1 /*
   2  * Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OOPS_ACCESS_HPP
  26 #define SHARE_OOPS_ACCESS_HPP
  27 
  28 #include "memory/allocation.hpp"
  29 #include "oops/accessBackend.hpp"
  30 #include "oops/accessDecorators.hpp"
  31 #include "oops/oopsHierarchy.hpp"
  32 #include "utilities/debug.hpp"
  33 #include "utilities/globalDefinitions.hpp"
  34 
  35 
  36 // = GENERAL =
  37 // Access is an API for performing accesses with declarative semantics. Each access can have a number of "decorators".
  38 // A decorator is an attribute or property that affects the way a memory access is performed in some way.
  39 // There are different groups of decorators. Some have to do with memory ordering, others to do with,
  40 // e.g. strength of references, strength of GC barriers, or whether compression should be applied or not.
  41 // Some decorators are set at buildtime, such as whether primitives require GC barriers or not, others
  42 // at callsites such as whether an access is in the heap or not, and others are resolved at runtime
  43 // such as GC-specific barriers and encoding/decoding compressed oops. For more information about what
  44 // decorators are available, cf. oops/accessDecorators.hpp.
  45 // By pipelining handling of these decorators, the design of the Access API allows separation of concern
  46 // over the different orthogonal concerns of decorators, while providing a powerful way of
  47 // expressing these orthogonal semantic properties in a unified way.
  48 //
  49 // == OPERATIONS ==
  50 // * load: Load a value from an address.
  51 // * load_at: Load a value from an internal pointer relative to a base object.
  52 // * store: Store a value at an address.
  53 // * store_at: Store a value in an internal pointer relative to a base object.
  54 // * atomic_cmpxchg: Atomically compare-and-swap a new value at an address if previous value matched the compared value.
  55 // * atomic_cmpxchg_at: Atomically compare-and-swap a new value at an internal pointer address if previous value matched the compared value.
  56 // * atomic_xchg: Atomically swap a new value at an address if previous value matched the compared value.
  57 // * atomic_xchg_at: Atomically swap a new value at an internal pointer address if previous value matched the compared value.
  58 // * arraycopy: Copy data from one heap array to another heap array. The ArrayAccess class has convenience functions for this.
  59 // * clone: Clone the contents of an object to a newly allocated object.
  60 // * resolve: Resolve a stable to-space invariant oop that is guaranteed not to relocate its payload until a subsequent thread transition.
  61 //
  62 // == IMPLEMENTATION ==
  63 // Each access goes through the following steps in a template pipeline.
  64 // There are essentially 5 steps for each access:
  65 // * Step 1:   Set default decorators and decay types. This step gets rid of CV qualifiers
  66 //             and sets default decorators to sensible values.
  67 // * Step 2:   Reduce types. This step makes sure there is only a single T type and not
  68 //             multiple types. The P type of the address and T type of the value must
  69 //             match.
  70 // * Step 3:   Pre-runtime dispatch. This step checks whether a runtime call can be
  71 //             avoided, and in that case avoids it (calling raw accesses or
  72 //             primitive accesses in a build that does not require primitive GC barriers)
  73 // * Step 4:   Runtime-dispatch. This step performs a runtime dispatch to the corresponding
  74 //             BarrierSet::AccessBarrier accessor that attaches GC-required barriers
  75 //             to the access.
  76 // * Step 5.a: Barrier resolution. This step is invoked the first time a runtime-dispatch
  77 //             happens for an access. The appropriate BarrierSet::AccessBarrier accessor
  78 //             is resolved, then the function pointer is updated to that accessor for
  79 //             future invocations.
  80 // * Step 5.b: Post-runtime dispatch. This step now casts previously unknown types such
  81 //             as the address type of an oop on the heap (is it oop* or narrowOop*) to
  82 //             the appropriate type. It also splits sufficiently orthogonal accesses into
  83 //             different functions, such as whether the access involves oops or primitives
  84 //             and whether the access is performed on the heap or outside. Then the
  85 //             appropriate BarrierSet::AccessBarrier is called to perform the access.
  86 //
  87 // The implementation of step 1-4 resides in in accessBackend.hpp, to allow selected
  88 // accesses to be accessible from only access.hpp, as opposed to access.inline.hpp.
  89 // Steps 5.a and 5.b require knowledge about the GC backends, and therefore needs to
  90 // include the various GC backend .inline.hpp headers. Their implementation resides in
  91 // access.inline.hpp. The accesses that are allowed through the access.hpp file
  92 // must be instantiated in access.cpp using the INSTANTIATE_HPP_ACCESS macro.
  93 
  94 template <DecoratorSet decorators = DECORATORS_NONE>
  95 class Access: public AllStatic {
  96   // This function asserts that if an access gets passed in a decorator outside
  97   // of the expected_decorators, then something is wrong. It additionally checks
  98   // the consistency of the decorators so that supposedly disjoint decorators are indeed
  99   // disjoint. For example, an access can not be both in heap and on root at the
 100   // same time.
 101   template <DecoratorSet expected_decorators>
 102   static void verify_decorators();
 103 
 104   template <DecoratorSet expected_mo_decorators>
 105   static void verify_primitive_decorators() {
 106     const DecoratorSet primitive_decorators = (AS_DECORATOR_MASK ^ AS_NO_KEEPALIVE) |
 107                                               IN_HEAP | IS_ARRAY;
 108     verify_decorators<expected_mo_decorators | primitive_decorators>();
 109   }
 110 
 111   template <DecoratorSet expected_mo_decorators>
 112   static void verify_oop_decorators() {
 113     const DecoratorSet oop_decorators = AS_DECORATOR_MASK | IN_DECORATOR_MASK |
 114                                         (ON_DECORATOR_MASK ^ ON_UNKNOWN_OOP_REF) | // no unknown oop refs outside of the heap
 115                                         IS_ARRAY | IS_NOT_NULL | IS_DEST_UNINITIALIZED;
 116     verify_decorators<expected_mo_decorators | oop_decorators>();
 117   }
 118 
 119   template <DecoratorSet expected_mo_decorators>
 120   static void verify_heap_oop_decorators() {
 121     const DecoratorSet heap_oop_decorators = AS_DECORATOR_MASK | ON_DECORATOR_MASK |
 122                                              IN_HEAP | IS_ARRAY | IS_NOT_NULL;
 123     verify_decorators<expected_mo_decorators | heap_oop_decorators>();
 124   }
 125 
 126   static const DecoratorSet load_mo_decorators = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_ACQUIRE | MO_SEQ_CST;
 127   static const DecoratorSet store_mo_decorators = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_RELEASE | MO_SEQ_CST;
 128   static const DecoratorSet atomic_xchg_mo_decorators = MO_SEQ_CST;
 129   static const DecoratorSet atomic_cmpxchg_mo_decorators = MO_RELAXED | MO_SEQ_CST;
 130 
 131 protected:
 132   template <typename T>
 133   static inline void oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
 134                                    arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 135                                    size_t length) {
 136     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
 137                       AS_DECORATOR_MASK | IS_ARRAY | IS_DEST_UNINITIALIZED>();
 138     AccessInternal::arraycopy<decorators | INTERNAL_VALUE_IS_OOP>(src_obj, src_offset_in_bytes, src_raw,
 139                                                                   dst_obj, dst_offset_in_bytes, dst_raw,
 140                                                                   length);
 141   }
 142 
 143   template <typename T>
 144   static inline void arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
 145                                arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 146                                size_t length) {
 147     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
 148                       AS_DECORATOR_MASK | IS_ARRAY>();
 149     AccessInternal::arraycopy<decorators>(src_obj, src_offset_in_bytes, src_raw,
 150                                           dst_obj, dst_offset_in_bytes, dst_raw,
 151                                           length);
 152   }
 153 
 154 public:
 155   // Primitive heap accesses
 156   static inline AccessInternal::LoadAtProxy<decorators> load_at(oop base, ptrdiff_t offset) {
 157     verify_primitive_decorators<load_mo_decorators>();
 158     return AccessInternal::LoadAtProxy<decorators>(base, offset);
 159   }
 160 
 161   template <typename T>
 162   static inline void store_at(oop base, ptrdiff_t offset, T value) {
 163     verify_primitive_decorators<store_mo_decorators>();
 164     AccessInternal::store_at<decorators>(base, offset, value);
 165   }
 166 
 167   template <typename T>
 168   static inline T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
 169     verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
 170     return AccessInternal::atomic_cmpxchg_at<decorators>(new_value, base, offset, compare_value);
 171   }
 172 
 173   template <typename T>
 174   static inline T atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
 175     verify_primitive_decorators<atomic_xchg_mo_decorators>();
 176     return AccessInternal::atomic_xchg_at<decorators>(new_value, base, offset);
 177   }
 178 
 179   // Oop heap accesses
 180   static inline AccessInternal::OopLoadAtProxy<decorators> oop_load_at(oop base, ptrdiff_t offset) {
 181     verify_heap_oop_decorators<load_mo_decorators>();
 182     return AccessInternal::OopLoadAtProxy<decorators>(base, offset);
 183   }
 184 
 185   template <typename T>
 186   static inline void oop_store_at(oop base, ptrdiff_t offset, T value) {
 187     verify_heap_oop_decorators<store_mo_decorators>();
 188     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
 189     OopType oop_value = value;
 190     AccessInternal::store_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, oop_value);
 191   }
 192 
 193   template <typename T>
 194   static inline T oop_atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
 195     verify_heap_oop_decorators<atomic_cmpxchg_mo_decorators>();
 196     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
 197     OopType new_oop_value = new_value;
 198     OopType compare_oop_value = compare_value;
 199     return AccessInternal::atomic_cmpxchg_at<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, base, offset, compare_oop_value);
 200   }
 201 
 202   template <typename T>
 203   static inline T oop_atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
 204     verify_heap_oop_decorators<atomic_xchg_mo_decorators>();
 205     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
 206     OopType new_oop_value = new_value;
 207     return AccessInternal::atomic_xchg_at<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, base, offset);
 208   }
 209 
 210   // Clone an object from src to dst
 211   static inline void clone(oop src, oop dst, size_t size) {
 212     verify_decorators<IN_HEAP>();
 213     AccessInternal::clone<decorators>(src, dst, size);
 214   }
 215 
 216   // Primitive accesses
 217   template <typename P>
 218   static inline P load(P* addr) {
 219     verify_primitive_decorators<load_mo_decorators>();
 220     return AccessInternal::load<decorators, P, P>(addr);
 221   }
 222 
 223   template <typename P, typename T>
 224   static inline void store(P* addr, T value) {
 225     verify_primitive_decorators<store_mo_decorators>();
 226     AccessInternal::store<decorators>(addr, value);
 227   }
 228 
 229   template <typename P, typename T>
 230   static inline T atomic_cmpxchg(T new_value, P* addr, T compare_value) {
 231     verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
 232     return AccessInternal::atomic_cmpxchg<decorators>(new_value, addr, compare_value);
 233   }
 234 
 235   template <typename P, typename T>
 236   static inline T atomic_xchg(T new_value, P* addr) {
 237     verify_primitive_decorators<atomic_xchg_mo_decorators>();
 238     return AccessInternal::atomic_xchg<decorators>(new_value, addr);
 239   }
 240 
 241   // Oop accesses
 242   template <typename P>
 243   static inline AccessInternal::OopLoadProxy<P, decorators> oop_load(P* addr) {
 244     verify_oop_decorators<load_mo_decorators>();
 245     return AccessInternal::OopLoadProxy<P, decorators>(addr);
 246   }
 247 
 248   template <typename P, typename T>
 249   static inline void oop_store(P* addr, T value) {
 250     verify_oop_decorators<store_mo_decorators>();
 251     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
 252     OopType oop_value = value;
 253     AccessInternal::store<decorators | INTERNAL_VALUE_IS_OOP>(addr, oop_value);
 254   }
 255 
 256   template <typename P, typename T>
 257   static inline T oop_atomic_cmpxchg(T new_value, P* addr, T compare_value) {
 258     verify_oop_decorators<atomic_cmpxchg_mo_decorators>();
 259     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
 260     OopType new_oop_value = new_value;
 261     OopType compare_oop_value = compare_value;
 262     return AccessInternal::atomic_cmpxchg<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, addr, compare_oop_value);
 263   }
 264 
 265   template <typename P, typename T>
 266   static inline T oop_atomic_xchg(T new_value, P* addr) {
 267     verify_oop_decorators<atomic_xchg_mo_decorators>();
 268     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
 269     OopType new_oop_value = new_value;
 270     return AccessInternal::atomic_xchg<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, addr);
 271   }
 272 
 273   static oop resolve(oop obj) {
 274     verify_decorators<DECORATORS_NONE>();
 275     return AccessInternal::resolve<decorators>(obj);
 276   }
 277 };
 278 
 279 // Helper for performing raw accesses (knows only of memory ordering
 280 // atomicity decorators as well as compressed oops)
 281 template <DecoratorSet decorators = DECORATORS_NONE>
 282 class RawAccess: public Access<AS_RAW | decorators> {};
 283 
 284 // Helper for performing normal accesses on the heap. These accesses
 285 // may resolve an accessor on a GC barrier set
 286 template <DecoratorSet decorators = DECORATORS_NONE>
 287 class HeapAccess: public Access<IN_HEAP | decorators> {};
 288 
 289 // Helper for performing normal accesses in roots. These accesses
 290 // may resolve an accessor on a GC barrier set
 291 template <DecoratorSet decorators = DECORATORS_NONE>
 292 class NativeAccess: public Access<IN_NATIVE | decorators> {};
 293 
 294 // Helper for array access.
 295 template <DecoratorSet decorators = DECORATORS_NONE>
 296 class ArrayAccess: public HeapAccess<IS_ARRAY | decorators> {
 297   typedef HeapAccess<IS_ARRAY | decorators> AccessT;
 298 public:
 299   template <typename T>
 300   static inline void arraycopy(arrayOop src_obj, size_t src_offset_in_bytes,
 301                                arrayOop dst_obj, size_t dst_offset_in_bytes,
 302                                size_t length) {
 303     AccessT::arraycopy(src_obj, src_offset_in_bytes, reinterpret_cast<const T*>(NULL),
 304                        dst_obj, dst_offset_in_bytes, reinterpret_cast<T*>(NULL),
 305                        length);
 306   }
 307 
 308   template <typename T>
 309   static inline void arraycopy_to_native(arrayOop src_obj, size_t src_offset_in_bytes,
 310                                          T* dst,
 311                                          size_t length) {
 312     AccessT::arraycopy(src_obj, src_offset_in_bytes, reinterpret_cast<const T*>(NULL),
 313                        NULL, 0, dst,
 314                        length);
 315   }
 316 
 317   template <typename T>
 318   static inline void arraycopy_from_native(const T* src,
 319                                            arrayOop dst_obj, size_t dst_offset_in_bytes,
 320                                            size_t length) {
 321     AccessT::arraycopy(NULL, 0, src,
 322                        dst_obj, dst_offset_in_bytes, reinterpret_cast<T*>(NULL),
 323                        length);
 324   }
 325 
 326   static inline void oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes,
 327                                    arrayOop dst_obj, size_t dst_offset_in_bytes,
 328                                    size_t length) {
 329     AccessT::oop_arraycopy(src_obj, src_offset_in_bytes, reinterpret_cast<const HeapWord*>(NULL),
 330                            dst_obj, dst_offset_in_bytes, reinterpret_cast<HeapWord*>(NULL),
 331                            length);
 332   }
 333 
 334   template <typename T>
 335   static inline void oop_arraycopy_raw(T* src, T* dst, size_t length) {
 336     AccessT::oop_arraycopy(NULL, 0, src,
 337                            NULL, 0, dst,
 338                            length);
 339   }
 340 
 341 };
 342 
 343 template <DecoratorSet decorators>
 344 template <DecoratorSet expected_decorators>
 345 void Access<decorators>::verify_decorators() {
 346   STATIC_ASSERT((~expected_decorators & decorators) == 0); // unexpected decorator used
 347   const DecoratorSet barrier_strength_decorators = decorators & AS_DECORATOR_MASK;
 348   STATIC_ASSERT(barrier_strength_decorators == 0 || ( // make sure barrier strength decorators are disjoint if set
 349     (barrier_strength_decorators ^ AS_NO_KEEPALIVE) == 0 ||
 350     (barrier_strength_decorators ^ AS_RAW) == 0 ||
 351     (barrier_strength_decorators ^ AS_NORMAL) == 0
 352   ));
 353   const DecoratorSet ref_strength_decorators = decorators & ON_DECORATOR_MASK;
 354   STATIC_ASSERT(ref_strength_decorators == 0 || ( // make sure ref strength decorators are disjoint if set
 355     (ref_strength_decorators ^ ON_STRONG_OOP_REF) == 0 ||
 356     (ref_strength_decorators ^ ON_WEAK_OOP_REF) == 0 ||
 357     (ref_strength_decorators ^ ON_PHANTOM_OOP_REF) == 0 ||
 358     (ref_strength_decorators ^ ON_UNKNOWN_OOP_REF) == 0
 359   ));
 360   const DecoratorSet memory_ordering_decorators = decorators & MO_DECORATOR_MASK;
 361   STATIC_ASSERT(memory_ordering_decorators == 0 || ( // make sure memory ordering decorators are disjoint if set
 362     (memory_ordering_decorators ^ MO_UNORDERED) == 0 ||
 363     (memory_ordering_decorators ^ MO_VOLATILE) == 0 ||
 364     (memory_ordering_decorators ^ MO_RELAXED) == 0 ||
 365     (memory_ordering_decorators ^ MO_ACQUIRE) == 0 ||
 366     (memory_ordering_decorators ^ MO_RELEASE) == 0 ||
 367     (memory_ordering_decorators ^ MO_SEQ_CST) == 0
 368   ));
 369   const DecoratorSet location_decorators = decorators & IN_DECORATOR_MASK;
 370   STATIC_ASSERT(location_decorators == 0 || ( // make sure location decorators are disjoint if set
 371     (location_decorators ^ IN_NATIVE) == 0 ||
 372     (location_decorators ^ IN_HEAP) == 0
 373   ));
 374 }
 375 
 376 #endif // SHARE_OOPS_ACCESS_HPP