/* * Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/moduleEntry.hpp" #include "classfile/packageEntry.hpp" #include "classfile/symbolTable.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/vmSymbols.hpp" #include "gc/shared/collectedHeap.inline.hpp" #include "memory/iterator.inline.hpp" #include "memory/metadataFactory.hpp" #include "memory/metaspaceClosure.hpp" #include "memory/oopFactory.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "oops/arrayKlass.inline.hpp" #include "oops/arrayOop.hpp" #include "oops/instanceKlass.hpp" #include "oops/klass.inline.hpp" #include "oops/objArrayKlass.hpp" #include "oops/objArrayOop.inline.hpp" #include "oops/oop.inline.hpp" #include "oops/valueKlass.hpp" #include "oops/valueArrayOop.hpp" #include "oops/valueArrayOop.inline.hpp" #include "oops/verifyOopClosure.hpp" #include "runtime/handles.inline.hpp" #include "runtime/mutexLocker.hpp" #include "utilities/copy.hpp" #include "utilities/macros.hpp" #include "oops/valueArrayKlass.hpp" // Allocation... ValueArrayKlass::ValueArrayKlass(Klass* element_klass, Symbol* name) : ArrayKlass(name, ID) { assert(element_klass->is_value(), "Expected Value"); set_element_klass(ValueKlass::cast(element_klass)); set_class_loader_data(element_klass->class_loader_data()); set_layout_helper(array_layout_helper(ValueKlass::cast(element_klass))); assert(is_array_klass(), "sanity"); assert(is_valueArray_klass(), "sanity"); CMH("tweak name symbol refcnt ?") #ifndef PRODUCT if (PrintValueArrayLayout) { print(); } #endif } ValueKlass* ValueArrayKlass::element_klass() const { return ValueKlass::cast(_element_klass); } void ValueArrayKlass::set_element_klass(Klass* k) { _element_klass = k; } ValueArrayKlass* ValueArrayKlass::allocate_klass(Klass* element_klass, TRAPS) { assert(ValueArrayFlatten, "Flatten array required"); assert(ValueKlass::cast(element_klass)->is_atomic() || (!ValueArrayAtomicAccess), "Atomic by-default"); /* * MVT->LWorld, now need to allocate secondaries array types, just like objArrayKlass... * ...so now we are trying out covariant array types, just copy objArrayKlass * TODO refactor any remaining commonality */ // Eagerly allocate the direct array supertype, which would be "[L;" for this "[Q;" Klass* super_klass = element_klass->array_klass_or_null(ArrayStorageProperties::empty); if (super_klass == NULL) { MutexUnlocker mu(MultiArray_lock); // allocate super...need to drop the lock element_klass->array_klass(ArrayStorageProperties::empty, 1, CHECK_NULL); // retry, start from the beginning since lock dropped... Klass* ak = element_klass->array_klass(ArrayStorageProperties::flattened_and_null_free, 1, CHECK_NULL); return ValueArrayKlass::cast(ak); } Symbol* name = ArrayKlass::create_element_klass_array_name(true, element_klass, CHECK_NULL); ClassLoaderData* loader_data = element_klass->class_loader_data(); int size = ArrayKlass::static_size(ValueArrayKlass::header_size()); ValueArrayKlass* vak = new (loader_data, size, THREAD) ValueArrayKlass(element_klass, name); loader_data->add_class(vak); ModuleEntry* module = vak->module(); assert(module != NULL, "No module entry for array"); complete_create_array_klass(vak, super_klass, module, CHECK_NULL); return vak; } ValueArrayKlass* ValueArrayKlass::allocate_klass(ArrayStorageProperties storage_props, Klass* element_klass, TRAPS) { assert(storage_props.is_flattened(), "Expected flat storage"); return allocate_klass(element_klass, THREAD); } void ValueArrayKlass::initialize(TRAPS) { element_klass()->initialize(THREAD); } // Oops allocation... valueArrayOop ValueArrayKlass::allocate(int length, TRAPS) { if (length < 0) { THROW_0(vmSymbols::java_lang_NegativeArraySizeException()); } if (length > max_elements()) { report_java_out_of_memory("Requested array size exceeds VM limit"); JvmtiExport::post_array_size_exhausted(); THROW_OOP_0(Universe::out_of_memory_error_array_size()); } int size = valueArrayOopDesc::object_size(layout_helper(), length); return (valueArrayOop) Universe::heap()->array_allocate(this, size, length, true, THREAD); } oop ValueArrayKlass::multi_allocate(int rank, jint* last_size, TRAPS) { // For valueArrays this is only called for the last dimension assert(rank == 1, "just checking"); int length = *last_size; return allocate(length, THREAD); } jint ValueArrayKlass::array_layout_helper(ValueKlass* vk) { BasicType etype = T_VALUETYPE; int atag = _lh_array_tag_vt_value; int esize = upper_log2(vk->raw_value_byte_size()); int hsize = arrayOopDesc::base_offset_in_bytes(etype); int lh = (atag << _lh_array_tag_shift) | (hsize << _lh_header_size_shift) | ((int)etype << _lh_element_type_shift) | ((esize) << _lh_log2_element_size_shift); assert(lh < (int)_lh_neutral_value, "must look like an array layout"); assert(layout_helper_is_array(lh), "correct kind"); assert(layout_helper_is_valueArray(lh), "correct kind"); assert(!layout_helper_is_typeArray(lh), "correct kind"); assert(!layout_helper_is_objArray(lh), "correct kind"); assert(layout_helper_header_size(lh) == hsize, "correct decode"); assert(layout_helper_element_type(lh) == etype, "correct decode"); assert(layout_helper_log2_element_size(lh) == esize, "correct decode"); assert((1 << esize) < BytesPerLong || is_aligned(hsize, HeapWordsPerLong), "unaligned base"); return lh; } int ValueArrayKlass::oop_size(oop obj) const { assert(obj->is_valueArray(),"must be a value array"); valueArrayOop array = valueArrayOop(obj); return array->object_size(); } jint ValueArrayKlass::max_elements() const { return arrayOopDesc::max_array_length(arrayOopDesc::header_size(T_VALUETYPE), element_byte_size()); } oop ValueArrayKlass::protection_domain() const { return element_klass()->protection_domain(); } // Temp hack having this here: need to move towards Access API static bool needs_backwards_copy(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length) { return oopDesc::equals(s, d) && (dst_pos > src_pos) && (dst_pos - src_pos) < length; } void ValueArrayKlass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) { assert(s->is_objArray() || s->is_valueArray(), "must be obj or value array"); // Check destination if ((!d->is_valueArray()) && (!d->is_objArray())) { THROW(vmSymbols::java_lang_ArrayStoreException()); } // Check if all offsets and lengths are non negative if (src_pos < 0 || dst_pos < 0 || length < 0) { THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException()); } // Check if the ranges are valid if ( (((unsigned int) length + (unsigned int) src_pos) > (unsigned int) s->length()) || (((unsigned int) length + (unsigned int) dst_pos) > (unsigned int) d->length()) ) { THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException()); } // Check zero copy if (length == 0) return; ArrayKlass* sk = ArrayKlass::cast(s->klass()); ArrayKlass* dk = ArrayKlass::cast(d->klass()); Klass* d_elem_klass = dk->element_klass(); Klass* s_elem_klass = sk->element_klass(); /**** CMH: compare and contrast impl, re-factor once we find edge cases... ****/ if (sk->is_valueArray_klass()) { assert(sk == this, "Unexpected call to copy_array"); // Check subtype, all src homogeneous, so just once if (!s_elem_klass->is_subtype_of(d_elem_klass)) { THROW(vmSymbols::java_lang_ArrayStoreException()); } valueArrayOop sa = valueArrayOop(s); ValueKlass* s_elem_vklass = element_klass(); // valueArray-to-valueArray if (dk->is_valueArray_klass()) { // element types MUST be exact, subtype check would be dangerous if (dk != this) { THROW(vmSymbols::java_lang_ArrayStoreException()); } valueArrayOop da = valueArrayOop(d); address dst = (address) da->value_at_addr(dst_pos, layout_helper()); address src = (address) sa->value_at_addr(src_pos, layout_helper()); if (contains_oops()) { int elem_incr = 1 << log2_element_size(); address src_end = src + (length << log2_element_size()); if (needs_backwards_copy(s, src_pos, d, dst_pos, length)) { swap(src, src_end); dst = dst + (length << log2_element_size()); do { src -= elem_incr; dst -= elem_incr; s_elem_vklass->value_store(src, dst, element_byte_size(), true, false); } while (src > src_end); } else { address src_end = src + (length << log2_element_size()); while (src < src_end) { s_elem_vklass->value_store(src, dst, element_byte_size(), true, false); src += elem_incr; dst += elem_incr; } } } else { // we are basically a type array...don't bother limiting element copy // it would have to be a lot wasted space to be worth value_store() calls, need a setting here ? Copy::conjoint_memory_atomic(src, dst, (size_t)length << log2_element_size()); } } else { // valueArray-to-objArray assert(dk->is_objArray_klass(), "Expected objArray here"); // Need to allocate each new src elem payload -> dst oop objArrayHandle dh(THREAD, (objArrayOop)d); valueArrayHandle sh(THREAD, sa); int dst_end = dst_pos + length; while (dst_pos < dst_end) { oop o = s_elem_vklass->allocate_instance(CHECK); s_elem_vklass->value_store(sh->value_at_addr(src_pos, layout_helper()), s_elem_vklass->data_for_oop(o), true, true); dh->obj_at_put(dst_pos, o); dst_pos++; src_pos++; } } } else { assert(s->is_objArray(), "Expected objArray"); objArrayOop sa = objArrayOop(s); assert(d->is_valueArray(), "Excepted valueArray"); // objArray-to-valueArray ValueKlass* d_elem_vklass = ValueKlass::cast(d_elem_klass); valueArrayOop da = valueArrayOop(d); int src_end = src_pos + length; int delem_incr = 1 << dk->log2_element_size(); address dst = (address) da->value_at_addr(dst_pos, layout_helper()); while (src_pos < src_end) { oop se = sa->obj_at(src_pos); if (se == NULL) { THROW(vmSymbols::java_lang_NullPointerException()); } // Check exact type per element if (se->klass() != d_elem_klass) { THROW(vmSymbols::java_lang_ArrayStoreException()); } d_elem_vklass->value_store(d_elem_vklass->data_for_oop(se), dst, true, false); dst += delem_incr; src_pos++; } } } Klass* ValueArrayKlass::array_klass_impl(ArrayStorageProperties storage_props, bool or_null, int n, TRAPS) { assert(storage_props.is_flattened() || n > 1, "Expected flat storage"); assert(dimension() <= n, "check order of chain"); int dim = dimension(); if (dim == n) return this; if (higher_dimension_acquire() == NULL) { if (or_null) return NULL; ResourceMark rm; { // Ensure atomic creation of higher dimensions MutexLocker mu(MultiArray_lock, THREAD); // Check if another thread beat us if (higher_dimension() == NULL) { // Create multi-dim klass object and link them together Klass* k = ObjArrayKlass::allocate_objArray_klass(storage_props, dim + 1, this, CHECK_NULL); ObjArrayKlass* ak = ObjArrayKlass::cast(k); ak->set_lower_dimension(this); OrderAccess::storestore(); release_set_higher_dimension(ak); assert(ak->is_objArray_klass(), "incorrect initialization of ObjArrayKlass"); } } } else { CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops()); } ObjArrayKlass *ak = ObjArrayKlass::cast(higher_dimension()); if (or_null) { return ak->array_klass_or_null(storage_props, n); } return ak->array_klass(storage_props, n, THREAD); } Klass* ValueArrayKlass::array_klass_impl(ArrayStorageProperties storage_props, bool or_null, TRAPS) { return array_klass_impl(storage_props, or_null, dimension() + 1, THREAD); } ModuleEntry* ValueArrayKlass::module() const { assert(element_klass() != NULL, "ValueArrayKlass returned unexpected NULL bottom_klass"); // The array is defined in the module of its bottom class return element_klass()->module(); } PackageEntry* ValueArrayKlass::package() const { assert(element_klass() != NULL, "ValuerrayKlass returned unexpected NULL bottom_klass"); return element_klass()->package(); } bool ValueArrayKlass::can_be_primary_super_slow() const { return true; } GrowableArray* ValueArrayKlass::compute_secondary_supers(int num_extra_slots, Array* transitive_interfaces) { assert(transitive_interfaces == NULL, "sanity"); // interfaces = { cloneable_klass, serializable_klass, elemSuper[], ... }; Array* elem_supers = element_klass()->secondary_supers(); int num_elem_supers = elem_supers == NULL ? 0 : elem_supers->length(); int num_secondaries = num_extra_slots + 2 + num_elem_supers; if (num_secondaries == 2) { // Must share this for correct bootstrapping! set_secondary_supers(Universe::the_array_interfaces_array()); return NULL; } else { GrowableArray* secondaries = new GrowableArray(num_elem_supers+2); secondaries->push(SystemDictionary::Cloneable_klass()); secondaries->push(SystemDictionary::Serializable_klass()); for (int i = 0; i < num_elem_supers; i++) { Klass* elem_super = (Klass*) elem_supers->at(i); Klass* array_super = elem_super->array_klass_or_null(ArrayStorageProperties::empty); assert(array_super != NULL, "must already have been created"); secondaries->push(array_super); } return secondaries; } } void ValueArrayKlass::print_on(outputStream* st) const { #ifndef PRODUCT assert(!is_objArray_klass(), "Unimplemented"); st->print("Value Type Array: "); Klass::print_on(st); st->print(" - element klass: "); element_klass()->print_value_on(st); st->cr(); int elem_size = element_byte_size(); st->print(" - element size %i ", elem_size); st->print("aligned layout size %i", 1 << layout_helper_log2_element_size(layout_helper())); st->cr(); #endif //PRODUCT } void ValueArrayKlass::print_value_on(outputStream* st) const { assert(is_klass(), "must be klass"); element_klass()->print_value_on(st); st->print("[]"); } #ifndef PRODUCT void ValueArrayKlass::oop_print_on(oop obj, outputStream* st) { ArrayKlass::oop_print_on(obj, st); valueArrayOop va = valueArrayOop(obj); ValueKlass* vk = element_klass(); int print_len = MIN2((intx) va->length(), MaxElementPrintSize); for(int index = 0; index < print_len; index++) { int off = (address) va->value_at_addr(index, layout_helper()) - (address) obj; st->print_cr(" - Index %3d offset %3d: ", index, off); oop obj = (oop) ((address)va->value_at_addr(index, layout_helper()) - vk->first_field_offset()); FieldPrinter print_field(st, obj); vk->do_nonstatic_fields(&print_field); st->cr(); } int remaining = va->length() - print_len; if (remaining > 0) { st->print_cr(" - <%d more elements, increase MaxElementPrintSize to print>", remaining); } } #endif //PRODUCT void ValueArrayKlass::oop_print_value_on(oop obj, outputStream* st) { assert(obj->is_valueArray(), "must be valueArray"); st->print("a "); element_klass()->print_value_on(st); int len = valueArrayOop(obj)->length(); st->print("[%d] ", len); obj->print_address_on(st); if (PrintMiscellaneous && (WizardMode || Verbose)) { int lh = layout_helper(); st->print("{"); for (int i = 0; i < len; i++) { if (i > 4) { st->print("..."); break; } st->print(" " INTPTR_FORMAT, (intptr_t)(void*)valueArrayOop(obj)->value_at_addr(i , lh)); } st->print(" }"); } } // Verification class VerifyElementClosure: public BasicOopIterateClosure { public: virtual void do_oop(oop* p) { VerifyOopClosure::verify_oop.do_oop(p); } virtual void do_oop(narrowOop* p) { VerifyOopClosure::verify_oop.do_oop(p); } }; void ValueArrayKlass::oop_verify_on(oop obj, outputStream* st) { ArrayKlass::oop_verify_on(obj, st); guarantee(obj->is_valueArray(), "must be valueArray"); if (contains_oops()) { valueArrayOop va = valueArrayOop(obj); VerifyElementClosure ec; va->oop_iterate(&ec); } } void ValueArrayKlass::verify_on(outputStream* st) { ArrayKlass::verify_on(st); guarantee(element_klass()->is_value(), "should be value type klass"); }