1456 // interpreter_frame_result must also change. 1457 __ push(dtos); 1458 __ push(ltos); 1459 1460 // change thread state 1461 __ mov(rscratch1, _thread_in_native_trans); 1462 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1463 __ stlrw(rscratch1, rscratch2); 1464 1465 // Force this write out before the read below 1466 __ dmb(Assembler::ISH); 1467 1468 // check for safepoint operation in progress and/or pending suspend requests 1469 { 1470 Label L, Continue; 1471 __ safepoint_poll_acquire(L); 1472 __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset())); 1473 __ cbz(rscratch2, Continue); 1474 __ bind(L); 1475 1476 // Don't use call_VM as it will see a possible pending exception 1477 // and forward it and never return here preventing us from 1478 // clearing _last_native_pc down below. So we do a runtime call by 1479 // hand. 1480 // 1481 __ mov(c_rarg0, rthread); 1482 __ mov(rscratch2, CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)); 1483 __ blrt(rscratch2, 1, 0, 0); 1484 __ maybe_isb(); 1485 __ get_method(rmethod); 1486 __ reinit_heapbase(); 1487 __ bind(Continue); 1488 } 1489 1490 // change thread state 1491 __ mov(rscratch1, _thread_in_Java); 1492 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1493 __ stlrw(rscratch1, rscratch2); 1494 1495 // reset_last_Java_frame 1496 __ reset_last_Java_frame(true); 1497 1498 if (CheckJNICalls) { 1499 // clear_pending_jni_exception_check 1500 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1501 } 1502 1503 // reset handle block 1504 __ ldr(t, Address(rthread, JavaThread::active_handles_offset())); 1505 __ str(zr, Address(t, JNIHandleBlock::top_offset_in_bytes())); 1506 1507 // If result is an oop unbox and store it in frame where gc will see it 1508 // and result handler will pick it up 1509 1510 { 1511 Label no_oop; 1512 __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT))); 1513 __ cmp(t, result_handler); 1514 __ br(Assembler::NE, no_oop); 1515 // Unbox oop result, e.g. JNIHandles::resolve result. 1516 __ pop(ltos); 1517 __ resolve_jobject(r0, rthread, t); 1518 __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); 1519 // keep stack depth as expected by pushing oop which will eventually be discarded 1520 __ push(ltos); 1521 __ bind(no_oop); 1522 } 1523 1524 { 1525 Label no_reguard; 1526 __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset()))); 1527 __ ldrw(rscratch1, Address(rscratch1)); 1528 __ cmp(rscratch1, (u1)JavaThread::stack_guard_yellow_reserved_disabled); 1529 __ br(Assembler::NE, no_reguard); 1530 1531 __ pusha(); // XXX only save smashed registers 1532 __ mov(c_rarg0, rthread); 1533 __ mov(rscratch2, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 1534 __ blrt(rscratch2, 0, 0, 0); 1535 __ popa(); // XXX only restore smashed registers 1536 __ bind(no_reguard); 1537 } 1538 1539 // The method register is junk from after the thread_in_native transition 1540 // until here. Also can't call_VM until the bcp has been 1541 // restored. Need bcp for throwing exception below so get it now. 1542 __ get_method(rmethod); 1543 1544 // restore bcp to have legal interpreter frame, i.e., bci == 0 <=> 1545 // rbcp == code_base() 1546 __ ldr(rbcp, Address(rmethod, Method::const_offset())); // get ConstMethod* 1547 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); // get codebase 1548 // handle exceptions (exception handling will handle unlocking!) 1549 { 1550 Label L; 1551 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 1552 __ cbz(rscratch1, L); 1553 // Note: At some point we may want to unify this with the code 1554 // used in call_VM_base(); i.e., we should use the 1555 // StubRoutines::forward_exception code. For now this doesn't work 1556 // here because the rsp is not correctly set at this point. 1557 __ MacroAssembler::call_VM(noreg, 1558 CAST_FROM_FN_PTR(address, 1559 InterpreterRuntime::throw_pending_exception)); 1560 __ should_not_reach_here(); 1561 __ bind(L); 1562 } 1563 1564 // do unlocking if necessary 1565 { 1566 Label L; 1567 __ ldrw(t, Address(rmethod, Method::access_flags_offset())); 1568 __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L); 1569 // the code below should be shared with interpreter macro 1570 // assembler implementation 1571 { 1572 Label unlock; 1573 // BasicObjectLock will be first in list, since this is a 1574 // synchronized method. However, need to check that the object 1575 // has not been unlocked by an explicit monitorexit bytecode. 1576 1577 // monitor expect in c_rarg1 for slow unlock path 1578 __ lea (c_rarg1, Address(rfp, // address of first monitor 1579 (intptr_t)(frame::interpreter_frame_initial_sp_offset * 1580 wordSize - sizeof(BasicObjectLock)))); 1581 1582 __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 1583 __ cbnz(t, unlock); 1584 1585 // Entry already unlocked, need to throw exception 1586 __ MacroAssembler::call_VM(noreg, 1587 CAST_FROM_FN_PTR(address, 1588 InterpreterRuntime::throw_illegal_monitor_state_exception)); 1589 __ should_not_reach_here(); 1590 1591 __ bind(unlock); 1592 __ unlock_object(c_rarg1); 1593 } 1594 __ bind(L); 1595 } 1596 1597 // jvmti support 1598 // Note: This must happen _after_ handling/throwing any exceptions since 1599 // the exception handler code notifies the runtime of method exits 1600 // too. If this happens before, method entry/exit notifications are 1601 // not properly paired (was bug - gri 11/22/99). 1602 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI); 1603 1604 // restore potential result in r0:d0, call result handler to 1605 // restore potential result in ST0 & handle result 1606 1607 __ pop(ltos); 1608 __ pop(dtos); 1609 1610 __ blr(result_handler); 1611 1612 // remove activation 1613 __ ldr(esp, Address(rfp, 1614 frame::interpreter_frame_sender_sp_offset * 1615 wordSize)); // get sender sp 1616 // remove frame anchor 1617 __ leave(); 1618 1619 // resture sender sp 1620 __ mov(sp, esp); 1621 1622 __ ret(lr); 1623 1624 if (inc_counter) { 1625 // Handle overflow of counter and compile method 1626 __ bind(invocation_counter_overflow); 1627 generate_counter_overflow(continue_after_compile); 1628 } 1629 1630 return entry_point; 1631 } 1632 1633 // 1634 // Generic interpreted method entry to (asm) interpreter 1635 // 1636 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { 1637 // determine code generation flags 1638 bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods; 1639 1640 // rscratch1: sender sp 1641 address entry_point = __ pc(); 1642 1643 const Address constMethod(rmethod, Method::const_offset()); 1644 const Address access_flags(rmethod, Method::access_flags_offset()); 1645 const Address size_of_parameters(r3, 1646 ConstMethod::size_of_parameters_offset()); 1647 const Address size_of_locals(r3, ConstMethod::size_of_locals_offset()); 1648 1649 // get parameter size (always needed) 1650 // need to load the const method first 1651 __ ldr(r3, constMethod); 1652 __ load_unsigned_short(r2, size_of_parameters); 1653 1654 // r2: size of parameters 1655 1656 __ load_unsigned_short(r3, size_of_locals); // get size of locals in words 1657 __ sub(r3, r3, r2); // r3 = no. of additional locals 1658 1659 // see if we've got enough room on the stack for locals plus overhead. 1660 generate_stack_overflow_check(); 1661 1662 // compute beginning of parameters (rlocals) 1663 __ add(rlocals, esp, r2, ext::uxtx, 3); 1664 __ sub(rlocals, rlocals, wordSize); 1665 1666 // Make room for locals 1667 __ sub(rscratch1, esp, r3, ext::uxtx, 3); 1668 __ andr(sp, rscratch1, -16); 1669 1670 // r3 - # of additional locals 1671 // allocate space for locals 1672 // explicitly initialize locals 1673 { 1674 Label exit, loop; 1675 __ ands(zr, r3, r3); 1676 __ br(Assembler::LE, exit); // do nothing if r3 <= 0 1677 __ bind(loop); 1678 __ str(zr, Address(__ post(rscratch1, wordSize))); 1679 __ sub(r3, r3, 1); // until everything initialized 1680 __ cbnz(r3, loop); 1681 __ bind(exit); 1682 } 1683 1684 // And the base dispatch table 1685 __ get_dispatch(); 1686 1687 // initialize fixed part of activation frame 1688 generate_fixed_frame(false); 1689 #ifndef PRODUCT 1690 // tell the simulator that a method has been entered 1691 if (NotifySimulator) { 1692 __ notify(Assembler::method_entry); 1693 } 1694 #endif 1695 // make sure method is not native & not abstract 1696 #ifdef ASSERT 1697 __ ldrw(r0, access_flags); 1698 { 1699 Label L; 1700 __ tst(r0, JVM_ACC_NATIVE); 1701 __ br(Assembler::EQ, L); 1702 __ stop("tried to execute native method as non-native"); 1703 __ bind(L); 1704 } 1705 { 1706 Label L; 1707 __ tst(r0, JVM_ACC_ABSTRACT); 1708 __ br(Assembler::EQ, L); 1709 __ stop("tried to execute abstract method in interpreter"); 1710 __ bind(L); 1711 } 1712 #endif 1713 1714 // Since at this point in the method invocation the exception 1715 // handler would try to exit the monitor of synchronized methods 1716 // which hasn't been entered yet, we set the thread local variable 1717 // _do_not_unlock_if_synchronized to true. The remove_activation 1718 // will check this flag. 1719 1720 const Address do_not_unlock_if_synchronized(rthread, 1721 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1722 __ mov(rscratch2, true); 1723 __ strb(rscratch2, do_not_unlock_if_synchronized); 1724 1725 Label no_mdp; 1726 Register mdp = r3; 1727 __ ldr(mdp, Address(rmethod, Method::method_data_offset())); 1728 __ cbz(mdp, no_mdp); 1729 __ add(mdp, mdp, in_bytes(MethodData::data_offset())); 1730 __ profile_parameters_type(mdp, r1, r2); 1731 __ bind(no_mdp); 1732 1733 // increment invocation count & check for overflow 1734 Label invocation_counter_overflow; 1735 Label profile_method; 1736 Label profile_method_continue; 1737 if (inc_counter) { 1738 generate_counter_incr(&invocation_counter_overflow, 1739 &profile_method, 1740 &profile_method_continue); 1741 if (ProfileInterpreter) { 1742 __ bind(profile_method_continue); 1743 } 1744 } 1745 1746 Label continue_after_compile; 1747 __ bind(continue_after_compile); 1748 1749 bang_stack_shadow_pages(false); 1750 1751 // reset the _do_not_unlock_if_synchronized flag 1752 __ strb(zr, do_not_unlock_if_synchronized); 1753 1754 // check for synchronized methods 1755 // Must happen AFTER invocation_counter check and stack overflow check, 1756 // so method is not locked if overflows. 1757 if (synchronized) { 1758 // Allocate monitor and lock method 1759 lock_method(); 1760 } else { 1761 // no synchronization necessary 1762 #ifdef ASSERT 1763 { 1764 Label L; 1765 __ ldrw(r0, access_flags); 1766 __ tst(r0, JVM_ACC_SYNCHRONIZED); 1767 __ br(Assembler::EQ, L); 1768 __ stop("method needs synchronization"); 1769 __ bind(L); 1770 } 1771 #endif 1772 } 1773 1774 // start execution 1775 #ifdef ASSERT 1776 { 1777 Label L; 1778 const Address monitor_block_top (rfp, 1779 frame::interpreter_frame_monitor_block_top_offset * wordSize); 1780 __ ldr(rscratch1, monitor_block_top); 1781 __ cmp(esp, rscratch1); 1782 __ br(Assembler::EQ, L); 1783 __ stop("broken stack frame setup in interpreter"); 1784 __ bind(L); 1785 } 1786 #endif 1787 1788 // jvmti support 1789 __ notify_method_entry(); 1790 1791 __ dispatch_next(vtos); 1792 1793 // invocation counter overflow 1794 if (inc_counter) { 1795 if (ProfileInterpreter) { 1796 // We have decided to profile this method in the interpreter 1797 __ bind(profile_method); 1798 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); 1799 __ set_method_data_pointer_for_bcp(); 1800 // don't think we need this 1801 __ get_method(r1); 1802 __ b(profile_method_continue); 1803 } 1804 // Handle overflow of counter and compile method 1805 __ bind(invocation_counter_overflow); 1806 generate_counter_overflow(continue_after_compile); 1807 } 1808 1809 return entry_point; 1810 } 1811 1812 //----------------------------------------------------------------------------- 1813 // Exceptions 1814 1815 void TemplateInterpreterGenerator::generate_throw_exception() { 1816 // Entry point in previous activation (i.e., if the caller was 1817 // interpreted) 1818 Interpreter::_rethrow_exception_entry = __ pc(); 1819 // Restore sp to interpreter_frame_last_sp even though we are going 1820 // to empty the expression stack for the exception processing. 1821 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1822 // r0: exception 1823 // r3: return address/pc that threw exception 1824 __ restore_bcp(); // rbcp points to call/send 1825 __ restore_locals(); 1826 __ restore_constant_pool_cache(); 1827 __ reinit_heapbase(); // restore rheapbase as heapbase. 1828 __ get_dispatch(); 1829 1830 #ifndef PRODUCT 1831 // tell the simulator that the caller method has been reentered 1832 if (NotifySimulator) { 1833 __ get_method(rmethod); 1834 __ notify(Assembler::method_reentry); 1835 } 1836 #endif 1837 // Entry point for exceptions thrown within interpreter code 1838 Interpreter::_throw_exception_entry = __ pc(); 1839 // If we came here via a NullPointerException on the receiver of a 1840 // method, rmethod may be corrupt. 1841 __ get_method(rmethod); 1842 // expression stack is undefined here 1843 // r0: exception 1844 // rbcp: exception bcp 1845 __ verify_oop(r0); 1846 __ mov(c_rarg1, r0); 1847 1848 // expression stack must be empty before entering the VM in case of 1849 // an exception 1850 __ empty_expression_stack(); 1851 // find exception handler address and preserve exception oop 1852 __ call_VM(r3, 1853 CAST_FROM_FN_PTR(address, 1854 InterpreterRuntime::exception_handler_for_exception), 1855 c_rarg1); 1856 1857 // Calculate stack limit 1858 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); 1859 __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); 1860 __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 4); 1861 __ ldr(rscratch2, 1862 Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize)); 1863 __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3); 1864 __ andr(sp, rscratch1, -16); 1865 1866 // r0: exception handler entry point 1867 // r3: preserved exception oop 1868 // rbcp: bcp for exception handler 1869 __ push_ptr(r3); // push exception which is now the only value on the stack 1870 __ br(r0); // jump to exception handler (may be _remove_activation_entry!) 1871 1872 // If the exception is not handled in the current frame the frame is 1873 // removed and the exception is rethrown (i.e. exception 1874 // continuation is _rethrow_exception). 1875 // 1876 // Note: At this point the bci is still the bxi for the instruction 1877 // which caused the exception and the expression stack is 1878 // empty. Thus, for any VM calls at this point, GC will find a legal 1879 // oop map (with empty expression stack). 1880 1881 // 1882 // JVMTI PopFrame support 1883 // 1884 1885 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 1886 __ empty_expression_stack(); 1887 // Set the popframe_processing bit in pending_popframe_condition 1888 // indicating that we are currently handling popframe, so that 1889 // call_VMs that may happen later do not trigger new popframe 1890 // handling cycles. 1891 __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset())); 1892 __ orr(r3, r3, JavaThread::popframe_processing_bit); 1893 __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset())); 1894 1895 { 1896 // Check to see whether we are returning to a deoptimized frame. 1897 // (The PopFrame call ensures that the caller of the popped frame is 1898 // either interpreted or compiled and deoptimizes it if compiled.) 1899 // In this case, we can't call dispatch_next() after the frame is 1900 // popped, but instead must save the incoming arguments and restore 1901 // them after deoptimization has occurred. 1902 // 1903 // Note that we don't compare the return PC against the 1904 // deoptimization blob's unpack entry because of the presence of 1905 // adapter frames in C2. 1906 Label caller_not_deoptimized; 1907 __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize)); 1908 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1909 InterpreterRuntime::interpreter_contains), c_rarg1); 1910 __ cbnz(r0, caller_not_deoptimized); 1911 1912 // Compute size of arguments for saving when returning to 1913 // deoptimized caller 1914 __ get_method(r0); 1915 __ ldr(r0, Address(r0, Method::const_offset())); 1916 __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod:: 1917 size_of_parameters_offset()))); 1918 __ lsl(r0, r0, Interpreter::logStackElementSize); 1919 __ restore_locals(); // XXX do we need this? 1920 __ sub(rlocals, rlocals, r0); 1921 __ add(rlocals, rlocals, wordSize); 1922 // Save these arguments 1923 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1924 Deoptimization:: 1925 popframe_preserve_args), 1926 rthread, r0, rlocals); 1927 1928 __ remove_activation(vtos, 1929 /* throw_monitor_exception */ false, 1930 /* install_monitor_exception */ false, 1931 /* notify_jvmdi */ false); 1932 1933 // Inform deoptimization that it is responsible for restoring 1934 // these arguments 1935 __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit); 1936 __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 1937 1938 // Continue in deoptimization handler 1939 __ ret(lr); 1940 1941 __ bind(caller_not_deoptimized); 1942 } 1943 1944 __ remove_activation(vtos, 1945 /* throw_monitor_exception */ false, 1946 /* install_monitor_exception */ false, 1947 /* notify_jvmdi */ false); 1948 1949 // Restore the last_sp and null it out 1950 __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1951 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1952 1953 __ restore_bcp(); 1954 __ restore_locals(); 1955 __ restore_constant_pool_cache(); 1956 __ get_method(rmethod); 1957 __ get_dispatch(); 1958 1959 // The method data pointer was incremented already during 1960 // call profiling. We have to restore the mdp for the current bcp. 1961 if (ProfileInterpreter) { 1962 __ set_method_data_pointer_for_bcp(); 1963 } 1964 1965 // Clear the popframe condition flag 1966 __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset())); 1967 assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive"); 1968 1969 #if INCLUDE_JVMTI 1970 { 1971 Label L_done; 1972 1973 __ ldrb(rscratch1, Address(rbcp, 0)); 1974 __ cmpw(rscratch1, Bytecodes::_invokestatic); 1975 __ br(Assembler::NE, L_done); 1976 1977 // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. 1978 // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL. 1979 1980 __ ldr(c_rarg0, Address(rlocals, 0)); 1981 __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp); 1982 1983 __ cbz(r0, L_done); 1984 1985 __ str(r0, Address(esp, 0)); 1986 __ bind(L_done); 1987 } 1988 #endif // INCLUDE_JVMTI 1989 1990 // Restore machine SP 1991 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); 1992 __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); 1993 __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 4); 1994 __ ldr(rscratch2, 1995 Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize)); 1996 __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3); 1997 __ andr(sp, rscratch1, -16); 1998 1999 __ dispatch_next(vtos); 2000 // end of PopFrame support 2001 2002 Interpreter::_remove_activation_entry = __ pc(); 2003 2004 // preserve exception over this code sequence 2005 __ pop_ptr(r0); 2006 __ str(r0, Address(rthread, JavaThread::vm_result_offset())); 2007 // remove the activation (without doing throws on illegalMonitorExceptions) 2008 __ remove_activation(vtos, false, true, false); 2009 // restore exception 2010 __ get_vm_result(r0, rthread); 2011 2012 // In between activations - previous activation type unknown yet 2013 // compute continuation point - the continuation point expects the 2014 // following registers set up: 2015 // 2016 // r0: exception 2017 // lr: return address/pc that threw exception 2018 // esp: expression stack of caller 2019 // rfp: fp of caller 2020 __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize))); // save exception & return address 2021 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 2022 SharedRuntime::exception_handler_for_return_address), 2023 rthread, lr); 2024 __ mov(r1, r0); // save exception handler 2025 __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize))); // restore exception & return address 2026 // We might be returning to a deopt handler that expects r3 to 2027 // contain the exception pc 2028 __ mov(r3, lr); 2029 // Note that an "issuing PC" is actually the next PC after the call 2030 __ br(r1); // jump to exception 2031 // handler of caller 2032 } 2033 2034 2035 // 2036 // JVMTI ForceEarlyReturn support 2037 // 2038 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { 2039 address entry = __ pc(); 2040 2041 __ restore_bcp(); 2042 __ restore_locals(); 2043 __ empty_expression_stack(); 2044 __ load_earlyret_value(state); 2045 2046 __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 2047 Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset()); 2048 2049 // Clear the earlyret state 2050 assert(JvmtiThreadState::earlyret_inactive == 0, "should be"); 2051 __ str(zr, cond_addr); 2052 2053 __ remove_activation(state, 2054 false, /* throw_monitor_exception */ 2055 false, /* install_monitor_exception */ 2056 true); /* notify_jvmdi */ 2057 __ ret(lr); 2058 2059 return entry; 2060 } // end of ForceEarlyReturn support 2061 2062 2063 2064 //----------------------------------------------------------------------------- 2065 // Helper for vtos entry point generation 2066 2067 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, 2068 address& bep, 2069 address& cep, 2070 address& sep, 2071 address& aep, 2072 address& iep, 2073 address& lep, 2074 address& fep, 2075 address& dep, 2076 address& vep) { 2077 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 2078 Label L; 2079 aep = __ pc(); __ push_ptr(); __ b(L); 2080 fep = __ pc(); __ push_f(); __ b(L); 2081 dep = __ pc(); __ push_d(); __ b(L); 2082 lep = __ pc(); __ push_l(); __ b(L); 2083 bep = cep = sep = 2084 iep = __ pc(); __ push_i(); 2085 vep = __ pc(); 2086 __ bind(L); 2087 generate_and_dispatch(t); 2088 } 2089 2090 //----------------------------------------------------------------------------- 2091 2092 // Non-product code 2093 #ifndef PRODUCT 2094 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 2095 address entry = __ pc(); 2096 2097 __ push(lr); 2098 __ push(state); 2099 __ push(RegSet::range(r0, r15), sp); 2100 __ mov(c_rarg2, r0); // Pass itos 2101 __ call_VM(noreg, 2102 CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), 2103 c_rarg1, c_rarg2, c_rarg3); 2104 __ pop(RegSet::range(r0, r15), sp); 2105 __ pop(state); 2106 __ pop(lr); 2107 __ ret(lr); // return from result handler 2108 2109 return entry; 2110 } 2111 2112 void TemplateInterpreterGenerator::count_bytecode() { 2113 Register rscratch3 = r0; 2114 __ push(rscratch1); 2115 __ push(rscratch2); 2116 __ push(rscratch3); 2117 __ mov(rscratch3, (address) &BytecodeCounter::_counter_value); 2118 __ atomic_add(noreg, 1, rscratch3); 2119 __ pop(rscratch3); 2120 __ pop(rscratch2); 2121 __ pop(rscratch1); 2122 } 2123 2124 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { ; } 2125 2126 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { ; } 2127 2128 2129 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 2130 // Call a little run-time stub to avoid blow-up for each bytecode. 2131 // The run-time runtime saves the right registers, depending on 2132 // the tosca in-state for the given template. 2133 2134 assert(Interpreter::trace_code(t->tos_in()) != NULL, 2135 "entry must have been generated"); 2136 __ bl(Interpreter::trace_code(t->tos_in())); 2137 __ reinit_heapbase(); 2138 } 2139 2140 2141 void TemplateInterpreterGenerator::stop_interpreter_at() { 2142 Label L; 2143 __ push(rscratch1); 2144 __ mov(rscratch1, (address) &BytecodeCounter::_counter_value); 2145 __ ldr(rscratch1, Address(rscratch1)); 2146 __ mov(rscratch2, StopInterpreterAt); 2147 __ cmpw(rscratch1, rscratch2); 2148 __ br(Assembler::NE, L); 2149 __ brk(0); 2150 __ bind(L); 2151 __ pop(rscratch1); 2152 } 2153 2154 #ifdef BUILTIN_SIM 2155 2156 #include <sys/mman.h> 2157 #include <unistd.h> 2158 2159 extern "C" { 2160 static int PAGESIZE = getpagesize(); 2161 int is_mapped_address(u_int64_t address) 2162 { 2163 address = (address & ~((u_int64_t)PAGESIZE - 1)); 2164 if (msync((void *)address, PAGESIZE, MS_ASYNC) == 0) { 2165 return true; 2166 } 2167 if (errno != ENOMEM) { 2168 return true; 2169 } 2170 return false; 2171 } 2172 2173 void bccheck1(u_int64_t pc, u_int64_t fp, char *method, int *bcidx, int *framesize, char *decode) 2174 { 2175 if (method != 0) { 2176 method[0] = '\0'; 2177 } 2178 if (bcidx != 0) { 2179 *bcidx = -2; 2180 } 2181 if (decode != 0) { 2182 decode[0] = 0; 2183 } 2184 2185 if (framesize != 0) { 2186 *framesize = -1; 2187 } 2188 2189 if (Interpreter::contains((address)pc)) { 2190 AArch64Simulator *sim = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck); 2191 Method* meth; 2192 address bcp; 2193 if (fp) { 2194 #define FRAME_SLOT_METHOD 3 2195 #define FRAME_SLOT_BCP 7 2196 meth = (Method*)sim->getMemory()->loadU64(fp - (FRAME_SLOT_METHOD << 3)); 2197 bcp = (address)sim->getMemory()->loadU64(fp - (FRAME_SLOT_BCP << 3)); 2198 #undef FRAME_SLOT_METHOD 2199 #undef FRAME_SLOT_BCP 2200 } else { 2201 meth = (Method*)sim->getCPUState().xreg(RMETHOD, 0); 2202 bcp = (address)sim->getCPUState().xreg(RBCP, 0); 2203 } 2204 if (meth->is_native()) { 2205 return; 2206 } 2207 if(method && meth->is_method()) { 2208 ResourceMark rm; 2209 method[0] = 'I'; 2210 method[1] = ' '; 2211 meth->name_and_sig_as_C_string(method + 2, 398); 2212 } 2213 if (bcidx) { 2214 if (meth->contains(bcp)) { 2215 *bcidx = meth->bci_from(bcp); 2216 } else { 2217 *bcidx = -2; 2218 } 2219 } 2220 if (decode) { 2221 if (!BytecodeTracer::closure()) { 2222 BytecodeTracer::set_closure(BytecodeTracer::std_closure()); 2223 } 2224 stringStream str(decode, 400); 2225 BytecodeTracer::trace(meth, bcp, &str); 2226 } 2227 } else { 2228 if (method) { 2229 CodeBlob *cb = CodeCache::find_blob((address)pc); 2230 if (cb != NULL) { 2231 if (cb->is_nmethod()) { 2232 ResourceMark rm; 2233 nmethod* nm = (nmethod*)cb; 2234 method[0] = 'C'; 2235 method[1] = ' '; 2236 nm->method()->name_and_sig_as_C_string(method + 2, 398); 2237 } else if (cb->is_adapter_blob()) { 2238 strcpy(method, "B adapter blob"); 2239 } else if (cb->is_runtime_stub()) { 2240 strcpy(method, "B runtime stub"); 2241 } else if (cb->is_exception_stub()) { 2242 strcpy(method, "B exception stub"); 2243 } else if (cb->is_deoptimization_stub()) { 2244 strcpy(method, "B deoptimization stub"); 2245 } else if (cb->is_safepoint_stub()) { 2246 strcpy(method, "B safepoint stub"); 2247 } else if (cb->is_uncommon_trap_stub()) { 2248 strcpy(method, "B uncommon trap stub"); 2249 } else if (cb->contains((address)StubRoutines::call_stub())) { 2250 strcpy(method, "B call stub"); 2251 } else { 2252 strcpy(method, "B unknown blob : "); 2253 strcat(method, cb->name()); 2254 } 2255 if (framesize != NULL) { 2256 *framesize = cb->frame_size(); 2257 } 2258 } 2259 } 2260 } 2261 } 2262 2263 2264 JNIEXPORT void bccheck(u_int64_t pc, u_int64_t fp, char *method, int *bcidx, int *framesize, char *decode) 2265 { 2266 bccheck1(pc, fp, method, bcidx, framesize, decode); 2267 } 2268 } 2269 2270 #endif // BUILTIN_SIM 2271 #endif // !PRODUCT