1 /*
   2  * Copyright (c) 2017, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OOPS_ACCESSBACKEND_INLINE_HPP
  26 #define SHARE_OOPS_ACCESSBACKEND_INLINE_HPP
  27 
  28 #include "oops/access.hpp"
  29 #include "oops/accessBackend.hpp"
  30 #include "oops/compressedOops.inline.hpp"
  31 #include "oops/oopsHierarchy.hpp"
  32 #include "oops/valueKlass.hpp"
  33 
  34 template <DecoratorSet decorators>
  35 template <DecoratorSet idecorators, typename T>
  36 inline typename EnableIf<
  37   AccessInternal::MustConvertCompressedOop<idecorators, T>::value, T>::type
  38 RawAccessBarrier<decorators>::decode_internal(typename HeapOopType<idecorators>::type value) {
  39   if (HasDecorator<decorators, IS_NOT_NULL>::value) {
  40     return CompressedOops::decode_not_null(value);
  41   } else {
  42     return CompressedOops::decode(value);
  43   }
  44 }
  45 
  46 template <DecoratorSet decorators>
  47 template <DecoratorSet idecorators, typename T>
  48 inline typename EnableIf<
  49   AccessInternal::MustConvertCompressedOop<idecorators, T>::value,
  50   typename HeapOopType<idecorators>::type>::type
  51 RawAccessBarrier<decorators>::encode_internal(T value) {
  52   if (HasDecorator<decorators, IS_NOT_NULL>::value) {
  53     return CompressedOops::encode_not_null(value);
  54   } else {
  55     return CompressedOops::encode(value);
  56   }
  57 }
  58 
  59 template <DecoratorSet decorators>
  60 template <typename T>
  61 inline void RawAccessBarrier<decorators>::oop_store(void* addr, T value) {
  62   typedef typename AccessInternal::EncodedType<decorators, T>::type Encoded;
  63   Encoded encoded = encode(value);
  64   store(reinterpret_cast<Encoded*>(addr), encoded);
  65 }
  66 
  67 template <DecoratorSet decorators>
  68 template <typename T>
  69 inline void RawAccessBarrier<decorators>::oop_store_at(oop base, ptrdiff_t offset, T value) {
  70   oop_store(field_addr(base, offset), value);
  71 }
  72 
  73 template <DecoratorSet decorators>
  74 template <typename T>
  75 inline T RawAccessBarrier<decorators>::oop_load(void* addr) {
  76   typedef typename AccessInternal::EncodedType<decorators, T>::type Encoded;
  77   Encoded encoded = load<Encoded>(reinterpret_cast<Encoded*>(addr));
  78   return decode<T>(encoded);
  79 }
  80 
  81 template <DecoratorSet decorators>
  82 template <typename T>
  83 inline T RawAccessBarrier<decorators>::oop_load_at(oop base, ptrdiff_t offset) {
  84   return oop_load<T>(field_addr(base, offset));
  85 }
  86 
  87 template <DecoratorSet decorators>
  88 template <typename T>
  89 inline T RawAccessBarrier<decorators>::oop_atomic_cmpxchg(T new_value, void* addr, T compare_value) {
  90   typedef typename AccessInternal::EncodedType<decorators, T>::type Encoded;
  91   Encoded encoded_new = encode(new_value);
  92   Encoded encoded_compare = encode(compare_value);
  93   Encoded encoded_result = atomic_cmpxchg(encoded_new,
  94                                           reinterpret_cast<Encoded*>(addr),
  95                                           encoded_compare);
  96   return decode<T>(encoded_result);
  97 }
  98 
  99 template <DecoratorSet decorators>
 100 template <typename T>
 101 inline T RawAccessBarrier<decorators>::oop_atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
 102   return oop_atomic_cmpxchg(new_value, field_addr(base, offset), compare_value);
 103 }
 104 
 105 template <DecoratorSet decorators>
 106 template <typename T>
 107 inline T RawAccessBarrier<decorators>::oop_atomic_xchg(T new_value, void* addr) {
 108   typedef typename AccessInternal::EncodedType<decorators, T>::type Encoded;
 109   Encoded encoded_new = encode(new_value);
 110   Encoded encoded_result = atomic_xchg(encoded_new, reinterpret_cast<Encoded*>(addr));
 111   return decode<T>(encoded_result);
 112 }
 113 
 114 template <DecoratorSet decorators>
 115 template <typename T>
 116 inline T RawAccessBarrier<decorators>::oop_atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
 117   return oop_atomic_xchg(new_value, field_addr(base, offset));
 118 }
 119 
 120 template <DecoratorSet decorators>
 121 template <typename T>
 122 inline void RawAccessBarrier<decorators>::oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 123                                                         arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 124                                                         size_t length) {
 125   arraycopy(src_obj, src_offset_in_bytes, src_raw,
 126             dst_obj, dst_offset_in_bytes, dst_raw,
 127             length);
 128 }
 129 
 130 template <DecoratorSet decorators>
 131 template <DecoratorSet ds, typename T>
 132 inline typename EnableIf<
 133   HasDecorator<ds, MO_SEQ_CST>::value, T>::type
 134 RawAccessBarrier<decorators>::load_internal(void* addr) {
 135   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
 136     OrderAccess::fence();
 137   }
 138   return OrderAccess::load_acquire(reinterpret_cast<const volatile T*>(addr));
 139 }
 140 
 141 template <DecoratorSet decorators>
 142 template <DecoratorSet ds, typename T>
 143 inline typename EnableIf<
 144   HasDecorator<ds, MO_ACQUIRE>::value, T>::type
 145 RawAccessBarrier<decorators>::load_internal(void* addr) {
 146   return OrderAccess::load_acquire(reinterpret_cast<const volatile T*>(addr));
 147 }
 148 
 149 template <DecoratorSet decorators>
 150 template <DecoratorSet ds, typename T>
 151 inline typename EnableIf<
 152   HasDecorator<ds, MO_RELAXED>::value, T>::type
 153 RawAccessBarrier<decorators>::load_internal(void* addr) {
 154   return Atomic::load(reinterpret_cast<const volatile T*>(addr));
 155 }
 156 
 157 template <DecoratorSet decorators>
 158 template <DecoratorSet ds, typename T>
 159 inline typename EnableIf<
 160   HasDecorator<ds, MO_SEQ_CST>::value>::type
 161 RawAccessBarrier<decorators>::store_internal(void* addr, T value) {
 162   OrderAccess::release_store_fence(reinterpret_cast<volatile T*>(addr), value);
 163 }
 164 
 165 template <DecoratorSet decorators>
 166 template <DecoratorSet ds, typename T>
 167 inline typename EnableIf<
 168   HasDecorator<ds, MO_RELEASE>::value>::type
 169 RawAccessBarrier<decorators>::store_internal(void* addr, T value) {
 170   OrderAccess::release_store(reinterpret_cast<volatile T*>(addr), value);
 171 }
 172 
 173 template <DecoratorSet decorators>
 174 template <DecoratorSet ds, typename T>
 175 inline typename EnableIf<
 176   HasDecorator<ds, MO_RELAXED>::value>::type
 177 RawAccessBarrier<decorators>::store_internal(void* addr, T value) {
 178   Atomic::store(value, reinterpret_cast<volatile T*>(addr));
 179 }
 180 
 181 template <DecoratorSet decorators>
 182 template <DecoratorSet ds, typename T>
 183 inline typename EnableIf<
 184   HasDecorator<ds, MO_RELAXED>::value, T>::type
 185 RawAccessBarrier<decorators>::atomic_cmpxchg_internal(T new_value, void* addr, T compare_value) {
 186   return Atomic::cmpxchg(new_value,
 187                          reinterpret_cast<volatile T*>(addr),
 188                          compare_value,
 189                          memory_order_relaxed);
 190 }
 191 
 192 template <DecoratorSet decorators>
 193 template <DecoratorSet ds, typename T>
 194 inline typename EnableIf<
 195   HasDecorator<ds, MO_SEQ_CST>::value, T>::type
 196 RawAccessBarrier<decorators>::atomic_cmpxchg_internal(T new_value, void* addr, T compare_value) {
 197   return Atomic::cmpxchg(new_value,
 198                          reinterpret_cast<volatile T*>(addr),
 199                          compare_value,
 200                          memory_order_conservative);
 201 }
 202 
 203 template <DecoratorSet decorators>
 204 template <DecoratorSet ds, typename T>
 205 inline typename EnableIf<
 206   HasDecorator<ds, MO_SEQ_CST>::value, T>::type
 207 RawAccessBarrier<decorators>::atomic_xchg_internal(T new_value, void* addr) {
 208   return Atomic::xchg(new_value,
 209                       reinterpret_cast<volatile T*>(addr));
 210 }
 211 
 212 // For platforms that do not have native support for wide atomics,
 213 // we can emulate the atomicity using a lock. So here we check
 214 // whether that is necessary or not.
 215 
 216 template <DecoratorSet ds>
 217 template <DecoratorSet decorators, typename T>
 218 inline typename EnableIf<
 219   AccessInternal::PossiblyLockedAccess<T>::value, T>::type
 220 RawAccessBarrier<ds>::atomic_xchg_maybe_locked(T new_value, void* addr) {
 221   if (!AccessInternal::wide_atomic_needs_locking()) {
 222     return atomic_xchg_internal<ds>(new_value, addr);
 223   } else {
 224     AccessInternal::AccessLocker access_lock;
 225     volatile T* p = reinterpret_cast<volatile T*>(addr);
 226     T old_val = RawAccess<>::load(p);
 227     RawAccess<>::store(p, new_value);
 228     return old_val;
 229   }
 230 }
 231 
 232 template <DecoratorSet ds>
 233 template <DecoratorSet decorators, typename T>
 234 inline typename EnableIf<
 235   AccessInternal::PossiblyLockedAccess<T>::value, T>::type
 236 RawAccessBarrier<ds>::atomic_cmpxchg_maybe_locked(T new_value, void* addr, T compare_value) {
 237   if (!AccessInternal::wide_atomic_needs_locking()) {
 238     return atomic_cmpxchg_internal<ds>(new_value, addr, compare_value);
 239   } else {
 240     AccessInternal::AccessLocker access_lock;
 241     volatile T* p = reinterpret_cast<volatile T*>(addr);
 242     T old_val = RawAccess<>::load(p);
 243     if (old_val == compare_value) {
 244       RawAccess<>::store(p, new_value);
 245     }
 246     return old_val;
 247   }
 248 }
 249 
 250 class RawAccessBarrierArrayCopy: public AllStatic {
 251   template<typename T> struct IsHeapWordSized: public IntegralConstant<bool, sizeof(T) == HeapWordSize> { };
 252 public:
 253   template <DecoratorSet decorators, typename T>
 254   static inline typename EnableIf<
 255     HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value>::type
 256   arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 257             arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 258             size_t length) {
 259     src_raw = arrayOopDesc::obj_offset_to_raw(src_obj, src_offset_in_bytes, src_raw);
 260     dst_raw = arrayOopDesc::obj_offset_to_raw(dst_obj, dst_offset_in_bytes, dst_raw);
 261 
 262     // We do not check for ARRAYCOPY_ATOMIC for oops, because they are unconditionally always atomic.
 263     if (HasDecorator<decorators, ARRAYCOPY_ARRAYOF>::value) {
 264       AccessInternal::arraycopy_arrayof_conjoint_oops(src_raw, dst_raw, length);
 265     } else {
 266       typedef typename HeapOopType<decorators>::type OopType;
 267       AccessInternal::arraycopy_conjoint_oops(reinterpret_cast<OopType*>(src_raw),
 268                                               reinterpret_cast<OopType*>(dst_raw), length);
 269     }
 270   }
 271 
 272   template <DecoratorSet decorators, typename T>
 273   static inline typename EnableIf<
 274     !HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value &&
 275     HasDecorator<decorators, ARRAYCOPY_ARRAYOF>::value>::type
 276   arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 277             arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 278             size_t length) {
 279     src_raw = arrayOopDesc::obj_offset_to_raw(src_obj, src_offset_in_bytes, src_raw);
 280     dst_raw = arrayOopDesc::obj_offset_to_raw(dst_obj, dst_offset_in_bytes, dst_raw);
 281 
 282     AccessInternal::arraycopy_arrayof_conjoint(src_raw, dst_raw, length);
 283   }
 284 
 285   template <DecoratorSet decorators, typename T>
 286   static inline typename EnableIf<
 287     !HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value &&
 288     HasDecorator<decorators, ARRAYCOPY_DISJOINT>::value && IsHeapWordSized<T>::value>::type
 289   arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 290             arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 291             size_t length) {
 292     src_raw = arrayOopDesc::obj_offset_to_raw(src_obj, src_offset_in_bytes, src_raw);
 293     dst_raw = arrayOopDesc::obj_offset_to_raw(dst_obj, dst_offset_in_bytes, dst_raw);
 294 
 295     // There is only a disjoint optimization for word granularity copying
 296     if (HasDecorator<decorators, ARRAYCOPY_ATOMIC>::value) {
 297       AccessInternal::arraycopy_disjoint_words_atomic(src_raw, dst_raw, length);
 298     } else {
 299       AccessInternal::arraycopy_disjoint_words(src_raw, dst_raw, length);
 300     }
 301   }
 302 
 303   template <DecoratorSet decorators, typename T>
 304   static inline typename EnableIf<
 305     !HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value &&
 306     !(HasDecorator<decorators, ARRAYCOPY_DISJOINT>::value && IsHeapWordSized<T>::value) &&
 307     !HasDecorator<decorators, ARRAYCOPY_ARRAYOF>::value &&
 308     !HasDecorator<decorators, ARRAYCOPY_ATOMIC>::value>::type
 309   arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 310             arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 311             size_t length) {
 312     src_raw = arrayOopDesc::obj_offset_to_raw(src_obj, src_offset_in_bytes, src_raw);
 313     dst_raw = arrayOopDesc::obj_offset_to_raw(dst_obj, dst_offset_in_bytes, dst_raw);
 314 
 315     AccessInternal::arraycopy_conjoint(src_raw, dst_raw, length);
 316   }
 317 
 318   template <DecoratorSet decorators, typename T>
 319   static inline typename EnableIf<
 320     !HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value &&
 321     !(HasDecorator<decorators, ARRAYCOPY_DISJOINT>::value && IsHeapWordSized<T>::value) &&
 322     !HasDecorator<decorators, ARRAYCOPY_ARRAYOF>::value &&
 323     HasDecorator<decorators, ARRAYCOPY_ATOMIC>::value>::type
 324   arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 325             arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 326             size_t length) {
 327     src_raw = arrayOopDesc::obj_offset_to_raw(src_obj, src_offset_in_bytes, src_raw);
 328     dst_raw = arrayOopDesc::obj_offset_to_raw(dst_obj, dst_offset_in_bytes, dst_raw);
 329 
 330     AccessInternal::arraycopy_conjoint_atomic(src_raw, dst_raw, length);
 331   }
 332 };
 333 
 334 template<> struct RawAccessBarrierArrayCopy::IsHeapWordSized<void>: public IntegralConstant<bool, false> { };
 335 
 336 template <DecoratorSet decorators>
 337 template <typename T>
 338 inline void RawAccessBarrier<decorators>::arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 339                                                     arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 340                                                     size_t length) {
 341   RawAccessBarrierArrayCopy::arraycopy<decorators>(src_obj, src_offset_in_bytes, src_raw,
 342                                                    dst_obj, dst_offset_in_bytes, dst_raw,
 343                                                    length);
 344 }
 345 
 346 template <DecoratorSet decorators>
 347 inline void RawAccessBarrier<decorators>::clone(oop src, oop dst, size_t size) {
 348   // 4839641 (4840070): We must do an oop-atomic copy, because if another thread
 349   // is modifying a reference field in the clonee, a non-oop-atomic copy might
 350   // be suspended in the middle of copying the pointer and end up with parts
 351   // of two different pointers in the field.  Subsequent dereferences will crash.
 352   // 4846409: an oop-copy of objects with long or double fields or arrays of same
 353   // won't copy the longs/doubles atomically in 32-bit vm's, so we copy jlongs instead
 354   // of oops.  We know objects are aligned on a minimum of an jlong boundary.
 355   // The same is true of StubRoutines::object_copy and the various oop_copy
 356   // variants, and of the code generated by the inline_native_clone intrinsic.
 357 
 358   assert(MinObjAlignmentInBytes >= BytesPerLong, "objects misaligned");
 359   AccessInternal::arraycopy_conjoint_atomic(reinterpret_cast<jlong*>((oopDesc*)src),
 360                                             reinterpret_cast<jlong*>((oopDesc*)dst),
 361                                             align_object_size(size) / HeapWordsPerLong);
 362   // Clear the header
 363   dst->init_mark_raw();
 364 }
 365 
 366 template <DecoratorSet decorators>
 367 inline void RawAccessBarrier<decorators>::value_copy(void* src, void* dst, ValueKlass* md) {
 368   assert(is_aligned(src, md->get_alignment()) && is_aligned(dst, md->get_alignment()), "Unalign value_copy");
 369   AccessInternal::arraycopy_conjoint_atomic(src, dst, static_cast<size_t>(md->get_exact_size_in_bytes()));
 370 }
 371 #endif // SHARE_OOPS_ACCESSBACKEND_INLINE_HPP